
POLITECNICO DI TORINO
Master’s Degree in Electronic Engineering

Master’s Degree Thesis

Deep learning 3D facial reconstruction
framework for prosthetic rehabilitation

Supervisors

Prof. Stefano DI CARLO

Prof. Alessandro SAVINO

Prof. Roberta BARDINI

Candidate

Jose VILLALOBOS

March 2022

Summary

Aesthetics has been one of the concepts most studied and analyzed by the greatest
philosophers, authors and thinkers of all times and is nowadays a key factor in case
of prosthetic rehabilitation, especially when connected to facial rehabilitation (e.g.,
in case of severe accidents or pathologies).

The implementation of the aesthetic standards in daily clinical practice to
improve the aesthetics of patients has been a constant challenge for clinicians since
dentistry was born. The traditional approach in this domain is to create wax
models or similar artifacts that can help the patient to visualize the result if the
prosthetic rehabilitation process. The advance in computing graphics techniques,
machine learning and artificial intelligence has the potential to significantly impact
this domain.

In this project we explore the advantages of face reconstruction into the field,
and draw a path between 2D images and a conditioned 3D face model. The end-
to-end process includes pre-processing the image files, converting to 3D, merging
two models, and replacing a region with a third source. For each step, this
report addresses the main characteristics and requirements, discuss about the
fundamentals, and provides concept examples to illustrate the results. On the
background, we use programming language to write new tools, review the theory
on computer graphics and get a shallow understanding on the implementation of
the reconstructor.

ii

Acknowledgements

Vorrei ringraziare Dio, per spingermi forte sempre avanti, e fissare in questa
vicenda una piccola stella nei tempi di buio, soltanto per ricordarci che più oscuro

diventa, meglio brilla la sua costellazione. A te tutto questo successo...

iii

Table of Contents

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Objectives . 2
1.2 Previous work . 3
1.3 Computer environment . 4
1.4 Image file format . 5
1.5 Input files . 5

2 Model Reconstruction 6
2.1 Image pre-processing . 6
2.2 Face Reconstructor . 8
2.3 Training the model . 10
2.4 Rotation Matrix . 11

3 Mesh objects 12
3.1 Graphical elements . 12
3.2 Face objects . 15
3.3 Wavefront .obj file format . 18
3.4 A simple obj python class . 19

4 Merge 20
4.1 Loading the files . 21
4.2 Alignment . 23
4.3 Coarse Merge . 25
4.4 Constant average merge . 26
4.5 Linear average merge . 28
4.6 Segmented linear merge . 30

v

5 Match and Replace 33
5.1 Loading the files . 34
5.2 Alignment . 35
5.3 Averaging . 35
5.4 Region matching . 36
5.5 Spherical mode . 38
5.6 Rectangular mode . 40

6 Conclusions 42
6.1 Observations . 43
6.2 Future work . 43

7 Code 44
7.1 Header . 44
7.2 Image preprocessing . 45
7.3 OBJ class . 46
7.4 Merge . 48
7.5 Match and Replace . 51
7.6 Heat Map utilities . 55
7.7 Gamma Map utilities . 56

Appendix A Software versions 59

Appendix B Base directory content tree 60

Bibliography 63

vi

List of Figures

1.1 Project scope . 2
1.2 Input files . 5

2.1 Image pre-processing, face landmark detection 7
2.2 Face reconstruction model sequence 8
2.3 Rendered 3D model . 9

3.1 Graphical mesh primitives . 13
3.2 A cube and its three projections . 14
3.3 Points . 15
3.4 Vertices with color property . 15
3.5 Triangles . 16
3.6 Solid . 16
3.7 Colored model . 16
3.8 Finished model . 17

4.1 Merging sequence . 20
4.2 Left model . 22
4.3 Right model . 22
4.4 Original models . 23
4.5 Rotated models . 24
4.6 Translated models . 24
4.7 Coarse merging . 25
4.8 Constant average merge . 27
4.9 Linear average merge . 29
4.10 Segmented average merge . 31
4.11 Segmented generalized merge . 32

5.1 Merging sequence . 33
5.2 Match and replace . 33
5.3 Match and replace models . 34
5.4 Region mode . 37

vii

5.5 Spherical intersection . 38
5.6 Sphere mode examples . 39
5.7 Rectangular intersection . 40
5.8 Rectangular mode examples . 41

viii

Acronyms

AI
artificial intelligence

ML
machine learning

2D
two dimensions

3D
three dimensions

BFM
basel face model

CPU
central processing unit

GPU
graphical processing unit

MTCNN
multi-task cascaded convolutional neural network

CV
computer vision

TF
tensor flow

x

Chapter 1

Introduction

Deep learning 3D facial reconstruction framework for prosthetic rehabilitation is
a research collaboration project between the Politecnico di Torino and Univer-
sita’ degli Studi di Torino, intended to explore, study and develop tools to help
doctors and patients during a prosthetic rehabilitation by improving the graph-
ical visualization of the procedure and expected results even before the actual
intervention.

The target application is facial analysis, as great advances on digital fields like
computer vision and face recognition create a suitable path for this scope, opening
opportunities to work with the main face regions such as forehead, eyes, nose and
dental injuries.

Providing doctors with a 3D model of the face of the patient represents a
powerful tool having positive effects on diagnose, enhanced planning and execution,
risk assessment, and also better understanding from the recipient that can follow
along the process in a more intuitive approach.

Throughout this process, from patient to renovated 3D model, several steps are
taken. From getting the face scanned into a digital representation, analyze the
model by detecting the damaged areas, modify such model following the changes
introduced by the medical intervention, to replacing areas with healthy donor
models, among others. To help boost this pipeline, Deep learning techniques
can be incorporated, speeding up data clustering and analysis, as well as faster
reconstruction model.

We then focus on the early stages of this long path, dig into the 3D model
reconstruction from simple 2D photos, review the fundamentals and variables
present on the conversion, inspect different methods to optimize the model, and
review the ties this reconstruction model has with the other disciplines involved at
a higher project scale.

The 3D face reconstruction tool utilized, as detailed in the next sections, requires
one single picture to generate the model. As part of the project requirements,

1

Introduction

detailed information from the two sides of the face (i.e, left and right) are of interest.
To achieve this, two separate models are generated independently for each side and
later combined in the 3D format. After merging, the model goes through a match
and replace algorithm to swap a given area with the same region from another
model, intended to be a healthy donor model. Figure 1.1 shows the scope of this
project. In the next sections, we’ll start from the reconstruction details, what
additional information has to been extracted from it in order to accurate merge
the left and side models, and how to perform a damaged part replacement.

Figure 1.1: Project scope

1.1 Objectives
1. Reconstruct left/right facial 3D models starting from paired 2D photos taken

with commercial low cost cameras.

2. Extract the rotation parameters of the models.

3. Study the output 3D model file format.

4. Merge the left and right models into an unified model.

5. Match and replace a desired area with a secondary 3D model.

6. Discuss on advantages, limitations and future work.

2

Introduction

1.2 Previous work
The thesis report in [1] introduces the concept of aesthetics, meaning and history
of the word. Discusses the intrinsic value of beauty in nature and humankind, and
correlates the value into the odontology field. From this perspective, the document
develops the theory behind the geometry and symmetry of the human face, covering
front and lateral views to finally dig into the dental area. The author then focuses
on the detailed region of the mouth, presents the importance in context between
the nose and chin, and how the lips and teeth play the role on the smile along with
the parameters implied.

On the second half, the document addresses the importance of utilizing digital
photos to improve and speed analysis in dental procedures, recalls the evolution of
3D models that help creating resin molds, and introduces different techniques to
obtain an object’s 3D model from 2D images. Regarding the process to convert 2D
face images into a 3D model, several approaches and algorithms are compared from
which fast implementations using Machine Learning and Neural Networks stand
out. The author also provides a brief on these topics and the tools used on the
demonstration examples. From this last family of single image face modelers, the
author proposes using a face reconstruction model owned by Microsoft and explains
why it fits better than other implementations for the proposed application. The
tool generates a 3D model from a single image using weakly-supervised learning,
boasts high accuracy and texture fidelity while being easy to use, fast and robust.
In addition, the output model is aligned with the source picture for easy overlay.

3

Introduction

1.3 Computer environment
A low-range (4 core, 8GB, specs below) computer running Debian GNU/Linux
is used for the project. This allow for the installation of the required packages,
edition and execution of the scripts (programs) and visualize the results. Aside
from basic software tools that ship with most distributions, only python is required,
git is recommended.

Processors: 4 x AMD A12-9720P RADEON R7, 12 COMPUTE CORES 4C+8G
Memory: 7.2 GiB of RAM
Graphics Processor: AMD Radeon R7 Graphics

To setup the environment, read and follow the steps described in [2] to install the
face reconstruction generator. This repository is also a good source of information
and references to the processes involved during training and reconstruction.

Have a look at the Testing requirements section and notice some features, namely
training and rendering, are only available on GNU/Linux. We will use the conda
framework to handle the python environment, TensorFlow version 1.12 (no
gpu version) installed using pip, this allows using the pre-compiled binary file
rasterize_triangles_kernel.so, otherwise follow the instructions to compile
the tf_mesh_renderer before continuing. For visualization will be using the
MeshLab application. On Appendix A a list of package versions used during the
development of this thesis project are provided.

After setting up the environment, downloading all the required files and doing
the instructed file moves and edits described on the repository in [2], you should
have a folder structure similar to the one provided in Appendix B.

4

Introduction

1.4 Image file format
Image files are very common and widely spread nowadays, popular formats for
example are BMP, JPEG, JPG, TIFF, SVG and PNG. The face reconstruction tool
used in Section 2.2 can work with .jpg and .png files, while the pre-processing
stage in Section 2.1 can also handle .jpeg. However, to simplify the set-up is
recommended to convert all images to .jpg as a first step. You can easily convert
between image file formats using the convert tool from the ImageMagick Studio
suite.

1.5 Input files
Each subject supplies a paired (left and right) photos with an isometric (≈45◦)
view of the head, see Figure 1.2. Across the execution of the project two datasets
were provided, with the main difference that in the first batch people stand with
the mouth closed, while in the second smiling.

(a) Right side (b) Left side
Image taken from Iconfinder under CC BY-ND 2.5 DK license.

Figure 1.2: Input files

Datasets included paired pictures for 10 and 15 adult persons respectively, taken
on white-is backgrounds, portrait oriented and clearly taken with a regular (phone)
camera. Image resolutions varying from 768x1024px to 1538x2048px. File sizes
span from 70 to 550 KiB each. File formats correspond to all .jpeg the first dataset,
while the second to .jpg. Filenames follow enumeration starting from 1, adding the
suffix "-left" or "-right", for example ’8-left.jpeg’.

5

Chapter 2

Model Reconstruction

This chapter is focused on examining the face reconstruction process, overview the
components and fundamentals behind, and provide details on the steps taken to
generate the model.

2.1 Image pre-processing
In order to feed the 3D model reconstruction tool, the image needs to be pre-
processed to extract the main five landmarks of the face, these are the two eyes,
nose and mouth boundaries. Documentation in [2] recommends using dlib or
mtcnn, we will use the latter which can be downloaded from its repository or
installed via pip as instructed in [3].

The Multi-task Cascaded Convolutional Neural Network (MTCNN) is a face
detector implementation written in Python by Iván de Paz Centeno, based on
the original FaceNet’s MTCNN implementation from David Sandberg, which is
further based on the paper from Zhang, K et al (2016)1. This technique implements
face detection with pose estimation, considering illumination and occlusions, and
exploiting deep convolutional neural networks to produce a robust and fast method
suitable to unconstrained environments.

The file preproc.py in Section 7.2 is a slightly modified version of the original
example.py in [3] that iterates over all files in an input folder. The tool uses
TensorFlow for the detector computation, and OpenCV for handling and editing
the image. In case the TF version conflicts with the one used on the next steps,
a simple way to workaround this is to create a different conda environment and
install the desired package version.

1See references [3], [4], [5]

6

Model Reconstruction

For each input image file, the results are written into the output folder, these are
a newly created image with the graphical result and a the text file containing the
five (x,y) landmark coordinates. One can also examine the output of the program
and see the five landmarks information. Figure 2.1 shows an example of result of
the face detection algorithm.

The next sections will require the original image and the landmark coordinates
files to have the same filename.

Landmark information

[{ ’box’: [244, 358, 390, 567],
’confidence’: 0.9999512434005737,
’keypoints’: {

’left_eye’: (296, 583),
’right_eye’: (470, 578),
’nose’: (352, 709),
’mouth_left’: (303, 781),
’mouth_right’: (483, 779)

} }]

Pictures taken from Pexels courtesy of George Milton, Marcelo Verfe and Apunto Group.

Figure 2.1: Image pre-processing, face landmark detection

7

Model Reconstruction

2.2 Face Reconstructor
To run the face modeler, we use the script demo.py provided in [2]. After moving
the original image files, thus not the "_mtcnn.jpg" files created in the previous
step, along with the corresponding .txt landmark files into the folder
Deep3DFaceReconstruction/input within the Microsoft engine. The script processes
all files in this directory and writes the results into the output folder

Figure 2.2: Face recon-
struction model sequence

By inspecting the code run during the 3D modeling,
one can layout the main steps taken during computa-
tion, Figure 2.2 shows a top-level sequential execution
diagram, where the first step is loading the 2D images in
memory. Afterwards, a standard face is created by load-
ing a morphable 3D Basel Facel model (BFM)[6] and
the corresponding five landmarks of interest, which are
calculated from a bigger set of 68 similarity landmarks
provided with the model. The landmarks have the form
(x,y,z) and the model contains m = 53490 vertices, this
last property is addressed on Section 2.3.

Consequently, the face decoder is implemented using
a network graph that contains a Face Reconstruction
model, which handles variables such as face shape, iden-
tity, expression, texture, skin and landmarks. The start-
ing weights can be loaded using the pre-trained saved
model file provided network/FaceReconModel.pb or a
checkpoint (.ckpt) file that one can generate by training
the model with a custom dataset (see Section 2.3).

The reconstructor model includes auxiliary informa-
tion that helps to characterize the face and the environ-
ment, such as camera, color, illumination, position and
rotation. The latter is required to perform the merge
step in Chapter 4, therefore, the next section presents
the modifications introduced to extract this information
from the model graph.

A session runs the reconstructor to shape the mor-
phable model and fit each of the input source images.
When finished, the output is the 3D model (.obj) and
a Matlab binary data file (.mat) containing numerical
variables of the parameters handled by the reconstructor on the face decoder, this
file will contain the rotation matrix that is of our interest. Figure 2.3 shows the
rendered 3D models for a left and right pair of pictures for a given subject.

8

Model Reconstruction

(a) Sample 1. Right side (b) Sample 1. Left side

(c) Sample 2. Right side (d) Sample 2. Left side

(e) Sample 3. Right side (f) Sample 3. Left side

Figure 2.3: Rendered 3D model

9

Model Reconstruction

2.3 Training the model
The previous step used the .pb file as pre-trained weight values for the reconstruc-
tion. One can train the model using a specific set of pictures.

Training is available only in Linux. Note that the process demands high computer
power and can take a considerable time depending upon the available resources.
Documentation in [2] calls for "Training a model with a batchsize of 16 and 200K
iterations takes 20 hours on a single Tesla M40 GPU.". To compare, when training
using the hardware described in Section 1.3, the average time per iteration is
35s, making it impractical to run. One can control the training parameters in
option.py. In addition, the tool uses a GPU device by default, the following
changes are to be performed in order to use the CPU.

Differences in: preprocess_img.py

127c127
< with tf.Graph().as_default() as graph, tf.device(’/cpu:0’):

> with tf.Graph().as_default() as graph, tf.device(’/gpu:0’):

Differences in: preprocess_img.py

72c72
< apply(prefetch_to_device(’/cpu:0’, None)) # When using dataset.prefetch, ...

> apply(prefetch_to_device(’/gpu:0’, None)) # When using dataset.prefetch, ...

Training instructions are provided in [2]. A second pre-processing step is
required prior training that takes the five landmarks and generate a bigger 68
landmark set. Similar as the procedure performed in Section 2.1, the original .jpg
pictures and the 5-landmark .txt files are put into the input folder, but then
the preprocess_img.py script is used and will generate the processed_data folder.
The output contents are the cropped-to-face picture and masks in .png format,
and the 68-landmark files in .txt and bin formats.

The training process is similar to the one described in Section 2.1 but the
train.py script is used instead. Another network is created to handle the ex-
pressions since the original BFM model does not handle this variations. Is also
interesting to note that while the BFM model has m = 53490 vertices, the 3D
model contains m = 35709 and the expression basis m = 53215 as commented in
utils.py 52-54 in [2]. The resulted .ckpt file can then be used when executing
the demo.py script as attribute.

10

Model Reconstruction

2.4 Rotation Matrix
The rotation matrix holds the angle values that characterize the rotation of the
face according to the 2D source image, this allows to later overlay and align the
3D model with the original photo. This is of our interest since in order to do a
merge of two models (left and right), these must be normalized and aligned first.
The following is the output diff to show the modifications into the demo.py file.

88a89
> rot_mat = FaceReconstructor.rotation
104,105c105,106
< coeff_,face_shape_,face_texture_,face_color_,landmarks_2d_,recon_img_,tri_

= sess.run(
[coeff,face_shape,face_texture,face_color,landmarks_2d,recon_img,tri],
feed_dict = {images: input_img})

> coeff_,face_shape_,face_texture_,face_color_,landmarks_2d_,recon_img_,tri_, rot_mat_

= sess.run(
[coeff,face_shape,face_texture,face_color,landmarks_2d,recon_img,tri, rot_mat],
feed_dict = {images: input_img})

113a115
> rot_mat_ = np.squeeze(rot_mat_,(0))
119c121
< savemat(

os.path.join(
save_path,file.split(os.path.sep)[-1].replace(’.png’,’.mat’).replace(’jpg’,’mat’)

),
{’cropped_img’:input_img[:,:,::-1],’recon_img’:recon_img_,’coeff’:coeff_,

> savemat(

os.path.join(
save_path,file.split(os.path.sep)[-1].replace(’.png’,’.mat’).replace(’jpg’,’mat’)

),
{’rot_mat’:rot_mat_, ’cropped_img’:input_img[:,:,::-1],’recon_img’:recon_img_,’coeff’:coeff_,\

One can see that the rotation parameters are extracted from the Face recon-
structor, feed and kept also during the session, squeezed and saved along with the
rest of the previous parameters into the .mat file. A quick inspection shows that
the rotation matrix is a 3x3 matrix with the rotation vectors for each of the (x, y, z)
axes, for example:

rot_matrix =

 0.888812 0.041870 0.456356
−0.077970 0.995115 0.060557
−0.451591 −0.089406 0.887734


GNU Octave can read .mat files in Linux, in Python can be used the Scipy

library.2

2See references [7] and [8]

11

Chapter 3

Mesh objects

The 3D model is saved in a mesh object with file extension .obj, this chapter is
intended as an overview of this format representation and introduce basic concepts
about the 3D model.

3.1 Graphical elements
While a typical image uses a raster format to characterize the rendering, modern
computer graphics work rather with a scene description mechanism, comprised by
objects, lights and cameras. This allows to build and render a 2D (screen) image
from 3D scenes, and easily change either the camera or illumination and have the
effects recalculated to update the render to reflect the changes.1

Objects are then described as a mesh, which is made using three basic primitives:
points, lines and triangles.2

Figure 3.1a shows a red color point p1 in a 3D space, where its position is given
by the values on each (x, y, z) dimension. When having a second (blue) point p2
(Figure 3.1b) is possible to create a line in between (Figure 3.1c). Consequently, a
third (green) point p3 creates a triangle, which is the minimum required in order to
get a closed region (Figure 3.1d). To all points that land in the plane enclosed by
this region are called a surface (Figure 3.1e). Therefore, the surface can be defined
by using only three vertices.

A vertex is a point that holds information such as position, color, texture,
material and/or a normal vector. When rendering, the triangle area is filled
extrapolating the three vertices’ properties that build the face (Figure 3.1f).

1Note: A GPU is a specialized unit that performs these recalculations in a very fast and highly
parallel manner.

2Refer to [9] for a graphics library implementation documentation with a more formal definition.

12

Mesh objects

(a) A point in 3D space (b) A second point

(c) A line (d) A triangle (closed region)

(e) A surface (f) Color texture

Figure 3.1: Graphical mesh primitives

13

Mesh objects

Triangles, or faces, can be from different sizes. Adding more faces creates
polygons, the mesh grows and it can then take the shape of a desired object.
Figure 3.2 shows a cube made from 12 faces, or two per side. Objects can also be
categorized as shells or solids (closed volumes).

Figure 3.2: A cube and its three projections

Advanced graphic techniques include more complex methods to handle arrays
of triangles and their properties, optimized given that multiple surfaces can share
several points. In addition, the position of the camera and the objects define the
perspective, other properties impact the way light behaves on the object, resulting
in the appearance. Engine implementations use all the vertex information to
enhance the render result, being able to generate transparency, shadows, reflections
and smoother edges between surfaces, for example in a sphere. Most of these topics
are beyond the scope of this document, we’ll use position and color data per vertex
(see next section) which is an actual output from the Face Reconstructor.

14

Mesh objects

3.2 Face objects
Curved and detailed objects require smaller faces, and therefore a higher quantity,
to cover the area and achieve a desired spatial resolution. The face models generated
in the previous section contain m = 35,709 vertices and n = 70,789 surfaces. This
section presents a walk through the different model perspectives, having a person’s
face and a cube as comparison.

Figure 3.3 shows the constellation of points in space, while in Figure 3.4 the
vertices are displayed with the associated color. The triangles are then depicted
in Figure 3.5, and the shape of the object is slightly uncovered. Turning the
triangles solid, as shown in Figure 3.6, exposes this shape with more clarity. Finally,
the model is complete when adding the color on top (Figure 3.7) and optionally
applying different filters such as smoothing (Figure 3.8).

(a) Cube (b) Person’s face

Figure 3.3: Points

(a) Cube (b) Person’s face

Figure 3.4: Vertices with color property

15

Mesh objects

(a) Cube (b) Person’s face

Figure 3.5: Triangles

(a) Cube (b) Person’s face

Figure 3.6: Solid

(a) Cube (b) Person’s face

Figure 3.7: Colored model

16

Mesh objects

(a) Cube (b) Person’s face

Figure 3.8: Finished model

17

Mesh objects

3.3 Wavefront .obj file format
A mesh object file is a collection of vertices and faces.3

Vertices contain property values, such as < x, y, z > position and < R,G,B >
color code, these values are usually normalized, for example [−1,1] for position and
[0,1] or [0,255] for the color. The order these vertices are declared within the file
matters, since faces are declared using these indexes.

Example mesh object file

Vertex lines start with the letter v
and are of the form v = <x,y,z,R,G,B> to include position and color.
Face lines start with the letter f
and are of the form f = <v1,v2,v3>.
...
v 0.149526 -0.367906 -0.454352 0.617095 0.475823 0.352140
v 0.144221 -0.365825 -0.460239 0.615842 0.469945 0.348961
v 0.138970 -0.363530 -0.466059 0.618759 0.474185 0.351062
f 1 2 131
f 1 131 130
f 2 3 131
...

3Wavefront files accept other types of definitions, such as lines, UV textures and normals
among other parameters. Refer to [10] for more information. In this project are used only the
position and RGB color data per vertex.

18

Mesh objects

3.4 A simple obj python class
A simple python class is provided in Section 7.3. The class includes generic methods
for the following actions:

1. Load: Read an .obj file and load the vertex and face data into memory.

2. Save: Write an .obj file and dump the vertex and face data from memory.

3. Limits: Find the boundaries on all axes. With these six limits, a wrapping
box can be created around the object.

4. Translate: Move the object by a given vector (x0, y0, z0). All vertices are
calculated as < xÍ

i, y
Í
i, z

Í
i >=< xi + x0, yi + y0, zi + z0 >

5. Rotate: Rotate the object on an axis by an angle. The argument is a 3 x 3
intrinsic rotation matrix on all axes. Typical rotations can be one of the x, y,
z axes, or a combination of them (See Section 2.4). Vertices are recalculated as
the matrix multiplication between the rotation and the original vertex position
as
−→
pÍ = R×−→p .

These methods will be useful when handling mesh objects in the next sections.

19

Chapter 4

Merge

Figure 4.1: Merging
sequence

After following the previous sections two independently
3D models, for left and right sides, are generated. This
chapter focuses on the development of a tool in order to
merge the models into a single one. Thus, the two .obj
and .mat files are required to execute the steps described
below.

Figure 4.1 shows the sequential steps during this process,
all included in the script merge.py (see Section 7.4).

The algorithm starts from fetching and loading the
models, later performs an alignment between models and
finally the actual merging before saving the results into a
new file.

The next sections present details regarding these steps.
To illustrate the process, examples of paired models are
provided, auxiliary colored models are included as heat
maps, as well as front and isometric views to reinforce
visualization throughout the process.

20

Merge

4.1 Loading the files
The program takes one argument, the base of the filename to process (bfn), the
four required files are generated internally by adding the corresponding suffixes:

1. "bfn-left_mesh.obj",

2. "bfn-right_mesh.obj",

3. "bfn-left.mat" and

4. "bfn-right.mat".

Note that the .obj files have conveniently inherited the "_mesh" suffix as result of
the 3D conversion, these conditions can be easily changed in the script to fit other
environments.

Since during the reconstruction process the two models start from a mean
standard face, it can be confirmed that both models have the same quantity of
vertices and faces, and that the latter are built using the same indexes on the two
models. Figures 4.2 and 4.3 show an example of a paired set of models for one
person.

From the model views is worth noting that the model is an open shell, that does
not include hair, ears, neck or teeth details, and that the mouth is well represented
whether opened or closed (see Figure 2.3. One can note that the object’s position
and rotation is different, adjusted to match and overlay the source photo, and can
be estimated that the relative position between vertices is also different, since the
reconstruction model considers expressions, and from the fact that is not exactly
the same input source. The following sections evidence this effect further.

21

Merge

Figure 4.2: Left model

Figure 4.3: Right model

22

Merge

4.2 Alignment
When placing the two models under the same space, like shown in Figure 4.4, is
clearly seen that each model owns a different coordinate system. To effectively
merge as left and right, both models need to be aligned in order to perform the
operation across the x axis, being the left the region where x < 0, whereas the
right side complementary is defined as x > 0.

Figure 4.4: Original models

The rotation matrix, extracted from the model as described in Section 2.4, has
the exact orientation along the relative coordinate system for each object. By
applying the same rotation in an intrinsic manner, the object’s coordinates are
aligned to the overall coordinates, as shown in Figure 4.5.

However, it can be seen that this does not align both models completely. We
then compute the center point of each object by calculating the boundaries on each
axis and applying the corresponding offset as a translation to each vertex. The
effects after the rotation and translation are shown in Figure 4.6. This peculiar
overlay of the two full models demonstrate that they are actually not identical,
since some regions land in front/above others (the color difference on the model
and heat map view).

23

Merge

Figure 4.5: Rotated models

Figure 4.6: Translated models

24

Merge

4.3 Coarse Merge
As a first approach, let’s perform a coarse merge between the models, this is a sharp
transition at x = 0 as shown in Figure 4.7. Is more evident that even though both
models are from the same person, with sources taken almost instantaneously, these
two differ enough to mismatch considerably in position and texture, because several
factors influence slightly each photo, such as illumination, angle and portion of the
face shown, expressions, among others. As this approach is not the desired result,
we look towards a better merging by averaging the models with some criteria.

Figure 4.7: Coarse merging

25

Merge

4.4 Constant average merge
To average the two models a new factor γ is introduced, a value between [0,1] that
defines the weight of the left model and consequently, the right model is defined as
(1− γ), the average equation is then defined as

pi = pl · γ + pr · (1− γ) (4.1)

Where pi is the new property of the vertex, and pl, pr are the values of the
property for the left and right vertices respectively. Then for all vertices, each
property (i.e, < x, y, z, R,G,B >) are averaged considering the two models.

Note the effect of γ in the resulting model, when γ = 0 the model is identical
to the right (blue) model, when γ = 1 the model corresponds to the left (red),
and when γ = 0.5 the two models are averaged with the same proportion (purple)
as pi = (pl + pr)/2. The script merge.py accepts an optional gamma argument
(default 0.5) as

python merge.py bfn --gamma 0.7

Figure 4.8 shows the resulting models for different values of γ, there are no sharp
edges and the merged model is more consistent. Looking at the subtle differences
on shadowing in the color models and confirmed with the heat maps, it can be
seen that the average is applied homogeneously to the full object, and the color
reflects the weight given to each model by the γ factor.

26

Merge

(a) γ = 0.2

(b) γ = 0.5

(c) γ = 0.8

Figure 4.8: Constant average merge

27

Merge

4.5 Linear average merge
The constant average developed above has no spatial discrimination, this is, all
points in space are applied the same γ value and therefore the coloring in the heat
map in Figure 4.8 is homogeneous, whether trending to red or blue, interpreted as
left and right.

To emphasize and preserve the details on the lateral regions, the left model
should weight more on the left side (x < 0) and vice versa, the right model influence
more the right side of the resulted model. To achieve this, the γ value should
consider the position in x, this is γ = f(x), and using a linear interpolation we use
the line equation as

γx = m · x+ b (4.2)

Note that the slope value m = ∆γ/∆x needs a pair of points, the normalized x
values ranges from [−1,1], thus ∆x = 2, while we need to specify a pair of γl,γr

values corresponding to the γ factor at the left-most and right-most x positions,
leading to ∆γ = γr − γl. Replacing these definitions into 4.2

γx = ∆γ/∆x · x+ b = (γr − γl)/2 · x+ b (4.3)

The value of b is easily derived as b = γl +m using the point (−1, γl).
By setting the values of γl and γr the resulting model presents a linear averaging

across the x axis, Figure 4.9 shows three examples of linear averaging. The first
one using γl = 1.0 and γr = 0.0, note how the left side contains mostly left model
information, the opposite happens on the right side, meanwhile the center region is
highly averaged. Other example configurations of γ values are included to show
how one can favor the left or right models. Auxiliary graphs show the interpolation
done across the x axis, the marker points reflect the color weight of γ. The script
merge.py accepts a pair of gamma values separated by slash ("/"), for example to
set the left γl = 0.8 and right γr = 0.2 use:

python merge.py bfn --gamma 0.8/0.2

28

Merge

(a) γ = 1.0/0.0

(b) γ = 1.0/0.5

(c) γ = 0.5/0.0

Figure 4.9: Linear average merge

29

Merge

4.6 Segmented linear merge
The linear average model uses two γ values to cover the entire x axis, we now
explore a generalization of this method by adding more γ points and creating
equidistant bins across the x axis. This allows for more spatial control and custom
patterns.

Figure 4.10 shows three particular cases, where five γ values are defined, creating
4 bins of the same size. The auxiliary graphs show the distribution of γ values
versus x, and the point color represents the weight towards red or blue (left or
right) models.

The script merge.py accepts inserting gamma values separated by slash ("/"),
for n γ-values are created n− 1 equally-spaced ranges automatically, for example

python merge.py bfn --gamma 1.0/0.8/0.5/0.3/0.0

Comments on segmented examples:

• γ = 1.0/1.0/0.5/0.3/0.0 : Figure 4.10a is similar to Figure 4.9a, however it
has a broader average region at the center, while the left side has been made
more prominent.

• γ = 1.0/1.0/1.0/0.5/0.0 : Figure 4.10b shows a different scenario from previous
cases. The average region has moved towards the right, while the left side is
driven by the left model.

• γ = 1.0/0.5/0.0/0.0/0.0 : The counterpart of the previous case, Figure 4.10c,
the resulting model trends towards the right (blue), and the average region is
moved to the left side.

30

Merge

(a) γ = 1.0/1.0/0.5/0.3/0.0

(b) γ = 1.0/1.0/1.0/0.5/0.0

(c) γ = 1.0/0.5/0.0/0.0/0.0

Figure 4.10: Segmented average merge

31

Merge

The examples above show how with segmented average method there is a
significant increase on spatial control when merging, without compromising the
weighting. The two last scenarios split the x axis into 4 bins, having one side
completely dominated by the corresponding side model and the merging happens
localized in the other half. This generalized method opens new opportunities as
a linear sectioned merge between two arbitrary models. Figure 4.11 shows two
exceptional cases, one with interlaced average regions and the another with inverted
sides, this last one also possible with a linear merge.

Although this deviates from the purpose of our left-right applications and results
might not be as desired, demonstrates the powerful flexibility this tool could have
for future use cases.

(a) γ = 1.0/1.0/1.0/0.5/0.0

(b) γ = 1.0/1.0/0.5/0.3/0.0

Figure 4.11: Segmented generalized merge

32

Chapter 5

Match and Replace

Figure 5.1: Merging
sequence

This chapter develops a technique to replace a given region
from one model into another. Figure 5.1 shows the top level
sequential flow diagram, all included in the script replace.py
(see Section 7.5). The algorithm starts from fetching and
loading the models, later performs an alignment between
models and finally the actual replacement before saving
the results into a new file.

Figure 5.2 shows a graphical clarification of the match
and replace process, a region is defined and replaced on
the target model with the contents of the source model.

Figure 5.2: Match and replace

The next sections present details regarding these steps.
To illustrate the process, examples of paired models are
provided, auxiliary colored models are included as heat
maps to reinforce visualization throughout the process.

33

Match and Replace

5.1 Loading the files

The program takes two arguments, the target and source files without file extension,
to load the mesh objects and the rotation matrix files, the filenames are generated
internally by adding the corresponding .obj and .mat suffixes:

Unlike the merging process, the mesh files do not include the "_mesh.obj" from
the 3D conversion (see Section 4.1). The replace tool is intended to be generic
and used after any merging (as depicted in the scope, see Figure 1.1), the merge
program removes and changes this suffix on the output file.

Note also that the two models belonging to this process are not from the same
person, though are intended to be similar. The purpose of the match and replace
is to identify a damaged region on the target model and replace it with the same
region from the source. Figure 5.3 shows the model for two different persons, as
convenience we’ll use the red model as the target and the blue as the source on the
heat maps.

(a) Target model

(b) Source model

Figure 5.3: Match and replace models

34

Match and Replace

5.2 Alignment
If the input models for this replace stage are generated after a merge process, the
two models are likely to be aligned. However, the script does align the two models
before the match and replace, since is intended to be a generic tool and to avoid
dependency from the merge script. The models follow identical alignment steps as
described in Section 4.2, and thus the rotation matrix files are also required to be
located along with the mesh files.

5.3 Averaging
In addition, Section 4.4 uses a γ factor to weight how one model merges with the
another, its behavior is further developed in the subsequent sections. This method
also uses such factor when doing the replacement, being γ the weight of the target
model into the result. Its range is also [0,1], meaning when γ = 1 the model trends
to the target, while a γ = 0 value makes the source dominant. The script replace.py
accepts defining a gamma value, or array of values, as demonstrated in Section 4.6,
this is for example

python replace.py target source --gamma 0.0/0.5/1.0

Note the order the γ values are declared. Recalling the merge model, these values
represent points from left to right (x = −1 → x = 1), here during replacement,
these span from the center of the region outwards (rÍ = 0 → rÍ = r). Therefore,
the initial γ value 0.0 indicates the region is source-dominant.

35

Match and Replace

5.4 Region matching
A region is the intersection between two volumes, the first one being the face model
and the second an arbitrary selection object. Notice the last object is not the source
model, we’ll use two regular shapes: a sphere and a cuboid, their intersections
trend to be circles, ellipses, rectangles and parallelograms.1 Characterize these
selection volumes requires three variables, namely

1. Mode: Sets the area shape to be spherical (default) or rectangular.

2. Center : Corresponds to the < x, y, z > coordinates of the center of the region.
The default value is < 0.0,0.0,0.25 >, and if a dimension is omitted, a value
of zero is used instead.

3. Radius: The extent of the area. When --mode rect is called it can be a
three-value parameter indicating each < x, y, z > axis radius, if a dimension is
omitted, the value is cloned from the other dimensions. When --mode sphere
is used only one value is required. The default value is 0.1.

The script replace.py accepts passing tuple values separated by slash ("/"), for
example the region defined as

python replace.py tg src --center 0.35/0.25/0.15 --radius 0.25 --gamma 0.0

produces the output shown in Figure 5.4a, where a γ = 0.0 value indicates no
average is performed, and the region is filled entirely with the source model. The
equivalent replacement using rect mode is shown in 5.4b.

Comments on the region area:

• At the same radius value, the rect mode results on a bigger area than the
sphere mode, since the latter produces a region that would be inscribed into
the former.

• The center point can land outside the face model shell, together with the
radius parameters define the area extension. Any point inside this area is
processed by the replacement algorithm.

1Note the irregular shape of the face influences greatly on the intersected region, could also
create non-contiguous regions. In this project are used typical scenarios that may not reflect this
effect.

36

Match and Replace

(a) Spherical

(b) Rectangular

Figure 5.4: Region mode

• The two modes are provided to ease the selection of a given face element. For
example mouth and forehead portions are better matched using rectangular
shapes, eyes and cheeks could go better with an spherical shape, while the
nose works fine with both. The mode is intended to increase flexibility to the
matching step, while the spherical produces better results when averaging, as
discussed in the next sections.

37

Match and Replace

5.5 Spherical mode
The replacement region is computed as the intersection between the target model
and a sphere of radius r, which is centered at an arbitrary point < x, y, z > in
world coordinates, as shown in Figure 5.5. For vertices inside the sphere volume
(rÍ < r) their properties are replaced and averaged with the source model, vertices
outside the sphere (rÍ > r) are not considered. The parameter γ = f(r) indicates
the weight of the target model into the resulting object as function of the radius.
When several γ values are specified, the initial value corresponds to rÍ = 0, whereas
the last one at rÍ = r. Linear and segmented average methods provide a smoother
transitions at the edge. Figure 5.6 includes examples of spherical regions with
different center, radius and gamma values, the auxiliary polar plots indicate the
gamma value as function of the radius.

(a) Front view (b) Rear view

(c) Match
c = 0.4/0.0/0.0, r = 0.25

Figure 5.5: Spherical intersection

38

Match and Replace

(a) c = 0.35/0.25/0.15, r = 0.4, γ = 0.0/1.0

(b) c = 0.0/0.0/0.45, r = 0.3, γ = 0.5

(c) c = 0.0/0.0/0.50, r = 0.6, γ = 0.0/0.3/0.8/1.0

Figure 5.6: Sphere mode examples

39

Match and Replace

5.6 Rectangular mode
The replacement region is computed as the intersection between the target model
and a cuboid with radius r =< rx, ry, rz > on all dimensions, which is centered
at an arbitrary point p =< x, y, z > in world coordinates, as shown in Figure
5.7. For vertices inside the rectangular volume (x < rx & y < ry & z < rz) their
properties are replaced and averaged with the source model, vertices outside the
box (x > rx | y > ry | z > rz) are not considered. The parameter γ = f(r) indicates
the weight of the target model into the resulting object as function of the radius.
When several γ values are specified, the initial value corresponds to rÍ = 0, whereas
the last one at rÍ = r. Linear and segmented average methods provide a smoother
transitions at the edge. Figure 5.8 includes examples of rectangular regions with
different center, radius and gamma values, the auxiliary plots indicate the gamma
values as function of the radius.

(a) Front view (b) Rear view

(c) Match
c = 0.4/0.0/0.0, r = 0.25

Figure 5.7: Rectangular intersection

40

Match and Replace

(a) c = 0/− 0.42/0.28, r = 0.4/0.2/0.15, γ = 0.0/1.0

(b) c = 0.0/0.05/0.475, r = 0.22/0.3/0.2, γ = 0.7

(c) c = 0.0/0.1/0.5, r = 0.3/0.5/0.3, γ = 0.0/0.2/0.2/0.5/0.9/1.0

Figure 5.8: Rectangular mode examples

41

Chapter 6

Conclusions

This section highlights the outcomes of this project as well as final thoughts and
other observations. The scope of this project (Figure 1.1) involved several blocks
between the path from paired photos of a person to unified conditioned three-
dimensional model. Below is a summary of findings regarding these components
and their characteristics.

• The modern Face reconstruction modeler utilized takes a single 2D photo as
input files and generate a full-blown 3D model of the face. The reconstructor
implements a neural network attached to a standard 3D model that adjusts
its shape based upon the information extracted from the 2D picture. The
algorithm uses face landmark information to form a pose and expression basis
that together with a shape modeler generate an accurate three-dimensional
representation of the face.

• The output model is a Mesh object that includes position and color texture
information. A quick overview on graphical elements describes the type of
elements that constitute the face object, how this information is saved into a
wavefront .obj file, and presents a simple python class to handle the object
and perform basic operations.

• As two independent models (left and right) are generated separately, a Merge
tool is developed to unify both models into a single one. To achieve this, is
required to know the rotation matrix parameter of each object, in order to
perform correctly the alignment between the two, and place them in the same
coordinate system. Moreover, a constant merge when combining produces an
enhanced version of the coarse merge, where no abrupt edges are visible and
the information of the two sides is considered. To have more spatial control, a
linear average merge technique is proposed to intensify details belonging to
each side, while having a smooth transition at the midpoint. The segmented

42

Conclusions

linear merge demonstrates a generalization of this behavior by providing a
flexible scheme for more complex outcomes.

• Another implemented method performs Segmented linear merge onto a desired
area with information from another model. This second technique uses a
Region matching process to select the area to be replaced and perform also
Averaging between the models similar to the merging tool. Two selection
modes are provided to fit different face areas. The Spherical mode provides
homogeneous averaging with smoother transitions in a radial manner, while
the Rectangular mode is suited for more delimited regions such as mouth and
forehead.

6.1 Observations
There are some considerations and limitations identified along the course,

• The face reconstructor does not include ears, hair or neck information into
the model, as denoted in [2], nor have details on the teeth. In addition, it
was demonstrated that a seriously damaged face does not reflect into the 3D
model, as expected since the recontructor does not handle any information of
this kind, though the face is greatly deformed due to the injury.

• The code can generate the heat maps used in the examples on this report, by
passing the --heat fuse as argument to the merge.py and replace.py programs,
see Section 7.

• The auxiliary Gamma-γ Maps on the examples are generated using GNU
Octave and the source files are included in Section 7.7.

6.2 Future work
As discussed in Section 1, this project is within a much larger project framework
and thus, many aspects can be improved and attached to the pipeline developed
on it. For example from expand the deep learning modules to consider and handle
missing face components, as commented in the previous section, to improve the
efficiency and error handling in the written code.

One closer improvement related to this work is the generation of the selection
area during matching and the specification of the γ points. For this, a graphical
software that superposes the models and provides the required information, such
as center and radius values, is undoubtedly a powerful tool for accelerating the
curve when setting this parameters, considering also non-technical users.

43

Chapter 7

Code

The following files were developed as part of this project.

7.1 Header
#!/usr/bin/env python3
#-*- coding: utf-8 -*-

#MIT License

#Copyright (c) 2022 Jose Villalobos

#Permission is hereby granted, free of charge, to any person
#obtaining a copy of this software and associated documentation
#files (the "Software"), to deal in the Software without restriction,
#including without limitation the rights to use, copy, modify, merge,
#publish, distribute, sublicense, and/or sell copies of the Software,
#and to permit persons to whom the Software is furnished to do so,
#subject to the following conditions:

#The above copyright notice and this permission notice shall be
#included in all copies or substantial portions of the Software.

#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
#EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
#OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
#NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
#BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
#ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
#CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
#SOFTWARE.

44

Code

7.2 Image preprocessing

code/preproc.py
1 import cv2
2 import os
3 import glob
4 import io
5 from mtcnn import MTCNN
6
7 detector = MTCNN ()
8 color = (170 ,0 ,255)
9 image_path = ’input ’
10 save_path = ’preproc ’
11
12 if not os.path. exists (save_path):
13 os. makedirs (save_path)
14
15 img_list = glob.glob(image_path + ’/’ + ’*. jpg ’)
16
17 for img in img_list :
18
19 print ("Pre - processing %s" % img)
20 image = cv2. cvtColor (cv2. imread (img), cv2. COLOR_BGR2RGB)
21 result = detector . detect_faces (image)
22 bounding_box = result [0][’box ’]
23 keypoints = result [0][’keypoints ’]
24
25 cv2. rectangle (image ,
26 (bounding_box [0] , bounding_box [1]) ,
27 (bounding_box [0]+ bounding_box [2] , \
28 bounding_box [1] + bounding_box [3]) ,
29 color ,
30 8)
31
32 cv2. circle (image ,(keypoints [’left_eye ’]) , 8, color , 8)
33 cv2. circle (image ,(keypoints [’right_eye ’]) , 8, color , 8)
34 cv2. circle (image ,(keypoints [’nose ’]) , 8, color , 8)
35 cv2. circle (image ,(keypoints [’mouth_left ’]) , 8, color , 8)
36 cv2. circle (image ,(keypoints [’mouth_right ’]) , 8, color , 8)
37
38 cv2. imwrite (save_path +"/"+os.path. basename (os.path. splitext (img)[0]) + \
39 " _mtcnn .jpg", cv2. cvtColor (image , cv2. COLOR_RGB2BGR))
40 f = open(save_path + "/" + os.path. basename (\
41 os.path. splitext (img)[0]) + ".txt","w")
42
43 # initializing delim
44 delim = " "
45
46 f. write (delim .join(map(str , keypoints [’left_eye ’]))+"\n"+
47 delim .join(map(str , keypoints [’right_eye ’]))+"\n"+
48 delim .join(map(str , keypoints [’nose ’]))+"\n"+
49 delim .join(map(str , keypoints [’mouth_left ’]))+"\n"+
50 delim .join(map(str , keypoints [’mouth_right ’])))
51 f. close ()
52
53 print (result)

45

Code

7.3 OBJ class

code/obj.py
1 import io
2
3 class obj:
4 def __init__ (self , label =None):
5 self. label = label
6 self. vertices = []
7 self. faces = []
8
9 def load(self , path):
10 with open(path ,’r’) as file:
11 if (file):
12 for line in file:
13 l = line. strip (’\n’). split (’ ’)
14 if line [0] == ’v’:
15 self. vertices . append ([float (i) for i in l [1:]])
16 if line [0] == ’f’:
17 self. faces . append ([int(i) for i in l [1:]])
18 else :
19 print ("Can ’t read file",end="\n")
20
21
22 def save(self , path):
23 with open(path ,’w+’) as file:
24 for vert in self. vertices :
25 file. write (’v %f %f %f %f %f %f\n’ % \
26 (vert [0] , vert [1] , vert [2] , vert [3] , vert [4] , vert [5]))
27 file. write (’\n’)
28 for f in self. faces :
29 file. write (’f %i %i %i\n’%(f[0] ,f[1] ,f[2]))
30 file. close ()
31
32 def limits (self):
33 seed = self. vertices [0][0:3]
34 # v saves the three coordinates for each coordinate evaluation
35 vmin = [seed , seed , seed]
36 vmax = [seed , seed , seed]
37 for vertex in self. vertices [1:]:
38 # X coordinate
39 if vertex [0] < vmin [0][0]: vmin [0] = vertex [0:3]
40 if vertex [0] > vmax [0][0]: vmax [0] = vertex [0:3]
41 # Y coordinate
42 if vertex [1] < vmin [1][1]: vmin [1] = vertex [0:3]
43 if vertex [1] > vmax [1][1]: vmax [1] = vertex [0:3]
44 # Z coordinate
45 if vertex [2] < vmin [2][2]: vmin [2] = vertex [0:3]
46 if vertex [2] > vmax [2][2]: vmax [2] = vertex [0:3]
47 return vmin , vmax
48
49
50 def rotate (self , matrix):
51 for vertex in self. vertices :
52 x = vertex [0]* matrix [0][0] + \
53 vertex [1]* matrix [0][1] + \
54 vertex [2]* matrix [0][2]
55
56

46

Code

57 y = vertex [0]* matrix [1][0] + \
58 vertex [1]* matrix [1][1] + \
59 vertex [2]* matrix [1][2]
60
61 z = vertex [0]* matrix [2][0] + \
62 vertex [1]* matrix [2][1] + \
63 vertex [2]* matrix [2][2]
64
65 vertex [0] = x
66 vertex [1] = y
67 vertex [2] = z
68
69
70 def translate (self , x, y, z):
71 for vertex in self. vertices :
72 vertex [0] = vertex [0] + x
73 vertex [1] = vertex [1] + y
74 vertex [2] = vertex [2] + z

47

Code

7.4 Merge
usage: merge.py [-h] [--gamma GAMMA] [--heat] bfn

Merge left and right face meshes

positional arguments:
bfn Base filename

optional arguments:
-h, --help show this help message and exit
--gamma GAMMA Merging factor
--heat Turn on heat color

code/merge.py
1 import io
2 import os
3 import argparse
4 import math
5 import scipy .io
6 import numpy as np
7 from obj import obj
8
9 def parse_args ():
10
11 desc = " Merge left and right face meshes "
12 parser = argparse . ArgumentParser (description =desc)
13
14 parser . add_argument (’bfn ’, type=str , default =None , help=’Base filename ’)
15 parser . add_argument (’--gamma ’, type=str , default =’0.5 ’, help=’Merging factor ’)
16 parser . add_argument (’--heat ’, action =’store_true ’, help=’Turn on heat color ’)
17
18 return parser . parse_args ()
19
20
21
22 def getGamma (gamma , px , xmin , xmax):
23 l = len(gamma) - 1
24 if(l == 0): return gamma [0]
25 else:
26 total = (xmax - xmin)
27 bin_size = total / l
28 bin_n = (px - xmin) / bin_size
29 n = int(math. floor (bin_n))
30 if (n == l): return gamma [-1]
31 else:
32 a = gamma [n]
33 b = gamma [n+1]
34 return (b-a)*(bin_n -n)+a
35
36
37
38
39
40

48

Code

41 def merge ():
42
43 args = parse_args ()
44
45 if (args.heat):
46 import utils
47
48 # Compute gamma
49 g = str(args. gamma). split ("/")
50 gamma = list(map(lambda x: abs(float (x)),g))
51 print (" Gamma : ", gamma)
52
53 # Parse the filenames required files
54 if not args.bfn:
55 print (" Filename basename is missing ")
56 return 0
57 else:
58 left , right = obj("left"), obj(" right ")
59 for m in [left , right]:
60 fn_mesh = args.bfn+"-"+m. label +" _mesh .obj"
61 fn_mat = args.bfn+"-"+m. label +".mat"
62 print ("Obj: %s" % fn_mesh , end =(’\n’))
63 print ("Mat: %s" % fn_mat , end =(’\n’))
64
65 # Create and load the mesh
66 m.load(fn_mesh)
67
68 # Load the rotation matrix
69 f_mat = scipy .io. loadmat (fn_mat)
70 rot = f_mat [’rot_mat ’]
71
72 # If heat map on , change color
73 if (args.heat):
74 utils . changeColor (m, utils . heat_colors [m. label])
75
76 # Rotate
77 m. rotate (rot)
78
79 # Found the box and translate center
80 vmin , vmax = m. limits ()
81 off_x = (vmax [0][0] + vmin [0][0]) / 2
82 off_y = (vmax [1][1] + vmin [1][1]) / 2
83 off_z = (vmax [2][2] + vmin [2][2]) / 2
84
85 m. translate (-off_x , -off_y , -off_z)
86
87 # Save the limits in x
88 m.xmin = vmin [0][0] - off_x
89 m.xmax = vmax [0][0] - off_x
90
91 # Set up merge
92 left_len = len(left. vertices)
93 right_len = len(right . vertices)
94 if (left_len != right_len): print (" Warning : Mesh size unmatch ")
95
96 merged = obj ()
97 merged . faces = left. faces # Inherit faces
98
99

100
101

49

Code

102 # Merge
103 for i in range (0, min(left_len , right_len)):
104 v = []
105 g = getGamma (gamma , left. vertices [i][0] , left.xmin , left.xmax)
106 for j in range (0 ,6):
107 v. append (left. vertices [i][j] * g + right . vertices [i][j] * (1-g)

)
108 merged . vertices . append (v)
109
110 # Save results
111 merged .save(args.bfn+"-merged .obj")
112
113
114 if __name__ == ’__main__ ’:
115 merge ()

50

Code

7.5 Match and Replace
usage: replace.py [-h] [--center CENTER] [--radius RADIUS] [--gamma GAMMA]

[--heat] [--mode MODE]
target source

Merge left and right face meshes

positional arguments:
target Target filename w/o extension
source Source filename w/o extension

optional arguments:
-h, --help show this help message and exit
--center CENTER Replacement center point
--radius RADIUS Replacement radius
--gamma GAMMA Merging factor
--heat Turn on heat color
--mode MODE Turn on heat color

code/replace.py
1 import io
2 import os
3 import argparse
4 import math
5 import scipy .io
6 import numpy as np
7 from obj import obj
8
9
10 def parse_args ():
11
12 desc = " Merge left and right face meshes "
13 parser = argparse . ArgumentParser (description =desc)
14
15 parser . add_argument (’target ’, type=str , default =None , \
16 help=’Target filename w/o extension ’)
17 parser . add_argument (’source ’, type=str , default =None , \
18 help=’Source filename w/o extension ’)
19 parser . add_argument (’--center ’, type=str , default =’0/0/0.25 ’, \
20 help=’Replacement center point ’)
21 parser . add_argument (’--radius ’, type=str , default =’0.1 ’, \
22 help=’Replacement radius ’)
23 parser . add_argument (’--gamma ’, type=str , default =’0.5 ’, \
24 help=’Merging factor ’)
25 parser . add_argument (’--heat ’, action =’store_true ’, \
26 help=’Turn on heat color ’)
27 parser . add_argument (’--mode ’, type=str , default =’sphere ’, \
28 help=’Turn on heat color ’)
29
30 return parser . parse_args ()
31
32

51

Code

33 # p = point <x,y,z>, c = center <x,y,z>, r = radius <x,y,z>
34 def getGamma (gamma , p, c, r, mode=’sphere ’):
35 l = len(gamma) - 1
36 d = [0] * 3
37 d[0] = abs(p[0] - c[0])
38 d[1] = abs(p[1] - c[1])
39 d[2] = abs(p[2] - c[2])
40 dd = d[0]*d[0]+d[1]*d[1]+d[2]*d[2]
41
42 if (mode == ’sphere ’) :
43 if (dd < r[3]):
44 if (l == 0) : return gamma [0]
45 else:
46 bin_size = math.sqrt(r[3]) / l
47 bin_n = math.sqrt(dd) / bin_size
48 n = int(math. floor (bin_n))
49 if (n >= l): return gamma [-1]
50 else:
51 a = gamma [n]
52 b = gamma [n+1]
53 return (b-a) * (bin_n -n) + a
54
55 if (mode == ’rect ’) :
56 if (d[0] < r[0] and d[1] < r[1] and d[2] < r[2]):
57 if (l == 0) : return gamma [0]
58 else:
59 g = []
60 n = 0
61 bn = 0
62 for axis in range (0 ,2):
63 total = r[axis]
64 bin_size = total / l
65 bin_n = d[axis] / bin_size
66 ni = int(math. floor (bin_n))
67 if (ni > n): n = ni
68 if (bin_n > bn): bn = bin_n
69 if (n >= l): return gamma [-1]
70 else:
71 a = gamma [n]
72 b = gamma [n+1]
73 return (b-a)*(bn -n)+a
74
75 return 1
76
77
78 def replace ():
79
80 args = parse_args ()
81
82 if (args.heat):
83 import utils
84
85 # Compute gamma
86 g = str(args. gamma). split ("/")
87 gamma = list(map(lambda x: abs(float (x)),g))
88 print (" Gamma : ", gamma)
89
90 # Parse the filenames required files
91 if not args. source or not args. target :
92 print (" Filename missing ")
93 return 0

52

Code

94 else:
95 source , target = obj(" source "), obj(" target ")
96 for m in [source , target]:
97 fn_mesh = getattr (args ,m. label)+".obj"
98 fn_mat = getattr (args ,m. label)+".mat"
99 print ("Obj: %s" % fn_mesh , end =(’\n’))

100 print ("Mat: %s" % fn_mat , end =(’\n’))
101
102 # Create and load the mesh
103 m.load(fn_mesh)
104
105 # Load the rotation matrix
106 f_mat = scipy .io. loadmat (fn_mat)
107 rot = f_mat [’rot_mat ’]
108
109 # If heat map on , change color
110 if (args.heat):
111 utils . changeColor (m, utils . heat_colors [m. label])
112
113 # Rotate
114 m. rotate (rot)
115
116 # Find the box and translate center
117 vmin , vmax = m. limits ()
118 off_x = (vmax [0][0] + vmin [0][0]) / 2
119 off_y = (vmax [1][1] + vmin [1][1]) / 2
120 off_z = (vmax [2][2] + vmin [2][2]) / 2
121
122 m. translate (-off_x , -off_y , -off_z)
123
124 # Set up replace
125 src_len = len(source . vertices)
126 target_len = len(target . vertices)
127 if (src_len != target_len): print (" Warning : Mesh size unmatch ")
128
129 # Compute center point (magnet to target)
130 center = str(args. center). split ("/")
131 center = list(map(lambda x: float (x), center))
132
133 # Fill empty parameters
134 if (len(center) == 1): center . append (0)
135 if (len(center) == 2): center . append (0)
136 print (" Center : ", center)
137
138 # Compute radius
139 radius = str(args. radius). split ("/")
140 radius = list(map(lambda x: abs(float (x)), radius))
141
142 # Fill empty parameters
143 if (len(radius) == 1): radius . append (radius [0])
144 if (len(radius) == 2): radius . append (radius [-1])
145 radius . append (radius [0]* radius [0])
146 print (" Radius : ", radius)
147
148 # Set up replace
149 print ("Mode: ",args.mode)
150 replaced = obj ()
151 replaced . faces = target . faces # Inherit faces
152
153
154

53

Code

155 # Replace
156 for i in range (0, min(src_len , target_len)):
157 v = []
158 g = getGamma (gamma , target . vertices [i], center , radius , args.mode)
159 for j in range (0 ,6):
160 v. append (\
161 target . vertices [i][j] * g + \
162 source . vertices [i][j] * (1-g))
163 replaced . vertices . append (v)
164
165 # Save results
166 replaced .save(args. target +"-replaced .obj")
167
168
169 if __name__ == ’__main__ ’:
170 replace ()

54

Code

7.6 Heat Map utilities

code/utils.py
1 heat_colors = { "left":[1 ,0 ,0] , \
2 " right ":[0 ,0 ,1] , \
3 " target ":[1 ,0 ,0] , \
4 " source ":[0 ,0 ,1]
5 }
6
7 def changeColor (obj , RGB):
8 for v in obj. vertices :
9 v[3] = RGB [0]
10 v[4] = RGB [1]
11 v[5] = RGB [2]

55

Code

7.7 Gamma Map utilities

code/segmented.m
1 clc;
2 clear ;
3
4 g = [1.0 ,0.0 ,1.0 ,0.0 ,1.0 ,0.0];
5 x = linspace (-1,1, length (g))
6
7 figure (1)
8 gt = transpose (g);
9 hold on;
10 scatter (x,g, 200 , [gt ,0*gt ,1-gt], " filled ")
11 plot(x,g ," color "," black ", " linestyle ", "--"," linewidth ", 1)
12 hold off;
13 set (gca , "ylim", [0 1])
14 set (gca , " xtick ", x)
15 set (gca , " xgrid ", "on ")
16 set (gca , " ygrid ", "on ")
17 set (gca , " fontweight ", "bold ")
18 set (gca , " xlabel ", "x")
19 set (gca , " ylabel ", " Gamma ")
20 set (gca , " yaxislocation ", " origin ")
21 set (gca , " linewidth ", 2)
22 set (gca , " fontsize ", 14)

56

Code

code/polarmaps.m
1 clf;
2 clc;
3 clear ;
4
5 gamma = [0.0 ,1.0]
6 % gamma = [0.5];
7 % gamma = [0.0 ,0.3 ,0.8 ,1.0]
8 % gamma = [1.0 , 0.0 , 1.0 , 0.0 , 1.0 , 0.0 , 1.0]
9 l = length (gamma)
10 for i = 1:l
11 gt = gamma (i)
12 if (i == 1)
13 n = 1;
14 theta = 0;
15 h = polar (theta , 0, ".");
16 set (h, " markersize ", 100);
17 else
18 n = 72*i;
19 r = i/l
20 theta = linspace (0 ,2*pi ,n);
21 h = polar (theta , r*ones(n), ".");
22 set (h, " markersize ", 25);
23 endif
24 hold on;
25 set (h, " linewidth ", 2);
26 set (h, " color ", [gt ,0,1-gt]);
27
28 endfor ;
29 set (gca , " rtick ", [gamma ,1.2])
30 set (gca , " linewidth ", 3)
31 set (gca , " fontsize ", 18)

57

Code

code/rectmaps.m
1 clf;
2 clc;
3 clear ;
4
5 gamma = [0.0 ,1.0]
6 % gamma = [0.7]
7 % gamma = [0.0 ,0.2 ,0.2 ,0.5 ,0.9 ,1.0];
8 % gamma = [1.0 , 0.0 , 1.0 , 0.0 , 1.0 , 0.0 , 1.0]
9 l = length (gamma)
10 for i = 1:l
11 gt = gamma (i)
12 if (i == 1)
13 h = plot (0, 0, "+");
14 set (h, " markersize ", 25);
15 else
16 r = i/l
17 x = [-r,r, r,-r, -r];
18 y = [r,r,-r,-r, r];
19 h = plot(x,y ," -");
20 endif
21 hold on;
22 set (h, " linewidth ", 6);
23 set (h, " color ", [gt ,0,1-gt]);
24
25 endfor ;
26 set (gca , "xlim", [-1.2 ,1.2])
27 set (gca , "ylim", [-1.2 ,1.2])
28 set (gca , " linewidth ", 2)
29 set (gca , " fontsize ", 18)
30 set (gca , " xgrid ", "on ")
31 set (gca , " ygrid ", "on ")

58

Appendix A

Software versions

Below are tracked the software versions used during the development of this project.

Debian GNU/Linux
Linux debian 5.10.0-11-amd64 #1 SMP Debian 5.10.92-1 (2022-01-18) x86_64
Distributor ID: Debian
Description: Debian GNU/Linux 11 (bullseye)
Release: 11
Codename: bullseye

Python
Python 3.6.13 :: Anaconda, Inc.

Anaconda
conda 4.9.2

TensorFlow
Version: 1.12.0

Numpy
Version: 1.19.5

Scipy
Version: 1.5.4

MeshLab
MeshLab_64bit_fp v2020.12
built on Dec 1 2020 with GCC 5.5.0 and Qt 5.12.9

59

Appendix B

Base directory content tree

Directory content structure after following the instructions on [2]. Only three levels
deep are shown. Note some .tar files might be kept after extraction and some .pdf
files are additionally downloaded from attached links on the repository.

google/
|-- tf_mesh_renderer
|-- CONTRIBUTING.md
|-- LICENSE
|-- README.md
|-- WORKSPACE
|-- mesh_renderer
|-- runtests.sh
|-- third_party

juyong/
|-- 1708.00980.pdf
|-- 3DFace
| |-- LICENSE
| |-- README.md
|-- Coarse_Dataset
| |-- CoarseData.zip
| |-- Exp_Pca.bin
| |-- ReadMe
| |-- Sample_code.cpp
|-- Coarse_Dataset.zip
|-- Fine_Dataset.zip

60

Base directory content tree

microsoft/
|-- Deep3DFaceReconstruction
| |-- BFM
| |-- LICENSE
| |-- data_loader.py
| |-- demo.py
| |-- face_decoder.py
| |-- images
| |-- inception_resnet_v1.py
| |-- input
| |-- losses.py
| |-- network
| |-- networks.py
| |-- options.py
| |-- output
| |-- preprocess_img.py
| |-- processed_data
| |-- readme.md
| |-- reconstruction_model.py
| |-- renderer
| |-- skin.py
| |-- train.py
| |-- utils.py
| |-- weights
|-- FaceReconModel
| |-- FaceReconModel.data-00000-of-00001
| |-- FaceReconModel.index
| |-- FaceReconModel.meta
| |-- FaceReconModel.pb
|-- FaceReconModel.zip
|-- rasterize_triangles_kernel.so

61

Base directory content tree

mtcnn/
|-- AUTHORS
|-- LICENSE
|-- MANIFEST.in
|-- README.rst
|-- example.ipynb
|-- example.py
|-- ivan.jpg
|-- ivan_drawn.jpg
|-- mtcnn
| |-- __init__.py
| |-- data
| |-- exceptions
| |-- layer_factory.py
| |-- mtcnn.py
| |-- network
| |-- network.py
|-- no-faces.jpg
|-- requirements.txt
|-- result.jpg
|-- setup.py
|-- tests

|-- __init__.py
|-- test_mtcnn.py

unibas/
|-- BFModel09.pdf
|-- model2019
| |-- model2019_bfm.h5
| |-- model2019_face12.h5
| |-- model2019_fullHead.h5
| |-- model2019_fullHead_lvl1.ply
| |-- model2019_fullHead_lvl2.ply
| |-- model2019_mouthOnly.ply
| |-- model2019_textureMapping.json

62

Bibliography

[1] Andrea Scotta. «Ricostruzione facciale 3D basata su immagine e il suo possibile
utilizo in riabilitazione prostesica». MA thesis. Torino: Universita’ degli Studi
di Torino, 2020 (cit. on p. 3).

[2] Yu Deng, Jiaolong Yang, Sicheng Xu, Dong Chen, Yunde Jia, and Xin
Tong. «Accurate 3D Face Reconstruction with Weakly-Supervised Learning:
From Single Image to Image Set». In: IEEE Computer Vision and Pattern
Recognition Workshops. https://github.com/Microsoft/Deep3DFaceReco
nstruction. 2019 (cit. on pp. 4, 6, 8, 10, 43, 60).

[3] Iván de Paz Centeno <ipazc@unileon.es>. MTCNN. https://github.com/
ipazc/mtcnn. 2019 (cit. on p. 6).

[4] David Sandberg. Face Recognition using Tensorflow. https://github.com/
davidsandberg/facenet. 2016 (cit. on p. 6).

[5] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao. «Joint Face
Detection and Alignment Using Multitask Cascaded Convolutional Networks».
In: IEEE Signal Processing Letters 23.10 (2016), pp. 1499–1503. doi: 10.
1109/LSP.2016.2603342 (cit. on p. 6).

[6] P. Pascal, R. Knothe, B. Amberg, S. Romdhani, and T. Vetter. A 3D Face
Model for Pose and Illumination Invariant Face Recognition. Tech. rep. Uni-
versität Basel, 2009 (cit. on p. 8).

[7] GNU Octave. Simple File I/O. url: https://octave.org/doc/v6.4.0/
Simple-File-I_002fO.html (cit. on p. 11).

[8] Scipy. scipy.io.loadmat — Load MATLAB file. url: https://docs.scipy.
org/doc/scipy/reference/generated/scipy.io.loadmat.html (cit. on
p. 11).

[9] Khronos Group. «Primitive». In: OpenGL Rendering Pipeline. https://www.
khronos.org/opengl/wiki/Primitive. 2020 (cit. on p. 12).

[10] Wavefront .obj file. Wavefront .obj file — Wikipedia, The Free Encyclopedia.
2020. url: https://en.wikipedia.org/wiki/Wavefront_.obj_file (cit.
on p. 18).

63

https://github.com/Microsoft/Deep3DFaceReconstruction
https://github.com/Microsoft/Deep3DFaceReconstruction
https://github.com/ipazc/mtcnn
https://github.com/ipazc/mtcnn
https://github.com/davidsandberg/facenet
https://github.com/davidsandberg/facenet
https://doi.org/10.1109/LSP.2016.2603342
https://doi.org/10.1109/LSP.2016.2603342
https://octave.org/doc/v6.4.0/Simple-File-I_002fO.html
https://octave.org/doc/v6.4.0/Simple-File-I_002fO.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
https://www.khronos.org/opengl/wiki/Primitive
https://www.khronos.org/opengl/wiki/Primitive
https://en.wikipedia.org/wiki/Wavefront_.obj_file

	List of Figures
	Acronyms
	Introduction
	Objectives
	Previous work
	Computer environment
	Image file format
	Input files

	Model Reconstruction
	Image pre-processing
	Face Reconstructor
	Training the model
	Rotation Matrix

	Mesh objects
	Graphical elements
	Face objects
	Wavefront .obj file format
	A simple obj python class

	Merge
	Loading the files
	Alignment
	Coarse Merge
	Constant average merge
	Linear average merge
	Segmented linear merge

	Match and Replace
	Loading the files
	Alignment
	Averaging
	Region matching
	Spherical mode
	Rectangular mode

	Conclusions
	Observations
	Future work

	Code
	Header
	Image preprocessing
	OBJ class
	Merge
	Match and Replace
	Heat Map utilities
	Gamma Map utilities

	Appendix Software versions
	Appendix Base directory content tree
	Bibliography

