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Summary

A Bayesian Network is a graphical model used to visually represent connections
between variables. The main task performed on a Bayesian Network is the inference
of a posterior probability distribution, of one or more nodes, which represents the
probability that each variable’s state has to occur. This probability distribution is
used as a support to take decisions in the real world case modelled by the network. A
factor to consider when taking decisions based on a posterior probability distribution
is the influence that a parent node has on the node of interest. Based on the strength
of influence measured, the user can alter its decision in accordance to the real world
case.
Before the network can become an useful tool that can assist the user, its structure
and the prior probability distribution of each node has to be defined. Both the
structure and the probability distributions can be either defined by hand or learned
through an input data set, making the modelling phase of the network easier.
When modelling complex scenarios, the Bayesian Network representing the case of
interest can become extremely large and so the inference of each posterior probability
distribution can become an expensive and time consuming task, specially if some
observations are introduced in the network. With this in mind, our goal was to
create a library where the most recent techniques are exploited in order to reduce
the complexity of calculations and thus the time and memory required for solving
inference in a network of any size, trying to completely exploit all the resources
available in modern computers.
We also made possible to learn the structure of a network, with the possibility of
adding constraints that have to be respected, and the prior probability distribution
of each variable from an input data set and to save it for a later use.
In addition, we provide support for measuring the influence that a parent node has
on the node of interest through different metrics.
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Chapter 1

Introduction

1.1 Overview

Bayesian Networks can be used as a support tool in many complex tasks such as
prediction of an event, anomaly detection in manufacture, diagnostics of diseases,
troubleshooting, time series prediction, decision making under uncertainty and
decision support.
An expert of any of the above mentioned sectors could model a certain problem
using a Bayesian Network, defining the relationships between causes and effects.
The more accurate the model is, the more precise the prediction given by the
network is, potentially replacing the human factor needed during the decision
process. In reality the human factor is still very much needed since the operator
may have knowledge not available to the network at that moment that should
be taken into account when making a decision. Also, a useful information to the
operator when making a decision is knowing the influence that each the parent has
on the variable of interest, namely knowing which event influences the most the
outcome.
Each task has its own requirements in terms of time available to obtain a result by
the network, especially in time sensitive tasks as it can be in manufacture, and in
terms of computational resources available to dedicate for solving inference, e.g.
an office computer used by a doctor while diagnosing a disease to a patient.
Modelling a problem by hand can be a difficult task even for an expert due to the
high complexity that the problem can have, not to mention that it can become a
tedious task defining the relationships between causes and effects and their prior
probability distribution. It is easier to collect data from previous occurrences of
the interested events and let an algorithm learn the network by itself, which will
define both the structure of the network and the prior probability distributions
of the relationships. The expert can influence the learning of the network using
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Introduction

its knowledge of the problem to define which relationships are to be avoided and
which must be included in the network.

1.2 Objectives
The topic of this thesis, considering every aspect of dealing with a Bayesian
Network described before, is to create a library that allows the user to request any
information, from a Bayesian Network, that he needs for his task.
The main objective of the library is to efficiently use all the computational resources
available in a computer while reducing both the time and memory required to
complete the requested operation. To achieve it, we implemented the latest
algorithms developed to efficiently solve the requested operations, introducing our
modifications to improve them. These algorithms will be described in detail in the
next chapters.

1.3 Outline of the thesis
The discussion of the thesis will be subdivided with the following scheme:
Chapter 2 is dedicated to the explanation of the theory behind the thesis (what is
a Bayesian Network and how inference is performed in the network, etc.) and the
introduction of other famous libraries for operating with Bayesian networks that
are available on the market.
Chapter 3 will give an overview of the library’s functionalities, what our library
can offer to the user. The details about the implementation of each functionality
will be discussed in Chapter 4.
In chapter 5 a detailed comparison between our work and other libraries will be
presented, discussing the improvements our library brings. In the end, Chapter 6
will present conclusions on the thesis and future plans for the library.

2



Chapter 2

Theory and notation

2.1 Graph Theory
The following graph theory is taken from [1]. A graph is defined as a set of nodes
(or vertices) and a set of edges, where each edge connects two nodes Xi, Xj. If the
edges do not have a direction the resulting graph is called undirected graph; if
the edges have a direction they are called arcs and the graph created is a directed
graph. A path is sequence of nodes where each node is connected by an edge. A
cycle is a path where the start and end node are the same. A simple path is a path
where each node appears only once in the path. A simple cycle is a cycle where
each node appears only once in the cycle. A directed acyclic graph (DAG) is a
directed graph without cycles.
In a directed graph, there exists a parent/child relationship between the two nodes
connected by an arc. The parent is also called arc’s tail while the child is the arc’s
head. Two nodes connected by edge (or an arc) are said to be adjacent (or neighbor).
The parent/children relationship can be extended into an ancestors/descendants
relationship: given two nodes Xi, Xj, where Xi is parent of Xj, then the parents of
Xi and so on are the ancestors of Xj. The same rule can be applied to determine
the descendants of a node but considering its children. The set of nodes composed
of Xi and its parents is called a family.
A DAG in which each node has at most one parent is called forest. A forest where
only one node has no parent (the root of the tree) is called tree. Trees, just like
graphs, can have directed or undirected edges.
In a tree or graphs, the arcs can be considered pair wise and can be subdivided
into 3 categories:

• Head-to-head (or converging connection): is a pair of arcs where both arcs’
heads are the same node and the tails are different.

• Tail-to-tail (or diverging connection): is a pair of arcs where both arcs’ tails

3



Theory and notation

are the same node and the heads are different.

• Head-to-tail (or serial connection): is a pair of arcs that do not form a cycle
and the head of one arc is the tail of the other.

Figure 2.1: Example of DAG. The path D - A - B - C is also a simple path.
The pair of arcs ((D,F),(D,A)) form a diverging connection; the pair of arcs
((D,A),(A,B)) form a serial connection; the pair of arcs ((B,C),(E,C)) form a
converging connection.

A moral graph is obtained from a DAG by adding an undirected edge between all
pair of parents of a node (this process is called marring the parents) and removing
the direction of all arcs in the graph. In a cycle of four more nodes, a chord is an
edge that connects two non-adjacent nodes and a graph with no cycles of four or
more nodes exists is called chordal graph or triangulated graph.
A graph is said to be complete when each node is connected to every other node.
A clique is a complete sub-graph of the original graph.
A junction tree (or clique tree)is a tree composed of cliques obtained from the
chordal graph of a DAG. Chordal graphs and junction tree will be discussed in
details in Section 2.5.

Figure 2.2: Example of chordal graph. The edges (B,E) and (F,A) are added to
moralize the graph.

4



Theory and notation

2.2 Graphical Model
One of the tools used to visually represent conditional dependencies among variables
of a problem is a Graphical Model [1]. With a Graphical Model is possible to
represent the problem by means of nodes and edges, where each edge can have an
optional direction connecting the nodes. If the edge has a direction, it is called
arc and its direction determines the relationship between the nodes: the source of
the arc (arc’s tail) is the parent node Xp, while the destination node is the child
node (arc’s head) Xc. The direction of the arc encodes the cause-effect relationship
between nodes, meaning that the event represented by the parent node has its
result represented by the child node.

Figure 2.3: Example of graphical model with arcs

Figure 2.3 illustrates the concept of conditional independence. In this case C
is conditionally independent of A given B meaning that to calculate the posterior
probability distribution of C the formula is P(C|A,B) = P(C|B). Conditional inde-
pendence does not mean that C is completely independent of A but that its posterior
probability is influenced through the nodes, in this case only B, that connect A and
C. A Graphical Model can be described as a set of variables (nodes) K = 1,2...n, a set
of edges linking the nodes and for each variable a probability distribution function F.

2.3 Bayesian Network
A Bayesian Network [1] is a specific instance of Graphical Model where every edge
is directed and no cycle is present in the network, meaning that it is impossible to
start a path with a node and end it with the same node. This structure is called
DAG (Directed Acyclic Graph) (an example is given in Figure 2.3). This property
defines the joint probability distribution of the variables of the network which in
the case of Figure 2.3 is

P (A, B, C, D) = P (A) · P (B|A) · P (C|B) · P (D|A) (2.1)

5
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In general, given a set of nodes K = 1,2...n and their respective probability
distribution functions, the joint probability distribution function of the network is:

P (K) =
NÙ
i=1

P (Ki|parent(Ki)) (2.2)

where the set of parent nodes is defined by the arcs in the network since, as
mentioned in Section 2.2, the role of the arcs is to define the cause-effect relationship
among variables. In a Bayesian Network, any joint probability distribution follows
Bayes’ rule meaning that Equation 2.1 does not represent the only way in which
the joint of the network can be found.
Using Bayes’ rule, we could rearrange the equation, and consequentially change the
direction of the arcs in the graph, and get the same joint probability as Equation
2.1. For example:

P (A, B, C, D) = P (A) · P (B|A) · P (C|B) · P (D|A) (2.3)

= P (A|D) · P (D)
P (A) · P (A) · P (B|A) · P (C|B) (2.4)

= P (D) · P (A|D) · P (B|A) · P (C|B) (2.5)

Equation 2.5 is the joint probability distribution of the graph in Figure 2.2

Figure 2.4: Example of graph with the same joint probability as the one in Figure
2.3

2.4 Inference in Bayesian Networks
Once the model is defined, each node’s CPT has been filled with values and the
observations (or evidences) have been introduced in the network, the first task and
most common we want to perform is to find the posterior probability distribution of
some nodes of interest in the network. This task is known as inference. There are
many ways of performing inference, starting with the simplest Variable Elimination
that works well for small networks. But, as size increases, more efficient algorithms
are required such as the Lazy Propagation algorithm, which is exploited by our
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Figure 2.5: Example Bayesian Network from [2] representing credit card fraud.

library. Using the example network in Figure 2.5, taken from [2], we will describe
how to calculate any posterior distribution of any node in the network. For example,
in order to find the posterior distribution of F we do as follows:

P (F |A, G, J, S) = P (F, A, G, J, S)
P (A, G, J, S) = P (F, A, G, J, S)q

F Í P (F Í, A, G, J, S) (2.6)

This approach is not feasible when dealing with large networks as it leads to
unnecessarily big equations. To reduce the computational cost, when all probability
distributions are discrete, we can use the conditional independencies induced by
the arcs of the network, and in our example we obtain:

P (F |A, G, J, S) = P (F ) · P (A) · P (S) · P (G|F ) · P (J |F, A, S)q
F Í P (F Í) · P (A) · P (S) · P (G|F Í) · P (J |F Í, A, S) (2.7)

= P (F ) · P (G|F ) · P (J |F, A, S)q
F Í P (F Í) · P (G|F Í) · P (J |F Í, A, S) (2.8)

Many algorithms have been developed to solve inference more efficiently that
also exploit conditional independencies along with other properties of Bayesian
Networks. Some examples are the algorithms proposed by Shafer-Shenoy, Hugin and
Lauritzen–Spiegelhalter. In our library we have chosen to use the Lazy Propagation
algorithm proposed by Madsen, Anders L. and Jensen, Finn V. [3], which will be
described in detail in the next section.

2.4.1 Inference with evidences
When dealing with Bayesian networks, commonly, experts want to see how the
network behaves with evidences introduced. While the posterior marginals of the
children of the observed nodes are easy to find, the same cannot be said for the
parents, especially when there are multiple evidences. All the children of a node
X which are observations are called Evidences below X, while the children of a
parent of X, that are observations, are called Evidences above X. Given these
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definitions of evidence, we will give an example of inference where both types of
evidence are present. Given the graph in Figure 2.6, we want the posterior marginal
of node C with node B = b and node E = e.

Figure 2.6: Example of Bayesian Network where node E = e and B = b

The operations needed to calculate the posterior of C are:

1. P(b) = q
A P (A)P (b|A)

2. P(A|b) = P (A)P (b|A)
P (b)

3. P(e|C) = q
D P (D|C)P (e|D)

4. P(e) = q
C P (C)P (e|C)

5. P(C|b) = q
A P (A|b)P (C|A)

6. P(C|b,e) = P (C|b)P (e|C)
P (e)

Figure 2.7: Operations needed to calculate any posterior in the network
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These operations are the same defined in Pearl’s belief propagation [4].
When propagating observations, two rules are applied to determine which observa-
tions influence which variables:

• When climbing the tree, to determine the list of ancestors influenced, the
propagation stops at each observed ancestors, meaning that an observed
variable do not influence the ancestors of another observed variable on its
path.

• If a variable is influenced by multiple descendants and one or more of these
are non-direct, meaning that there is at least one descendant that needs the
updated parent to calculate its posterior, and one of the observed variables is
his descendant, then the parent is updated using all the descendants except
the descendant of the interested child. For example, considering the DAG
of Figure 2.1 with A = a and G = g, then P(F|a,g) needs P(D|a) and not
P(D|a,g).

2.5 Junction Trees
Junction trees [3] are a structure used to represent a Bayesian Network’s DAG
and is used by message passing algorithms, such as Lazy Propagation, to perform
inference in a more efficient manner.
It is constructed with the following steps:

• Moralize the DAG: create an undirected graph removing all directions from
the arcs and adding an edge between all pairs of parents of a node.

• Triangulate the moralized graph: add a chord connecting two non-consecutive
nodes in a cycle of four or more nodes until no cycle of four or more nodes
exists. The resulting graph is called chordal graph.

• Find the maximal cliques in the triangulated graph that will constitute the
nodes of the junction tree. A clique is a maximal complete sub-graph of the
triangulated graph. We will refer to a clique as C.

• Find the separators that connect the cliques and that will determine the
junction tree. Each separator Si that connects two cliques Ci and Cj, is
associated with a subset of nodes that corresponds to SNi = Ci ∩ Cj. The set
of neighbouring separators of a clique will be referred as ne(C).

• Find the probability distributions to insert into each clique. In order to choose
a clique, that clique must contain all the parents and the variable itself. A
probability distributions can only be contained into one clique. The set of
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probability distributions contained in the clique will be referred as ΦC and
their combination forms the clique potential φC .

φC =
Ù
φ∈ΦC

φ. (2.9)

Given the following steps, any junction tree that can be built with these nodes
must be a maximum-weight spanning tree, meaning that the sum of cardinalities
of each set of nodes associated to each separator must be maximal.
The junction tree must also hold the running intersection property: given two
non-consecutive cliques Ci and Cj if a node is present in both cliques, then it must
also be present in any Ck within the path that connects the two cliques.

2.6 Lazy Propagation
The Lazy Propagation algorithm [3] bases its architecture on a junction tree
where messages are passed between cliques and each message contains a set of
potentials according to the nodes present in the separator connecting the cliques.
This secondary computational structure is the key for reducing computational
complexity of calculating inference for large networks: when a message is passed
between cliques, only the potentials required for inference are combined instead
of combining all the potentials within the clique. Any observation is incorporated
into the junction tree by instantiation of the relative potential and then it has to
be propagated to the cliques through messages.
The potentials contained in the messages are not combined until needed from the
Lazy Propagation algorithm allowing to exploit conditional independence relations
induced by evidence during inference identified by the d-Separation criteria and
barren variables.

Definition 2.6.1 (d-Separation) d-Separation [3] is the criteria used to deter-
mine which nodes are conditionally independent from others. Given two variables
Xi and Xj, they are d-separated if for all paths connecting Xi and Xj there is a
variable Xk that satisfies one of the following conditions:

• Xk is the middle variable in a serial or diverging connection and Xk is observed.

• Xk is the middle variable in a converging connection and neither Xk nor any
of its descendants is observed.

If two variables are not d-separated they are called d-connected. We will use the
algorithm defined by Geiger [5] for finding the set R of variables which are d-
connected to a set of J of variables given the observed variables L. Before we find
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the set of d-connected variables, we need to find the reachable variables from J given
a set of legal pairs of arcs (the definition of legal pair of arcs is given below):

Algorithm 1 Find reachable variables [3]. Given a directed graph G = (V,E), a
set F of legal pairs of arcs, and J be the a set of variables, the following operations
are performed:

1: procedure Find reachable variables
2: R = ∅
3: Add a temporary node S to V
4: for X ∈ J do
5: Add an arc from S to X and label it with 1.
6: Add X to R.
7: end for
8: Label all other arcs with -1.
9: i = 1.

10: repeat
11: for each unlabeled arc (Y,Z) adjacent to at least one arc (X,Y) labeled

i such that ((X,Y)(Y,Z)) is a legal pair do
12: Label the arc (Y,Z) with i+1.
13: Add Z to R.
14: end for
15: i = i+1.
16: until no legal pair of arcs ((X,Y),(Y,Z)) exists
17: Return R.
18: end procedure

Algorithm 2 Find the set of d-connect nodes [3]. Given a directed graph G =
(V,E), a of nodes J and a set of observed nodes L, in order to determine the set of
nodes R = {X | X d-connected to Y ∈ J given L}, the following operations are
performed:

1: procedure Find the set of d-connect nodes
2: Descendent = ∅
3: for X ∈ V do
4: descendent[X] = true if X is or has a descendent in L, false otherwise.
5: end for
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6: Create a directed graph G’ = (V,E’) where E’ = E ∪ (X,Y)|(Y,X) ∈ E.
7: Be F the set of legal pairs of arcs where a legal pair of arcs ((X,Y)(Y,Z)) is

such if and only if X /= Z and either of the following conditions holds:

1) The node Y is not a head-to-head node on the X - Y - Z in G and
Y /∈ L

or

2) The node Y is a head-to-head node on the path X - Y - Z in G and
descendent[Y] = true.

8: Use Algorithm 1 to determine the set R of reachable nodes from J by a
legal path in G’.

9: Return R.
10: end procedure

The algorithm to find the set of d-connected nodes has time complexity linear in
the number of arcs of the DAG.

Definition 2.6.2 (Barren variables) Barren variables [6] are variables of a
graphical model that have no observed descendants, are not observed itself, are
not target variables of a query and that, since they do not provide any useful
information to the posterior probability of interest, we do not want to calculate their
posterior probability. For example, if we want calculate the posterior probability of
B of Figure 2.3 we will not calculate the posteriors of both C and D as they are not
required. A barren variable can be defined as follows:
Let N = {X,E,P} be a Bayesian Network and let Q = (N,J ⊆ X,Ô) be a query on
N with J the nodes of interest and Ô the observations. A variable K, with respect
to Q, is a barren variable if and only if K /∈ J, X /∈ Ô and all its descendants are
barren themselves.

2.6.1 Message passing
The message passing phase, during which the evidence is propagate to the entire
network, is divided into two steps: a collection and a distribution phase. During the
collection phase, evidence is collected recursively starting from the predetermined
root clique and calling the Collect Evidence algorithm on all its neighbours. When
a clique Ci calls Collect Evidence on a neighbour clique Cj, then Cj calls Collect
Evidence on all its neighbours until a leaf clique is reached. Once Collect Evidence
has finished on Cj, the message from Cj is absorbed by Ci.
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Algorithm 3 Collect Evidence [3]. Given two adjacent cliques Ci and Cj, when
Collect Evidence is called on Cj from Ci, the following operations are performed:

1: procedure Collect Evidence
2: Cj invokes Collect Evidence on all its adjacent cliques except Ci
3: Ci absorbs the message sent by Cj with
4: end procedure

After the Collect Evidence phase, the Distribute Evidence algorithm is recursively
invoked starting from the root clique to distribute the evidence to rest of the network.

Algorithm 4 Distribute Evidence [3]. Given two adjacent cliques Ci and Cj, when
Distribute Evidence is called on Cj from Ci, the following operations are performed:

1: procedure Distribute Evidence
2: Cj absorbs the message sent by Ci with
3: Cj invokes Distribute Evidence on all its adjacent cliques except Ci
4: end procedure

The message to be passed from clique Cj to Ci separated by S is equal to
calculating a multiplicative decomposition ΦS of the joint potential of S from the
potentials in Cj and the messages received from the adjacent cliques except S. Let
RS be the potentials in Cj and the potentials received except those from S, then
the potentials that will inserted into the message are all the potentials except those
not present in S. The absorption algorithm works as follows:

Algorithm 5 Absorption [3]. Given two adjacent cliques Ci and Cj and a separator
S between them, when absorption is invoked from Ci on Cj, the following operations
are performed:

1: procedure Absorption
2: Let RS = ΦCj

∪ ∪SÍ∈ne(Cj)\S ΦÍ
S

3: for X ∈ dom(φ) | φ ∈ RS, X /∈ S do
4: Marginalize X
5: Let Φ∗

S be resulting the set of potentials, associate it with the separator
connecting Ci and Cj

6: end for
7: end procedure

When passing a message from a clique Ci to Cj the potentials passed in the
opposite direction (from Cj to Ci) are not included in the message, in this way we
avoid sending back to the clique the same information we received from it.
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2.6.2 Evidence

The Lazy Propagation algorithm has a method for incorporating evidence into the
network in order to exploit independence relations. When a variable X has been
observed to take value x, every clique containing X will receive evidence through
the message passing phase and each potential that has X as parent will not have X
in its domain. This process will be referred as instantiation of potentials φC .

2.6.3 Internal elimination

The junction tree on which is based the Lazy Propagation algorithm defines, as said
before, a partial elimination order of the variables reducing the number of possible
elimination orders during inference. This is because the separators S between two
adjacent cliques Ci and Cj defines which variables will not be included into the
message passed between the two cliques in either the collection or distribution of
evidence phase. However, the separator is not able to define in which order the
variables should be eliminated.
The phase in which the variables are eliminated from the message, when computing
it, is called internal elimination [3] and takes place after the absorption algorithm
since it is not able to determine which potential of RS is really relevant to clique Cj.
To further remove unnecessary potentials to clique Cj we can exploit barren variables,
the unity-potential axiom and independence relations induced by evidence using a
d-separation algorithm thus obtaining RÍ

S which is the set of relevant potentials to
Cj.

Axiom 2.6.1 (Unity-potential axiom) From [3] the unity-potential axiom is
defined as follows:q

H P (H|T ) = 1T .
The axiom also applies if H is a set of variables.

Algorithm 6 Find relevant potentials to clique Cj [3]. Given a set of potentials
ΦC and a separator S, RÍ

S can be found with the following steps:
1: procedure Find relevant potentials
2: Let RS = φC ∈ ΦC | ∃X ∈ dom(φC) such that X is d-connected to Y ∈ S
3: Using the unity-potential axiom remove potentials containing only barren

head variables from RS to obtain RÍ
S

4: Return RÍ
S

5: end procedure
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2.6.4 Posterior marginals
Given any consistent junction tree obtained from the DAG of the network, the
posterior marginal of variable X can be calculated from any clique or separator
potential that contains X in its domain by marginalizing out all other variables
from dom(φ) except X:

P (X, Ô) =
Ø

Y ∈dom(φ)\X
φ. (2.10)

The formulation given above is the general case, but in the Lazy propagation
algorithm the formulation is a bit different since the potentials are store as a
multiplicative decomposition, they also need to be combined before marginalization.

Algorithm 7 Marginalization algorithm [3]. Given Φ a set of potentials and a
variable X to be marginalized, marginalization is performed with the following
steps:

1: procedure Marginalization algorithm
2: Be ΦX = φ ∈ Φ | X ∈ dom(φ) the set of potentials with X in their domain.
3: Calculate φ∗

X = q
X

r
φ∈ΦX

φ.
4: Let Φ∗ = φ∗

X ∪ Φ \ΦX .
5: end procedure

Φ∗ is the resulting set of potentials where X is marginalized from Φ.

The algorithm for finding the relevant potentials can be used to determine which
variables are not needed for the posterior marginal requested:

Algorithm 8 Posterior marginal [3]. Given Φ the set of potentials representing the
joint distribution from which the posterior of X is to be calculated, the posterior
marginal can be found with the following steps:

1: procedure Posterior marginal
2: Use the find relevant potentials on Φ to obtain RX .
3: for Y in {Y ∈ dom(φ) | φ ∈ RX , X /= Y } do
4: Marginalize Y.
5: end for
6: Be ΦX the set of potentials obtained.
7: Calculate.

P (X|Ô) =
r
φ∈ΦX

φq
X

r
φ∈ΦX

φ
(2.11)

8: end procedure
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2.7 Learning network structure and probability
distributions from input data set

Learning the network structure and the probability distribution associated with
each variable from an input data set is a common task when the user wants
to recreate the causal relationships that generated to data set in fields such as
economics, marketing etc. What is commonly done is using an algorithm to learn
the causalities among variables in the data set and use those relationships to create
a representation of the problem. This is also facilitates updating the network when
more observations become available and the model needs to be refitted.
The learning task is divided into two phases:

• The first phase is dedicated to learn the structure of the network exploiting
the causalities identified among variables. A few examples of algorithms used
in this phase are: the PC (from the names of its authors Peter and Clark)
algorithm [7], the Max-Min Hill-Climbing algorithm [8] and the PCHC (PC
Hill-Climbing) algorithm [9].

• The second phase is dedicated to estimate the probability distributions using
the relationships identified. Two most commonly used algorithms are: the
Bayesian Estimation and the Maximum Likelihood Estimation (MLE).

In our library we used the PCHC algorithm for the structure learning phase and the
MLE algorithm for the probability distribution estimation phase. Both algorithms
will be described in details in the following sections.

2.7.1 PCHC Algorithm
The PCHC algorithm [9] is a recently proposed algorithm by Tsagris, M. for per-
forming structural learning of a Bayesian Network. It is a hybrid algorithm meaning
that it is composed of two phases: one phase is dedicated to the identification of the
most relevant relationships among variables (in this phase the edges in the network
are not directed yet), using conditional independence tests, and a subsequent phase
is dedicated to determine the directions of the edges through a scoring metric and
an Hill-Climbing algorithm, with the target to find the network structure with the
highest score.
Compared to the MMHC algorithm, the PCHC has a higher computational effi-
ciency. This is because the MMHC has been designed to be used on small data
sets, as the ones frequently seen in bioinformatics. But as the sample size increases,
the complexity of the algorithm makes the whole computation expensive in terms
of time and electricity required from the computers to run the algorithm. The
PCHC, having better performance than the MMHC, allows to reduce the time
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required to have a result, and thus reducing the time required to decision making,
but also reduces the monetary cost of electricity, ultimately reducing also carbon
emission and ambient pollution. The better efficiency of PCHC allows to handle
data sets of millions of observation in just a few minutes, maintaining or improving
MMHC’s accuracy. A nice property of PCHC is that its computational cost scales
linearly with the sample size, meaning that if the sample size increases of a factor,
the execution time increases of the same factor.

Conditional Independence Tests

Conditional independence tests (or CI tests) [9] are used to identify the skeleton of
the network through the validation of the following statement: given two variables
X and Y and a set of variables Z, possibly empty, X and Y are conditionally
independent given Z (X ⊥⊥ Y | Z) if and only if P(X,Y|Z) = P(X|Z) · P(Y|Z) and
holds for all values of X,Y and Z. CI tests are classified by the type of variables
used in the network. A few examples of CI tests are: the Pearson correlation for
continuous data and the G2 independence test for categorical data. In our library
we adopted the G2 independence test since we only support categorical variables
at the moment.

G2 independence test

The G2 independence test [9] is defined as:

G2 = 2 ·
Ø
k

Ø
i,j

Oij|k · log
Oij|k

Eij|k
(2.12)

Oij|k are the observed frequencies when variable X is in its i-th value and variable
Y is in its j-th value and the set of variables Z is in its k-th value, while Eij|k is the
expected frequencies of those values. The G2 test follows a X2 distribution with
(|X| - 1)(|Y| - 1)(|Z| - 1) degrees of freedom under the conditional independence
assumption.

PCHC skeleton identification phase

Since the PCHC [9] is based on the PC algorithm, the skeleton identification phase
uses the same algorithm defined in PC. The algorithm starts with a fully connected
graph and through CI tests on pair of variables, edges that represent statistically
insignificant associations are removed. At each iteration of the algorithm the
conditioning set Z increases its size by one starting from zero. The algorithm
continues until no edge is removed. In order to guarantee determinism, when
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considering a variable Vi for CI test, it is tested against those variables Vj that are
least probabilistically dependent, conditioned on those variables Vz that are most
probabilistically dependent. This guarantees independence from the order in which
variables are placed in the dataset.

Algorithm 9 Skeleton identification phase of the PCHC algorithm. Given an
input dataset D with variables V, the skeleton is found with the following steps:

1: procedure Skeleton identification
2: Let G = (V,E) be a fully connected graph with the variables contained in

the dataset.
3: Let k = 0.
4: repeat
5: repeat
6: Select an ordered pair of variables Vi and Vj, such that |adj(G,Vi)

\{Vj} | ≥ k and a subset S with |adj(G,Vi) \{Vj} | = k).
7: If(Vi ⊥⊥ Vj | S) delete edge (Vi, Vj) from G.
8: until All ordered pairs of adjacent variables Vi and Vj with |adj(G,Vi)
\{Vj} | ≥ k and all subsets S with |adj(G,Vi) \{Vj} | = k have been tested for
conditional independence.

9: k = k + 1.
10: until For each ordered pair of adjacent variables Vi and Vj, |adj(G,Vi)
\{Vj} | ≤ k

11: Return G.
12: end procedure

As stated by [10], the complexity of the PC algorithm is, in the worst case,
O(|V|p), where V is the number of variables in the dataset and p is the size of the
largest set of parents and children over all variables.

Hill-Climbing phase of PCHC

After having determined which edges represents independencies between the vari-
ables of the network and having removed them, the edges are oriented in order to
create the DAG the will represent the Bayesian network. This is done through a
scoring phase: the DAG is evaluated through a metric in order to determine which
configuration of arcs represents better the relationships among variables.
The DAG is generated doing all kinds of transformations possible to the edges and
determining which DAG has the best score. The possible transformations are:

• Add an arc to the DAG only if it was discovered by the skeleton identification
phase and it does not introduce a cycle.
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• Reverse an arc previously added to the DAG only if it does not introduce a
cycle.

• Delete an arc from the DAG.

At each step the one transformation of the three above that brings the highest
score increase is performed on the DAG.
This phase is a combinatorial problem and as such its time complexity makes
it unfeasible to explore all possible combinations of arcs especially on networks
with thousands of variables. In order to reduce the time required to obtain a
good enough network, [8] and [9] use the Hill-Climbing search heuristic along with
a tabu list that keeps track of the last 100 configurations explored. Being the
Hill-Climbing Heuristic a local search heuristic type algorithm, it can get stuck in
local maxima when exploring the space of possible transformations. In order to
avoid getting stuck in a local maxima, the criterion to choose a transformation
needs to be changed: instead of taking the best transformation overall, we take
the best transformation that results in a network not in the tabu list. This can
reduce the score of the network but avoids getting stuck in local maxima. When
15 consecutive transformations do not produce an improvement, the search stops.
Our implementation uses the Fast Constrained Hill-climbing (FastCHC) heuristic
defined in [11]. The FastCHC is based on the CHC algorithm which introduces
constraints on the neighborhood at each iteration, reducing the number of possible
neighbours of each node. A list of forbidden parents (FP ) is kept for each. A node
Xj can be selected as parent of Xi if Xj /∈ FP[Xi]. Given a score function f , Xj is
included in FP[Xi] when the move considered does not increase the score of the
structure and the FP sets are updated with the following rules:

• Adding arc (Xj, Xi). If f(Xi, pa(Xi) ∪ Xj) - f(Xi, pa(Xi)) < 0, then Xj is
added to FP [Xi] and vice versa.

• Deleting arc (Xj, Xi). If f(Xi, pa(Xi) \Xj) - f(Xi, pa(Xi)) > 0, then Xj is
added to FP [Xi] and vice versa.

• Reversal of arc (Xj, Xi). The operation can be seen as the union of deleting
arc (Xj, Xi) and adding arc (Xi, Xj). The two cases above are then applied
to update FP

The normal CHC does not guarantee that the resulting structure is an I-map; for
this reason either the unconstrained HC can be applied to solve this problem or an
iterated version of the CHC can be used as it has the same stopping condition of an
unconstrained HC, i.e. it stops when no changes can be applied at the beginning
of an iteration.
The advantage of the FastCHC is that it returns a minimal I-map without perform-
ing an iterated local search thanks to a relaxation of the constraints. Whenever an
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arc is added to the DAG, all the nodes in the neighborhoods of head and tail nodes
are removed from the other node’s forbidden parents set. The faster execution
time of the FastCHC comes at the cost of a reduction in quality of the resulting
network. The FastCHC also has advantage of not requiring a tabu list saving a lot
of space for large networks.

2.7.2 Bayesian-Dirichlet sparse (BDs)
The BDs score is a recently proposed metric by Scutari, Marco for scoring the
structure of a Bayesian network. In this thesis we will give a brief overview of the
metric and its formulation. For a detailed discussion of the metric read [12].
One of the most used metrics to score a Bayesian network is the Bayesian-Dirichlet
uniform equivalent (BDeu) and its formulation is:

BD(G, D; α) =
NÙ
i=1

BD(Xi|
GÙ
Xi

; αi) (2.13)

=
NÙ
i=1

qiÙ
j=1

C
Γ(αij)

Γ(αij + nij)

riÙ
k=1

Γ(αij + nij)
Γ(αijk)

D
(2.14)

where:

• Γ is the gamma function.

• ri is the number of states of variable Vi.

• qi is the number of possible configurations of values of rG
Xi
; if the variable Xi

has no parents qi = 1.

• nij =
qri
k=1 nijk.

• αij =
qri
k=1 αijk.

• α = {α1,...,αN}, where αi =
qqi
j=1 αij are the imaginary sample sizes associated

with each Xi.

Each BD score uses a different αijk that produces different priors:

• The BDeu score uses αijk = α / (riqi), which is the most common choice, and
uses αi = α for all Xi.

• The BDs score uses αijk = α / (ri q̃i), where q̃i is the number of rG
Xi

such
that nij > 0.
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However the DAGs learned with the BDeu score are highly dependent on the value
of α: large values of α produce DAGs with more arcs with respect to lower values
of α. This behaviour is the opposite to what is expected, that is a higher value of
α should produce a DAG with fewer arcs. For a more in depth discussion of this is
behaviour, please refer to [12].
The BDeu score is then defined as:

BDeu(Xi|pa(Xi)G; α)

=
Ù

j:nij=0 ������������C
Γ(riαijk)
Γ(riαijk)

riÙ
k=1

Γ(αijk)
Γ(αijk)

D Ù
j:nij>0

C
Γ(riαijk)

Γ(riαijk + nij)

riÙ
k=1

Γ(αijk + nijk)
Γ(αijk)

D
(2.15)

In addition, the BDeu score presents a problem related to the imaginary sample
size αijk, that is that in Equation 2.15 αijk does not simplify and the resulting
imaginary sample size if α(q̃i/qi) instead of α losing the term α(qi − q̃i)/qi. This
could make compare two marginal likelihoods computed from different priors, which
is incorrect.
Scutari [12] proposes a change to αijk to prevent this problem:

αijk =


α/(riq̃i) if nij > 0, where q̃i is the number of pa(Xi)G, such
that nij > 0

0 otherwise

BDs(Xi|pa(Xi)G; α) =
Ù

j:nij>0

C
Γ(riαijk)

Γ(riαijk + nij)

riÙ
k=1

Γ(αijk + nijk)
Γ(αijk)

D
(2.16)

2.7.3 Maximum Likelihood Estimate Method

One of the most common methods used to learn the probability distributions of the
network, from a complete dataset, is the Maximum Likelihood Estimate (MLE) [13].
The idea behind MLE is: testing randomly an event C may results in many different
outcomes C1, C2, ... Cn. The estimated value Ĉ of event C will be represented at
Θ if can maximize the likelihood function (P|Θ). The likelihood function is:

L(θ : D) = P (D|θ) =
Ù
m

P (Dm|θ) (2.17)
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Applying this formula to a Bayesian network with n variables results in:

L(θ : D) =
Ù
m

Ù
i

P (xim|pa(i)m, θi) (2.18)

=
Ù
i

Ù
m

P (xim|pa(i)m, θi) (2.19)

=
Ù
i

Li(θi : D) (2.20)

If the probability P(Xi|pa(i)m, θi) can be approximated by a polynomial distribution,
the local likelihood can be simplified to:

Li(θi : D) =
Ù
m

P (xim|pa(i)m, θi) (2.21)

=
Ù
m

Ù
pa(i)j

Ù
x

Í
i

P (xkim|pa(i)mj, θi) (2.22)

=
Ù
pa(i)j

Ù
x

Í
i

θ
N(xi

Í
,pa(i)j)

x
Í
ipa(i) (2.23)

Since this method is applied on complete datasets, as defined by [13], for each possi-
ble value pa(i)j of the parents’ node pa(i), the probability distribution P(xi|pa(i)j)
is the independent polynomial distribution, which is not related to all other val-
ues of (pa(i)l(l/=j)). Taking this into consideration, the estimated parameter θ is
calculated as follows:

θxk
i

= N(xki , pa(i)j)
N(pa(i)j (2.24)

= number of cases where xi = k and pa(i) = j
number of cases where pa(i) = j (2.25)

2.8 Strength Of Influence
Once the posterior probability distribution of interest has been obtained, often the
user needs also information about what are the determining factors for the results,
namely which events have influenced the most the result. This information can be
expressed as "Strength Of Influence" which is a numerical value indicating which
parent event influences the most the result, the higher the number the higher the
influence. We followed the strategy defined by [14] for measuring the influence a
node and its parents.
In [14] a dynamic approach is proposed in order to measure the strength of influence
between nodes: firstly, the posterior marginal, without any observation added to the
network, of the node of interest is calculated and then it is calculated considering
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each parent observed singularly. This means that if a parent’s node has n states,
then n different probability distributions has to be calculated. If a node has N
parents then N·n probability distributions will be calculated. The type of measures
that can be requested are the average and the maximum of the distance between
the two distributions. The function used to calculate the distance between the two
distributions needs to be symmetrical, in other words:

D(P, Q) = D(Q, P ). (2.26)
To explain why this property is needed, we will use the example in [14]: consider
a network like the one in Figure 2.8 where all nodes are binary and the following
probability distributions are taken into consideration: P(B|A = 0) = [0.9, 0.1],
P(B) = [0.5, 0.5], P(C|B = 0) = [0.5, 0.5] and P(C) = [0.9, 0.1]. The problem of
using an asymmetric distance arises when considering the case:

D(P (B), P (B|A)) == D(P (C), P (C|B)) (2.27)
→ D([0.5,0.5], [0.9,0.1]) == D([0.9,0.1], [0.5,0.5]) (2.28)

If the distance function were asymmetric, then measuring the distance between
the same two points would differ based on the direction considered. The distance

Figure 2.8: A Bayesian network with 3 nodes

measures that we have implemented are the same proposed by [14].

2.8.1 Euclidean distance
The Euclidean distance is defined as:

E(P, Q) =
öõõô nØ
i=1

(pi − qi)2 (2.29)

The value of distance is in the range [0,
√

2]. It is symmetrical and can be applied
to any N-dimensional vector (or in our case probability distributions).

2.8.2 Hellinger distance
The Hellinger distance is defined as:

H(P, Q) =
öõõô nØ
i=1

(√pi −
√

qi)2 (2.30)

This distance measure has the same properties as the Euclidean distance but is
more sensitive the value approaches 0 or 1.
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2.8.3 Kullback-Leibler distance
The Kullback-Leibler distance is defined as:

K(P, Q) = −
nØ
i=1

pi · log2(qi) +
nØ
i=1

pi · log2(pi) (2.31)

=
nØ
i=1

(pi · log2(pi
qi

)) (2.32)

This distance has values in the range [0, inf). This distance has three problems:
first, it is not symmetric, second, its range goes to infinity, and third, if qi = 0
there is division by zero. However, this distance can be used to create a symmetric
distance called J-divergence.

2.8.4 J-divergence
In order to make the Kullback-Leibler distance symmetric we can define the
J-divergence as follows:

J(P, Q) = K(P, Q) + K(Q, P

2 (2.33)

This solves the symmetry problem but not the other two. To avoid its range from
going to infinity we can rewrite 2.33 as:

Jnorm(P, Q) = J(P, Q)ñ
J(P, Q)2 + α

(2.34)

where α ≥ 0 is a parameter controlling the degree of the normalization. There
is still the problem regarding qi = 0 to solve. To do that we can add a simple
condition:

Jnorm(P, Q) =


1 ∀ i ∈ [1, ..., n], qi = 0

J(P,Q)√
J(P,Q)2+α

otherwise
(2.35)

2.9 Libraries used as comparison
2.9.1 aGrUM
aGrUM is a popular open-source library, written in C++17 and without a GUI, for
manipulating graphical models such as Bayesian networks, influence diagrams and
decision trees. aGrUM offers support to operations such as: exact or approximated
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inference, structural learning and parameter learning.
We used this library as a comparison for the exact inference operations and our
results will show that this library suffers from inaccuracy due to wrong marginal-
izations applied to variables in certain situations, affecting the whole inference task.
We also used aGrUM as a benchmark to test the performance of our library in
terms of time required for inference and RAM occupied during execution.

2.9.2 GeNIe
GeNIe [14] is a graphical software, specifically made for Windows, that uses the
SMILE library to performs its operations on graphical models. SMILE is a platform
independent library that supports operations on graphical models. Through the
SMILE APIs, users can create, edit, save and load graphical models. Although
GeNIe is said to support graphical models of any size and the only limitation is the
capacity of the RAM installed on a computer, we will shows that this assumption
is not true at least in the academic version of the software, which is the one we
used as reference. GeNIe, just like aGrUM, suffers from inaccuracy due to wrongly
marginalized variables.
We used GeNIe as a comparison for the exact inference task with observations as it
was easier to manipulate the network compared to aGrUM.
The problems emerged during the work of this thesis in both GeNIe and aGrUM
will be discussed in detail in Section 5.

2.9.3 bnlearn - R Package
bnlearn [15] is an R package, developed by Marco Scutari since 2007, that focuses
on the learning of a graphical model, supporting algorithms such as MMPC and
MMHC for structural learning and the MLE method for parameter learning.
We used this library as a support tool for the development of our library’s learning
features and for validating our results.
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Chapter 3

Library Design

Before diving into an in depth discussion on the implementation of the functionali-
ties, we will give an overview of the design of our library.
The theories presented in Chapter 2 are a good foundation on which base an
efficient library for Bayesian networks but they are not enough to obtain top-notch
performance in terms of execution time and memory required. A solution to the
first problem, by taking advantage of modern CPUs that have many cores and
threads, is using cpu parallelization through the use of a threadpool and dividing
algorithms, that would benefit from parallelization, in smaller tasks like the Lazy
Propagation algorithm, the multiplication of two probability distributions and the
learning of a network.
Regarding memory occupation, there are three major aspects of the library that
have the highest impact on memory usage which are: storing probability distribu-
tions, duplication of CPTs due to the message passing phase and the input dataset
for learning a network.
In order to reduce the memory required to store sparse probability distributions,
we used a compact representation where the sparse value is not repeated. To
avoid the duplication of the same probability distribution when a CPT is copied
during the message passing phases or in case more CPTs have the same probability
distribution, the copy-on-write paradigm has been used on the data structure
containing the probability distribution. Lastly, a run length coding approach has
been used on the records of the input dataset (from which the network is learned)
to reduce the space occupied in case the same value of a variable is repeated across
many consecutive records.
Since we expect this library to be used from anyone who deals with Bayesian
networks, we allow the user to choose the precision of the calculations that he
desires. For this reason the library is completely templated in order to support
all standard types of floating point precision (float, double, long double) and any
custom floating point precision.
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3.1 CPT Class
The CPT class is dedicated to manage and store all the information relative
to a variable (name, id, names of the resulting states, probability distribution,
observations introduced, etc...). In this class are present all those functionalities
needed to multiply CPTs, marginalize a variable from a CPT, instantiate the CPT
and general functions to retrieve information relative to the CPT such as name, id,
probability distribution, variables list, etc... The CPT class takes advantage of the
COW technique to reduce the memory required to store its probability distribution
when the same probability distribution is present in two or more CPTs.
After the CPT has been subject to any manipulation or after it has been read,
the probability distribution is checked to determine if it sparse and if yes it is
transformed in a more compact representation.
It is a fully templated class for supporting different operations precision.

3.2 Arcset Class
The Arcset class is the basis class used to store the structure of directed graphs.
It uses two maps to store the parents and the children of each node and a set of
arcs used to ease some of the operations in the class, although it is redundant.
This class offers the basic functionalities needed for dealing with directed graphs,
like adding, removing or checking if an arc exists in the graph, get list of parents,
children, descendant, ancestors or neighbouring nodes of a given node, to other
classes that will inherit the Arcset class (such as the DAG class).

3.3 Edgeset Class
The Edgeset class is the basis class used to store the structure of undirected graphs.
It uses one map to store the connections between nodes and uses a set of edges some
of the operations in the class. Like the Arcset class, it offers basic functionalities
needed to deal with undirected graphs, like adding, removing or checking if an edge
exists, obtain the common neighborhood of two nodes, check if the neighborhood
is a clique etc.

3.4 DAG Class
The DAG class inherits from the Arcset class in order to store the structure of
the Bayesian network, which can be either loaded by an input file or a defined by
hand from the user. The functions contained in it are specific to the DAG use case,
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like finding the d-connected nodes for the inference task, get the list of non barren
variables and check if the graph is a DAG.

3.5 Bayesian Network Class
The Bayesian network class contains the structure of the network along with the list
of CPTs. It can be seen as a wrapper class since most of the functionalities offered
by this class are functions belonging to the DAG and the CPT classes. The class
also assigns a unique id to each CPT in order to easily retrieve any information
during execution.
It is a templated class since it has to handle the CPTs.

3.6 Undirectedgraph Class
The UndirectedGraph class inherits from the Edgeset class and is responsible of the
triangulation of the DAG and identification of the cliques and separators that will
constitute the junction tree. The triangulation methods available are three: the
Minimum Weight Clique Heuristic (MWCH) [16], the MCS-M [17] and the Lex-M,
which is just a variation of the MCS-M. In Chapter 5 we will compare how MCS-M
and MWCH algorithms performs in different networks. Since they produce different
triangulations, it is not obvious to assume which algorithm performs better on a
network.
After the triangulation phase, the MCS algorithm, described in [18], is used to find
the set of cliques and the separators of the junction tree. The peculiarity of this
algorithm is that it finds all the cliques and separators in one iteration over all the
nodes of the graph.

3.7 JunctionTree Class
The JunctionTree class handles the creation of the junction tree after having
received the list of cliques and separators from the Undirectedgraph class. The
separators received already contains the id of one of the two cliques to which it is
connected. To other clique is easily found by searching which clique, with a lower
id than the one already identified, generates the same intersection with the other
clique as the one stored in the separator; the id of the clique is then associated to
the separator. After the junction tree has been created, the CPTs of the Bayesian
network need to be associated with one clique only. In order to determine to which
clique each CPT will be associated, the clique has to contain the ids of all CPT’s
parents and the CPT’s id itself. If there are more cliques suitable, only one of them
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is chosen.
The idea behind this class is that of a more complex data structure on which the
LazyPropagation class will operate: the LazyPropagation class is declared as friend
of the JunctionTree class. This avoids the creation of a lot of getter methods, and
consequentially a reduction of memory occupation due to less copies of information,
and setter methods but still maintaining encapsulation of methods with respect to
other classes that could potentially operate on the junction tree. This allows for a
faster manipulation of the data related to the junction tree such as the messages
passed between cliques and potentials present in any clique.

3.8 LazyPropagation Class
Within the LazyPropagation class are contained all functionalities needed to perform
inference in a Bayesian network: it can be performed either by choosing a node
as target or not; if a target node is selected, barren variables can be exploited
to further reduce execution time; it is also possible to immediately retrieve any
other posterior marginal from the network as long as it was not a barren variable
of the last execution. If it was a barren variable then the messages of the Lazy
propagation are updated to satisfy the requested posterior marginal. The algorithm
in [3] does not explain some of the details regarding its definition, i.e. what it is
intended for "multiplicative decomposition", so we will give our interpretation of
the algorithm in Chapter 4, trying to clarify those gray areas of [3].
As anticipated, the Lazy propagation is a friend class of the JunctionTree class
allowing to directly explore the tree as if it was a part of the class. The algorithm
can be performed either in a serial or multi threaded fashion, depending on the
available system resources.

3.9 Network Learning
The first step is to read the input dataset, containing the observations from which
the network will be learned, stored in a "CSV" file. The CSVReader class will
load the file and store the information in an instance of CSVDataStructure. The
run length coding is applied to the information stored in order to reduce memory
occupation. The learning of a network is divided into three major classes: the
PCHC and HillClimbingScoringPhase classes, are responsible for the structural
learning, and the MLE class is responsible for the probability distributions learning.
The implementation of the PCHC algorithm is contained in the homonym class
and is divided into two phases: the PC skeleton identification phase and the Hill-
climbing score heuristic. The PC algorithm can be easily parallelized to exploit
all cores of modern multi-core CPUs obtaining better performance as described in
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[7]. The use of the parallel version of the PC algorithm is again dependant on the
available resources of the system.
Once the PC algorithm has finished its execution, the resulting undirected graph
will be oriented through the Hill-Climbing heuristic, which uses the BDs score
to determine the best operation to be applied on the graph, obtaining the DAG
representing the Bayesian network.
Before the PCHC class starts its execution, the user can introduce its knowledge
of the problem that is being modelled by specifying constraints on the structural
learning, that is which relationships between variables must be present and which
has not to be considered.
The last step needed to learn a network is to estimate the probability distribution
of each variable. This task is carried out by the MaximumLikelihoodEsitmation
class using the formulation defined in Section 2.7.3.

3.10 Strength Of Influence
The last module is the related to measuring the strength of influence between
variables, in particular the influence that each parent has on a child. To perform
the task, the user has to specify which node he is interested in measuring the
strength of influence, which measure is the most appropriate to its needs between
the Euclidean distance, the Hellinger distance and the J-divergence and which kind
of measure he wants: the average or the maximum influence.
The result is the influence that each parent has on the posterior marginal of the
target node chosen.
The operations are carried out as defined in [14].
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Implementation Details

The goal of this chapter is to give details about the implementation of the previously
described functionalities, explaining the changes made to some of the algorithms
seen in Chapter 2 needed for their implementation. We will also discuss the work
done to improve code efficiency from both CPU and memory point of view.
Throughout the discussion of the thesis, every vector used as parameter is passed
by reference to reduce execution time. Furthermore, the position in which every
vector is declared is fundamental to reduce execution time: there are many cases
in which the vector could have been created inside the loop since it is were it gets
used but this has the downside of deallocating and reallocating a lot of times the
same vector. Declaring the vector before the loop and adjusting its size to the
needs of the iteration is far more efficient. Lastly, when a vector/list, a set or a
map is returned by a function it is always moved in the result variable, avoiding an
unnecessary copy of the whole vector.
For each relevant algorithm we designed for our library we will provide time and
space complexity. Those algorithms, although modified, which do not have such
indication have the same time and space complexity defined in the document from
which they are taken. They are included in order to describe the modification
made.

4.1 CPT Class
Inside the CPT class is present a reference to an instance of CPTInfo, where all the
CPT’s information are stored. This brings benefits on execution time and memory
usage since when a CPT is copied, only the reference is copied and not the whole
data structure.
The CPTData structure, instead, is referenced through inheritance of the COW
class. By doing so, we apply the COW technique to the CPTData instance achieving
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both better execution time and reducing memory usage during execution. The
execution time reduction comes from the use of a shared pointer that points to the
data structure and in case of copy of the CPT, only the pointer is copied and not
the whole data structure; this is particularly helpful when sending messages during
the Lazy Propagation where a lot of CPTs can be copied. Furthermore, if the same
probability distribution is present in more than one CPT, this mechanism can save
memory by not duplicating the distribution. In order to identify CPTs with the
same probability distributions, during the reading from a file of the network, each
CPT is checked against all the previous read ones to see if they share the same
distribution. If there is a CPT with the same distribution, then the pointer in the
latter CPT is made reference the already present data.
The most logical and less computational taxing structure to use for storing the
probability distribution of the CPT is a vector. While this reduces the cost of
accessing each single element compared to using a map, for example, it is not
the most efficient way of handling large distributions were the majority of values
is one value repeated many times, leading to a waste of memory. To reduce the
memory used by this vector, a check is performed to determine if the distribution
is sparse. In the affirmative case, the repeated value is saved into a variable, in
the CPTData structure and all other values are stored in the vector. For each one
of those remaining values, its new index in the vector is associated with the old
index and the association is stored in the map of CPTData in order to retrieve it if
needed.
The CPT class can potentially handle huge probability distributions requiring
that the operations are carried out as efficiently as possible. The most common
operations are: multiplication of two CPTs, marginalization and instantiation of a
variable in the CPT. The first operation is the one that can potentially have the
highest computational demand if the number of parents of the CPT is high enough.
Since this task consist mostly on iterating over a vector it can be easily parallelized
in smaller tasks that can be sent to the thread pool. The parallelization applied to
the multiplication of CPTs is explained in Algorithm 10 and Algorithm 11.

4.1.1 CPT Data Structures
VarStates

The information relative to the parents of a CPT, the number of states that each
parent has and the number of states that this CPT has is stored inside a vector of
VarStates. Each VarStates variable contains: the variable id, the number of states,
the list of descendants of which the variable is its ancestor and a flag to check
whether this parent has been already multiplied. We will refer to this vector as
variablesOrder. During the discussion of the following algorithms, when referring
to the list of variables present in the potential, we refer to a list of ids only of the
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variables, ordered in descending order (the first id is always the potential’s id).
The list of descendants is fundamental when we are in the following situation:
considering the graph in Figure 4.1, one way to find the posterior P(C) is by first
marginalizing the incomplete parent B and then multiplying A two times:

P (C) = P (C|B, A) · P (B|A) · P (A) (4.1)
= P (C|A, A) · P (A) · P (A) (4.2)

When doing so, we need to keep track of which A is which, i.e. one A is a direct
parent of C and the other is the parent of B. During the development of our library,
we have seen that this fundamental piece of information is lost in the inference
carried out by GeNIe and possibly also in aGrUM, although the results are much
similar to the real ones. The behaviour of both GeNIe and aGrUM will be discussed
later with better examples.

Figure 4.1: Bayesian network with joint distribution P(A) · P(B|A) · P(C|A,B)

CPTInfo

It is a simple data structure used to store the information identifying a CPT: the
variable name and the names of the resulting states. This structure allows to save
space and time during the message passing phase of the Lazy Propagation.

CPTData

It is a templated structure so that different accuracies for the distribution’s values
can be used. Inside the CPTData structure is stored the probability distribution
of the CPT using a vector, the sparse value of the original distribution, the map
with the indices of the remaining combinations after conversion of the distribution
to its compact representation, the probability distribution size and the number of
times the sparse value appeared in the original distribution.
The map used to store to association between the compact and the sparse distribu-
tion does the following association : <index in the compact vector, index in the
sparse vector>.
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4.1.2 CPT Class Functions
CPTs Multiplication

The multiplication of CPTs is divided into two phases: the first one determines
whether the multiplication can be parallelized and the second one is the actual
multiplication that can be divided into smaller tasks if parallelized.

Algorithm 10 EvaluateCPT. Given the multiplicand CPT CPTmult and the
variablesOrder of the resulting CPT after the multiplication, the resulting CPT’s
probability distribution is calculated with the following steps:

1: procedure EvaluateCPT(CPTmult, newVariablesOrder)
2: Let numOfCombinations ← the size of the new probability distribution.
3: Be newProbDistribution the vector of size numOfCombinations that will

contain the new probability distribution.
4: Let nIterations ← the number of iterations in each task.
5: Let minSize ← the minimum size of the new probability distribution

beyond which the task is parallelized.
6: if numOfCombinations >= minSize then
7: numTasks ← numOfCombinations / nIterations.
8: for l from 0 to numTasks do
9: Let blockSize← numOfCombinations / numTasks the size of the

iteration.
10: Let end ← 0.
11: if l = numTasks - 1 then
12: end ← numOfCombinations.
13: else
14: end ← (l + 1) · blockSize.
15: end if
16: Insert a task CalculateCPTData(CPTmult, newProbDistribution,

newVariablesOrder, l · blockSize, end) into the thread pool to be
executed in parallel.

17: end for
18: else
19: CalculateCPTData(CPTmult, newProbDistribution, newVariablesOr-

der, 0, numOfCombinations).
20: end if
21: end procedure

EvaluateCPT is a wrapper function that decides whether the multiplication can
be parallelized or not: the multiplication is parallelized if the resulting CPT is
big enough to require parallelization. If the multiplication is parallelized then the
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needed number of jobs of CalculateCPTData are submitted to the thread pool; if
not CalculateCPTData is called directly for a non-parallelized execution.
CalculateCPTData computes the probability values of each combination in the
interval of indices specified using the probability distribution of this CPT and the
multiplicand CPT.

Algorithm 11 CalculateCPTData. Given the multiplicand CPT CPTmult, the
vector in which store the new probability distribution, the variablesOrder of the
resulting CPT after the multiplication, the task’s first and last index, the new
probability distribution is calculated with the following steps:

1: procedure CalculateCPTData(CPTmult, distribution, newVariablesOr-
der, firstIndex, lastIndex)

2: Let combination ← The combination of parents’ states and this variable’s
state corresponding to the first index of the block.

3: Be partialCombination the vector in which store the partial combination
of variables of the multiplier or the multiplicand.

4: for i from firstIndex to lastIndex do
5: Let newProb ← 1;
6: for each variable var of this CPT’s variablesOrder do
7: Be position the variable containing the position of var in newVari-

ablesOrder.
8: Insert combination[position] in partialCombination.
9: end for

10: Let prob ← the probability of partialCombination in this CPT’s distri-
bution.

11: newProb ← newProb · prob;
12: Clear partialCombination.
13: for each variable var of CPTmult’s variablesOrder do
14: Be position the variable containing the position of var in newVari-

ablesOrder.
15: Insert combination[position] in partialCombination.
16: end for
17: Let prob ← the probability of partialCombination in CPTmult’s distri-

bution.
18: newProb ← newProb · prob;
19: distribution[i] ← newProb.
20: Update combination to the next combination.
21: end for
22: end procedure
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4.2 DAG Class

4.2.1 DAG Data Structures

NodeSeparated

NodeSeparated is a simple data structure used to store if a node is d-Separated
from a set of nodes. It is composed of an id representing the node and a boolean
indicating whether the node is separated or not. This data structure is mostly used
during the Lazy Propagation algorithm to identify the relevant potentials.

1 s t r u c t {
2 NodeId id ;
3 bool separated ;
4 } NodeSeparated ;

4.3 UndirectedGraph Class

The first task the UndirectedGraph class is responsible for is triangulating the
DAG. While the implementations of both MCS-M and Lex-M are straightforward,
given the pseudo code in [17], the MWCH is only theoretically described by [16] so
we will give our interpretation of the heuristic:

Algorithm 12 MWCH Triangulation. Given a moral undirected graph G and a
vector containing the number of states of each variable in the Bayesian network
variablesStatesNumber, the triangulated graph is obtained with the following steps:

1: procedure MWCH Triangulation(G, variablesStatesNumber)

1 s t r u c t {
2 i n t node , weight ;
3 } NodeWeight ;

2: Let nNodes ← |V| ∈ G.
3: Let Gi ← G.
4: Let addedEdges ← ∅.
5: Be cliqueWeights a vector of size nNodes of NodeWeight items.
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6: Let activeNodes ← ∅.
7: for i from 0 to nNodes do
8: activeNodes[i] ← 1.
9: cliqueWeights[i].node ← i.

10: Let weight ← 0.
11: for each v ∈ ne(i) do
12: weight += variablesStatesNumber[v].
13: end for
14: weight += variablesStatesNumber[i].
15: cliqueWeights[i].weight ← weight.
16: end for
17: Order cliqueWeights in ascending order of weight.
18: Let k ← nNodes - 1.
19: for i from 0 to nNodes do
20: Let v ← cliqueWeights[0].node.
21: if ne(v)Gi

/= ∅ then
22: Create a clique with the nodes in ne(v)Gi

, storing the newly added
edges in addedEdges. They will be added at the end of the algorithm.

23: end if
24: Remove v from Gi.
25: activeNodes[v] ← 0.
26: cliqueWeights[v].weight ← ∞.
27: Update the clique weight with the remaining vertices using the formula

defined in the initialization of the vector and sort cliqueWeights in
ascending order.

28: end for
29: for each e ∈ addedEdges do
30: Add e to G.
31: end for
32: end procedure

Time: O (n · (e2 + n · e)), Space: O (n · eÍ), where n is the number of nodes in the
graph, e is the number of edges in the graph and e’ is the number of added edges
to the neighborhood of a node

The idea behind the algorithm is to identify, at each iteration, the clique that
has the minimum weight generated by the active nodes. The weight is defined as
the sum of the number of states of each variable in the clique. The algorithm starts
calculating the weight of the neighbourhood of each node and stores it into a list. At
each step, the node with the neighbourhood with the minimum weight is selected,
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removed from the list of active nodes and the weights of the neighbourhoods of the
other nodes are updated. When a node is selected to generate a clique, the edges
needed to make its neighbourhood a clique are stored in a list; the edges are added
to the graph at the end of the algorithm.

4.4 JunctionTree Class

4.4.1 JunctionTree Data Structures

MessagePotentialDependencies

In the message passing phase described in Section 2.6.1, the potentials inside
the message are stored as a multiplicative decomposition, meaning that they are
multiplied only when necessary, i.e. when calculating the posterior marginal of
the requested node or anytime a potential is solved during the message passing
phase, reducing time of subsequent calculations. The structure used to store the
potentials needed is an ordered list. In this way, once all the needed potentials are
present in the list, the requested potential is easily computed by multiplying the
last potential in the list with all its preceding, the second-last with all its preceding,
etc. At the end, the direct parents of the requested node are solved and can be
used to compute the requested posterior.
Additionally, two sets of ids are required, one for keeping track of which potentials
are already inserted into the list, and one for keeping track of which ancestor
potentials are still missing. In this way it is easily determined which potentials to
insert into the list of dependencies and which not. When a potential is inserted
into potentialDependencies, its id is removed from pendingDependencies, added to
solvedDependencies and its set of potentials required is added to pendingDepen-
dencies.
During the discussion of this thesis, we will refer to all the potentials needed to
solve the potential in the structure as dependencies.

1 s t r u c t {
2 CPT p o t e n t i a l ;
3 CPT[ ] potent ia lDependenc i e s ;
4 Set pendingDependencies ;
5 Set so lvedDependenc ies ;
6 } MessagePotent ia lDependencies ;
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Message

Message is the structure containing the potentials to pass during the message
passing phase. Each message carries the information about which clique generated
it, in this way it is easier to avoid sending the same potentials to clique that sent
them. Additionally, each message uses isMessageNew to indicate whether it is
new or not in case of multiple executions of the algorithm. If it is new, then
the variable position indicates where this message will be inserted into the list of
messages of the clique that receives it, substituting the old one. The potentials
passed within a message are divided in two lists: potentialDependencies contains
all non-instantiated potentials and instantiatedPotentialDependencies contains the
instantiated ones.

1 s t r u c t {
2 Cl iqueId sourceCl ique ;
3 MessagePotent ia lDependencies [ ] po tent ia lDependenc i e s ;
4 MessagePotent ia lDependencies [ ] i n s t an t i a t edPot en t i a lDependenc i e s ;
5 bool isMessageNew ;
6 i n t p o s i t i o n ;
7 } Message ;

4.5 LazyPropagation Class
4.5.1 LazyPropagation Class Functions
Lazy Propagation Algorithm

The Lazy Propagation algorithm in Section 2.6 discusses the operations at a high
level without giving insights of how to efficiently implement the algorithm. We will
give an in depth description of the adjustments made to the original algorithm in
order to obtain better CPU and RAM performance.
Since the Lazy Propagation presents many modifications from the algorithm
presented in [3], for each algorithm we will specify the time and space complexity.
Below we will introduce the notation used in the calculations for time and space
complexities:

• c: number of cliques in the junction tree

• c_p: number of potentials in the clique

• n: number of variables in the network

• m: number of messages received by the clique
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• m_p: number of non instantiated potentials contained in the message

• m_i: number of instantiated potentials contained in the message

• mc_p: number of non instantiated potentials contained in the clique and in
all the messages received by the clique

• p_v: number of variables contained in the potential

• p_a: number of ancestors of a variable

• p_i: number of instantiated potentials needed to update a potential

Algorithm 13 CollectEvidence. Given a clique C and its parent clique pa(C),
CollectEvidence is recursively called on all its child nodes, performing the following
operations:

1: procedure CollectEvidence(C, pa(C))
2: Be MessageToSend the message to be sent to the parent clique.
3: Let MessagePotentialsDependencies ← Potentials present in the clique

and the potentials received from all the separators connected to the clique.
4: Let MessagePotentialsDependencies_S← Potentials present in the clique

and received from all the separators connected to the clique, except those
received through S.

5: Let InstantiatedPotentials ← Instantiated potentials present in the clique
and those received from all the separators connected to the clique.

6: Be S the separator between C and pa(C).
7: for S Í ∈ ne(C) \ S do
8: Be Cc the child of C connected to S Í.
9: Let MessageReceived ← CollectEvidence( Cc, C ).

10: Save MessageReceived in this clique’s messages list.
11: end for
12: if pa(C) != -1 then
13: MessageToSend ← CollectEvidenceMessage-

Creation(C, MessagePotentialsDependencies,
MessagePotentialsDependencies_S, InstantiatedPotentials, S).

14: end if
15: Return MessageToSend
16: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)
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The structure of our CollectEvidence is almost identical to the one in [3] (the
absorption phase is inside the message creation phase), we added three vectors to
facilitate the operations of locating the relevant potentials. The list of potentials
used when creating a message is different from the list used to solve a potential,
thus reducing the length of the iteration in the former case. These three lists are
used in CollectEvidenceMessageCreation to create the message and subsequently
to solve the potentials in the clique in case anyone is solvable.

Algorithm 14 DistributeEvidence. Given a clique C, its parent clique pa(C), the
list of evidence nodes L and the message M from pa(C), DistributeEvidence is
recursively called on all its child nodes, performing the following operations:

1: procedure DistributeEvidence(C, pa(C), M)
2: Be MessageToSend the message to be sent to the child clique.
3: Let NotInstantiatedPotentials ← Not instantiated potentials present in

the clique.
4: Let InstantiatedPotentials← Instantiated potentials present in the clique.
5: Be S the separator between C and pa(C).
6: Let SeparatedNodes ← All the variables in this clique and those received

in the messages.
ó It is a vector of NodeSeparated.

7: Save M in this clique’s messages list.
8: for S Í ∈ ne(C) \ S do
9: Be Cc the child of C connect to S Í.

10: IsDSeparated(SeparatedNodes, Cc, L).
11: MessageToSend ← DistributeEvidenceMessageCre-

ation( C, SeparatedNodes, NotInstantiatedPotentials,
InstantiatedPotentials, S ).

12: DistributeEvidence(Cc, C, MessageToSend).
13: end for
14: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)

Compared to the DistributeEvidence defined in [3], we compute which nodes,
either contained in this clique or received through messages, are d-Separated from
the nodes in the child clique before the absorption phase in order to reuse the
same list for all the child cliques. This saves a lot of allocations and deallocations
of memory improving code efficiency. The information about which nodes are
d-Separated and which not is recalculated for each clique.
As vastly discussed, the Lazy Propagation algorithm is nothing more than a
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recursive exploration of a tree done two times. Since we wanted to improve as much
as possible the computational efficiency of the algorithm, the first improvement we
introduced was parallelizing both the collect and distribute evidence functions, i.e.
parallelizing a recursive exploration of a tree.
When parallelizing a recursive exploration of a tree using a thread pool, the first
problem is handling the submission of jobs so to avoid dead-locks during the
execution. Parallelizing a recursive algorithm can create a dead-lock if a job
submits another job to the thread pool but no threads are available to perform the
new job. In this situation the parent job waits indefinitely. A possible solution is to
add new threads the thread pool when a new job is submitted and no threads are
available; this solution, however, has two drawbacks: firstly, creating new threads is
not immediate and requires time and memory by the operating system to allocate
the resources. Creating too many threads could end up saturating system resources.
The second drawback is context switching: creating too many threads increases the
number of context switches the scheduler performs leading to poor performance.
Since this solution is not ideal for resources utilization, we will use a different
approach: the recursive jobs will generate the list of jobs associated with each child;
those jobs will be submitted to the thread pool until there are available threads.
Once the thread pool is full, the jobs will be executed by the thread that created
them. In this way dead-locks do not occur but the main thread is left unused. In
order to utilize also the main thread we can leave it on wait over a queue of jobs.
Then once the thread pool is filled, the main thread starts executing the first job in
queue and continues until it is empty. In this way we are able to visit the junction
tree in parallel, without any dead-lock, using as many resources are allocated to
the thread pool to speed up the message passing phase in large trees. This solution
still has margin for improvement and it will be discussed in Section 6.2.3.
In order to determine the end of the recursive algorithms we will use a variable End.
End is set to True when CollectEvidenceParallel or DistributeEvidenceParallel has
terminated its execution in the root clique. This will be used to end the while loop
in the main thread that is extracting and executing jobs from the queue.
In the next algorithms, we will refer to the thread pool as TP.

Algorithm 15 LazyPropagationParallel. Given a root clique CR the parallel Lazy
Propagation algorithm is executed using two wrapper functions that performs the
collect and distribute phase recursively on the junction tree:

1: procedure LazyPropagationParallel
2: CollectEvidenceParallelWrapper(CR).
3: DistributeEvidenceParallelWrapper(CR).
4: end procedure
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Algorithm 16 CollectEvidenceParallelWrapper. Given a clique root CR, a queue
of jobs to be executed CollectEvidenceParallelJobsToPerform, a set containing
the results of the jobs completed CollectEvidenceParallelJobsCompleted, a map
containing the job being run by the main thread and its results CollectEviden-
ceParallelJobsRunning and a variable F indicating that the execution of CollectEv-
idenceParallel is completed, CollectEvidenceParallel is recursively called on all its
child nodes performing the following operations:

1: procedure CollectEvidenceParallelWrapper(CR)
2: CollectEvidenceParallel(CR, -1).
3: while F = False do
4: Wait until there is a job in CollectEvidenceParallelJobsToPerform or F

is True.
5: Let Job ← first job in CollectEvidenceParallelJobsToPerform.
6: if Job /∈ CollectEvidenceParallelJobsCompleted then
7: Execute Job.
8: Put Job in CollectEvidenceParallelJobsRunning with its result.
9: end if

10: end while
11: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)

Algorithm 17 DistributeEvidenceParallelWrapper. Given a clique root CR, a
queue of jobs to be executed DistributeEvidenceParallelJobsToPerform, a set con-
taining the results of the jobs completed DistributeEvidenceParallelJobsCompleted,
a map containing the job being run by the main thread and its results Distribu-
teEvidenceParallelJobsRunning and a variable F indicating that the execution of
DistributeEvidenceParallel is completed, DistributeEvidenceParallel is recursively
called on all its child nodes performing the following operations:

1: procedure DistributeEvidenceParallelWrapper(CR)
2: DistributeEvidenceParallel(CR, -1).
3: while F = False do
4: Wait until there is job in DistributeEvidenceParallelJobsToPerform or

F is True.
5: Let Job ← first job in DistributetEvidenceParallelJobsToPerform.
6: if Job /∈ DistributeEvidenceParallelJobsCompleted then
7: Execute Job.
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8: Put Job in DistributeEvidenceParallelJobsRunning with its result.
9: end if

10: end while
11: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)

Both Algorithm 16 and Algorithm 17 are executed in the main thread of the
library which is not part of the thread pool, meaning it cannot execute jobs and
would sleep during the execution of the whole inference algorithm. By using this
approach we are able to take advantage of the main thread’s resources instead of
wasting it. At each iteration of the while loop, the main thread checks whether
there is any job available in the queue and extracts it. Once the extracted job is
completed, its result is made available to the thread waiting for it, allowing it to
continue its execution.

Algorithm 18 CollectEvidenceParallel. Given a clique C, its parent clique pa(C),
a queue of jobs to be executed CollectEvidenceParallelJobsToPerform, a set con-
taining the results of the jobs completed CollectEvidenceParallelJobsCompleted,
a map containing the job being run by the main thread and its results Col-
lectEvidenceParallelJobsRunning and a variable F indicating that the execution of
CollectEvidenceParallel is completed, CollectEvidenceParallel is recursively called
on all its child nodes, performing the following operations:

1: procedure CollectEvidenceParallel(C, pa(C))
2: Be MessageToSend the message to be sent to the parent clique.
3: Let MessagePotentialsDependencies ← Potentials present in the clique

and the potentials received from all the separators connected to the clique.
4: Let MessagePotentialsDependencies_S← Potentials present in the clique

and received from all the separators connected to the clique, except those
received through S.

5: Let InstantiatedPotentials ← Instantiated potentials present in the clique
and those received from all the separators connected to the clique.

6: Be S the separator between C and pa(C).
7: Let LocalJobs ← ∅. ó Queue of jobs created by the current

CollectEvidenceParallel.
8: for S Í ∈ ne(C) \ S do
9: Be Cc the child of C connect to S Í.

10: Let Job ← CollectEvidenceParallel(Cc, C).
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11: if AvailableThreadsInTP > 0 then
12: Submit Job to TP.
13: else
14: Insert Job into CollectEvidenceParallelJobsToPerform.
15: Insert Job into LocalJobs.
16: end if
17: end for
18: for Job ∈ LocalJobs do
19: if Job /∈ CollectEvidenceParallelJobsRunning then
20: Insert Job into CollectEvidenceParallelJobsCompleted.
21: Run Job and save the message in this clique’s messages list.
22: else
23: Retrieve message from CollectEvidenceParallelJobsRunning and

store it in this clique’s messages list.
24: end if
25: end for
26: if pa(C) != -1 then
27: MessageToSend ← CollectEvidenceMessage-

Creation(C, MessagePotentialsDependencies,
MessagePotentialsDependencies_S, InstantiatedPotentials, S).

28: else
29: F = True.
30: end if
31: Return MessageToSend
32: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)

Comparing the parallel version of the collect evidence to its serial version in
Algorithm 13, the main difference is that the whole phase is divided into two
sub-phases: in the first one, the CollectEvidenceParallel jobs are created for each
children and it is determined whether they can be executed by the thread pool or
not. In the second phase the messages of the jobs sent to the thread pool, and those
executed by the main thread, are retrieved and the jobs that could not be executed
by the thread pool are executed in the current thread. The same changes are
applied also to DistributeEvidenceParallel but in this case there is not a message
to retrieve from the job but we just wait for the completion of the job either from
the main thread or the current thread.
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Algorithm 19 DistributeEvidenceParallel. Given a clique C, its parent clique
pa(C), the list of evidence nodes L, the message M from pa(C), a queue of jobs to be
executed DistributeEvidenceParallelJobsToPerform, a set containing the results of
the jobs completed DistributeEvidenceParallelJobsCompleted, a map containing the
job being run by the main thread and its results DistributeEvidenceParallelJobsRun-
ning and a variable F indicating that the execution of DistributeEvidenceParallel
is completed, DistributeEvidenceParallel is recursively called on all its child nodes,
performing the following operations:

1: procedure DistributeEvidenceParallel(C, pa(C), M)
2: Be MessageToSend the message to be sent to the child clique.
3: Let NotInstantiatedPotentials ← Non instantiated potentials present in

the clique.
4: Let InstantiatedPotentials← Instantiated potentials present in the clique.
5: Be S the separator between C and pa(C).
6: Let SeparatedNodes ← All the variables in this clique and those received

in the messages.
7: Let LocalJobs ← ∅.
8: Save M in this clique’s messages list.
9: for S Í ∈ ne(C) \ S do

10: Be Cc the child of C connect to S Í.
11: IsDSeparated(SeparatedNodes, Cc, L).
12: MessageToSend ← DistributeEvidenceMessageCre-

ation( C, SeparatedNodes, NotInstantiatedPotentials,
InstantiatedPotentials, S ).

13: Let Job ← DistributeEvidenceParallel(Cc, C, MessageToSend).
14: if AvailableThreadsInTP > 0 then
15: Submit Job to TP.
16: else
17: Insert Job into DistributeEvidenceParallelJobsToPerform.
18: Insert Job into LocalJobs.
19: end if
20: end for
21: for Job ∈ LocalJobs do
22: if Job /∈ DistributeEvidenceParallelJobsRunning then
23: Insert Job into DistributeEvidenceParallelJobsCompleted.
24: Run Job.
25: end if
26: end for
27: if pa(C) = -1 then
28: F = True.
29: end if
30: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p · c), Space: O (p_a ·mc_p · c)
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Marginalization Process

The marginalization algorithm described in [3] is not a feasible solution, even
for small sized networks, because it requires that the variables not present in the
separator are marginalized when passing the message. The situation that makes this
operation unfeasible is when an incomplete variable is marginalized. This is not a
problem when that variable introduces only one other variable to the list of parents
of the current variable; the problem arises when two ore more variables are added to
the list, leading to an exponential increase of the size of the variable’s distribution
and ultimately causing an overflow of memory, if this process is repeated multiple
times. We show an example of this problem using the junction tree of Figure 4.2.

Figure 4.2: Example junction tree. The underlined letters represent the variables
present in the clique. On the left, the variables’ CPT definition.

Choosing clique 3 as the root clique, when passing the message from clique 1 to 2
during the collection of evidence, P(D|C) is subject to the following marginalization
process:

P (D|C)→ P (D|C) · P (C|A, B) = P (D|A, B) (4.3)

In clique 2, variable D is conditioned on both A and B potentially increasing the
size of the prior distribution of D. On small networks these operations are unlikely
to create distributions too big to be stored in central memory but the size of
the distribution could slow down the whole inference algorithm when multiplying
or marginalizing variables. On bigger networks, if these operations are repeated
enough times, the prior distribution will eventually become too big to be stored in
RAM, slowing down the algorithm due to memory swapping, or in the worst case,
the distribution could become too large to be indexed leading to an overflow of the
index used to iterate over the distribution (the maximum size of a distribution is
264 on a 64bit computer).
As described in Section 2.6, the messages used by the Lazy propagation algorithm
contains a multiplicative decomposition of the potentials, i.e. the potentials are not
multiplied until requested reducing memory usage and saving time during opera-
tions. This alone is not sufficient to obtain a result in reasonable time. Our solution
is to use the MessagePotentialDependencies data structure defined in Section 4.4.1
to store the list of potentials needed to solve one potential and resolving it only
when all dependencies have been satisfied.
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Our marginalization process is reduced to just remove the potentials not in the sepa-
rator from the list of potentials passed in the message but the actual marginalization
on a variable is not carried out.

Caching Potentials

One of the property of the Lazy Propagation algorithm is the possibility to calculate
the posterior marginal of any of the variables contained in the clique after the
distribute evidence phase is concluded. This implies that the same variable can
be calculated in many cliques. Considering this property from a computational
cost point of view, it is possible that the same posterior is calculated multiple
times during the message passing phase. To prevent this problem, we use two list
of potentials (one list is used to store the potentials calculated without evidence
introduced and the potentials that needs evidence from above; the second list is
used to store the potentials calculated with evidence from below) to store each
potential calculated during the message passing phase. Thus during the message
passing phase only the potentials that are not already calculated and stored in the
list are calculated. This list can also be used to retrieve parents needed for solving
a potential, although it has not been received through a message yet, speeding up
the algorithm.
Two normal lists are not enough for a parallel execution of the Lazy Propagation
because they introduce race conditions when checking whether a potential is
already calculated or not. To guarantee consistency in the execution we used an
implementation of concurrent vectors that handles concurrent accesses to each
element from multiple threads without requiring the use of an additional mutex.
The two lists will be referred as ReadyPotentials and ReadyPotential_Evidence
respectively the list of potentials calculated without evidences or with evidences
from above, and the list of potentials calculated with evidences from below.

Caching Evidence Information

One of the aspects that makes inferencing with observations so difficult is due to
determine which observations have an impact on the posterior of a variable and
which variables need parents that have been updated with observations. This boils
down to perform tree searches on the DAG and determine:

• For each observed node the list of ancestors reached.

• For each variable reached by an evidence, the list of descendants that need
the updated parent.

Then for each variable is stored the list of evidences from below and the list of evi-
dences from above that influences them, facilitating the task of propagating evidence.
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The lists will be referred as EvidencesFromBelow and EvidencesFromAbove.
In addition to these two lists, we use a list (PotentialsToUpdate) to easily keep
track of which potentials need to be updated.

Message Creation

Our CollectEvidence and DistributeEvidence have two different message creation
algorithms because, despite the operations performed in both phases are the same,
the order in which they are performed is different, thus requiring two separate
definitions.

Algorithm 20 CollectEvidenceMessageCreation. Given a clique C, a list
of MessagePotentialDependencies RS, a list of MessagePotentialDependen-
cies MessagePotentialsDependencies, a list of MessagePotentialDependencies
MessagePotentialsDependencies_S, a list of MessagePotentialDependencies In-
stantiatedPotentials and the separator S, the list of evidence nodes L, the message
to send is created performing the following operations:

1: procedure CollectEvidenceMessageCreation(C, RS, MessagePoten-
tialsDependencies, MessagePotentialsDependencies_S, InstantiatedPotentials,
S)

2: Let SeparatedNodes ← All the variables in this clique and those received
in the messages.

3: Let RS ← MessagePotentialsDependencies_S.
4: IsDSeparated(SeparatedNodes, Cc, L).
5: FindRelevantPotentials(RS, SeparatedNodes).
6: Order RS, MessagePotentialsDependencies,

MessagePotentialsDependencies_S in descending order.
7: Return MessageCreation(C, RS, MessagePotentialsDependencies,

MessagePotentialsDependencies_S, InstantiatedPotentials, InstantiatedPo-
tentials, S).

8: end procedure

Time complexity: O (p_a5 · p_i · p_v ·mc_p), Space complexity: O (p_a ·mc_p)

Both CollectEvidenceMessageCreation and DistributeEvidenceMessageCreation
are wrapper functions for finding relevant potentials and the message creation
phase. The FindRelevantPotentials function uses the same algorithm defined in [3]
for finding relevant potentials, removing potentials that are not required for the
message from RS.
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Algorithm 21 DistributeEvidenceMessageCreation. Given a clique C, a list of
NodeSeparated NS, a list of MessagePotentialDependencies PotentialsNotInstan-
tiated, a list of MessagePotentialDependencies PotentialsInstantiated, and the
separator S, the message to send is created performing the following operations:

1: procedure DistributeEvidenceMessageCreation(C, NS, Potential-
sNotInstantiated, PotentialsInstantiated, S)

2: Let RS ← PotentialsNotInstantiated.
3: Let MessagePotentials ← PotentialsNotInstantiated.
4: Let MessagePotentials_S ← PotentialsNotInstantiated.
5: Let InstantiatedPotentials ← PotentialsInstantiated.
6: Let InstantiatedPotentials_S ← PotentialsInstantiated.
7: Add to MessagePotentials all not instantiated potentials received through

messages and add to RS and MessagePotentials_S all not instantiated
potentials received through messages except those receive through S.

8: Add to InstantiatedPotentials all instantiated potentials received through
messages and add to InstantiatedPotentials_S all instantiated potentials
received through messages except those receive through S.

9: FindRelevantPotentials(RS, NS).
10: Order RS, MessagePotentials, MessagePotentials_S in descending or-

der.
11: Return MessageCreation(C, RS, MessagePotentials,

MessagePotentials_S, InstantiatedPotentials,
InstantiatedPotentials_S, S).

12: end procedure

Time complexity: O (p_a5 · p_i · p_v ·mc_p), Space complexity: O (p_a ·mc_p)

During the message creation phase, we decide whether a new message is needed
(in case the Lazy Propagation algorithm is executed multiple times). Doing the
check at this stage and not when the message is received allows to save time if the
old message is still valid. The old message may become invalid when the target
node is changed, because the list of barren variable changes, and when an evidence
is introduced or removed from the network.
Function UpdateMessage checks whether the potentials of the current execution of
the Lazy Propagation, after the marginalization process, will be the same as the
old one. If yes, then checks whether also the instantiated potentials of the current
execution are the same as those of the old one. If they are different then a new
message is created otherwise the old message will be used.
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Algorithm 22MessageCreation. Given a clique C, a list of MessagePotentialDepen-
dencies RsPrime, a list of MessagePotentialDependencies MessagePotentialsDepen-
dencies, a list of MessagePotentialDependencies MessagePotentialsDependencies_S,
a list of MessagePotentialDependencies InstantiatedPotentials, a list of MessagePo-
tentialDependencies InstantiatedPotentials_S and the separator S, the message to
send is created by performing the following operations:

1: procedure MessageCreation(C, RsPrime, MessagePotentialsDe-
pendencies, MessagePotentialsDependencies_S, InstantiatedPotentials,
InstantiatedPotentials_S, S)

2: Let Cc ← Child clique of C connected to S.
3: Let MessageToSend = ∅.
4: Let OldMessage ← Old message contained in Cc sent by C.
5: Let OldPotentials ← The list of potentials contained in OldMessage.
6: if OldMessage = ∅ Or (OldMessage /= ∅ And UpdateMessage(RsPrime,

InstantiatedPotentials_S, OldMessage, S)) then
7: UpdateParentPotentialsInMessages(C, InstantiatedPotentials).
8: SolvePotentials(C, RsPrime, MessagePotentialsDependen-

cies, MessagePotentialsDependencies_S, InstantiatedPotentials,
InstantiatedPotentials_S, S).

9: MarginalizePotential(C, RsPrime, S).
10: Insert RsPrime and InstantiatedPotentials_S into MessageToSend.
11: if OldMessage /= ∅ then MessageToSend.position ←

OldMessage.position.
12: end if
13: else
14: MessageToSend ← OldMessage.
15: MessageToSend.isMessageNew ← False.
16: UpdateParentPotentialsInMessages(C, InstantiatedPotentials).
17: for φ ∈ RsPrime do
18: if |MessagePotentialsDependencies| > 1 then
19: SolvePotential(C, MessagePotentialsDependencies, φ).
20: end if
21: if InstantiatedPotentials /= ∅ then
22: Let Idφ ← φ’s id.
23: UpdateAndStoreParentPotential(C, Idφ, InstantiatedPotentials,

True).
24: end if
25: end for
26: end if
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27: Return MessageToSend.
28: end procedure

Time complexity: O (p_a5 · p_i · p_v ·mc_p), Space complexity: O (p_a ·mc_p)

If a new message is needed, the message creation phase starts by updating the
posterior marginal of the variables, received through messages, with the evidences
introduced using the process described in Section 2.4.1. This preliminary parents
update has the purpose of updating parents that may be needed to calculate the
message of this clique or to solve some of the potentials contained in the clique.
If the old message is reused, the solving and updating potentials phases are repeated
with the information contained in the old message since they are still valid.

Algorithm 23 UpdateParentPotentialsInMessages. Given a clique C and a list of
MessagePotentialDependencies InstantiatedPotentials, the parents are updated by
performing the following operations:

1: procedure UpdateParentPotentialsInMessages(C, InstantiatedPoten-
tials)

2: if InstantiatedPotentials /= ∅ then
3: for M ∈ C’s messages list do
4: for φ ∈ M ’s list of non-instantiated potentials do
5: UpdateAndStoreParentPotential(C, φ, InstantiatedPotentials,

true).
6: end for
7: end for
8: end if
9: end procedure

Time: O (p_a2 · p_i · p_v ·m ·m_p), Space: O (p_a)

UpdateParentPotentialsInMessages is a wrapper function that uses UpdateAnd-
StoreParentPotential to update all potentials contained in the messages received
by the clique.
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Algorithm 24 UpdateAndStoreParentPotential. Given a clique C, a potential φ,
a list of MessagePotentialDependencies InstantiatedPotentials and a boolean S, the
parents are updated by performing the following operations:

1: procedure UpdateAndStoreParentPotential(C, φ, InstantiatedPoten-
tials, S)

2: Let Idφ ← φ’s id.
3: if |EvidencesFromBelow[Idφ]| > 0 And φ ∈ ReadyPotentials And φ /∈

ReadyPotential_Evidence then
4: Let φC ← ReadyPotentials[Idφ].
5: Be SolvedInstantiatedPotentials an empty list of potentials.
6: Be InstantiatedPotentialsNeeded an empty list of MessagePotentialDe-

pendencies.
7: Let V ariablesNeeded ← EvidencesFromBelow[Idφ]. ó

V ariablesNeeded contains the list of observations from below that
influences φ.

8: for φinst ∈ InstantiatedPotentials do
9: Let Idφinst

← φinst’s id.
10: if Idφinst

∈ V ariablesNeeded then
11: Insert φinst into InstantiatedPotentialsNeeded.
12: Remove φinst from V ariablesNeeded.
13: end if
14: end for
15: if V ariablesNeeded = ∅ then
16: UpdateAndSolveInstantiatedPotentials(C, Idφ,

InstantiatedPotentialsNeeded, SolvedInstantiatedPotentials).
17: end if
18: if |SolvedInstantiatedPotentials| = |EvidencesFromBelow[Idφ]|

then
19: UpdateParentPotentialWithEvidence(φ,

SolvedInstantiatedPotentials, S).
20: end if
21: end if
22: end procedure

Time: O (p_a2 · p_i · p_v), Space: O (p_a)

UpdateAndStoreParentPotential starts by selecting the observations that in-
fluence φ and then selects the instantiated potentials needed, corresponding to
the list, from the list of instantiated potentials provided to the function. If all
the observations needed are present, then the instantiated potentials’ parents are
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solved by UpdateAndSolveInstantiatedPotentials, i.e. after UpdateAndSolveInstan-
tiatedPotentials, the instantiated potentials will depend only on φ. Then, if all
the instantiated potentials are now depending on φ, it can be updated with the
evidences. The last check is needed since, when propagating evidences upward, we
need to marginalize all other potentials that are not φ. Hence, it can happen that
some of the other potentials are not yet calculated and the operations cannot be
executed.

Algorithm 25 UpdateAndSolveInstantiatedPotentials. Given a clique C, a poten-
tial’s Idφ, a list of MessagePotentialDependencies InstantiatedPotentials and a list
of potentials InstantiatedPotentialsSolved, the instantiated potentials are updated
by performing the following operations:

1: procedure UpdateAndSolveInstantiatedPotentials(C, Idφ, Instanti-
atedPotentials, InstantiatedPotentialsSolved)

2: for φinst ∈ InstantiatedPotentials do
3: UpdateInstantiatedPotential(C, Idφ, φinst).
4: if IsInstantiatedPotentialSolved(Idφ, φinst) then
5: SolveInstantiatedPotential(Idφ, φinst).
6: Insert φinst.potential into InstantiatedPotentialsSolved.
7: end if
8: end for
9: end procedure

Time: O (p_a2 · p_i · p_v), Space: O (p_a)

The operations inside UpdateAndSolveInstantiatedPotentials are divided into
two phases: an updating phase and a solving phase. During the updating phase, the
list of dependencies of φ is completed with the potentials contained in the messages
received in this clique and the potentials contained in the clique. During the solving
phase, the instantiated potential is updated using the dependencies in order to
make it depend only on the variable which is influenced by the observations.

Algorithm 26 UpdateInstantiatedPotential. Given a clique C, a potential’s Idφ
and an instance of MessagePotentialDependencies φinst, the instantiated potential’s
dependencies are updated by performing the following operations:

1: procedure UpdateInstantiatedPotential(C, Idφ, φinst)
2: Order φinst.potentialDependencies in descending order.
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3: Let φD ← GetCPTParentsInClique(C, Idφ, φinst).
4: while φD /= ∅ do
5: Add φD to φinst.potentialDependencies.
6: φD ← GetCPTParentsInClique(C, Idφ, φinst).
7: end while
8: end procedure

Time: O (p_a ·m ·m_p), Space: O (p_a)

During the updating phase, the potentials needed to update an instantiated po-
tential are selected by GetCPTParentsInClique and then are added to φ.potentialD-
ependencies for a later use, until there are no more potentials needed in this clique
indicated by an empty potential returned by GetCPTParentsInClique.

Algorithm 27 GetCPTParentsInClique. Given a clique C, a potential’s Idφ and
an instance of MessagePotentialDependencies φinst, the potentials needed to update
one potential’s dependencies are found by performing the following operations:

1: procedure GetCPTParentsInClique(C, Idφ, φinst)
2: Be φR an empty instance of MessagePotentialDependencies. ó It will be

the potential returned by the function.
3: Let IdφR

← -1.
4: Let Idφinst

← φinst.potential’s id.
5: for M ∈ C’s messages list do
6: for φ ∈ M do
7: Let IdφM

← φ.potential’s id.
8: if IdφM

/= Idφinst
And IdφM

/= Idφ And IdφM
> IdφR

And IdφM
/∈

φinst.solvedDependencies And IdφM
∈ φinst.pendingDependencies then

9: φR ← φ.
10: IdφR

← IdφM
.

11: end if
12: end for
13: end for
14: for φ ∈ C’s potentials list do
15: Let IdφM

← φ’s id.
16: if IdφM

/= Idφinst
And IdφM

/= Idφ And IdφM
> IdφR

And IdφM
/∈

φinst.solvedDependencies And IdφM
∈ φinst.pendingDependencies then

17: φR ← φ.
18: IdφR

← IdφM
.

19: end if
20: end for
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21: if φR.potential /= ∅ then
22: if Idφ /∈ anc(IdφR

) And Idφ ∈ ReadyPotentials then
23: φR ← ReadyPotentials[IdφR

].
24: end if
25: end if
26: Return φR.
27: end procedure

Time: O (m ·m_p), Space: O (1)

GetCPTParentsInClique selects the potential with the highest id that has not
already been added to φinst’s potentialDependencies list, and that is a potential
required, from the potentials received through messages and the potentials contained
in this clique. If a potential has been selected, we check whether φ is an ancestor
of φR or not. If not it means that it will be marginalized during the solving phase
and so we select, if available, the solved potential from ReadyPotentials reducing
the time needed for calculations.

Algorithm 28 IsInstantiatedPotentialSolved. Given a potential’s Idφ and an
instance of MessagePotentialDependencies φinst, φinst is deemed solvable by per-
forming the following operations:

1: procedure IsInstantiatedPotentialSolved(Idφ, φinst)
2: Let PendingDependencies ← φinst.pendingDependencies.
3: for V ∈ PendingDependencies do
4: if V /= Idφ And V /= φinst.potential’s id And V ∈ ReadyPotentials

then
5: PendingDependencies = PendingDependencies \ {V }.
6: end if
7: end for
8: if (|PendingDependencies| = 1 And Idφ ∈ PendingDependencies) Or

PendingDependencies = ∅ then
9: Return True.

10: else
11: Return False.
12: end if
13: end procedure

IsInstantiatedPotentialSolved checks whether φinst is ready to be used for updat-
ing the posterior of φ by performing some simple set operations. φinst is ready when,
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after the marginalization process using the potentials added to its potentialDepen-
dencies list, the only variables remaining are φ and φinst. When all the instantiated
potentials are ready then the parent’s posterior marginal can be updated with the
evidences.

Algorithm 29 SolveInstantiatedPotential. Given a potential’s Idφ, an instance
of MessagePotentialDependencies φinst, φinst is solved by performing the following
operations:

1: procedure SolveInstantiatedPotential(Idφ, φinst)
2: Order φinst.potentialDependencies in descending order.
3: Be V ariables a list of potentials id.
4: Let N ← |φinst.potentialDependencies|.
5: Let V arToKeep ← Idφ.
6: Let NextV ar ← -1.
7: for i from N - 1 to 0 do
8: Be φi an empty potential.
9: Be φiS an empty potential.

10: Let Idφi
← φinst.potentialDependencies[i]’s id.

11: if Idφi
/= Idφ then

12: Let V ariables ← φinst.potentialDependencies[i]’s variables.
13: for V ∈ V ariables do
14: if V /= V arToKeep And V ∈ ReadyPotentials then
15: φinst.potentialDependencies[i] ←

φinst.potentialDependencies[i] · ReadyPotentials[V ].
16: Marginalize out V from φinst.potentialDependencies[i].
17: end if
18: end for
19: Let V ariables ← φinst.potentialDependencies[i]’s variables.
20: if |V ariables| = 2 And Idφ ∈ V ariables then
21: NextV ar ← φinst.potentialDependencies[i]’s id.
22: φiS ← φinst.potentialDependencies[i].
23: φiS ← φiS · ReadyPotentials[Idφ].
24: Marginalize out Idφ from φiS.
25: else if |V ariables| = 1 then
26: φiS ← φinst.potentialDependencies[i].
27: end if
28: end if
29: φi ← φinst.potentialDependencies[i].
30: if φiS = ∅ then
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31: φiS ← φi.
32: end if
33: Let F ← False.
34: for j from 0 to i do
35: V ariables ← φinst.potentialDependencies[j]’s variables.
36: for V ∈ V ariables do
37: Let Idφi

← φi’s id.
38: if F = False And V = V arToKeep And Idφi

= V arToKeep
then

39: F = True.
40: Break.
41: else if V = Idφi

And F = False then
42: φinst.potentialDependencies[j] ←

φinst.potentialDependencies[j] φinst.potentialDependencies[j]
· φi.

43: Marginalize out Idφi
from φinst.potentialDependencies[j].

44: F ← True.
45: else if V = Idφi

And F = True then
46: φinst.potentialDependencies[j] ←

φinst.potentialDependencies[j] · φiS.
47: Marginalize out Idφi

from φinst.potentialDependencies[j].
48: end if
49: end for
50: end for
51: V arToKeep ← NextV ar.
52: end for
53: V ariables ← φinst.potential’s variables.
54: Let j ← 0.
55: for i from 1 to |V ariables| do
56: if V ariables[i] /= Idφ then
57: while j < |φinst.potentialDependencies| And

φinst.potentialDependencies[j]’s id /= V ariables[i] do
58: j ← j + 1.
59: end while
60: if j < |φinst.potentialDependencies| then
61: φinst.potential ← φinst.potential · φinst.potentialDependencies[j].
62: Marginalize out φinst.potentialDependencies[j]’s id from

φinst.potential.
63: else
64: φinst.potential← φinst.potential · ReadyPotentials[V ariables[i]].
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65: Marginalize out ReadyPotentials[V ariables[i]]’s id from
φinst.potential.

66: j ← 0.
67: end if
68: end if
69: end for
70: end procedure

Time: O (p_a2 · p_v), Space: O (1)

As anticipated, the solving phase of the instantiated potential is a critical opera-
tion in terms of resources needed to complete it. There are two ways for performing
it: marginalizing incomplete potentials starting by the parents of the instantiated
potential or marginalizing the potentials starting by the ancestors of the instan-
tiated potential. The first method can easily lead to probability distribution big
enough that do not fit in RAM anymore or even they cannot be handled by a 64bit
index causing overflows.
The most efficient way is to keep the variable to update in only one of the potentials
in the list of dependencies and marginalize it in every other potential. Then using
the potential where the parent is still present, marginalize only one of its child
potential. In all other children use the completed potential and continue until all
the potentials needed by the instantiated potential are solved except one that is
still dependent on the variable to update. This approach greatly reduces memory
and CPU utilization resulting in much smaller probability distributions.
We adopted the former approach and implemented it in SolveInstantiatedPoten-
tial. Starting from the last potential, we identify one potential, among those in
φinst.potentialDependencies, that has V arToKeep in its list of parents and marginal-
ize every other variable (in the first iteration the variable to not marginalize is
the variable we want to update). Then create a copy of that potential where also
V arToKeep is marginalized. Then we use both potentials to marginalize all other
potentials in φinst.potentialDependencies. The potential where V arToKeep is still
present is used only once, in order to introduce the dependency on that variable on
only one other potential. In every other potential, the solved potential is used during
the marginalization process. At the end of each iteration we update V arToKeep
with the variable contained in NextV ar. NextV ar is the id of the current potential
being used in the marginalization process of every other potential. These steps are
repeated at each iteration until all the parents of φinst are solved except one that
is dependent on φ. At this point the parents in φinst.potentialDependencies are
marginalized from φinst.potential and the instantiated potential is ready to be used
for updating φ.
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Algorithm 30 UpdateParentPotentialWithEvidence. Given a potential φ, a list of
instantiated potentials SolvedInstantiatedPotentials and a boolean S indicating
if the resulting potential is to be stored or not, φ is updated with the evidences
introduced by performing the following operations:

1: procedure UpdateParentPotentialWithEvidence(φ, SolvedInstantiat-
edPotentials, S)

2: Let Idφ ← φ’s id.
3: Let φU ← φ.
4: for φI ∈ SolvedInstantiatedPotentials do
5: φU ← φU · φI .
6: end for
7: Let φUM ← φU with Idφ marginalized out.
8: φU ← φU / φUM .
9: for V ∈ φU ’s variables do

10: if V /= Idφ then
11: φU ← φU with V marginalized out.
12: end if
13: end for
14: if S then
15: Insert φU into ReadyPotential_Evidence.
16: end if
17: Return φU .
18: end procedure

Time: O (p_i), Space: O (1)

Once all the instantiated potentials are ready for updating φ, we apply the
formulas described in 2.4.1 to update φ. The resulting potential is stored in
ReadyPotential_Evidence only when the potential is updated with all its evidences
from below and not only a subset, as needed in case of calculating the posterior of
a potential with mixed evidences.
After each potential received through messages has been updated with the evidences
introduced, we calculate the potentials to be put inside the message.
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Algorithm 31 SolvePotentials. Given a clique C, a list of MessagePotentialDepen-
dencies RsPrime, a list of MessagePotentialDependencies MessagePotentialsDepen-
dencies, a list of MessagePotentialDependencies MessagePotentialsDependencies_S,
a list of MessagePotentialDependencies InstantiatedPotentials, a list of MessagePo-
tentialDependencies InstantiatedPotentials_S and a separator S, the dependencies
of the potentials to be sent are solved by performing the following operations:

1: procedure SolvePotentials(C, RsPrime, MessagePotentialsDe-
pendencies, MessagePotentialsDependencies_S, InstantiatedPotentials,
InstantiatedPotentials_S, S)

2: Be RsPotential an empty list of MessagePotentialDependencies.
3: Be φM an empty instance of MessagePotentialDependencies.
4: for φ ∈ RsPrime do
5: Let Idφ ← φ’s id.
6: if φ.pendingDependencies /= ∅ And φ.potential is instantiated then
7: if |MessagePotentialsDependencies_S| > 1 then
8: φM ← SolvePotentialDependenciesForMessage(C, φ,

MessagePotentialsDependencies_S, S).
9: Order φM .potentialDependencies in descending order.

10: Insert φM into RsPotential
11: else
12: Insert φ into RsPotential.
13: end if
14: if |MessagePotentialsDependencies| > 1 then
15: SolvePotential(C, MessagePotentialsDependencies, φM).
16: end if
17: else
18: Insert φ into RsPotential.
19: end if
20: if InstantiatedPotentials /= ∅ then
21: UpdateAndStoreParentPotential(C, Idφ, InstantiatedPotentials,

True).
22: end if
23: end for
24: for φinst ∈ InstantiatedPotentials_S do
25: if |RsPrime| > 0 then
26: Let φinst ← SolveInstantiatedPotentialDependencies(φinst, RsPrime,

S).
27: Order φinst.potentialDependencies in descending order.
28: end if
29: end for
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30: RsPrime ← RsPotential.
31: end procedure

Time: O (p_a5 · p_i · p_v ·mc_p), Space: O (p_a ·mc_p)

SolvePotentials identifies which potentials are needed by each potential in
RsPrime and InstantiatedPotentials_S in order to be sent, i.e. each potential
missing in the separator is added to the potentials that need it to solve its posterior
distribution. The algorithm is divided into two steps: first the non instantiated
potentials are solved for the message, and if possible are solved completely and
stored into ReadyPotentials. The solving step is executed only if there is more
than one potential in MessagePotentialsDependencies_S, i.e. there is at least
another potential apart from the one we are solving that could be added to its
list of dependencies. Once the potential has been solved for the message, the
algorithm tries to solve it completely if there is at least another potential in
MessagePotentialsDependencies.
The second step is dedicated to solve the instantiated potentials to send. Instantiate-
dPotentials_S contains the potentials that will be sent in order to have each
instantiated potential only once in each clique. They are solved only if there is at
least one potential in RsPrime, meaning that there is at least one potential that
could be added to its list of dependencies.

Algorithm 32 SolvePotentialDependenciesForMessage. Given a clique C, an in-
stance of MessagePotentialDependencies φ, a list of MessagePotentialDependencies
MessagePotentialsDependencies_S and a separator S, the potentials for solving the
dependencies of φ are selected by performing the following operations:

1: procedure SolvePotentialDependenciesForMessage(C, φ,
MessagePotentialsDependencies_S, S)

2: Let φS ← φ.
3: Let Idφ ← φ’s id.
4: Let V ariables ← ∅.
5: for V ∈ φ.pendingDependencies do
6: Insert V into V ariables.
7: end for
8: Order V ariables in descending order.
9: Let PotentialIndex ← 0.

10: Let V arIndex ← 0.
11: repeat
12: if V ariables[V arIndex] /∈ S then
13: Let Ancestors ← V ariables[V arIndex]’s ancestors.
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14: Let UseSolvedPotential ← True.
15: for Anc ∈ Ancestors do
16: if Anc ∈ S then
17: Let Found ← False.
18: for V Í ∈ V ariables do
19: if V Í = Anc then
20: Found ← True.
21: Break.
22: end if
23: end for
24: if Found = False then
25: UseSolvedPotential ← False.
26: Break.
27: end if
28: end if
29: end for
30: AddNextPotentialToSolveParent(C, φS, V arIndex,

PotentialIndex, V ariables, MessagePotentialsDependencies_S,
UseSolvedPotential).

31: if PotentialIndex = |MessagePotentialsDependencies_S| then
32: PotentialIndex ← 0.
33: V arIndex ← V arIndex + 1.
34: end if
35: else
36: V arIndex ← V arIndex + 1.
37: end if
38: until V arIndex < |V ariables|
39: Return φS.
40: end procedure

Time: O (p_a4 · p_i), Space: O (p_a)

Firstly, in order to find the potentials that satisfy the dependencies of φ, the set
of pending potentials is converted into a vector ordered in descending order. Then
each variable is checked whether it is present in the separator or not. If it is not
present, then the ancestors of the node are checked whether they are present in
the separator and are already present in φS.pendingDependencies. If all ancestors
which are present in the separator are also present in φS.pendingDependencies
it means that φS can already be used for propagating evidences to all those
ancestors, if needed, and the next dependency to be chosen will be selected among
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the already solved potentials reducing execution time during the solving phase.
Then AddNextPotentialToSolveParent selects the correct potential to be added to
φS.potentialDependencies, between the potentials in the messages, those already
solved (with evidence from above or not) and stored in ReadyPotentials and those
already solved with evidences from below and stored in ReadyPotential_Evidence.

Algorithm 33 AddNextPotentialToSolveParent. Given a clique C, an in-
stance of MessagePotentialDependencies φ, an index VarIndex, an index Poten-
tialIndex, a list of variables Variables, a list of MessagePotentialDependencies
MessagePotentialsDependencies_S and a boolean UseSolvedPotential, the next
potential to solve the dependencies of φ is selected by performing the following
operations:

1: procedure AddNextPotentialToSolveParent(C, φ, VarIndex, Poten-
tialIndex, Variables, MessagePotentialsDependencies_S, UseSolvedPotential)

2: Let Idφ ← φ’s id.
3: Let IdφP I

← MessagePotentialsDependencies_S[PotentialIndex].potential’s
id.

4: if IdφP I
/= Idφ And IdφP I

∈ φ.pendingDependencies then
5: if EvidencesFromBelow[Idφ] /= ∅ And

IsEvidenceFromBelowSubsetOf(EvidencesFromBelow[Idφ],
EvidencesFromBelow[Variables[VarIndex]]) then

6: Let EvidencesSubset ← GetEvidenceFromBelowSubsetOf(Eviden-
cesFromBelow[Idφ], EvidencesFromBelow[Variables[VarIndex]]).

7: Let φPIS ← UpdateParentWithSubsetEvidences(C, Vari-
ables[VarIndex], EvidencesSubset).

8: if φPIS /= ∅ then
9: Add φPIS to φ.potentialDependencies.

10: end if
11: VarIndex ← VarIndex + 1.
12: else if UsePotentialWithOrWithoutEvidencesFromAbove(Idφ,

VarIndex, Variables) then
13: if UseSolvedPotential = True And

ReadyPotentials[Variables[VarIndex]] /= ∅ then
14: Add ReadyPotentials[Variables[VarIndex]] to

φ.potentialDependencies.
15: else
16: while PotentialIndex < |MessagePotentialsDependencies_S| And

IdφP I
/∈ φ.pendingDependencies do

17: PotentialIndex ← PotentialIndex + 1.
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18: end while
19: if PotentialIndex < |MessagePotentialsDependencies_S| then
20: Add MessagePotentialsDependencies_S[PotentialIndex] to

φ.potentialDependencies.
21: Let V ariablesÍ ← ∅
22: for V ∈ φ.pendingDependencies do
23: Insert V into V ariablesÍ.
24: end for
25: Order V ariablesÍ in descending order.
26: Variables ← V ariablesÍ.
27: end if
28: end if
29: else if UsePotentialWithEvidencesFromBelow(Idφ, VarIndex, Variables)

then
30: Add ReadyPotential_Evidence[Variables[VarIndex]] to

φ.potentialDependencies.
31: VarIndex ← VarIndex + 1.
32: else
33: VarIndex ← VarIndex + 1.
34: end if
35: else
36: PotentialIndex ← PotentialIndex + 1.
37: end if
38: end procedure

Time: O (p_a3 · p_i), Space: O (p_a)

There are three possible outcomes when AddNextPotentialToSolveParent decides
which potential is the right one to satisfied the next dependency of φ:

• Use a potential that has no evidences or just evidences from above. It can be
either already solved or picked from MessagePotentialsDependencies_S if not.
When a potential from MessagePotentialsDependencies_S is chosen, then the
list of dependencies is updated with the newly introduced dependencies since
the potential selected could be not solved.

• Use a solved potential that has evidences from below. The potential is added
only when it has been already calculated in order to not repeat the same
calculations, saving time.

• In case of mixed evidences, the parent has to be updated with only a subset
of the evidences from below which do not include the evidence from below
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of φ. UpdateParentWithSubsetEvidences calculates, if possible, the needed
parent potential.

Algorithm 34 UpdateParentWithSubsetEvidences. Given a clique C, a potential’s
id Idφ and a set of evidences ES, φ is updated with the evidences in ES by performing
the following operations:

1: procedure UpdateParentWithSubsetEvidences(C, Idφ, ES)
2: Be InstantiatedPotentials a list of MessagePotentialDependencies.
3: for M ∈ C’s messages list do
4: for φinst ∈ M .instantiatedPotentials do
5: Let Idφinst

← φinst’s id.
6: if Idφinst

∈ ES then
7: Insert φinst into InstantiatedPotentials.
8: end if
9: end for

10: end for
11: for φC ∈ C’s list of potentials do
12: Let IdφC

← φC ’s id.
13: if IdφC

∈ ES then
14: Let φinst ← φC .
15: Instantiate φinst with evidence.
16: Insert φinst into InstantiatedPotentials.
17: end if
18: end for
19: if InstantiatedPotentials /= ∅ then
20: if Idφ ∈ ReadyPotentials then
21: Be InstantiatedPotentialsSolved a list of potentials.
22: Let φ ← ReadyPotentials[Idφ].
23: if |InstantiatedPotentials| = |ES| then
24: UpdateAndSolveInstantiatedPotentials(C, Idφ,

InstantiatedPotentials, InstantiatedPotentialsSolved).
25: end if
26: if |InstantiatedPotentialsSolved| = |ES| then
27: Return UpdateParentPotentialWithEvidence(φ,

InstantiatedPotentialsSolved, False).
28: end if
29: end if
30: Return empty potential.
31: end if
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32: Return empty potential.
33: end procedure

Time: O (p_a3 · p_i), Space: O (p_a)

UpdateParentWithSubsetEvidences creates a version of the parent potential φ
which is updated with only a subset of all its evidences from below. It starts
by creating the list of instantiated potentials needed selecting them from the
instantiated potentials received through messages and the clique potentials. If all
the potentials required are available, the parent is updated by performing the same
operations described before.
Once the non-instantiated potential is ready to be sent, SolvePotential in Algorithm
31 tries to solve it and store the resulting posterior in ReadyPotentials.

Algorithm 35 SolvePotential. Given a clique C, a list of MessagePotentialDepen-
dencies MessagePotentialsDependencies and an instance of MessagePotentialDe-
pendencies φ, φ is solved by performing the following operations:

1: procedure SolvePotential(C, MessagePotentialsDependencies, φ)
2: Let Idφ ← φ’s id.
3: if Idφ /∈ ReadyPotentials then
4: Let φS ← φ.
5: if MessagePotentialsDependencies /= ∅ then
6: AddPotentialDependencies(C, MessagePotentialsDependencies, φS).
7: end if
8: if IsPotentialSolved(φS) then
9: Order φS.potentialDependencies in descending order.

10: SolvePotentialDependencies(C, φS).
11: Insert φS into ReadyPotentials.
12: end if
13: end if
14: end procedure

Time: O (p_a5 · p_i · p_v), Space: O (p_a)

Before the potential can be solved, AddPotentialDependencies completes the
list of dependencies of φ retrieving the needed potentials from those in MessagePo-
tentialsDependencies, ReadyPotential or ReadyPotential_Evidence.
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Algorithm 36 AddPotentialDependencies. Given a clique C, a list of Message-
PotentialDependencies MessagePotentialsDependencies and an instance of Mes-
sagePotentialDependencies φ, the potentials for solving the dependencies of φ are
selected by performing the following operations:

1: procedure AddPotentialDependencies(C, MessagePotentialsDependen-
cies, φ)

2: Let V ariables ← ∅.
3: for V ∈ φ.pendingDependencies do
4: Insert V into V ariables.
5: end for
6: Order V ariables in descending order.
7: Let PotentialIndex ← 0.
8: Let V arIndex ← 0.
9: repeat

10: AddNextPotentialToSolveParent(C, φ, V arIndex, PotentialIndex,
V ariables, MessagePotentialsDependencies, True).

11: if PotentialIndex = |MessagePotentialsDependencies| then
12: PotentialIndex ← 0.
13: V arIndex ← V arIndex + 1.
14: end if
15: until V arIndex < |V ariables|
16: end procedure

Time: O (p_a4 · p_i), Space: O (p_a)

After all the needed potentials, from MessagePotentialsDependencies, have been
selected to solve φ, IsPotentialSolved checks whether the potential can be solved or
not by checking whether the list of pending dependencies is empty or not. If it is
not empty it means that some of the potentials needed are potentials updated with
evidences from below. If those potentials are all available then φ can be solved.

Algorithm 37 IsPotentialSolved. Given an instance of MessagePotentialDepen-
dencies φ, the potential is deemed solved by performing the following operations:

1: procedure IsPotentialSolved(φ)
2: if φ.pendingDependencies = ∅ then
3: Return True.
4: end if
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5: for IdφD
∈ φ.pendingDependencies do

6: if IdφD
/∈ ReadyPotential_Evidence then

7: Return False.
8: end if
9: end for

10: Return True.
11: end procedure

The steps performed to solve a non-instantiated potential φ are similar to those
described in Algorithm 29.

Algorithm 38 SolvePotentialDependencies. Given a clique C and an instance
of MessagePotentialDependencies φ, the potential is solved by performing the
following operations:

1: procedure SolvePotentialDependencies(C, φ)
2: Let Idφ ← φ’s id.
3: Be V ariables an empty list of potentials id.
4: for i from |φ.potentialDependencies| - 1 to 0 do
5: V ariables ← φ.potentialDependencies[i]’s list of variables.
6: for j from 1 to |V ariables| do
7: if EvidencesFromBelow[Idφ] /= ∅ And

IsEvidenceFromBelowSubsetOf(EvidencesFromBelow[Idφ],
EvidencesFromBelow[V ariables[j]]) then

8: Let EvidencesSubset ← GetEvidenceFromBelowSubsetOf(Evi-
dencesFromBelow[Idφ], EvidencesFromBelow[V ariables[j]]).

9: Let φS ← UpdateParentWithSubsetEvidences(C, V ariables[j],
EvidencesSubset).

10: φ.potentialDependencies[i] ← φ.potentialDependencies[i] · φS.
11: else
12: φ.potentialDependencies[i] ← φ.potentialDependencies[i] ·

ReadyPotential_Evidence[V ariables[j]].
13: end if
14: Marginalize out V ariables[j] from φ.potentialDependencies[i].
15: end for
16: for j from 0 to i - 1 do
17: V ariables ← φ.potentialDependencies[j]’s list of variables.
18: for V ∈ V ariables do
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19: if V = φ.potentialDependencies[i]’s id. then
20: φ.potentialDependencies[j] ← φ.potentialDependencies[j] ·

φ.potentialDependencies[i].
21: Marginalize out V from φ.potentialDependencies[j].
22: end if
23: end for
24: end for
25: end for
26: V ariables ← φ.potential’s list of variables.
27: Let j ← 0.
28: for i from 1 to |V ariables| do
29: while j < |φ.potentialDependencies| And φ.potentialDependencies[j]’s

id /= V ariables[i] do
30: j ← j + 1.
31: end while
32: if j < |φ.potentialDependencies| then
33: φ.potential ← φ.potential · φ.potentialDependencies[j].
34: Marginalize out φ.potentialDependencies[j]’s id from φ.potential.
35: else
36: j ← 0.
37: end if
38: end for
39: end procedure

Time: O (p_a5 · p_i · p_v), Space: O (p_a)

As in Algorithm 29, SolvePotentialDependencies starts solving the last potential
in potentialDependencies and it is marginalized out from every other potential
in the list and continues backwards from the last potential. The potentials are
solved by choosing the right potential from those available in ReadyPotential or
ReadyPotential_Evidence or the parent is updated with only a subset of evidences.
The next step is to use the solved φ.potential’s parents from potentialDependencies
to solve φ.potential.
During Algorithm 31, each potential in RsPrime is then updated by Algorithm 24
with evidences from below, if any is present, and the updated potential is stored in
ReadyPotential_Evidence.
The last step needed to create the message is to add the dependencies to the
instantiated potentials that will be sent within the message.
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Algorithm 39 SolveInstantiatedPotentialDependencies. Given an instance of Mes-
sagePotentialDependencies φinst, a list of MessagePotentialDependencies RsPrime
and a separator S, the dependencies needed by φphi are selected by performing the
following operations:

1: procedure SolveInstantiatedPotentialDependencies(φinst, RsPrime,
S)

2: Let Idφinst
← φinst.potential’s id.

3: for i from |RsPrime| - 1 to 0 do
4: Let Idφi

← RsPrime[i].potential’s id.
5: if (S /= ∅ And Idφi

/∈ S) Or S = ∅ then
6: if Idφi

/∈ φinst.solvedDependencies And Idφi
∈

φinst.pendingDependencies then
7: Add RsPrime[i] to φinst.potentialDependencies.
8: end if
9: end if

10: end for
11: end procedure

Time complexity: O (p_a), Space complexity: O (p_a)

When both list of potentials, the instantiated and non-instantiated potentials,
are ready, they are put inside the message and sent to the parent/child clique.

Posterior Marginal Retrieval

After each update of the network performed by the LazyPropagation, following
a change of the observations introduced in the network or the target variable is
changed resulting in a change of the barren variables, the main task performed by
the user is to visualize the posterior marginal of any variable he needs.

Algorithm 40 PosteriorMarginal. Given the id of a potential Idφ and the list of
evidences L, the posterior marginal of Idφ is obtained by performing the following
operations:

1: procedure PosteriorMarginal(Idφ)
2: UpdateNetworkIfNeeded(Idφ).
3: Let C ← the clique’s id containing φ.
4: Be Potentials an empty list of MessagePotentialDependencies.
5: Be Potentialsinst an empty list of MessagePotentialDependencies.
6: Be φ an empty instance of MessagePotentialDependencies.
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7: if Idφ ∈ ReadyPotential_Evidence then
8: Return ReadyPotential_Evidence[Idφ].
9: end if

10: if Idφ ∈ ReadyPotential then
11: Return ReadyPotential[Idφ].
12: end if
13: for φC ∈ C’s potentials list do
14: Let φinst ← φC .
15: for E ∈ L do
16: φinst ← φinst instantiated to E.
17: end for
18: if φinst is not an evidence then
19: if φinst’s id = Idφ then
20: φ ← φinst.
21: else
22: Insert φinst into Potentials.
23: end if
24: else
25: Insert φinst into Potentialsinst.
26: end if
27: end for
28: for M ∈ C’s messages list do
29: for φM ∈ M .potentialDependencies do
30: Insert φM into Potentials.
31: end for
32: for φM ∈ M .instantiatedPotentialDependencies do
33: Insert φM into Potentialsinst.
34: end for
35: end for
36: Be SeparatedNodes an empty set of NodeSeparated.
37: for φP ∈ Potentials do
38: Insert φP .potential’s variables into SeparatedNodes.
39: end for
40: IsDSeparated(SeparatedNodes, C, L).
41: FindRelevanPotentials(Potentials, SeparatedNodes).
42: Order Potentials in descending order.
43: SolvePotential(C, Potentials, φ).
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44: if EvidencesFromBelow[Idφ] /= ∅ then
45: Order Potentials in ascending order.
46: for φinst ∈ Potentialsinst do
47: if Potentials /= ∅ then
48: SolveInstantiatedPotentialDependencies(φinst, Potentials).
49: Sort φinst.potentialDependencies in descending order.
50: end if
51: end for
52: if Potentialsinst /= ∅ then
53: UpdateAndStoreParentPotential(C, Idφ, Potentialsinst, True).
54: end if
55: Return ReadyPotential_Evidence[Idφ].
56: else
57: Return ReadyPotential[Idφ].
58: end if
59: end procedure

In order to be able to retrieve the requested posterior marginal, PosteriorMarginal
starts the execution of the Lazy Propagation algorithm if the evidences introduced
changed or if barren variables are used and need to be changed. Once the network
has been updated, it is first checked whether the requested posterior marginal is
already available or not. If not it is calculated by performing the same operations
done during the Lazy Propagation algorithm and then returned.

4.6 Network Learning Input Dataset
4.6.1 CSVDataStructure
In our library, the input dataset format supported for learning networks is the CSV.
It is one of the most widespread and supported format for datasets. Since datasets
can have many records (thousands if not hundreds of thousands) it is crucial to
store them efficiently in memory once read. We adopted a run length encoding in
our library to reduce the memory used by the dataset when a variable takes the
same value across multiple consecutive records; this has the effect of speeding up
the read of the records during the learning phase.

1 s t r u c t {
2 i n t va lue ;
3 i n t count ;
4 } RunLengthItem ;
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1 s t r u c t {
2 St r ing [ ] variableNames ;
3 Map<Str ing , int >[ ] mappedValues ;
4 RunLenghtItem [ ] [ ] CSVData ;
5 i n t sampleSize ;
6 } CSVDataStructure ;

RunLengthItem contains for each value of the column in the CSV file the number
of consecutive times the same value appeared. CSVDataStructure contains the list
of columns inside the CSV file in the list variableNames. The mapping between
the state of a variable and its int value is stored in mappedValues. This association
is stored for each variable. CSVData data contains for each variable the list of
RunLenghtItem. sampleSize represents the number of total records contained in
the dataset.

4.7 PCHC Class

4.7.1 PCHC Data Structures
NodeAssociation

NodeAssociation is a data structure used to keep track of the associations between
a node and every other node of the network. It is composed of an Id, to identify
the node, and a floating point variable to store the value of association. The
associations will be measured by a pValue.

1 s t r u c t {
2 i n t id ;
3 double pValue ;
4 } NodeAssociat ion ;

4.7.2 PCHC Class Functions
PCHC Algorithm

As anticipated, the PCHC algorithm is a combination of the PC algorithm and an
Hill-climbing scoring phase. Throughout the discussion of the algorithm’s imple-
mentation, the dataset contained in CSVDataStructure will be referenced as D.
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Algorithm 41 PCHCLearning. Given a list of ArcConstraint C, the network’s
structure is identified by performing the following operations:

1: procedure PCHCLearning(C)
2: Be NodesAssociations an empty matrix of NodeAssociation
3: InitializeAssociationsMatrix(NodesAssociations).
4: PCPhase(NodesAssociations).
5: CheckNeighborhoodConsistency(NodesAssociations).
6: Be UndGraph and empty instance of UndirectedGraph Class.
7: for i from 0 to |NodesAssociations| do
8: for j from 0 to |NodesAssociations[i]| do
9: Add edge (i, NodesAssociations[i][j].id) to UndGraph.

10: end for
11: end for
12: Let DAG ← HillClimbingScoringPhase(UndGraph, C).
13: Let NewNodesOrder ← DAG.ReorderNodes(). ó

After the Hill-climbing scoring phase, it is possible to obtain a DAG where
the node parent has an id higher than the child’s id. This breaks the DAG’s
consistency and the nodes’ ids have to be reordered to avoid these situations.
The new nodes’ ids order is used to reorder the nodes in D since the dataset
is needed during the parameter estimation phase.

14: D.ReorderNodes(NewNodesOrder).
15: Return DAG.
16: end procedure

The version of the PC algorithm we implemented is the stable-PC as introduced
in [7]. Compared to the original PC, the output of stable-PC does not depend on
the order in which the variables appears in the dataset, i.e. it is a deterministic
algorithm.
InitializeAssociationsMatrix initializes the matrix of nodes associations, associating
each node with every other node with a pValue equal to zero. Once the matrix
is ready, the PC algorithm is executed. PCPhase is a wrapper function that
decides whether the PC algorithm is executed in a serial or parallel fashion; the
matrix NodesAssociations is used not only as a support for the calculations but
also to return the skeleton of the undirected graph identified. It is possible that
during the PC algorithm some associations are not removed from both nodes, for
example node B is removed from the list of associations of A but not vice versa.
CheckNeighborhoodConsistency makes the matrix consistent by adding the missing
associations that are present in reverse form (considering the example above, B is
added to the associations of A since A is present in the list of associations of B).
Once the undirected graph corresponding the matrix is created, the Hill-climbing
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scoring phase will determine the orientation of each arc of the network and whether
the presence or absence of an arc constitutes a better network while respecting the
constraints introduced by C. At the end, the nodes’ ids are reordered to keep the
network consistent.

Algorithm 42 PCSerial. Given a matrix of NodeAssociation NodesAssociations,
the network’s skeleton is identified by performing the following operations:

1: procedure PCSerial(NodesAssociations)
2: Let Depth ← 0.
3: repeat
4: for i from 0 to |NodesAssociations| do
5: FindEdgesToRemove(i, NodesAssociations[i], Depth).
6: end for
7: for i from 0 to |NodesAssociations| do
8: Order NodesAssociations[i] in ascending order.
9: end for

10: RemoveNodesAssociations(NodesAssociations).
11: Depth ← Depth + 1.
12: until PCStoppingCondition(NodesAssociations, Depth) = True
13: end procedure

FindEdgesToRemove calculates for each nodes associated to node i the pValue,
given a certain depth. With each depth increment, increases also the size of the
conditioning set of variables that will be tested in FindEdgesToRemove. The
associations of each node are then ordered in ascending order of pValue so that at
the next iteration the variables with a stronger association are used as conditioning
variables before those with a weaker association. Then RemoveNodesAssociations
removes from each node’s associations list the nodes that are deemed not associated.
PCStoppingCondition checks whether the stopping condition of the PC algorithm
has been reached, i.e. the number of nodes associated with each node minus 1 is
less than the depth reached by the algorithm. If yes the algorithm is interrupted.

Algorithm 43 PCParallel. Given a matrix of NodeAssociation NodesAssociations,
the network’s skeleton is identified by performing the following operations:

1: procedure PCParallel(NodesAssociations)
2: Let Depth ← 0.
3: repeat

76



Implementation Details

4: for i from 0 to |NodesAssociations| do
5: Let Job ← FindEdgesToRemove(i, NodesAssociations[i], Depth).
6: Send Job to TP.
7: end for
8: for i from 0 to |NodesAssociations| do
9: Order NodesAssociations[i] in ascending order.

10: end for
11: RemoveNodesAssociations(NodesAssociations).
12: Depth ← Depth + 1.
13: until PCStoppingCondition(NodesAssociations, Depth) = True
14: end procedure

As proposed in [7], the results of the independence tests performed at each
level of the PC algorithm directly impact the results of the next level. This
makes infeasible to parallelize the PC algorithm across multiple levels but the tests
performed at each level can be parallelized. Compared to the solution proposed
in [7], we implemented a sub-optimal solution where we parallelized the tests at
nodes level: for each node N we send a FindEdgesToRemove task to the thread
pool where the pValues of every nodes still associated to N are calculated. This
solution has the disadvantage of not uniformly spreading the independence tests
across the threads, i.e. a thread could have thousands of tests to perform while all
other threads have only hundreds of tests to perform.
The main thread waits for the completion of all tasks in order to proceed with the
removal of associations that are not valid anymore.

Algorithm 44 FindEdgesToRemove. Given a node N, a vector of NodeAssociation
NodesAssociations and the depth D, the associations between N and every node in
NodesAssociations are updated by performing the following operations:

1: procedure FindEdgesToRemove(N, NodesAssociations, D)
2: Be Nodes a vector of size 2.
3: Nodes[0] ← N.
4: if D > 0 And |NodesAssociations| >= D + 1 then
5: Be Zx a vector of size D.
6: Increment Nodes’ size to 2 + D.
7: for i from 0 to D do
8: Zx[i] ← i.
9: end for

10: Be NodesToTest a vector of size |NodesAssociations| - D.
11: repeat
12: if CheckIfAllNodesAreValid(NodesAssociations, Zx) then
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13: for k from 0 to |Zx| do
14: Nodes[k + 2] ← NodesAssociations[Zx[k]].id.
15: end for
16: j ← 0.
17: k ← 0.
18: for i from 0 to |NodesAssociations| do
19: if k < |Zx| And NodesAssociations[i].id =

NodesAssociations[Zx[k]].id then
20: k ← k + 1.
21: else
22: NodesToTest[j] ← i.
23: j ← j + 1.
24: end if
25: end for
26: for K ∈ NodesToTest do
27: if NodesAssociations[K].pValue <= 0.05 then
28: Nodes[1] ← NodesAssociations[K].id.
29: NodesAssociations[K].pValue ←

IndependenceTest(Nodes).
30: end if
31: end for
32: end if
33: until NextCombination(Zx, NodesAssociations, D) = False
34: else
35: for i from 0 to |NodesAssociations| do
36: Nodes[1] ← NodesAssociations[i].id.
37: NodesAssociations[i].pValue ← IndependenceTest(Nodes).
38: end for
39: end if
40: end procedure

When deciding whether the link between two nodes is necessary or not, the
independence test has to be performed for each possible permutation of variables in
the conditioning set of size D. If for every possible permutation the independence test
returns a value less than or equal to 0.05 then the link is kept. Vice versa, for a link
to be removed it needs only one test with result higher than 0.05. NextCombination
calculates every possible permutation of nodes from NodesAssociations taking D
nodes from it. When all possible permutations have been tested the loop ends.
CheckIfAllNodesAreValid checks whether all pValues of the nodes selected by Zx
are less than or equal to 0.05. If one node has a higher pValue the combination is
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not valid and discarded for the test. The following one is selected.

4.8 HillClimbingScoringPhase Class
4.8.1 HillClimbingScoringPhase Data Structures
ArcConstraint

ArcConstraint is used to introduce constraints for the presence or absence of arcs
in the resulting DAG. It contains two strings indicating the names of the head and
tail nodes of arc and the type of constraint: 0 = the arc must be present, 1 = the
arc has not to be present.

1 s t r u c t {
2 s t r i n g head ;
3 s t r i n g t a i l ;
4 i n t type ;
5 } ArcConstraint ;

Move

Move contains the information relative to the move identified by the Hill-climbing
algorithm. Action represents the action to perform on the arc: 0 = add arc, 1 =
remove arc, 2 = reverse arc. Arc is the arc relative to the move. ScoreDiff contains
the difference of score between before and after the move is applied on the DAG.

1 s t r u c t {
2 i n t ac t i on ;
3 Arc arc ;
4 double s c o r e D i f f ;
5 } Move ;

4.8.2 HillClimbingScoringPhase Class Functions
FastCHC Algorithm

The HillClimbingScoringPhase Class, as the name suggests, is dedicated to the
search of a DAG representing the network through an hill-climbing heuristic. It is
applied on the undirected graph resulting from the PC algorithm. The hill-climbing
algorithm starts from an empty DAG and performs one of three possible actions at
each iteration: add an arc, if it was present in the undirected graph and does not
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introduce a cycle in the DAG, remove an arc from the DAG or reverse an arc in
the DAG if it does not introduce a cycle. At each iteration the move that generates
the highest positive increase of score is applied to the DAG. If none of the moves
generates a positive increase of score then the algorithm is stopped.
The initial score of each iteration will be referenced as IS, the resulting DAG as
DAG, the best moves selected at each iteration are stored in the list Moves and
the list of forbidden parents for each node in FP .

Algorithm 45 FastCHC. Given an undirected graph UG and a list of ArcConstraint
ACs, the DAG of the network is obtained by performing the following operations:

1: procedure FastCHC(UG, ACs)
2: Be ArcsToAdd an empty set of arcs.
3: Let ArcsNotToAdd an empty set of arcs.
4: Be DAG and empty DAG.
5: for AC ∈ ACs do
6: Convert the names of the nodes in AC into node ids and create an arc

a(head, tail).
7: if AC.type = 0 then
8: Add a to DAG.
9: Create an edge e(head, tail).

10: Remove e from UG.
11: Add a to ArcsToAdd.
12: else
13: Add a to ArcsNotToAdd.
14: end if
15: end for
16: Calculate the initial score of DAG through BDs and store it in IS.
17: if TP is initialized then
18: FastCHCParallel(UG, ArcsToAdd, ArcsNotToAdd).
19: else
20: FastCHCSerial(UG, ArcsToAdd, ArcsNotToAdd).
21: end if
22: Return DAG.
23: end procedure

The main function of the HillClimbingScoringPhase Class is just a wrapper
function that converts the ArcConstraint nodes’ names into actual arcs and applies
the constraints to the DAG and the starting undirected graph. The arcs that has
to be present are removed from the undirected graph because in this way they are
not tested for removal or reversal. The function then decides whether the parallel
or serial FastCHC is used.
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Algorithm 46 FastCHCSerial. Given an undirected graph UG, a list of arcs to
not change ANC and a list of arcs to not add ANA, the DAG of the network is
obtained by performing the following operations:

1: procedure FastCHCSerial(UG, ANC, ANA)
2: Let N ← the number of nodes in UG.
3: Let Imp ← True.
4: repeat
5: Imp ← False.
6: for i from 0 to N do
7: AddArcMove(i, N , UG, ANA).
8: end for
9: for i from 0 to N do

10: RemoveOrReverseArcMove(i, N , UG, ANC, ANA).
11: end for
12: Imp ← ApplyBestMove().
13: until Imp = True
14: end procedure

The main slow down of the FastCHC algorithm is the scoring of the DAG during
the selection of the best move. This part of the algorithm can take advantage of the
parallelization so that multiple scoring of the DAG can be performed simultaneously,
speeding up significantly the FastCHC algorithm for large networks. Like in the
case of the PC algorithm, we parallelized the FastCHC algorithm at nodes’ level, i.e.
we submit to the thread pool a job of AddArcMove and RemoveOrReverseArcMove
per node at each iteration.

Algorithm 47 FastCHCParallel. Given an undirected graph UG, a list of arcs to
not change ANC and a list of arcs to not add ANA, the DAG of the network is
obtained by performing the following operations:

1: procedure FastCHCParallel(UG, ANC, ANA)
2: Let N ← the number of nodes in UG.
3: Let Imp ← True.
4: repeat
5: Imp ← False.
6: for i from 0 to N do
7: Let Job ← AddArcMove(i, N , UG, ANA).

81



Implementation Details

8: Send Job to TP.
9: end for

10: for i from 0 to N do
11: Let Job ← RemoveOrReverseArcMove(i, N , UG, ANC, ANA).
12: Send Job to TP.
13: end for
14: Imp ← ApplyBestMove().
15: until Imp = True
16: end procedure

Although the parallelization introduces a significant speed-up for the algorithm,
our solution introduces indeterminism in the output due to operations performed in
different order with respect to the serial solution. This is not necessarily a downside
since this indeterminism produces different outputs, i.e. DAGs slightly different
from each other. The user can then use the DAG with the highest score among
those obtained or use some criterion to determine which suits his needs best.

Algorithm 48 AddArcMove. Given a node’s id Id, the number of nodes in the
graph N, an undirected graph UG and a list of arcs to not add ANA, the best move
for adding an arc is obtained by performing the following operations:

1: procedure AddArcMove(Id, N, UG, ANA)
2: for i from 0 to N do
3: if i /= Id then
4: Be e the edge (i, Id).
5: if e ∈ E And Id /∈ pa(i) And i /∈ FP [Id] then
6: Be a the arc (Id, i).
7: if a /∈ ANA And a does not introduce a cycle in DAG then
8: Let NewScore ← DSM(DAG, 0, a).
9: Store the move in Moves if it improves the score.

10: if NewScore - IS < 0 then
11: Add i to FP [Id].
12: Add Id to FP [i].
13: end if
14: end if
15: end if
16: end if
17: end for
18: end procedure

AddArcMove tries to add an arc only if the edge that generates it exists in the

82



Implementation Details

undirected graph coming from the PC algorithm. Then move is stored in Moves
only if it improves the score of the DAG and is the best move found so far for
adding an arc. The forbidden parents sets are updated accordingly to the rules
defined in 2.7.1. DSM (DagScoringMetric) scores the dag with the BDs metric. A
value is assigned to each operation to score (addition = 0, removal = 1, reversal =
2). In this way we avoid applying the actual operation to the DAG itself during
the scoring.

Algorithm 49 RemoveOrReverseArcMove. Given a node’s id Id, the number of
nodes in the graph N, an undirected graph UG, a list of arcs to not change ANC
and a list of arcs to not add ANA, the best move for removing or reversing an arc
is obtained by performing the following operations:

1: procedure RemoveOrReverseArcMove(Id, N, UG, ANC, ANA)
2: Let Parents ← pa(Id).
3: for P ∈ Parents do
4: Be a the arc (P , Id).
5: if a /∈ ANC then
6: Let NewScore ← DSM(DAG, 1, a).
7: Store the move in Moves if it improves the score.
8: if NewScore - IS > 0 then
9: Add P to FP [Id].

10: Add Id to FP [P ].
11: end if
12: Be aR the reverse of a.
13: if aR /∈ ANA And does not introduce a cycle in DAG then
14: Let NewScore2 ← DSM(DAG, 2, a).
15: Let Diff ← NewScore + NewScore2 - 2 · IS.
16: Store the move in Moves if it improves the score.
17: if NewScore - IS > 0 Or NewScore2 - IS < 0 then
18: Add P to FP [Id].
19: Add Id to FP [P ].
20: end if
21: end if
22: end if
23: end for
24: end procedure

RemoveOrReverseArcMove identifies the best move for both removal and reversal
of already present arcs. The best moves that generates an increase of score are
saved in Moves.
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ApplyBestMove then picks the move with the highest score difference between before
and after the move is applied. If an adding move is applied, the forbidden parents
set are relaxed increasing the number of alternative moves available at the next
iteration. When no move is applied, the algorithm is stopped by ApplyBestMove
returning false.

Algorithm 50 ApplyBestMove. The best move is applied by performing the
following operations:

1: procedure ApplyBestMove
2: Be BM an empty instance of Move.
3: Let Imp ← False.
4: for M ∈ Moves do
5: if BM .scoreDiff < M .scoreDiff then
6: BM ← M .
7: end if
8: end for
9: if BM .scoreDiff > 0 then

10: Imp ← True.
11: if BM .action = 0 then
12: Add BM .arc to DAG.
13: Let Neighborhood ← nb(BM .arc’s head).
14: for N ∈ Neighborhood do
15: Remove BM .arc’s tail from FP[N ].
16: Remove N from FP[BM .arc’s tail].
17: end for
18: Let Neighborhood ← nb(BM .arc’s tail).
19: for N ∈ Neighborhood do
20: Remove BM .arc’s head from FP[N ].
21: Remove N from FP[BM .arc’s head].
22: end for
23: else if BM .action = 1 then
24: Remove BM .arc from DAG.
25: else
26: Reverse BM .arc in DAG.
27: end if
28: IS ← IS + BM .scoreDiff.
29: end if
30: Return Imp.
31: end procedure
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4.9 StrengthOfInfluence Class
In our library we implemented functionalities to measure the strength of influence
that each parent has on a predetermined variable, following the operations described
in [14].

4.9.1 StrengthOfInfluence Class Functions

Parent Strength Of Influence

In order to measure the influence that each parent has on a variable V, we need
to measure the "distance" between the posterior marginal of V and the poste-
rior marginal of V where a parent is instantiated to each possible state of its n
states, for example given a distance measure D, we want to measure the average
of the distances: Avg(D(P(V), P(V|A=a1)), D(P(V), P(V|A=a2), ..., D(P(V),
P(V|A=an))).

Algorithm 51 CalculateParentInfluence. Given a potential φ, a distance measure
DM (0 = Euclidean distance, 1 = Hellinger distance, 2 = J-Divergence) and the
type of measure TM (0 = average, 1 = maximum), the strength of influence of
each parent on a variable V is calculated by performing the following operations:

1: procedure CalculateParentInfluence(φ, DM, TM)
2: Let ParentsInfluence ← ∅.
3: Let φS ← The posterior marginal of φ.
4: Let V ariables ← φ’s variables list.
5: Be ParentsPotentialS be a list of potentials containing the posterior

marginal of each parent.
6: for V ∈ V ariables do
7: Let φ

Í ← φ.
8: Let Results ← ∅.
9: for φpaS ∈ ParentsPotentialS do

10: if φpaS’s id /= V then
11: φ

Í ← φ
Í · φpaS.

12: Marginalize out φpaS from φ
Í .

13: end if
14: end for
15: Let Res ← 0.
16: for S ∈ φpaS’s states do
17: Let φ

Í
inst ← φ

Í where parent V is instantiated to state S.
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18: Res ← 0.
19: if DM = 0 then
20: Res ← EuclideanDistance(φS, φ

Í
inst).

21: else if DM = 1 then
22: Res ← HellingerDistance(φS, φ

Í
inst).

23: else
24: Res ← J-Divergence(φS, φ

Í
inst).

25: end if
26: Insert Res into Results.
27: end for
28: Res ← 0.
29: if TM = 0 then
30: Res ← the average of the values in Results.
31: else
32: Res ← the maximum value in Results.
33: end if
34: Insert Res into ParentsInfluence.
35: end for
36: Return ParentsInfluence.
37: end procedure
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4.10 Inference With Lazy Propagation - Exam-
ple

Considering the Bayesian network BN in Figure 4.3 and the corresponding junction
tree JT in Figure 4.5, we want to calculate P(F).

Figure 4.3: Example of Bayesian Network

Figure 4.4: The chordal graph obtained after moralization and triangulation,
using MCS-M algorithm, of the Bayesian network in Figure 4.3. The edges added
during the two transformations are the dotted ones.
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Figure 4.5: The junction tree obtained from the Bayesian network in Figure 4.3.
The underlined letters indicate that the relative potential is associated to that
clique.

Using the data structure defined in Section 4.4.1, Figure 4.6 and Figure 4.7 shows
the contents of the messages during collect and distribute evidence phases. The
names used in Section 4.4.1 are abbreviated for simplicity: PotentialDependencies
= PoD, PendingDependencies = PeD, SolvedDependencies = SD.

Figure 4.6: Messages sent during the Collect Evidence phase. Clique 1 is the
root clique

During the Collect Evidence only the message 0 → 1 contains potentials. In
particular, recalling Algorithm 33, φC gets potential A added to its list of depen-
dencies as A is not present in the separator and B is still a pending dependency as
it is present. The same goes for φD.

Figure 4.7: Messages sent during the Distribute Evidence phase. Clique 1 is the
root clique
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The same rules are applied during the Distribute Evidence: during the creation
of message 1 → 2, potential C is completed with the addition of B, D is taken
from the message received from clique 0 and F is completed with B. When creating
message 2 → 3, potential E is completed with C and D solved and potential F is
taken from clique 1’s message.
At this point F’s list of potential dependencies is already completed and its posterior
marginal can be easily computed and returned to the user.

4.11 Third Party Libraries
In this section we will present third party libraries used during the implementation
of our library.

4.11.1 Thread-Pool Library - Shoshany, Barak
One of the key point of our library is the parallelization of the algorithms to improve
execution time. There are many thread pool libraries available like OpenMp, that
could have satisfied our needs. Although high-level libraries are easier to use, they
have the major downside of not permitting modifications to the implementation,
i.e. we cannot modify the already implemented functionalities or add new ones to
suit our needs.
The thread-pool implementation provided by Shoshany [19] is a fast, lightweight,
single header and low-level implementation that can be easily modified to introduce
optimizations to our use case. It offers many functionalities present in other libraries
like loop parallelization and task submitting but also the possibility of changing
the number of threads available on-the-fly.
We complemented this library with a wrapper class ThreadPoolManager. Its pur-
pose is to allow the use of the thread-pool anywhere in the code using the singleton
pattern, avoiding to pass a reference to the thread-pool to every class. Through
ThreadPoolManager we also added functionalities to the original implementation
of thread-pool:

• Try submitting job: during the LazyPropagation algorithm, as discussed
previously, the exploration of the tree is a recursive task and thus the collect
and distribute evidence tasks have to be submitted only if there are threads
available. TrySubmitJob allows the submission of a job only if at least one
thread is available.

• Reserving threads for parallel loop: when handling large probability distri-
butions it is convenient to split the iteration in multiple smaller tasks but
before doing it we check whether it is possible to use the thread-pool or not.
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If any number of threads are available then ReserveTasksForLoop reserves the
number of threads required to perform the computation. After the reservation
has been made, the loop is parallelized and once completed the reserved
threads are freed.

4.11.2 RapidXML - XML reader/writer library - Kalicin-
ski, Marcin

The XDSL format file used to load and write networks is based on the XML format
so any XML reader/writer library can handle it. RapidXML [20] is one of many
libraries available offering good performance while being easyt f use and integrate
with the project.

4.11.3 Copy-On-Write - Shao Voon Wong
The copy-on-write paradigm is a key point of our library in order to save space
and time during execution. The implementation offered by Shao Voon Wong [21]
implements the COW through inheritance of the templated COW class. The
COW class handles the data structure that we do not want to duplicate until a
modification occurs. The inheriting class can access the data structure through the
pointer provided by the COW class.

4.11.4 RapidCSV - Kristofer Berggren
Using CSV to load datasets for network learning, we needed an easy to use and
fast library to parse CSV files. RapidCSV [22] satisfies our needs being a single
header library with reasonable performance. Its easiness of use was a determining
factor for its adoption in our project.

4.11.5 Chi-squared pValue - Jacob F. W.
In our independence tests we used the chi-squared function provided by Jacob F.
W. [23] to obtain the pValues needed to estimate the associations.

4.11.6 DAG Cycle Test - Techie Delight (web site)
During the Hill-climbing phase of the network learning we need to know whether
the addition of an arc or the reversal of one already present introduces a cycle in
the DAG. The implementation provided by Techie Delight [24] is easy to use and
has the lowest possible time complexity.
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4.11.7 Parallel Patterns Library (PPL) - Microsoft
We used the concurrent vector implementation contained in PPL [25] for storing
information which can be accessed simultaneously by different threads, either for
write or read operations, during the Lazy Propagation algorithm.
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Chapter 5

Comparison with other
libraries

In this section we will discuss the efficiency of our library comparing it against the
well known aGrUM library. All experiments have been performed on a desktop
computer equipped with a Ryzen 7 3700x@3.6 GHz (8 cores/ 16 threads) CPU and
16GB@3200 MHz of RAM using Windows 10 as operating system.

5.1 Inference Task Validation
We selected some networks from those available at https://www.bnlearn.com/
bnrepository/ (the network Tsunami was provided by our department) in order
to give a representation of how our library behaves in different scenarios.
We chose two configurations to use for testing our library against aGrUM: the
first one where the Lazy Propagation does not use the parallelization and the 16
threads thread pool is used just to perform the multiplications of CPTs, and the
second one where a thread pool of 200 threads is used and the Lazy Propagation
uses the parallelization. The first configuration is used to resemble as closely as
possible how aGrUM works, while the second one serves to show how the library
behaves when handling large networks on CPUs with a higher number of threads,
although this is just representative as in our case this introduces a lot of context
switching.
These two configurations show how different networks behaves when parallelization
is enabled or not in the Lazy Propagation algorithm, demonstrating that in certain
scenarios the parallelization brings little to no benefit or even slows down the
execution.
Following the comparison with aGrUM, we will also demonstrate the scalability of
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Networks List
Network Name Number of nodes Number of arcs Number of parameters
Alarm 37 46 509
Andes 223 338 1157
Barley 48 84 114005
Diabetes 413 602 429409
Hailfinder 56 66 2656
Hepar2 70 123 1453
Mildew 35 46 540150
Munin 1041 1397 80592
Tsunami 1277 2123 11260193

Table 5.1: List of networks used to test the performance of our library. For each
network it is specified the number of nodes, the number of arcs and the number of
parameters. Note that the number of parameters refers to the number of combina-
tions of variables’ states needed to represent the joint probability distribution of
the network.

our library showing how it behaves when 16, 50, 100 and 200 threads are available
to the parallel Lazy Propagation. All graphs are in log-10 scale.

5.1.1 Execution Time
One of the main objectives of our work was to create a more efficient library in
terms of execution time compared to those already available. In this test, we used
the MWCH triangulation method in our library which is the same used by aGrUM.
The execution time values in the following graphs are calculated as the mean over
30 iterations of the whole inference task (reading the network, triangulation, etc...).
Figure 5.1 shows how our implementation is more efficient in every execution
compared to aGrUM, reducing by half the time required by execution in almost
every network and some even more. In the Tsunami case, aGrUM was not able to
finish execution crashing before the end, while in the Mildew case the execution
finished in about 26 seconds but the result was completely wrong so we did not
consider it valid for the test, although this is not the only case that happens that
aGrUM returns the wrong result. However, the correctness of the results will be
discussed later in the Chapter.
The graph also shows that generally the serial Lazy Propagation is faster by a few
milliseconds (up to 6 seconds in the Mildew case) on small networks (up to few
hundreds of nodes). On large networks, with hundreds of nodes and more, the
parallel Lazy Propagation is much faster, for example in the Munin case the time
required by the parallel configuration is less than half the time required by the
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serial configuration.

Figure 5.1: Execution time comparison between aGrUM and our library. In
parenthesis the name of the variable requested. No barren variables used.

Figure 5.2: Execution time comparison between parallel Lazy Propagation with
16, 50, 100 and 200 threads using the MCS-M triangulation method. In parenthesis
the name of the variable requested. No barren variables used.
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The reason behind this difference in behaviour between the serial and parallel
Lazy Propagation is mainly due to the size of the networks in accordance to our
testing: smaller networks benefit less from a higher number of threads during the
recursive task of the Lazy Propagation leading to too many context switches. On
the other hand, on bigger networks the parallel Lazy Propagation benefits more
from a bigger thread pool during the recursive task allowing for a faster exploration
of the junction tree. But, depending on the structure of the network, also big
networks can incur in a bottleneck caused by too many context switches if the
junction tree is not ramified enough.

Figure 5.3: Execution time comparison between MCS-M and MWCH triangula-
tion methods in our library. In parenthesis the name of the variable requested. No
barren variables used.

Figure 5.2 shows how our library scales with different thread pool sizes. It can
be noticed that increasing the number of threads on smaller networks reduce to
some extent the execution time, probably because the higher thread counts of
the program fakes a higher load to operating system resulting in more resources
allocated to its execution but this is still not enough to beat the serial execution.
On the other hand, bigger networks shows different trends: Diabetes and Munin
sees a reduction in execution time with a bigger thread pool while Tsunami has
slightly worse results with 200 threads compared to 16 threads because the obtained
junction tree has only a few ramifications. Compared to the serial execution with 16
threads for CPT operations, only Tsunami and Munin have an improvement while
Diabetes has a slower execution time. This shows that to obtain good performance
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with the inference task it is important to configure the library correctly and this
can be done by dedicating only a limited number of threads to the recursive task
of the Lazy Propagation. This feature will be discussed in Section 6.2.3 as a future
improvement to the library. Figure 5.3 compares the execution time required when
using either the MCS-M or the MWCH triangulation method (the Lex-M algorithm
has not been considered for brevity, but the results would be similar to those of
the MCS-M since its just a variant). On small networks the triangulation method
has little to no impact at all on the performance of the Lazy Propagation, either
serial or parallel, while on larger networks it is not obvious which triangulation
to use. With the Tsunami network the MCS-M triangulation reduced execution
time by about 10% compared to the MWCH triangulation, while with the Diabetes
network the MWCH triangulation almost halved the execution time compared to
the MCS-M. In order to determine which triangulation suits one case the best, the
user should test all three of them, Lex-M, MCS-M and MWCH, and use the faster
one.

5.1.2 Memory Usage

Keeping the memory usage to a minimum during the execution of the Lazy Propa-
gation was one of our main objectives for this project since, as already discussed,
we want this library to be used on as many devices as possible.

Figure 5.4: Memory usage comparison between aGrUM and our library. In
parenthesis the name of the variable requested. No barren variables used.
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The memory usage values are obtained through the diagnostic tools of Visual
Studio executing the library in release mode.
Figure 5.4 shows the memory used by our library with the MWCH triangulation
and compares it with the memory used by aGrUM (the MWCH triangulation
method has been used in our library since it is the same used by aGrUM). The
memory used by the Lazy Propagation serial and aGrUM is comparable on small
networks, with the exception of the Barley network, were aGrUM uses almost
200MB, and Munin were aGrUM exceeded 100MB. In small and medium sized
networks our library ties with aGrUM but it is in large networks, like the Tsunami
network, that our library outperforms aGrUM where, although aGrUM was not
able to finish its execution, the memory used at the time it crashed peaked at
19.7GB while our library used at maximum 535MB throughout the whole execution.
The result of the Mildew network produced by aGrUM has been ignored for the
same reason stated in Section 5.1.1.
The parallel Lazy Propagation uses more memory due to the higher number of
threads in the thread pool, and thus a higher number of thread instances to keep
track of, and the use of additional structures required for the correct functioning of
the algorithm.
The memory usage using either the MCS-M or the MWCH triangulation is almost
identical with some advantage towards the MWCH in larger networks.

Figure 5.5: Memory usage comparison between MCS-M and MWCH triangulation
methods in our library. In parenthesis the name of the variable requested. No
barren variables used.

These results show the effectiveness of using the COW paradigm and a compact
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representation for sparse CPTs, allowing the library to be used on devices with
limited amount of memory, like IoT devices.
When looking at the scalability of our network with different thread counts, as
expected, the memory usage increases. This is due to a higher number of thread
pointers used by the thread pool and the increased size of the data structures used
by the parallel Lazy Propagation. This behaviour is shown in Figure 5.6.

Figure 5.6: Memory usage comparison between parallel Lazy Propagation with
16, 50, 100 and 200 threads using the MCS-M triangulation method. In parenthesis
the name of the variable requested. No barren variables used.

5.2 Network Learning Task Validation
In order to compare the quality of our network learning algorithm, we used
the datasets available at https://www.bnlearn.com/documentation/man/index.
html involving categorical variables since, at the moment, is the only type of
variables we support. The datasets used are: Alarm, Asia, Coronary, Insurance and
Lizards. The comparison, however, is not completely fair since bnlearn provides
different algorithms (for this test we used the MMHC with the BIC score for
the Hill-climbing phase in the bnlearn library) from those we implemented in our
library. Although, as discussed in Section 2.7.1, the FastCHC we implemented in
the Hill-climbing phase generates networks with overall lower scores, in this small
set of datasets the networks we generate have a quality close to those generated by
bnlearn, with the exception of a couple of cases where bnlearn outperforms our
implementation.
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Figure 5.7: BDs scores of networks learned from our library and from the package
bnlearn(R). The scores are negated in order to be visualized in log scale. The lower
the score the better the network is.

5.3 Result Correctness
We did not consider GeNIe in the previous tests since it is a desktop application
and could not be tested in the same way we have done for both aGrUM and our
library, but, like aGrUM, it is one of the most known applications for operating on
Bayesian networks and as such the user expects that the application gives correct
results. During the development of our project we noted that in many cases both
aGrUM and GeNIe gave different results so it became hard to say which was the
correct one. After a lot of testing in order to individuate the possible cause of
these differences, we believe that both programs perform their marginalization
process in a wrong manner at one point or another. In the GeNIe case, using as
example the Barley network and considering the posterior marginal of the variable
"jordn", the result given by GeNIe can be replicated by multiplicating all three
parents of the variable together, "potnmin", "nmin" and "aar_mod", obtaining
the potential ΦPNA and then multiplicating only once the variable "jordtype" to
ΦPNA but marginalizing it three times. Our opinion is that the library is not able
to keep track correctly of the parents of a potential, especially when n variables
with the same parent are multiplied together and thus n instances of that parent
variable should be present in the list of parent variables of the resulting potential,

99



Comparison with other libraries

but instead only one instance of the variable is kept at a time. We believe this
happens because they start solving their potentials by multiplying each parent
with the target variable, marginalize them and proceed like this with the ancestors
until finished. This problem could have been easily avoided using an approach of
marginalization like our or by designing a data structure for correctly storing the
variables needed by a potential.
We believe that the same problem is present in the aGrUM library but we were
not able to replicate their results so it is only an hypothesis. In their case the
results where much closer to our in some instances where in others their values
were completely off. Although we considered the results of aGrUM as valid for
time and memory comparisons, in general both libraries are not 100% reliable.
We want to point out also that we used the academic version of GeNIe so we do
not know if the business version suffers from the same problem or not.
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Chapter 6

Conclusions And Future
Work

6.1 Conclusions
In this thesis we introduced a new library able to operate on Bayesian networks and
perform tasks such as inferencing, learning networks and measuring the influence
between nodes. Basing our work on some of the most recent researches conducted
in the sector and using modern C++ programming techniques, we were able to
create an efficient and scalable library which is capable of handling very large
networks in reasonable time and can even be used on IoT devices.
Starting from the theories introduced in Chapter 2, we gave a brief introduction
to the topic of Bayesian networks and on which theories our library is based.
Additionally we also nominated a few examples of Bayesian networks library which
have been taken as reference for our work. In Chapter 3 we described the structure of
our library defining for each class, or group of classes, the features contained giving,
in Chapter 4, a detailed discussion on the features we implemented, explaining
also the differences with the solution proposed in the paper from which they have
been taken. Additionally, we also described the data structures needed to perform
specific tasks and their usage during the execution of the task. In Chapter 5 we
validated the quality of our work against some of the most well known open source
libraries. Our inference capabilities outperforms those of the aGrUM library while
giving more precise results, which we discovered being one major downside of
GeNIe. Our network learning algorithm produces results that are comparable with
those produced by bnlearn which is again a well known R package in the sector.
During the work of this thesis we achieved many of our goals, such as efficiency and
scalability, but we already have plans and ideas to test for improving the library
and its set of features in areas like network learning with continuous variables,
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GPU based inferencing and strength of influence measures.

6.2 Future Work
This section is dedicated to introduce the future changes and features that will be
brought to the library.

6.2.1 Extending Support To Other Bayesian Network File
Formats

At the moment the only file format supported is the XDSL, which is based on the
XML format. In future we will extend the support to other formats such as BIF,
NET and DSL which are some of the more commonly used. This saves the user
from converting its file to the XDSL format.

6.2.2 Introducing Parallelism To CPT Operations
CPTs multiplication is the only parallelized operation. The check performed to
determine if a CPT is sparse and its subsequent transformation, marginalization
and instantiation of CPT can also benefit from parallelization when the probability
distribution is big enough. The easiest way of parallelizing these tasks is to create
many tasks where each one operates on a smaller part of the vector, for example we
can assume that each task will operate on 5000 elements or more. Obviously the
degree of parallelization of the tasks is bound to the number of threads allocated
to the thread pool. This will be a benefit for very large networks handled by
computers with hundreds of threads if not super computers.

6.2.3 Improving Lazy Propagation Parallelism
As discussed in Section 4.5.1 the parallel version of Lazy Propagation is not optimal
and there are a few aspects that can be improved. The first one is the way in which
the parallelization is handled. In the current implementation, the main thread of
library starts the recursive algorithm and then each parallel job decide whether to
submit a new job to the thread pool or not and the main thread executes the jobs
that are not submitted to the thread pool. The problem present in this solution
is that both the main thread and the thread that creates the job do not check
whether the thread pool can receive new jobs and so all the jobs that were not
submitted are executed in either the main thread or the thread that created them,
potentially leaving threads doing nothing. Therefore a check should be performed
to determine whether jobs that were not previously submitted to the thread pool
can now be submitted.

102



Conclusions And Future Work

Another way of improving the parallelism could be dedicating only a limited number
of threads to the LazyPropagation, leaving more threads available for performing
CPT operations (multiplications, marginalizations and instantiations) which in
general are the more demanding tasks. This partitioning can be done either in a
static way, i.e. the user can specify the partition, or dynamically estimating which
operations would benefit more from having more threads available.

6.2.4 Improving PC Algorithm Parallelism
Our implementation of the PC algorithm uses the idea presented in [7] for par-
allelization but the parallelization is done at nodes level. This solution has the
downside of leaving threads inactive when all the independence tests of one node
have been executed and other threads are still performing tests on the assigned
node. We will improve the current implementation by fully exploiting the idea of
splitting the independence tests in homogeneous groups independent from which
node they are generated from. Additionally the option of indicating the maximum
number of tests for a thread will be added in order to reduce memory usage on
systems with limited amount of memory.

6.2.5 Improving FastCHC Algorithm
In Section 2.7.1 we introduced the FastCHC algorithm used in the Hill-climbing
scoring phase of the PCHC and anticipated that the base implementation of the
FastCHC produces networks of lower quality compared to those produced by a
classical Hill-climbing heuristic. In [11] a few modifications are proposed in order to
increase substantially the score of the networks learned by the FastCHC retaining
the same execution time as the normal FastCHC. From the comparison between
our library and the bnlearn package we established that the normal FastCHC
already obtains results in par with a well known library, but we believe that these
modifications can generate even better networks.

6.2.6 Improving Support To Networks Learning
The focus of our work for this thesis was to introduce support to network learning
with discrete variables. In future we will extend our learning features also to
continuous networks by adding independence tests and scoring metrics specific to
them.

6.2.7 Improving Support To Strength Of Influence
In Sections 2.8 and 3.10 we discussed which strength of influence measures we
implemented, i.e. the influence that each parent has on a child. In future we will
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expand the possible measures implementing those described in [14] like measuring
the influence that a child has on its parents and the influence, in both cases, in
presence of observations in the network.

6.2.8 Adding Support To GPU
In the modern era, along with the increase in computing capacity of CPUs, GPUs
have become much more powerfull with thousands of cores. By adding support
to inference through GPUs we want to improve the performance of our library on
large networks (>1000 nodes) ultimately reducing the time required to perform
inference compared to performing it with the CPU.
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