
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

HLS techniques for high
performance parallel codes in

Logic-in-Memory systems

Supervisors
Prof.ssa Mariagrazia Graziano
Prof. Maurizio Zamboni
Prof.ssa Giovanna Turvani

Candidate
Alessio Naclerio

ID: 270065

Academic year 2021 – 2022

2

Summary

Recently, several researches have been conducted at the VLSI Laboratory
of Politecnico di Torino on the Logic-in-Memory (LiM) model. It is an in-
novative architectural paradigm that aims at tackling the set of limitations
showed by the von-Neumann model, usually referred to as memory wall or
von-Neumann bottleneck. The key idea behind the concept of LiM is the
implementation of memory devices in which standard cells are equipped with
simple computational units. As a result, memory accesses are largely re-
duced, as well as power consumption and data-fetching latency. Moreover,
high timing performance can be achieved, as the regular structure of LiM
systems offers the possibility to perform parallel processing.

Two tools have been developed at the VLSI Laboratory with the purpose of
creating a framework that allows a designer to easily devise and characterize
LiM architectures. Firstly, DEXiMA was born as a simulator for LiM sys-
tems, providing the user with information about timing performance, space
occupation and static and dynamic power consumption. Then, Octantis has
been proposed, presenting itself as a High-Level Synthesizer that handles a
C program and generates a LiM architecture for its execution. In order to
accomplish this translation process, it considers the LLVM Compiler Frame-
work, whose front-end (Clang) and Optimization Passes have been exploited.
The Octantis back-end receives the LLVM IR code generated by the previous
steps and produces the description of the LiM architecture by means of config-
uration files for DEXiMA. For this purpose, the typical four-stage structure
of HLS tools have been implemented, encompassing allocation, scheduling,
binding and code emission.

Although being able to synthesize parts of several LiM architectures already
proposed at the VLSI Laboratory, Octantis only provided solutions for the
handling of simple code constructs. The main objective of this thesis has
been the enlargement of the set of data structures and C constructs

3

available for the description of the input program while considering
the benefits that they could derive from the parallelization opportunities of-
fered by a LiM implementation. Hence, the work mainly focused on the iden-
tification of strategies for the management of for-loop nests and the syn-
thesis of operations involving linear and two-dimensional arrays, whose
elements can be visited by means of well-defined Array Access Patterns. The
handling of these complex structures along with the implementation of loop
unrolling allows Octantis to synthesize highly parallel structures capable of
executing algorithms that require non-trivial access the elements of arrays.

A new Pass called InfoCollector has been developed in order to deal with
the increased complexity of information characterizing the input algorithm.
It performs an accurate analysis of the LLVM IR code with two main pur-
poses: speeding up the scheduling phase and, most importantly, gather infor-
mation regarding nested loops and array accesses inside the LLVM IR code.
As regards the former, InfoCollector implements techniques that allow the
overall execution time of the mentioned stage not to be affected by the larger
amount of instructions to be taken into account. As a matter of fact, more
elaborated algorithms can result in a huge number of LLVM IR operations
to be considered by the scheduler. The latter task is crucial for the correct
mapping and parallelization of operations involving vectors or matrices onto
the final LiM architecture. Several concepts belonging to the mathematical
framework referred to as Polyhedral Model have been employed to let Info-
Collector provide the binder with data structures that allow the generation
of an optimal LiM system, in which its intrinsic parallel capabilities are fully
exploited.

As a consequence, the scheduling and binding phases have undergone some
modifications in order to benefit from the introduction of the new pass.
Specifically for the binding phase, an important target-dependent optimiza-
tion strategy has been developed aimed at limiting the amount of needed
hardware resources and the overall area as much as possible, while ensuring
high timing performance. The implementation of parallel processing indeed
offers the advantage of drastically reducing the total execution time but, at
the same time, it causes an increase of space occupation.

Moreover, the code emission stage has also been expanded with the insertion
of two new modules. The former aims at the production of configuration files
for the new DEXiMA-CAD, which is a tool for DEXiMA that enables the

4

visual representation of the LiM architecture. The latter deals with the gen-
eration of a VHDL description of the system devised by Octantis synthesis
process, as well as an associated VHDL testbench in order to check its correct
behaviour by carrying out simulations with commercial EDA tools, such as
Modelsim.

Finally, several Image Processing algorithms have been chosen for the syn-
thesis on LiM devices. Since they are usually data-intensive, they are ac-
celerated through parallel computing systems, such as GPUs. Hence, the
LiM model may represent an alternative way to address their efficient im-
plementation. Results have shown that Octantis is now able to synthesize
more complex structures with the possibility of parallelizing the execution of
elaborated operations, which can also require sophisticated access patterns to
be considered for the visit of both C vectors and matrices. Furthermore, the
introduced optimization strategy has been proved to enable a great saving of
area and hardware resources.

In conclusion, the handling of loop nests and array accesses represents the
starting point for the synthesis of acknowledged HLS benchmarks on LiM
architectures, thus enabling the performance comparison with other already
available implementations. Moreover, it is important to envision a more
complex system where a LiM device and a conventional processing unit can
coexist, in order to allow the implementation of even more complex opera-
tions. As a consequence, Octantis would have to devise several strategies to
allocate the implementation of each instruction to one of the two units.

5

Contents

List of Tables 8

List of Figures 9

Introduction 11

I Octantis, a tool for Logic-in-Memory exploration 13

1 Motivation and background 15
1.1 An introduction to the Logic-in-Memory model 15
1.2 DExIMA: a simulation tool for LiM systems 17

2 The Octantis project 19
2.1 Introduction . 19
2.2 The LLVM Project . 20

2.2.1 The LLVM Intermediate Representation 21
2.3 The structure of Octantis . 24

2.3.1 From the input C algorithm to the optimized LLVM IR 24
2.3.2 The Back-End . 26

II The expansion of Octantis 31

Introduction and Motivations 33

3 Polyhedral Model: a powerful mathematical framework 37
3.1 Introduction to the Polyhedral Model 37

3.1.1 Definitions and concepts 38
3.1.2 The Loop Array Dependence graph 41

6

4 InfoCollector: a preliminary analysis pass 45
4.1 Introduction . 45
4.2 The collection of information 46

4.2.1 The importance of alias analysis 46
4.2.2 The handling of loops 50
4.2.3 The handling of pointers 56

4.3 The construction of Access Pattern Matrices 63
4.4 The identification of valid Basic Blocks 65

5 The evolution of Octantis structure 67
5.1 Introduction . 67
5.2 The scheduling phase: leveraging InfoCollector 68
5.3 The binding phase: facing higher complexities 70

5.3.1 Handling array access patterns 72
5.3.2 A new target-dependent optimization 83

6 The expansion of the code emission phase 89
6.1 The generation of VHDL files 90
6.2 The generation of DExIMA-CAD configuration files 92

7 Tests 95
7.1 Image Processing algorithms 95

7.1.1 Synthesis of the Integral Image algorithm 96
7.1.2 Synthesis of a multi-image encryption algorithm 99
7.1.3 Synthesis of an approximated Arithmetic Mean Filter . 103

8 Conclusions and future works 107

Bibliography 109

7

List of Tables

7.1 Results regarding the types of rows present in the LiM system
that implements the generation of the Integral Image. Data
are provided for each optimization level. 98

7.2 Results obtained from the synthesis of the algorithm for the
generation of the Integral Image. Along with the optimization
level, different data are provided. 99

7.3 Aggregated results of the synthesis by Octantis of the algo-
rithm for the generation of both the XOR-Image and the XOR-
Keys. 102

7.4 Results concerning the types of rows inside the LiM system
that implements the application of the approximated Arith-
metic Mean Filter. Different values are provided along with
the optimization level. 105

7.5 Overall results obtained from the synthesis of the algorithm
implements the application of the approximated Arithmetic
Mean Filter. Along with the optimization level, different data
are provided. 105

8

List of Figures

2.1 The retargetability principle is highlighted in figure. It allows
a compiler to handle multiple source programming languages
and target machines. 21

2.2 Analysis and Transform Passes in the LLVM Compiler structure. 23
2.3 Block diagram of the Octantis structure. 24
3.1 A SCoP with the possible representations of the related Iter-

ation Domain. Iteration Domain a is the set of all iteration
vectors, while b shows the linear inequalities that, in turn,
form the 2-dimensional polyhedron. 39

3.2 A simple C code with 3 nested loops is provided along with
the associated LAD graph and the APMs and APMCs of each
array. 42

4.1 Structure of an LLVM natural loop 52
4.2 Structure of a loop nest composed of two loops after the loop-

simplify Pass has been issued 53
4.3 A simplified example program composed of 3 nested loops

is considered. LoopInfoTable and the related organization of
data inside loopInfoMap and nestedLoopMap are detailed. . . . 56

4.4 Visual representation of how the parameters of a getelementptr
instruction are used to obtain the final pointer in the first
example provided. 59

4.5 Code snippet related to the second example examined. The
use of loop iterator in getelementptr instructions is highlighted. 60

4.6 Internal structure of PointerInfoTable for a simplified code. . . 62
4.7 A simplified code with 4 nested loops where the access to ar-

rays A and B is provided at the top. The organization of
information by means of PointerInfoTable and LoopInfoTable
allows the creation of a LAD graph, from which the APMs of
the two arrays are extracted. 64

4.8 Scheme showing the filter-like behaviour of InfoCollector. . . . 65

9

5.1 Movement of information and data structures among InfoCol-
lector, the scheduler and the binder, with the introduction of
parameters regarding pointers in Instruction Table. 69

5.2 Mapping of the accumulation operation on an set of LiM rows
implemented following a reduction-tree strategy. 71

5.3 Identification of a set inside an array. 76
5.4 New internal structure of Octantis binder. 81
5.5 Two overlapping accumulation sets inside an array. 86
5.6 Two overlapping accumulation sets. 87
6.1 Interface of the entity generated by means of PrintVHDLFiles. 90

10

Introduction

The work carried out within this thesis aimed at the expansion of the Octantis
project, a High-Level Synthesis tool for the exploration of Logic-in-Memory
systems developed at the VLSI Laboratory of Politecnico di Torino. Given
the intrinsic parallel capabilities of LiM systems, the Octantis synthesis pro-
cess has been designed to be well-suited for applications that could benefit
from a parallelized implementation. Hence, in this thesis, the set of data
structures and constructs available for the development of the input algo-
rithm has been enlarged, with particular interest shown towards the ones
that are mostly employed for the description of parallel codes. Therefore, as
deeply discussed in the second part of this document, the major focus has
been put into the handling of nested loops and one/two-dimensional arrays.
The combination of the loop unrolling technique and the study of array access
patterns, namely the order in which their elements are visited, allowed the
effective parallelization of more complex algorithms, suitable for the mapping
on a LiM architecture.

In the first part of the document, the motivations behind the development of
Octantis are presented, and the description of the internal structure of the
tool is discussed. An overview of the research works carried out at the VLSI
Laboratory of Politecnico di Torino on LiM architecture is provided, along
with a brief introduction to DEXiMA. After that, the various stages that
contribute to the Octantis synthesis process are analyzed.

In the second part, the introduction of InfoCollector Pass is deepened along
with the consequent modification of the other Octantis HLS phases. The
dissertation starts with the presentation of the Polyhedral Model, a mathe-
matical framework whose main concepts have been exploited for the organi-
zation of information and the analyses implemented by InfoCollector. After
that, the main tasks carried out by this new Pass are addressed, highlight-
ing the complex code structures that it allows handling and the strategies

11

implemented towards their synthesis. Successively, the evolution of both the
scheduling and the binding phases is discussed. As regards the former, the
benefits derived from several techniques performed by InfoCollector are pre-
sented. As for the latter, the discussion is focused on how the structure of
the binder has been modified to drive the synthesis process according to the
data structures produced by the new Pass. Moreover, the insertion of an
additional target-dependent optimization technique within the binding phase
is addressed too, showing the advantages that it can bring in terms of saving
of area occupation and hardware resources.

While InfoCollector enables the enhancement of Octantis input capabilities,
the expansion of the code emission stage allows for a wider set of output de-
scription formats of the final LiM system to be available. Two new modules
respectively aimed at the generation of VHDL and DEXiMA-CAD files are
presented.

Finally, tests have been carried out addressing data-intensive algorithms be-
longing to the Image Processing field. Their C implementation has been
given to Octantis for the synthesis on LiM systems. The results gathered
about area occupation, hardware resources and timing performance are re-
ported and discussed. Hence, the correctness of the novelties introduced and
the improvements with respect to the previous version of the tool have been
checked, along with the considerations on possible future expansions.

12

Part I

Octantis, a tool for
Logic-in-Memory

exploration

13

Chapter 1

Motivation and
background

1.1 An introduction to the Logic-in-Memory
model

During recent years, several researches have been carried out at VLSI Lab-
oratory of Politecnico di Torino concerning the Logic-in-Memory paradigm.
It represents a promising architectural solution that aims at overcoming the
drawbacks of the von-Neumann model which are being experienced in the
last decades.

As a matter of fact, the architecture of digital processing systems has been
conceived according to this model, which requires the separation between
the device responsible for the storage of data, the memory, and the one that
performs computations, the CPU. Within this scheme, the CPU has to ac-
cess the memory in order to retrieve data useful for subsequent elaboration.
However, while the former has become more and more powerful over time
due to CMOS technology scaling, the latter has not undergone the same
improvement. This has resulted in a substantial difference between the com-
putational speed that characterizes modern CPUs and the time required to
perform memory accesses. As a consequence, a larger amount of time and
energy is wasted while fetching data rather than elaborating them. Moreover,
especially for data-intensive applications, the huge need for memory access
highly affects the total power consumption. The set of issues that stem from
the separation between memory and CPU as well as their performance gap

15

1 – Motivation and background

is generally referred to as memory wall or von-Neumann bottleneck.

The presented drawbacks gave energy to the exploration of the Logic-in-
Memory model, whose main objective is to integrate computational units
directly inside the memory. This choice can result in a drastic reduction
of data-fetching latency and the related power consumption, also enabling
faster elaboration of data with lower energy waste. From a structural point
of view, LiM architectures have been conceived as arrays of memory cells that
can be equipped with relatively simple operational units. In this way, all data
elaborations are enclosed inside the LiM array, without the need of transfer-
ring information outside of it. Moreover, the high degree of regularity that
characterizes this kind of structure enables the possibility to perform parallel
computing, which represents a key feature that many implementations could
take benefit from.

The research works carried out at VLSI Laboratory led to the definition of
CLiMA [1], a Configurable Logic-in-Memory Architecture. The key feature of
CLiMA is the availability of arrays whose basic block is represented by the
so-called CLiM cells. The choice of this name derives directly from their in-
ternal structure, which consists of a normal memory cell equipped with logic
that is configurable in order to allow different operations to be carried out.
CLiMA has been exploited for the implementation of a Quantized Convolu-
tional Neural Network[1] and the Bitmap Indexing Algorithm[2], providing
promising performance results. Furthermore, studies regarding the possi-
ble benefits that LiM architectural solutions may derive from beyond-CMOS
technologies have been carried out. For instance, always in [1] the Perpendic-
ular Nano Magnetic Logic (pNML) technology has been considered for the
implementation of CLiMA.

In conclusion, many researches have addressed the adoption of the LiM model
for specific architectures. However, the main objective would be the creation
of a framework that allows the exploration and characterization of LiM imple-
mentations, thus having a more comprehensive view that takes into account
multiple abstraction levels. This is the main reason behind the development
of both DEXiMA, which is briefly presented in the next section, and Octantis,
whose description is deepened in Chapter 2.

16

1.2 – DExIMA: a simulation tool for LiM systems

1.2 DExIMA: a simulation tool for LiM sys-
tems

DEXiMA is a C++ based tool developed at VLSI Laboratory of Politec-
nico di Torino that performs the characterization of a system composed of a
LiM component and an out-of-memory CMOS circuit, which are connected
through a bus. By means of the implementation of both static and dynamic
analysis, it can provide important information regarding timing performance,
area occupation and static and dynamic power consumption.

A purely structural description of the entire system must be devised and
fed to DEXiMA through proper configuration files. The front-end of the
tool is responsible for producing the correct data structures required for the
actual simulation starting from these files. As regards the LiM unit, a rect-
angular array of LiM cells must be defined. Its description has to contain
information about the types of LiM cells employed, the modules that carry
out intra-row or intra-column operations and how they are connected. Dif-
ferent kinds of cells can be exploited, each one characterized by different
integrated logic. The out-of-memory system has to be defined in a similar
way, firstly specifying the hardware modules, chosen from a pre-defined set
of available components, that are required for the implementation and, after
that, their interconnections.

The DEXiMA back-end is the one in charge of performing the simulation
of the circuit. In order to do that, suitable models have been considered for
the characterization of both the traditional logic and the memory cells. As
regards the first, the information provided by TAMTAMS [3] has been taken
into account. It is a web-based framework developed at Politecnico di Torino
that can be employed for the analysis of CMOS circuits starting from their
characteristic parameters. On the other hand, the memory performances are
estimated by CACTI [4], an open-source simulator of memories developed
by Hewlett-Packard Laboratories. However, solutions dealing with beyond-
CMOS technologies are being considered, as the mentioned model turned out
to be not suitable for the proper description of LiM cells.

As already mentioned, the simulation implemented by DEXiMA addresses
both static and dynamic analysis. The former allows obtaining important
static parameters like space occupation, maximum delay and static power

17

1 – Motivation and background

consumption. However, the latter enables the definition of dynamic power
consumption, which is much more relevant with respect to the static one.
For this purpose, the description of the algorithm that the system performs
is needed, and it has to be provided in input to DEXiMA following a specific
syntax.

In conclusion, DEXiMA represents a promising tool for the characteriza-
tion of LiM systems, in constant evolution along with the research around
this new innovative model. After the development of this tool, the introduc-
tion of the Octantis project has been taken into account in order to broaden
the scope of the entire framework that was being designed. As a matter of
fact, it has been decided to express the LiM array devised by the Octantis
synthesis process by means of DEXiMA configuration files, thus enabling its
simulation and connecting the two software.

18

Chapter 2

The Octantis project

2.1 Introduction
During the previous chapter, the main elements that have characterized the
research on LiM systems carried out at VLSI Laboratory of Politecnico di
Torino have been discussed. Octantis emerged within this lively environment,
with the purpose of further exploring the potential of the LiM paradigm. It
was born in 2020 thanks to the thesis work carried out by A. Marchesin[5],
and the promising results that have been obtained led to the development of
a scientific paper[6].

Octantis is a High-Level Synthesizer, developed in C++, whose main objec-
tive is the generation of an optimal LiM architecture, starting from an input
algorithm described using standard C language. As it will be better clarified
throughout the following sections, Octantis highly exploits the LLVM Com-
piler Framework in order to accomplish the mentioned “translation”. LLVM
not only offers a fully-developed open-source compiler infrastructure but also
a set of related projects as well as libraries allowing developers to perform
code analysis, transformation and optimization.

Octantis presents itself as an agile tool for the exploration of LiM archi-
tectures, enabling designers easy access to this innovative model, without
being concerned by the implementation details. As a matter of fact, Octan-
tis guides users through the examination of LiM solutions while letting them
focus on the development of the input algorithm. Furthermore, a modular
approach has been adopted for the internal structure of the tool in order to
help future developers in the expansion of the code.

19

2 – The Octantis project

2.2 The LLVM Project
LLVM was born as a research project at the University of Illinois in 2000,
under the responsibility of V. Adve and C. Lattner, addressing the implemen-
tation of modern strategies for supporting static and dynamic compilation of
multiple programming languages. Since then, LLVM has evolved into a col-
lection of modular and reusable compiler technologies, involving several sub-
projects, some of which are also used in production by several open source
and commercial tools, as well as being largely exploited in academic research.

As highlighted by the same C. Lattner in its chapter of The Architecture
of Open Source Applications[7], the LLVM compiler follows the traditional
three-stage compiler structure that consists of:

• a Front-End: it parses the input code and checks for its overall correct-
ness by conducting lexical, syntax and semantic analysis. As regards the
LLVM compiler, these operations are carried out by Clang[8], a front-
end specifically designed for C/C++. The last step of this stage is
responsible for the generation of the Intermediate Representation (IR)
of the source code. It consists in a semantically-equivalent description
of the input algorithm expressed by means of a low-level, machine-like
language. LLVM has its own intermediate representation, which will be
examined in the following section.

• a Middle-End: during this stage, the IR undergoes a set of target-
independent optimizations, which are achieved through the analysis of
the code and the subsequent transformation.

• a Back-end: the main objective of this final step is the translation of
the IR into the desired output description format, with the possibility
of employing machine-dependent code optimizations, too.

The discussed architecture presents a crucial advantage that can be re-
ferred to as retargetability. The main aim of retargetable compilers consists
in the exploitation of the common IR, which can be considered as a midpoint
where different back-ends share the same comprehension of the source pro-
gram. By means of this representation, also visualized in Figure 2.1, it is
possible to share the set of target-independent optimizations among multiple
back-ends. Moreover, this design allows the easy handling of a new source or
target language, as it is unnecessary to redevelop the entire compiler struc-
ture. For instance, porting the compiler to manage a new source language

20

2.2 – The LLVM Project

only requires the implementation of a new dedicated front-end, while the IR
optimizer and the back-end can remain the same.

3-Stage Compiler

Back-End
for target machine 3

Back-End
for target machine 2

Back-End
for target machine 1

Middle-End
Common Optimizer

Front-End
for language 1

Front-End
for language 2

Front-End
for language 3

IR
Optimized

IR

Language 1

Language 2

Language 3

Machine 1

Machine 2

Machine 3

Figure 2.1. The retargetability principle is highlighted in figure. It
allows a compiler to handle multiple source programming languages
and target machines.

Another main advantage of this design, which also follows directly from
retargetability, is that the compiler can serve a larger set of programmers
than it would if it only provided solutions for the handling of one source and
target language. For an open-source project, this results in the presence of
a larger community of potential contributors to draw from, which naturally
leads to more and faster improvements to the compiler.

Finally, one of the key aspects that favoured the choice of LLVM for the
development of Octantis relies on its free licence, which allows deriving also
commercial products from the original LLVM project.

2.2.1 The LLVM Intermediate Representation
As already highlighted in the previous section, the IR represents the backbone
of the compiler structure, being the connection point between the front-end
and the back-end. The LLVM project has its own intermediate representa-
tion, the LLVM IR, which consists of a low-level language, with a RISC-like
instruction set. It has three equivalent forms:

• An in-memory representation.

• An on-disk representation encoded by means of the bitcode files.

21

2 – The Octantis project

• An on-disk representation provided in a human-readable form (the LLVM
assembly files).

The internal structure of LLVM IR can be compared to the one that char-
acterizes Chinese Boxes, a collection of several boxes one contained inside
another. Similarly, the top-level entities of LLVM IR are represented by
modules, which are composed of different functions. The latter, in turn, are
formed by a sequence of basic blocks, whose fundamental units are single
instructions. A module also contains peripheral entities, such as global vari-
ables, the target data layout, external function prototypes and data structure
declarations.

The control flow of the program is determined by basic blocks, which are
characterized by the presence of a single entry point and a single exit point.
When a basic block is entered, all of its internal instructions are executed.
Then, the terminator instruction is the one responsible for jumping to an-
other block or returning from the function. Moreover, the first basic block
of a function is a special one, as it must not be the target of any branch
instruction.

Furthermore, the LLVM IR presents the following fundamental properties:

• It employs the Static Single Assignment (SSA) form. Each value
only has a single instruction that defines it, and all of its successive uses
can be immediately retraced to that specific instruction. This design
choice allows the creation of use-def chains that highly simplifies the
implementation of optimizations, avoiding the need of a separate data
flow analysis to compute these chains.

• The structure of instructions follows the three-address code form. The
operations that elaborate data act on two source operands and place the
result in a distinct destination one.

• It has an infinite number of registers. LLVM local identifiers can
assume any name that starts with the % symbol, including numbers that
start from zero, such as %0 and %1, with no limitations on the maximum
number.

As shown in Figure 2.2, the IR is the point where target-independent
optimizations take place. As regards LLVM IR, they are implemented as

22

2.2 – The LLVM Project

Passes[9], which parse portions of the program in order to either collect
useful information or transform the code. Three main types of Passes are
available in LLVM, each with different purposes:

1. Analysis Passes gather the information that other passes can effectively
exploit to properly carry out their tasks. They efficiently recognize useful
code proprieties and optimization opportunities.

2. Transform Passes remodel the code aiming at its optimization, even-
tually using the data structure generated by previously issued analysis
passes.

3. Utility Passes provide useful utilities that do not otherwise fit catego-
rization. For example, passes that write a module to bitcode are neither
analysis nor transform passes.

Back-End

Tranform
Passes

Front-End LLVM IR

Analysis
Passes

LLVM Compiler

Figure 2.2. Analysis and Transform Passes in the LLVM Compiler structure.

In conclusion, further details about the LLVM structure and its IR can be
found in [10].

23

2 – The Octantis project

2.3 The structure of Octantis
The Octantis project highly exploits the LLVM Framework to achieve the
translation from C code to DExIMA configuration files, which are used for
the description of the final LiM architecture.

First of all, in order to properly handle an input C algorithm, it takes ad-
vantage of the native LLVM front-end, Clang. Then, some already available
LLVM Passes have been employed, as well as the one specifically designed
for the implementation of loop unrolling, in order to perform the desired
optimizations on the LLVM Intermediate Representation. From this step
forward, the back-end of Octantis takes place, whose internal organization
follows the typical four-stage structure common to all modern High-Level
Synthesis tools, which consists of allocation, scheduling, binding and code
emission. These phases are implemented by means of several C++ classes
that are coordinated by a unique new Pass named OctantisPass. In Figure
2.3, a schematic overview of the blocks that contribute to the structure of
Octantis is shown.

Clang

LLVM Passes

IR IR opt.

LLVM Framework

Code Emission

Back-end

Allocation

Scheduling Binding

Configuration File

C program

DEXiMA Files

Core of Octantis

Figure 2.3. Block diagram of the Octantis structure.

2.3.1 From the input C algorithm to the optimized
LLVM IR

As already mentioned, the first step of Octantis compilation requires the
input C program to be handed over to Clang, which is in charge of translat-
ing it into LLVM Intermediate Representation. However, several constraints

24

2.3 – The structure of Octantis

must be considered while developing the algorithm. As a matter of fact, even
though the C language offers the possibility to exploit high-level program-
ming constructs, the users shall keep in mind that the design of a hardware
component is being performed. Hence, the following things should be strictly
avoided:

• Dynamic allocation of memory: a LiM system is basically a memory,
hence this feature is in direct contrast with the very concept of LiM.

• Recursive function calls: they represent a highly complex C structure
difficult to handle for whatever hardware implementation.

• Multiplication and division: they are known to consume a large
number of hardware resources. As for the LiM system, the complexity is
required to be rather limited in order to enable fast parallel computations
with low power consumption. However, shift operations represent an
alternative option, although only approximated results can be obtained.

Hence, all of these operations would be either meaningless or inconvenient
to integrate into a LiM architecture. Furthermore, it is compulsory to de-
clare variables as integers, due to the fact that the LiM system only handles
arithmetic operations on this type of data. Finally, the users can also exploit
bit-wise logic operators, even the negative ones (i.e. nand, xnor, nor), which
are not included in standard C.

In addition to the input C program, Octantis also requires a configuration
file. Its structure has been designed to gather all the possible constraints
that can be exploited in order to explore the design space throughout the
synthesis process. As regards Octantis first release, only the handling of the
information that determines the dimension of a LiM row has been effectively
implemented. However, the organization of the configuration file is such to
manage other types of parameters during future expansions of the program.

Once Clang has generated the LLVM IR, several optimizations are run,
mainly performed by already available LLVM Passes, such as mem2reg and
simplifycfg. The former promotes memory references with register ones,
strengthening the SSA form of the code. The latter performs dead code
elimination and merging of basic blocks when possible, in order to produce a
more efficient code. Along with these two, passes that address loop analysis
and transformation have been taken into account. The introduced LLVM
Passes dealing with loops are:

25

2 – The Octantis project

• licm Pass: it tries to reduce the size of the body of the loop by removing
as many instructions as possible. This operation can help the next phases
reduce the number of resources used.

• loop-deletion Pass: it prunes the input IR code in order to delete all
the loops that do not participate in the computation of the final results.

• loop-reduce Pass: it reduces the number of array references inside
the loops and, in particular, the ones regarding the management of the
variable used as the index.

• loop-simplify Pass: it is responsible to transform loops in simpler
forms whenever possible.

While all these passes mostly deal with the generation of a more compact
and efficient code, a loop unrolling pass has been developed as it repre-
sents a relevant optimization technique to be exploited in relation to LiM
architectures. As a matter of fact, the intrinsic parallel capabilities of this
kind of system are well-suited for the concurrent execution of multiple loop
iterations. This results in an increasing amount of hardware resources as well
as area occupation, but it has the great advantage of largely reducing the
overall execution time.

2.3.2 The Back-End
The back-end is the core of the Octantis project, as it is responsible for the
effective generation of the final optimized LiM architecture starting from
the IR code coming from the previous steps. As already mentioned, its
internal organization follows the structure of all modern High-Level Synthesis
tools, which is composed of allocation, scheduling, binding and code emission
phases. During the next paragraphs, an overview of the tasks carried out by
each of the four stages is presented, motivating the design choices that have
been made.

Allocation

The allocation phase is the one responsible for the identification of the con-
straints specified by the designer inside the configuration file. The collection
of this information is crucial in order to properly drive the whole synthesis
process. As regards Octantis, the allocator actually handle only the param-
eter that defines the memory word size. As already discussed, the structure

26

2.3 – The structure of Octantis

of the configuration file has been devised with the purpose of being easily
expandable, thus allowing the introduction of new constraints that could be
useful in future versions of the tool.

Scheduling

The main aim of the scheduling phase is to assign each instruction that must
be mapped on hardware with an execution time, thus creating a sort of fi-
nite state machine of the program. The scheduler of Octantis implements
an As Soon As Possible (ASAP) algorithm, whose objective is to determine
the lowest possible time instant in which a specific operation can be issued.
In order to properly carry out this task, the presence of data dependencies
must be checked, as they have to be respected for the correct execution of
the algorithm devised by the designer.

As regards Octantis, the structure of the LLVM IR code must be carefully
considered in order to keep track of the evolution of the input program. As a
matter of fact, a well-defined and fixed approach is implemented in the LLVM
IR, from the definition of variables to their elaboration. Once this “pattern”
is known, it can be followed to identify all the operations performed in the
algorithm. First of all, each variable has to be allocated in the stack region of
the memory. When an arithmetic or logic operation between two operands
has to be performed, a load must be executed to store them inside local
registers. Then, the actual operation is issued, followed by a store, which is
useful to save the obtained result again into the stack.

Since the main goal of Octantis is the generation of a memory, load and
store instructions that take into account a stack region are meaningless for
the mapping on such a device. However, they are highly exploited by the
scheduler respectively in order to know which variable must be allocated in-
side the LiM array, and when a result is available. Hence, they are essential
for the detection of data dependencies. Regarding the effective operations
that can be carried out for the elaboration of two source operands, Octantis
supports sum and bit-wise logic operators, such as and, xor, or, along with
their negated form (nand, xnor, nor). Their detection is performed by the
scheduler, too.

At the end of the described process, the instructions are stored in a ded-
icated data structure, called Instruction Table, which can only contain:

27

2 – The Octantis project

• load operations, specifying the operand to be allocated inside the LiM
array.

• arithmetic and logic operations that are performed between two source
operands, which have been previously allocated.

Binding

The binding phase is responsible for the correct mapping of instructions
onto the desired output hardware structure, which, in the case of Octan-
tis, is represented by a LiM architecture. The C++ class responsible for the
mentioned task is called LiMCompiler, and it is invoked right after the sched-
uler by OctantisPass. It generates a LiM unit that is capable of performing
the operations required by the input algorithm, and a related finite state ma-
chine based on the control information gathered during the scheduling phase.

Before starting the discussion about how the binder carries out its task, it is
useful to have an overview of the LiM architecture taken as a reference by
Octantis. The main characteristic of the memory array is its regularity. Each
row has the same size and the cells belonging to a single row are uniform
and equipped with the same internal logic. As regards interfaces, rows can
handle two input connections, one in input to the memory cell and the other
to the internal logic, and one output connection. In order to carry out an
operation, two source operands are needed. They are stored inside two sepa-
rate memory rows, one of which must include the needed computational unit
useful for the required elaboration. Finally, an additional row is exploited to
store the result. Moreover, also configurable cells can be defined, referring
to the structure of the CLiM-Architectures briefly described before.

When LiMCompiler is launched, the parsing of the Instruction Table be-
gins. As already pointed out in the previous section, two possible types of
instructions can be found inside this data structure, load and arithmetic/-
logic operations. When considering the former, the binder inserts a new
memory row with the same size specified in the configuration file inside the
array, without the need of equipping its cells with any logic. On the other
hand, the latter requires more complex handling, described as follows. Once
the two source operands memory rows are identified, three cases can occur:

• both or one of the source rows are not equipped with any logic: one of
the two is chosen to be enhanced with the needed operators, connecting

28

2.3 – The structure of Octantis

their other input to the second operand.

• one of the source rows has the same logic required for the current op-
eration: if the number of input connections previously present in the
mentioned row was 1, an additional connection is added coming from
the other source row. This choice has been made in order to reduce
complexity.

• both source rows have different logic operators from the one required by
the current operation: this obviously represents the worst case, having
to duplicate one of the two source rows in a new one with the right LiM
cells. The other row is set as the other input for the logic.

Special cases are the ones represented by operations inside loops and ac-
cumulations. As regards the former, the scheduler collects the needed infor-
mation for the binder in order to properly map the unrolled loop onto the
LiM array. Hence, the number of inserted source or result LiM rows is given
by the number of loop iterations. On the other hand, the latter represents a
peculiar case effectively detected by the scheduler, in which one of the two
source operands is also the destination one. In this situation, the binder
identifies the set of LiM rows that contain the data to be accumulated, and
it inserts rows with intermediate results following a reduction tree strategy,
in order to compute the final result.

Along with the LiM array described above, LiMCompiler is also responsi-
ble for the generation of a data structure handling the control flow of the
mentioned architecture. Its main aim is to keep track of the active time of
each LiM row. This type of information is fundamental in order to prop-
erly simulate the behaviour of the overall structure, but also to estimate its
dynamic power consumption thanks to DExIMA.

Code Emission

The code emission phase, which is handled by PrintDexFile class, is in charge
of generating the output configuration file for DExIMA, starting from the
data structures that describe the final LiM system produced by the Octantis
synthesis process. This file is crucial to provide DEXiMA with both the syn-
thesized LiM architecture and the control flow of instructions that are meant
to be executed, which is useful for the dynamic simulation.

29

2 – The Octantis project

The description of the array takes place as a traditional RTL circuit. First
of all, the memory dimension has to be specified. Then, LiM cells composing
the structure have to be declared specifying their internal logic. In parallel,
the definition of interconnections has to be provided, which can be either in-
ter or intra cells. The former refers to the connection between two different
LiM rows, thus having a “vertical” flow of information. The latter indicates
connections inside a single row. This case occurs when an addition operation
is mapped, having to propagate the carry among the cells of the same row.
This type of connection is not made explicit by Octantis, however, PrintDex-
File recognizes it and properly defines it in the configuration file.

During Octantis first release, it has been decided not to print the section
regarding control signals due to the fact that DExIMA simulation details
were under study. However, Octantis could provide in output the full list of
memory rows with their respective active time, in order to perform a quick
debug on the generated structure.

30

Part II

The expansion of Octantis

31

Introduction and
Motivations

During the previous dissertation, an overview of the Octantis project has
been provided. As already highlighted, the expressiveness of the input C al-
gorithm is highly limited, mainly due to the fact that certain C structures are
not easy or even feasible to map on an hardware component. Furthermore,
being Octantis in its early stages, it has been decided to focus on providing
the internal structure of the program with a modular organization rather
than handling complex code constructs, which has been left to future expan-
sions of the tool. Hence, the main aim of this thesis work is to broaden
the set of C structures to be considered by the Octantis synthesis
process. The choice of the algorithmic constructs to be taken into account
has been made examining the possible benefits that they could derive from
parallel processing on LiM systems.

Switch and for loops represent the main basic C statements that the first ver-
sion of Octantis could manage. While the former does not take much advan-
tage from a LiM implementation, the latter is certainly more likely to profit
from the intrinsic parallel capabilities of the Logic-in-Memory paradigm. As
a matter of fact, a loop unrolling pass has been specifically designed in order
to fully exploit the mentioned characteristic. However, Octantis synthesis
could only handle:

• Simple for loops with no nesting structures.

• Trivial access only to one-dimensional arrays inside loops, namely the
common row major order.

The innovations introduced in the scope of this work mainly aim at over-
coming these limitations, giving Octantis the possibility to manage loop

33

nests and the synthesis of instructions involving one/two-dimensional
arrays, whose elements can be visited following well-defined Array Access
Patterns. At the same time, the extent of use of loop unrolling has been
enlarged in order to cope with the new structures. As a matter of fact, if
data dependencies are avoided, the LiM system can hugely benefit from the
application of the mentioned technique, especially in terms of execution time.
Moreover, this expansion of the tool represents a step forward in the anal-
ysis of LiM capabilities in relation to data-intensive applications, which are
highly affected by the drawbacks of the Von Neumann bottleneck, as already
pointed out in the introduction of the thesis.

As will be better clarified during the next chapters, a new Pass called Info-
Collector has been introduced at the beginning of Octantis synthesis pro-
cess, with the purpose of handling the increased amount of information com-
ing from the input C algorithm. It organizes it exploiting dedicated data
structures that are also useful for the subsequent phases. The introduction
of this preliminary pass has indeed led to the expansion of the previous
structure of Octantis. Furthermore, target-dependent optimizations
have been explored in order to minimize the amount of needed hardware
resources used for the final LiM architecture, whose area occupation may
become huge when considering more complex data-intensive algorithms.

Finally, the code emission phase has been enlarged with the addition of two
modules. The former addresses the generation of a VHDL description of
the LiM structure, including both the declaration of the datapath and the
control unit useful to properly drive the execution of the algorithm. A VHDL
testbench is also provided in order to test the correct behaviour of the system.
The latter is responsible for the production of the needed configuration files
for the new DExIMA-CAD tool, which allows a visual representation of
the LiM architecture.

The innovations carried out towards the expansion of Octantis are presented
and discussed during the next chapters. First of all, an introduction to the
Polyhedral Model is provided in Chapter 3, since InfoCollector Pass and the
rest of the synthesis process exploit several data structures that are orig-
inated from the main concepts and definitions of this model. After that,
the actual innovations are highlighted. The introduction of InfoCollector is
presented in Chapter 4. The aims and strategies adopted by the pass regard-
ing the handling of information are addressed, as well as the employed data

34

structures. In Chapter 5 the expansion of Octantis structure is addressed,
highlighting the modifications to the HLS stages and the benefits they have
derived from the introduction of the new pass are described. Successively,
the expansion of the code emission phase is discussed in Chapter 6. Finally,
Chapter 7 is dedicated to the test cases that have been devised in order to
verify the behaviour of the implemented innovations and gather meaningful
results.

35

36

Chapter 3

Polyhedral Model: a
powerful mathematical
framework

3.1 Introduction to the Polyhedral Model

InfoCollector takes advantage of some of the mathematical definitions that
belong to the polyhedral model in order to effectively organize and succes-
sively use the information regarding nested loops and array accesses.

The polyhedral model is a mathematical framework whose theoretical foun-
dations can be traced back to the work carried out by Karp, Miller, and
Winograd in 1968 within their seminal contribution called The Organization
of Computations for Uniform Recurrence Equations[11]. After that, several
studies[12] were conducted addressing the possibility of representing programs
by means of a set of linear equations, with the purpose of restructuring them
for parallel execution. Moreover, a great contribution was given by the re-
searches on loop transformations[13] and systolic arrays design[14] that were
carried out between the 70s and the 80s. During the 90s, all the mentioned
theoretical bases led to the actual development of the first tools that enabled
the use of polyhedral optimizations, such as PIP[15] and PolyLib[16].

In the last decades, the polyhedral model has been considered in the field
of compilation tools as it is capable of providing an innovative way of

37

3 – Polyhedral Model: a powerful mathematical framework

representing programs that can be exploited for optimized code genera-
tion. Nowadays, the large adoption of parallel hardware accelerators, such as
Graphic Processing Units (GPUs), requires compilers to implement proper
code analyses and transformations to let the algorithms benefit from the
mapping on such kinds of devices. The polyhedral model ensures a fine-
grained representation of the program, which is achieved by means of the
construction of mathematical relationships among several variables of inter-
est present in the program itself. This is particularly useful in applications
characterized by a large number of operations, such as algorithms with loop
nests. This model allows addressing the entire set of loop iterations at once,
thus devising restructuring opportunities that enable advanced optimization
techniques aimed at the parallelization of the program.

The progress made in the exploration of the capabilities of the polyhedral
model led to the birth of the so-called polyhedral compilation[17], which
includes the set of compilation analysis and optimization techniques that
rely on the representation provided by the model. It has been already
employed in many compiler tools, such as Polly[18] for what concerns the
LLVM framework. Its application has been also proposed to be employed
in other contexts, including memory usage optimizations[19], code genera-
tion for high-level synthesis[20]. Moreover, the polyhedral community has a
strong academic background and it is a lively research community, always
exploring possible further applications of the model.

3.1.1 Definitions and concepts
The mathematical objects around which the theory of the polyhedral frame-
work revolves are referred to as Polyhedra. They consist of sets of points in
a Z vector space whose borders are originated by a set of linear inequal-
ities. The main aim of this model is to represent a program by means of
polyhedra, which can be manipulated using mathematical transformations
in order to optimize the code that originated them. The exploitation of this
representation is well-suited for algorithms characterized by the presence of
loops.

Each loop in a program is characterized by boundaries and, eventually, con-
ditionals, which are identified by if statements that can be present in the loop
itself. The operands that are involved in the definition of both loop bound-
aries and conditionals must only depend on loop iterators and constants in

38

3.1 – Introduction to the Polyhedral Model

order to produce the mentioned inequalities that generate a polyhedron. The
set of consecutive statements in the code where loop bounds and conditionals
satisfy these requirements is defined as Static Control Part (SCoP).

The discussed features can be also expressed by means of a proper math-
ematical formalism. To begin with, in programming languages like C, an
n-deep loop nest can be represented through an n-entry vector called Iter-
ation Vector:

x⃗ = (i1, i2, ..., in−1, in) (3.1)

Each element ik indicates the iterator of the kth loop, where k indicates the
depth of the loop itself, n being the innermost one. Since iterators can assume
multiple values depending on the characteristics of the related loop, many
iteration vectors are originated, and they identify the Iteration Domain.
It can also be represented by the set of linear inequalities that stem from
loop bounds and conditionals mentioned above.

SCoP

Iteration Domain a

Iteration Domain b

Polyhedron

for(i=1; i<N; ++i)
 for(j=1; j<N; ++j)
 if(i < n + 2 - j)
 S

i>=1 i<=4

j<=4

j>=1
i<=2-j

j

i
1
2
3

3

4

1 2 40

[(1,1), (1,2), (1,3), ..., (4,1), (4,2)]

Figure 3.1. A SCoP with the possible representations of the related Iteration
Domain. Iteration Domain a is the set of all iteration vectors, while b shows
the linear inequalities that, in turn, form the 2-dimensional polyhedron.

Figure 3.1 shows an example SCoP and the related visualizations of the

39

3 – Polyhedral Model: a powerful mathematical framework

iteration domain. As it can be noticed in the referenced Figure, a two-
dimensional polyhedron has been generated by representing the iteration
domain on the ij-plane. The number of dimensions that characterize this
mathematical object is equal to the maximum depth of the loop nest.

At this point in code analysis, the generation of optimized code relies on
the proper scanning of polyhedra that have been produced. However, this
thesis work addresses the handling of nested loops towards the efficient par-
allelization and mapping of operations involving arrays onto a LiM architec-
ture. Hence, other concepts that belong to the same model and deal with
the management of array accesses have been considered, thus leaving the op-
timization of the algorithm to eventual improved future versions of Octantis.

In the polyhedral model, each array access is assigned with an Array Access
Function. In order to allow its comprehension, the concept of Access Vec-
tor must be introduced. Given a m-dimensional array A[a1][a2]...[aM−1][aM],
it is defined as:

RA = (a1, a2, ..., aM−1, aM) (3.2)

Each of the possible values that RA can assume enables access to a specific
element of the array A, and the set of all these values forms the Array
Domain. The array access function is defined as:

F : DI −→ DA, (3.3)

where DI is the iteration domain and DA is the array domain, and its
main purpose is to provide information about the element of the array A that
is visited during a specific iteration of the loop nest. The function can be
expressed by means of the following matrix equation:

F

i1
i2
.
.
.

in−1
in

= APMA

i1
i2
.
.
.

in−1
in

+ APMCA (3.4)

40

3.1 – Introduction to the Polyhedral Model

where APM is an MxN matrix that will be hereinafter referred to as
Access Pattern Matrix (APM) that multiplies the Nx1 iteration vector,
and the result is added to the so-called Access Pattern Matrix Constant
(APMC), which is Mx1. APM and APMC can identify a well-defined
Array Access Pattern for the array A that indicates the order in which the
elements of the array are visited in the loop nest.

3.1.2 The Loop Array Dependence graph
As already mentioned, one of the main tasks that the InfoCollector module
must accomplish consists in the collection of information about nested loops
and array accesses. This would allow obtaining the access pattern for each
array instance in the algorithm, and consequently performing the mapping
of the related operations onto a LiM system. Hence, InfoCollector needs to
implement a proper solution to enable the efficient organization of data re-
garding loops nests and arrays in order to create all the needed APMs and
APMCs, which will be exploited for the correct mapping of operations during
the binding phase.

The concept of Loop Array Dependence Graph (LAD) has been de-
veloped in [21] the context of design space exploration for HLS tools. It is
capable of representing the relationships among loops belonging to the same
nest but also between the loops and arrays accesses. The formal definition
of the LAD graph is the following:

• Given:

1. a loop nest L composed of N loops: L = L1, L2, ..., LN−1, LN

2. a set A of M arrays accessed inside the nest: A = A1, A2, ..., AM−1, AM

• The LAD is the the directed graph G(V, E) where:

1. V = L ∪ A

2. E is made up of the following edges:
– (Li, Li−1), if elements of L appear in order from the outermost

to the innermost, as L = L1, L2, ..., LN−1, LN .
– (Li, Aj), if array Aj is accessed using the iterator that belongs to

loop Li.

41

3 – Polyhedral Model: a powerful mathematical framework

L1: for(i=0; i<N; ++i)
 L2: for(j=0; j<N; ++j)
 L3: for(k=0; k<N; ++k)

 C[i][j] = A[i+1][k] + B[k][j]

L1

L2

L3

C A

B0 0 1
0 1 0

APMb
1 0 0
0 0 1

APMa

1 0 0
0 1 0

APMc

0
0

APMCb
1
0

APMCa
0
0

APMCc

Figure 3.2. A simple C code with 3 nested loops is provided along with the
associated LAD graph and the APMs and APMCs of each array.

A visual representation of the LAD graph is provided along with the C
code that generates it in Figure 3.2. APMs can be easily retrieved by com-
bining the information regarding the depth of each loop inside its nest and
the iterators that contribute to the formation of the array indexes. As a
matter of fact, the ordered organization of loops allows obtaining the itera-
tion vector. The edges between an array and a loop node can be exploited
in order to properly fill the related APM as follows:

• Given that array A is MxN and L loops are present:

– If the edge (Li, Aj) is present and the iterator of Li contributes to
index k of A, the element at position (k, i) of the APM will be the
integer n that multiplies the iterator in its occurrence within the
array index.

– If the edge (Li, Aj) is present but the iterator of Li does not con-
tribute to index k of A, the element at position (k, i) of the APM
will be zero.

– If the edge (Li, Aj) is not present, the element at position (i) in each
row of the APM will be zero.

42

3.1 – Introduction to the Polyhedral Model

On the other hand, the elements of APMCs can easily be retrieved by
checking for the presence of constants in the index of the array instance un-
der consideration.

Figure 3.2 shows an example C code with the related LAD graph and the
APMs and APMCs belonging to each of the three arrays instances inside the
loop nest. As will be better explained in the following chapters, InfoCollector
implements a strategy that takes great inspiration from how the LAD graph
organizes these types of information. The main aim is to generate the APMs
and APMCs, which are further analyzed to retrieve the access pattern of
each array in order to perform the correct parallelization of operations while
mapping them onto the final LiM system.

43

44

Chapter 4

InfoCollector: a
preliminary analysis pass

4.1 Introduction

Due to the necessity to handle more complex C constructs and data struc-
tures that can be employed for the description of the input algorithm, a new
pass called InfoCollector has been developed. It has been introduced as
it performs an appropriate analysis of the LLVM IR code to allow the up-
coming stages, binding and scheduling, to efficiently manage the access to
1/2-dimensional arrays inside nested loops.

Several concepts presented in Chapter 3 have been exploited. As a mat-
ter of fact, gathering useful information for the creation of Access Pattern
Matrices is one of the key tasks addressed by InfoCollector, as they represent
the central objects around which the mapping and parallelization of opera-
tions on the LiM system revolve.

The set of data structures and the techniques implemented by InfoCollec-
tor are discussed in detail during the dissertation of the following sections,
as they constitute a fundamental preliminary step that lays the foundation
for the evolution of the scheduling and binding phases.

45

4 – InfoCollector: a preliminary analysis pass

4.2 The collection of information
As it can be easily noticed by its name, InfoCollector mainly focuses on
the collection of information from the LLVM IR code. As a consequence,
the structure, the organization of the control flow and the meaning of each
instruction of LLVM IR must be clear to carry out this task in an efficient
way. For this reason, during the dissertation about the various analysis
performed by InfoCollector, several aspects of LLVM IR will be deepened,
thus allowing a better understanding of the strategies adopted. Three main
operations that address the gathering of information are implemented by the
new pass:

1. Alias Analysis aims at the identification of multiple local registers that
are used as aliases of a variable that has been allocated at the beginning
of the IR program. A proper data structure is exploited to keep track of
the relationship between aliases. It is extremely useful not only for other
analysis operations carried out by InfoCollector itself but also to let the
scheduling phase properly accomplish its task by quickly detecting data
dependencies between instructions.

2. Loop Analysis is aimed at recognizing loop iterators, operands that
identify loop bounds and, most importantly, the order of loops inside a
nest. It highly exploits the fixed form that characterizes LLVM natural
loops, presented in 4.2.2, in order to detect the mentioned parameters.
The information gathered is fundamental for the creation of a structure
inspired by the LAD graph.

3. Pointer Analysis explores the body of a loop searching for pointers,
which are used in the LLVM IR code to perform accesses to arrays.
They are easily recognizable as they are the result of the getelementptr
instruction. Once identified, they are analyzed in order to contribute to
the completion of the LAD graph.

In the next sections, the techniques adopted to carry out these three kinds
of analysis are detailed.

4.2.1 The importance of alias analysis
Here, the strategy that has been devised to execute alias analysis is con-
sidered. Before that, further details regarding the LLVM IR code structure

46

4.2 – The collection of information

are presented, as they are important for the proper comprehension of the
technique implemented.

According to the LLVM IR conventions, any variable belonging to the in-
put program has to be reserved its relative space inside the stack region of
the memory using the alloca instruction. It returns a pointer to the men-
tioned location, which is stored in a local register. When an operation is
performed, the required variable is fetched from the memory by means of a
load, and it is put inside an internal register. As regards arrays, the required
section in the stack frame has to be allocated as well at the beginning of the
program. When an operation requires access to an array, the getelementptr
instruction is used, as it returns a pointer that can be stored in a register.
Then, it is used by a load operation as an address in order to retrieve the
correct element of the array from the memory.

The objective of the alias analysis performed by InfoCollector is to keep
track of the relationship between the values returned by alloca instructions
and:

• For every single variable, the list of all local registers where the same
variable has been stored.

• For each array, the list of pointers used to access it.

The data structure that has been exploited to specify the mentioned re-
lations is a C++ map, named aliasInfoMap. It consists of an associative
array composed of elements called pairs, each one having a unique key identi-
fier and a related value field. This arrangement perfectly suits the modelling
of information required by this task, as the creation of a univocal connection
between the two parts mentioned above can be implemented. The strategy
adopted to populate the data structure is reported in the following:

• When an alloca is detected, a new pair is created using its destina-
tion register as the key field, and it is inserted in aliasInfoMap. The
associated value is left empty, waiting to be filled.

• When a load is found, if the operand of the instruction corresponds to
a key inside aliasInfoMap, its destination register is added to the list of
aliases in the related value field. In Listings 4.1 and 4.2, an example
C code is provided along with the related LLVM IR, in which local
identifiers %4 and %5 are the aliases respectively of %1 and %2.

47

4 – InfoCollector: a preliminary analysis pass

Example of alias analysis for load instructions

void foo (){
int A, B, C;

C = A + B;
}

Listing 4.1. C code

define dso_local void @foo () #0 {

%1 = alloca i32 , align 4
%2 = alloca i32 , align 4
%3 = alloca i32 , align 4
%4 = load i32 , i32* %1, align 4
%5 = load i32 , i32* %2, align 4
%6 = add nsw i32 %4, %5
store i32 %6, i32* %3, align 4
ret void

}

Listing 4.2. LLVM IR code.

• When a getelementptr is identified, its operand is searched among
the various keys already present in aliasInfoMap, as it must refer to a
previously allocated array. If it is found, the destination register of the
getelementptr instruction is inserted in the list of aliases contained in the
related value field. The example C code and the related LLVM IR are
provided below in Listings 4.3 and 4.4. Registers %11 and %17 contain
the pointer used for the access of arrays A and C, respectively identified
in the LLVM IR with %1 and %3.

alias analysis for GEP instructions

void foo (){
int A[10] , B, C[10];

for(int i = 0; i < 10; ++i){
C[i] = A[i] + B;

}
}

Listing 4.3. C code

48

4.2 – The collection of information

alias analysis for GEP instructions

define dso_local void @foo () #0 {
%1 = alloca [10 x i32], align 16
%2 = alloca i32 , align 4
%3 = alloca [10 x i32], align 16
%4 = alloca i32 , align 4
store i32 0, i32* %4, align 4
br label %5

5:
; Loop Header

;Loop Body
8:

%9 = load i32 , i32* %4, align 4
%10 = sext i32 %9 to i64
%11 = getelementptr inbounds [10 x i32], [10

x i32]* %1, i64 0, i64 %10
%12 = load i32 , i32* %11, align 4
%13 = load i32 , i32* %2, align 4
%14 = add nsw i32 %12, %13
%15 = load i32 , i32* %4, align 4
%16 = sext i32 %15 to i64
%17 = getelementptr inbounds [10 x i32], [10

x i32]* %3, i64 0, i64 %16
store i32 %14, i32* %17, align 4
br label %18

18:
; Loop Latch

21:
ret void

}

Listing 4.4. LLVM IR code

• A sext instruction may be present right after a load in order to perform
a sign extension of the value fetched from the memory. This is done only
if the operation that successively elaborates the operand requires it. In
these cases, the destination register of the sext instruction is considered
as an alias of the variable retrieved by means of the previous load.

49

4 – InfoCollector: a preliminary analysis pass

The data structure created by means of the described process is a sup-
port object to the other operations performed by InfoCollector, as well as to
the scheduling phase. As a matter of fact, each time an operation has to
be carried out, alias registers are created either due to load or getelementptr
instructions. Hence, the discussed analysis is fundamental to quickly identify
which variable or array is addressed.

InfoCollector highly exploits aliasInfoMap during its exploration of loops
and pointers, mainly in order to efficiently recognize the loop iterators that
contribute to the formation of pointers and the arrays visited by means of
the latter. On the other hand, the scheduler needs this type of information
to properly construct the list of instructions to be mapped on the final LiM
system.

4.2.2 The handling of loops

As already pointed out, Octantis highly focuses on for-loops, as their proper
management can allow for the implementation of parallel execution of oper-
ations on a LiM architecture. As a matter of fact, the tool performs loop
unrolling whenever such structure is identified in the code, supposing no
correlations are present among different iterations due to data dependencies.
They indeed constitute the main threat to concurrent execution, and they
must be avoided as much as possible in the development of the algorithm.

However, if loop unrolling is effectively carried out, multiple operations shar-
ing the same time frame can be mapped on a LiM system, thus fully exploit-
ing its intrinsic parallel capabilities. While the overall area occupation of
the final circuit may become quite large, growing with the complexity of the
input program, timing performance benefits significantly, remaining rather
low even with more elaborated algorithms.

The main objective of the strategies and data structures introduced by Info-
Collector is to broaden the scope of loop unrolling by enabling the handling
of loop nests. The support of these advanced constructs allows for further
exploration of the potential of LiM systems. In the following paragraphs, the
general structure of LLVM loops is examined, in order to help understand
the implemented techniques regarding the management of nested loops.

50

4.2 – The collection of information

The loop structure in the LLVM IR

The official LLVM documentation provides a deep description of the structure
of loops in LLVM at[22]. LLVM internally represents the input program
by means of a control-flow graph (CFG), where nodes and edges identify
the collection of paths that might be traversed during the execution of the
program itself. As regards LLVM, each node corresponds to a different basic
block in the IR, and a loop can be identified as a subset of nodes from the
CFG with the following properties:

1. the sub-graph that contains all the edges from the CFG within the loop
is strongly connected, which means that every node is reachable from all
others.

2. All edges coming from outside the sub-graph point to the same node
called the header. As a consequence, every execution path to any of the
other nodes of the loop have to pass through the header.

3. The loop is the maximum subset with these properties. Hence, no addi-
tional nodes from the CFG can be added such that the induced sub-graph
would still be strongly connected and the header would remain the same.

The loop structure defined above is usually referred to as natural loop.
Each of its internal basic blocks has specific properties and contains differ-
ent types of useful information that can be exploited for both analysis and
optimization. Furthermore, the loop-simplify Pass, which is already taken
into account in the first version of Octantis, performs a normalization of
the natural loop, thus creating a fixed loop structure. The availability of
a constant arrangement represents a great advantage for developers, as an
algorithm can be easily identified leveraging this well-defined organization.
Hence, the classification of the nodes and edges that characterize a natural
loop is fundamental, and it is provided in the following:

• Header: as already mentioned, it is the loop entry node.

• Pre-header: it is the only predecessor of the header node. It is always
executed before entering the loop.

• Latch: it is the node from which the edge (back-edge) that returns to
the header starts. It is unique and it is always executed before starting
a new iteration.

51

4 – InfoCollector: a preliminary analysis pass

• Back-edge: it is the edge from the latch to the header, and it is unique.

• Body: it is the set of nodes that can be traversed to reach the latch.
The basic blocks that compose the loop body are the ones that contain
the operations effectively carried out inside the loop itself.

• Exit-block: it is the target node of the header, reached when the loop
is exited. Hence, it is always executed after exiting the loop.

Pre-header

Header

Body

Latch

Exit block

B
ac

k-
ed

g
eLoop

Figure 4.1. Structure of an LLVM natural loop

Figure 4.1 shows the structure of the natural loop described above. The
use of the presented nodes can be extended for the characterization of nested
loops. In this case, the loop-simplify Pass ensures the creation of a Chinese-
box structure, as depicted in Figure 4.2, where each loop preserves its well-
defined nodes. The comprehension of this regular organization has been
fundamental for the definition of the implemented strategies aimed at the
collection of information about loops.

52

4.2 – The collection of information

Outer loop

Pre-header

Pre-header

Header

Body

Latch

Exit block

Inner Loop

Header

Latch

Body

Exit block

Figure 4.2. Structure of a loop nest composed of two loops after the
loop-simplify Pass has been issued

53

4 – InfoCollector: a preliminary analysis pass

The strategy for gathering loop information

Before starting the discussion about the implemented techniques, it is useful
to highlight the characteristics that for-loops must have to be compliant with
the new Octantis synthesis process. The introduced novelties allow the tool
to effectively gather information regarding:

• The presence of multiple loops nests in the program, each with an
arbitrary number of inner for-loops.

• The nesting order of loops inside a single nested structure.

• The nodes of a single for-loop and its iterator, which must satisfy
several constraints:

– its initial value must be constant.
– its final value can be either a constant or an iterator belonging to

an outer loop with respect to the current one.
– its increment must be constant.

Hence, InfoCollector addresses the collection of data regarding both sin-
gle loops and their arrangement towards the creation of loop nests. A class
called LoopInfoTable has been designed specifically to handle these types
of information, providing suitable internal data structures that are presented
later. The following dissertation deals with the two mentioned aspects sepa-
rately, along with an explanation of the relative adopted strategies.

As regards single for-loops, the exploration of the LLVM IR code performed
by InfoCollector focuses on the extraction of parameters that characterize
them, such as their iterators, their boundaries and the basic blocks that
compose them. The LLVM analysis pass called LoopInfoWrapperPass has
been exploited to obtain the list of loops that are present in the code, which
are provided as instances of the LLVM Loop class. This class also implements
methods to access the nodes of a single loop, whose investigation is useful
to retrieve fundamental features. As a matter of fact, several basic blocks
always contain specific operations mainly involving iterators:

• In the pre-header node, the initial value of the loop iterator is stored
inside related memory location.

54

4.2 – The collection of information

• The header performs the comparison between the current value of the
loop iterator and its final value by means of an icmp instruction. Based
on its outcome, the control is handed over to the loop body or the exit-
block.

• In the latch, the increment is added to the iterator variable, which is
stored again in memory.

For each loop in the program, InfoCollector retrieves these blocks and
analyzes them in order to detect the mentioned parameters. The obtained
information is stored inside loopInfoMap, which is an internal map data
structure of the LoopInfoTable class, depicted in Figure 4.3. loopInfoMap al-
lows to keep track of the relationship between each loop, univocally identified
by means of its loop iterator, and the details about its nodes and parameters.

LoopInfoTable contains another map named nestedLoopMap that is used
to model the arrangement of loops in nested structures. As shown in Figure
4.3, its main aim is to store, for each innermost loop of a nest in the program,
the list of its outer loops. As done for loopInfoMap, all of them are iden-
tified using their iterator. LoopInfoWrapperPass has been taken again into
account, as it provides a method that enable the access to the parent of a
given loop, namely the loop that directly contains the current one. Starting
from the innermost loop and exploiting this method, all the outer ones are
obtained in order. This structure is fundamental as it directly implements
the “central” part of a LAD graph discussed in Chapter 3.

55

4 – InfoCollector: a preliminary analysis pass

Loop(j)

Loop(i)

Loop(k)

nestedLoopMap loopInfoMap

LoopInfoTable

k
j

i

InfoCollector

i

j
initial value of iterator j
final value of iterator j
increment of iterator j
basic blocks of loop with IT j

k

initial value of iterator i
final value of iterator i
increment of iterator i
basic blocks of loop with IT i

initial value of iterator k
final value of iterator k
increment of iterator k
basic blocks of loop with IT k

Figure 4.3. A simplified example program composed of 3 nested loops is
considered. LoopInfoTable and the related organization of data inside loop-
InfoMap and nestedLoopMap are detailed.

4.2.3 The handling of pointers

In LLVM IR, arrays are multidimensional data structures whose values are
stored inside a set of adjacent memory addresses. Performing the access
to an array is not as immediate as fetching a single variable, which can be
easily loaded from memory and stored again by means of load and store in-
structions. In order to retrieve an element from a specific position inside the

56

4.2 – The collection of information

array, a more complicated procedure is required, in which an essential role
is played by pointers. They represent a particular type of variables that
is responsible for storing the address of a memory location. A local register
that contains a pointer can be effectively exploited by a load in order to fetch
the desired value of an array.

The access to multidimensional structures is typically performed inside loops,
as many algorithms require traversing arrays following a well-defined pattern.
Therefore, loop iterators usually contribute to the formation of the indices
of an array. As a consequence, in LLVM IR, the construction of memory
addresses by means of pointers is tightly connected to loop iterators. Hence,
the main goal of pointer analysis is to identify which iterators are used for
the creation of each pointer. This operation is crucial for the realization of a
structure inspired to the LAD graph and the subsequent detection of array
access patterns, which are useful for the proper mapping of operations on
the final LiM system.

The combination of the enhanced loop unrolling capabilities and the han-
dling of more complex access patterns will take advantage of the regular
structure of a LiM architecture, in order to achieve high performance due to
the parallelization of operations.

Array access in the LLVM IR

The access to aggregate data structures is performed by means of pointers,
which are obtained through a getelementptr instruction. Although it can
be exploited to generate addresses for whatever user-defined Struct, Info-
Collector only takes them into account with respect to one/two-dimensional
arrays, as they represent the structures effectively handled by the Octantis
synthesis process. In order to better explain how getelementptr works, two
examples are examined.

The C code and the relative LLVM IR of the first example are respectively
shown in Listing 4.5 and Listing 4.6. In the C implementation, two Structs
are declared, and function foo returns the pointer to an element of array B
in RT, which is in turn contained in ST.

57

4 – InfoCollector: a preliminary analysis pass

Example C code

struct RT {
char A;
int B [10][20];
char C;

};
struct ST {

int X;
double Y;
struct RT Z;

};

int *foo(struct ST *s) {
return &s[1].Z.B [5][13];

}

Listing 4.5. C code for the first example

Example LLVM IR

% struct .RT = type { i8 , [10 x [20 x i32]], i8 }
% struct .ST = type { i32 , double , % struct .RT }

define i32* @foo (% struct .ST* %s)
{
entry:

% arrayidx = getelementptr inbounds % struct .ST ,
% struct .ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13

ret i32* % arrayidx
}

Listing 4.6. LLVM IR code for the first example provided

In the LLVM IR code, the return value of the function foo can be directly
generated by means of a getelementptr instruction. As it can be noticed by
analyzing this operation, more than one argument is present:

• The first parameter is always the type used as the basis for the calcu-
lations, %struct.ST in the example.

• The second argument is always a pointer, and it identifies the base
address to start from. In the example, it is represented by %struct.ST *,

58

4.2 – The collection of information

a pointer to %struct.ST, which is a structure composed by the following
elements : i32, double and %struct.RT.

• The remaining parameters are indices used for the creation of the cor-
rect address of the required element. The first of them always refers to
the pointer given as the second argument. In the example, the third
parameter points to %struct.ST*, thus returning the structure type
%struct.ST. After that, a set of chained operations is performed, in
which each index parameter points to a value of the type retrieved by
means of the previous index. In the case of the presented example,
the fourth argument points to the third element of the ST structure
previously obtained, yielding a %struct.RT type. The next parameter
indicates the second element of RT, returning a [10 x [20 x i32]] type, an
array. The last two are exploited to point to an element of the mentioned
array in order to obtain the final pointer to a i32 type value.

%arrayidx = getelementptr inbounds %struct.ST, %struct.ST* %s, i64 1, i32 2, i32 1, i64 5, i64 13

ST

RT

10x20

1x20return
value

Figure 4.4. Visual representation of how the parameters of a getelementptr
instruction are used to obtain the final pointer in the first example provided.

Figure 4.4 allows to visualize the discussed functioning. It is also possible
obtain “partial” pointers while indexing a structure. Hence, the calculation
of the final address can be performed by using more than one getelementptr,
achieving the same correct result. This is the case of the LLVM IR code

59

4 – InfoCollector: a preliminary analysis pass

snippet provided in Figure 4.5. Only the part of code responsible for the
access to a 8x8 matrix of 32-bit integer values using loop iterators is reported.

 outer loop iterator

 inner loop iterator

Memory%26 = load i32, i32* %6, align 4

%27 = sext i32 %26 to i64

%28 = getelementptr inbounds [8 x [8 x i32]], [8 x [8 x i32]]* %1, i64 0, i64 %27

%29 = load i32, i32* %7, align 4

%30 = sext i32 %29 to i64

%31 = getelementptr inbounds [8 x i32], [8 x i32]* %28, i64 0, i64 %30

Figure 4.5. Code snippet related to the second example examined. The use
of loop iterator in getelementptr instructions is highlighted.

In this example, two separate getelementptr are employed to obtain the
desired address. The first returns a pointer to a 1-dimensional array of 8
integer elements, which corresponds to an entire row of the allocated matrix.
In this case, the variable that contains the iterator of the outer loop is used as
index. The generated pointer is taken into account by the second instruction
in order to retrieve the address of the required element, using the iterator of
the inner loop as index.

In conclusion, the address calculated by means of getelementptr can be ex-
ploited either by a load to fetch the needed value from memory, or by a store
to put the elaborated data inside the pointed memory location.

The strategy for gathering pointer information

With the introduction of InfoCollector, Octantis is now able to handle ac-
cesses to one/two-dimensional arrays inside loops. However, some constraints
must be respected mainly regarding the composition of the indexes of an ar-
ray, which, in order to be effectively managed by the new pass, can be formed
by:

1. a single loop iterator;

2. the sum of two loop iterators;

60

4.2 – The collection of information

3. the sum of an iterator and a constant;

Although this set is quite limited, it ensures the possibility to exploit
many different access patterns. A C++ class named PointerInfoTable has
been developed specifically in order to handle the information obtained from
the analysis of getelementptr instructions. pointerInfoMap is a map data
structure, internal to PointerInfoTable, that stores, for each pointer used to
perform access to an array, useful information mainly regarding the loop it-
erators exploited for its definition.

Each time InfoCollector identifies a getelementptr, it analyzes its arguments
in order to understand which iterators and constant values contribute to the
formation of the pointer under study. After that, the same pointer and its
related information are inserted in pointerInfoMap as a pair. Hence, each
entry of pointerInfoMap is univocally identified through its pointer operand.
As also highlighted in the second example of the previous section, there is
a tight correspondence between a pointer in the LLVM IR and the indexes
of an array in the C program. As a consequence, the described analysis is
fundamental to effectively recognize the order in which the input algorithm
performs the access to an array.

Since Octantis aims at supporting the synthesis of 1/2-dimensional arrays,
two main cases can occur.

The first takes into account the access to linear arrays, which are char-
acterized by a single dimension. Hence, only one getelementptr is needed
to generate a suitable pointer for these structures. The information about
how the index of the array is composed can be obtained by analyzing the
fourth argument of the instruction, which is represented by a local identifier.
InfoCollector explores the operations contained in the loop body in order to
know which iterators and/or constants have been considered for the creation
of that operand. The aliasInfoMap data structure produced by means of
alias analysis is highly exploited during this task to properly recognize the
operands of each instruction that InfoCollector takes into account. Once the
required information regarding the pointer has been identified, the gathered
data are stored in pointerInfoMap.

As regards the access to matrices (2-dimensional arrays), two getele-
mentptr instructions must be used to define a suitable pointer, since two

61

4 – InfoCollector: a preliminary analysis pass

indices are required. Each of them is handled following the procedure de-
scribed above. However, only the pointer operand returned by the second
getelementptr is inserted inside pointerInfoMap, along with the information
collected from the analysis of both indices.

pointerInfoMap

PointerInfoTable

InfoCollector

Loop(j)

Loop(i)

C[i][j+1]=A[i]+B

Loop(j)

Loop(i)

Pc: pointer to C
Pa: pointer to A

C code LLVM IR code

Pc

Access Pattern Matrix of Pc

Access Pattern Matrix Constant of Pc

first index

iterator: i
constant: null
operation: null

second index

iterator: j
constant: 1
operation: add

Pa

Access Pattern Matrix of Pa

Access Pattern Matrix Constant of Pa

first index

iterator: i
constant: null
operation: null

second index

iterator: null
constant: null
operation: null

Figure 4.6. Internal structure of PointerInfoTable for a simplified code.

62

4.3 – The construction of Access Pattern Matrices

Figure 4.6 shows the internal organization of pointerInfoMap for a simpli-
fied input program in which a vector C and a matrix A are employed. As
a result, two pairs are inserted in pointerInfoMap, one for each pointer used
to perform the access to the arrays, respectively named Pc and Pa. On the
other hand, the related information are stored in the value field of each pair.
Along with the composition of each index, the APM and the APMC of each
pointer are stored, even though they are obtained by means of the analysis
of the LAD graph structure examined in the next section.

4.3 The construction of Access Pattern Ma-
trices

In the previous discussion, the data structures responsible for storing infor-
mation about parameters characterizing single loops, their order inside loop
nests and the composition of pointers have been examined. The combination
of the information handled by LoopInfoTable and PointerInfoTable leads to
the generation of a structure totally equivalent to the LAD graph presented
in the previous chapter.

As a matter of fact, nestedLoopMap is devoted to the representation of the
order in which loops are nested, identifying each of them by means of their
iterator. On the other side, pointerInfoMap aims at reconstructing the com-
position of the indexes of an array, which make use of loop iterators, too.
Hence, they constitute a connection point between the two structures, thus
creating a LAD graph, as shown in Figure 4.7.

Exploiting the availability of such an infrastructure, InfoCollector performs
a detailed analysis of all pointers in pointerInfoMap with the purpose of cre-
ating their related APM and APMC. These matrices will be explored during
the binding phase in order to detect the actual access pattern of the array,
which is a fundamental information for the correct mapping and paralleliza-
tion of operations onto the final LiM architecture. The strategy adopted by
InfoCollector for the generation of the APM observes the following steps:

1. A pointer is chosen from pointerInfoMap.

2. The nested structure in which the pointer under investigation resides is
fetched from nestedLoopMap.

63

4 – InfoCollector: a preliminary analysis pass

3. For each index of the current pointer, loops are visited starting from the
outermost to the innermost.

4. If the current loop iterator contributes to the index, a 1 is inserted in
the matrix, otherwise a 0.

pointerInfoMap

PointerInfoTable

Pb

Access Pattern Matrix of Pb

Access Pattern Matrix Constant of Pb

first index

iterator: i
constant: null
operation: null

second index

iterator: j, l
constant: null
operation: add

Pa

Access Pattern Matrix of Pa

Access Pattern Matrix Constant of Pa

first index

iterator: i
constant: null
operation: null

second index

iterator: j
constant: null
operation: null

PaPb

0 0 1 0
0 1 0 1

APMb

1 0 0 0
0 1 0 0

APMa

nestedLoopMap

l

k

j

LoopInfoTable

i

Loop(j)
Loop(i)

Loop(k)

Loop(l)

B[k][j+l]

A[i][j]

i

j

k

l

Figure 4.7. A simplified code with 4 nested loops where the access to arrays
A and B is provided at the top. The organization of information by means
of PointerInfoTable and LoopInfoTable allows the creation of a LAD graph,
from which the APMs of the two arrays are extracted.

The creation of the APMC is much simpler, as only the presence of con-
stants must be checked for each index of the array. Hence, visiting the LAD
graph is not necessary.

64

4.4 – The identification of valid Basic Blocks

4.4 The identification of valid Basic Blocks
During its exploration of the LLVM IR code, InfoCollector also performs an
important analysis aimed at the detection of basic blocks whose instructions
should not be mapped on the final LiM system. As already highlighted in
the previous chapters, only few operations have to be actually scheduled and
later implemented on the LiM architecture. On the other hand, the majority
of them is only considered for gathering useful information to correctly drive
the synthesis process.

Within this scenario, InfoCollector acts as a filter interposed between the
IR code and the scheduler. It identifies the subset of basic blocks that con-
tain meaningful instructions for the mapping on the LiM system, which are
referred to as valid, and it gathers them in a data structure that is provided
to the scheduler. The described behaviour is depicted in Figure 4.8.

However, even inside valid blocks, several operations can be avoided for
scheduling, mainly the ones that generate pointers (getelementptr) or con-
tribute to the definition of indices, such as load, store, sext and add whose
operands are loop iterators. Exploiting its other internal data structures,
such as aliasInfoMap, InfoCollector also implements suitable methods to al-
low the scheduler to quickly identify these instructions and skip them.

BB2

BB3

BB1

BB4

BB0

InfoCollector

BB2

BB3

BB1

BB4

BB0

BB2

BB4

BB0

SchedulingLLVM IR

not valid

not valid

Valid BBs

Figure 4.8. Scheme showing the filter-like behaviour of InfoCollector.

Since loops represent the key constructs around which the focus of the new
pass revolves, it is useful to explain how the presented analysis addresses the
four main blocks that form them:

65

4 – InfoCollector: a preliminary analysis pass

• The body and the pre-header of a loop are considered valid. The former
is the most important basic block, as it contains the main operations of
the algorithm that involves arrays and variables. The latter, especially
in loop nests, can include several instructions related to the body of
the immediately outer loop. Hence, it is given to the scheduler, which
recognizes the useful instructions exploiting the methods provided by
InfoCollector discussed above.

• The header and the latch of a loop are marked as not valid, as their only
purpose is respectively to initialize the iterator and increment its value.

In conclusion, the presented tasks performed by InfoCollector have been
devised in order to improve the performance of the scheduling phase, as it
will be better clarified in Chapter 5. This strategy also allows enhancing
the modularity of the Octantis structure, by avoiding the implementation
of complex logic in the scheduler. Instead, the gathering of this “support
information” is addressed by InfoCollector, whose data structures facilitate
its detection.

66

Chapter 5

The evolution of Octantis
structure

5.1 Introduction

With the introduction of InfoCollector, both the scheduling and the binding
phase have been modified in order to take full profit from the data structures
and strategies implemented by the new Pass.

The analysis regarding alias registers and valid basic blocks carried out by
InfoCollector allows the speed up of the scheduling phase. The scheduler
can avoid considering all the instructions in the IR code, and it is assisted in
the detection of operands. Moreover, the details about pointers collected by
the same Pass has to be transferred to the binder for the correct mapping of
operations. Hence, the scheduler has the crucial task to assign each operand
with the related pointer, and convey this information to the subsequent stage
through Instruction Table.

The binding phase has undergone a major evolution, due to the fact that
it has to handle both the proper mapping and parallelization of operations,
which may also involve arrays. In this case, the identification of the array
access patterns has to be carried out by the binder as well, carefully analyz-
ing the APMs provided by InfoCollector.

The evolution and the improvements brought to the mentioned phases are
discussed respectively in Sections 5.2 and 5.3.

67

5 – The evolution of Octantis structure

5.2 The scheduling phase: leveraging Info-
Collector

In the first version of Octantis, the scheduler needed to collect information
regarding alias registers and perform checks to avoid instructions that should
not be considered for the mapping on the LiM system. Although these op-
erations are essential for the successful execution of this phase, they do not
strictly belong to it.

With the introduction of InfoCollector, the implementation of the mentioned
tasks is carried out by the new pass before the scheduling stage even starts.
This choice allows the scheduler to focus on its main objective, while be-
ing supported by InfoCollector, which can address the wide problem of the
“collection of information” in a more efficient manner. As already explained,
InfoCollector performs alias analysis and detects valid basic blocks, also pro-
viding methods for the identification of meaningful instructions inside them.
As a consequence, the performance of the scheduler is improved. More-
over, its future expansions can rely on the availability of these operations in
order to explore new solutions. Furthermore, this design choice also enhances
the modularity of Octantis structure.

The scheduling phase also represents the connection point between the gath-
ering of data about pointers and the actual mapping of operations involving
arrays performed by the binder. Hence, the data structure aimed at storing
the list of scheduled instructions, called Instruction Table, has been properly
modified in order to convey the information regarding pointers.

The main parameters that characterize an operation present in Instruction
Table are the destination operand and the source operands, respectively ex-
ploited to contain and generate the final result. As Octantis supports the use
of one/two-dimensional arrays, information useful to obtain the related access
patterns is needed to be attached to each of the mentioned operands, in case
they were arrays, ready to be identified during the binding phase. For this
reason, three additional parameters have to be specified for each operation in
Instruction Table, one for each operand, specifying the pointer employed to
perform the access to the related array. The analysis of alias registers carried
out by InfoCollector helps the scheduler recognize the operands that need to
be associated with a pointer, as they refer either to a linear array or a matrix.

68

5.2 – The scheduling phase: leveraging InfoCollector

During the binding phase, if the operand that is taken into account is a
single variable, the related pointer will be null. However, if a vector or ma-
trix is considered, the pointer is searched in PointerInfoTable in order to
obtain the information regarding its APM and APMC, which are later ana-
lyzed as explained in Section 5.3 for the correct mapping and parallelization
of the operation.

In Figure 5.1, the crucial task that the scheduling phase carries out as junc-
tion point between InfoCollector and the binder is depicted.

information
about pointersInfoCollector

aliasInfoMap

validBBs

PointerInfoTable

Scheduling Binding

 PointerInfoTable

InstructionTable
instruction 1

src1 src2 dest
src1Ptr src2Ptr destPtr

Figure 5.1. Movement of information and data structures among InfoCol-
lector, the scheduler and the binder, with the introduction of parameters
regarding pointers in Instruction Table.

69

5 – The evolution of Octantis structure

5.3 The binding phase: facing higher com-
plexities

The main aim of the binding phase is the actual generation of LiM system
that implements the operations required by the input C algorithm promoting
parallel execution as much as possible. The first version of Octantis provided
efficient solutions for the mapping of the following elaborations:

1. Sum and bitwise operations (and, or, xor, nand, nor, xnor) involving
variables outside a loop.

2. Sum and bitwise operations inside a single for-loop, involving both vari-
ables and one-dimensional arrays, whose index must correspond to the
loop iterator. No data dependencies should be present, allowing the
proper unrolling of the loop iterations on the LiM architecture. An
example in provided below in Listing 5.1.

Example 1

for(int i = 0; i < N; ++i)
C[i] = A[i] + B;

Listing 5.1. Example of operation in a loop.

3. Accumulation of the values of a vector inside a variable. The array is
visited by means of a for-loop, its elements are repeatedly summed and
the final result is stored in a variable. In this case, a reduction-tree
strategy, shown in Figure 5.2 is implemented in order to perform the
accumulation, which allows the execution time to be O(log(N)), where
N is the number of items in the array. The C code in Listing 5.2 shows
an example of accumulation.

Example 2

for(int i = 0; i < N; ++i)
S = S + A[i];

Listing 5.2. Example of accumulation.

70

5.3 – The binding phase: facing higher complexities

0x0 0x4

0x1c

0x8 0xc 0x10 0x14 0x18

+ + +

0x20 0x24

0x28 0x2c

0x30

+ +

+

Figure 5.2. Mapping of the accumulation operation on an set of LiM rows
implemented following a reduction-tree strategy.

Along with the higher complexity of the input program, Octantis binding
phase has evolved in order to correctly manage the expansion of the oper-
ations mentioned at points 2 and 3. As a matter of fact, loop nests allow
multiple array access patterns to be exploited. The information about them
is taken into account by the binder thanks to the data regarding pointers
coming from InfoCollector and effectively conveyed by means of the sched-
uler. Data dependencies should be avoided as much as possible, in order to
enable loop unrolling and the subsequent high parallelization of operations
on the final LiM system.

New strategies have been also introduced to address the handling of more
than one accumulation set at a time. This kind of operations could lead to
a great amount of needed hardware resources as well as a huge final area oc-
cupation. In order to tackle these issues, target-dependent optimization
techniques have been implemented with the purpose of promoting the reuse
of intermediate results stored in LiM rows that have already been mapped.

The following sections deal with the evolution that the Octantis binding

71

5 – The evolution of Octantis structure

phase has undergone, in order to obtain array access patterns from APMs
and APMCs, manage more elaborated accumulations, and perform suitable
optimization steps aimed at reducing the overall area of the LiM system.

5.3.1 Handling array access patterns
One of the main goals of InfoCollector is to assign each pointer in the LLVM
IR, which corresponds to an array instance in the C code, with an APM and
an APMC, whose construction is discussed in the Chapter 4. The binding
phase has been modified in order to properly handle these data structures to-
wards the extraction of the related array access patterns. Their identification
represents a key point around which the correct mapping and parallelization
of operations involving 1/2-dimensional arrays on LiM systems revolves. As
a matter of fact, they provide crucial information regarding the order in
which elements of the matrices or vectors used in the algorithm are visited,
thus allowing the correct interconnections among LiM rows that belong to
different array operands to be carried out.

Before starting the examination of the new structure of the binder and the
implemented strategies, it is useful to highlight several characteristics about
the operations supported by Octantis synthesis process. As already men-
tioned in the previous section, two main categories of operations can occur
inside a for-loop, and different solutions and optimization techniques must be
devised for their proper mapping on a LiM architecture. These two groups
along with their main features are presented in the following:

• Fully-parallel (FP) operations are the ones that highly benefit from
the implementation of the loop unrolling technique, thus exploiting the
entire potential of the intrinsic parallel capabilities of a LiM architecture.
This is due to the total absence of data dependencies, which require the
destination operand not to appear among the source ones. They can be
represented by both bitwise and sum operations that occur inside loop
nests. An example of this kind of elaborations is provided in Listing 5.3:

72

5.3 – The binding phase: facing higher complexities

Example of fully-parallel operation

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

C[i][j] = A[j] ^ B[i];

Listing 5.3. FP operation.

• Accumulations require the sum of all elements that belong to a given
set. This kind of elaboration usually exploits a temporary variable inside
which the values are repeatedly accumulated, as shown in the following
example:

Example of accumulation

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

S = S + A[j][i];

Listing 5.4. Accumulation.

Since a data dependency is present, a complete parallelization is not
feasible. Accumulations need ad hoc optimizations and mapping tech-
niques, since operands stored in multiple LiM rows that belong to the
same array must be summed together. However, in a LiM system, dif-
ferently from a serial implementation, data that must be accumulated
are all available for calculation in parallel. Hence, as mentioned in the
previous section, a reduction-tree mapping technique is adopted in order
to let the overall execution time be O(log2(N)), instead of typical O(N)
that characterizes the serial approach.

The new internal organization of the binder structure reflects the discussed
separation, even though both types of operations take great advantage from
the exploitation of APMs and APMCs. The binder can access to PointerIn-
foTable and obtain the APM and APMC of each pointer present in the code.
The related array access patterns are retrieved by means of the analysis of
the APMs.

73

5 – The evolution of Octantis structure

The procedure that allows the retrieval of array access patterns starting
from APMs is based on the identification of specific pre-defined templates
inside the APM itself. As a matter of fact, special arrangements of the ele-
ments belonging to APMs can be directly associated with well-defined ways
of visiting an array, which are also the most employed ones, as suggested in
[23]. Octantis synthesis process can now effectively handle and detect sev-
eral APM templates for the correct mapping of operations that make use of
1/2-dimensional arrays.

Since APMs assigned to vectors consist of 1xN matrices, where N is the
number of nested for-loops, the amount of related templates is much smaller
than the one characterizing APMs of matrices, whose size is 1xN . In the
following, the list of pre-determined arrangements of APMs supported by
Octantis synthesis process is provided, along with the C code from which
they are extracted. Also, a brief description follows each case. Firstly, the
set of APMs related to matrices are analyzed.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

A[i][j];

Listing 5.5. Row-major order.

C
1 0
0 1

D

As it can be easily noticed by the C code in 5.5, this APM identifies the
most common way in which a matrix can be accessed, usually referred to
as Row-Major order. All the elements belonging to a row are visited before
moving on to the next one, until the end of the RxC array.

74

5.3 – The binding phase: facing higher complexities

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

A[j][i];

Listing 5.6. Column-major order.

C
0 1
1 0

D

The so-called Column-Major order is associated with the APM of array
A in Listing 5.6. It requires all the elements in a column of the RxC matrix
to be visited before moving on the next one, until the end of the array. It
allows traversing the array in the opposite way with respect to the row-major
order.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
A[i+k][j]

Listing 5.7. Vertical LX1 subsets.

C
1 0 1
0 1 0

D

As it can be noticed in the APM related to matrix A of Listing 5.7, its 2x2
rightmost part corresponds to the APM relative to the column-major order.
It is indeed a slightly modified version, since a Lx1 subset of a column is
identified and all of its elements must be accessed before another set in the
next column is considered.

75

5 – The evolution of Octantis structure

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
A[j][i+k]

Listing 5.8. Horizontal 1XL subsets.

C
0 1 0
1 0 1

D

In the case of Listing 5.8, the 2x2 rightmost part of the matrix coincides
with the APM relative to the row-major order. It requires a subset of a row
to be identified and all of its elements must be accessed before another set in
the next row is handled. This access pattern represents the opposite of the
previous one, as it consists of a modified version of the row-major order.

Array

Set

Figure 5.3. Identification of a set inside an array.

From this point forward, the four types of 2x4 APMs considered enable
the identification of multiple MxN subsets while traversing the RxC array,
with M < R and N < C. In order to better understand the way in which
elements are visited in these situations, the APMs can be divided in two 2x2
sub-APMs. The rightmost one indicates the order in which the elements of
a subset are accessed, while the analysis of the leftmost one allows to know
how subsets “move” inside the array. In order to visualize this behaviour,

76

5.3 – The binding phase: facing higher complexities

Figure 5.3 has been provided. The yellow square represents a mask that
shifts along the matrix underneath and, at each movement, covers a different
part, highlighted in green. This subpart represents the set of elements that
is taken into account.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
for(int l = 0; l < P; ++l)

A[i+k][j+l]

Listing 5.9. Array A yields a Row-major/Row-
major APM.

C
1 0 1 0
0 1 0 1

D

In the case related to Listing 5.9, both the leftmost and the rightmost
APMs corresponds to the one of the row-major order. This means that all
the elements of each MxN subset are accessed in that order. Moreover, also
the “movement” of sets follows the same order.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
for(int l = 0; l < P; ++l)

A[j+l][i+k]

Listing 5.10. Array A yields a
Column-major/Column-major APM.

C
0 1 0 1
1 0 1 0

D

In the APM of A in Listing 5.10, both the leftmost and the rightmost
APMs corresponds to the one of the column-major order. This means that
the array is traversed in the opposite way of the previous case. The order in
which different subsets are considered is the column-major one, and also the
elements of a MxN subset are accessed in this order.

77

5 – The evolution of Octantis structure

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
for(int l = 0; l < P; ++l)

A[j+k][i+l]

Listing 5.11. Array A yields a
Column-major/Row-major APM.

C
0 1 1 0
1 0 0 1

D

Differently from before, the 2 sub-APMs of the APM belonging to A in
Listing 5.11 are not equal. As a consequence the subsets move following the
opposite order with respect to the one adopted for the visit of their elements.
Specifically for the 2x4 APM of A, the row-major order is considered for the
former and the column-major for the latter.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < L; ++k)
for(int l = 0; l < P; ++l)

A[i+l][j+k]

Listing 5.12. Array A yields a
Row-major/Column-major APM.

C
1 0 0 1
0 1 1 0

D

The case provided in Listing 5.12 represents the perfect inverse of the one
in Listing 5.11. Elements of a subset are accessed in the column-major order
and subsets move in the row-major one.

78

5.3 – The binding phase: facing higher complexities

As regards vectors, the APMs templates that the binder can handle are
presented hereinafter.

Example C code APM of A

for(int i = 0; i < N; ++i)
A[i];

Listing 5.13. Trivial access to vector A.

è
1

é

The code in 5.13 represents the most trivial way in which a vector can be
accessed. Element of the 1xN array is visited, from the first to the last.

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

A[i+j];

Listing 5.14. 1XM subsets in vector A
are considered.

è
1 1

é

In the case of the APM of vector A in Listing 5.15, multiple 1xM sets are
identified inside the array.

In all of the presented cases, each loop iterator contributes to the forma-
tion of at least one index of the array. However, in a more general situation,
for-loops whose iterators are not present in any index of an array can occur.
As a result, the described APM templates remains unchanged but the ma-
trices are enlarged by the presence of additional zeros, which can appear on
the left or right with respect to the original APM. In order to allow a better
understanding of these cases, two simple example are discussed. The related
C code is provided as well as the APM of the vector A.

79

5 – The evolution of Octantis structure

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

C[i][j] = B[j][i] + A[j]

Listing 5.15. Zero before the APM of A.

è
0 1

é

Example C code APM of A

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

C[i][j] = B[j][i] + A[i]

Listing 5.16. Zero after the APM of A.

è
1 0

é

In the first example, a zero on the left is introduced, due to the fact that
iterator i is not included in the index of A. This means that all elements of
A are accessed as many times as the number of iterations of the first for-loop.
In general:

Consideration 1
If a 1xM or 2xM matrix formed only by zeros precede one of
the APM templates described, the access to the array must be
repeated, according to the template itself, a number of times n,
where n is the result of the multiplication performed between
all the iterations related to the M for-loops that have generated
those zeros.

As regards the second example, the opposite situation occurs. A single
element of A remains “fixed” for the calculation of all values that belong to
the same row of matrix C. In the general case:

80

5.3 – The binding phase: facing higher complexities

Consideration 2
If a 1xM or 2xM matrix formed only by zeros follows one of
the APM templates described, each element considered while
visiting the array must contribute to a number n of consecu-
tive elaborations, where n is the result of the multiplication
performed between all the iterations related to the M for-loops
that have generated those zeros.

The discussion regarding array access pattern is useful to better under-
stand their crucial importance for the binding phase. As a matter of fact,
alongside with the loop unrolling techniques, their identification and exploita-
tion allows the parallel capabilities of a LiM system to be put at the service
of an increased amount of applications that could effectively benefit from
it. Hence, the detection of array access patterns represents one of the key
features of the new structure of the binder, depicted in Figure 5.4.

Binding Phase
InstructionTable

load FP ACC

fetchArrayAccessPattern

APM

AAP & zeros

AddressGenerator

LiM addresses of operands

performBinding

handleFPOperationBinding

LiM addresses of operands
&

number of sets

fetchArrayAccessPattern

APM

AAP & zeros

AddressGenerator

performACCBinding

handleACCBindingLiM rows with no
integrated logic are
inserted in the LiM

array

LiM system in which operations are
performed in parallel

Figure 5.4. New internal structure of Octantis binder.

81

5 – The evolution of Octantis structure

The main objective of this phase is the mapping of instructions contained
in Instruction Table onto a LiM system. As shown in the reference figure,
three main “channels” can be devised, each one aiming at the correct
handling of its related operations, and they are examined in the following:

1. The first channel deals with load instructions. They can require the
mapping of LiM rows for the allocation of either a variable or an array
that is useful for a subsequent elaboration. Hence, the correct amount
of rows must be instantiated in order to allow storing the related data
structure. The binder keeps track of the relation between each operand
and the addresses of its associated rows inside the LiM system. This
mechanism enables the proper management of dependencies between
instructions.

2. The second and third channel respectively aim at the handling of bitwise
and arithmetic instructions, which are carried out between LiM rows re-
lated to operands that have been previously allocated in the architecture
by means of a load. The APM of each pointer associated to an operand
is fetched in order to enable the detection of eventual array access pat-
terns. From this point forward, the internal organization of the binder
reflects the different type of handling that has to be implemented for the
two categories of operations described above:

• fully parallel operations: in this case, the control is given to a
dedicated function, called handleFPOperationBinding. First of all,
the APMs belonging to array operands are given to the fetchAr-
rayAccessPattern function. It detects the access patterns templates
and zeros related contained into the input APM. Once this task is
accomplished, the array access patterns are know, hence the actual
mapping of the operation can start. A function called addressGen-
erator takes into account the set of LiM rows associated to each
operand in order to create a list that contains the same rows or-
dered as required by the corresponding access pattern and zeros. At
the end of this process, three equally-sized lists are generated, one
for each operand. The elements that share the same position in-
side these lists are the ones that must be elaborated together. LiM
rows at the i-th position inside the source operands lists must be
taken into account for the mapping of the operation, and the result
must be stored in the i-th LiM row of the destination operand list.
In case a single variable is used for calculations along with arrays,

82

5.3 – The binding phase: facing higher complexities

it is effectively detected and the same LiM row is exploited for all
calculations. The actual mapping task is accomplished by the per-
formBinding function, which mainly implements the same strategies
already available in the first version of Octantis and described in
Chapter 2.

• Accumulations: these operations are always characterized by the
presence of a temporary variable, which figures both as source and
destination operand, and an array. In the previous discussion about
APMs templates, the presence of sets has been highlighted, which
are mainly exploited by accumulations in order to identify, inside the
vector or matrix under consideration, equally-sized subsets whose
elements must be summed together. Hence, the access pattern of the
array must be retrieved with the fetchArrayAccessPattern function
and provided to addressGenerator, which also return the size of the
eventual subsets. In this way, the ordered list of LiM rows related
to the array is “cut” into sub-lists whose dimension is equal to the
parameter obtained by means of addressGenerator. One sub-list is
considered at a time, and it is given to performAccumulationBinding,
which implements the mapping of the accumulation adopting the
reduction-tree strategy, along with specific optimization techniques
described in depth in the following section.

At the end of the binding phase, the final LiM system is obtained along
with its FSM, which gives information about the LiM rows that are active in
each time frame during the execution of the algorithm. The combination of
array access patterns and loop unrolling enables the parallelization of opera-
tions on the LiM architecture, thus exploiting its intrinsic parallel structure.
The actual composition of the generated circuit is described by means of a
dedicated data structure called LiMArray, which was already developed dur-
ing the first version of Octantis. LiMArray and the FSM are provided to the
code emission phase for the generation of the output files.

5.3.2 A new target-dependent optimization
Octantis synthesis process does not only aim at the correct generation of the
LiM architecture but also at its optimization. As a matter of fact, along with
the increased complexity of the data structures that can be exploited for the
input algorithm, area occupation and needed hardware resources can become

83

5 – The evolution of Octantis structure

rather large. Hence, suitable strategies have been introduced with the pur-
pose of reducing space occupation while keeping the overall execution
time as low as possible, which represents the most valuable benefit that
is provided by parallel computation.

Since the first version of Octantis, two main approaches had been devised in
order to limit the introduction of unnecessary LiM rows inside the array:

• When operands stored in two different LiM rows are considered for an
elaboration, if one of them is made up of cells that do not present any
integrated logic yet, the insertion of the logic ports needed to carry out
the required operation is performed inside those cells.

• When one of the two LiM rows involved in an operation has already
the needed logic for the elaboration, 2-to-1 multiplexers are integrated
inside its LiM cells.

These techniques have been preserved in the expansion of the binding
phase, as they are implemented in both performBinding and performAccu-
mulationBinding functions, and an additional one has been introduced. Its
main aim consists in the detection of elaborations between LiM rows
that have already been mapped. This strategy allows a great reduction
in area occupation when considering algorithms characterized by multiple
fully-parallel operations that exploit the same operands, or accumulations in
which the various subsets of an array share several elements.

As regards fully-parallel (FP) operations, a simple example of C code where
the discussed optimization can be exploited is provided in Listing 5.17.

Example 1

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

D[i][j] = A[j][i] & B[j][i] & C[i];
F[i][j] = E[j] & A[j][i] & B[j][i];

Listing 5.17. Fully-Parallel operations whose mapping
can benefit from the new optimization strategy.

When the binder addresses the synthesis of the AND operations respon-
sible for the generation of the matrix D, it implements the normal flow

84

5.3 – The binding phase: facing higher complexities

described in the previous section. On the other hand, the new optimization
step takes place when it takes into account the elaborations for the array
F . The same LiM rows used for the mapping of the previous AND between
matrices A and B are indeed present in the list obtained by addressGenera-
tor. The binder recognizes that the same operation is already mapped on the
LiM system and it avoids the introduction of additional rows as well as AND
logic ports. Hence, it directly considers the rows that contain the result of
A[j][i]B[j][i] for the next mapping.

The advantages brought by this approach are even larger when dealing with
accumulations. In this case, as explained before, multiple sets inside a single
array can be identified by the array access pattern. Depending on the incre-
ment related to each for-loop iterator, sets may happen to be overlapping, as
shown in Figure 5.5. This means that the same elaboration can be shared
among multiple sets. A simple example is provided in Listing 5.18 in order
to better clarify this condition.

Example 2

for(int i = 0; i < N; ++i)
for(int j = 0; j < M; ++j)

for(int k = 0; k < P; ++k)
S += A[j][i+k]

Listing 5.18. Accumulation with
overlapping sets.

The access pattern characterizing the matrix A requires various 1xM sub-
sets inside the matrix A to be considered for accumulation. Supposing that
M is greater than 1, since the increment of the iterator i is 1, two consecu-
tive sets on the same row share two elements. The introduced optimization
allows the detection of these kinds of situations, thus enabling a great saving
of hardware resources.

However, in case of accumulations, this approach is carried out in a slightly
different manner compared to Fully-Parallel operations. Since the great ben-
efit derived from the reduction-tree implementation relies on the lowering of
the execution time (O(log2(N))), several measures have been exploited in
order to keep this parameter as small as possible. The strategy adopted re-
quires keeping track of the depth inside the reduction tree of each LiM row

85

5 – The evolution of Octantis structure

Array

Set1 Set2

Figure 5.5. Two overlapping accumulation sets inside an array.

that has been generated. The depth of a row is strictly associated to the
time frame in which the data is available in the same row. When the binder
considers an accumulation set, it performs the following operations in order
to properly carry out the presented optimization technique:

1. After identifying all the LiM rows that compose the initial set, the even-
tual ones that contribute to an already mapped elaboration are removed
from the set, and the correspondent result row is inserted.

2. The operation described at point 1 is iterated until no sums among LiM
rows of the set are already present in the LiM array.

3. Acting on the reduced set generated by the previous steps, the binder
starts mapping sum operations considering LiM rows with the lowest
depth, since they are the ones in which data is available first. The depth
of the produced result row will be equal to the highest between the two
source rows incremented by one.

4. Result rows are reinserted into the set, which is repeatedly reduced fol-
lowing this method until a single result LiM row remains.

In order to understand this procedure better, an example is shown and
discussed in the next section.

86

5.3 – The binding phase: facing higher complexities

Example of application

In Figure 5.6, two accumulation sets and the related LiM rows are shown.

0

1

2

3

Depth

Acc. set 1 Acc. set 2

Data that can be used by
the second acc. set

0x0 0x4

0x2c

0x8 0xc 0x10 0x14 0x18

+ + +

0x30 0x34

0x38 0x3c

0x40

+ +

+

0x1c 0x20 0x24 0x28

Figure 5.6. Two overlapping accumulation sets.

Rows with addresses 0x10, 0x14 and 0x18 are shared by the two sets.
After the mapping of the accumulation regarding the first one occurs, LiM
rows that contain intermediate results can also be exploited for the mapping
of the second. Following the algorithm presented above, the reduction of the
second accumulation set happens as follows:

• At the beginning, the set is composed by rows with addresses 0x10, 0x14,
0x18, 0x1c, 0x20, 0x24 and 0x28.

• The binder recognizes that rows 0x10 and 0x14 generate row 0x34.
Hence, the former are deleted from the set and the latter is inserted.
The optimization could also stop at this stage, thus performing the ac-
cumulation on a set formed by rows with addresses 0x34, 0x18, 0x1c,
0x20, 0x24 and 0x28. In this case, the final LiM system would not fully

87

5 – The evolution of Octantis structure

benefit from the new optimization step. As a matter of fact, the binder
identifies that a further reduction of the set is feasible.

• The binder also detects that rows 0x34 and 0x18 generate row 0x3c.
Hence, it is inserted inside the set and the two initial rows are deleted.
At this point, the set is reduced as much as possible and the mapping
of the accumulation can start following the other steps of the algorithm
described above.

In the case study discussed in Chapter 7 regarding the generation of In-
tegral Image, multiple tests have been conducted stopping the optimization
technique at different levels.

In conclusion, the presented approach ensures a great limitation for what
concerns area occupation and hardware resources, which would grow
exponentially without the introduction of these optimization strategies, espe-
cially for accumulations. In this last case, it also guarantees that the overall
execution time is kept O(log2(N)), which represents a great advantage with
respect to a serial implementation.

88

Chapter 6

The expansion of the code
emission phase

In the first version of Octantis, the code emission phase consisted of a single
module, PrintDexFile, aimed at providing the configuration files for DEX-
iMA, useful for the simulation of the circuit. However, the LiMArray and
FSM data structures, generated during the binding phase, are objects that
can effectively be handled to produce different types of output descriptions
of the final LiM system.

Recently, DEXiMA has been expanded with a CAD tool, named DEXiMA-
CAD, that allows the availability of a visual representation of the LiM ar-
chitecture under study. It needs several files to properly configure this func-
tionality. Hence, the connection between Octantis and DEXiMA has been
strengthened by means of the introduction of a new module whose purpose
is the generation of these files.

Furthermore, the scope of Octantis code emission phase has been expanded in
order to support the production of two VHDL files. The former describes
the LiM system generated by Octantis synthesis process, also providing a
control unit to correctly drive the execution of the algorithm. The latter
consists of a VHDL testbench that gives the possibility to simulate the ar-
chitecture using commercial tools for simulation, such as Mentor Graphics
ModelSim. In this way, the correct behaviour of the LiM system synthesized
by Octantis can be verified, too.

89

6 – The expansion of the code emission phase

In the following sections, the description of the modules introduced in Oc-
tantis code emission phase to carry out the mentioned tasks is discussed.

6.1 The generation of VHDL files
The generation of the VHDL description of the LiM system and its associated
VHDL testbench is based on the data received from the binding phase. As a
matter of fact, the binder provides the LiMArray and FSM data structures
that respectively define the LiM architecture and the timing information that
are useful for the proper execution of the algorithm. Hence, a new module
called PrintVHDLFiles has been introduced and it implements the trans-
lation of these data structures into a VHDL entity, which is characterized
by:

• a Memory-like Interface. As a matter of fact, the developed component is
a special type of memory, hence it must be compliant with the protocols
usually implemented by these kinds of devices.

DATAOUTDATAOUT

DONE

DATAIN

CLK

RST

ENABLE

READNOTWRITE

GO

ADDRESS

LiM Component

Figure 6.1. Interface of the entity generated by means of PrintVHDLFiles.

90

6.1 – The generation of VHDL files

The interface is depicted in Figure 6.1. Several ports that generally
characterize memories can be noticed, such as:

– CLK : it is needed to provide the clock to the system.
– RST : it is the asynchronous active low reset pin.
– ENABLE : it allows reading and writing processes to be carried out

when it is at logic ‘1’.
– ADDRESS : it specifies the memory address to read from or write

to.
– READNOTWRITE : it indicates which operation must be executed.

When it is at logic ‘1’ a read operation is performed, a write opera-
tion when it is at logic ‘0’.

– DATAIN : it is the bus where the data to be written inside the LiM
row identified by ADDRESS is placed.

– DATAOUT : it is the bus where data to be read from the LiM row
identified by ADDRESS is provided.

The listed ports can be exploited to issue both a writing and a reading
protocol. The former is useful for the loading of the input operands in-
side their associated LiM rows. The writing of a values inside a given row
can be issued by setting ENABLE to logic ‘1’ and READNOTWRITE
to logic ‘0’. A synchronous write of the data present on DATAIN inside
the row pointed by ADDRESS is performed. The latter is exploited
to retrieve the elaborated data from the LiM system. The reading of
a value contained in a specific row can be started by setting ENABLE
to logic ‘1’ and READNOTWRITE to logic ‘1’. A synchronous read of
the data stored in the row pointed by ADDRESS is performed, and it
is provided on the DATAOUT bus. Moreover, two additional ports are
available:

– GO: it can be set at logic ‘1’ when all the input operands have been
loaded in order to start the execution of the algorithm in the LiM
device.

– DONE : it can be set at logic ‘1’ by the system when results are
available for a read operation.

• a Control Unit that coordinates the “movement” of data inside the LiM
architecture, ensuring the correct behaviour of the system with respect

91

6 – The expansion of the code emission phase

to the algorithm that has to be performed. It exploits the information
obtained from the FSM structure in order to implement the generation
of several signals called Ti. A Ti is set to logic ‘1’ in clock cycle i. When
active, a Ti signal causes the input of memory elements composing LiM
cells that must be active at time i to be transferred to their output, ready
for the subsequent elaborations. Ti signals are also responsible for the
correct activation of selection signals that belong to 2-to-1 multiplexers.
In conclusion, they ensure a proper timing behaviour and, as a result,
the execution of the algorithm is properly carried out.

• a Datapath which is constructed starting from the data structure that
describes the LiM architecture. LiM rows have been modeled as registers
whose output is connected to the logic required for their processing.
Thanks to Ti signals, registers are enabled with the right timing, thus
transferring the data on their input to the output, ready for elaboration.

As regards the associated VHDL testbench, it has been designed to be
compliant with the reading and writing protocols discussed above. It loads a
set of input operands inside the input LiM rows, which are always the ones
with the lowest address. After that, it activates the GO signal and waits until
DONE is asserted. Once it detects DONE at logic ‘1’, it starts reading results
from correspondent rows. The addresses related to LiM rows that contain
the elaborated data can be known before the generation of the testbench file.
Rows whose output is not connected to other ones or integrated logic are
identified and considered by the testbench as result rows.

6.2 The generation of DExIMA-CAD config-
uration files

The main aim of DEXiMA is to offer the possibility to characterize the de-
veloped LiM architecture with respect to area occupation and static and
dynamic power consumption. However, it is now also provided with a CAD
tool, named DEXiMA-CAD, that enables the visualization of the LiM array.
It allows to check the overall composition of the system by looking at the
different types of LiM rows that are present. The intra-row logic can be in-
spected as well, as it is the one needed to carry out instructions that require
the connection between cells of the same LiM row, such as sum operations.
As a matter of fact, in this case, the carry out signal has to be propagated
from the cell that generates it to the next one. The tool also allows to go

92

6.2 – The generation of DExIMA-CAD configuration files

deeper and analyze the internal structure of each LiM cell.

Several configuration files are required to achieve the correct representation
using this tool. They are used to specify all the types of LiM cells employed
in the system as well as the disposition of rows inside the LiM array. As
regards Octantis, a new module called PrintCadFiles has been introduced
in the code emission phase, with the aim of generating the required files for
DEXiMA-CAD starting from the data structure that describes the LiM ar-
chitecture received from the binder, which is LiMArray. In the following, the
kinds of files needed by the tool are listed and their purpose examined:

• .limcad files are responsible for the description of LiM cells that are used
inside the system. A .limcad file has to be provided for each different
type of cell in the design. It provides the architectural description of the
LiM cell, and its internal organization is similar to the one of a VDHL
file. At the beginning, the required pins are declared along with their
type (input, output) and their (x, y) coordinates, which are important
for the visual representation. Most of the pins are fixed, such as:

– CLK : clock pin.
– RST : reset pin.
– BL: input bit to the memory cell.
– WL: enable pin of the memory cell.
– OC : output of the memory cell.
– OLiM : output of the LiM cell, that is the one given by its internal

logic.

Moreover, Si pins can appear if 2-to-1 multiplexers are present inside
the cell. After this section, the list of components used for the inter-
nal architecture of the LiM cell is specified along with their pins. The
declaration of the memory cell is always present. Then, 2-to-1 multi-
plexers and logic ports can be identified, based on the operations that
have to be performed. Differently from what happens for VHDL files,
in this case the declaration and the port mapping of internal compo-
nents are implemented simultaneously. Hence, each pin of a component
is assigned with another one that belongs to another component. In this
way, interconnections are also specified.

93

6 – The expansion of the code emission phase

• .irlcad files are used to determine the intra-row logic. At the moment,
the only kind of intra-row logic that can be effectively employed is the
one related to sum operations. As regards the file, it has to contain the
declaration of the hardware component that performs intra-row elabo-
rations, which is represented by an adder in the case of an addition.

• .csv files are in charge of describing the overall structure of the LiM
system. Two .csv files are required. The former is used in order to
specify the disposition of LiM cells declared by means of .limcad files
inside the array. The latter determines the position of the intra-row
logic defined in the .irlcad files. The characteristics of the .csv format
make its use suitable for the organization of this kinds of information.

The combination of these three kind of files allows DEXiMA-CAD to rep-
resent the structure of the LiM systems that has been devised by means of
Octantis synthesis process.

94

Chapter 7

Tests

7.1 Image Processing algorithms
The enhanced capabilities of Octantis have been tested in order to verify their
correctness, but also to identify their strengths along with the features that
could be improved in the next expansions of the program. At the end of the
synthesis process, the tool is also capable of providing information regarding
both the timing performance and the composition of the final LiM architec-
ture. Hence, they are reported for each case study that has been taken into
account, and they have been also exploited in order to check the effective-
ness of the target-dependent optimization introduced inside the binder and
discussed in Chapter 5.

As regards the C algorithms used for testing, a specific application field
has been chosen: Image Processing. It is a branch of Computer Vision
that aims at the manipulation of an input digital image in order to get an
enhanced version or to extract some useful information from it. Image pro-
cessing algorithms are often data-intensive and the classic serial approach
does not allow achieving great performance. The main issue is indeed rep-
resented by the overall execution time, which can become rather large for
certain applications. Hence, hardware accelerators that implement parallel
processing are usually exploited to carry out this kind of algorithms effi-
ciently, such as GPUs.

Logic-in-Memory systems may represent an alternative way to address the
elaboration techniques employed in the image processing field, due to their
intrinsic parallel computation capabilities, as already proposed in [24].

95

7 – Tests

In the next sections, three image processing algorithms are considered and the
related results obtained at the end of Octantis synthesis process are provided
and commented. They have been chosen as they are characterized by the
presence of the C constructs, data structures and operations around which
the expansion of the tool has revolved, such as loop nests and array accesses.
For what concerns the operations, it has been noticed that a vast number
of image processing algorithms actually exploit accumulations. These can
be used either to generate intermediate data structures required by other
elaboration stages or to modify the initial image with the implementation of
spatial filters. Furthermore, also bit-wise logic operators can be effectively
used to extract specific regions of interest by means of masks. They are also
present in the image encryption domain, where XOR and XNOR operators
are mainly employed.

7.1.1 Synthesis of the Integral Image algorithm
The Integral Image algorithm aims at the generation of a data structure that
takes its name from the algorithm itself, even though it can also be referred
to as Summed Area Table. It consists in a preprocessing element which has
become quite well-known as it represented a key point in the object detec-
tion framework [25] proposed in 2001 by Paul Viola and Michael Jones. The
Summed Area Table is defined as an image in which each pixel PIM (xi, yi)
corresponds to the sum of all the pixels above and to the left of its equivalent
pixel Pinput(xi, yi) in the initial image.

As one can easily imagine, this algorithm has been chosen as it allows to
test the new features that aim at the handling of loop nests and array ac-
cesses. More importantly, the presence of multiple overlapping accumulation
sets also activates the optimization strategy introduced in the binding phase
and examined in Chapter 5.

96

7.1 – Image Processing algorithms

Integral Image generation algorithm

// Image sizes
define R 16
define C 16

void sat (){
// Input image

int Image[R][C];
// Integral Image
int SAT_Image [R][C];
// Temporary variable for storing the result of the

accumulation
int S;

// Cycling over input image pixels
for(int i = 0; i < R; ++i){

for(int j = 0; j < C; ++j){
// Initializing temp variable for accumulation

result
S = 0;

// Cycling over all pixels above and left to the
current one

for(int k = 0; k <= i; ++k){
for(int l = 0; l <= j; ++l){

// Accumulating pixels
S += Image[k][l];

}
}
// Assigning temp variable to output Integral Image

proper pixel
SAT_Image [i][j] = S;

}
}

}
Listing 7.1. C implementation of the algorithm that generates the
Integral Image

97

7 – Tests

The C code that implements the algorithm for the generation of the Inte-
gral Image has been defined and it is shown in Listing 7.1. A 16x16 grey-scale
input image has been selected for the purpose of this test, and it is repre-
sented in the C code by means of the RxC matrix named Image. Being each
pixel value represented on 8 bits, a parallelism of 16 bits has been defined
as parameter in the Octantis configuration file. The image obtained after
the execution of the algorithm has the same size of the input one and it is
identified as SAT_Image in the code.

The C implementation provided in Listing 7.1 has been given to Octantis
along with the configuration file. Results regarding the LiM architecture
and timing information have been obtained and they are shown in Table 7.1
and Table 7.2. As it can be noticed, various tests have been conducted with
different optimization levels. The number associated with this parameter
indicates the maximum depth of the LiM rows that contain intermediate re-
sults taken into account by the optimization technique discussed in Chapter
5. As already mentioned, the depth of each row refers to the time frame in
which the data is available for calculation in that same row. As a result, the
depth of the LiM rows that store the initial values of the accumulation set is
smaller than the one associated with the row that contains the final result.
Hence, higher the optimization level, “deeper” the LiM rows considered to
be containing an already available result by the new optimization step.

Opt. Level Tot. Mem. Rows LiM Rows Non-LiM Rows Density of LiM Rows
0 27457 18240 9217 66,4%
1 13811 9216 4595 66,7%
2 7096 4800 2296 67,6%
3 3866 2704 1162 70,0%
4 2406 1792 614 74,5%
5 1820 1436 384 78,9%
6 1643 1328 315 80,8%
7 1621 1313 308 81,0%

Table 7.1. Results regarding the types of rows present in the LiM system
that implements the generation of the Integral Image. Data are provided
for each optimization level.

As it can be seen in Table 7.2, along with the increment of the optimization
level, the memory dimension and the amount of full-adders and half-adders
drastically reduce, while the overall execution time remains the same, equal
to log2(RC).

98

7.1 – Image Processing algorithms

Opt. Level Mem. Dimension Integrated Logic Exec. time
0 439312 bits Full/Half-Adder: 291840 8 Tclk
1 220976 bits Full/Half-Adder: 147456 8 Tclk
2 113536 bits Full/Half-Adder: 76800 8 Tclk
3 61856 bits Full/Half-Adder: 43264 8 Tclk
4 38496 bits Full/Half-Adder: 28672 8 Tclk
5 29120 bits Full/Half-Adder: 22976 8 Tclk
6 26288 bits Full/Half-Adder: 21248 8 Tclk
7 25936 bits Full/Half-Adder: 21008 8 Tclk

Table 7.2. Results obtained from the synthesis of the algorithm for the
generation of the Integral Image. Along with the optimization level,
different data are provided.

Moreover, an additional benefit derived from the introduction of the new
target-dependent optimization is shown in Table 7.1. Here, the number of
rows provided with internal logic, referred to as LiM rows, and the amount
of normal memory rows, identified as Non-LiM, is reported. One of the main
aims of Octantis is to generate a LiM architecture in which the main charac-
teristics of the LiM paradigm are fully exploited. Hence, the use of normal
memory rows must be minimized as much as possible, with the purpose of
creating a compact structure in which the needed operations are carried out
using as few rows as possible. Table 7.1 shows how the percentage of LiM
rows grows with the increment of the optimization level.

7.1.2 Synthesis of a multi-image encryption algorithm
The second test case concerns the multi-image encryption algorithm proposed
in [26]. The main objective of this research work consists in the definition
of a encryption scheme, along with the relative decryption one, ensuring the
secure transmission of multiple images.

The main phases of the defined encryption procedure are:

1. Multiple NxN images are manipulated and by means of the Linear
Wavelet Transform operation, thus obtaining the so-called sparse im-
ages.

2. Sparse images undergo a further procedure named scrambling, which

99

7 – Tests

consists in randomly rearranging pixels in order to break the correlation
between neighbouring one, thus making the image visually unreadable.
Scrambled images are thus obtained.

3. The XOR operator is applied on the scrambled images to generate the
XOR-Image. Equation 7.1 better clarifies this operation, where IMGi

refers to the i-th scrambled image.

XOR_Image = IMG0 ⊕ IMG1 ⊕ ... ⊕ IMGn−1 ⊕ IMGn (7.1)

Meanwhile, XOR-Keys must be generated for each scrambled image,
in order to be used in the decryption process. The XOR-Key for the i-th
image can be retrieved by means of the application of the XOR on all
the scrambled images, except the i-th itself, as shown in equation 7.2.

XOR_Keyi = IMG0⊕IMG1⊕...⊕IMGi−1⊕IMGi+1⊕...⊕IMGn−1⊕IMGn

(7.2)

A possible C implementation of the operations required to obtain both
the XOR-Image and the XOR-Keys is reported in Listing 7.2. The presented
algorithm has been given in input to Octantis along with the configuration
file, where the word length parameter has been set to 8 bits.

Differently from the tests conducted in [26], six 16x16 8-bit grey-scale im-
ages have been used for the scope of this test. Since the computation of each
result image in the proposed algorithm is not dependent on the others, all
calculations can be performed in parallel, taking great advantage from a LiM
implementation. Moreover, this example allows to highlight the introduced
synthesis optimizations aimed at reducing the number of LiM rows to be
inserted in the array in the case of fully-parallel operations.

As it can be observed in Table 7.3, the minimum amount of LiM rows needed
to properly carry out the algorithm is reached also by means of the intro-
duction of 2-to-1 multiplexers inside Xor LiM cells. All the optimization
measures adopted led to the optimal solution for what concerns the saving
of space occupation. The overall results related to memory dimensions and
integrated logic have been retrieved and they are reported in Table 7.3. Fi-
nally, it can be noticed how the overall execution time is rather small, being

100

7.1 – Image Processing algorithms

equal to only 5Tclk, which is the key advantage of the parallel computation
enabled by a LiM architecture.

XOR-Image and XOR-Keys generation algorithm

// Image sizes
define R 16
define C 16

void XorImage_XorKey_Generation (){

// Scrambled images
int Image_0 [R][C], Image_1 [R][C], Image_2 [R][C], Image_3
[R][C], Image_4 [R][C], Image_5 [R][C];

//Xor -Keys to be used in decryption
int Key_0[R][C], Key_1[R][C], Key_2[R][C], Key_3[R][C],

Key_4[R][C], Key_5[R][C];

// Xor Image
int Xor_Image [R][C];

// Xor Image and Xor Keys generation
for(int i = 0; i < R; ++i){

for(int j = 0; j < C; ++j){

// Performing Xor operation on all scrambled images
to get the Xor Image

Xor_Image [i][j] = Image_0 [i][j] ^ Image_1 [i][j] ^
Image_2 [i][j] ^ Image_3 [i][j] ^ Image_4 [i][j] ^ Image_5
[i][j];

//Xor -Key 0 generation
Key_0[i][j] = Image_1 [i][j] ^ Image_2 [i][j] ^

Image_3 [i][j] ^ Image_4 [i][j] ^ Image_5 [i][j];

//Xor -Key 1 generation
Key_1[i][j] = Image_0 [i][j] ^ Image_2 [i][j] ^

Image_3 [i][j] ^ Image_4 [i][j] ^ Image_5 [i][j];

//Xor -Key 2 generation
Key_2[i][j] = Image_0 [i][j] ^ Image_1 [i][j] ^

Image_3 [i][j] ^ Image_4 [i][j] ^ Image_5 [i][j];

101

7 – Tests

//Xor -Key 3 generation
Key_3[i][j] = Image_0 [i][j] ^ Image_1 [i][j] ^

Image_2 [i][j] ^ Image_4 [i][j] ^ Image_5 [i][j];

//Xor -Key 4 generation
Key_4[i][j] = Image_0 [i][j] ^ Image_1 [i][j] ^

Image_2 [i][j] ^ Image_3 [i][j] ^ Image_5 [i][j];

//Xor -Key 5 generation
Key_5[i][j] = Image_0 [i][j] ^ Image_1 [i][j] ^

Image_2 [i][j] ^ Image_3 [i][j] ^ Image_4 [i][j];

}

}

}

Listing 7.2. C code for Xor Image and Xor-Key generation

Xor-Image - Xor-Key generation algorithm
Memory Row

Type
Number of

Memory
Rows

Memory
Dimension

Integrated
Logic

Simple memory 2560 20480 bits None
Xor 3056 24448 bits Xor: 24448

Xor with 2-to-1
mux

1024 8192 bits Xor: 8192

Mux 2-to-1:
8192

Table 7.3. Aggregated results of the synthesis by Octantis of the algorithm
for the generation of both the XOR-Image and the XOR-Keys.

102

7.1 – Image Processing algorithms

7.1.3 Synthesis of an approximated Arithmetic Mean
Filter

In Image Processing, the class referred to as Spatial Filters encompasses
the set of techniques that operate on an image by taking into account, for
each pixel, the intensity values of other pixels in a well-defined nearby area.
Starting from the initial image, the general method adopted by a spatial
filtering algorithm is implemented as follows:

• A filter mask is chosen. It is a NxN matrix whose size and values strictly
depends on the type of filtering required.

• A pixel of the input image in position (i, j) is selected.

• The center value of the filter mask is “moved” in order to coincide with
the chosen pixel. All the input image pixels included in a NxN area
around it are taken into account, and they are elaborated by means of
the coefficients of the filter mask. A single intensity values is obtained,
which will be assigned to the pixel of the “filtered” image in position
(i, j).

As regards the Arithmetic Mean Filter (AMF), it implements the arith-
metic mean among the intensities of all pixels in the NxN area around the
selected one. A possible mathematical formulation of this operation is pro-
vided in Equation 7.3, where Pinput(k, l) refers to the pixel of the input image
in position (k, l).

Pfiltered(i, j) = 1
N2

i+ N
2Ø

k=i− N
2

j+ N
2Ø

l=j− N
2

Pinput(k, l) (7.3)

This kind of filter is usually employed with the purpose of removing short-
tailed noise, such as uniform and Gaussian type noise, from the initial image
at the cost of blurring it. As a result, the input image is “smoothed”, and
a more pronounced effect can be obtained by enlarging the size of the filter
mask.

The application of an AMF filter to a 16x16 grey-scale image (8-bit pix-
els) has been considered for the synthesis on LiM with Octantis, and the
related C implementation is provided in Listing 7.3. As a matter of fact, it
is perfectly suitable for the testing of all the introduced novelties and op-
timizations. The access pattern employed for the visit of the array Image

103

7 – Tests

allows the identification of multiple overlapping accumulation sets, whose
size is given by (N + 1)x(N + 1). However, the application of the filter on a
LiM system cannot be strictly compliant with its definition, as divisions are
not feasible. On the other hand, right-shifts can replace divisions and, if the
second operand of this operation is equal or almost equal to a power of 2, an
approximation can be successfully implemented.

Algorithm for the application of the approximated AMF

define N 2
define R 16
define C 16

void amf (){
// Input Image

int Image[R][C];
// Final Filtered Image
int Filtered_Image [R -2][C -2];
// temp variable
int S;

for(int i = N/2; i < R - N/2; ++i){
for(int j = N/2; j < C - N/2; ++j){

S = 0; // Initializing the tmp variable
for(int k = -N/2; k <= N/2; ++k){

for(int l = -N/2; l <= N/2; ++l){
S += Image[i + k][j + l]; // Accumulation on a

set
}

}
Filtered_Image [i -1][j -1] = S/(N+1)(N+1); //

Arithmetic Mean
}

}
}

Listing 7.3. C code for a (N+1)x(N+1) arithmetic mean filter applied
on a RxC input image

In the algorithm showed in Listing 7.3, the area of the filter mask is equal
to 9 pixels, hence the final division should consider this value. As regards
the mapping on LiM, Octantis allocates rows of type rightShift, which are
capable of right shifting, at each clock cycle, the bits stored in their cells by

104

7.1 – Image Processing algorithms

means of intra-cell connections.

The results obtained from the synthesis of the algorithm in Listing 7.3 are
shown in Table 7.4 and 7.5. The organization of data in the mentioned Tables
is similar to the one used in the section about the synthesis of the Integral
Image generation algorithm. In this case, only two optimization levels are
considered. As a matter of fact, the maximum depth of a LiM row for an
accumulation set of 9 is equal to ⌊log2(9)⌋ + 1 = 4, with the value 4 being
assigned to the result rows. With the optimization level parameter set to 3,
no further improvements have been found, hence it has not been inserted in
Tables. As already noticed in the synthesis of the Integral Image generation
algorithm, a quite remarkable reduction in area occupation is obtained by
means of the new optimization technique. The final division costs three ad-
ditional clock cycles after the accumulation in order to perform the needed
right shift. As a result, 9 Tclk are required for the overall execution of the
algorithm.

Opt. Level Tot. Mem. Rows Add Rows rightShift Rows Non-LiM Rows Density of LiM Rows
0 2550 1568 196 787 69,2%
1 2108 1337 196 576 72,7%
2 2101 1331 196 575 72,7%

Table 7.4. Results concerning the types of rows inside the LiM system that
implements the application of the approximated Arithmetic Mean Filter.
Different values are provided along with the optimization level.

Opt. Level Mem. Dimension Integrated Logic Exec. time
0 20400 bits Full/Half-Adder: 12544 9 Tclk

cells connected for shift: 1568
1 16864 bits Full/Half-Adder: 10696 9 Tclk

cells connected for shift: 1568
2 16808 bits Full/Half-Adder: 10648 9 Tclk

cells connected for shift: 1568

Table 7.5. Overall results obtained from the synthesis of the algorithm im-
plements the application of the approximated Arithmetic Mean Filter. Along
with the optimization level, different data are provided.

105

106

Chapter 8

Conclusions and future
works

The introduction of InfoCollector and the subsequent evolution of the back-
end phases have surely led to a more mature version of Octantis. The new
Pass and the other C++ classes that have been presented, such as PointerIn-
foTable and LoopInfoTable, provide data structures and analysis techniques
that can be employed for the management of information regarding:

• multiple n-deep loop nests, where n is an integer number;

• one/two-dimensional arrays are accessed by means of well-defined
array access patterns;

The data gathered have been exploited towards the creation of Access
Pattern Matrices, which have been considered as useful mathematical ob-
jects capable of “compressing” the complex information about array access
patterns inside 1xN or 2xN matrices. Hence, it has represented the connec-
tion point between InfoCollector and the binder, which has been restructured
in order to properly analyze APMs and exploit them for mapping and par-
allelizing operations on the final LiM system.

Moreover, InfoCollector has also aimed at the speeding up of the scheduling
phase by means of Alias Analysis and the identification of valid basic blocks.
These tasks are crucial for reducing the time spent on scheduling and they
could also provide important advantages as regards future expansions, where
Octantis could be able to handle more than one function and sophisticated
code constructs.

107

8 – Conclusions and future works

As also highlighted in Chapter 7, the benefits derived from the introduc-
tion of the new optimization strategy are remarkable and they could become
even larger with the synthesis of more complex architectures. As a matter of
fact, even though Octantis is a HLS tool whose main aim is the “translation”
of a C algorithm toward its equivalent LiM implementation, it must also de-
vise suitable target-dependent techniques in order to allow the optimization
of the system with respect to relevant figures of merit, such as timing and
area occupation.

Several advanced features have been developed but room of improvement
is still present. The main reason why the management of loops and array
accesses has been undertaken lies in the great benefits that they could draw
from the parallel processing on LiM devices. However, it also represents
the first step that has been made in a well-defined direction: the synthe-
sis of benchmarks. Several C codes used for the testing of HLS tools have
been gathered through the years, resulting in the generation of few libraries,
such as MachSuite[27] or Polybench/C [28]. They respectively consist of a
set of 19 benchmarks suitable for hardware acceleration and a collection of
benchmarks containing static control parts. However, the majority of the C
programs here contained highly employs multiplications and divisions, which
are well-known for their resource consuming implementations. Hence, future
works could consider mapping operations on a more complex system where
a LiM device and a conventional processing unit can coexist. The former
would allow the parallel execution of bitwise, sum and subtraction instruc-
tions while providing the latter with the data needed for more sophisticated
instructions. Octantis would have to devise several strategies aimed at the
allocation of operation to one of the two units, whose connections must be
designed with the purpose of reducing power consumption as much as possi-
ble and ensure good performance.

In conclusion, the hope is to have contributed to the evolution of the Oc-
tantis project, which will become one of the key tool within the framework
that the VLSI Laboratory is developing for the design and characterization
of LiM systems.

108

Bibliography

[1] Giulia Santoro, Giovanna Turvani, and Mariagrazia Graziano. New
Logic-In-Memory Paradigms: An Architectural and Technological Per-
spective. Micromachines, 10(6):368, May 2019. doi:10.3390/
mi10060368.

[2] Nicola Piano. DExIMA: a Design Explorer for In-Memory Architectures,
2019. URL: https://webthesis.biblio.polito.it/12547/.

[3] Fabrizio Riente, Izhar Hussain, Massimo Ruo Roch, and Marco Vacca.
Understanding CMOS Technology Through TAMTAMS Web. IEEE
Transactions on Emerging Topics in Computing, 4(3):392–403, Jul 2016.
doi:10.1109/tetc.2015.2488899.

[4] Shyamkumar Thoziyoor et al. Palo Alto: HP Laboratories, 2008. URL:
https://www.hpl.hp.com/techreports/2008/HPL-2008-20.html.

[5] Andrea Marchesin. Octantis - A High-Level Explorer for Logic-
in-Memory architectures, 2020. URL: https://webthesis.biblio.
polito.it/15852/.

[6] Andrea Marchesin, Giovanna Turvani, Andrea Coluccio, Fabrizio Riente,
Marco Vacca, Massimo Ruo Roch, Mariagrazia Graziano, and Maurizio
Zamboni. Octantis: An Exploration Tool for Beyond von Neumann ar-
chitectures, Jun 2021. doi:10.1109/dtis53253.2021.9505135.

[7] Greg Wilson et al. Amy Brown. The Architecture of Open Source Appli-
cations: elegance, evolution, and a few fearless hacks. 2011.

[8] LLVM Developer Group. Clang: a c language family frontend for llvm.
URL: https://clang.llvm.org/index.html.

[9] LLVM Developer Group. LLVM’s Analysis and Transform Passes.
URL: https://llvm.org/docs/Passes.html.

[10] Bruno Cardoso Lopes and Rafael Auler. Getting Started with LLVM
Core Libraries. Packt Publishing, 2014.

[11] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The Or-
ganization of Computations for Uniform Recurrence Equations. Journal

109

https://doi.org/10.3390/mi10060368
https://doi.org/10.3390/mi10060368
https://webthesis.biblio.polito.it/12547/
https://doi.org/10.1109/tetc.2015.2488899
https://www.hpl.hp.com/techreports/ 2008/HPL-2008-20.html
https://webthesis.biblio.polito.it/15852/
https://webthesis.biblio.polito.it/15852/
https://doi.org/10.1109/dtis53253.2021.9505135
https://clang.llvm.org/index.html
https://llvm.org/docs/Passes.html

Bibliography

of the ACM, 14(3):563–590, Jul 1967. doi:10.1145/321406.321418.
[12] P. Feautrier. Array expansion. Proceedings of the 2nd international

conference on Supercomputing - ICS ’88, 1988. doi:10.1145/55364.
55406.

[13] Leslie Lamport. The parallel execution of DO loops. Communications
of the ACM, 17:83–93, Feb 1974. doi:10.1145/360827.360844.

[14] Sanjay V. Rajopadhye. Synthesizing systolic arrays with control sig-
nals from recurrence equations. Distributed Computing, 3(2):88–105, Jun
1989. doi:10.1007/bf01558666.

[15] Paul Feautrier. Parametric integer programming. RAIRO - Operations
Research, 22(3):243–268, 1988. doi:10.1051/ro/1988220302431.

[16] V. Loechner. PolyLib: A Library for Manipulating Parameterized Poly-
hedra. URL: http://www.irisa.fr/polylib/.

[17] Polyhedral.info, The Polyhedral Compilation Community. URL: https:
//polyhedral.info/.

[18] The Polly Team. Polly Documentation. URL: http://polly.llvm.
org/docs/.

[19] Fabien Quilleré and Sanjay Rajopadhye. Optimizing memory usage in
the polyhedral model, Sep 2000. doi:10.1145/365151.365152.

[20] Wei Zuo, Peng Li, Deming Chen, Louis-Noel Pouchet, Shunan Zhong,
and Jason Cong. Improving polyhedral code generation for high-level
synthesis, Sep 2013. doi:10.1109/codes-isss.2013.6659002.

[21] Nam Khanh Pham, Amit Kumar Singh, Akash Kumar, and Mi Mi Aung
Khin. Exploiting Loop-Array Dependencies to Accelerate the Design
Space Exploration with High Level Synthesis. Design, Automation Test
in Europe Conference Exhibition (DATE), 2015, 2015. doi:10.7873/
date.2015.0199.

[22] LLVM Developer Group. LLVM Loop Terminology (and Canonical
Forms). URL: https://llvm.org/docs/LoopTerminology.html.

[23] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason
Cong. Improving high level synthesis optimization opportunity through
polyhedral transformations. Proceedings of the ACM/SIGDA interna-
tional symposium on Field programmable gate arrays - FPGA ’13, 2013.
doi:10.1145/2435264.2435271.

[24] Mario Cofano, Marco Vacca, Giulia Santoro, Giovanni Causapruno, Gio-
vanna Turvani, and Mariagrazia Graziano. Exploiting the Logic-In-
Memory paradigm for speeding-up data-intensive algorithms. Integra-
tion, 66:153–163, May 2019. doi:10.1016/j.vlsi.2019.02.007.

[25] P. Viola and M. Jones. Rapid object detection using a boosted cascade

110

https://doi.org/10.1145/321406.321418
https://doi.org/10.1145/55364.55406
https://doi.org/10.1145/55364.55406
https://doi.org/10.1145/360827.360844
https://doi.org/10.1007/bf01558666
https://doi.org/10.1051/ro/1988220302431
http://www.irisa.fr/polylib/
https://polyhedral.info/
https://polyhedral.info/
http://polly.llvm.org/docs/
http://polly.llvm.org/docs/
https://doi.org/10.1145/365151.365152
https://doi.org/10.1109/codes-isss.2013.6659002
https://doi.org/10.7873/date.2015.0199
https://doi.org/10.7873/date.2015.0199
https://llvm.org/docs/LoopTerminology.html
https://doi.org/10.1145/2435264.2435271
https://doi.org/10.1016/j.vlsi.2019.02.007

Bibliography

of simple features. Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. CVPR 2001.
doi:10.1109/cvpr.2001.990517.

[26] Xianye Li, Xiangfeng Meng, Xiulun Yang, Yurong Wang, Yongkai Yin,
Xiang Peng, Wenqi He, Guoyan Dong, and Hongyi Chen. Multiple-
image encryption via lifting wavelet transform and XOR operation based
on compressive ghost imaging scheme. Optics and Lasers in Engineering,
102:106–111, Mar 2018. doi:10.1016/j.optlaseng.2017.10.023.

[27] MachSuite, Benchmarks for Accelerator Design and Customized Archi-
tectures. URL: https://breagen.github.io/MachSuite/.

[28] PolyBench/C, the Polyhedral Benchmark suite. URL: https://web.
cse.ohio-state.edu/~pouchet.2/software/polybench/.

111

https://doi.org/10.1109/cvpr.2001.990517
https://doi.org/10.1016/j.optlaseng.2017.10.023
https://breagen.github.io/MachSuite/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	List of Tables
	List of Figures
	Introduction
	I Octantis, a tool for Logic-in-Memory exploration
	Motivation and background
	An introduction to the Logic-in-Memory model
	DExIMA: a simulation tool for LiM systems

	The Octantis project
	Introduction
	The LLVM Project
	The LLVM Intermediate Representation

	The structure of Octantis
	From the input C algorithm to the optimized LLVM IR
	The Back-End

	II The expansion of Octantis
	Introduction and Motivations
	Polyhedral Model: a powerful mathematical framework
	Introduction to the Polyhedral Model
	Definitions and concepts
	The Loop Array Dependence graph

	InfoCollector: a preliminary analysis pass
	Introduction
	The collection of information
	The importance of alias analysis
	The handling of loops
	The handling of pointers

	The construction of Access Pattern Matrices
	The identification of valid Basic Blocks

	The evolution of Octantis structure
	Introduction
	The scheduling phase: leveraging InfoCollector
	The binding phase: facing higher complexities
	Handling array access patterns
	A new target-dependent optimization

	The expansion of the code emission phase
	The generation of VHDL files
	The generation of DExIMA-CAD configuration files

	Tests
	Image Processing algorithms
	Synthesis of the Integral Image algorithm
	Synthesis of a multi-image encryption algorithm
	Synthesis of an approximated Arithmetic Mean Filter

	Conclusions and future works
	Bibliography

