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To my grandparents.



"The ever accelerating
progress of technology and
changes in the mode of
human life give the
appearance of approaching
some essential singularity in
the history of the race beyond
which human affairs, as we
know them, could not
continue."
John von Neumann

4



Acknowledgements

I must thank my supervisors and co-supervisors, who were always available to listen
at all my ideas and possible solutions during these months.
Then, I would like to thank my friends, who showed a lot of patience and interest
listening to my discussions about these topics.
A special thank goes to my family, which always believed in me and made all of this
possible.

5



Abstract

The concept of "Neuromorphic engineering" was coined by Carver Mead at the end
of the last century. The idea was to exploit VLSI systems based on MOSFETs to
physically emulate the brain dynamics and computational principles. With the tech-
nological advancements, this concept has been extended to other kinds of materials and
devices, such as phase-change memories, ferroelectric devices, valence change memo-
ries, electrochemical metallization cells, nanowire networks, 2D materials, spintronics,
and organic materials. The neuromorphic approach can lead to very low power in-
memory computing systems, a big advantage compared to technological limitations
at the device and architectural design level nowadays. This thesis work aims to ex-
plore a spiking neural network implementation based on the molecular technology: the
Molecular Field-Effect Transistor (MolFET). Furthermore, the thesis aims in discussing
contributions or alternatives with respect to current VLSI silicon-based architectures.
The MolFET is one among the so-called beyond-CMOS technologies, based on the idea
that a single-molecule can realize an electronic switch, by controlling the electron flow
through applied gate voltages, conceptually similar to conventional FETs.
More in general, acting on the chemical structure of the molecule implementing the
channel, it is possible to obtain different I(V) characteristics, opening the way to
molecular-based IC (resistors, inductors, capacitances, transistors, and so on).

The first part of this work is dedicated to a brief theoretical recap regarding biolog-
ical neurons and molecular technology. Among the possibilities, a specific molecular
transistor, namely the para-Cyclophane (PCP) -based one, is reviewed in detail. It
shows NDR (Negative Differential Resistance), which is widely exploited in the follow-
ing chapters to implement a spiking neuron. Since the PCP-MolFET, thanks to its
NDR, can show hysteretic behaviour, this was studied to be exploited to generate the
neuron spikes. In the second chapter, some electronic stages based on this device are
presented. The stages have been selected under the perspective of using them in neuro-
morphic systems. The emerging properties regard non-linear responses, the presence of
discrete stable states allowed for the system (attractors) and monostable-bistable tran-
sitions. In the last chapter, all the results are used to propose a possible realization for
MolFET-based neurons, synapses, and networks.
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Introduction

In recent years, a lot of efforts went into the study of a possible hardware implemen-
tation able to physically emulate the brain dynamics. There are many reasons behind
this choice ([3]). Brain-machine interfaces could be considered, but also physical tools
able to provide information which could be used to better understand the brain itself.
One of the main reasons that makes (spiking) neuromorphic computing appealing is
the very low power consumption: it is known that the brain consumes only 20 W on
average in a very small volume. This is a crucial aspect considering nowadays limita-
tions in terms of electronic devices integration and von-Neumann bottleneck [4].
Anytime a computer performs some computations, there is a part dedicated to cal-
culation and another part that stores information related to these calculations: the
CPU has to ask to the memory the data it needs, then it sends back the results to the
memory after processing. During these steps the data travel along the bus, this is the
reason behind high dissipation and delays. The collective behaviour of neurons in han-
dling the information relies instead on the so called "in-memory computing" principle,
where two distinct parts for memory and computing are not required, but instead they
are coexisting in the same block. Finally, the currently state of the art for artificial
intelligence is based on software algorithms. The servers used to train these algorithms
are highly power consuming, therefore, having the possibility to train the network in
real-time, on specific neuromorphic structures, can lead to big advantages.
The aim of this thesis is to explore a possible implementation based on molecular
technology, to discuss contributions or alternatives with respect to current VLSI (Very
Large Scale Integration) silicon-based architectures.
All the analysis and simulations have been performed using Matlab and Cadence Vir-
tuoso.
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Chapter 1

Theoretical Background

1.1 Beyond CMOS: The molecular technology
Talking about "Nanoelectronics systems", the usual reference is the IRDS (Interna-
tional Roadmap for Devices and Systems) [5]. This is a collection of documents that
presents the state of the art of electronic technology, therefore, the reference [5] is the
starting point of this discussion. It reports a summary of the three possible ways that
try to solve current problems related to technology.
For many years technology relies on keeping the transistors scaling. This has led to
faster single devices with lower power consumption, however, a chip normally has tens
of billions of devices inside of it. This allows the chip to have so many functionalities,
even if the overall dissipated power due to leakage effects increases.
The More Moore approach tries to follow the same trend of the last decades, intro-
ducing possible solutions to keep the scaling (The Moore’s law) going on, like SOI or
FinFETs.
The More Than Moore approach instead focuses on the diversification, so that chips
integrating many different functionalities can be obtained. This could include analog
parts, sensors, biochips and so on.
The Beyond CMOS aims to other solutions that could be even better than the CMOS
itself. There is no doubt that MOSFETs and FinFETs are very reliable and known
technologies, but this does not mean they are necessarily the best ones. Among the
families of devices concerning the Beyond CMOS solutions there is the molecular tech-
nology, based on conduction in 0D systems, that will be introduced in the following.
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Theoretical Background

1.2 Molecules as electronic devices
The idea is to implement any kind of electronic devices by using specifically designed
molecules [8]. Under this perspective many advantages could be highlighted:

• Molecules are intrinsically nanoscaled. This feature leads to very compact devices
and systems;

• They can be generated using bottom-up approaches, for example by self-assembly,
in which molecules naturally arrange themselves driven by chemical mechanisms;

• In principle, very versatile systems can be obtained, since, by selecting the suit-
able molecules, particular behaviour can be achieved;

• A molecule could have a fast response to external stimuli;

• The current generated by such devices could be in the order of fraction of µA
concerning saturation regime and fraction of nA for leakages. From an electronic
point of view this implies small power dissipation.

However, molecular systems are very sensitive to process variability and dependability
on what happens in the environment. This is normally considered as a disadvantage,
but in the context of neuromorphic circuits it could be interpreted as a feature. For
example, in [6] and [7], it is explained how a certain degree of electronic noise in the
system can allow the correct Hebbian learning mechanism.
Generally speaking, the sources of variability obtainable for molecular technology can
be related to:

• Not perfect connections (between the anchoring groups and the compound or the
external electrodes);

• An unwanted torsion for the molecular channel;

• Not perfect compound with respect to the one expected from synthesis;

• Different structure for the molecular channel itself (for example, more molecules
connected in between the electrodes instead of just a single one).

These devices are also currently difficult to be manipulated and integrated due to tech-
nological aspects, moreover, they have complex behaviour to be modeled and described.

In [8] a review of possible applications for molecular electronics has been presented.
For example, the basic idea behind a molecular wire is to have a certain compound con-
nected between two external electrodes, called generally donor and acceptor (in analogy
with chemistry), using specific anchoring groups. By applying a certain voltage drop
across the electrodes a current flowing through the molecular channel will be observed.

18



1.2 – Molecules as electronic devices

In particular, the anchoring groups are specific compounds used in order to interfacing
the molecular channel to the external electrodes. In fact, it is very difficult to have
the molecule itself directly connected to the electrodes since the compound could not
present at the same time the desired characteristics for the conduction and the optimal
chemical bonds with the electrodes: this requires to technologically adapt the donor
and the acceptor to the molecule. The presence of the anchoring group will have an
influence: they have not just a mechanical-chemical role in terms of connections, but
they also affect the interaction in terms of current flowing into the channel.
Regarding the molecular channel, a lot of factors can influence the conduction: for
example its chemical specie, its length and a possible torsion or rotation between the
anchoring groups.
Apart from external influence given by the voltage drop across the electrodes, direct
influence on the molecular channel can also be achieved. This is reflected in changes
in its behaviour, concerning both the amount and the type of transport. Depending
on this, different kind of devices can be designed, such as sensors (for example due to
the chemical interaction with some environment) and transistors (for example using
a gate electrode). A transistor like this is known as MolFET (Molecular-FET). It is
important to notice that, in principle, more effects could be present in the same device.
Concerning neuromorphic application, the capacitor is another important device, since
it can be used to model the neuron lipid bilayer present in the soma, dendrites and
axon. Moreover, it allows to introduce temporal dynamics.
It has to be mentioned that also memristive behaviours have been observed in molecu-
lar devices ([9],[10]). Even if this work does not involve the usage of memristors, these
devices are considered crucial in order to develop bio-inspired synapses for low power
and high integration density VLSI neuromorphic circuits.
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Theoretical Background

Molecular transistors

Figure 1.1. The structure of a molecular transistor.

Fig.1.1 shows a sketch of the typical structure of a MolFET. Two electrodes typi-
cally made of gold (source and drain, in association with the normal transistor), have in
between the molecule making the channel. The molecule is anchored to the electrodes
through the anchoring groups exploiting Au-S covalent bonds, which ensure the absence
of hopping transport: the transmission of electrons between the electrodes is coherent
due to the delocalization introduced by π orbitals. Such coupling is also referred as
"strong coupling", a "weak coupling" instead would involve also hopping transport,
therefore transport between localized molecular orbitals. Resonant molecules such as
Benzene are very important in this context, they allow to have fully delocalized molec-
ular orbitals in which electrons can be shared. This enhances the conduction, making
these molecules very important for such technology.
By using gate electrode, the behaviour of the whole system can be changed. As a
consequence, also the current. However, the mechanism for the conduction does not
change.

The conduction for 0D systems could be explained, in principle, by exploiting a square
well approximation. This can allow to have information about the energy levels of-
fered by the molecular channel. However, this does not provide accurate values since
a molecule is an arrangement of few atoms, which is not suitable with the square well
hypothesis. For this reason, physical ab-initio simulations are used to get information
about the allowed energy levels associated to the molecular orbitals with high precision.
Then, once a precise estimation for the levels is obtained, they will be used with the
model in order to estimate the current passing through the device.
Concerning a molecule, HOMO levels (highest occupied molecular orbital) and LUMO
levels (lowest unoccupied molecular orbital) have respectively the role of the valence
band and the conduction band considering a solid state analogy. In terms of energy,
these levels are separated by the HLG (HOMO-LUMO gap). This is the minimum
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1.2 – Molecules as electronic devices

energy required from an electron in order to be able to go into a LUMO level starting
from a HOMO level. The fact that electrons can be able to go to LUMO levels from
HOMO ones is behind the possibility of having conduction inside a molecule. Depend-
ing on the HLG, each molecule can present neither conduction or not: the smaller the
HLG is, the easier will be the conduction.

1.2.1 The Landauer’s formula
The aim of this thesis is not to derive the model used for molecular conduction, therefore
only few important results will be presented and commented, however [11] is suggested
to get more details about it. The 1.1 refers to the current passing through a dot having
a single energy level EL.

IDS = 2qγ1γ2[f(EL, EF S) − f(EL, EF D)]
ℏ(γ1 + γ2)

(1.1)

q is the electron charge, ℏ is the reduced Planck’s constant. This equation considers
the difference between the Fermi distributions at the source and drain contacts, with
respect to the considered molecular energy level. This difference implies that the
current is different from zero only if EL is between EF S (the Fermi energy at source
contact) and EF D (the Fermi energy at drain contact). The energy difference between
the two Fermi levels is called "Bias window" and it increases with VDS since EF D −
EF S=−qVDS, therefore, the EL must be inside this window to allow the molecule to
conduct. If VDS>0 then EF S > EF D and so the electrons will flow from the source to
the drain through the energy level EL. If instead, VDS<0 then EF S < EF D, therefore
the bias window will still open but the electrons will flow from the drain to the source.
The two γ factors specify the strength for the interactions between the considered
energy level and the two contacts. Each γ factor is related to a parameter τ called
"Escape time" through

γ = ℏ
τ

(1.2)

The escape time expresses the time required for an electron to cross the interface be-
tween the related contact and the molecule. This can be seen also as the time required
for an electron in the dot to go into the relative electrode. The γ factors are called
"Coupling factors", it is clear that the more τ is small and the more the γ will be high.
When the γ values are high then it is easier for an electron to move from the relative
electrode to the dot and vice versa since the transit times will be very small.

In order to have a generalization for the 1.1 to more energy levels, some density of
states is required. DEL(E) can be thought as the description of how EL is distributed
in terms of energy. This is an essential element to have the so called "Transmission
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Theoretical Background

function" T(E) for this specific energy level EL. In particular:

TEL(E) = γ1γ2

γ1 + γ2
DEL(E) (1.3)

It is important to remark that these coupling factors are specific for this energy level,
with respect to the contacts. In 1.3, E is the electron energy. In particular, if an electron
is placed in the discrete level EL in strong coupling condition, the probability to find
it inside the dot will decrease exponentially with time, since it can easily move from
the energy level of the dot towards the electrodes. DEL(E) can be defined considering
the Fourier transform of the square modulus |ψ|2, where ψ is the wavefunction of the
electron. This provides a Lorentzian distribution whose shape depends on how fast
is the decay, therefore on the quality of the interaction between the electron and the
electrodes. DEL(E) = γEL

/(2π)
(E−EL)2+(γEL

/2)2

γEL
= γ1 + γ2

(1.4)

A very fast decay corresponds to a quite broad distribution, if instead the decay is slow,
then the distribution is narrower. This model in literature is reported as "Broadening
of levels", is a very important phenomenon in conduction and basically it is related to
the time-energy uncertainty principle. Finally, it can be noticed that if the coupling is
low then γEL

will be small and so the Lorentzian distribution can approximate quite
well a delta function, whereas, if the coupling is high, then also broadening effect will
have to be considered (this basically depends on the type of technology that is used to
connect the dot with the electrodes).
It is easy to extend all of this in the case in which more molecular energy levels are
present, in fact, the complete transmission spectrum is the sum of the transmission
spectra related to each energy level.

T (E) =
∑

TELi
(E) (1.5)

There may be different technological aspects influencing the molecular transmission
spectrum:

• The length of the molecule used as channel: by adding more resonating molecules
to the chain more delocalized π states will be present, this implies more avail-
able electrons and so the HLG will reduce. Moreover, as the chain increases, the
increased charge inside the molecular orbitals will lead to a shift toward lower
energies of the energy peaks. These peaks will result smaller in amplitude since
the contacts will be more far away from each other, implying less coupling be-
tween the molecules, the anchoring groups and the electrodes. The electrons will
find more difficulties to flow in the molecular system, therefore, the overall final
situation will depend on the particular case;
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1.2 – Molecules as electronic devices

• The possibility to have a torsion for the molecule: this introduces a discontinuity
in the π bonds due to a misalignment of the molecular orbitals, which implies an
impact on the coupling. A rotation of the π bonds will lead to less delocalization
which implies more difficulties for the electrons to pass through the molecule;

• The anchoring groups used to connect the channel to the external electrodes:
this is due to the difference between the electronegativity of the molecule and
the used anchoring group. An atom with high electronegativity tends to attract
electrons to it, this reflects in a electronic trap at the extreme of the molecule,
so that less electrons will be able to go in. Moreover, the electronic charge which
is accumulated at the anchoring groups will produce a potential barrier for other
electrons injected from the electrodes.

All the effects from external and direct influences can be gathered as a net energy shift
T(E-U) of the complete transmission spectrum.

U = UVDS
+ UVGS

+ UVBG
+ UCH (1.6)

In 1.6 the main possible types of influences for a MolFET are reported.

• UVDS
corresponds to the contribution due to the applied VDS (therefore, VDS

opens the bias window but at the same time shifts the transmission spectrum).
This can be estimated by exploiting a capacitive model of the quantum dot:

UVDS
= −q CD

CS + CD + CG + CBG

VDS = −q CD

CES

VDS = −qηVDS (1.7)

where q is the electron charge, Ci are the capacitances associated to each contact
i and CES is just the sum of them, called "Electrostatic capacitance". The η factor
is called "Voltage division factor" and it indicates the portion of VDS dropping on
the drain contact.
It has to be specified that such kind of shift induces also a deformation of the
amplitudes of the peaks which is not taking into account in this model, however,
simulation tools such as EE-BESD take care of this aspect by exploiting the
results provided by ab-initio simulators [12];

• UVGS
is the contribution to the shift of the spectrum due to the applied VGS

UVGS
= −q CG

CES

VGS = −qαVGS (1.8)

α = CG

CES
in 1.8 is known as "Alpha coupling factor";

• UVBG
is the contribution due to a voltage VBG, applied to a second gate, called

"Back gate"
UVBG

= −qCBG

CES

VBG = −qβVGS (1.9)
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β = CBG

CES
in 1.9 is known as "Beta coupling factor", basically this electrode is used

in order to introduce a sort of offset for VGS;

• UCH is the contribution due to the so called "Charging effect". This is related to
the fact that, when a molecular energy level is used to conduct, the number of
hosted electrons inside the dot will change. As a consequence, the whole potential
energy of the molecular system will also change. The contribution of the energy
shift induced by this phenomenon is to prevent the system to conduct, since the
energy levels will be pushed away from the bias window as they approach it. In
order to be able to evaluate the right positions for the energy levels, such shifts
have to be taken into account using a self-consisting method. This is because the
number of electrons N hosted by the molecular levels depends on the potential
energy U, but U depends also on N through UCH=U0(N-N0) where U0 is the
charging potential due to a single electron.

Summarizing this simple model, once U is found, T(E-U) can be obtained through the
molecular transmission spectrum provided by the physical ab-initio results.
It can be used to calculate the current passing into the molecular channel as:

IDS = 2q
ℏ

∫ ∞

−∞
T (E − U)[f(E,EF S) − f(E,EF D)] dE (1.10)

The equation 1.10 means that the current is proportional to the integral over the full
transmission spectrum of the molecule, shifted by the energy term U, multiplied by
the term describing the bias window.

Figure 1.2. Sketch reporting a portion of the transmission spectrum inside
a fixed bias window.

Only the portion of the spectrum inside the bias window will mainly contribute to the
current (neglecting the tails of the Fermi functions at the contacts). In the example
reported in figure 1.2 a positive VDS is used: electrons will flow from source to drain
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1.2 – Molecules as electronic devices

and a certain IDS will be observed. In particular, the blue curve represents the energy
distributed transmission spectrum of the molecule.
Since EF D - EF S = - qVDS, the bias window will have amplitude qVDS, EF S > EF D

since VDS > 0 V.

1.2.2 The PCP molecule
This section is dedicated to the presentation of the ParaCycloPhane[3,3]-based, also
known as PCP. It is based on OligoPhenylEthylene, also known as OPE, quite used in
the field of molecular electronics.

Figure 1.3. OPE chemical structure.

The HLG for OPE is around 3.5 eV, figure 1.3 reports its symbol.
It is composed by a Phenylen molecule bonded to a Ethynylene molecule.

Figure 1.4. PCP chemical structure.

The PCP is made by a chain having two OPE and a block in the middle, based on
two Phenyls connected by three molecules of Methylene (−CH2−).
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Each connection between the Phenyls in the middle block is also called "Bridge".
In this case, having a chain of three molecules of Methylene as each bridge, the notation
[3,3] in the full name of the PCP is added. These two molecules of Phenyl are facing
each other in the 3D space. This implies a coupling between the delocalized π orbitals,
one on top of the first Phenyl and the other on the bottom of the second one.
Since the two Methylene bridges are saturated, the only path electrons have for passing
from one electrode to the other is through the superposition of the two π states.

This path is interrupted by the so called DQI ("Destructive quantum interference ef-
fect", see [13]), generated for some energies by the interaction between the paths given
by the bridge and the π orbitals overlap: this is translated in a relevant reduction of
the transmission spectrum, which limits drastically the current passing through the
PCP. Due to DQI high ratio ION/IOF F are obtainable exploiting PCP molecule, which
makes them good candidates for implementing CMOS logic circuits.

Another interesting thing related to the PCP is that its I-V characteristics present
a NDR (Negative Differential Resistance). This is due to the distortion of the trans-
mission spectrum related to the shift induced by the applied VDS, jointly with the
charging effect. What happens is that, because of the energy distribution of the molec-
ular levels, as the bias window increases, the current will increase, but the energy levels
will also tend to "escape" from it. Once the applied VDS is enough to allow the energy
levels to shift outside the bias window, the current will drop abruptly.
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1.2 – Molecules as electronic devices

PCP modeling and characterization

This thesis has its basis on the study performed by the VLSI group of the Electronics
and Telecommunication department (DET) at Polytechnic of Turin, which supervises
it. In [2], the methodological description used to obtain the I-V characteristic for the
PCP based MolFET has been reported and explained.

Using QuantumATK (a semi-empirical physical ab-initio simulation) and the Extended
Hückel Theory, the authors were able to extract the I-V molecular characteristics.
In particular, QuantumATK is able to compute the IDS current through eq. 1.10 once
the geometry and the applied voltages (both VDS and VGS) have been specified.
This is performed by a Self-Consistent Field loop, that considers quantum transport
coupled with electrostatics. The transmission function 1.5 is derived by this tool ex-
ploiting the Non-Equilibrium Green’s function method.

The results have been gathered into a Look-Up-Table (LUT) in order to create a proper
symbol in Cadence Virtuoso environment, describing each MolFET with VerilogA.
Finally, in order to consider the dynamic behaviour of the PCP, this static model based
on LUT has been improved introducing proper electrostatic capacitances and escape
times as discussed in the previous section, associated to the correspondent metal con-
tact.

• The capacitance CG is evaluated from the parallel plate approximation, RG is
associated to the total resistance of the gate dielectric;

• The capacitances CS and CD are estimated as electrostatic capacitances taking
into account the low number of electronic states available for a molecular channel.
The electronic state filling can be considered through a quantum contribution to
the electrostatic capacitances, called "quantum capacitance" Cq.
Once it is known, CS and CD can be computed according to the definition C = ∂Q

∂V
,

considering the charge inside the molecular channel. The escape times are linked
to them by

Ri = τi

Ci

from which it is possible to get an approximation for RS and RD.

A Cadence Virtuoso symbol, using the data stored in the LUT and the parameters re-
lated to the dynamic behaviour, can be implemented by positioning the proper parallel
RC branch at each contact of the MolFET as described in [11].
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This work will use the static model of the presented molecule.

Figure 1.5. I-V characteristics of the PCP based MolFET.

In figure 1.5 the static I-V characteristics of the discussed PCP based MolFET have
been reported. This result will be reconsidered and well discussed in successive sections,
however, it is important to notice the NDR behaviour due to the escaping of the energy
levels from the bias window as the applied potential increases. This will have a crucial
application for the proposed molecular neuron, and actually, it is the reason driving
this thesis work.
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1.3 Introduction to the biological neuron
Once the technological aspects have been introduced, an overview about biological neu-
rons and dynamics is needed in order to understand how it could be possible to employ
molecules (and in particular the PCP) to reproduce, at least, some of the properties
these systems exhibit. The full theoretical part which is described in this chapter in-
volves concepts coming from [15] and [14].

In this chapter a bottom-up approach will be adopted, the aim is to propose a model
for the neuron so that an implementation using electronic components will be suitable.
The model which is considered the most biological plausible in neuroscience, is the
Hodgkin and Huxley (HH) one. Its description makes use of electrical component to
describe the biological neuron, therefore, this is an approach which considers the build-
ing of a neuron starting from more basic electronic device instead of thinking about
having a single device implementing neural dynamics.

The difficulty in talking about neurons is that there is not just one type, but many
different neurons exist. Each class of neurons differ from the other because of the ionic
channels they have. These control the flow of current across the cell membrane of the
neuron, making possible for it to generate a spike because of the difference in voltage,
induced from the charge associated to the ions diffusing through the membrane.
Each ionic channel has its own timescale, I-V characteristics, voltage range in which
they are sensible: this gives an idea of how much complicate can be thinking about
replicating even a single neuron since its behaviour will depend on the collective action
of all these ionic channels.

Neuroscience is a very active area in implementing neuromorphic circuits.
CMOS implementations, for example, are not just inspired on real effects coming from
this area, but really try to physically emulate neurons exploiting sub-threshold regime,
which is governed by carriers diffusing into the channel [18]. From the point of view
of replicating just the computational principles, the role of molecular technology could
bring an important contribution. As discussed in previous section, it is possible, in
principle, to obtain any kind of I-V characteristics just synthesizing the right molecule
to be used as MolFET. This could be a strategy in order to try to replicate particular
I-V behaviour of real ionic channel, without the constrain of use complicated tradi-
tional MOSFET architectures. However, it would require a lot of research and effort
that a simple master thesis cannot sustain.
The problem becomes even bigger if the physical morphology and extension of the neu-
rons is taken into consideration. It is known that different kind of firing pattern can
be obtain by stimulating a neuron (burst, tonic, adapting, and so on) and this depends
also on the dendritic extension in the real space.
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1.3.1 The equivalent circuit model of Hodgkin and Huxley

Figure 1.6. The equivalent circuit model describing the soma in the Hodgkin
and Huxley model.

Hodgkin and Huxley focused on the study of the squid giant axon in order to
understand how neurons generate action potentials, thanks to the interaction of all
these different components. In particular, the circuit in figure 1.6 refers just to the
soma of the neuron, its nucleus, where the charge is integrated in order to generate
a spike. Initially all the dendritic part will be not considered (inside of it the signals
propagate until they reach the soma), exactly as the axon (where the generated action
potentials propagate to other neurons) and all the synaptic dynamics.

The phospholipid bilayer

The soma can be imagined as a spherical shell made by an insulating organic material,
a phospholipid bilayer.

Figure 1.7. A section of the phospholipid bilayer.

Phospholipids are molecules having a polar head on one side a non-polar tail on the
other one, this causes the tails of these molecules to be in contact with each other
since the whole structure is immersed in a saline solution. These molecules are closely
packed together, which avoid ions to pass through the membrane. It is about 23 Å
across. It can be seen as a capacitor separating the outer saline solution from the inner
one: this justifies the presence of C in the equivalent circuit in fig.1.6.
The node VC in particular is referring to the inner part of the neuron, whereas the
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bottom common node is referring to the external part. This means that the voltage
VC is the voltage difference between the inside and the outside of the cell, it is called
"Membrane Potential". This also means that the current source that connects the
outside of the cell to the inside of the cell is injecting charge inside of the neuron.
Here comes the first important role of the neuron, leading to the generation of the
action potential: the temporal integration of the injected charge.

Leak membrane ionic current

The phospholipid bilayer is not fully insulating, some paths are allowed for the ions to
flow from the inside to the outside of the neuron, continuously. The current which is
generated in this way is called "Leak current" and it can be modeled using a resistance.
Neglecting all the batteries (which will be introduced talking about Nernst potentials)
and the variable resistors, an easy first order dynamic circuit is obtained.

VC +RLeakC
∂VC

∂t
= RLeakIin (1.11)

The time constant for such RC circuit is given by τ=RLeakC, the neuron just integrates
the inputs over time having a certain leakage in the meanwhile. Having a constant
current as input, the solution of the 1.11 is:

VC(t) = (VC(t0) − IinRLeak)e− t−t0
τ + IinRLeak (1.12)

As usual, the 1.12 indicates relaxation towards some steady state given by IinRLeak.
The neuron acts like a filter, it can well respond to inputs slower than τ , so that it has
time to relax, but not to inputs which are faster than τ . For this reason, texts refers
to the neuron as a low pass filter, and this is its second role.

When the input is a constant current the capacitance keeps integrating, increasing
its VC . In the meanwhile, the leak resistance conducts a current which is proportional
to VC , and so, there will be a time for which a saturation for this voltage drop will be
observed. This value VC has to be enough in order to trigger the mechanism for the
action potential generation.
In well-designed neuromorphic circuits, this τ should be around 10 ms in order to be
similar to the biological one. This allows to correctly describe the temporal dynamic
of biological neurons. Moreover, this is a property only of the membrane.
Considering that 4-5τ are needed in order to reach the steady state, the frequency
involved in generating the action potentials results to be in the order of Hz.
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Nernst Potentials

Here follows the implementations of the batteries in figure 1.6.
These are needed in order to allow the neuron to change its voltage VC through the
action of the ionic channels. In particular, ionic channels can be seen as voltage-
controlled conductances, which connect these batteries to the inner side of the neuron
at different times: this is the mechanism behind the generation of an action potential.
The reasons why such batteries are present are essentially two:

• The presence of ion-selective channels: these are ionic channels that allow only
specific ionic species to pass through them;

• The presence of a concentration gradient between the inside and the outside of the
neuron, regarding the specific ionic species allowed to pass through the channel.

What happens is that some ionic charges are able to diffuse from one side of the mem-
brane to the other side. This generates a voltage drop across the phospholipid bilayer
which tends to be a barrier for further ionic diffusion. The diffusion process stops
when this voltage difference reaches a certain constant value, that’s called "Equilibrim
Potential" or "Nernst Potential".
This can be modeled using a battery in series to the specific ionic channel it refers to.

In order to derive the value for the Nernst potential, the Boltzmann equation can
be used. The probability an ion has to be in a energy state E is proportional to e− E

kBT

where kB is the Boltzmann constant and T is the temperature.
Considering an ion with charge q in a static electric field, the energy becomes
E(x) = qu(x), where u(x) is the potential at position x. This means that the relation
between the probability to find the ion in two different points is:

P (x1)
P (x2)

= exp−qu(x1) − qu(x2)
kBT

(1.13)

Due to the huge number of ions, the P(x) may be interpreted as the density of ions at
position x, n(x). Secondly, it can be noticed that since n(x) ∝ exp− qu(x)

kBT
, if q>0 (as in

the case for K+ and Na+) then the concentration will be higher where the potential
is lower. Therefore, there will be a region with higher potential having less ions, and a
region with lower potential having more ions. Associating x1 to the inner part of the
phospholipid bilayer and x2 as the outer one, from 1.13 follows:

nin

nout

= exp−qVin − qVout

kBT
(1.14)

From which the voltage difference ∆V after the diffusion can be obtained.

∆V = Vin − Vout = kBT

q
ln
nout

nin

(1.15)
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The equation 1.15 refers to the Nernst potential that can be used as voltage for the bat-
teries in the HH model. Considering a single ionic channel at the time, with T=300 K,
and so kBT

q
=25 mV, the results in table 1.1 can be obtained.

Table 1.1. Nernst potentials associated to different ionic species.

Ion Inner concentration Outer concentration Nernst Potential
( mmol) ( mmol) ( mV)

K+ 400 20 -75
Na+ 50 440 55

The meaning of table 1.1 is that when the potassium ionic channel opens, potassium
ions will diffuse out of the membrane bringing the voltage drop on it to -75 mV. Also,
when sodium ionic channel opens, sodium ions will diffuse in, bringing the voltage drop
on the membrane to 55 mV.
These results are the ones obtained by HH studying the giant squid axon, but also for
mammalian neurons holds nin « nout concerning Na+ and nin » nout concerning K+.
Moreover, they have been calculated by supposing to have just one kind of ionic chan-
nel. In real cells, different kind of ionic channels are simultaneously present and all of
them contributes to VC : this could be kept into account by the more rigorous Goldman
equation. It turns out that the neuron has a certain resting potential urest with a value
in between EK and ENa. This happens in steady state, its value is determined by the
equilibrium between the different currents. In figure 1.6, this can be related to ELeak

and it results to be -50 mV.

In order to understand the effect of these batteries, a single branch of the circuit in fig-
ure 1.6 can be considered. For sake of simplicity, the one having constant conductance
can be chosen. Using Kirchhoff’s law for the currents:

GLeak(VC − ELeak) + C
∂VC

∂t
= Iin (1.16)

Where the quantity (VC − ELeak) is also called "Driving potential" since it basically
drives the current passing through the channel (non-selective in this case).
Of course, GLeak=R−1

Leak.
In presence of constant current, the solution of the equation 1.16 is:

VC(t) = (VC(t0) − (ELeak + IinRLeak))e− t−t0
τ + (ELeak + IinRLeak) (1.17)

Where again, τ=RleakC. The equation 1.17 is formally equal to the equation 1.12, but
this time the steady state takes into consideration also the Nernst potential.
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1.3.2 The generation of the action potential
The behaviour of the voltage-controlled time dependent ionic conductances can now
be introduced.
Referring again to the figure 1.6, three different conductances can be noticed. A leak
resistance RLeak connects the soma to the resting potential, which is the reversal po-
tential EL, then also the variable sodium and potassium conductances are present, RNa

and RK , connected respectively to ENa and EK .

Both of them are dependent on time and voltage, in particular, the I-V character-
istics are describing the current passing through them as a function of time, once VC is
fixed. The total membrane current is just the sum of all the currents passing through
these resistances. 

Im(t) + C ∂VC(t)
∂t

= Iin(t)
Im = INa + IK + ILeak

INa = GNa(VC , t)(VC − ENa)
IK = GK(VC , t)(VC − EK)
ILeak = Gleak(VC − ELeak)

(1.18)

From the system reported in 1.18 a qualitative idea about the mechanism generating
a spike can be obtained.

1. Initially, both IK and INa are very low, in particular VC=urest=ELeak. This is
due to the relaxation through RLeak. In this condition, the neuron is referred as
"Polarized", which means that it is inactive.

2. In someway, a certain current is injected into the soma (by an external electrode
or through synapses). VC increases and this is called "Depolarization". The
behaviour of INa with respect to VC presents a peak, whereas IK presents a more
linear characteristics. Actually, the membrane capacitance is initially charged
towards ENa because of this peak.

3. Keeping VC increasing, IK increases whereas INa decreases. In this situation, the
capacitance is connected to EK : VC decreases again, and this is called "Repolar-
ization", until it becomes negative. Once EK is approached by VC , the neuron is
referred as "Hyperpolarized", since the potassium reversal potential is lesser than
ELeak.

4. At this point both INa and IK are very low, therefore VC can relax again to-
wards ELeak. The time needed to reach the resting potential, starting from the
potassium reversal potential, is called "Refractory period". This ensures the im-
possibility for the generation of further action potentials until the transient ends,
since the neuron cannot respond to any incoming stimuli during this time.
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Figure 1.8. Schematic generation of an action potential.

The joint actions of these channels is to produce a spike, having the positive peak
around 30-40 mV and the negative peak around -75 mV. This is the generated action
potential that will propagate into the axon, impinging on the synapses connecting the
axon to the afterwise neurons.

It can be noticed from the system 1.18 that VC depends on the currents, but the
currents depend also on VC through the ionic conductances. This requires to solve the
model using an iterative loop, so that the evolution in time can be observed.
Biophysically speaking, the conductances GNa(VC , t) and GK(VC , t) depend on some
parameters (voltage dependent) which will be not described here, however, these have
been fitted by HH on real experiments keeping into account the precise biological
stochastic mechanism used by the ionic channel to open.

For what concerns this work, the important point that has to be highlighted is that,
when a certain VC is reached, one ionic channel starts the mechanism described pre-
viously. This establishes a sort of threshold, even if the model of HH doesn’t seem to
refer to it explicitly, but it is "contained" in the system of equations 1.18.
Once the first ionic channel is activated, the second ionic channel starts to conduct,
and when this happens it has to discharge the capacitance so that VC is reset.

In literature, different kind of electronic devices have been used to replicate the ionic
channel behaviour. For example, [16] and [17] explain how memristors could be in-
volved, but also classic CMOS circuits ([18]).
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1.3.3 The Integrate and Fire model
In order to simplify the biophysical model proposed by Hodgkin and Huxley, some con-
siderations can be made. There is no doubt that the generation of the action potentials
is important, since it allows neurons to communicate each other while performing data
compression during time. In fact, the biological neuron spends most of its time at rest,
integrating the inputs (analog behaviour), then it fires when needed (digital behaviour).

The most basic "Integrate and Fire" model is based on the idea that what really mat-
ters for the information is the presence of the spikes, which are seen just as discrete
events at specific times. In particular, the approximation which is introduced regards
the presence of a threshold mechanism. This takes into account a sort of equivalent
membrane potential Vth, for which the mechanism described in the HH framework is
triggered. This is also called "Spike threshold".

Figure 1.9. The equivalent circuit of the "Integrate and Fire" model.

In fig.1.9 the complex dynamics concerning the ionic channels bringing to the gener-
ation of the action potential, described in the previous section, has been substituted
with a black box called "Spike generator". The role of the spike generator is just to
generate a spike, an event, when the voltage VC reaches the spike threshold Vth, then
it has to reset VC to a value Vreset. This is a very simplified version of the HH model,
where Vth could be associated to the voltage required for the sodium channel to start
the spike generation, whereas Vreset could be associated to the Nernst potential of the
potassium channel.
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Figure 1.10. The generation of the action potentials with the "Integrate and Fire"
model. Iin = 1.05 nA between t1 = 40 ms and t2 = 166.7 ms, Rleak = 100 MW, C =
0.1 nF, τ = 10 ms, ELeak = - 50 mV, Vth = 10 mV, Vreset = - 70 mV.

In fig.1.10 the results coming from the integrate and fire model, implemented using
Matlab (Appendix A), are shown.

By injecting a constant current into the neuron, the capacitor will charge up until
a value V∞ = ELeak + RLeakIin with a certain time constant τ=RleakC (see eq.1.17).
It will fire only if VC reaches a value greater than Vth during this charging, then VC

will be reset to Vreset and the process will start again.
At the end, VC will relax to ELeak when the input is removed.

It can be noticed from fig.1.10 that if the total injected current is such that V∞ is
lesser than Vth, then the neuron will never fire a single spike. If instead V∞ is greater
than Vth, then the neuron will start to generate a spike train with a frequency which
increases with the injected current. In particular, if the current increases then V∞

will increase, therefore VC will reach Vth faster and the time between each spike will
decrease.
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Considering the time ∆t between these events, it is possible to extract an expression
describing the frequency at which the neuron fires as a function of the injected current.

V∞ = ELeak +RLeakIin = Vth (1.19)

The eq.1.19 sets the condition for the so called "Rheobase", the minimum current to
be injected in order to let the neuron fire.

Ith = GLeak(Vth − ELeak) (1.20)

Considering eq.1.17, imposing VC(t) = Vth and VC(t0) = Vreset, the following can be
obtained:

Vth = (Vreset − V∞)e− ∆t
τ + V∞ (1.21)

This means that the initial transition from ELeak to Vth, that takes place when Iin ≥ Ith,
is neglected: the initial condition VC(t0) is equal to Vreset, therefore at least one spike
has already been generated. From eq.1.21, ∆t can be derived, leading to:

f = ∆t−1 = (τ ln V∞−Vreset

V∞−Vth
)−1

Iin ≥ Ith

(1.22)

The eq.1.22 describes the so called "Frequency-Current" curve. This can be interpreted
as the response the neuron has as a function of the injecting current. The response,
in particular, is the frequency of the generated pattern of spikes. The frequency vs
current relation only depends on the characteristics of the neuron in exam through the
parameters ELeak, RLeak, Vreset, Vth and C.

The typical shape of the frequency vs current curve has been plotted in fig.1.11. The
injected currents are in the order of nA, the frequencies instead are in the order of Hz.
If V∞ is much greater than Vreset and Vth, then the relation 1.22 becomes linear.

f = Iin − Ith

C(Vth − Vreset)
(1.23)

Therefore, in this approximation, it could be said that if the total injected current is
lesser than a certain value Ith, the neuron will not respond, if instead the total current
is greater than it, the neuron will respond linearly with respect to Iin.

This approximated behaviour actually resembles a ReLU(x)=max(θ,x) activation func-
tion, used in Deep Learning algorithms [28]. The activation functions are used in the so
called "Rate models", where the spike trains description is substituted with f-I curves,
one for each neuron of the neural network.
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Figure 1.11. Frequency - Current curve from the integrate and fire model.
Rleak = 100 MW, C = 0.1 nF, τ = 10 ms, ELeak = - 50 mV, Vth = 10 mV, Vreset

= - 70 mV.

Normally, the frequency of operation for neurons is in the order of tens of Hz.
This is very low if compared to nowadays technologies, however, neural networks com-
pensate such disadvantage with high parallelism, low power consumption because of
spike coding and in-memory computing due to the synapses. This suggests that what
really matters is not the neuron itself, but the properties of the neural network.
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1.3.4 Dendrites
The models reported until now are just for the soma of the neuron. This is the region
in which the neuron decides if a spike has to be emitted or not. Different kind of inputs
come in, the membrane capacitance integrate them and eventually an action potential
is generated.
However, in real neuron, only a few number of inputs are directly injected from the
soma. Most of them are injected into the dendrites from the synapses, for example,
positioned at some distance with respect to the soma. Once the current is injected it
has to propagate along all the dendrites until the soma is reached, this implies atten-
uation for the traveling signal.
In literature, the complex dendritic arborization is simplified using a single cylinder
(see [14]) with radius a. It is possible to demonstrate that, mathematically, this is a
good approximation for an extended dendritic part.

Figure 1.12. Unit for the finite method analysis modeling the dendritic extension.

A finite element analysis is used to model a piece of dendrite. Each of these slices is
modeled as a separated circuit: the more the dendritic part is extended in the x axial
direction, the more units will be used.
The axial resistance R models the intracellular resistance the input currents find in
traveling along the dendrite. This is because this current is confined in a very little
space, the bottom node instead refers to the outside of the dendrite, where the volume
is larger and any extracellular resistance can be neglected (however, it must be consid-
ered to understand how extracellular signals can be recorded).
The membrane can be modeled as done for the soma: a capacitance is used and con-
nected in parallel with the series of a resistance and a battery, referring to non-specific
(leak) ionic channels.
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The current I(x, t) flowing axially in each piece of the dendrite can be obtained
considering Vdend(x, t) as the voltage drop on the piece in exam and Vdend(x + ∆x, t)
as the voltage drop on the next one.

Vdend(x, t) − Vdend(x+ ∆x, t) = RI(x, t) (1.24)

From which:
Vdend(x, t) − Vdend(x+ ∆x, t)

∆x = R

∆xI(x, t) (1.25)

Finally, by taking the limit for ∆x → 0:

− ∂Vdend

∂x
= RaI(x, t) (1.26)

Where Ra= R
∆x

is the axial resistance per unit length.
Finally, the current entering the membrane can be indicated as im(x, t), whereas the
injected current can be indicated as ie(x, t). These are both currents per unit length.
By using the Kirchhoff’s law for the currents, the following can be obtained:

im(x, t)∆x− ie(x, t)∆x+ I(x, t) − I(x− ∆x, t) = 0 (1.27)

By dividing again by ∆x and taking the limit to 0:

im(x, t) − ie(x, t) = −∂I

∂x
(x, t) (1.28)

And by the equation 1.26, if Ra is constant:

∂2Vdend

∂x2 = −Ra
∂I(x, t)
∂x

(x, t) (1.29)

From which the following is obtainable:

1
Ra

∂2Vdend

∂x2 (x, t) = im(x, t) − ie(x, t) (1.30)

The only missed element now is im(x, t), the current per unit length entering the
membrane. This is modeled again as in the HH soma, as can be seen from figure 1.12.

im(x, t)∆x = Cm∆x∂Vdend

∂t
(x, t) +Gm∆x(Vdend(x, t) − ELeak) (1.31)

Where Cm is a capacitance per unit of length, and Gm is a membrane ionic conductance
per unit length.
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Finally, inserting 1.31 into 1.30 and dividing by Gm, the "Cable equation" can be
derived. It describes the propagation of input currents along the dendritic arborization.

λ2∂
2Vdend

∂x2 (x, t) = τm
∂Vdend

∂t
(x, t) + (Vdend(x, t) − Eleak) − 1

Gm

ie(x, t) (1.32)

In particular, λ=( 1
GmRa

)1/2 and τm= Cm

Gm
. λ is known as "Steady state space constant",

it has units of length whereas τm is the membrane time constant.
τm is still a property of the membrane and it expresses the time needed for the mem-
brane to integrate the injected propagating signals. λ instead is expressing the distance
that the signal can travel along the dendritic axial direction before being completely
attenuated.
It turns out that the current has an exponential decreasing trend with respect to |x|/λ.
This quantity depends on the space geometry of the neural cell. For this reason, dif-
ferent firing pattern are observed for different cell’s geometries. The amount of current
coming into the soma that contributes to the action potential generation, is the re-
maining portion of the current after the attenuation due to the propagation into the
dendrites, with respect to the point where it was injected. The more a synapse is close
to the soma, the more the injected current will contribute to the integration.

Multi-compartment model

Concerning neuromorphic circuits, some implementation of the so called "Multi-compartment
model" can be found in literature (see [18], for example).
The cable equation is really a powerful tool, providing intuition about how impulses
propagate into the dendritic part starting from some position where they are injected.
However, other approximations are used to simplify such kind of description. The
multi-compartment model considers the dendritic arborization as a series of parallel
capacitor-resistor combination, where each parallel is connected to the next one through
a resistance, exactly as in figure 1.12.
Each parallel provides an independent section of the dendrite, also the soma has been
modelled in such a way. In this view, ionic conductances describing ionic channels can
be added as a parallel branch to the section, as for the synapses.

A simple and clear example can be done by using the so called "Two-compartment
model", which is a sort of extreme simplification of the multi-compartment model:
it just considers the whole dendritic part as a section and the soma as another one,
connected by a resistance.
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Figure 1.13. Two-compartment model circuit.

The circuit in figure 1.13 could be made more complex by adding synapses on both
the soma and the dendrites (or only one of them), dendritic ionic channels, injected
current directly on the soma or on the dendrites, and so on.

1.3.5 Synapses
Most of the input currents come into the neuron being injected on the dendritic arbor.
This structure offers a very large area, allowing a lot of synapses to contact a neuron.
In this section, the neuron injecting a certain current into another one will be referred
as "pre-synaptic neuron" whereas, the one receiving the input current, will be referred
as "post-synaptic neuron".

Figure 1.14. Representation of the synaptic cleft structure.
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The structure of a chemical synapse (treated in [14]) involves the presence of a nm
gap, called "synaptic cleft", which separates one neuron from the other ones. On the
pre-synaptic side, the so called "synaptic vesicles" are present, these form a sort of
cloud inside the pre-synaptic terminal and are filled by neurotransmitters.
The action potential generated by the pre-synaptic neuron propagates into the axon,
reaching the synapse which connects it to the post-synaptic neuron. This leads to
the depolarization of the pre-synaptic part, which allows the opening of calcium ionic
channel on the pre-synaptic surface. Calcium ions then, are able to flow inside the
pre-synaptic terminal, making possible for the vesicles inside of it to flow towards the
synaptic cleft. Once the vesicles reach the cleft, they release neurotransmitters.

Electronically speaking, synapses allow neurons to be decoupled. The post-synaptic
current is generated by the binding of the neurotransmitters to specific bio-receptors
after they diffuse into the cleft. This binding brings to the generation of a input cur-
rent due to the opening of other ionic channels, then, it will propagated along to the
soma. So, the soma is where a sort of compression of the information is done, but if
an information is important or not is decided by the synapses which has the role of
modulating this information.

Once the post-synaptic channels are opened by the binding of the neurotransmitters,
the ionic current passing through them depends on the voltage at which the post-
synaptic neural membrane is. This inward current has duration of about 2 ms and its
peak depends on the VC .
The VC for which the synaptic current is null can be interpreted as the reversal poten-
tial of the synapse Esyn, in this way, synapses can be introduced in the model as ionic
channels where the conductance is modulated by the neurotransmitters released from
the pre-synaptic part.

Isyn(t) = Gsyn(t)(VC − Esyn) (1.33)

From an electronic standpoint, referring to image 1.6, a branch having the series of a
variable resistance Rsyn and a battery Esyn has to be added. Moreover, Rsyn should
be controlled by a decoupled pre-synaptic neuron, then, the injected current should
be dependent on the membrane potential: in principle, a synapse can be thought as a
transistor having VD and VS as VC and Esyn, with the pre-synaptic pulses coming on
the gate.
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Excitatory synapses

Figure 1.15. Synaptic implementation.

In figure 1.15, a simple leaky soma having a synapse attached to it has been re-
ported. When neurotransmitters arrive, Rsyn decreases and the capacitance can charge
to the value Esyn. This means that, in principle, no matter if VC is greater or lesser
than Esyn: the membrane potential will always approach the reversal potential of the
synapse with a proper current entering (Esyn>VC) or exiting (Esyn<VC) from the cell.
A synapse is said "Excitatory" if its reversal potential Esyn is greater than the voltage
VC needed to allow the spiking mechanism. The temporal depolarization due to an
excitatory synapse is called "Excitatory post-synaptic potential"(EPSP) whereas the
associated ionic current is called "Excitatory post-synaptic current"(EPSC).

Inhibitory synapses

If the reversal potential of the synapse is lesser than the voltage VC required to the neu-
ron in order to generate a spike, it is said to be an "Inhibitory synapse". It is formally
the one reported in figure 1.15, what changes is just the value of Esyn. The temporal
depolarization due to an inhibitory synapse is called "Inhibitory post-synaptic poten-
tial"(IPSP) whereas the associated ionic current is called "Inhibitory post-synaptic
current"(IPSC).
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Synaptic response to a train of spikes

"Short term memory" will be not treated in this work. In particular, "Synaptic facili-
tation" and "Synaptic depression" are observed in real neurons. The amplitude of the
current coming from a synapse also depends on the "history" of the synaptic activity: if
the amplitude of the impulses increases after some activity we talk about facilitation, if
instead decreases we talk about depression. Both synaptic facilitation and depression
do not persist as for the "Synaptic plasticity" (which is related to long-term learning),
but decay in a range between hundreds of ms and few seconds([15]).

In this section, the behaviour of Gsyn(t) in the equation 1.33 will be discussed. It is
possible to demonstrate that the synaptic conductance can be related to the stochastic
opening of the post-synaptic channels, due to the binding of the released neurotrans-
mitter with the neuroreceptors [14].

In Magleby-Stevens model for example, two rate constants α and β are considered
[14]. In particular, α controls the rate at which a closed channel opens due to the
binding of neurotransmitters, whereas β considers their unbinding. They are both
probability per unit time.
If P is the probability to have a channel open and N is the total number of released
neurotransmitters by a single spike, then αN(1-P) is the rate of probability for a single
channel to go from the close state to the open state. Instead, βP will be the rate of
probability to go from the open state to the close state. This means that, the prob-
ability to have an open channel in time because of a pre-synaptic spike will be given
by:

∂P

∂t
= αN(1 − P ) − βP (1.34)

In a simplified view of the Magleby-Stevens model, assuming a very fast binding for the
neurotransmitters (α is very high), P can be just considered as a function exponentially
decaying in time, with a certain time constant τsyn (see [14]).

P (t) = Pmaxe
− t

τsyn (1.35)

Associating to each open post-synaptic channel a constant conductance gR, the synaptic
conductance due to a pre-synaptic spike can be obtained as:

Gsyn(t) = gRNRP (t) = gRNRPmaxe
− t

τsyn = Gmaxe
− t

τsyn (1.36)

Where NR is the total number of post-synaptic receptors. This means that the spike
releases neurotransmitters into the synaptic cleft, they interact with the post-synaptic
receptors and then they unbind exponentially.
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It has to be noticed that this exponential behaviour of Gsyn(t) is basically the
"Impulse response function" (IRF) of the synapse, this means that if a train of spikes
impinging on the pre-synaptic terminal has to be considered, the synaptic conductance
will be given by:

Gsyn(t) =
∫ +∞

−∞
Gmaxe

− t′
τsyn S(t− t′) dt′ =

∫ +∞

−∞
K(t′)S(t− t′) dt′ (1.37)

It is a convolution between the train of spike S(t) and the IRF K(t), also called Kernel.
Using a RC circuit, such synaptic response can be obtained.

Another thing that is noticeable from equation 1.37 is that the behaviour of Gsyn(t)
depends strongly on gR which is setting a sort of weight for the synaptic response. Due
to the temporal coherence of the input spikes, therefore on the synaptic activity, it
turns out that the dimension of the channels can change, so they will conduct more or
less when neurotransmitters bind with the receptors. This is reflected in a long-term
or short-term change of gR. Considering long-term changes, "Potentiation" (increase of
gR) or "Depression" (decrease of gR) can be obtained.

Synaptic transmission

Considering the figure 1.15, the current injected by the synapse will depend on the
value of Gsyn(t) and the voltage drop (VC(t)-Esyn).
Again, a parallel RC circuit is modeling a leaky soma as described by 1.16. The general
solution for the equation 1.16 can be considered, without specifying a form for Iin.

VC(t) = (VC(0) − ELeak)e− t
τsoma + ELeak +

∫ ∞

0

e− t′
τsoma

τsoma

Iin(t− t′)RLeak dt
′ (1.38)

From the equation 1.33, then the following can be obtained:

VC(t) = (VC(0)−ELeak)e− t
τsoma +ELeak+

∫ ∞

0

e− t′
τsoma

τsoma

Gsyn(t−t′)(VC(t−t′)−Esyn)RLeak dt
′

(1.39)
The equation 1.39 tells that VC(t) will be given by a convolution between the synaptic

response and the IRF e
− t′

τsoma

τsoma
, where τsoma=RLeakC. This consists in a step, decaying

with exponential behaviour having time constant τsoma.

When an excitatory synaptic response arrives it will increases VC up to a certain value
(this is a contribution to the depolarization of the neural cell) depending on Gsyn, Esyn

and RLeak, then it will decay exponentially. This exponential decay can be interpreted
as a "Repolarization" of the cell, since the difference between the membrane potential
VC and the value Vth required in order to generate a spike increases.
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However, if a second response arrives before VC has completely decayed, an increase
to a second higher value will be observed. The more the frequency of the arriving pre-
synaptic spikes, the more Gsyn(t) will be higher and the more VC will increase, since all
the dynamics will have not sufficient time to relax back. Of course, this is a mechanism
depending on both the time constants for the synapse τsyn and the soma τsoma.
This is the concept behind the temporal coherence for the arriving spikes. Two spikes
which are distant in time will not have so much importance from the point of view of
integration, therefore, their contribute will be neglected. If instead they arrive enough
close in time, then their importance will be higher. In this context, the importance is
quantified by the convolution in equation 1.37.

During this process, considering both excitatory and inhibitory synapses, if VC is able
to reach the Vth required for the spike generation mechanism to take place, then the
neuron will fire through its axon. The neuron is working just like a voting system,
starting from a lot of information it is able to make a data compression through consen-
sus of the inputs, which are weighted by the synapses depending on their "importance".

Finally, it can be noticed from figure 1.15 that when VC = Esyn the current pass-
ing through the synapse will be null. This is also known as "Synaptic saturation"
and this explains why a synapse conducts lesser and lesser as the membrane potential
approaches the synaptic reversal potential.

A mention to memristive devices

The implementation of synapses is a really crucial part for neuromorphic system, since
the learning depends on them. Technologically speaking, memristors are considered
the best candidates to make good VLSI synapses (see [20]), since they replicate very
well dynamics like synaptic plasticity and short-term memory. Moreover, since most of
the brain is filled by synapses, memristors are an optimal choice also from the point of
view of integration density, due to their nm features and very low power consumption.
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1.3.6 Neural coding
In previous sections it has been explained how neurons constitute mixed analog-digital
devices, able to convert a general analog signal into a train of spikes. This kind of
coding results to be very efficient in terms of power consumption and communication,
allowing neural networks to have high parallelism despite the very low frequency of
operation if compared with nowadays processors. This means that the key factor be-
hind a spiking neural network is not really the neuron itself, but the way in which the
neural network is organized. Through the synapses, neurons can communicate while
adapting in time to a specific problem, this implies a co-existence of processing and
memory inside the brain. High parallelism and in-memory computing architectures
lead the way to the study of neuromorphic circuits, this concept was clear to Carver
Mead but more in general also to von Neumann, which tried to deepen the similarities
between the computer and the brain in one of his last work in 1957 [1].
Since the spikes are codifying in some way a general analog input provided by the exter-
nal world, it is important to understand some concepts regarding the correspondence
between the two and how the brain handles with it.

Quantifying firing rates

The presence of a extracellular resistance between the soma and the dendrites allows
the measure of the so called "Local field potentials", through the usage of electrodes.
They are voltage changes related to the neural activity of populations of neurons and
depend on how the neurons are organized spatially. Usually, these signals are filtered so
that the action potentials generated by a certain behaviour can be emphasized (high-
pass filters are used). The spike detection is done by imposing a certain threshold to
overcome: if the filtered signal presents some components above the threshold, then
they will be considered as spikes given by δ(t− ti) where ti is the time of occurrence of
the ith spike. From this analysis it is possible to extract a spike train ρ(t) = ∑

δ(t−ti),
which has units of spikes per second.
The idea is to extract a function R from ρ(t) called "firing rate". In this way, the
original behaviour will be codified by a function describing how the frequency of the
spike train changes depending on a certain parameter (the so called "Tuning curves").
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Figure 1.16. Continuous estimation of the R(t).

There are different ways to do so, and the chosen one depends on the specific
experiment. However, a continuous measure of firing rate able to provide a function
R(t) consists in fixing a certain window with a width ∆T , counting how many spikes
are inside the window and then shifting the window of very small time steps. After
having shifted the window the process is repeated, this goes on until the whole train
of spikes has been fully covered.

R(t) =
∫ ∞

−∞
ρ(t− τ)K(τ) dτ (1.40)

Mathematically, the operation illustrated in fig.1.16 is described by a convolution be-
tween the spike train and a square kernel of width ∆T , as reported in eq.1.40.
More sophisticated techniques could be used to estimate R(t) in a better way, for ex-
ample by using a Gaussian kernel. The common factor between the different kernels
is that the area is normalized to 1. By performing convolution, a weighted temporal
average of the spike train is done.

Observation: interesting interlude about neural systems

In the book [1] it is possible to find some notes written by John von Neumann about
the comparison between electronic circuits, based on the technology of those years,
and the brain. These notes should have been presented at Yale University, for the
so called "Silliman Foundation Lectures", but unfortunately he died before completing
them. He refers to a class of "mixed" machine types as machines where "each step
of the computing procedure combines analog and digital principles". In particular,
he talks about the so called "pulse density" system, where each quantity is expressed
by successive pulses. The average density of the pulse sequence, in time, returns the
quantity to be represented.

As explained, the role of a neuron is to convert a certain analog input into a train
of spikes, whereas the role of a synapse could be seen as the conversion of a spike train
into an analog signal by convolution. In a certain sense, the data are continuously
moved and processed as spikes, but weighted and given in input to the neurons as
analog by the synapses. There is a continuous conversion between these two domains
during time.
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1.3.7 Rate Models
Once neurons, synapses and neural coding have been introduced, a simple method
aimed to study the computational properties of neural networks is needed. Within a
rate model the spike trains are replaced with firing rates, this provides a simple way
to understand how neural networks work.

Figure 1.17. Two neurons communicating.

In the simplest case, two neurons connected by a synapse can be considered, as reported
in figure 1.17. The input neuron A has some firing rate given by x that can be due to
the f-I response to a constant stimulus or to a more generic behaviour as explained in
the previous section, whereas the output neuron B has some firing rate given by y.
The synaptic current injected into the postsynaptic neuron because of the presynaptic
activity is given by eq.1.33, where Gsyn(t) is given by the eq.1.37.

Isyn(t) = (VC − Esyn)
∫ +∞

−∞
Gmaxe

− t′
τsyn S(t− t′) dt′ (1.41)

In general, eq.1.41 can be written. By neglecting synaptic saturation, the postsynaptic
current could be considered proportional just to the synaptic conductance Gsyn.
Since Gmax is a constant it can be moved out from the integral, whereas the exponential
which multiplies the input spike train can be considered a kernel.

Isyn(t) = Gmax

∫ +∞

−∞
K(t′)S(t− t′) dt′ (1.42)

It has to be remembered that Gmax depends only on some internal parameters of the
synapses, mainly its conductance. It is a sort of trans-conductance weighting the input
activity to have the injected current. The idea is to have a device able to tune its
trans-conductance using external inputs, so that the weight associated to the synapse
can be tuned: that’s the basic of learning. Moreover, as described talking about neural
coding, the synaptic convolution is doing a temporal average of the input spike train
using the kernel of the synapse itself (that has be found with the Magleby-Stevens
model, approximately).

Isyn(t) = wx(t) (1.43)

This means that a certain firing rate associated to the activity of the presynaptic neuron
will be obtained through a synaptic temporal weighting, then the trans-conductance
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will act as a further weight depending just on the synapse itself.
Ultimately, the synaptic current will have the expression reported in eq.1.43.
This current contributes to the charge/discharge of the capacitance associated to the
output neuron, which will respond with a certain firing rate given by its f-I curve,
during time.

y(t) = F [Isyn(t)] = F [wx(t)] (1.44)

The firing rate of the output neuron will be given by the eq.1.44, where F[X] is just
the f-I relation. This is the basic equation of the rate models, which can be easily
generalized to multiple inputs.

Figure 1.18. A perceptron.

In fig.1.18 it is reported a so called "perceptron" as example: a single output neuron
taking a certain number of inputs. Each input has its own synapse which connects it
to the output neuron, having a certain weight wi. The output firing rate will be given
by the contributions of all the synaptic currents.

y(t) = F [Isyn1(t) + Isyn2(t) + Isyn3(t)] = F [w1xA(t) + w2xB(t) + w3xC(t)] = F [w⃗ · x⃗(t)]
(1.45)

Because of the parallelism in neural networks, it is common to use vector and matrix
(when more output neurons are present) notation.
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Chapter 2

PCP-based MolFET: analysis and
applications

The purpose of this work is to search for a possible application of the peculiar NDR,
observable in the PCP-based MolFET characteristics, in the field of neuromorphic
computing. Therefore, a first preliminary analysis of the provided molecule, introduced
in chapter 1, has to be done.

2.1 The PCP-based MolFET characteristics
The I-V characteristics and the trans-characteristics can be obtained by connecting a
battery between the drain and the source, so that a certain VDS can be forced on the
MolFET. At the same time, another battery is connected between the gate and ground,
so that a certain VGS can be forced.
All the simulations have been performed using Cadence Virtuoso, then the data have
been exported as ".csv" file format on Matlab, so that further analysis were possible.
As explained in section 1.2.2, the I-V characteristics regarding the PCP-based MolFET
have been obtained by interpolating the data inserted into a Look-Up-Table, extracted
by semi-empirical physical ab-initio simulations. This procedure allows to create a
proper symbol in Cadence Virtuoso environment, using VerilogA [2].
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Figure 2.1. PCP-based MolFET I-V characteristics, VDS > 0 V and VGS > 0 V.

The I-V characteristics reported in figure 2.1 were obtained varying VDS between
0 V and 2.5 V at fixed VGS. The values for VGS go from 0 V to 3.5 V.
All the curves reach their peak around VDS=1 V, in particular, the current associated
to the peak increases as VGS increases. The order of magnitude is few µA.
Before reaching the peak, the curves having around VGS=2 V present a quasi-linear
behaviour with respect to VDS, which will be exploited in order to try to have a lin-
earization of the characteristic. A second minor peak is observed around VDS = 0.6 V
as VGS increases.
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Figure 2.2. PCP-based MolFET I-V trans-characteristics, VDS > 0 V and VGS > 0 V.

Figure 2.2 reports the trans-characteristics obtained varying VGS between 0 V and
2 V at fixed VDS. In particular, the values of VDS go from 0 V to 2 V. It is noticeable a
curve presenting greater values for the current with respect to the other ones for VDS

around 1 V, and this is a direct consequence of having all the peaks around VDS=1 V
in the I-V characteristics.
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Figure 2.3. PCP-based MolFET I-V characteristics, VDS < 0 V and VGS < 0 V.

A further analysis can be performed by varying VDS between 0 V and -2 V. In this
case, a monotonic behaviour for the amplitude of the peaks is not observed by varying
VGS from 0 V to -2 V. In particular, the peaks become more and more negative as VGS

approaches -1 V, then they decrease in amplitude again.
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Figure 2.4. PCP-based MolFET I-V characteristics, VGS > 0 V.

Another important aspect to be observed is that the I-V characteristics are not
symmetric with respect to the origin. In figure 2.4 positive values for VGS have been
used. The behaviour of the current for negative VDS depends on the specific VGS value.
For example, it can be noticed that:

• Using VGS=0 V the negative peak is greater in amplitude than the positive one;

• Using VGS=0.5 V the negative peak is absent,

• Using VGS=1 V or VGS=1.5 V a positive peak is present for negative VDS;

• Using VGS=2 V only a negative peak for negative VDS is present again, lesser in
amplitude with respect to the positive one for VDS greater than 0 V.
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Once the general analysis were performed to know the behaviour of the PCP-based
MolFET, due to the shape of the curves, the initial idea was to use it at circuital level
in order to replicate a spike of current: in this way, exploiting the VGS, a sort of weight
could have been introduced since the peak for positive VDS increases as VGS increases.
This strategy was not feasible since it should have required a sort of ramp for VDS,
moreover, this ramp should have been obtained integrating the different current peaks
coming from each input neuron, which is quite difficult due to the impedance coupling.

In order to have an exclusive contribution coming from the NDR, the second idea
was to implement some particular stages based on the PCP-based MolFET instead of
using the molecule itself. If the behaviour of the stage is exclusive for the PCP, then
the request is indirectly satisfied by implementing such stages.

Another important electronic device presenting NDR which is seen during the mas-
ter degree course is the "Resonant tunneling diode" (RTD) [21]. This is a device which
makes use of quantum mechanical tunneling through some resonant states in order to
conduct current. The incoming electrons have an energy which is more or less equal
to the Fermi level of the injecting metal: when it is aligned with a confined state (gen-
erated by using a quantum well) then the state will act as a channel. The alignment
is possible by changing the potential barrier structure, applying a certain voltage drop
between the electrodes.

A research of possible useful electronic stages, based on RTD, has been done. Then,
for each stage, tests have been performed on the PCP in order to try to replicate some
results and to understand if such stages could be used for neuromorphic applications.
Hopefully, the PCP would show something new with respect to the versions exploit-
ing RTD devices. The results that will be presented in the following pages have been
obtained by studying possible applications from articles [22],[23],[24],[25],[26],[27].
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2.2 A stage presenting non-linear behaviour

Figure 2.5. Stage presenting non-linear behaviour.

The first stage that will be discussed is reported in figure 2.5. It is based on a
series between the PCP-based MolFET and a resistance Rin. An input voltage Vin is
provided between the resistance and the source of the device, VGS instead just sets the
amplitude for the current peak of the MolFET.
It is possible to understand in a very easy way the behaviour of this stage by considering
a load analysis.

Figure 2.6. Load analysis for the PCP-based molFET.
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In figure 2.18 different lines corresponding to the current which can pass through the
resistance, using a certain Vin, has been superposed to the MolFET’s I-V characteristics
(0 V<VGS<3.5 V). Since they have been put in series, the current which is passing
through the branch will be given by the intersection points. In particular, Rin is equal
to 2 MW. Exploiting the Kirchhoff’s law for the voltage, the simple relation expressing
these lines can be obtained:

iR = Vin

Rin

− VDS

Rin

(2.1)

Therefore, once VGS is fixed, the current passing through the series is equal to the
intersection point between the I-V characteristics of the device and the line in equation
2.1. The slope of each of these lines is equal to - 1

Rin
and, because of the NDR, they

meet the characteristics in three points: the first point is given by the intersection
before the NDR, the second one is given by the intersection with the NDR region of
the characteristics whereas the third point is given by the intersection after the NDR.
Among these three possible solutions, the one corresponding to the lowest VDS is as-
sumed by the circuit.

This means that until the load line will meet the characteristics before the NDR,
then the VDS allowed for the MolFET will be the ones associated to the states on the
left of the NDR. If instead the load line does not meet the characteristics before the
NDR, then the VDS allowed for the MolFET will be the ones associated to the states
on the right of the NDR. The points of the NDR region of the characteristics cannot
be assumed, since they are unstable.

What can be expected by increasing Vin is an increase of VDS, until this will reach
values around 1 V, where all the peaks are positioned. After surpassing the peak, VDS

will assume values on the right of the NDR. In particular, it is possible to obtain the
last possible stable state on the left of the NDR by imposing Vin=Vth and VDS=Vpeak.

Vth = IpeakRin + Vpeak (2.2)

Where Vth is the value for the voltage Vin needed in order to obtain the stable state
Vpeak associated to the peak of the characteristics. Ipeak is the current associated to
the peak, it will change by varying VGS whereas Vpeak will be more or less the same.
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Summarizing:

• Since Vpeak≃ 1 V,Vth will be always greater than 1 V, independently on the used
VGS;

• Using Vin>Vth a jump for VDS to higher values will be observed;

• Before reaching the jump for Vin≃Vth, VDS will always tend to Vpeak≃1 V.

It has also to be noticed from equation 2.2 that Vth is proportional to VGS because
of Ipeak, and Rin.

The final remark is related to the slope of the load lines and the value VDS assumed
after the NDR. Since the slope is equal to − 1

Rin
, by varying Rin also the intersection

on the right of the NDR will change.
For example, by increasing Rin, the slope will decrease (and so Vin will have to be
greater in order to reach Vpeak, this is the reason why Vth is proportional to Rin) and
so the intersection with the MolFET’s characteristics will be farther, VDS after having
reached Vth will be higher.

Figure 2.7. Non-linear behaviour, VGS=2 V.

61



PCP-based MolFET: analysis and applications

In figure 2.7 the Vout=VDS vs Vin curves can be observed. These were found by impos-
ing VGS=2 V, whereas Rin has been set from 0 W to 1 MW. It can be noticed how by
increasing Rin, both the amplitude of the jump and the threshold Vth increase.

Figure 2.8. Non-linear behaviour, VGS=1 V.

In figure 2.8 the curves obtained fixing VGS=1 V has been reported, Rin varies in the
same range. The jumps and the Vth are smaller with respect to the ones in figure 2.7
since the current associated to the peak is smaller.

The disadvantage of this circuit consists in the fact that the input voltage is not given
on the gate of the MolFET. This could imply problems in terms of impedance decou-
pling.
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2.2.1 The hysteresis loop in the Vout(Vin) curves
The reason why this stage turned out to be very important for this work, is that Vout

shows a different trend if Vin decreases after passing Vth.
It is not clear to the author the actual reason of this behaviour. A possible criteria has
been searched among the literature concerning RTDs.
I-V characteristics presenting a NDR seem to show hysteresis when the magnitude of
the negative differential resistance is lesser than the positive one ([26]). The resistance
connected in series increases the positive differential resistance but also decreases the
negative one ([27]), this leads to the condition required to have hysteresis.
This is shown in figure 2.9.

Figure 2.9. Hysteresis loop in the I-V characteristics, VGS=2 V and Rin=1MΩ.
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Performing some simulations, the critical value required for the resistance in order
to have the hysteresis loop seems to be around 150 kW, as shown in figure 2.10.
In this case VGS has been fixed to 2 V.

Figure 2.10. Investigation regarding the load resistance required in order to have the
hysteresis in the I-V characteristics.

Comparing figure 2.10 with figure 2.9 it can be also noticed that the more Rin increases,
wider the hysteretic range will be. Moreover, the discontinuity observed for the red
curve (the one describing the behaviour going backward) will decrease.
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It follows that if the I-V characteristics of the PCP shows a hysteresis, also the Vout

vs Vin will do the same, as shown in figure 2.11.

Figure 2.11. Hysteresis loop in the non-linear PCP-based stage, VGS=2 V and Rin=1MΩ.

These curves have been extracted by fixing VGS=2V and Rin=1 MW.

If Vin increases starting from 0 V the forward behaviour will be observed.
A Vth=1.6147 µA·1 MW+1.05 V=2.6647 V≃2.7 V will be present. When it is reached,
the voltage drop VDS will abruptly go from 1.03 V to 2.5 V.
At this point, decreasing Vin the Vout will not follow the same curve. Higher values will
be assumed until Vin ≃1.7 V, where Vout abruptly passes to 0.74 V starting from 1.5 V.
Of course, also for the Vout vs Vin curve, if Rin increases the hysteretic range will
increases and the discontinuity of the backward behaviour will decrease. The disconti-
nuity of the forward behaviour increases if Rin increases, as explained in the previous
section.

The important thing that can be noticed is that the Vout obtained decreasing the
Vin(0.74 V) is lesser than the last value obtained before the Vth get reached(1.03 V).
Imagining to provide firstly a linear Vin to this circuit increasing in time, and then
decreasing in time, from a temporal point of view a sort of spike will be obtained.

65



PCP-based MolFET: analysis and applications

Figure 2.12. Analysis during time of the hysteresis.

The idea will be more developed talking about the neuron. In principle, the hystere-
sis loop in time could be used to implement a refractory period, since the Vout reached
decreasing the voltage is lesser than the one before Vth. Figure 2.12 has been obtained
by providing a linear Vin in time, initially going from 0 V to 5 V and then going from
5 V to 0 V. Rin is fixed to 1 MW whereas VGS changes from 0 V to 3.5 V.

For VGS lesser than 3 V the second threshold seems to be more or less the same, for
higher voltages the trend changes.

It is important to notice that, since the simulations are based on the static model of
the PCP molecule, all these results are valid only if the response time of the molecule
is order of magnitudes smaller than the simulation time scale. However, since the re-
sponse time has magnitude of ps the results obtained in the range of s or ms will hold
[2].
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2.2.2 Observations: parallel and cascade of non-linear stages

Figure 2.13. Parallel of non-linear stages based on PCP.

Considering a parallel of multiple branches implementing different non-linear stages,
using PCP molfets, the behaviour described in the previous section can be observed for
each VDS once VGS and Rin are fixed. This allows to have a stage presenting multiple
thresholds, one for each VDS.

Figure 2.14. Cascade of non-linear stages based on PCP.

Considering a cascade of PCP non-linear stages as reported in figure 2.14, it is possible
to obtain multiple thresholds on a single node as reported in 2.15.
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Figure 2.15. Multiple thresholds observed for a cascade of non-linear stage.

These results have been obtained using R1=1 MW, R2=1.5 MW, VGS1=1.5 V and
VGS2=2 V. It can be noticed that the first threshold at 2.47 V, associated to R1 and
VGS1, is greater than the one obtained by using this branch alone, around 2.1 V.
The second threshold at 5.11 V, due to R2 and VGS2, results to be more or less equal
to Vpeak2+Ipeak2 ·(R1+R2). In particular, the threshold associated to the first branch
has to be lower with respect to the one associated to the second branch.

This trend can be generalized to more branches in cascade, introducing more steps
for VOUT 1. However, for some combinations of the parameters, this behaviour seems to
be not respected.
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Figure 2.16. Hysteresis in multiple thresholds observed for a cascade of non-linear stage.

Hysteresis is still present, in figure 2.16 only VOUT 1 has been reported.
Maybe, this stage could be used for multilevel memory circuits.

69



PCP-based MolFET: analysis and applications

2.3 PCP MolFETs based TRAM
In literature, the acronym "TRAM" refers to a tunneling-based random access memory([23]).

Figure 2.17. TRAM stage.

The circuit in figure 2.17 presents two PCP-based MolFETs in series, the top one is
generally called "Load" whereas the bottom one is called "Driver". A constant positive
bias voltage is applied to the drain of the load. A capacitance C is connected between
the two PCP and ground, having a certain initial condition "IC".
The VDS of the driver is equal to VC , whereas the VDS of the load is equal to (Vbias-
VC)= -(VC-Vbias). This means that in principle, the I-V characteristics for the load
can be plotted in the same I-V graph for the driver by reversing it with respect to the
y-axis, afterwise, a shift for such characteristics towards right of an amount Vbias>0 is
performed.
Another thing to take into account is that the peaks of the I-V characteristics will
reduce as it shifts with Vbias, therefore, VGS for the load has to be increases in order to
recover the peak’s amplitude.
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Figure 2.18. Load analysis using a PCP MolFET as load.

The results reported in figure 2.18 have been obtained by imposing C=100 pF,
Vbias=2.5 V, Vload=4 V and Vdriver=2 V.
As reported in [24], Vbias has to be greater than 2Vpeak in order to obtain a shift able
to provide two stable states. This is because, only in that case, two intersections can
be obtained between the characteristics (the one in the middle due to the NDRs is not
considered, since it is no stable).
As consequence, the only available voltages for the capacitance will be given by the
two allowed stable states. Concerning the example in figure 2.18, these stable states
are around 0.4 V-0.5 V and 2.1 V-2.2 V.

This means that, once the capacitance is charged towards one of these two states,
the circuit will compensate eventual losses due to the leak from the capacitance, bring-
ing back the voltage to the stable state: this can be exploited to implement RAMs, it
is a refresh mechanism.
If the voltage increases, then the driver will discharge the capacitance until the stable
state is reached again. If the voltage decreases, then the load will inject some current
in the capacitance to recover the stable state, compensating the leaks.
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Figure 2.19. Time analysis: VC vs time starting from different initial conditions.

Figure 2.19 reports a time analysis obtained letting VC relaxing towards one of the
two stable states, starting from an initial condition IC which has been changed as pa-
rameter.

Going from 0 V to around 1.2 V, the relaxation happens towards 471 mV, quite co-
herent with the load analysis. If IC=1.25 V then this voltage will be kept, since it
corresponds to the unstable state due to the intersection near the NDRs. Finally, go-
ing from around 1.3 V to 3 V, the relaxation happens towards 2.13347 V, again coherent
with the load analysis.

The ranges for which a convergence to one of the two states happens, are evidently
different: for the state corresponding to 471 mV, the convergence range is equal to
1.2 V whereas for the one corresponding to 2.13347 V, it is equal to 1.7 V.
This is due to the difference between the peaks of the I-V characteristics present in the
load analysis, it turns out that the state near the greatest peak is favoured with respect
the other one. This is not observed in RTD-based TRAM, since the characteristics are
symmetric with respect to the origin, therefore the amplitude of the peaks are the
same.
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2.4 PCP-based MOBILE
Another application deriving from the stable states allowed by the TRAM stage is the
MOBILE one (see [25]). It stays for "Monostable-Bistable Transition Logic Element".
The circuit is the same as figure 2.17, however, this time the bias voltage is not fixed
but consists in a square wave. The usage of the square wave allows to have a transition
from a monostable configuration (only one intersection between the characteristics of
driver and load) to a bistable configuration (two intersections between the character-
istics of driver and load, due to the shift introduced by Vbias).

Theoretically, the output voltage VC should be forced by the peak presenting a greater
amplitude, when Vbias is such that a bistable configuration can be assumed. This means
that when the condition Vbias>2Vpeak is met, VC will assume the high voltage value if
the driver’s peak is lower than the load one, otherwise the low voltage value will be
assumed. When Vbias<2Vpeak, the stable state get reset.

Figure 2.20. MOBILE load analysis.

In figure 2.20 a load analysis using different values for VGS of the driver is reported.
• Vload=3.3 V;

• Vbias goes from 0 V to 2.5 V, the period of its square wave is 2 µs whereas the
pulse width is 1 ms;
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• Vdriver goes from 1.7 V to 2.4 V, the period of its square wave is 4 µs whereas the
pulse width is 1 ms;

• C=100 aF.

Since the value of the current peak for the driver is equal to the one of the load for
Vdriver=1.9 V a threshold around this voltage was expected.
From simulations, it turned out to be around 2.4 V, therefore the lower voltage is
favoured only when Vdriver reaches this value and Vbias is 2.5 V. If instead Vbias is 2.5 V
but Vdriver is lesser than 2.4 V, then the higher voltage state will be assumed by VC .
The two stable states are coherent with the ones provided by the load analysis in figure
2.20.

Figure 2.21. Results for the MOBILE stage: VC in red, Vdriver in purple
and Vbias in green.

Of course, when Vbias=0 V the only stable state obtained is for VC=0 V since the curves
meet just in the origin.

This overestimation for the voltage needed to have the switch from one stable state to
the other one, can be due to the shape of the characteristics of the PCP MolFET.
In fact, using RTD, the shape is the same for all the curves and what change are just
the peaks of current. Concerning PCP MolFETs, the characteristics of the driver and
the load are different because of the shift. This may says that what matters is not
really the difference in amplitude of the peaks, but the difference in area underlying
each curve.
In any case, the behaviour is met apart from the overestimation for the threshold
voltage.
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2.4.1 MOBILE as threshold mechanism
A possible application for such stage could be the implementation of a threshold mech-
anism. This could be useful for some applications of the PCP MolFETs in the neuro-
morphic field.

Figure 2.22. Threshold mechanism using PCP molecules.

The solution for the implementation of a neuron proposed in [2] uses MolFETs in order
to reduce the VDS dropping on them, so that when a certain value is reached, a voltage
comparator changes its output. Maybe, a threshold mechanism implemented with a
PCP-based MOBILE could bring to a full PCP implementation for the proposed arti-
ficial neuron.
Referring to the circuit in figure 2.22, the following parameters have been set:

• A clock signal is given as square wave to provide the bias going from 0 V to 2.5 V,
the pulse width is 1 µs, the period is 2 µs;

• Val is fixed to 1.2 V;

• RP U is fixed to 90 kW, so that when at least two MolFETs conduct, the threshold
is reached;

• The pulses arriving on the three gates go from 600 mV to 1.7 V, the pulse width is
equal to 1 µs and the periods are such that different combinations can be tested;

• Vload is set to 2 V;

• C = 100 aF.

75



PCP-based MolFET: analysis and applications

From figure 2.22 the relation giving the VDS can be obtained through Kirchhoff for
the voltage. In particular, VDS=Val - iR · RP U , where iR is the total current passing
through the resistance RP U .
The current iR depends on how much current the MolFETs conduct. The idea is to
exploit this current in order to let the MOBILE stage to assume one of the two stable
states, when Vbias is high, by varying the voltage on the gate of the driver. Of course
the presence of a clock signal limits the applicability of this solution, however, it is still
a solution full PCP-based which allows also a decoupling from the input MolFETs.

Figure 2.23. Load analysis for the MOBILE threshold mechanism.

The threshold voltage results to be around 0.9 V. If all the MolFETs are switched
OFF, VDS is equal to Val. Only when two or more PCP MolFETs are active the VDS

reaches the threshold and Vout goes from 0.62 V to 1.72 V, as shown in figure 2.24.
The parameters have been optimized in order to have similar input and output levels,
so that multiple stages can follow in cascade.
It has also to be noticed that this stage is inverting the output voltage with respect to
the input one.
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Figure 2.24. Results for the MOBILE threshold mechanism.

A final consideration needs to be done concerning the behaviour required for the
clock, in order to have this stage working correctly.

• It is necessary to reset the stable state for the output, so that the next one can
be assumed;

• The input voltages need to switch to their higher value together with the clock,
this means that the period of the input signals has to be a multiple of the clock’s
period;

• An input which has switched to its higher value must return to its lower value
before the clock returns to its lower value, or in the same time;

• An input which has switched to its lower value can maintain it, there are not
conditions such as for the switches to the higher value.

2.5 Conclusion
This concludes the discussion about the possible general applications for the PCP-based
MolFETs in electronic circuits. The stages are exploiting the presence of stable states,
originated by the interaction between different loads and the NDR in the MolFET I-V
characteristics.
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Chapter 3

Artificial neurons based on PCP
MolFETs

In this chapter, a possible molecular implementation for artificial neurons, based on
the theory presented in chapter 2, will be proposed and commented.
The idea is to exploit an exclusive contribution coming from the NDR in the I-V
characteristics of the PCP, this is possible by using the non-linear stage presented in
chapter 3.

3.1 Molecular-FET based soma

Figure 3.1. Implementation of a soma based on NDR.

Talking about the model of Hodgkin and Huxley, introduced in chapter 2, it has
been explained how the collective action of the ionic channels brings to the generation
of an action potential: VC charges up until it activates the sodium channel, which
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then brings to the activation of the potassium channel, that finally discharges the ca-
pacitance again. Concerning the Integrate and Fire model, this whole mechanism is
somehow hidden in the spike generator block, which just takes into consideration a Vth

to overcome in order to generate a spike.

The circuit in figure 3.1 presents a PCP MolFET in series with a resistance Resmol,
which implements a non-linear stage. A constant current generator (Idc) is charging the
capacitance C during time. When VC reaches a certain threshold Vth fixed by Resmol

and Vmol, the VDS dropping on the PCP will increase abruptly and this will increase the
current passing through the block "K_th_2V_2M". In particular, the VDS dropping
on the PCP is the VG dropping on this second block. This block is playing the role of
the K-channel, in the view of Hodgkin and Huxley model. This means that, once it is
activated, it must discharge the capacitance C so that VC can reach the value required
from the non-linear stage in order to have the second threshold (the one allowing a
jump toward a smaller voltage for VDS, coming from the hysteresis), then the K-channel
block will stop to conduct again.
The non-linear stage and the K-channel block implement the spike generator, under
the Integrate and Fire perspective. In particular, the node "Out" will present the
generation of voltage spikes during time.

3.1.1 The theoretical K-channel
Supposing to have the possibility to work on different molecules, searching for a specific
behaviour, it is possible to understand how the I-V characteristics of the block should
be, to let the neuron work correctly. This is not a limit, since, as explained in chapter
1, one of the advantages of the molecular technology is the versatility in terms of I-V
characteristics.

Let’s fix Vmol=2 V, so that the quasi-linear behaviour before the peak in the I-V char-
acteristics of the PCP can be used to have some qualitative information about the
equivalent resistance for the PCP. Then Resmol=2 MW allows to have a non-linear
stage with a well defined jump, this will be around VC=Vth=4.3 V because of the con-
siderations done in chapter 3. The name "K_th_2V_2M" just refers to the fact that
this theoretical block should allow the neuron to work correctly using Vmol=2 V and
Resmol=2 MW. Once the idea is demonstrated, then it could be extended using different
Resmol and Vmol.
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Figure 3.2. Hysteresis of the non-linear stage using Vmol=2 V and Resmol=2 MW.

Figure 3.3. I-V characteristics for the hypothetical molecule implementing the K-channel.
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Taking into account the non-linear stage, from figure 3.2 can be noticed a first jump
for the "Out" node from 1.06 V to 3.23 V once VC reaches 4.3 V, then, decreasing VC a
second jump will be observed from 1.22 V to 0.6 V once VC reaches around 1.7 V.
This means that the hypothetical MolFET should use a molecule which is not able
to conduct at all for VGS between 0 V and around 1 V. However, it must be able to
conduct a lot if VGS is between 1.22 V and 3.22 V.
Concerning the VDS=VC , the "K MolFET" should be able to maintain a high current
going from around VC=4.4 V to around VC=1.8 V, therefore we could think about a
sort of saturation in this range.
A possible I-V characteristics for such theoretical molecule is reported in figure 3.3.
The maximum current is fixed to 60 µA when VC is around 3 V.
It is a nmos-like characteristics and actually it is also very similar to the behaviour of
the current passing through potassium channel in time. It has been created in Matlab
(Appendix B), then imported on Cadence Virtuoso in order to simulate the circuit.
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3.1.2 Estimation of the time constant τ
As can be noticed from figure 3.1, while VC<Vth this circuit is implementing a parallel
RC. The differential equation describing its charging will be similar to eq. 1.11, having
eq. 1.12 as solution since the input current is constant.
The first thing to do in order to make an estimation for the time constant of this circuit,
is to study the equivalent resistance for the PCP MolFET before the NDR occurrence.

Figure 3.4. Estimation for the equivalent resistance for the PCP molecule before the
current peak, Vmol=VGS=2 V.

Exporting the I-V characteristics from Cadence Virtuoso to Matlab, it is possible to
interpolate the linear range before the peak of current. The linear behaviour is evident
going from around VDS=0.4 V to Vpeak=1.05 V.
This resistance turns out to be around RLOW =0.45 MW and can be used to estimate the
global resistance before the jump due to the non-linear stage, when injecting current
into the neuron. Performing the linear approximation in this range it should be also
considered a battery, having value determined by the intersection between the line and
the voltage axis. This battery should be in series to the resistance, implementing a sort
of ELeak. However, its contribution in V∞ will be neglected, since it is around 0.334 V.
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From figures 3.2 and 3.3, it is possible to notice that if VC<Vth then VDS ≲ 1 V,
therefore the K-channel will not conduct at all (hundreds of nA).

A resistance having value around 0.45 MW+Resmol=2.45 MW will be obtained.
This resistance can be considered as the RLeak, both present in "Hodgkin and Huxley"
and "Integrate and Fire" models, at least until the occurrence of Vth.
This implies that the value of the capacitance needs to be some nF in order to have
τ=RC of some ms. Arbitrarily, the capacitance C has been fixed to 1 nF.

An important point to be highlighted is that the choices taken for this circuit are
not necessarily the best ones for emulating the biological behaviour, this work just
wants to set the basis in order to verify the feasibility of the idea of exploiting the
neural computational principles with MolFETs.

Figure 3.5. RC charging in time of the proposed neuron using:
1) 0 µA ≤ Iin ≤ 5 µA 2) Iin = 2 µA (Green = Vout, Red=VC , Pink=IDS of
the K-channel).

The RC charging in fig.3.5a) is quite respected until the injected current reaches values
around 2µA. In such condition the exponential behaviour is lost when VC is more or
less equal to 4 V, therefore when it approaches Vth. This is due to the fact that in
this range Vout reaches values around 1 V, enabling the K-channel MolFET to conduct
instantaneously a certain amount of current, proportional to VC and different from
0.25 µA kept below threshold. As can be noticed from the example in fig.3.5b), for this
range of input currents, the K-channel is not able to discharge the capacitance, but
can delay the reaching of the threshold.
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3.1.3 Patterns of spikes vs constant injected current
When VC = Vth a single voltage spike is generated at the output node, whereas VC get
reset by a spike of current passing through the "K-channel", to a value Vreset ≈ 1.8 V.
If no input currents are present, VC will relax back to ELeak = 0 V. All of this well
adapt to the spike generator block used by the integrate and fire model.

Figure 3.6. VC and spike generation in time, injecting Iin=6 µA.

The spikes generated by this circuit present a peak of about 3.18 V, the minimum due
to the hysteresis in the non-linear stage is around 628 mV. By injecting Iin = 6 µA,
the refractory period is around 0.63 ms while the frequency of the spike train is around
1.34 kHz.

The generation of the patterns starts from 6 µA and stops around 12 µA, value for
which the K-channel is no more able to discharge the capacitance because of the con-
stant input injection. This provides a range of about 6 µA in which the frequency
changes with the constant injected current.

The idea is to use some sensors able to provide some information through a constant
current, therefore, a possible "frequency encoding" of the input can be obtained and
processed further with other neuron layers.
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Figure 3.7. Patterns generated using 5.25 µA<Idc<6 µA.

Figure 3.8. Some patterns generated using 7 µA<Idc<12 µA.
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The patterns presented in fig.3.7 and 3.8 are more or less periodic and so it is
reasonable to extract a frequency in order to have an idea of how it changes by changing
the injected current. In particular, the refractory period is decreasing by increasing
the injected current since a faster charge for the capacitance will be achieved. This
implies an increase of the frequency for the pattern by increasing the injected current,
coherently with the integrate and fire model.

Figure 3.9. f-I curve.

In fig.3.9 the frequency vs current curve of this neuron is presented. A rheobase Ith

can be recognized, but the frequencies involved are in the order of kHz, quite high if
compared with the biological ones ( Hz).
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3.2 Response to the synaptic injection
A good implementation for the synapses is the most critical part for neuromorphic cir-
cuits. There are a lot of possibilities, depending on the biophysical mechanisms taken
into account. In this work both paired pulse facilitation and synaptic plasticity will be
not considered, but simpler synapses will be proposed as a starting point for further
investigations. In particular, the TRAM proposed in chapter 3 could be used to make
some refreshing mechanism in order to obtain blocks implementing the Hebbian rule
([7], [6]).

The different circuits implementing the synapses are based on the results presented
in [18], [19] and [7], which use CMOS solutions.

3.2.1 Spiking synapses
The most simple version of synapses has to provide an injection mechanism based
on the input spike train and a way to implement a synaptic weight. For sake of
simplicity also injection on the dendritic part will be neglected, however, it could be
easily implemented basing on the results obtained in chapter 2.

Figure 3.10. A simple 3-1 SNN.
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In figure 3.10 a spiking neural network using 3 input neurons and 1 output neuron
has been reported. In particular, the third neuron is inhibitory for the output one.
An inhibitory synapse can be implemented by using a nmos-like device, like the one
supposed to have the K-channel. When an input spike arrives on the gate, the molfet
will conduct a certain current and the difference between Vth and VC will increase: each
neuron presents C=1 nF, Vmol=2 V and Resmol=2 MW, therefore Vth ≃ 4.3 V whereas
the synapse tend to discharge C towards ground. The spikes generated in output have
the same features with respect to the ones seen in the previous section, since the pa-
rameters involved have the same values.
The first and the second neurons are excitatory for the output one. This means that,
once a spike arrives, they should reduce the difference between VC and Vth. Esyn has
been chosen to be 5 V, so that the excitatory synapses can allow VC to reach Vth ≃ 4.3 V.
However, a pmos-like device is needed in order to inject current into the output neuron.

A pmos-version of the theoretical K-channel block has been proposed (Appendix C).
This is the second hypothesis introduced in this work.

Figure 3.11. p-like version of the I-V characteristics for the hypothetical K-channel.

Again, this is just to demonstrate the idea. The relative block is "N_K_th_2M_2V ",
where "N" stays for "negative".
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Artificial neurons based on PCP MolFETs

Since this requires a negative spike to inject a current, a "K_th_2V_2M" block
in series with a resistance Rsyn is used as inverter. In particular, Rsyn=55 kW so that
a spike having a peak around 3.18 V can be converted into a VDS around 1.8 V. Then,
VGS for the "N_K_th_2M_2V " is around -3.18 V when a spike arrives. In both cases,
the weight can be easily implemented by acting on the back-gate voltage of the inject-
ing MolFET, introducing an off-set for its gate voltage and this is a big advantage
coming from the molecular technology. The back-gate node can be set manually after
an offline training or by the circuit, during an online training (maybe using the voltage
VC of the TRAM stage, if used to implement the Hebbian learning).

At this point, different cases can be commented and discussed.

• I1 /= 0, I2 = 0, I3 = 0

In this case, only the first neuron is injecting into the soma of the output one.

Figure 3.12. Response to an injected train of spikes.

An input spike train coming from the first neuron, at frequency 1.51 kHz and generated
by a current of 6.5 µA, injects a current made by a train of spikes into the soma of
the output neuron. Since the input current provided to the soma is made by pulses, a
convolution in time for VC will be observed. Only when the value of VC provided by
the convolution reaches a value around 4.3 V, an output spike will be generated.
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3.2 – Response to the synaptic injection

Using this input current, the output pattern presents a frequency of about 0.82 kHz.
It is possible to decrease or increase such frequency by acting on the injected current
for each spike, therefore, acting on the back-gate voltage of the synapse (weight).
Moreover, changing the input current I1 the number of input spikes will change, and so
also the convolution giving VC in time. This means that, the frequency of the output
spike train depends both on the synaptic weight and on the frequency of the input
spike train: the injection must consider both current amplitude and frequency.

• I1 /= 0, I2 /= 0, I3 = 0
In this case, both the excitatory synapses are injecting into the output neuron.

Figure 3.13. Response to two injected trains of spikes.

The first train of spikes is generated by an injected current equal to I1=7 µA and has
a frequency of about 1.78 kHz. The second one is generated by an injected current
equal to 6.2 µA and has a frequency around 1.5 kHz. In figure 3.14 the global train of
current spikes given in input to the output neuron is provided: this is the superposition
between the current coming from the first and the second excitatory synapses, having
same weight. It is possible to notice a decrease in amplitude due to the synaptic
saturation (VDS dropping on the synapses decreases, if VC increases).
The global input presents more frequent pulses with respect to the previous case, where
a single excitatory synapse was used, therefore the frequency for the output train of
spike will increase. This will depend on both the synaptic weights and the frequencies
for the input patterns, given by I1 and I2.
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Artificial neurons based on PCP MolFETs

Figure 3.14. Global current injected from the two trains of spikes.

The "Temporal coherence" takes into consideration the distance between nearest
spikes in the global pattern, obtained by the superposition of the inputs. The convolu-
tion will reach higher values if the spikes are near between each other in time, otherwise
it will decay.
The output pattern is doing data compression with respect to the input ones, this en-
codes some kind of information depending on the application (and so on the training,
fixing the weights).

• I1 /= 0, I2 /= 0, I3 /= 0

At this point, the contribution from the inhibitory neuron can be considered.
In figure 3.15 three patterns are shown. The first one is generated by injecting 8 µA
into the first excitatory neuron, the second one is generated by injecting 6.2 µA into
the second excitatory neuron whereas the third one is generated by injecting 9 µA into
the inhibitory neuron. The weight for the three synapses is the same for all the input
neurons, however, the inhibitory one present a higher frequency with respect to the
other two. The pattern for the output neuron will present a lesser number of spikes
with respect to the previous cases, due to the negative current induced by the third
neuron’s activity.
In figure 3.16 the global train of current spikes (with positive and negative terms) and
the behaviour in time for the membrane potential have been reported.
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3.2 – Response to the synaptic injection

Figure 3.15. Response to three injected trains of spikes, 2 excitatory and 1 inhibitory.

Figure 3.16. Global current injected from the three trains of spikes, 2
excitatory and 1 inhibitory.
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3.2.2 Introducing the synaptic response
Equation 1.37 describes the response of a synapse to a train of spikes impinging on the
pre-synaptic terminal. The synaptic conductance is given by a convolution between
the input spike train and the impulse response K(t). An intuition for such behaviour
can be obtained by considering the differential equation 1.34.

Figure 3.17. Excitatory and inhibitory synapses showing time dependence.

In figure 3.17 a possible implementation for excitatory (left) and inhibitory (right)
synapses having a response in time to an input spike train is shown.

• Excitatory synapse: if no spike arrives on the synaptic input, Vsyn will be equal
to Esyn, otherwise it will decrease until Vsyn-Esyn is such that a current can be in-
jected into the neuron membrane through the pmos-like molfet. The capacitance
Csyn allows the presence of a time constant τsyn=Rsyn Csyn;

• Inhibitory synapse: a first stage made by a nmos-like molfet and a resistance Rinv

is used as inverter in order to have negative spikes, these are used as synaptic
input to raise Vsyn so that the last nmos-like molfet can conduct a current towards
ground. Also in this case, the capacitance Csyn allows the presence of a time
constant τsyn=Rsyn Csyn.

In both cases the gate voltage provided to the injecting MolFETs is given by a convo-
lution due to the RC circuit, the idea is to use it in order to replicate the behaviour of
equation 1.37. The synaptic weights are still fixed by the back-gate voltages applied
to the injecting molfets, they are supposed to be all the same.
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3.2 – Response to the synaptic injection

Figure 3.18. 3-1 SNN exploiting synaptic responses.

In figure 3.18 the molecular spiking neural network has been proposed again, using
these new synapses. In particular Rsyn has been fixed to 110 kW whereas Csyn has been
fixed to 5 nF. This implies a τsyn around 0.55 ms.
Rinv=55 kW so that a negative spike having peak around -3.18 V is obtained as VGS for
the pmos-like MolFET of the inhibitory synapse, when a positive spike arrives from
the pre-synaptic neuron.

In figure 3.19 an example of EPSC has been reported. The input pattern is generated
by injecting 5.9 µA into the first neuron, the convolution obtained for the synaptic
response is indicated as Vsyn1. The pmos-like MolFET injects a current depending on
Vsyn1-Esyn.

Figure 3.20 presents an example of IPSC, this has been obtained by using I1=11 µA,
I2= 10 µA and I3=9 µA. In particular, the excitatory neurons are injecting since it is
the only way to increase VC , allowing the inhibitory neuron to conduct when a certain
activity is present on its pre-synaptic terminal.

Finally, an example for the output pattern is reported in figure 3.21. This has been
obtained by using I1=11 µA, I2=10 µA and I3=7.5 µA.
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Figure 3.19. Example of excitatory post-synaptic current.

Figure 3.20. Example of inhibitory post-synaptic current.
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3.2 – Response to the synaptic injection

Figure 3.21. Example of output pattern.
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Chapter 4

Conclusions and future works

The exploration of a possible implementation of neuromorphic circuits using molecular
technology has been presented. Initially, all the important aspects related to the theory
used in this work have been explained. Then, some stages based on the NDR of the
PCP MolFET have been introduced, in particular:

1. The stage presenting non-linear behaviour based on emerging hysteresis effect;

2. The PCP-based TRAM, having tunable stable states allowed for the system;

3. The PCP-based MOBILE, also used as threshold mechanism.

Finally, they have been used in order to try to replicate at least some basic biological
neural functions, aimed to emulating the computational principles of the brain.
This thesis provides a beginning in such exploration and a lot of work is still needed to
obtain real applications, even if, through a bottom-up approach, it has been proved that
patterns of spikes can be obtained using the PCP (both providing constant currents
and trains of spikes).
However, some obstacles must be faced:

• The study of a MolFET having the I-V characteristics required to implement the
K-channel is a must, not necessarily it has to be the same used to implement
synapses;

• The neuron itself can be ameliorated, so that more biophysical functions can be
discussed and comprised (for example, bursting, adaptation and so on);

• The weights for the proposed synapses are implemented using the back-gate volt-
age of the MolFETs. Technologically speaking, this may be a great advantage
with respect to CMOS solutions because a single MolFET would be sufficient for
both injection and weighting mechanisms, but not all the molecular I-V trends
could be accepted. The investigation for possible molecules able to provide in
a good way the synaptic weights through their back-gate voltage is needed. In
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this thesis it has not been faced, since the molecule used to implement them was
supposed. The aim was just to give some ideas regarding architectures and links
with the theoretical background;

• Learning is a concept characterizing the neural networks. This should be faced
once having a reliable molecular neural network presenting all the main biological
characteristics exposed in the previous points. In particular, the weights could
be firstly found offline by using learning algorithms for spiking neural networks
and then implemented through the back-gates (in a way which depends on the
molecules used as synapses). This could also provide a validation for the whole
molecular neuromorphic system, maybe trying to fit some results obtained with
the algorithm. Finally, the stage based on the series of two PCPs (TRAM) could
find an application in plasticity-based synapses, so that a complete online training
can be achieved.
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Appendix A

Matlab: "Integrate and fire" model

c l c ;
c l o s e a l l ;
c l e a r a l l ;
format long ;

%Parameters

R_Leak = 10^8; %ohm
C = 10^( −10); %F
tau = R_Leak∗C; %sec

E_Leak = −50e −3; %V
V_th = 10e −3; %V
V_reset = −70e −3; %V

%Time and Current s e t
I_max = 2 ; %nA
number_currents = 15 ;
I_values = l i n s p a c e (0 , I_max , number_currents )∗1 e −9; %A

time_steps = 20000 ;
t_max = 200 ; % msec
time = l i n s p a c e (0 , t_max , time_steps )∗1 e −3; %sec
t1_index = round ( time_steps / 5 ) ;
t1 = time ( t1_index ) ; %sec
t2_index = round ( time_steps / 1 . 2 ) ;
t2 = time ( t2_index ) ; %sec
t0 = 0 ; %sec
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Matlab: "Integrate and fire" model

% Time o f i n j e c t i o n
f o r t_i = 1 : t ime_steps

in j e c t i on_range ( t_i ) = heav i s i d e ( time ( t_i)−t1 ) −. . .
h e av i s i d e ( time ( t_i)−t2 ) ;

end

%V_inf
f o r I_i = 1 : number_currents

f o r t_i = 1 : t ime_steps
V_inf ( I_i , t_i ) = E_Leak + . . .

i n j e c t i on_range ( t_i )∗ I_values ( I_i )∗R_Leak ; %V
end

end

% Spike gene ra t i on in time

V_C_Spikes = ze ro s ( number_currents , t ime_steps ) ;

f o r I_i = 1 : number_currents
In i t i a l_cond = E_Leak ; %V
Spike = 0 ; %Flag
Spikes_time_index ( I_i , 1 ) = 0 ;
f o r t_i = 1 : t ime_steps

i f time ( t_i ) < t1 %Before the i n j e c t i o n

V_C_Spikes ( I_i , t_i ) = V_inf ( I_i , t_i ) + ( In i t i a l_cond −. . .
V_inf ( I_i , t_i ) )∗ exp(−( time ( t_i)−t0 )/ tau ) ; %V

e l s e i f ( time ( t_i ) >= t1 ) && ( time ( t_i ) < t2 ) %During the i n j e c t i o n

i f Spike == 0
In i t i a l_cond = V_C_Spikes ( I_i , t1_index −1); %V
I n i t i a l _ t im e = t1 ;

e l s e
In i t i a l_cond = V_reset ;
I n i t i a l _ t im e = time ( Spikes_time_index ( I_i , end ) ) ;

end

V_C_Spikes ( I_i , t_i ) = V_inf ( I_i , t_i ) + . . .
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Matlab: "Integrate and fire" model

( In i t i a l_cond − V_inf ( I_i , t_i ) ) . . .
∗exp(−( time ( t_i)− I n i t i a l _ t im e )/ tau ) ; %V

e l s e i f time ( t_i ) >= t2 % After the i n j e c t i o n

In i t i a l_cond = V_C_Spikes ( I_i , t2_index −1); %V

V_C_Spikes ( I_i , t_i ) = V_inf ( I_i , t_i ) + . . .
( In i t i a l_cond − V_inf ( I_i , t_i ) ) . . .
∗exp(−( time ( t_i)−t2 )/ tau ) ; %V

end

i f V_C_Spikes ( I_i , t_i ) >= V_th

V_C_Spikes ( I_i , t_i ) = V_reset ;
Spikes_time_index ( I_i , end+1) = t_i ;
Spike = 1 ; %Flag , i t means we had a sp ike

end
end

end

% Charging in time

V_C = ze ro s ( number_currents , t ime_steps ) ;

f o r I_i = 1 : number_currents
In i t i a l_cond = E_Leak ; %V

f o r t_i = 1 : t ime_steps

i f time ( t_i ) < t1 %Before the i n j e c t i o n

V_C( I_i , t_i ) = V_inf ( I_i , t_i ) + . . .
( In i t i a l_cond − V_inf ( I_i , t_i ) )∗ exp(−( time ( t_i)−t0 )/ tau ) ; %V

e l s e i f ( time ( t_i ) >= t1 ) && ( time ( t_i ) < t2 ) %During the i n j e c t i o n

In i t i a l_cond = V_C( I_i , t1_index −1); %V
I n i t i a l _ t im e = t1 ;
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V_C( I_i , t_i ) = V_inf ( I_i , t_i ) + . . .
( In i t i a l_cond − V_inf ( I_i , t_i ) ) . . .

∗exp(−( time ( t_i)− I n i t i a l _ t im e )/ tau ) ; %V

e l s e i f time ( t_i ) >= t2 % After the i n j e c t i o n

In i t i a l_cond = V_C( I_i , t2_index −1); %V

V_C( I_i , t_i ) = V_inf ( I_i , t_i ) + . . .
( In i t i a l_cond − V_inf ( I_i , t_i ) ) . . .

∗exp(−( time ( t_i)−t2 )/ tau ) ; %V
end

end
end

% Spike t r a i n s v i s u a l i z a t i o n in time
Spikes_generat ion = ze ro s ( number_currents , t ime_steps ) ;
f o r I_i = 1 : number_currents

f o r t_i = 1 : t ime_steps
i f ismember ( t_i , Spikes_time_index ( I_i , : ) )

Sp ikes_generat ion ( I_i , t_i ) = 1 ;
end

end
end

%Frequency vs Current curve
I_th = (R_Leak^−1∗(V_th − E_Leak))∗1 e9 ; %nA
I_max_fI = 2 ; %nA
number_fI_current = 140000;
I_values_fI = l i n s p a c e ( I_th , I_max_fI , number_fI_current )∗1 e −9; %A
f o r I_i =1: number_fI_current

V_inf_fI = E_Leak + I_values_fI ( I_i )∗R_Leak ; %V
f_I_and_F( I_i )=( tau∗ log ( ( V_inf_fI−V_reset )/ ( V_inf_fI−V_th)))^ −1; %Hz

end
l i n e a r _ f =(I_values_fI − I_th∗1e −9)/(C∗(V_th−V_reset ) ) ; %Hz

%Plot
E_Leak_vec = E_Leak∗ ones (1 , t ime_steps ) ; %V
Vth_vec = V_th∗ ones (1 , t ime_steps ) ; %V
Vreset_vec = V_reset∗ ones (1 , t ime_steps ) ; %V
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f i g u r e
subplot ( 2 , 1 , 1 )
p l o t ( time ∗1e3 , V_C_Spikes ( 8 , : ) ∗ 1 e3 , ’ b ’ ) ;
hold on
p lo t ( time ∗1e3 ,V_C( 8 , : ) ∗ 1 e3 , ’ b−−’);
p l o t ( time ∗1e3 , E_Leak_vec∗1e3 , ’m−−’);
p l o t ( time ∗1e3 , Vth_vec∗1e3 , ’ r −−’);
p l o t ( time ∗1e3 , Vreset_vec ∗1e3 , ’ k−−’);
s e t ( gca , ’ FontSize ’ , 2 0 , ’ FontName ’ , ’ Times New Roman’ , . . .

’ XScale ’ , ’ l i n ’ , ’ YScale ’ , ’ l i n ’ , ’ box ’ , ’ on ’ )
x l a b e l ( ’ Time , ms ’ ) ;
y l a b e l ( ’V_{C} , mV’ ) ;
g r i d on ;
t i t l e ( ’ I n t e g r a t e and f i r e model ’ )
l egend ( ’V_{C} ’ , ’ Charging in time ’ , ’E_{Leak } ’ , ’V_{th } ’ , ’V_{ r e s e t } ’ )

subplot ( 2 , 1 , 2 )
p l o t ( time ∗1e3 , Spikes_generat ion ( 8 , : ) , ’ r ’ ) ;
s e t ( gca , ’ FontSize ’ , 2 0 , ’ FontName ’ , ’ Times New Roman’ , . . .

’ XScale ’ , ’ l i n ’ , ’ YScale ’ , ’ l i n ’ , ’ box ’ , ’ on ’ )
x l a b e l ( ’ Time , ms ’ ) ;
y l a b e l ( ’ Events ’ ) ;
g r i d on ;
t i t l e ( ’ Spike t r a i n due to the i n j e c t i o n with the I&F model ’ )

f i g u r e
p l o t ( I_values_fI ∗1e9 , f_I_and_F , ’ b ’ ) ;
hold on
p lo t ( I_values_fI ∗1e9 , l i nea r_f , ’ r ’ ) ;
s e t ( gca , ’ FontSize ’ , 2 0 , ’ FontName ’ , ’ Times New Roman’ , . . .

’ XScale ’ , ’ l i n ’ , ’ YScale ’ , ’ l i n ’ , ’ box ’ , ’ on ’ )
x l a b e l ( ’ I_{ I n j e c t e d } , nA ’ ) ;
y l a b e l ( ’ Output frequency , Hz ’ ) ;
xl im ( [ 0 , I_max_fI ] ) ;
g r i d on ;
t i t l e ( ’ Frequency vs Current , I n t e g r a t e and f i r e model ’ )
l egend ( ’ Real behaviour ’ , ’ Approximation f o r l a r g e I_{ in } ’ )
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Appendix B

Matlab: n-type hypothetical
molecule used as K-channel and for
synaptic injection

c l c ;
c l e a r a l l ;
c l o s e a l l ;

I_min = 30 ; %uA
I_max = 60 ; %uA

Vds_points = [ 0 , 1 . 9 , 4 . 6 ] ;

Ids_Vgs_0 = [ 0 ; 0 . 0 2 5 ; 0 . 025 ] ∗1 e −6; %A
Ids_Vgs_0p5 = [ 0 ; 0 . 1 0 ; 0 . 1 0 ] ∗ 1 e −6; %A
Ids_Vgs_1 = [ 0 ; 0 . 2 5 ; 0 . 2 5 ] ∗ 1 e −6; %A
Ids_Vgs_1p5 = [ 0 ; I_max−30; I_max−30]∗1e −6; %A
Ids_Vgs_2 = [ 0 ; I_max−20; I_max−20]∗1e −6; %A
Ids_Vgs_2p5 = [ 0 ; I_max−10; I_max−10]∗1e −6; %A
Ids_Vgs_3 = [ 0 ; I_max ; I_max ]∗1 e −6; %A

Ids_th = [ Ids_Vgs_0 , Ids_Vgs_0p5 , Ids_Vgs_1 , Ids_Vgs_1p5 , Ids_Vgs_2 , . . .
Ids_Vgs_2p5 , Ids_Vgs_3 ] ;

f i g u r e
f o r i =1:1 : l ength ( Ids_th )
p l o t ( Vds_points , Ids_th ( : , i )∗1 e6 , ’ o− ’)
hold on
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x l a b e l ( ’ Vds , V’ )
y l a b e l ( ’ Ids , \muA’ )
g r id on
end

%%%%

Vds = [ 0 : 0 . 2 : 5 ] ;
Vgs = [ 0 : 0 . 5 : 3 ] ;

f o r i =1:1 : l ength ( Ids_th )
p = p o l y f i t ( Vds_points ( 1 : 2 ) , Ids_th ( ( 1 : 2 ) , i ) , 1 ) ;
I_drain ( ( 1 : 1 1 ) , i ) = po lyva l (p , Vds ( 1 : 1 1 ) ) ; %uA
I_drain ( 11 : 26 , i ) = Ids_th (3 , i ) ;
labels_Vgs ( i , : ) = s t r c a t ( ’@Vgs = ’ , s t r i n g ( vpa ( Vgs ( i ) , 3 ) ) , ’ V’ ) ;
end

f i g u r e
f o r i =1:1 : l ength ( Ids_th )
p l o t (Vds , I_drain ( : , i )∗1 e6 , ’ LineWidth ’ , 1 . 5 ) ;
hold on
end
s e t ( gca , ’ FontSize ’ , 2 0 , ’ FontName ’ , ’ Times New Roman’ , . . .

’ XScale ’ , ’ l i n ’ , ’ YScale ’ , ’ l i n ’ , ’ box ’ , ’ on ’ )
x l a b e l ( ’ Vds , V’ ) ;
y l a b e l ( ’ I , \muA’ ) ;
g r i d on ;
t i t l e ( ’ Ids vs Vds , t h e o r e t i c a l molecule f o r K channel ’ )
l egend ( labels_Vgs )

% export as . txt

f i l e_row = 1 ;
f o r i = 1 : 1 : l ength ( Vgs )

f o r j = 1 : 1 : l ength (Vds)
matrix_to_export ( f i l e_row , ( 1 : 3 ) ) = [ Vgs ( i ) , Vds ( j ) , I_drain ( j , i ) ] ;
f i l e_row = f i l e_row +1;

end
end

wr i tematr ix ( matrix_to_export , ’K_th_2V_2M_LUT. txt ’ , ’ De l imiter ’ , ’ space ’ )
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Matlab: p-type hypothetical
molecule used for synaptic injection

c l c ;
c l e a r a l l ;
c l o s e a l l ;

I_min = 30 ; %uA
I_max = 60 ; %uA

Vds_points = [ 0 , 1 . 9 , 4 . 6 ] ;

Ids_Vgs_0 = [ 0 ; 0 . 0 2 5 ; 0 . 025 ] ∗1 e −6; %A
Ids_Vgs_0p5 = [ 0 ; 0 . 1 0 ; 0 . 1 0 ] ∗ 1 e −6; %A
Ids_Vgs_1 = [ 0 ; 0 . 2 5 ; 0 . 2 5 ] ∗ 1 e −6; %A
Ids_Vgs_1p5 = [ 0 ; I_max−30; I_max−30]∗1e −6; %A
Ids_Vgs_2 = [ 0 ; I_max−20; I_max−20]∗1e −6; %A
Ids_Vgs_2p5 = [ 0 ; I_max−10; I_max−10]∗1e −6; %A
Ids_Vgs_3 = [ 0 ; I_max ; I_max ]∗1 e −6; %A

Ids_th = [ Ids_Vgs_0 , Ids_Vgs_0p5 , Ids_Vgs_1 , Ids_Vgs_1p5 , Ids_Vgs_2 , . . .
Ids_Vgs_2p5 , Ids_Vgs_3 ] ;

f i g u r e
f o r i =1:1 : l ength ( Ids_th )
p l o t ( Vds_points , Ids_th ( : , i )∗1 e6 , ’ o− ’)
hold on
x l a b e l ( ’ Vds , V’ )
y l a b e l ( ’ Ids , \muA’ )
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g r id on
end

%%%%

Vds = [ 0 : 0 . 2 : 5 ] ;
Vgs = [0 : −0 .5 : −3 ] ;

f o r i =1:1 : l ength ( Ids_th )
p = p o l y f i t ( Vds_points ( 1 : 2 ) , Ids_th ( ( 1 : 2 ) , i ) , 1 ) ;
I_drain ( ( 1 : 1 1 ) , i ) = po lyva l (p , Vds ( 1 : 1 1 ) ) ; %uA
I_drain ( 11 : 26 , i ) = Ids_th (3 , i ) ;
I_drain ( : , i ) = −f l i p ( I_drain ( : , i ) ) ;
labels_Vgs ( i , : ) = s t r c a t ( ’@Vgs = ’ , s t r i n g ( vpa ( Vgs ( i ) , 3 ) ) , ’ V’ ) ;
end

f i g u r e
Vds = [ − 5 : 0 . 2 : 0 ] ;
f o r i =1:1 : l ength ( Ids_th )
p l o t (Vds , I_drain ( : , i )∗1 e6 , ’ LineWidth ’ , 1 . 5 ) ;
hold on
end
s e t ( gca , ’ FontSize ’ , 2 0 , ’ FontName ’ , ’ Times New Roman’ , . . .

’ XScale ’ , ’ l i n ’ , ’ YScale ’ , ’ l i n ’ , ’ box ’ , ’ on ’ )
x l a b e l ( ’ Vds , V’ ) ;
y l a b e l ( ’ I , \muA’ ) ;
g r i d on ;
t i t l e ( ’ Ids vs Vds , t h e o r e t i c a l molecule f o r K channel ’ )
l egend ( labels_Vgs )

% export as . txt
f i l e_row = 1 ;
f o r i = 1 : 1 : l ength ( Vgs )

f o r j = 1 : 1 : l ength (Vds)
matrix_to_export ( f i l e_row , ( 1 : 3 ) ) = [ Vgs ( i ) , Vds ( j ) , I_drain ( j , i ) ] ;
f i l e_row = f i l e_row +1;

end
end

wr i tematr ix ( matrix_to_export , ’ Negative_K_th_2V_2M_LUT . txt ’ , ’ De l imiter ’ , . . .
’ space ’ )
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