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Summary

The rise in interest concealing quantum computing (QC) and the constant im-
provements in the quantum information field have led the research towards finding
better ways of physically implementing a quantum processor. The most promising
idea from the integration point of view is to realize qubits, the building blocks
of quantum information, in semiconductors, looking forward to a possible future
combination of these structures with the classical CMOS architectures. Therefore,
being integration the ultimate goal, the choice between semiconductors falls on
silicon, for which the technological processes have been studied for decades and
are now very advanced; for this reason, the prospect of employing the spin of an
electron in a silicon quantum dot as a qubit might be ideal.

The use of electron spin as qubit has been theorized by Daniel Loss and David
DiVincenzo in 1998 [1], but it has only recently begun to spread as suitable op-
tion for quantum computing implementation. Although the feasibility of qubits
through holes spin [2], donors spin [3] and point defects spin [4] in different semi-
conductors, such as germanium [5], gallium arsenide [6] and silicon carbide [7], has
been demonstrated too, this thesis work will be focused on the use of the spin of
electrons trapped in silicon gate-defined quantum dots.

This thesis tries to fulfil the need for a compact model that efficiently describes
an electron spin qubits system, looking for a compromise between high accuracy
in the description of noise sources and computational complexity. This would help
quantum circuit designers and algorithms developers to estimate the performance
of a circuit on a quantum computer. However, a canonical simulation of a quan-
tum structure requires the solution of a complex system of differential equations.
Quantum systems are usually analyzed through the Schrödinger equation, which,
unfortunately, can only describe pure quantum states. Incoherent processes, such
as relaxation and decoherence, are taken into account by the Lindblad master equa-
tion, which deals with density matrices. Anyway, the solution of the latter proves
to be very long and computationally expensive and thus it is not realistically em-
ployable in a quantum simulator. This encourages the research towards a compact
model granting a good simulating accuracy with a low computational cost.
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Indeed, after a brief introduction of the fundamental concepts regarding solid-state
quantum computing, the first chapter introduces the final objective of this work:
developing a compact Matlab model able to describe, given the structure, the main
features of the device, such as single-qubit manipulation and two-qubit gates im-
plementation, taking into account the most relevant quantum noise factors. The
goal is to obtain a fast but reliable way to realistically simulate a quantum device,
in order to create a very useful tool for QC device engineering, giving the opportu-
nity to evaluate the effects of physical characteristics on the execution of practical
quantum circuits and algorithms.

The quantum confinement effect is studied in the second chapter, where the fun-
damental properties of semiconductor heterostructures are introduced. This serves
to the purpose of explaining the physical concepts used in the realization of the
quantum device. The silicon Double Quantum Dot (DQD) structure is indeed pre-
sented and defined at the end of the chapter.

The third chapter is devoted to an in-depth description of the DQD device, with
a particular focus on the various possibilities of qubit encoding, such as spin-1/2,
singlet-triplet and charge qubits, discussing their characteristics and listing pros
and cons of each implementation. Having addressed the theoretical features of
semiconductor qubits, the focus shifts on a particular type of structure, the SiMOS
gate-defined DQD (Figure 1 and Figure 2). The device read-out and initialization
methods are explored, as well as device control procedures, in order to familiarize
with the technology relevant parameters.

The mathematical tools needed to understand the theory behind the manipula-
tion of a single qubit in this type of structure are analyzed in the fourth chapter.
In particular, a time-independent expression for the single-qubit spin Hamiltonian
is derived for the purpose of compact modelling. Finally, a first implementation of
the model is developed and tested through a Rabi flopping experiment.

The fifth chapter extends the theory elaborated in the previous chapter to the
two-qubit case. The chapter describes the theoretical derivation of the DQD spin
Hamiltonian through the Hubbard model and the Schrieffer-Wolff (SW) transfor-
mation, with particular attention on the approximations used to derive a time-
independent matrix. The native gate duality is then explored, focusing on how to
implement the two different gates. A second version of the compact model is de-
veloped and validated comparing its results with those obtained with the Quantum
Toolbox in Python (QuTiP), a numerical solver of the Schrödinger and Lindblad
equations, which permit to study the time evolution of quantum systems.
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The sixth chapter is devoted to the analysis of the noise algorithm implemented in
the compact model to take into account relaxation and decoherence effects. The
fidelity of the noisy model is computed on QuTiP through the simulation of a
sequence of RX(π

2 ) gates on each qubit varying the duration of the gate. The
MATLAB model and the QuTiP results are finally compared when relevant quan-
tum circuits and algorithms are simulated.

The last chapter comprises the conclusions of this thesis work, giving a general
look to the results obtained and to the advantages and disadvantages of the devel-
oped compact model. Furthermore, several possible ideas for future enhancements
of the compact model are presented.
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Figure 1: 3D view of the SiMOS DQD structure.
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Figure 2: QDs created by electric fields from the gates.
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Chapter 1

Thesis work outline

The purpose of the first chapter is to give an introduction on semiconductor quan-
tum computing technology, explaining its strengths and the possible implementa-
tions. The reasons for the realization of a compact model able to simulate semi-
conductor quantum devices are then analyzed, with particular attention on the
advantages offered by a fast quantum simulation.

1.1 Semiconductor quantum computation

1.1.1 Technology advantages
In the past decade, semiconductors have become a more and more prominent op-
tion for the realization of quantum computing devices. The research toward this
type of implementation has grown significantly, since semiconductors might be the
key to innovating progresses in quantum electronics. In fact, they are uniquely po-
sitioned to exploit the technology already existing for classical electronic devices,
as share practically the same technological process steps with them. Therefore,
semiconductor quantum computing has a huge potential for its massive scaling and
miniaturization.
Another advantage of semiconductors is the possibility of an electrical device con-
trol. Indeed, semiconductor quantum devices can be manipulated with electric and
magnetic fields generated through the use of metal gates and integrated micromag-
nets. Some advanced qubit encodings, such as the exchange-only qubit in quantum
dots (QDs) [8], even remove the need of the micromagnets and allow a pure electri-
cal control of the quantum structure, which is expected to be easier to implement
and more accurate on a miniaturized chip involving hundreds of thousands of qubits
[9].
Moreover, semiconductors grant optimal physical properties for the creation of
qubits with long coherence times. The coherence time of a qubit is a measure

3



1 – Thesis work outline

of how long the qubit can keep its phase information before losing it [10]. There-
fore, it is a critical parameter for the performance of the quantum device. The long
coherence times in semiconductors allowed the conduction of experiments on qubits
with fidelities above 99%.
Recently, the feasibility of reliable hot semiconductor qubits has been demonstrated
[11]. The hot qubits operate at higher temperature (1-4 K) than other quantum
computing devices, e.g. base on superconductors (∼ mK). This reduces the cooling
power needed for the device functioning, favouring the prospect of practical quan-
tum computation.
Nowadays, the main goal is to demonstrate the feasibility of fault-tolerant quan-
tum computers with few qubits in semiconductors, so that research can focus on
the device scaling and integration, possibly realizing integrated chips with quan-
tum core and classical electronics together to exploit the advantages of both. A
possible approach for a hybrid quantum computer might be to separate the classi-
cal electronics from the quantum core and to keep them at different temperatures
(Figure 1.1).

Classical
interface

Digital
control

300 K 1-4 K

Microwave
control

Readout

Multiplexer

Decoder

Quantum
hardwareDAC

Figure 1.1: Possible scheme of a hybrid quantum computer.

1.1.2 Available implementations
The feasibility of qubits has been demonstrated in different material, such as sili-
con, which will be explored in this thesis, germanium [5], gallium arsenide [6] and
silicon carbide [7]. Among these, silicon is the most relevant one, since the tech-
nology employed for the creation of silicon qubits notably resembles present-day
complementary metal-oxide semiconductor (CMOS) manufacturing. The possible
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1.1 – Semiconductor quantum computation

qubit implementations in silicon span an enormous ecosystem and are extremely
versatile in terms of their applications, which go from quantum simulation and
computation to sensing or communication. The most diffused technologies are:

• Gate defined quantum dots (Figure 1.2a);

• Dopant atoms (Figure 1.2b);

• Optically addressable quantum defects (Figure 1.2c).

Quantum dots, which are the technology studied in this thesis, have a relatively
small qubit footprint (∼ nm), very fast single and two-qubit gates and fault-tolerant
operation, making them a promising candidate for quantum computation. Dopant
atoms [3] have shown the longest coherence times in solid-state quantum computing
and a high sensitivity to magnetic fields, and thus they are the most suitable option
for quantum memories and sensing. Instead, optically addressable quantum defects
[4], such as nitrogen-vacancy (NV) centers in diamond or silicon carbide, can be
employed for long-distance quantum communication, as they naturally serve as
spin–photon interfaces [12].
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(a) Gate defined QDs.
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(b) Phosphorus dopant atom.
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(c) NV defect.

Figure 1.2: Different implementations of semiconductor quantum computing.
Adapted from [12].

A comparison between the technologies is reported in the following table; the
values are extracted from [12]. Some relevant parameters are shown, indicating
that gated spins the general performance of each implementation.

Technology Coherence time Single-qubit gate time Fidelity
Gated spin 28 ms 25 ns 99.96%

Dopant atoms 35.6 s ∼20 µs 99.98%
NV centers 1 s 20 ns 99.995%
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1 – Thesis work outline

1.2 Quantum device simulation issues
The simulation of a quantum device is a crucial tool needed by quantum circuit
designers and algorithms developers to estimate the performance of a given circuit
on a silicon quantum computer. This gives the possibility of device optimization,
making quantum device simulation a necessary step towards quantum computing
implementation. The modelled structure must be realistically close to the physical
hardware to be simulated as reliably as possible. Therefore, the model should also
include noise sources, such as relaxation and decoherence [13], since they play a
relevant role in the device performance. If the model simulation is accurate, the
behaviour of the device can be predicted and the execution of the quantum circuits
can be optimized, varying the system physical constants, such as the quantum dot
g-factor or the valley splitting, and control parameters, such as the electric and
magnetic fields applied.

1.2.1 The compact model idea and the Lindblad equation
Realistic quantum simulation proves to be not so simple to perform. In fact, in
quantum physics, the time-evolution of the quantum system state is described by
the Schrödinger equation:

jℏ
d

dt
|ψ(t)⟩ = H(t) |ψ(t)⟩ , (1.1)

where t is the time, |ψ(t)⟩ is the state vector of the system and H(t) is the time-
dependent Hamiltonian operator. The problem of this approach is that this equa-
tion only deals with state vectors, which in turn can only describe pure quantum
states. However, a realistic simulation must take into account incoherent phenom-
ena, such as relaxation and decoherence, to consider quantum noise. Therefore,
the Lindblad master equation [14] should be used. Indeed, it is an extension of
Equation (1.1) and works with the system density matrix:

dρ

dt
= − j

ℏ
[H(t), ρ] +

∑
j

[2LjρL
†
j − {LjL

†, ρ}], (1.2)

where ρ is the system density matrix, Lj is the Lindblad operator, [x, y] = xy− yx
is the commutator operator and {x, y} = xy + yx is the anticommutator one.
Unfortunately, solving this equation means that one has to find the solution of a
complex system of differential equations. This dramatically increases the simula-
tion time and the computational cost of a quantum simulation. Hence, the idea
of realizing a compact model (Figure 1.3): the goal to find a way to efficiently
describe a quantum device, looking for a compromise between high accuracy in
the description of qubits noise sources and low computational complexity, which
would allow fast simulations. A good compact model can thus reliably simulate a

6



1.2 – Quantum device simulation issues

quantum hardware in a more effective and faster way with respect to a canonical
quantum simulator. In order to achieve this, the simulation must include a cer-
tain number of approximations, which serves to speed up the simulation. However,
these approximations inevitably introduce an error in the model; indeed, a compact
model has always an amount of error with respect to the realistic simulation. It is
important to estimate this error comparing the results of both simulations, possibly
varying some input parameters to analyze the error behaviour with respect to them
and apply possible improvements to the compact model to enhance its performance.

QUANTUM SYSTEM
ANALYSIS

REFERENCE
SIMULATION (QuTiP) 

COMPACT MODEL
SIMULATION (MATLAB) 

COMPARISON OF
OUTCOMES AND

ERROR COMPUTING

POTENTIAL
IMPROVEMENTS 

Figure 1.3: Methodology of a compact model.

1.2.2 Model realization
The workflow for the realization of the compact model has several steps (Figure 1.4).
The first, described in Section 5.1.1 and in Section 5.1.2, is the theoretical defini-
tion of the system: this part comprises the assembling of the spin Hamiltonian for
the description of quantum gates, which depends on the device manipulation tech-
niques. Then, an approach for neglecting time-dependent terms of the Hamiltonian
is exploited to find a time-independent expression, which in turn can be used to
easily derive the system unitary evolution and speed up the simulation. This step
is explored in Section 5.1.3 and in Section 5.1.4. However, the Hamiltonian un-
dergoes an approximation, hence a certain amount of error is introduced into the
model. The unitary evolution associated with the obtained Hamiltonian is used by

7



1 – Thesis work outline

the model to calculate the system noiseless time-evolution. The non-ideal effects,
i.e. relaxation and decoherence, are taken into account through a quantum noise
algorithm, developed in [15] and implemented according to the methodology de-
scribed in Section 6.1.1. The model is then validated through a comparison with
a “reference” realistic quantum simulator to explore the limits of the simulation
approximations. Section 6.2.2 is devoted to the analysis of the model validation.

System spin
Hamiltonian
assembling

Application of
model

approximations

Quantum noise
algorithm

implementation

Model validation:
comparison with

a reference

Noiseless model

Figure 1.4: Compact model workflow.

The compact model has been developed on MATLAB and it takes as input the
parameters that characterize the physical system, such as the g-factors of the dots
and the amplitudes of the magnetic fields. The simulation take two separate paths:
one computes an ideal evolution, applying the formal unitary matrices of the gates
to the system state vector |ψ⟩; the other path calculates the unitary evolutions of
the applied gates through the formulas derived from the theoretical work and it also
uses a quantum noise algorithm to consider relaxation and decoherence. This non-
ideal path is applied to the density matrix ρ, so that the output of the model gives
a reference ideal |ψ⟩ and a ρ that takes into account the device realistic processes.
The discrepancy between the two simulations is measured through the use of the
fidelity concept [16].
The whole compact model has been finally compared with a numerical quantum
simulator in Python, QuTiP, able to solve the Lindblad master equation. The
error between the two approaches has been analyzed for the application of single
and two-qubit gates and for the simulation of relevant quantum circuits, such as the
realization of a Bell state and the SWAP gate, and two algorithms: the Deutsch’s
algorithm and the Grover’s algorithm.
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Chapter 2

Quantum confinement in
semiconductors

One of the key building blocks of semiconductor quantum computing is the abil-
ity to dimensionally confine particles by means of heterostructures or electrically
applied potential wells. Being able to fully comprehend the theory behind these
two methods and the physical effects they have on the structure means having
good basis for the understanding of the more complex mechanisms that rule solid-
state quantum world. This chapters is thus devoted to a brief but clear theoretical
introduction to these subjects.

2.1 Semiconductors and heterostructures
2.1.1 Semiconductors electronic properties
Semiconductors are crystals, i.e. periodic dispositions of atoms, in which electrons
behave following quantum mechanics rules, being described by proper wavefunc-
tions, related to the allowed electron states. These states correspond to the allowed
energy bands, which are notoriously relevant for determining the electronic be-
haviour of the material. In particular, the meaningful bands are the lowest energy
band that lets electrons move freely in the semiconductor, the conduction band,
and the highest energy band hosting electrons chemically bonded to the material
nuclei, the valence band. These two bands are separated by a forbidden energy gap,
called bandgap (Figure 2.1) [17].
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2 – Quantum confinement in semiconductors

Conduction Band 

Valence Band

Bandgap 
En

er
gy

Figure 2.1: Semiconductor band diagram.

In this scenario, one can assume that, in the energy range of interest, electrons
are described by a parabolic energy-momentum relation, also called dispersion re-
lation:

E(k) = EC + ℏ2|k2|
2m = EC +

ℏ2
(
k2

x + k2
y + k2

z

)
2m , (2.1)

where E is the energy of the electron and k its wavevector, associated with the
particle momentum p through the de Broglie relation [17]

p = ℏk, (2.2)

kx, ky and kz are the wavevector spatial components, EC is the minimum of the
conduction band and m is the electron mass.
This energy-momentum relation is defined in the reciprocal space, also called mo-
mentum space, i.e. the vector space containing all possible values of momentum
for a particle, and it is a periodic function in it. The fundamental period of this
function is called Brillouin First Zone (BFZ), which, technically, is the set of points
in the momentum space closer to |k| = 0 than to any other reciprocal lattice point
[18].

2.1.2 Silicon energy-momentum relation
These general concepts can be applied to silicon, which is a key material for this
thesis work, in order to visualize its main electronic features; in fact, silicon has a
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2.1 – Semiconductors and heterostructures

diamond lattice, made of two interpenetrated face-centered cubic lattices, and its
BFZ is a solid with eight hexagonal faces and six square faces (Figure 2.2). The
main momentum points in the BFZ are its center (the Γ point), which is also the
point where |k| = 0, the center of the hexagonal face (the L point), and the center
of the square face (the X point) [17].

10 Semiconductors, alloys, heterostructures

X

L

K

K '
G G :  k x = k y = k z = 0

X :  | k x | = 2 p / a ,  k y = k z = 0
L :  | k x | = | k y | = | k z | = p / a

i r r e d u c i b l e  
w e d g e

Figure 1.9 The Brillouin First Zone (BFZ) in a cubic lattice (a lattice constant)

As a relevant example, let us discuss the dispersion relation for a direct-

bandgap semiconductor, GaAs. The term direct bandgap refers to the fact that

the minimum of the conduction band and the maximum of the valence band

(both located in the Γ point) correspond to the same momentum ~k, in this case

~k = 0. The dispersion relation shown in Fig. 1.10 is simplified, in the sense that

only the lowest branch of the conduction band is shown, while three branches

of the valence band appear, the heavy hole (HH), the light hole (LH) and the

split-off band. Light and heavy hole bands are degenerate, i.e. they share the

same minimum in the Γ point, and they differ because of the E(k) curvature near

the minimum, which corresponds to a larger or smaller hole effective mass. The

split-off band enters some transport and optical processes, but can be neglected

in a first-order treatment. The conduction band has the lowest minimum in the

Γ point, and two secondary minima in the L and X points. The main gap is

1.42 eV, while the secondary gaps are 1.72 eV (L point) and 1.90 eV (X point).

Only a section of the dispersion relation is presented, running from the Γ point

to the L point, and then from the Γ point to the X point and back to the origin

through the K point.

Since electrons and holes have, at least in the absence of an applied field, a

Boltzmann energy distribution (i.e. their probability to have energy E is propor-

tional to exp(−E/kBT ), where kBT = 26 meV at ambient temperature), most

electrons and holes can be found close to the conduction band and valence band

edges, respectively.

Consider now the lowest minimum of the conduction band or highest maximum

in the valence band; the dispersion relation can be approximated (around the Γ

point) by a parabola as:

En − Ec ≈
~2k2

2m∗
n

, Ev − Eh ≈ ~2k2

2m∗
h

,

Figure 2.2: Brillouin First Zone of a diamond lattice. Adapted from [17].

The silicon energy-momentum relation (Figure 2.3) shows the material’s main
electronic characteristics:

• Indirect bandgap: the maximum of the valence band and the minimum of the
conduction band correspond to different momentum points;

• Conduction band degeneracy: the conduction band has six degenerate minima
(see Section 2.2.2).

challenges that arise as one works to create devices with

desired properties on the nanoscale. One such aspect is how

the effects of multiple valleys present in the conduction band

in bulk silicon appear in specific silicon nanodevices. The

manifestations of valley physics in quantum dots are different

from those in dopant-based devices, and understanding the

relevant effects is critical for manipulating the spin degrees of

freedom of the electrons in nanodevices. In the following

sections, we first define and discuss the conduction band

valleys in bulk silicon and then the behavior and consequen-

ces of valley physics for quantum dots and for dopant devices.
Crystalline silicon is a covalently bonded crystal with a

diamond lattice structure, as shown in Fig. 5. The band

structure of bulk silicon (Phillips, 1962), shown in Fig. 6,

has the property that the energies of electron states in the

conduction band are not minimized when the crystal momen-

tum k ¼ 0, but rather at a nonzero value k0 that is 85% of the

way to the Brillouin zone boundary, as shown in Fig. 6(b).

Bulk silicon has cubic symmetry, and there are six equivalent

minima. Thus we say that bulk silicon has six degenerate

valleys in its conduction band.

In conventional electronic devices, the presence of

multiple valleys typically does not affect transport properties

in a profound way. However, valley physics plays a critical

role in quantum electronics because of interference between

different valleys that arises when the electronic transport is

fundamentally quantum. For example, the presence of an

additional valley greatly complicates spin manipulation be-

cause it can lift Pauli spin blockade, which is fundamental for

many strategies for spin manipulation in quantum-dot nano-

devices (Rokhinson et al., 2001; Ono et al., 2002; Hüttel

et al., 2003; Johnson, Petta, Marcus et al., 2005; Koppens

et al., 2005). In pure bulk silicon, the valleys are degenerate

(the energies of the six states related by the cubic symmetry

are the same), but in nanodevices this degeneracy can be and

usually is broken by various effects that include strain, con-

finement, and electric fields. When valley degeneracy is

lifted, at low temperatures the carriers populate only the

lowest-energy valley state, thus eliminating some of the

quantum effects that arise when the valleys are degenerate.
Figure 7 shows a summary of valley splitting in hetero-

structures and in dopant devices. For strained silicon quantum

wells, the large in-plane strain lifts the energies of the in-

plane (x and y) valleys. The remaining twofold degeneracy of

the z valleys is broken by electronic z confinement induced by

electric fields and by the quantum well itself, resulting in a

valley splitting of order 0.1–1 meV. The breaking of the

twofold valley degeneracy is very sensitive to atomic-scale

details of the interface and is discussed in detail in Sec. III.B

and in the Supplemental Material [471].
For an electron bound to a dopant in silicon, the valley

degeneracy of bulk silicon is lifted because of the strong

confinement potential from the dopant atom (Kohn and

Luttinger, 1955a). For phosphorus donors in silicon, the

electronic ground state is nondegenerate, with an energy

gap of �11:7 meV between the nondegenerate ground state

FIG. 5. Silicon crystal in real and reciprocal space. (a) 3D plot of

the unit cell of the bulk silicon crystal in real space, showing the

diamond or face-centered-cubic lattice, which has cubic symmetry.

(b) Silicon crystal in reciprocal space. Brillouin zone of the silicon

crystal lattice. It is the Wigner-Seitz cell of the body-centered-cubic

lattice. � is the center of the polyhedron. From Davies, 1998.

FIG. 6 (color online). Band structure of bulk silicon. (a) The

conduction band has six degenerate minima or valleys at 0:85k0.
Results supplied by G. P. Srivastava, University of Exeter. From

Davies, 1998. (b) Zoom-in on the bottom of the conduction band

and the top of the valence band (schematic, not exact). The band gap

in bulk Si is 1.12 eV at room temperature, increasing to 1.17 eV at

4 K (Green, 1990). The heavy and light hole bands are degenerate

for k ¼ 0. The split-off band is separated from the other subbands

by the spin-orbit splitting �SO of 44 meV.

FIG. 7 (color online). Valley splitting of dopants and of quantum

dots in silicon quantum wells. (a) For a quantum well, in which a

thin silicon layer is sandwiched between two layers of SixGe1�x,

with x typically �0:25–0:3, the sixfold valley degeneracy of bulk

silicon is broken by the large in-plane tensile strain in the quantum

well so that two � levels are about 200 meV below the four � levels

(Schäffler et al., 1992). The remaining twofold degeneracy is broken

by the confinement in the quantum well and by electric fields, with

the resulting valley splitting typically �0:1–1 meV. (b) For phos-
phorus dopants, strong central-cell corrections near the dopant break

the sixfold valley degeneracy of bulk silicon so that the lowest-

energy valley state is nondegenerate (except for spin degeneracy),

lowered by an energy 11.7 meV. The degeneracies of higher-energy

levels are broken by lattice strain and by electric fields.

968 Floris A. Zwanenburg et al.: Silicon quantum electronics

Rev. Mod. Phys., Vol. 85, No. 3, July–September 2013

Figure 2.3: Silicon energy-momentum relation. Adapted from [19].
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2 – Quantum confinement in semiconductors

2.1.3 Heterojunctions and heterostructures

Epitaxial techniques can be employed to grow different materials on top of each
other, creating a mixed structure. However, generally, each material has a dif-
ferent lattice constant a, which is the spatial distance between two atoms in the
crystal lattice; this structural mismatch creates impurities and defects at the inter-
face between the two materials, thus making the resulting mixed system unsuited
for electronic applications. Nevertheless, if the lattice mismatch is very small (1%
utmost), the crystal lattice is almost unaffected at the interface between the two
materials and a practically ideal crystal is created: such structure is called hetero-
junction [20].
The electronic properties of the whole crystal now face an abrupt discontinuity, and
this is particularly useful since it allows bandstructure engineering: a heterojunc-
tion between two materials with different bandgaps results in a discontinuity of the
conduction and valence bands (Figure 2.4).

En
er

gy

0 z

Eg1 Eg2

Conduction band

Valence band

Figure 2.4: Bandstructure of a heterojunction between two materials with different
bandgaps.

Combining different materials with different bandgaps gives rise to arbitrarily
defined potential shapes; such architectures are called heterostructures [21]. For the
purposes of this thesis, the focus will only be on a particular potential configuration,
the square well potential (Figure 2.5).
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2.2 – Quantum confinement in potential wells

z
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Figure 2.5: Square well potential obtained through a heterostructure made of three
materials.

2.2 Quantum confinement in potential wells
2.2.1 Particle in a one-dimensional square well
The problem of a particle in a “box” is commonly used to explain the differences
between classical and quantum physics: in classical mechanics, a particle trapped
in a box can have any energy (meaning it can move at any speed), and could also
stay “still”, namely the ground state of the system is at zero energy (Figure 2.6a).
However, when quantum effects become relevant, i.e. when the box width is com-
parable with the wavelength of the particle, quantum mechanics must be employed
to analyze the system; this carries out that the energy states of the particle are
actually quantized and the ground state is always at energies different from zero
(Figure 2.6b).
In particular, supposing that a potential well is applied along the z direction and if
it is considered infinitely “tall”, i.e. the barrier potential is infinite, the analytical
formula of the quantized energy states, also called bound states, is

Eznz
= n2

zπ
2ℏ2

2mL2
z

, (2.3)

while the related wavefunctions along the z direction (Figure 2.7) are expressed as

ψnz(z) =
√

2
Lz

sin
(
nz

π

Lz

z
)
, (2.4)
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2 – Quantum confinement in semiconductors

where nz = 1, 2, ..., N indicates the energy level position (nz = 1 is the ground state,
while nz = N is the highest energy state in the quantum well), m is the particle
mass and Lz is the well width. For finite values of the barrier potential, numerical
or graphical methods must be used; if applied in this case, the analytical formula
of Equation (2.3) gives more bound states than there actually are, since it is only
valid for the infinite well case. Subbands are thus created: the energy is quantized
along the z direction, so the energy-momentum relation in a quantum well is

Enz = EC + Eznz
+

ℏ2
(
k2

x + k2
y

)
2m , (2.5)

where EC is the minimum of the conduction band, while kx =
√

2m
ℏ2 Ex and ky =√

2m
ℏ2 Ey are the x and y wavenumbers, with Ex and Ey kinetic energies of the

particle in the respective directions. This relation means that there are nz 1D
subbands, each having a 2D dispersion relation E(kx, ky) [22]. In addition, owing
to the separation of the spatial variables - only allowed when the potential profile
can be separated as well (U(x, y, z) = Ux(x) + Uy(y) + Uz(z)) - the total spatial
wavefunction can be written as

ψnz(x, y, z) =
√

2
Lz

ejkxxejkyy sin
(
nz

π

Lz

z
)
. (2.6)
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(a) Potential well of 50 nm.
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(b) Potential well of 2 nm.

Figure 2.6: The well (a) is not narrow enough to show quantum behaviours while,
in (b), energy states are clearly quantized because of quantum effects.

Furthermore, quantum effects also affect the density of states N(E), which is the
number of different states per energy per unit volume that electrons are allowed to
occupy. The bulk 3D-DOS is computed as

N3D(E) = 1
2π2

(2m
ℏ2

) 3
2 √

E, (2.7)
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(a) Wavefunction of the first energy state.
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(b) Wavefunction of the second energy state.
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(c) Wavefunction of the third energy state.

Figure 2.7: Wavefunctions associated with the bound states of a 2 nm quantum
well.

showing its well known square root behaviour. On the other hand, in quantum
wells, the quantization of the energy levels in the confinement direction causes the
DOS to lose the energy dependence, making it a constant function in each subband
(Figure 2.8):

N2D(E) = m

Lzπℏ2

∑
nz

θ(E − Enz), (2.8)

where θ(E − Enz) is the Heaviside step function centered in E − Enz [22].

2.2.2 Quantum Wires and Quantum Dots
Although until now the potential confinement has been applied only in one direc-
tion, the analytical results obtained can be used to examine the two-dimensional
potential confinement too, also called quantum wire.
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Figure 2.8: Comparison between bulk 3D-DOS and quantum well 2D-DOS.

Assuming confinement along x and y directions, energy levels are quantized and
their formulas are

Exnx
= n2

xπ
2ℏ2

2mL2
x

, (2.9)

Eyny
=
n2

yπ
2ℏ2

2mL2
y

. (2.10)

If Lx = Ly = L, the dispersion relation becomes

Enx,ny = EC + Exnx
+ Eyny

+ Ez = EC + π2ℏ2

2mL2

(
n2

x + n2
y

)
+ ℏ2k2

z

2m , (2.11)

and therefore it depends on both nx and ny: subbands are now expressed as Enx,ny ,
meaning that the particles transverse energy is quantized and that now there are
2D subbands, each having a 1D dispersion relation E(kz).
Again, due to the separation of spatial variables, the total spatial wavefunction is

ψnx,ny(x, y, z) =
√

2
L

sin
(
nx
π

L
x
)√ 2

L
sin

(
ny
π

L
y
)
ejkzz. (2.12)

The most powerful derivation from transverse energy quantization in quantum wires
is that the wire resistance does not depend on its length and section (as in classical
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2.2 – Quantum confinement in potential wells

wires) but it has a constant value RQ = M h
2q2 ≈ M · 12.9 kΩ, where M is the

number of subbands contributing to conduction.
Finally, the 1D-DOS shows infinite maxima around subband minima, i.e. where
the charge is expected to accumulate (Figure 2.9) [23].
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Figure 2.9: 1D-DOS in a quantum wire.

The last step towards complete particle confinement is to add the last potential
constraint (in the z direction) to the quantum wire structure; the resulting system
is called quantum dot. The particle is now locked in space and can only occupy
discrete energy levels inside the dot: this means that there are no dispersion curves
(E does not depend on any spatial component of k), since the dispersion relation
in a quantum dot, assuming Lx = Ly = Lz = L, is

Enx,ny ,nz = EC + Exnx
+ Eyny

+ Eznz
= EC + π2ℏ2

2mL2

(
n2

x + n2
y + n2

z

)
, (2.13)

and therefore the DOS only depends on the number of confined states. An isolated
quantum dot offers two spin-degenerate states for each confined energy level, so
the DOS plot is a series of δ-functions centered at each energy level, which, since
energies are quantized in every direction, is addressed as Enx,ny ,nz (Figure 2.10)
[24].
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Figure 2.10: Energy levels and DOS in a quantum dot.

As already mentioned in Section 2.1.2, bulk silicon has a sixfold degenerate con-
duction band minimum. In addition to the particle spatial confinement, quantum
dots lift this degeneracy: the large in-plane tensile strain in the dot breaks the
conduction band minimum into two levels: a higher fourfold degenerate level and
a lower twofold degenerate one. These levels are broken once more by the confine-
ment and the electric fields in the dot [19]; the relevant effect is the lower energy
level splitting δV S, called valley splitting, the energy difference between the system
ground state ES−V and the first excited state ES−V ′ (Figure 2.11). The valley split-
ting value varies depending on the structure: since the potential step at the Si/SiO2
interface is very sharp, values of the order of 0.2 - 0.8 meV are reached in SiMOS
structures [25, 26, 27], while Si/SiGe devices provide valley splittings between 0.01
and 0.2 meV [28, 29, 30, 31].

CB minimum

6-fold degenerate

4-fold

2-fold
Es-v

Es-v'

Figure 2.11: Valley splitting in a quantum dot.
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2.3 Structure definition
2.3.1 2-Dimensional Electron Gas and gate-defined Quan-

tum Dots
The analyses carried out in the previous paragraphs about quantum confinement
show that when a quantum well is created in a three-dimensional system, the parti-
cles of such system, usually electrons, get “trapped” in the quantized energy levels
and cannot move along the well direction: this is called 2-Dimensional Electron Gas
(2DEG) [32]. Such behaviour is employed in the creation of the Double Quantum
Dot (DQD) structure analyzed in this thesis: a thin layer (∼10 nm) of enriched 28Si
is grown between a SiO2 barrier insulator and the intrinsic Si substrate, and the
2DEG is formed due to the triangular quantum well (which has almost the same
behaviour of the square quantum well) in the conduction band (Figure 2.12).

Energy

C
onduction band

z

2DEG

SiO2
28Si

Si

Figure 2.12: 2DEG is created in the thin enriched 28Si layer.

1D confinement along the z direction is thus obtained through a heterostruc-
ture, while, for the other two directions, the confining potential is applied through
electrical metallic gates, placed on top of the barrier insulator: in particular, the
light green gates confine the electrons in the y direction (Figure 2.13), while the
actual double quantum dot potential is formed along the x direction through the
plunger gates, which control the potential wells needed to create the two dots and
lateral electron reservoirs, and the barrier gates, which tune the barrier potentials
between the two dots and between the dots and the reservoirs (Figure 2.14) [33].
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Figure 2.13: 3D view of the gate-defined DQD structure.
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Figure 2.14: XZ cut of the gate-defined DQD structure.
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2.3 – Structure definition

The two quantum dots are formed in the thin layer of enriched 28Si; this material
is used since natural Si contains about a 4.7% concentration of 29Si isotopes, which
possess a non-zero nuclear spin, and this negatively affects electron spin perfor-
mance in the quantum dot. In fact, the 29-isotope nuclei interact with each other
and couple to the electronic spin through hyperfine interaction, worsening the co-
herence time of the device. The 28-isotope of Si, instead, has zero net nuclear spin
and completely eliminate this issue, making enriched 28Si a very good material for
the realization of the quantum layer [34].

2.3.2 Measuring the system: the SET sensor
Creating the two-levels quantum system and being able to manipulate it is just a
part of the quantum computing device; in fact, one has to be able to measure it,
reading the state of the system in order to analyze the behaviour of the device.
Therefore, an appropriate sensor is needed in the vicinity of the double quantum
dot zone: the single electron transistor (SET) charge sensor. A SET is formed by a
quantum dot with three terminals (the drain, the source and the gate), meaning that
it can be realized with the same photolithographic steps of the quantum system,
so that the technological complexity is not dramatically increased; in this device,
electrons flow between source and drain thanks to tunnelling, and the potential of
the dot is tuned by the gate electrode, which is capacitively coupled to the dot
(Figure 2.15) [35].

QD

Gate

Source DrainCS RS RD CD

CG

Figure 2.15: Schematics of a SET.

The SET can be used as a sensor [36] if it is created close enough to the double
quantum dot region: a capacitive coupling is formed between the SET and the
quantum system, making the potential of the sensor dependent on the electrostatic
landscape of the quantum dots, i.e. on the presence/absence of electrons in the
two quantum dots (Figure 2.16). Thus, the SET current can be used to detect
tunneling events in the device; this is a significant tool for the read-out of the
system (Figure 2.17) [37].
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gates on top of the semiconductor (see Figure 2 (b), (c)). Then the electron ground state of the single electron confined in 
this quantum dot region is (Zeeman-) split into two levels by an externally applied magnetic field, hence, forming a 
canonical quantum two-level system (or qubit) with well-defined ground (spin-down) and excited (spin-up) states.  

In subsection 3.1 we will describe the fabrication process. Subsection 3.2 will focus on results of the electrical qualification 
of our quantum devices. In subsection 3.3 we will shortly address our initial work on implementing a Schrödinger/Poisson 
solver which in the future could support designing next generations of devices. 

 

3.1 Quantum Device Manufacturing  
In general, a processing chip which is considered to be a component of a full-stack system architecture asks for more 
stringent specifications in electronic stability and robustness than required for proof-of-principle scientific experiments. 
Taking this functional requirement into account we developed a thorough device development feedback loop including 
design, materials, fabrication and electrical screening. Figure 2 (a) shows the typical lifecycle of a quantum device from 
crystal growth to the QI, split into 4 development modules.  

In the first module, an undoped 28Si quantum well heterostructure is grown with reduced-pressure chemical vapor 
deposition (RP-CVD). Starting with an n-type Si(100) wafer, first a 900 nm linearly graded SixGe1-x layer up to 30% Ge 
content, followed by a 400 nm Si0.7Ge0.3 buffer is grown (Fig. 2 (b)-1) as a virtual substrate. The growth is then continued 
by a 10 nm strained 28Si layer (Fig. 2 (b)-2), a 30 nm Si0.7Ge0.3 spacer (Fig. 2 (b)-3), and a 1 nm Si cap. The conduction 
band of Si lies 0.14 eV below that of Si0.7Ge0.3, which effectively confines the accumulated electrons in two dimensions 
inside the 28Si layer, separated from disordered amorphous dielectrics used to electrically insulate the gates from the 
crystalline Si0.7Ge0.3 spacer. In the second module, a full 4” wafer is processed with optical lithography to create n++ doped 
areas providing Ohmic access to the quantum well layer (Fig. 2 (b)-4), and a 7 nm Al2O3 gate dielectric deposited with a 
thermal atomic layer deposition (ALD) process (Fig. 2 (b)-5). On top of the n++ implanted areas windows in the Al2O3 are 
opened with HF and 5/45 nm Ti/Pd contact pads are deposited (Fig. 2 (b)-6). Next the wafer is diced into 52 1x1 cm2 dies, 
to be individually processed with electron beam lithography. In the third module, 1x1 cm2 dies are processed with electron 
beam lithography and a lift-off process, to create 25 nm thick Al nanogates (Fig. 2 (c)) with fanout to the bond pads, and 
fanout of the Ohmic contacts to the bond pads (Fig. 2 (b)-7). Then a second layer of 10 nm ALD Al2O3 is deposited on the 
chip to insulate the nanogates (Fig. 2 (b)-8), which is followed by two more e-beam lift-off steps to create a 50 nm thick 
Al top gate (Fig. 2 (b)-9) and a 200 nm Co nanomagnet (Fig. 2 (b)-10) (dashed outline on Fig. 2 (c)). After nanofabrication, 
the dies are diced into 5x5 cm2 individual devices, which are glued and wire-bonded to a PCB. This concludes the 
fabrication process. 

 
Figure 2: The design and fabrication of the 28Si-based two spin qubit quantum processor: In (a) the device development 
feedback loop is presented including materials growth, pre- and nanofabrication of the device, with subsequent electrical 
screening. The optical CMOS-based prefab step for the chip periphery ensures an increased device turn-around and fast 
process development learning. The nanoscale part of the devices is fabricated with electron beam lithography. Only after 
thorough electrical screening QI readiness of the chips is determined. (b) A schematic side-view cross-cut of a typical quantum 
device design. 
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Figure 2.16: Scanning Electron Micrograph (SEM) image of the device; the two
quantum dots and the SET are clearly visible. Adapted from [38].
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Figure 2.17: The SET conductance sharply increases when there is a tunneling
event in the quantum device.
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2.3 – Structure definition

2.3.3 The charge stability diagram
SET measurements offer the possibility of electrically characterizing the structure.
One of the most meaningful analysis is to study how the dots occupancy vary when
sweeping the plunger gates voltages. Indeed, these electrodes are used to drive
the system into a specific electrostatic regime, and this is clearly shown by the
charge stability diagram. The notation for the dots occupancy, extensively used
throughout this work, is (NL,NR), where NL describes how many electrons are in
the left dot and NR indicates how many electron are in the right one. The SET
is used to detect tunneling events in order to identify when the system is varying
its electrostatic landscape. Precisely knowing which values of the plunger gates
voltages apply in order to be in a particular occupancy regime is a precious tool to
ensure an accurate device control.
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Figure 3.4: Charge stability diagrams of double quantum dots depleted to the single
electron/hole regime for the three platforms. a SiMOS double quantum dot. Charge addition
lines under P1 are not visible due to a low tunnel rate from the reservoir. Map taken at 0.44 K using
lockin charge sensing. The excitation is placed on the interdot gate B12. b Si/SiGe double quantum dot
formed under the first two plungers, sensed by the nearest charge sensor via RFreflectometry utilizing
a resonant LC circuit at 84 MHz. Here, the plunger gate voltages are in virtual gate space correcting for
weak cross capacitive coupling. c Ge/SiGe depleted to the single hole regime. A large single quantum
dot is formed under P3, B34 and P4, by adjusting the tunnel barrier voltage B34, and is used to sense
a double quantum dot under P1 and P2. The lockin excitation is placed on the interdot tunnel barrier
B12.

one charging energy. These remarkably similar tuning parameters are promising
with regards to the stringent requirements placed on quantum dot array tuneup in

Figure 2.18: Charge stability diagram of a DQD device. P1 and P2 are the plunger
gates. Adapted from [39].
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Chapter 3

Device functioning analysis

This chapter is dedicated to the description of how the device defined in previous
chapter works. Different qubit encoding possibilities are inspected, with particular
attention to the advantages of each choice. Read-out and initialization methods
are explored, as well as device control procedures, in order to familiarize with the
technology relevant parameters, extensively used in the next chapters.

3.1 Qubit encoding
3.1.1 Spin-1

2 coding: the Loss-DiVincenzo qubit
The easiest way of realizing a qubit is by employing the spin of a single electron
[1]. As already mentioned in Section 2.3.1, the confinement and the strain in a
quantum dot structure break the conduction band minimum degeneracy, leaving a
spin-degenerate ground state. This means that this lower level can be occupied by
two electrons with different spins. The two-levels quantum system is thus generated
exploiting the Zeeman effect: the presence of a static magnetic field B0 splits the
two spin levels. The energy difference EZ between these spin states is called Zeeman
energy (Figure 3.1) [40]. In this analysis, the static magnetic field is applied along
the z direction, hence the spin states split by this effect are the |↓⟩ and |↑⟩ states.
The lower state (spin-up or spin-down) is determined by the g-factor sign; this
argument is explored in Section 4.1.1. In silicon devices, the lower state is the
spin-down state [41, 8], thus the system spin Hamiltonian, written in the {|↑⟩, |↓⟩}
basis, is [42]

H =
[

EZ

2 0
0 −EZ

2

]
, (3.1)

and the qubit encoding is
|0⟩ = |↓⟩ ,
|1⟩ = |↑⟩ .

(3.2)
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3 – Device functioning analysis

Es-v

B0 0B0 0 

Ez

Figure 3.1: The Zeeman effect splits the spin states.

In this type of encoding, each quantum dot corresponds to a qubit and system
manipulation is achieved through the use of the electrical gates − the same that
form the quantum dots − and integrated micromagnets, needed to create static
magnetic field gradients in the device. Since this is the encoding choice of the
structure under analysis in this work, these concepts are studied in detail in the
next chapters. Since the encoding is based on the electron spin, it is called a spin
encoding. Spin encodings usually guarantee good coherence times (∼ tens of µs)
and acceptable manipulation times (∼ tens of ns) [43].

3.1.2 The charge qubit
On the other hand, the charge coding encodes the qubit on the presence of a single
electron in one dot or in another. Specifically, the charge qubit is realized through
the use of one electron in two dots. The two quantum dots communicate through
a non-zero tunnel coupling, that makes the travelling of the electron between the
dots possible. The two states of the system are |R⟩, that indicates the presence of
the electron in the right dot, and |L⟩, that implies that the electron is in the left
dot. The system spin Hamiltonian, expressed in the {|L⟩, |R⟩} basis, is [42]

H =
[

ϵ
2 t0
t0 − ϵ

2

]
, (3.3)

where ϵ is the energy difference between the dots, called energy detuning, and t0 is
the tunnel coupling, defined in energy units (J or eV). These two parameters can
be effectively controlled through the electrical gates: the detuning is modified using
the plunger gates above the dots, while the tunnel coupling is changed exploiting
the barrier gate between the dots.
In order to understand this Hamiltonian and the whole system, one needs to look at
the energy diagram of the structure, namely the plot of the Hamiltonian eigenvalues
against the energy detuning between the dots. This diagram shows which energy
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3.1 – Qubit encoding

levels the system can occupy for each value of detuning; for sake of simplicity,
suppose just for now that t0 = 0. The Hamiltonian thus becomes

H =
[

ϵ
2 0
0 − ϵ

2

]
, (3.4)

and the energy diagram is trivial, since the matrix is already diagonal and the
eigenvalues have a clear dependence on the detuning (Figure 3.2).
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Figure 3.2: Energy diagram of the charge qubit when t0 = 0.

Now, suppose that the electron starts in the left dot with negative detuning.
Confronting the energy diagram and the energy detuning between the dots, defined
as the difference between the left dot energy and the right dot energy:

• Negative detuning: the electron is in the left dot, which is the lowest energy
state in the system (Figure 3.3);

• Zero detuning: the |L⟩ and the |R⟩ states are at the same energy, but the
electron cannot tunnel to the other dot, since the tunnel coupling is zero
(Figure 3.4);

• Positive detuning: the electron stays in the |L⟩ state even if it is not the lower
energy state in the system (Figure 3.5).
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3.2 – Read-out techniques

and the energy diagram is trivial, since the matrix is already diagonal and the
eigenvalues have a clear dependence on the detuning (Figure 3.2).
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Figure 3.2: Energy diagram of the charge qubit when t0 = 0.

3.1.3 Singlet-Triplet coding
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Figure 3.3: The electron starts in the |L⟩ state for negative detuning.3.2 – Read-out techniques

and the energy diagram is trivial, since the matrix is already diagonal and the
eigenvalues have a clear dependence on the detuning (Figure 3.2).
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Figure 3.4: The electron cannot tunnel to the right dot when the detuning increases.3.2 – Read-out techniques

and the energy diagram is trivial, since the matrix is already diagonal and the
eigenvalues have a clear dependence on the detuning (Figure 3.2).
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Figure 3.5: The electron is still locked in the |L⟩ state.
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3.1 – Qubit encoding

On the contrary, when t0 /= 0, tunneling is allowed and the electron can change
position, depending on which is the lowest energy state in the system. Indeed, the
energy diagram shows that the |L⟩ and |R⟩ states are connected (Figure 3.6), while
in t0 = 0 case the two states did not communicate at all (Figure 3.2).
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Figure 3.6: Energy diagram of the charge qubit when t0 /= 0.

Again, supposing that the electron starts in the left dot for negative detuning,
the system evolves as follows:

• Negative detuning: the electron starts in the left dot, which is the lowest
energy state in the system (Figure 3.7);

• Zero detuning: the |L⟩ and the |R⟩ states are at the same energy, and the
electron begins the process of tunneling to the other dot (Figure 3.8);

• Positive detuning: the electron has changed position and the system in now
in the |R⟩ state, the lowest energy state (Figure 3.9).
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3.1 – Qubit encoding

On the contrary, when t0 /= 0, tunneling is allowed and the electron can change
position, depending on which is the lowest energy state in the system. Indeed, the
energy diagram shows that the |L⟩ and |R⟩ states are connected (Figure 3.6), while
in t0 = 0 case the two states did not communicate at all (Figure 3.2).
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Again, supposing that the electron starts in the left dot for negative detuning,
the system evolves as follows:

• Negative detuning: the electron starts in the left dot, which is the lowest
energy state in the system (??);

• Zero detuning: the |L⟩ and the |R⟩ states are at the same energy, and the
electron begins the process of tunneling to the other dot (??);

• Positive detuning: the electron has changed position and the system in now
in the |R⟩ state, the lowest energy state (??).
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Figure 3.7: The electron starts in the |L⟩ state for negative detuning.
3.1 – Qubit encoding

On the contrary, when t0 /= 0, tunneling is allowed and the electron can change
position, depending on which is the lowest energy state in the system. Indeed, the
energy diagram shows that the |L⟩ and |R⟩ states are connected (Figure 3.6), while
in t0 = 0 case the two states did not communicate at all (Figure 3.2).
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Again, supposing that the electron starts in the left dot for negative detuning,
the system evolves as follows:

• Negative detuning: the electron starts in the left dot, which is the lowest
energy state in the system (??);

• Zero detuning: the |L⟩ and the |R⟩ states are at the same energy, and the
electron begins the process of tunneling to the other dot (??);

• Positive detuning: the electron has changed position and the system in now
in the |R⟩ state, the lowest energy state (??).
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Figure 3.8: The electron starts the tunneling process.
3.1 – Qubit encoding

On the contrary, when t0 /= 0, tunneling is allowed and the electron can change
position, depending on which is the lowest energy state in the system. Indeed, the
energy diagram shows that the |L⟩ and |R⟩ states are connected (Figure 3.6), while
in t0 = 0 case the two states did not communicate at all (Figure 3.2).
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Again, supposing that the electron starts in the left dot for negative detuning,
the system evolves as follows:

• Negative detuning: the electron starts in the left dot, which is the lowest
energy state in the system (??);

• Zero detuning: the |L⟩ and the |R⟩ states are at the same energy, and the
electron begins the process of tunneling to the other dot (??);

• Positive detuning: the electron has changed position and the system in now
in the |R⟩ state, the lowest energy state (??).
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Figure 3.9: The electron is now in the |R⟩ state.
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3.1 – Qubit encoding

The charge qubit encoding is thus

|0⟩ = |L⟩ ,
|1⟩ = |R⟩ .

(3.5)

and device manipulation can be achieved with just the control of the tunnel coupling
and the detuning. Charge qubits generally show worse performance in terms of
coherence times (∼ tens of ns), but they greatly improve manipulation times (∼
tens of ps) [44]. In order to exploit the long coherence of spin qubits and the fast
control of the charge qubits, hybrid qubits (coded on both the position and the
spin of an electron) have been proposed [45, 46, 47].

3.1.3 Singlet-Triplet coding
As demonstrated in the previous paragraph, the control of the detuning between the
dots is easily achievable. This motivates the research towards a spin encoding that
can be completely manipulated through the detuning. The Singlet-Triplet (ST)
qubit serves this purpose; it is realized with two electrons in two quantum dots and
makes use of the singlet and triplet states of this type of system. A singlet is, by
definition, a state of a system in which the total spin quantum number s, computed
using angular momenta addition formulas, is equal to 0. Conversely, a triplet is a
state in which s is equal to 1, and thus there are three allowed eigenvalues m of the
spin operator: +1, 0 and −1 [48].
The Singlet-Triplet coding is used in the (1,1) regime. This notation, already
explained in Section 2.3.3, is not complete, since a state can be a singlet or a triplet:
the full notations to uniquely identify a state in such structure are S(NL,NR),
T+(NL,NR), T0(NL,NR) and T−(NL,NR), where S stands for singlet state, and the
three T notations are related to the three possible values of m: +1, 0 and −1,
respectively. The relevant energy states of the system are thus

T+(1,1) = |↑↑⟩ ,

T0(1,1) = 1√
2

(|↑↓⟩+ |↓↑⟩) ,

T−(1,1) = |↓↓⟩ ,

S(1,1) = 1√
2

(|↑↓⟩ − |↓↑⟩) ;

(3.6)

S(2,0) and S(0,2) states need to be considered too, since they strongly couple to
the S(1,1) energy state. However, the T(2,0) and T(0,2) states are at much higher
energies and can be neglected. In fact, due to the Pauli exclusion principle, a triplet
state with two electrons in a single dot means that one of the electrons must occupy
the Es−v′ dot level, which is sufficiently far away from the ground state Es−v thanks
to valley splitting.
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3 – Device functioning analysis

In order to achieve single-qubit control of a Singlet-Triplet qubit - and this will be
justified by Equation (3.8) - the difference between the Zeeman splittings of the
two dots ∆EZ = EZ1 − EZ2 must be different from zero. This is usually achieved
through g-factor tuning [49] or the presence of a static magnetic field gradient along
the dots direction, which makes each dot perceive a different effective B0 [50].
In the t0 ≫ ∆EZ limit, the |↑↓⟩ and the |↓↑⟩ states gets very close and become
degenerate into the T0(1,1) and S(1,1) states; this statement will be further devel-
oped in Section 5.1.1. The resulting energy diagram thus describes the interaction
between the singlet states, while showing that triplet states cannot interact with
singlets due to the Pauli Spin Blockade [51] (Figure 3.10). Furthermore, as ex-
pected, the Zeeman effect only applies to the triplet energy state, splitting the
T+(1,1), T0(1,1) and T−(1,1) states, whereas it does not affect the singlets [52].
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Figure 3.10: Energy diagram of a Singlet-Triplet qubit.

Since the qubit is encoded as
|0⟩ = S(1,1),
|1⟩ = T0(1,1),

(3.7)

one can conveniently reduce the Hamiltonian to the {T0(1,1), S(1,1)} basis, where
it becomes [53, 54]

H =
[
−hJ(ϵ) ∆EZ

2
∆EZ

2 0

]
, (3.8)

where J(ϵ) is the singlet-triplet splitting, also called exchange interaction, i.e. the
energy difference between the T0(1,1) and the S(1,1) states, defined in frequency
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3.2 – Read-out techniques

units (Hz). Since this parameter depends on the detuning ϵ, it can be turned off
or on at will just by controlling the detuning value. This means that rotations
around the z axis can be obtained setting the detuning near the S(1,1)-S(0,2) (or
S(1,1)-S(2,0)) region, where J ≫ ∆EZ , while rotations around the x direction are
achieved extinguishing J (ϵ = 0). Single-qubit control is thus accomplished just
through detuning control (Figure 3.11).
ST qubit’s performance is slightly better than the spin-1

2 one, with coherence times
of the order of hundreds of µs and manipulation times of some ns [55].
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Figure 2. Spin-1/2 qubit and singlet–triplet qubit. (a) and (b) are diagrams showing the process of control and readout based on spin-selective tunneling.
(a) At the stage for qubit control, both energy levels of spin-up and spin-down are under the Fermi level of drain. (b) At the stage for readout, the energy
levels in the dot are tuned so that the Fermi level of drain is between the energy levels of spin-down and spin-up. (c) and (d) are diagrams showing the
phenomenon of spin blockade: S(1, 1) can move to S(0, 2) while T(1, 1) cannot. (e) The probability of spin-up Pup as a function of MW burst time and
frequency detuning. (Adapted from [17,18].) (f) Sequence fidelities for standard (topmost) and interleaved randomized benchmarking (annotated in the
figure along with extracted fidelities). Traces are offset by an increment of 0.2 for clarity. Visibilities are within 0.72 ± 0.012. (Adapted from [17,18].)
(g) Energy-level spectrum of two spin states in a DQD as a function of detuning εs . A magnetic field splits the triplet states by the Zeeman energy Ez
and the exchange interaction splits S and T0 by J (εs ). (h) Singlet probability as a function of exchange-pulse duration and detuning εs . (Adapted from
[68].) (i) Bloch-sphere representations of state evolution in the case J (εs ) > �Ez (top) and J (εs ) < �Ez (bottom). (Adapted from [68].)

gradient is applied with the help of spin–orbital cou-
pling (SOC) of the semiconductor or an integrated
micro-magnet, and the electron in this environment
can feel an effective oscillating magnetic field if it
is driven by an oscillating electric field. Therefore,
MW bursts can be applied directly on a single elec-
trode andB1 is proportional to its voltage amplitude.
One example using this approach is shown inFig. 1c;
there is a magnetic field gradient in the device gen-
erated by an integrated micro-magnet (not shown),
and the MW bursts are applied on gate S for qubit
control [17].

Readout of the spin-1/2 qubits relies on a
spin–charge conversion as spin-selective tunneling

[41–43] or spin blockade [44,45], and after the con-
version the charge signal is detected by a nearby
charge sensor. The procedure for spin-selective tun-
neling is illustrated in Fig. 2a and b, when a spin-1/2
qubit is underMWcontrol, the energy levels of both
spin states are under theFermi level of thedrain, and,
after control, the energy levels in the quantum dot
are tuned so that the energy level of spin-up is higher
than the Fermi level of the drain and spin-down is
lower. In this energy-level alignment, only the elec-
tron with spin-up can tunnel out of the quantum dot
and thus the spin state can be distinguished by ob-
serving the electron tunneling signal. This approach
was first demonstrated by Elzerman et al. in 2004
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Figure 3.11: Singlet-Triplet qubit control. The upper Bloch sphere depicts single-
qubit z rotations in the J ≫ ∆EZ regime, while the one below shows x rotations
appearing as the J is turned off. Adapted from [42].

3.2 Read-out techniques
3.2.1 Elzerman method
As already mentioned in Section 2.3.2, the read-out of quantum dots devices is
based on spin-charge conversion through the use of a nearby SET. The SET detects
tunneling events thanks to the electrostatic coupling to the quantum dots, thus
reading methods must be based on spin-selective tunneling, in order to be able
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3 – Device functioning analysis

to derive the state of the dot from the presence (or absence) of this event. The
first method was proposed by J. M. Elzerman in 2004 and therefore it carries his
name [56]. The Elzerman readout consists in realizing electron reservoirs near the
quantum dots and setting their Fermi levels between the spin-up and spin-down
states of the dot to be read; this can be easily achieved through the plunger gate
of the QD. The system can then act in two ways:

• The electron in the dot is in spin-down state: nothing happens, since the
electron is already at the lowest energy state it can find;

• The electron in the dot is in spin-up state: there is a tunneling event between
the dot and the neighbouring reservoir.

This means that, when this type of reading is performed, if the SET reveals a tun-
neling event, then the qubit was in spin-up state, otherwise it was in the spin-down
one. Furthermore, if there is a tunneling event, the empty dot will be automat-
ically filled by another electron, tunneling from the reservoir, in spin-down state
(Figure 3.12). The Elzerman readout is thus also an initialization, since, after
performing it, the qubit will surely be in spin-down state.

EF

e-

EF
e- EF e-

Figure 3.12: The two cases of Elzerman readout.

3.2.2 Pauli Spin Blockade method
The Elzerman technique is the easiest way to perform a read-out, but it poses a rele-
vant issue: electron reservoirs must be available near every quantum dot in order to
read them. This matter is solved through the Pauli Spin Blockade read-out, which
indeed removes the need of reservoirs and instead makes use of ancilla qubits to
create a double quantum dot systems with the target qubits to extract their state.
The spin-selective tunneling is achieved through the Pauli Spin Blockade principle,
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3.3 – Driving mechanisms

which forbids a system from passing from a triplet state to a singlet one [57].
Before performing the reading operation, the system is prepared in the (1,1) regime,
and the reference ancilla qubit is intialized in a know state. Supposing that this
state is |↓⟩, pulsing the detuning between the dots towards the (0,2) region (Fig-
ure 3.10 can be still used as a reference since it describes a DQD system) results in
two scenarios:

• The electron in the target dot is in spin-down state: the system is thus in the
T−(1,1) state and cannot transition to the S(0,2) due to Pauli Spin Blockade;

• The electron in the target dot is in spin-up state: the system can go into S(0,2)
and a tunneling event is registered by the SET.

This means that, knowing a priori the state of the reference dot, detecting a tun-
neling event means that the target qubit was in the opposite state with respect to
the ancilla one (Figure 3.13).
The Pauli Spin Blockade principle can be used also to initialize the system. As
already stated in Section 3.1.3, qubits can have different Zeeman splittings, which
correspond to their resonance frequencies; this is usually exploited to ensure single-
qubit addressability. Therefore, after preparing the system at large detuning in the
S(0,2) state, the initialization is achieved turning off the detuning, meaning that
the dots become energetically aligned. In this regime, the system will go into the
S(1,1), with the spin-down electron in the dot with larger EZ and the spin-up one
in the other (Figure 3.14) [39].

3.3 Driving mechanisms
3.3.1 Single-qubit control
The first step towards universal qubit control is the capability of implementing
single-qubit gates. In spin-1

2 qubits, electron’s spin can be manipulated through
resonant microwave (MW) magnetic fields; each qubit has in fact a resonance fre-
quency that depends on the Zeeman splitting, computed as

|ω0| =
EZ

ℏ
. (3.9)

Since ω0 is also the angular frequency at which the electron rotates around the
perpendicular static magnetic field B0, this formula only computes its absolute
value. The sign of the rotation is derived through the curl right hand rule; this
argument will be explored in Section 4.1.1.
Single-qubit control methods thus focus on how to create a MW magnetic field with
frequency ω0. The first idea is to directly generate the magnetic field through a
MW antenna near the device. This is called Electron Spin Resonance (ESR), and
it is an easy and swift way to achieve spin manipulation [58]. The main issue with
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Figure 3.13: The two cases of Pauli Spin Blockade readout.
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Ez2 > Ez1

Figure 3.14: Initialization through the Pauli Spin Blockade principle.
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3.3 – Driving mechanisms

this technique is that this type of field, since it is generated by an antenna
near the device, affects all the qubits, provoking off-resonance effects in non-target
qubits, which will be studied in detail in Section 4.2.3. The most immediate solution
is to make the qubits’ resonance frequencies very far from each other, but this
cannot be obtained just by g-factor tuning. Thus this solution needs the presence
of a micromagnet inside the structure in order to create a static magnetic field
gradient. The Zeeman splitting indeed directly depends on the g-factor value and
the local static magnetic field perceived by the spin, which, in turn, is determined
by the longitudinal uniform field B0 and the transverse stray one (Figure 3.15) [50].
To make single-qubit control possible even for small values of ∆EZ , the Electron
Dipole Spin Resonance (EDSR) comes into play. This technique involves exploiting
the Spin-Orbit Interaction (SOI) to couple electric field pulses to electron spins [59].
This allows one to apply MW electric fields directly through the plunger gates above
the dots, avoiding interference with other qubits.

Magnet

x

z

Transverse
stray field

Figure 3.15: The integrated magnet creates a transverse magnetic field gradient in
the DQD structure, indicated by the curved line. The solid arrows along z indicate
the static magnetic field B0, while the dashed lines show the transverse stray field
generated by the micromagnet. The solid arrows coming out of this field denote
the magnetic field gradient along the x direction.
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3 – Device functioning analysis

3.3.2 Two-qubit control
Two-qubit gates in silicon quantum dots are realized thanks to the spin-spin cou-
pling, called exchange interaction J [60]. Physically, this parameter indicates how
much overlap there is between the wavefunctions of electrons in different dots, and
it has been demonstrated that it can be tuned through barrier gates and t0 control
[61]. Turning on this interaction between two qubits causes conditional shifts of
their resonance frequencies, meaning that each qubit state depends on the other one
[11]. This mechanism enables the feasibility of two-qubit gates; moreover, in this
particular technology, there are two possible native gates, the CPHASE and the√
SWAP . This duality is ruled by the values of ∆EZ and t0 and will be thoroughly

explored in Section 5.1.3.
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Chapter 4

Single-qubit manipulation

The fourth chapter is centered on the theory behind single-qubit control of spin-1
2

qubits. The system spin Hamiltonian is defined and explained in order to carry
out the time-dependent unitary evolution of the density matrix. This result is
implemented in Matlab and some simulations are run to check the correctness of
the device behaviour. Off-resonance effects are also explored to define the bounds
in which they can be neglected.

4.1 Hamiltonian assembling
4.1.1 Computational basis definition
The first part of this analysis is the definition of the system: the encoding under
study is the spin-1

2 qubit, therefore a single qubit is realized with one electron in
one quantum dot. As already explained in Section 3.1.1, a static magnetic field
is applied along the z direction in order to split the spin-up and spin-down states
through the Zeeman effect.
The spin angular momentum operator of an electron is defined as S, and its com-
ponent along the z direction is [62]

Sz =
[
ℏ
2 0
0 −ℏ

2

]
= ℏ

2σz (4.1)

where σz is the Pauli z matrix. The matrix is diagonal, so its eigenvalues are +ℏ
2

(positive eigenvalue) and −ℏ
2 (negative eigenvalue). The associated eigenvectors

are:
|↑⟩ =

[
1
0

]
←→ +ℏ

2 ;

|↓⟩ =
[
0
1

]
←→ −ℏ

2 .
(4.2)
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4 – Single-qubit manipulation

These are the state vectors describing the spin-up and spin-down states, respec-
tively.
Supposing the static magnetic field is applied along the positive z direction, it is
defined as

B0 = B0ẑ, (4.3)

where B0 is the magnitude of the field and ẑ is the versor of the z direction. The
Hamiltonian for the interaction between the spin of an electron and a magnetic
field is [63]

H ′
0 = −µ ·B0, (4.4)

where µ is the spin magnetic dipole moment, that can be rewritten as

µ = γS = −gµB

ℏ
ℏ
2σ, (4.5)

where γ = −gµB

ℏ is the electron gyromagnetic ratio ([ rad
s·T ]), with g being its spin

g-factor and µB the Bohr magneton, and σ = [σx σy σz]t. The Hamiltonian thus
becomes

H ′
0 = −µ ·B0 = −γS ·B0 = −γB0Sz =

[
−ℏ

2γB0 0
0 ℏ

2γB0

]
=
[

Ez

2 0
0 −Ez

2

]
, (4.6)

where Ez is the Zeeman energy splitting between the spin-up and spin-down states.
Therefore, its formula is

Ez = −ℏγB0, (4.7)

meaning that its sign is determined by the sign of γ. The gyromagnetic ratio is
in turn equal to −gµB

ℏ , hence, since µB and ℏ are positive constants, the overall
sign of Ez is determined by g. In silicon, the g-factor is almost equal to +2; the
Zeeman splitting value is thus positive, which means that, in a silicon device, the
|↑⟩ state is shifted of Ez

2 in the positive direction, while the |↓⟩ state is shifted of
Ez

2 in the negative direction (Figure 4.1) [8]. In other materials, such as gallium
arsenide (GaAs), the g-factor is negative [64], making |↓⟩ the higher energy state.
This analysis can also be seen from another perspective: the Zeeman energy split-
ting is related to the semi-classical Larmor precession of the electron magnetic
moment around the B0 field [62]. This precession happens with a precise angular
frequency, defined as

ω0 = −γB0, (4.8)

which means that the rotation happens around the direction of the field, and its
sign is determined by γ. In silicon, γ is negative, therefore the precession is a
positive rotation around the field, following the curl right hand rule (Figure 4.2).
The magnitude of this angular frequency is

|ω0| = ω0 = |γ|B0, (4.9)
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which, since γ < 0, becomes

ω0 = −γB0 = Ez

ℏ
. (4.10)

0

Energy level, eV

Figure 4.1: Energy diagram of a spin-1
2 qubit. The Zeeman effect splits the spin-up

and spin-down states.

e- e-

B0 B0

Figure 4.2: Larmor precession of an electron around B0.
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4 – Single-qubit manipulation

The computational basis is thus {|↑⟩, |↓⟩}, and, since the |0⟩ state is assigned to
the lowest energy level, the Hamiltonian is written in the {|1⟩, |0⟩} basis, which,
unfortunately, is the opposite of the standard quantum computing basis. In fact, for
historical reasons, the usual basis is {|0⟩, |1⟩}, which comes from another quantum
computing technology, the Nuclear Magnetic Resonance (NMR), whose ground
state is |↑⟩ [65]. Therefore, the NMR basis is still {|↑⟩, |↓⟩}, but it is now directly
mapped to the {|0⟩, |1⟩} basis. Hence, in order to make the model compatible to
the usual standards, a change of basis through a unitary matrix UC is needed. The
system spin Hamiltonian in the {|↓⟩, |↑⟩} basis is

H0 = UCH
′
0U

†
C = σxH

′
0σ

†
x =

[
0 1
1 0

] [
Ez

2 0
0 −Ez

2

] [
0 1
1 0

]
=
[
−Ez

2 0
0 Ez

2

]
. (4.11)

After this change of basis, the spin rotates around B0 in the opposite way with
respect to Figure 4.2, i.e the same verse as in NMR.

4.1.2 Applying a MW magnetic field
The single-qubit manipulation is achieved through the application of a microwave
(MW) resonant magnetic field [58]. This field can be written as

B1 = 2B1 cos(ωMW t− ϕ1)x̂, (4.12)
where B1 is the magnitude of the MW field, ωMW is the microwave frequency, ϕ1
the phase of the field and x̂ is the versor of the x direction, which indicates that this
field is applied along the positive x direction. The overall magnetic field becomes

B = B0 +B1 = B0ẑ + 2B1 cos(ωMW t− ϕ1)x̂, (4.13)
and the resulting Hamiltonian is

H ′
MW = −µ ·B = −µ ·B0 − µ ·B1 = H ′

0 +H ′
1, (4.14)

where

H ′
0 =

[
Ez

2 0
0 −Ez

2

]
,

H ′
1 =

[
0 −ℏ

2γ2B1 cos(ωMW t− ϕ1)
−ℏ

2γ2B1 cos(ωMW t− ϕ1) 0

] (4.15)

are the two parts (static and MW) of the system Hamiltonian in the {|↑⟩, |↓⟩}
basis. As explained in Section 4.1.1, one needs to change the Hamiltonian basis
through the transformation used in Equation (4.11). The result for H1 is
H1 = UCH

′
1U

†
C = σxH

′
1σ

†
x

=
[
0 1
1 0

] [
0 −ℏ

2γ2B1 cos(ωMW t− ϕ1)
−ℏ

2γ2B1 cos(ωMW t− ϕ1) 0

] [
0 1
1 0

]

=
[

0 −ℏ
2γ2B1 cos(ωMW t− ϕ1)

−ℏ
2γ2B1 cos(ωMW t− ϕ1) 0

]
.

(4.16)

44



4.1 – Hamiltonian assembling

Note that H ′
1 is not affected by the transformation as it is already written through

σx. Therefore, the full MW Hamiltonian in the {|↓⟩, |↑⟩} basis is

HMW = H0 +H1 =
[

−Ez

2 −ℏ
2γ2B1 cos(ωMW t− ϕ1)

−ℏ
2γ2B1 cos(ωMW t− ϕ1) Ez

2

]
. (4.17)

Thanks to Euler’s formulas, the MW field can be rewritten as

2B1 cos(ωMW t− ϕ1)x̂ = B1
(
ejωMW te−jϕ1 + e−jωMW tejϕ1

)
x̂; (4.18)

hence, the Hamiltonian becomes

HMW = ℏ
2

[
−ω0 −γB1η
−γB1η ω0

]
, (4.19)

where η =
(
ejωMW te−jϕ1 + e−jωMW tejϕ1

)
.

This arises a serious concern in terms of computing the system’s time-dependent
unitary evolution from the Hamiltonian, as it now depends on time. Indeed, sup-
posing the initial time instant t0 = 0, the formal general solution of the Schrödinger
equation is [62, 15]

U(t) = T exp
(
− j
ℏ

∫ t

0
H(t′)dt′

)
, (4.20)

where T is the time-ordered product. On the other hand, when the Hamiltonian is
time independent, the solution reduces to

U(t) = exp
(
− j
ℏ
Ht
)
. (4.21)

The time dependence of the Hamiltonian in Equation (4.19) is solved analysing the
system in a rotating frame. The action of going into a rotating frame translates
to a transformation of the Hamiltonian [66]. The idea behind this transformation
is that in the original basis, the laboratory frame, the state vector rotates around
the z axis with angular frequency ω0; therefore, if the system rotates in the same
direction and at the same angular frequency, the state vector will be stationary.
This is intuitively explained using a Bloch sphere representation and supposing a
RX

(
π
2

)
is applied to the |0⟩ state: the lab frame shows precessions around the z

axis while the vector rotates around the x direction due to the RX gate, while, in
the rotating frame, only the latter is present (Figure 4.3).

45



4 – Single-qubit manipulation6.1 Magnetic Field-Qubit interaction 97

Fig. 6.1 Arbitrary trajectory of a spin qubit in the laboratory frame (a) and the rotating frame
(b) illustrating the merit of this transformation.

sphere around the z axis at the constant frequency ω01. To simplify the study of the system’s
dynamic, we go from the laboratory frame to the rotating frame at the frequency ωp around
the z axis. This amounts to the variable change:

|Ψ̂⟩= eiωptσz/2 |Ψ⟩ (6.8)

The Bloch-sphere interpretation of this variable change is represented in the figure 6.1. The
new Hamiltonian Ĥ in the rotating frame becomes :

Ĥ =
h̄(ω01 −ωp)

2
σz −

h̄Ω

2
[ei(ωp t−φp)+ e−i(ωp t−φp)]eiωptσz/2

σxe−iωptσz/2 (6.9)

It is hard to work out an intuitive picture with this relation. In order to understand the
underlying dynamics, we will look at two particular cases, first the resonant case then the
constant pulse phase case.

Resonant interaction

In the case of a resonant interaction i.e. ω01 = ωp, the σz term vanishes out and the Hamilto-
nian can be rewritten as:

Ĥ =− h̄Ω

2
[cosφpσx − sinφpσy] (6.10)

Figure 4.3: The lab frame (on the left) depicts the vector rotating around both
x and z axes, while the rotating frame (on the right) illustrates the merit of this
transformation. Adapted from [66].

The rotating frame transformation is carried out as [67]

H̃MW = URFHMWU
†
RF − jℏURF

dU †
RF

dt
, (4.22)

where URF is the rotating frame unitary matrix, defined as

URF =
[
e−j

ωRF
2 t 0

0 ej
ωRF

2 t

]
, (4.23)

with ωRF angular frequency of the rotating frame (arbitrary, for now).
For the sake of simplicity, the two terms of Equation (4.22) will be computed
separately; the latter yields

jℏURF
dU †

RF

dt
= jℏ

[
e−j

ωRF
2 t 0

0 ej
ωRF

2 t

] [
j ωRF

2 ej
ωRF

2 t 0
0 −j ωRF

2 e−j
ωRF

2 t

]

= ℏ
2

[
−ωRF 0

0 ωRF

]
,

(4.24)

while the first term is computed as

URFHMWU
†
RF =

[
e−j

ωRF
2 t 0

0 ej
ωRF

2 t

]
ℏ
2

[
−ω0 −γB1η
−γB1η ω0

] [
ej

ωRF
2 t 0

0 e−j
ωRF

2 t

]

=
[
e−j

ωRF
2 t 0

0 ej
ωRF

2 t

]
ℏ
2

[
−ω0e

j
ωRF

2 t −γB1ηe
−j

ωRF
2 t

−γB1ηe
j

ωRF
2 t ω0e

−j
ωRF

2 t

]

= ℏ
2

[
−ω0 −γB1ηe

−jωRF t

−γB1ηe
jωRF t ω0

]
.

(4.25)
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The Hamiltonian in the rotating frame is thus

H̃MW = URFHMWU
†
RF − jℏURF

dU †
RF

dt

= ℏ
2

[
−ω0 + ωRF −γB1ηe

−jωRF t

−γB1ηe
jωRF t ω0 − ωRF

]

= ℏ
2

[
−ω0 + ωRF

−γB1
(
ej(ωMW +ωRF )te−jϕ1 + e−j(ωMW −ωRF )tejϕ1

)
−γB1

(
ej(ωMW −ωRF )te−jϕ1 + e−j(ωMW +ωRF )tejϕ1

)
ω0 − ωRF

]
.

(4.26)

4.1.3 The Rotating Wave Approximation
The next step towards the computation of the time-dependent unitary evolution is
the use of the Rotating Wave Approximation (RWA). Equation (4.26) shows the
contribution of two exponentials in the (1,2) and (2,1) positions: one has the sum
of ωMW and ωRF , while the other has the difference between them. As explained
below, gates are implemented enforcing ωRF ≈ ωMW ≈ ω0, meaning that ωMW +
ωRF ≈ 2ω0. The theoretical explanation of this behaviour is that the MW field
can be divided in two components: one rotating in the same direction of the frame
(B+

1 ) and one in the opposite way (B−
1 ):

B+
1 = B1

(
cos(ωMW t− ϕ1)x̂− sin(ωMW t− ϕ1)ŷ

)
;

B−
1 = B1

(
cos(ωMW t− ϕ1)x̂+ sin(ωMW t− ϕ1)ŷ

)
.

(4.27)

Hence, the terms that contain the sum of the two frequencies, i.e. the ones related
to the B−

1 component that rotates against the frame, where the exponential varies
at a much faster rate, can be neglected [68, 69]. Therefore, the spin only rotates
around one field component, namely B+

1 . This precession happens with a precise
angular frequency, called Rabi frequency, defined as

ω1 = −γB1. (4.28)

Similarly to ω0, this frequency depends on the γ sign: supposing ϕ1 = 0, i.e. the
field is oriented along the x direction, the rotation is positive around it (Figure 4.4).
After the RWA, the Hamiltonian becomes

H̃MW,RW A = ℏ
2

[
−ω0 + ωRF ω1e

j(ωMW −ωRF )te−jϕ1

ω1e
−j(ωMW −ωRF )tejϕ1 ω0 − ωRF

]
. (4.29)
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y

z

x

Figure 4.4: Larmor precession around B+
1 for ϕ1 = 0.

Then, supposing that the rotating frame angular frequency ωRF matches the
qubit resonance frequency ω0, Equation (4.29) yields

H̃MW,RW A = ℏ
2

[
0 ω1e

j∆ωte−jϕ1

ω1e
−j∆ωtejϕ1 0

]
, (4.30)

where ∆ω = ωMW − ω0 is the frequency difference between the MW frequency
and the qubit resonance frequency. The last step towards the elimination of time
dependencies in the Hamiltonian is to assume that the MW field is in resonance
with the qubit, i.e. ωMW = ω0. Then,

H̃MW,RW A = ℏ
2

[
0 ω1e

−jϕ1

ω1e
jϕ1 0

]
, (4.31)

which shows that the Hamiltonian is now time-independent and thus the system
unitary evolution can be easily computed through Equation (4.21), which yields

U(t) = exp
(
− j
ℏ
H̃MW,RW At

)
, (4.32)

where t is the duration of the MW pulse.
Matrix exponentials are usually hard to calculate and computationally heavy, but,
in this particular case, the Hamiltonian can be rewritten through decomposition in
Pauli matrices, whose general exponential formula is [70]

ejαn̂·σ = cosα · I + j(n̂ · σ) sinα, (4.33)

where n̂ is an arbitrary unit vector in R3. Therefore, the Hamiltonian needs to be
decomposed in Pauli matrices:

H̃MW,RW A = ℏ
2

[
0 ω1e

−jϕ1

ω1e
jϕ1 0

]
= ℏ

2(ω1 cosϕ1σx + ω1 sinϕ1σy). (4.34)
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Equation (4.33) is now applicable and the unitary evolution can be computed as

U(t) = exp
(
−j ω1t

2 (cosϕ1σx + sinϕ1σy)
)

= exp
(
−j ω1t

2 n̂ · σ
)
, (4.35)

with n̂ = cosϕ1 x̂+ sinϕ1 ŷ. Hence,

U(t) = cos ω1t

2 · I− j sin ω1t

2 (n̂ · σ)

=
[
cos ω1t

2 0
0 cos ω1t

2

]
+
[

0 −j sin ω1t
2 cosϕ1

−j sin ω1t
2 cosϕ1 0

]
+

+
[

0 − sin ω1t
2 sinϕ1

sin ω1t
2 sinϕ1 0

]
,

(4.36)

which finally yields

U(t) =
[

cos ω1t
2 −j sin ω1t

2 e
−jϕ1

−j sin ω1t
2 e

jϕ1 cos ω1t
2

]
, (4.37)

that is the final formula for U(t), the unitary matrix that describes the time evo-
lution of a single qubit when it is subjected to a resonant MW magnetic field.

4.2 MATLAB implementation and results
4.2.1 The compact MATLAB model structure
The MATLAB model mainly revolves around the computation of U(t) using Equa-
tion (4.37). The first step is the definition of fundamental system parameters, which
are set by the user in separate input files. These user-defined inputs can be divided
in two classes:

• Physical parameters:

– n_qubit, the number of quantum dots;
– gfactor, the g-factor of each dot;
– B_0, the static magnetic field along z.

• Control parameters:

– B_1, the MW magnetic field amplitude;
– phi_1, the phase of the MW field.
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4 – Single-qubit manipulation

The first implementation of this model, which only carries out a Rabi flopping
simulation, i.e. a RX(θ) gate applied to the |0⟩ state, includes three input files:

• SetConstants.m, which provides useful computational constants, such as ℏ, m
and q;

• SetParameters.m, where the physical parameters are stored;

• SetInput.m, in which the user can set the control parameters.

The unitary matrix U(t) is computed in the single_qubit.m file, while the whole
code is run by a main file named Qubit.m (Figure 4.5).

SetParameters.m

SetConstants.m

SetInput.m

Qubit.m

single_qubit.m

Rabi flopping

Figure 4.5: MATLAB code structure for the Rabi flopping simulation.

4.2.2 Rabi flopping simulation
As mentioned in the previous section, the Rabi flopping is the simulation of a RX(θ)
gate applied to the |0⟩ state. All the system and control values are taken from [11]:
g = 1.9860 and B0 = 0.25 T, which yield ω0 = 43.663 Grad/s, i.e. f0 = 6.9491
GHz. The angle of rotation θ is equal to ω1t, therefore ω1 is set to be 6.2832 Mrad/s
(f1 = 1 MHz), which is achieved through a B1 of ∼ 36 µT, and t is equal to 8 µs to
see 8 periods of rotations around the x axis. Since the revolving must be around
the x axis, ϕ1 is set to 0, in order to orientate the B1 field in that direction.
The system state is plotted in the Bloch sphere for t = 0 (Figure 4.6a) s and
t = 0.5 µs (Figure 4.6b)- this is half the rotation period, so that the system is in
the opposite state - and the probability of the state |1⟩ (|↓⟩) is measured for the
whole 8 µs interval (Figure 4.7).

After performing the Rabi flopping experiment, the model is enhanced with some
additional files, containing preset values of ϕ1 and t for the realization of RX(θ)
(such as in the Rabi flopping), RY (θ), RZ(θ) and H (Hadamard) gates. The Rabi
frequency ω1 is always set to 6.2832 Mrad/s (f1 = 1 MHz).
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(a) Initial state, t = 0 s. (b) Final state after t = 0.5 µs.

Figure 4.6: Initial (a) and final state (b) after the Rabi flopping. Since the rotation
frequency is set to 1 MHz, the rotation from |0⟩ to |1⟩ happens after 0.5 µs.

The angle of rotation θ is automatically set by the code, which takes θ as an input
and computes the time duration of the pulse needed to achieve that angle as t = θ

ω1
.

Instead ϕ1 is fixed in the SetInputRX.m and SetInputRY.m files: in the former

ϕ1 =
{

0 for θ > 0
π for θ < 0 , (4.38)

while in the latter
ϕ1 =

{
π
2 for θ > 0
−π

2 for θ < 0 . (4.39)

The RZ(θ) gate is implemented in two ways, depending on the possibility of imple-
menting virtual Z gates [71, 72]:
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Figure 4.7: Variation of the probability of the state |1⟩ with respect to the duration
of the MW pulse. The periodic rotation of the qubit state around the x axis can
be observed, effectively realizing a RX(θ) gate, where θ can be tuned through the
duration of the MW pulse t.

• Virtual Z feasible: the gate can be implemented by taking into account a phase
contribution, using its ideal unitary matrix

URZ
=
[
e−j θ

2 0
0 ej θ

2

]
; (4.40)

• Virtual Z not feasible: the gate is realized using the RX and RY gates, since

RZ(θ) = RX(π2 )RY (θ)RX(−π2 ). (4.41)

This choice can be made by the user through a dedicated flag in the code. The
H gate follows the same route, since there are two possible decomposition: one
involving a RZ gate and the other using only RX and RY gates. Therefore:

• Virtual Z feasible: since it only adds a phase contribution, the RZ gate is
computationally convenient, so

H = RZ(π)RY (−π2 ); (4.42)

• Virtual Z not feasible: only RX and RY gates are available:

H = RX(π)RY (π2 ). (4.43)
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4.2.3 Off-resonance effects

In the previous computation and MATLAB simulations, the MW field was assumed
to be in resonance with the qubit, i.e. ωMW = ω0. This condition is indeed always
verified when performing single qubit manipulations, but off-resonance effects may
arise due to the fact that there are other qubits with different resonance frequencies
in the device. In fact, the MW field generally expands throughout all the structure,
therefore every qubit is affected by a certain time-evolution. However, the field is
resonant only with the target qubit, while other qubits, that generally have different
resonance frequencies, perceive an off-resonance field. This effect is more evident
when the resonance frequencies are very close to each other.
In order to study off-resonance behaviours, one needs to start from Equation (4.29)
and assume ωRF = ωMW . This yields

H̃MW,RW A = ℏ
2

[
−ω0 + ωMW ω1e

−jϕ1

ω1e
jϕ1 ω0 − ωMW

]
= ℏ

2

[
∆ω ω1e

−jϕ1

ω1e
jϕ1 −∆ω

]
. (4.44)

Since the time dependencies have been already eliminated, the next step is the
Pauli matrices decomposition:

H̃MW,RW A = ℏ
2

[
∆ω ω1e

−jϕ1

ω1e
jϕ1 −∆ω

]

= ℏ
2(∆ωσz + ω1 cosϕ1σx + ω1 sinϕ1σy)

= ℏ
2Ω

(
∆ω
Ω σz + ω1

Ω cosϕ1σx + ω1

Ω sinϕ1σy

)

= ℏ
2Ω (n̂ · σ),

(4.45)

where Ω =
√

∆ω2 + ω2
1 is the generalized Rabi frequency, needed in the compu-

tation in order to normalize n̂, making it a unit vector. However, Ω is indeed a
generalization of ω1 to the off-resonance case: in fact Ω = ω1 for ∆ω = 0.
The unitary evolution is thus

U(t) = exp
(
−jΩt

2

(
∆ω
Ω σz + ω1

Ω cosϕ1σx + ω1

Ω sinϕ1σy

))

= exp
(
−jΩt

2 n̂ · σ
)
,

(4.46)
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with n̂ = ∆ω
Ω ẑ + ω1

Ω cosϕ1x̂+ ω1
Ω sinϕ1ŷ.

Then, Equation (4.33) yields

U(t) = cos Ωt
2 · I− j sin Ωt

2 (n̂ · σ)

=
[
cos Ωt

2 0
0 cos Ωt

2

]
+
[
−j∆ω

Ω sin Ωt
2 0

0 j∆ω
Ω sin Ωt

2

]
+

+
[

0 −j sin Ωt
2 ·

ω1
Ω cosϕ1

−j sin Ωt
2 ·

ω1
Ω cosϕ1 0

]
+

+
[

0 − sin Ωt
2 ·

ω1
Ω sinϕ1

sin Ωt
2 ·

ω1
Ω sinϕ1 0

]
,

(4.47)

which gives

U(t) =
[
cos Ωt

2 − j
∆ω
Ω sin Ωt

2 −j sin Ωt
2 ·

ω1
Ω e

−jϕ1

−j sin Ωt
2 ·

ω1
Ω e

jϕ1 cos Ωt
2 + j∆ω

Ω sin Ωt
2

]
. (4.48)

This is a more general version of Equation (4.37); implementing it in single_qubit.m
makes the model capable of computing the system evolution in off-resonance condi-
tions. The Rabi flopping simulation is indeed repeated, using the same parameters
of the previous analysis, but employing a vector of ωMW . This makes the model re-
peat the same simulation for different values of ωMW , centered in ω0 (43.663 Grad/s,
as before) with a span of 100 Mrad/s. The result of this simulation is the Chevron
pattern (Figure 4.8), i.e. the plot of the spin-down probability with respect to the
MW pulse duration and to the MW field angular frequency ωMW . It is important
to note that if one performs a cut parallel to the time axis at the resonant MW
frequency (ωMW = ω0), the result is exactly the spin-down probability plot of the
previous simulation (Figure 4.7), which, in fact, was a resonant analysis.
If, instead, the cut is made parallel to the ωMW axis, at t = 0.5 µs (time for which
the system is in the |↓⟩ state), the plot shows the off-resonance effects: the closer
the qubit resonance frequency is to ω0, the stronger are the effects of the MW field
on it (Figure 4.9).
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Figure 4.8: Variation of the probability of the state |1⟩ with respect to the duration
of the MW pulse and its angular frequency.
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Figure 4.9: Spin-down probability with respect to the MW field angular frequency.
Off-resonance effects are stronger in the vicinity of the center of the plot (ω0), while
they get weaker as ωMW becomes different from the qubit resonance frequency.
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Chapter 5

Two-qubit manipulation

The next step towards universal qubit manipulation is the two-qubit control. This
chapter describes the theoretical derivation of the DQD spin Hamiltonian, with
particular attention on the approximations used to derive a time-independent ma-
trix. The native gate duality is then explored, focusing on how to implement the
two different gates. Finally, the MATLAB model approximations are verified using
QuTiP [73], a numerical simulator for quantum systems on Python.

5.1 Double quantum dot Hamiltonian

5.1.1 The Hubbard model

The two-qubit gates analysis is carried out on a double quantum dot system, which
is a many-body system and has a more complex Hamiltonian with respect to the
single-qubit case. The operating regime of the structure are the (1,1) states but,
as already studied in Section 3.1.3, the S(0,2) and S(2,0) states are strictly coupled
and must be included in the spin Hamiltonian. In this study, the notation will be
that the left quantum dot is the qubit q1, while the right one is q0, following the
IBM standard where a ket vector describing a two-qubit state is ordered from the
MSB to the LSB, i.e. |q1 q0⟩ [74].
The starting point of this analysis is the Hubbard model [75, 76, 77, 78], which
describes the interaction between the two quantum dots taking into account tunnel
coupling and the Coulomb charging energy of the dots. The natural basis of a
single-qubit system, explored in Section 4.1.1, is {|↑⟩, |↓⟩}, therefore, in a two-
qubit structure, the basis becomes {|↑⟩, |↓⟩} ⊗ {|↑⟩, |↓⟩} = {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}.
Singlet states with two electrons with one dot must be included too, meaning that
the full basis is {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩, S(0,2), S(2,0)}. The Hubbard Hamiltonian
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5 – Two-qubit manipulation

of a silicon DQD in this basis is [79]

H ′ =



Ez 0 0 0 0 0
0 ∆Ez

2 0 0 ht0 ht0
0 0 −∆Ez

2 0 −ht0 −ht0
0 0 0 −Ez 0 0
0 ht0 −ht0 0 U − ϵ 0
0 ht0 −ht0 0 0 U + ϵ


, (5.1)

where U is the Coulomb energy of the quantum dot (assumed equal for the two
dots), ϵ is the energy detuning between the dots and t0 is the tunnel coupling,
while Ez = Ez1 +Ez0

2 and ∆Ez = Ez1 −Ez0 are the average and the difference of the
qubits Zeeman splittings, respectively. In fact, as mentioned in Section 4.2.3, Ez,
and thus the resonance frequency, must be different for each qubit for single-qubit
addressability purpose. Section 5.1.3 will show that the ∆Ez parameter plays also
a crucial role in the definition of the device two-qubit native gate.
The energy diagram derived from this Hamiltonian (Figure 5.1) shows an interesting
aspect of the structure when the detuning approaches the U value: due to the Pauli
Spin Blockade principle, already introduced in Section 3.2.2, S(2,0) and S(0,2),
being singlet states, only interact [57] with the |↑↓⟩ and |↓↑⟩ states, since |↑↑⟩ and
|↓↓⟩ are exactly the two triplet states T+(1,1) and T−(1,1), respectively. The energy
diagram is obtained using U = 0.2 meV, t0 = 250 MHz, Ez = 10 µeV and ∆Ez = 3
µeV, which yield f00 ≈ 2.8 GHz and f01 ≈ 2.1 GHz as qubits resonance frequencies.
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Figure 5.1: Energy diagram of a DQD, derived from the Hubbard Hamiltonian.

Moreover, zooming on one of the two transition zones, e.g. the (0,2) one, the
mechanism that rules the two-qubit interaction can be studied (Figure 5.3). In this

58



5.1 – Double quantum dot Hamiltonian

detuning region, the resonance frequency of each qubit varies according to the state
of the other qubit. This conditional change of the resonance frequency of a qubit
is what allows two-qubit gates. Therefore, four frequencies can be defined [11]:

• f1: the resonance frequency of q0 when q1 is in |↓⟩;

• f2: the resonance frequency of q0 when q1 is in |↑⟩;

• f3: the resonance frequency of q1 when q0 is in |↓⟩;

• f4: the resonance frequency of q1 when q0 is in |↑⟩.

The parameter that sums up this phenomenon is the exchange interaction J , com-
puted as f2−f1 or f4−f3. The four frequencies have been computed on MATLAB
from the energy diagram of Figure 5.1 as

• f1 = 1
h

(
E|↓↑⟩ − E|↓↓⟩

)
;

• f2 = 1
h

(
E|↑↑⟩ − E|↑↓⟩

)
;

• f3 = 1
h

(
E|↑↓⟩ − E|↓↓⟩

)
;

• f4 = 1
h

(
E|↑↑⟩ − E|↓↑⟩

)
.

Their behaviour and the exchange interaction J have been compared with the
outcome of a similar analysis described in [80] (Figure 5.2). Note that the MATLAB
results are numerically different from those of the paper since the input parameters
that describe the system have been chosen to be diverse from the reference values
for sake of clarity in the MATLAB plots.
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wavefunction moving in the magnetic-field gradient. At more positive 
detuning, closer to the (0, 2) regime, the exchange energy is substantial 
compared to the line width of the resonance J/h > ωR (where h = 2πħ is 
the Planck constant), resulting in two clear resonances. Applying a π 
pulse at one of these frequencies results in a CROT gate, which is used 
to perform the projective measurement of Q1 via the readout of Q2 
(Extended Data Fig. 6).

The CZ gate is implemented by applying a detuning pulse for a fixed 
amount of time t, which shifts the energy of the antiparallel states. 
Throughout the pulse, we stay in the regime in which ε Δ�J E( ) Z, so 
the energy eigenstates of the system are still the two-spin product states 
and the two-qubit interaction can be approximated by an Ising 
Hamiltonian, leading to the following unitary operation:

θ θ=
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where the basis states are |00〉, |01〉, |10〉 and |11〉, and Z1(θ1) and Z2(θ2) 
are rotations around ẑ caused by the change in the Zeeman energy of 
the qubits due to the magnetic-field gradient. The CZ gate is advanta-
geous over the CROT gate because it is faster and less time is spent at 
low detuning, at which the qubits are more sensitive to charge noise. In 
addition, we observed that performing the CROT gate with EDSR can 
lead to state leakage into the S(0, 2) state, seen in Fig. 1c by the increase 
in background dark counts near ε = 0. The CZ gate is demonstrated  
in Fig. 1d; we vary the duration of a CZ voltage pulse between two X 
gates on Q2 in a Ramsey experiment, showing that the frequency  
of the ẑ rotation on Q2 is conditional on the spin state of Q1. The  
processor’s primitive two-qubit gates, CZij|m, n〉 = (−1)δ(i,m)δ(j,n)|m, n〉 
for i, j, m, n ∈ {0, 1}, are constructed by applying the CZ gate for  
a time t = πħ/J followed by ẑ  rotations on Q1 and Q2, CZij =  
Z1[(−1)jπ/2 − θ1]Z2[(−1)iπ/2 − θ2]UCZ(πħ/J). Rather than physically 
performing the ẑ  rotations, we change the reference frame in the  
software by incorporating the rotation angles θ1 and θ2 into the phase 
of any subsequent microwave pulses10.
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Figure 1 | Two-qubit quantum processor in silicon. a, Schematic of a  
Si/SiGe double-quantum-dot device, showing the estimated positions of 
quantum dots D1 (purple circle) and D2 (orange circle) that are used to 
confine two electron-spin qubits Q1 and Q2, respectively. Both quantum 
dots were formed from the two-dimensional electron gas (2DEG) in the 
silicon quantum well (Si QW) on the right side of the device to achieve an 
inter-dot tunnel coupling that is suitable for two-qubit gates. The positions 
of the dots were realized by tuning the numerous accumulation and 
depletion gates, but were probably helped by disorder in the Si/SiGe 
heterostructure. The ellipse shows the position of the quantum-dot sensor 
used for spin readout. Microwave signals MW1 and MW2 are used to 
perform electric dipole spin resonance (EDSR), mediated by the cobalt 
(Co) micromagnets, on Q1 and Q2, respectively, while voltage pulses are 
applied to plunger gates P1 and P2 for qubit manipulation and readout. 
b, Energy-level diagram of two electron spins in a double quantum dot as a 
function of the detuning energy ε between the (1, 1) and (0, 2) charge 
states. Towards zero detuning the energy levels of the anti-parallel spin 
states shift by half the exchange energy J (see inset) c, Microwave 
spectroscopy of Q2 showing the spin-up probability P|1〉 versus the MW2 
frequency and detuning energy after initialization of Q1 to | 〉 + | 〉 /( 0 1 ) 2 . 
The detuning voltage was converted to energy using a lever arm of 
α = 0.09e, where e is the electron charge (Extended Data Fig. 5). The map 

shows that Q2 has two different resonant frequencies (blue arrows in b) 
depending on the spin state of Q1, which are separated by the exchange 
energy J. d, The spin-up probability of Q2 after applying the Ramsey 
sequence (see inset) in which the duration of the detuning pulse is varied 
between two X gates on Q2, and the control Q1 is initialized to spin-down 
(blue curve) or spin-up (red curve). e, The spin-up probability of the target 
qubit (T; Q1) after applying the Ramsey sequence shown above the plot, in 
which a CZ gate is applied between two π/2 pulses and the phase of the 
second π/2 pulse is varied. Here, the control (C) qubit (C; Q2) is initialized 
to spin-down (blue curve) or spin-up (red curve) and the spin-up 
probability has been normalized to remove initialization and readout 
errors. The exchange energy during the CZ gate is J/h = 10 MHz. f, Similar 
to e, but with Q2 as the target qubit and Q1 as the control qubit. In e and 
f, the black dashed lines show the ẑ  rotations on Q1 and Q2 that are 
needed to form the CZij gates. g, h, Similar to e and f, but using a 
decoupled version of the CZ gate (DCZ gate), which removes the 
unconditional ẑ  rotations due to the detuning dependence of EZ(ε). 
Consequently, the ẑ  rotations that are required to form the CZij gates 
(dashed black lines) are always at 90° and 270°, which simplifies the 
calibration. All error bars are 1σ from the mean, calculated using a Monte 
Carlo method (see Methods).

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

h
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Figure 5.2: Results of the exchange interaction analysis. hJ is computed as the
difference between the energy level of |↑↓⟩ and |↓↑⟩ (black dotted line) and their
curvature in the exchange region (yellow and red lines). Adapted from [80].
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Figure 5.3: Zoom on (0,2) transition region. The |↑↓⟩ and the |↓↑⟩ states bend in
the vicinity of the crossing with the S(0,2) state and thus the resonance frequencies
change.
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Figure 5.4: Exchange diagram of the system.
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The exchange diagram, i.e. the plot of the four frequencies with respect to the
detuning between the dots, clearly shows the capability of this type of structure
(Figure 5.4). Indeed, one can set the system in the single-qubit gate regime — e.g.
ϵ < 180 µeV — where the resonance frequency of each qubit does not depend on
the state of the other, or in the two-qubit gate one — e.g. 190 µeV < ϵ < 200
µeV — where instead the conditional variation of the frequencies is active, by just
controlling the value of the detuning. In particular, for a low detuning, the system
is far from the (0,2) transition region and the frequencies are fixed to their nominal
values (∼ 2.1 GHz and 2.8 GHz), while for values of detuning similar to U (200 µeV),
the frequencies start to vary and one can perform two-qubit gates [76]. This is one of
the strengths of quantum dot qubits, since, as already explained in Section 3.1.2, the
detuning is easily tunable through the application of voltages on the device plunger
gates. This functioning is summed up in the J(ϵ) plot (Figure 5.5). The strength
of the exchange interaction can be tuned through t0 too, since, for higher tunnel
couplings, the curvature of the |↑↓⟩ and |↓↑⟩ states increase, thus incrementing the
hJ value (Figure 5.2).
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Figure 5.5: Exchange interaction variation with respect to the detuning ϵ.

5.1.2 The Schrieffer–Wolff transformation
Despite the S(2,0) and S(0,2) states have to be considered in the Hamiltonian since
their presence strongly influences the structure behaviour, the computational basis
must still be {|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩}. Hence, the Hamiltonian must be transformed
through an approximation that allows one to reduce its basis to the computational
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one, while keeping the extra states contribute to the system. The Schrieffer–Wolff
(SW) transformation perfectly serves this purpose [81]: the idea is that if one
assumes that the operating regime of the system is a range of detuning that never
gets “too close” to the (1,1)-(0,2) (or (1,1)-(2,0)) transitions, the S(2,0) and S(0,2)
states can be neglected. The “too close” is defined by the applicability condition
of this transformation, which is U − ϵ ≫ t0; this constraint, if respected, permits
the transformation of the matrix of Equation (5.1) into the SW Hamiltonian in the
{|↑↑⟩, |↑↓⟩, |↓↑⟩, |↓↓⟩} basis, which is [76, 82]

H ′SW =


Ez 0 0 0
0 ∆Ez

2 − α (∆Ez) β (∆Ez) 0
0 β (∆Ez) −∆Ez

2 − α (−∆Ez) 0
0 0 0 −Ez

 , (5.2)

where α (∆Ez) and β (∆Ez) are the terms that take into account the S(2,0) and
S(0,2) states effect on the system. These parameters are defined as

α (∆Ez) = t20
U − ϵ− ∆Ez

2
+ t20
U + ϵ− ∆Ez

2
,

β (∆Ez) = α (∆Ez) + α (−∆Ez)
2 ,

(5.3)

and they are approximately equal to hJ
2 . Hence, they represent the exchange inter-

action J effect due to the transition regions in a Hamiltonian written on a basis that
neglects the S(2,0) and S(0,2) states. It is worth noting that the ∆Ez values used
in real quantum devices only slightly influence the α and β parameters: the ∆Ez

usually varies in a range between 10−8 and 10−6 eV, whereas U and the detuning ϵ
used in two-qubit gates are always in the meV scale [76].
Now, as in Section 4.1.1, the basis must be changed in order to agree with the
NMR standard, which is {|00⟩, |01⟩, |10⟩, |11⟩}. The transformation is equivalent
to apply Equation (4.11) to both qubits. This is achievable by defining the change
of basis matrix as

UC =
[
0 1
1 0

]
⊗
[
0 1
1 0

]
=


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (5.4)

The result of the transformation is the SW Hamiltonian in the {|↓↓⟩, |↓↑⟩, |↑↓⟩,
|↑↑⟩}={|00⟩, |01⟩, |10⟩, |11⟩} basis,

HSW = UCH
′SWU †

C =


−Ez 0 0 0

0 −∆Ez

2 − α (−∆Ez) β (∆Ez) 0
0 β (∆Ez) ∆Ez

2 − α (∆Ez) 0
0 0 0 Ez

 . (5.5)
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This is only the static part of the Hamiltonian, which must also describe the in-
teraction between the MW magnetic field used for single-qubit gates and the two
spins. The field is again defined as

B1 = 2B1 cos(ωMW t− ϕ1)x̂, (5.6)

since it is applied through a MW antenna inside the device, and thus it affects
every qubit in the system. Hence, the MW field is declared in the same way as in
Section 4.1.2. Thus, the Hamiltonian becomes

HSW =


−Ez

ℏ
2ω10η

ℏ
2ω11η 0

ℏ
2ω10η −∆Ez

2 − α (−∆Ez) β (∆Ez) ℏ
2ω11η

ℏ
2ω11η β (∆Ez) ∆Ez

2 − α (∆Ez) ℏ
2ω10η

0 ℏ
2ω11η

ℏ
2ω10η Ez

 , (5.7)

where η =
(
ejωMW te−jϕ1 + e−jωMW tejϕ1

)
and ω1i

= −γiB1 is the Rabi frequency of
qubit qi.
In order to remove the time dependence of the Hamiltonian, the system must be
brought into a rotating frame. There are different choices for this rotating frame;
the one used in this work is [79]

URF =
e−j

ω01
2 t 0

0 ej
ω01

2 t

⊗
e−j

ω00
2 t 0

0 ej
ω00

2 t



=


e−jω0t 0 0 0

0 e−j
∆ω0

2 t 0 0
0 0 ej

∆ω0
2 t 0

0 0 0 ejω0t

 ,
(5.8)

where ω0 and ∆ω0 are the average and the difference of the resonance frequencies ω01

and ω00 , respectively, with ω0i
associated with qubit qi. Applying Equation (4.22)

yields

H̃SW = URFH
SWU †

RF − jℏURF
dU †

RF

dt
, (5.9)
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whose two parts are studied separately. The latter is

jℏURF
dU †

RF

dt
= jℏ


e−jω0t 0 0 0

0 e−j
∆ω0

2 t 0 0
0 0 ej

∆ω0
2 t 0

0 0 0 ejω0t

 ·

·


jω0e

jω0t 0 0 0
0 j∆ω0

2 ej
∆ω0

2 t 0 0
0 0 −j∆ω0

2 e−j
∆ω0

2 t 0
0 0 0 −jω0e

−jω0t



=


−Ez 0 0 0

0 −∆Ez

2 0 0
0 0 ∆Ez

2 0
0 0 0 Ez

 ,

(5.10)

while the former one is

HSWU †
RF =


−Ez

ℏ
2ω10η

ℏ
2ω11η 0

ℏ
2ω10η −∆Ez

2 − α (−∆Ez) β (∆Ez) ℏ
2ω11η

ℏ
2ω11η β (∆Ez) ∆Ez

2 − α (∆Ez) ℏ
2ω10η

0 ℏ
2ω11η

ℏ
2ω10η Ez

 ·

·


ejω0t 0 0 0

0 ej
∆ω0

2 t 0 0
0 0 e−j

∆ω0
2 t 0

0 0 0 e−jω0t



=


−Eze

jω0t ℏ
2ω10ηe

j
∆ω0

2 t

ℏ
2ω10ηe

jω0t
(
−∆Ez

2 − α (−∆Ez)
)
ej

∆ω0
2 t

ℏ
2ω11ηe

jω0t β (∆Ez) ej
∆ω0

2 t

0 ℏ
2ω11ηe

j
∆ω0

2 t

ℏ
2ω11ηe

−j
∆ω0

2 t 0
β (∆Ez) e−j

∆ω0
2 t ℏ

2ω11ηe
−jω0t(

∆Ez

2 − α (∆Ez)
)
e−j

∆ω0
2 t ℏ

2ω10ηe
−jω0t

ℏ
2ω10ηe

−j
∆ω0

2 t Eze
−jω0t

 ;

(5.11)
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URFH
SWU †

RF =


e−jω0t 0 0 0

0 e−j
∆ω0

2 t 0 0
0 0 ej

∆ω0
2 t 0

0 0 0 ejω0t



−Eze

jω0t

ℏ
2ω10ηe

jω0t

ℏ
2ω11ηe

jω0t

0
ℏ
2ω10ηe

j
∆ω0

2 t ℏ
2ω11ηe

−j
∆ω0

2 t 0(
−∆Ez

2 − α (−∆Ez)
)
ej

∆ω0
2 t β (∆Ez) e−j

∆ω0
2 t ℏ

2ω11ηe
−jω0t

β (∆Ez) ej
∆ω0

2 t
(

∆Ez

2 − α (∆Ez)
)
e−j

∆ω0
2 t ℏ

2ω10ηe
−jω0t

ℏ
2ω11ηe

j
∆ω0

2 t ℏ
2ω10ηe

−j
∆ω0

2 t Eze
−jω0t



=


−Ez

ℏ
2ω10ηe

−jω00 t

ℏ
2ω10ηe

jω00 t −∆Ez

2 − α (−∆Ez)
ℏ
2ω11ηe

jω01 t β (∆Ez) ej∆ω0t

0 ℏ
2ω11ηe

jω01 t

ℏ
2ω11ηe

−jω01 t 0
β (∆Ez) e−j∆ω0t ℏ

2ω11ηe
−jω01 t

∆Ez

2 − α (∆Ez) ℏ
2ω10ηe

−jω00 t

ℏ
2ω10ηe

jω00 t Ez

 .

(5.12)

The SW Hamiltonian in the rotating frame is thus

H̃SW =


0 ℏ

2ω10ηe
−jω00 t ℏ

2ω11ηe
−jω01 t 0

ℏ
2ω10ηe

jω00 t −α (−∆Ez) β (∆Ez) e−j∆ω0t ℏ
2ω11ηe

−jω01 t

ℏ
2ω11ηe

jω01 t β (∆Ez) ej∆ω0t −α (∆Ez) ℏ
2ω10ηe

−jω00 t

0 ℏ
2ω11ηe

jω01 t ℏ
2ω10ηe

jω00 t 0

 . (5.13)

5.1.3 Two-qubit native gate analysis
The Hamiltonian of Equation (5.13) has to be treated separately for the two-qubit
gates and the single-qubit ones. In the first case, the MW field is switched off, i.e.
B1 = 0, yielding ω1i

= 0 ∀i. The Hamiltonian becomes

H̃SW =


0 0 0 0
0 −α (−∆Ez) β (∆Ez) e−j∆ω0t 0
0 β (∆Ez) ej∆ω0t −α (∆Ez) 0
0 0 0 0

 , (5.14)

which shows that it still depends on time though the exponentials of the β terms.
The idea is to try to approximate this exponentials with either 1 or 0. The argument
of the exponential is ∆ω0t, where t, the duration of the two-qubit gate, is usually
on the order of tens of ns.
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In practice, a two-qubit gate in a DQD device is realized in the following way:

• t0 is set to the operating value through the barrier gate;

• Plunger gates are used to set the detuning value in the vicinity of U to activate
J ;

• The detuning is brought back to 0 after a time t.

It is worth noting that the operation is fully electrical, as it only requires the control
of the gate voltages. The detuning regulation is called J pulse. This manipulation
generates two possible two-qubit native gates depending on the value of ∆Ez with
respect to t0: the

√
SWAP and the CPHASE.

Two-qubit native gate analysis:
√

SWAP

The first approximation, ej∆ω0t ≈ 1, yields

H̃SW =


0 0 0 0
0 −α (−∆Ez) β (∆Ez) 0
0 β (∆Ez) −α (∆Ez) 0
0 0 0 0

 ; (5.15)

using MATLAB to apply Equation (4.21) to this Hamiltonian, for t = 1
J
π ≈ h

2β
π,

generates a unitary evolution equal to

U = exp
(
− j
ℏ
H̃SW t

)
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (5.16)

The physical explanation of this result is the following: in order to have ej∆ω0t ≈ 1,
the product ∆ω0t must be as small as possible. The two terms come from two
different main parameters: ∆ω0 is practically equal to the difference between the
Zeeman splittings ∆Ez up to the ℏ constant, while t is inversely proportional to
the J parameter - and thus to β (Section 5.1.2) - which acts like a frequency and
is in turn strongly linked to the tunnel coupling t0 (see Equation (5.3)). Overall:

∆Ez ↓ =⇒ ∆ω0 ↓
t0, J ↑ =⇒ t ↓

(5.17)

This means that the U(t) evolution in Equation (5.16) is obtained when ht0 (or hJ)
≫ ∆Ez. The condition of a small ∆Ez changes the system energy diagram [76]: the
|↑↓⟩ and the |↓↑⟩ states get close and mix together, generating the S(1,1) and T0(1,1)
states described in Section 3.1.3 (Figure 3.10). In these circumstances, the system
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5.1 – Double quantum dot Hamiltonian

basis becomes {T+(1,1), T0(1,1), S(1,1), T−(NL,NR)}; since the non-zero terms of
the Hamiltonian are in the positions (2,2), (2,3), (3,2) and (3,3) in the matrix of
Equation (5.15), they only affect T0(1,1) and S(1,1). Setting t = 1

J
π ≈ h

2β
π, the

exchange interaction is applied for an amount of time that yields a phase difference
of π between the S(1,1) and T0(1,1) states [83]. Suppose now that the system
starts, for t = 0, in the |↑↓⟩ state; this can be conveniently rewritten as

|↑↓⟩ = 1
2 (|↑↓⟩ − |↓↑⟩+ |↑↓⟩+ |↓↑⟩) = 1√

2
(|S(1,1)⟩+ |T0(1,1)⟩) . (5.18)

Then, after turning on the exchange interaction for t = 1
J
π ≈ h

2β
π, a π phase

difference is applied:

1√
2
(
|S(1,1)⟩+ e−jπ |T0(1,1)⟩

)
= 1√

2
(|S(1,1)⟩ − |T0(1,1)⟩)

= 1
2 (|↑↓⟩ − |↓↑⟩ − |↑↓⟩ − |↓↑⟩)

= − |↓↑⟩ .

(5.19)

The system has thus undergone a SWAP operation, i.e. the states of the qubits
have been swapped (|↑↓⟩ −→ |↓↑⟩). Therefore, halving the duration of the gate,
which generates a π

2 phase difference, a
√

SWAP is realized:

U =


1 0 0 0
0 1+j

2
1−j

2 0
0 1−j

2
1+j

2 0
0 0 0 1

 . (5.20)

In summary, a device with the
√

SWAP as native gate has a small ∆Ez and is very
fast in performing two-qubit gates. A realistic value for ∆Ez is 40 neV, which means
∆f0 ≈ 10 MHz, a resonance frequency difference that can be obtained through g-
factor variations due to spin-orbit coupling [84]. The tunnel coupling t0 is usually
set to a high value , e.g. 900 MHz, to reduce the gate duration, together with a
detuning energy close to U , such as ϵ = 0.61 meV for U = 0.9 meV [11]. This values
yield a

√
SWAP duration of 9 ns [84].

Two-qubit native gate analysis: CPHASE

The second approximation, ej∆ω0t ≈ 0, yields

H̃SW =


0 0 0 0
0 −α (−∆Ez) 0 0
0 0 −α (∆Ez) 0
0 0 0 0

 . (5.21)
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This approximation is obtained when the product ∆ω0t is large, meaning that ∆Ez

must be very high, since the duration of the gate cannot be longer than hundreds
of ns — values of 150 ns are reported [38], but the state of the art trend is to try to
reduce it [42] — for device performance reasons. Hence, the condition is ∆Ez ≫ t0
(or J), which gives a significant difference between the |↑↓⟩ and the |↓↑⟩ states,
which are energetically separated (Figure 5.1). Hence, switching on the exchange
interaction for t = 1

J
π ≈ h

2β
π, a π phase difference is applied to these states, yielding

U = exp
(
− j
ℏ
H̃SW t

)
=


1 0 0 0
0 j 0 0
0 0 j 0
0 0 0 1

 . (5.22)

This unitary evolution is, together with a single-qubit Z rotation of −π
2 on both

qubits, equal to the CPHASE gate:

CPHASE = Unative RZ1

(
−π2

)
RZ0

(
−π2

)
; (5.23)

it is worth noting that since the phase difference has been chosen to be π, the
CPHASE is equivalent to a CZ gate.
To sum up, the procedure used to perform this native gate is the same as the√

SWAP case; the only difference is that the J pulse lasts twice as long (t = 1
J
π).

Since the large values of resonance frequency difference are usually attained through
the integration of a micromagnet in the structure, which creates a static magnetic
field gradient along the qubits direction, the range of ∆Ez values is very extended.
In fact, it can go from hundreds of neV [38] to tens of µeV [80]. CPHASE gates
generally last longer, therefore the values of t0 and ϵ are usually smaller, e.g. 400
MHz and 0.3 meV, respectively, which give t = 150 ns [84]. Both of these native
two-qubit gates, the

√
SWAP and the CPHASE, are - again, up to single-qubit

rotations [1] - equivalent to the CNOT, the quantum computing universal two-
qubit gate:

CNOTc,t = Ht RZt

(
π

2

)
RZc

(
−π2

)√
SWAPRZt(π)

√
SWAPHt

CNOTc,t = Ht CPHASEHt,
(5.24)

where the subscript c and t refer to the control and target qubits of the CNOT
gate, respectively.
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5.1.4 Single-qubit gate analysis

For single qubit gates, the exchange interaction is turned off (low detuning and
tunnel coupling), and the MW field is applied. This yields

α (∆Ez) = t20
U − ϵ− ∆Ez

2
+ t20
U + ϵ− ∆Ez

2
≈ 2t20

U
≈ 0,

β (∆Ez) = α (∆Ez) + α (−∆Ez)
2 ≈ 0

(5.25)

and B1 /= 0, and thus the SW Hamiltonian becomes

H̃SW = ℏ
2


0 ω10ηe

−jω00 t ω11ηe
−jω01 t 0

ω10ηe
jω00 t 0 0 ω11ηe

−jω01 t

ω11ηe
jω01 t 0 0 ω10ηe

−jω00 t

0 ω11ηe
jω01 t ω10ηe

jω00 t 0

 . (5.26)

The ηe±jω0i
t term, such as in Equation (4.26), generates the following exponentials:

ηe−jω00 t = ej(ωMW −ω00 )te−jϕ1 + e−j(ωMW +ω00 )tejϕ1 ;
ηe−jω01 t = ej(ωMW −ω01 )te−jϕ1 + e−j(ωMW +ω01 )tejϕ1 ;
ηejω00 t = ej(ωMW +ω00 )te−jϕ1 + e−j(ωMW −ω00 )tejϕ1 ;
ηejω01 t = ej(ωMW +ω00 )te−jϕ1 + e−j(ωMW −ω00 )tejϕ1 .

(5.27)

Now, exponentials with sum arguments can be neglected through the RWA, since
ωMW will be equal to the ω0 of the gate target qubit, therefore ωMW +ω0i

is ∼ 2ω0i
.

The RWA Hamiltonian is

H̃SW
RW A = ℏ

2


0 ω10e

j(ωMW −ω00 )te−jϕ1

ω10e
−j(ωMW −ω00 )tejϕ1 0

ω11e
−j(ωMW −ω01 )tejϕ1 0

0 ω11e
−j(ωMW −ω01 )tejϕ1

ω11e
j(ωMW −ω01 )te−jϕ1 0

0 ω11e
j(ωMW −ω01 )te−jϕ1

0 ω10e
j(ωMW −ω00 )te−jϕ1

ω10e
−j(ωMW −ω00 )tejϕ1 0

 .
(5.28)
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Now, assuming that the single-qubit gate is applied to q0 (ωMW = ω00), the matrix
becomes

H̃SW
RW A = ℏ

2


0 ω10e

−jϕ1

ω10e
jϕ1 0

ω11e
−j∆ω0tejϕ1 0

0 ω11e
−j∆ω0tejϕ1

ω11e
j∆ω0te−jϕ1 0

0 ω11e
j∆ω0te−jϕ1

0 ω10e
−jϕ1

ω10e
jϕ1 0

 ;

(5.29)

thus, the Hamiltonian still depends on time through the e±j∆ω0t terms, which,
however, can be neglected using the RWA again. This approximation is quite
strong since it depends from the distance between the qubit resonance frequencies
∆ω0: single-qubit gates in a DQD need a large ∆ω0 to avoid off-resonance effects
on non-target qubits. After this approximation, the Hamiltonian loses the time
dependence, being

H̃SW
RW A = ℏ

2


0 ω10e

−jϕ1 0 0
ω10e

jϕ1 0 0 0
0 0 0 ω10e

−jϕ1

0 0 ω10e
jϕ1 0

 , (5.30)

and the unitary evolution matrix of the system can be easily computed on MATLAB
as

U(t) = exp
(
− j
ℏ
H̃SW

RW At
)
. (5.31)

In practice, single qubit gates are implemented applying the MW field for a time
t = θ

ω1i
, where θ is the desired rotation angle, and with a phase ϕ1 that decides the

rotation axis, as explained in Section 4.2.2.

5.2 MATLAB model verification
5.2.1 The code structure and its validation
The MATLAB model described in Section 4.2.1 is modified in order to handle two-
qubit gates. The core of the simulation is still the computation of the unitary
evolution of the system, which happens in a dedicated file called qubits_control.m.
Here, the Hamiltonian, which depends on the gate applied to the qubits, is com-
puted and the U(t) matrix is carried out through Equation (5.31). The native
two-qubit gates are implemented through the native.m file, which, depending on
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the values of t0 and ∆Ez, understands the device regime and sets the phase differ-
ence due to the exchange interaction — π

2 for the
√

SWAP and π for the CPHASE
— to drive the qubits_control.m file into performing the correct native gate. More-
over, a QASM2.0 interpreter is added to the model to make it compatible with
quantum assembly, the standard language for quantum algorithms programming.
The result of the simulation is a histogram plot of the states probabilities and the
fidelity of the system (Figure 5.6). The latter parameter will be explained in Sec-
tion 6.2.1.
The approximations for the native two-qubit gate described in Section 5.1.3 are
verified comparing the U(t) computed by the MATLAB model and the one cal-
culated by Quantum Toolbox in Python (QuTiP), a Python-based environment
able to directly solve the Lindblad master equation, employed as a reference. The
verification is performed for a set of values for t0 and ∆Ez, to check the behaviour
of the QuTiP/MATLAB error when these parameters are varied. This analysis is
carried out for both native gate scenarios and for single-qubit gates.
The error ε is computed between the unitary evolutions calculated by the two sim-
ulations. In particular, it is carried out using the 2-norm of the difference between
the matrices:

ε% = ∥UMAT LAB − UQuT iP∥2 · 100. (5.32)

5.2.2 The
√

SWAP case
The

√
SWAP gate is modelled through the ej∆ω0t ≈ 1 approximation, yielding a

t0 ≫ ∆Ez regime. The input parameters for this simulation are derived from
experimental data in the state of the art [11]. The values extracted from the
reference are the two resonance angular frequencies ω01 = 2πf01 = 2π(6.9491
GHz) = 43.6625 Grad/s and ω00 = 2πf00 = 2π(6.9601 GHz) = 43.7316 Grad/s,
which yield ∆ω0 = 2π∆f0 = 2π(11 MHz) = 69.115 Mrad/s, the duration of the
two-qubit gate is t = 9 ns and the Coulomb charging energies of the dots U , both
assumed equal to 0.9 meV. The tunnel coupling and detuning are not reported, and
therefore their values are chosen in a reasonable range. t0 is set to 900 MHz and ϵ
to 0.61 meV: this ensures that the gate duration is 9 ns.
The simulations are performed spanning the t0 and ∆ω0 values around the starting
experimental data (Figure 5.7). The two range of values are:

• ∆ω0 = 2π∆f0 = 2π[6 : 16] MHz= [37.6991 : 100.5310] Mrad/s;

• t0 = [0.7 : 1.1] GHz.
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SetParameters.m

SetConstants.m

Qubit.m

qubits_control.m

Probability
histogram

Interpreter

QASM2.0

native.mSetInputNative.m

Two-qubit gate Single-qubit gate

Fidelity

Figure 5.6: DQD model MATLAB code structure.
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Figure 5.7: MATLAB-QuTiP error in the
√

SWAP regime.
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The behaviour of the error agrees with the theoretical expectations: it is indeed
minimum for low values of ∆f0 and high t0, since the gate duration t decreases
when t0 increases. These two conditions yield that the ej∆ω0t ≈ 1 approximation
is more accurate and thus the error is lower. However, in the center of the plot,
where the values derived from the experimental data are represented, the error is
∼ 20%, meaning that the MATLAB model is not very accurate in the description
of a realistic DQD structure with the

√
SWAP as native gate.

The model validity is also tested on single-qubit gates, in particular on a RX(π)
gate applied on q0. The duration of the gate is set through the B1 value to t = 500
ns [11], and the error is computed for the same set of ∆Ez values as the two-qubit
gate simulation. On the other hand, the value of t0 is set to 0, which translates
in switching off the barrier gate voltage, since in single-qubit gates the exchange
interaction must be negligible.

6 7 8 9 10 11 12 13 14 15 16
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8%

10%

12%

14%

16%

18%

20%

Figure 5.8: MATLAB-QuTiP error for a RX(π) gate on q0 in the
√

SWAP regime.

As expected, the error decreases when the resonance frequencies are more dis-
tant, i.e. when the resonance effects are lower. The plot shows oscillations due
to the fact that QuTiP exactly integrates the Hamiltonian during the simulation.
Indeed, the frequency “period” of this oscillation is 2 MHz, which is the inverse of
the period of the integrated Hamiltonian; this value derives from the fact that the
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RX(π) gate duration is t = 500 ns, therefore: fosc = 1
t

= 1
500·10−9 = 2 MHz. Ne-

glecting this ringing behaviour, the model error for the operating value ∆Ez = 11
MHz is ∼ 10%.

5.2.3 The CPHASE case
The same analysis is performed for the other device operating regime, using the
same type of simulation (Figure 5.9). The input values are again derived from
experimental data [38]: the two resonance angular frequencies are ω01 = 2πf01 =
2π(15.64 GHz) = 98.2690 Grad/s and ω00 = 2πf00 = 2π(15.43 GHz) = 96.9495
Grad/s, meaning ∆ω0 = 2π∆f0 = 2π(210 MHz) = 1.3195 Grad/s. A tunnel
coupling t0 = 400 MHz and a detuning ϵ = 0.3 meV yield a gate duration t = 150
ns; U is again considered equal to 0.9 meV. The two ranges of values are:

• ∆ω0 = 2π∆f0 = 2π[50 : 300] MHz= [0.314 : 1.885] Grad/s;

• t0 = [300 : 600] MHz.

In this regime, the approximation is ej∆ω0t ≈ 0, and the plot shows that the error is
indeed minimum for high ∆Ez and low t0. The error for the operating experimental
values is less than 2%: the model describes quite precisely this native gate, since,
usually, the practically physical values of ∆Ez for these structures are very high
and thus the approximation holds better.
Again, the single-qubit gate error is explored for a RX(π) on q0, setting the gate du-
ration to t = 500 ns [11], t0 = 0 and analyzing the same ∆Ez span as the CPHASE
simulation (Figure 5.10). The error plot shows the same ringing behaviour as Fig-
ure 5.8, but the single-qubit gate error is much lower (∼ 0.5%). The explanation
is straightforward: the CPHASE scenario yield a higher ∆Ez, which allows one
to easily neglect off-resonance effects, thus meaning that the model can accurately
describe single-qubit gates in this operating conditions.
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Figure 5.9: MATLAB-QuTiP error in the CPHASE regime.

50 100 150 200 250 300

0%

0.5%

1%

1.5%

2%

2.5%

Figure 5.10: MATLAB-QuTiP error for a RX(π) gate on q0 in the CPHASE regime.

75



76



Part III

Model validation

77





Chapter 6

Noise model implementation
and results comparison

The final part of this thesis is devoted to the analysis of the noise algorithm used
in the compact model to take into account relaxation and decoherence effects. The
fidelity of the noisy model is computed on QuTiP through the simulation of a
sequence of Rx(π

2 ) gates on each qubit varying the duration of the gate. The t
value that maximizes the device fidelity is then used to compare the MATLAB
model and the QuTiP results when relevant quantum circuits and algorithms are
simulated.

6.1 The noise model

6.1.1 Probability redistribution algorithm
Chapter 5 was dedicated to the creation of an ideal compact model of the quantum
device, exploiting some theoretical approximations in order to speed up the simula-
tion time. The non-ideal behaviour of the structure is instead modelled on its own,
depending only on the duration of the applied gate and, obviously on the relevant
noise parameters. The two noise contributions explored in this thesis are relaxation
and decoherence [13]. The former effect is responsible for the decay of the state
vector towards the ground state |0⟩: this means that the quantum system tends to
“relax” into the lowest energy state after a certain amount time. Relaxation is usu-
ally modelled through the time constant T1, called relaxation time. On the other
hand, decoherence appears when the quantum system is not completely isolated
from the environment: this condition generates the loss of the system phase infor-
mation with time. The time constant related to this mechanism is the decoherence
time T2.
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6 – Noise model implementation and results comparison

The two non-ideal effects are modelled through a noise algorithm [15] which com-
putes decoherence adding an exponential decay to the off-diagonal terms of the
system density matrix, and relaxation through a probability redistribution. The
effects on a single-qubit density matrix in the time domain can be written as [16](a− a0)e− t

T1 + a0 be
− t

T2

b∗e
− t

T2 (a0 − a)e− t
T1 + 1− a0

 , (6.1)

where a and a0 are the probabilities of measuring the qubit in |0⟩ for t = 0 and
t→∞, respectively. The algorithm tries to efficiently extend this formalism to the
multi-qubit case.
The two effects are described separately; the decoherence process is modelled by a
matrix, computed as the Kronecker product of the decoherence matrices of each of
the n qubit:

D =
0⊗

i=n−1
Di = Dn−1 ⊗ · · ·D0, (6.2)

where

Di =
 1 e

− t
T2i

e
− t

T2i 1

 , (6.3)

where T2i
is the decoherence time of the qubit qi. The whole D matrix is then

multiplied element by element to the system density matrix ρ.
On the other hand, the relaxation process is seen as a loss of probability of the three
excited states (|01⟩, |10⟩ and |11⟩); this probability is then given to the ground state
|00⟩. This phenomenon is described by a relaxation vector calculated as

r =
0⊗

i=n−1

 1
e

− t
Tii

 =



1
e

− t
Ti0

·
·
·

exp
(
−∑n−1

i=0
t

T1i

)


=



r0,0
r1,1
·
·
·

r2n−1,2n−1


, (6.4)

where T1i
is relaxation time of the qubit qi. This vector is multiplied by the main

diagonal of the density matrix ρ; then, the total probability lost by the excited
states due to relaxation is then computed as the sum of each state probability loss:

Plosttot =
∑

k

Plostk
=
∑

k

(1− rk,k)ρk,k, (6.5)

where ρk,k is the (k,k) element of the density matrix ρ. Plosttot is then summed to the
ρ(1,1) element, which represent the probability of the state |00⟩. The probability
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6.1 – The noise model

lost because of the relaxation phenomenon is thus all stored into the ground state
of the system; this last step ensures that the trace of the system density matrix is
unitary (Tr(ρ) = 1).
This algorithm is tested separately for the relaxation and the decoherence part.
The former is verified initializing the system to |00⟩ and applying a RX(π) on
q1 and q0 individually and leaving the system freely evolve for a certain amount
of time to check the relaxation behaviour of the single qubit. Then, the same
procedure is applied to both qubits at the same time to see the effect on the whole
system. The relaxation times of the qubits are taken from [38]: T11 = 20.1 ms and
T10 = 20.4 ms. The probability of the state related to the case under simulation
— e.g. when the RX(π) is applied only on q0, one needs to look at the |01⟩ state
— is plotted with respect to the time period of the system free evolution. If, when
analyzing single qubits, this probability is equal to e−1 = 36.788% for t = T1i

, the
relaxation effect is correct. Instead, for the two-qubit analysis, the probability of
|11⟩ must be 36.788% for t = T11 T10

T11 +T10
= 10.124 ms, since the exponential decreases

as −t
(

1
T11

+ 1
T10

)
. Indeed, the plots show that the probabilities decay to 36.788%

at the correct t instant in all three cases (Figure 6.1).
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(a) T11 analysis.
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(c) Combined T11 and T10 analysis.

Figure 6.1: Relaxation decay for q1, q0 and both qubits together.
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The procedure employed for the decoherence analysis is similar: starting from
|00⟩, a RY (π

2 ) is performed on q0 and q1 separately and then on both of them
together. The decoherence matrix used in the algorithm is
 1 e

− t
T21

e
− t

T21 1

⊗
 1 e

− t
T20

e
− t

T20 1

 =

=



1 e
− t

T20 e
− t

T21 e
−t

(
1

T21
+ 1

T20

)
e

− t
T20 1 e

−t

(
1

T21
+ 1

T20

)
e

− t
T21

e
− t

T21 e
−t

(
1

T21
+ 1

T20

)
1 e

− t
T20

e
−t

(
1

T21
+ 1

T20

)
e

− t
T21 e

− t
T20 1


,

(6.6)

where T21 and T20 are the decoherence time constants of q1 and q0, respectively.
Since this matrix is multiplied element by element to the system density matrix
ρ, the terms that one has to inspect after the free evolution are (using MATLAB
matrix notation):

• ρ(1,2) for the T20 constant;

• ρ(1,3) for the T21 constant;

• ρ(1,4) for the two decoherence effects combined.

However, the initial value of these density matrix elements is not 1; therefore,
assuming to analyze T20 , the value ρ(1,2) = k for t = 0 must be taken into account.
Indeed, one must verify that ρ(1,2) = ke−1 for t = T20 , where k is computed at the
start of the simulation, after the application of the single-qubit gate. The ρ values
for the three analyses are:

• k = 0.4814 =⇒ ρ(1,2) = ke−1 = 17.711% for t = T20 ;

• k = 0.4799 =⇒ ρ(1,3) = ke−1 = 17.655% for t = T21 ;

• k = 0.2218 =⇒ ρ(1,4) = ke−1 = 8.16% for t = T21 T20
T21 +T20

;

The decoherence times used are again taken from [38]: T21 = 6.1 µs and T20 = 6.6 µs,
yielding T21 T20

T21 +T20
= 3.17 µs. The plots depict a correct behaviour of the decoherence

decay, meaning that the noise algorithm has been properly implemented in the
MATLAB model (Figure 6.2).
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(c) Combined T21 and T20 analysis.

Figure 6.2: Decoherence decay for q1, q0 and both qubits together.

6.2 Quantum algorithms simulation
6.2.1 Fidelity analysis
The noise model described in Section 6.1.1 is implemented in QuTiP too, in order
to have a reference that considers relaxation and decoherence contributions. The
fidelity of the system, i.e. the measure of the “closeness” of the noisy model to the
ideal quantum system, is thus analyzed in QuTiP. The fidelity is computed as [16]

F(|ψ⟩ , ρ) =
√
⟨ψ| ρ |ψ⟩, (6.7)

where |ψ⟩ is the ideal state vector, computed multiplying the initial state vector
for the ideal unitary matrices of the gate applied to the qubits, and ρ is the density
matrix, calculated through the model and the noise algorithm. Therefore, F is a
quantity between 0 and 1 that indicates how close is the quantum system described
by the density matrix ρ to the ideal one expressed by the state vector |ψ⟩.
The fidelity is calculated applying a sequence of RX(π

2 ) from the most significant
qubit to (q1) to the least significant one (q0). The simulation is repeated for a range
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6 – Noise model implementation and results comparison

of gate durations: t = [2:200] ns; ω1 — and thus B1 — is changed accordingly to
ensure that the rotation angle of single-qubit gate is θ = π

2 , since θ = ω1t. The
resonance angular frequencies are ω01 = 2πf01 = 2π(15.64 GHz) = 98.2690 Grad/s
and ω00 = 2πf00 = 2π(15.43 GHz) = 96.9495 Grad/s, while the relaxation and
decoherence time constants are set to T11 = 20.1 ms, T10 = 20.4 ms, T21 = 6.1 µs
and T20 = 6.6 µs [38].
The fidelity behaviour shows that the longer the gate is applied, the worse is the
performance of the hardware, which however, in the simulated range, keeps a fidelity
value > 0.985 (Figure 6.3a). The initial ringing is again due to the exact integration
of the Hamiltonian carried out by QuTiP, which, as shown in the zoomed plot,
causes an oscillating behaviour with a period of ∼ 4.75 ns (Figure 6.3b). This is
the period of the integrated Hamiltonian and it is related to the difference between
the resonance frequencies of the qubits; in fact, tosc = 1

∆f0
= 1

210 MHz ≈ 4.78 ns.
Moreover, the effects of the duration of the single-qubit gate can be divided into
two behaviours:

• Short MW pulses: the Fourier spectrum is broad and the off-resonance is thus
pronounced but relaxation and decoherence are weak;

• Long MW pulses: a narrow Fourier spectrum yields lower off-resonance effects
but larger relaxation and decoherence.

This justifies the substantial oscillations at the start of the fidelity plot, where the
duration is small and thus the off-resonance is dominant.
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(a) Fidelity behaviour.
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(b) Zoom on the initial ringing.

Figure 6.3: QuTiP fidelity of a sequence of RX(π
2 ) gate on each qubit.
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6.2.2 Ideal and noisy results
The MATLAB model has been also tested with some relevant quantum circuits and
algorithms; its results have been compared to the QuTiP simulations. The system
has been examined in the CPHASE regime, since, according to Section 5.2.3, it
is where the error between the MATLAB approximations and the QuTiP exact
Hamiltonian integration is lower. Therefore, the resonance angular frequencies
are again set to ω01 = 2πf01 = 2π(15.64 GHz) = 98.2690 Grad/s and ω00 =
2πf00 = 2π(15.43 GHz) = 96.9495 Grad/s, yielding a ∆ω0 = 2π∆f0 = 2π(210
MHZ) = 1.3195 Grad/s. while the relaxation and decoherence time constants are
T11 = 20.1 ms, T10 = 20.4 ms, T21 = 6.1 µs and T20 = 6.6 µs [38]. As in Section 5.2.3,
the native two qubit gate is performed with t0 = 400 MHz and ϵ = 0.3 meV, with
a U equal to 0.9 meV: the two-qubit native gate duration is thus 150 ns. On the
other hand, the simulations have been ran with two different single-qubit gate time
values, where the reference gate is a RX(π

2 ):
• t = 14.2 ns, which means B1 = −ω1

γ
= π

2γt
≈ 632.70 µT: this t value maximizes

the device fidelity, as shown in Figure 6.3b;

• t = 250 ns, which means B1 ≈ 35.975 µT: this is extracted from experimental
data in literature [38].

The distance between the density matrix computed by the MATLAB model and the
one calculated by QuTiP is measured through the Kullback-Leibler (KL) divergence
[85, 86]. The probability of each state is derived from the diagonal of the density
matrix and the KL divergence is computed as

DKL =
2n−1∑
i=0

P (|ei⟩) log2

(
P (|ei⟩)
Q(|ei⟩)

)
, (6.8)

where n is the number of qubits, |ei⟩ are the orthonormal eigenstates of the σz

operator (|0 · · · 0⟩ , · · ·, |1 · · · 0⟩) and

P (|ei⟩) = ρMATLAB(i, i)
Q(|ei⟩) = ρQuTiP(i, i).

(6.9)

If the probabilities coincide, DKL is equal to 0, meaning that the smaller the KL
divergence is, the closer the probabilities are.

The Bell state

The first simulation is run on the circuit that generates the Bell state 1√
2 (|00⟩+ |11⟩)

from |q1q0⟩ = |00⟩, which is:

|q0⟩ = |0⟩ H •

|q1⟩ = |0⟩
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6 – Noise model implementation and results comparison

The results between the two models are very similar for t = 250 ns (Figure 6.4),
with DKL = 0.0254 and t = 14.2 ns (Figure 6.5), where DKL = 0.1679. The
significant discrepancies between the two simulations are the probabilities of the
states |01⟩ and |10⟩; this is caused by the fact that, when t = 250 ns, decoherence
effects become relevant, whereas a single-qubit gate duration of 14.2 ns is too fast
to see the non-idealities.
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(a) MATLAB model results.
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(b) QuTiP results.

Figure 6.4: Probability comparison for a Bell state for t = 250 ns.
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(a) MATLAB model results.
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Figure 6.5: Probability comparison for a Bell state for t = 14.2 ns.

However, these results do not show a crucial difference between the MATLAB
and QuTiP model in the t = 14.2 ns case. As mentioned in Section 6.2.1, short
MW pulses generate large off-resonance effects; this mathematically translates into
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6.2 – Quantum algorithms simulation

the fact that the RWA used on the single-qubit Hamiltonian in Equation (5.30) is
not sufficiently valid. Indeed, the 2-norm of the difference of the MATLAB and
QuTiP density matrices gives an error of 27.61% due to off-resonance effects. The
t = 250 ns simulation is not affected by this error (∼0.58%); this has already been
demonstrated in Section 5.2.3 (Figure 5.10).

SWAP gate

The next simulation models the implementation of a SWAP gate between the |0⟩
and |+⟩ = 1√

2(|0⟩+ |1⟩) states. The circuit is:

|q0⟩ = |0⟩ H ×

|q1⟩ = |0⟩ ×

The SWAP is realized through three CNOT gates in the following way [87]:

|q0⟩ = |0⟩ H •

|q1⟩ = |0⟩ • •

The results for t = 250 ns (Figure 6.6) give DKL = 0.0562 and show that the
state probabilities almost coincide. As in the Bell state simulation, the decoher-
ence and relaxation affect the two systems in the same way since the noise algorithm
is identical in the two models. When t = 14.2 ns (Figure 6.7), DKL = 0.0339 and
thus the probability distribution are almost the same, but the overall system den-
sity matrices of the two models are separated by an error of 5.18% due to the
off-resonance effects.
The test is repeated on the same gate modifying the input states and realizing a
SWAP between |0⟩ and |1⟩:

|q0⟩ = |0⟩ X •

|q1⟩ = |0⟩ • •

This circuit gives the usual similar results for t = 250 ns (Figure 6.8), with
DKL = 0.0732, whereas the t = 14.2 ns case (Figure 6.9) shows a higher error
with respect to the precedent SWAP implementation, yielding DKL = 0.6209 and
an error between the models of 14.3312%. Both SWAP tests for t = 250 ns suffer
from a more evident decoherence with respect to the Bell case, since the circuit
clearly lasts longer and the noise effects begin to appear.

87



6 – Noise model implementation and results comparison

35.78%

14.23%

35.76%

14.23%

(a) MATLAB model results.
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Figure 6.6: Probability comparison for a SWAP gate between the |0⟩ and |+⟩ states
for t = 250 ns.
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Figure 6.7: Probability comparison for a SWAP gate between the |0⟩ and |+⟩ states
for t = 14.2 ns.
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Figure 6.8: Probability comparison for a SWAP gate between the |0⟩ and |1⟩ states
for t = 250 ns.
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Figure 6.9: Probability comparison for a SWAP gate between the |0⟩ and |1⟩ states
for t = 14.2 ns.

Deutsch’s algorithm

Supposing there is a function f defined on the alphabet [0, 1], with output in the
same alphabet, i.e. f : [0, 1]→ [0, 1]; there are then four possible scenarios:

• f(0) = f(1) = 0;

• f(0) = f(1) = 1;
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• f(0) = 0 and f(1) = 1;

• f(0) = 1 and f(1) = 0.

The first two functions are called constant functions, whereas the last two are bal-
anced functions. Given f , the Deutsch’s algorithm [88] is able to tell if the function
is constant or balanced without computing its output for both inputs. The first
step of a quantum algorithm is usually the application of the Hadamard gate on
every qubit to send them into a superposition of states. If the input is a superposi-
tion of n equally probable states, the function will be simultaneously computed for
each state. This is not of help since the output is a superposition of states too, and
all states have still the same outcome probability. However, quantum parallelism
is still a very useful tool in quantum algorithm, since an appropriate manipulation
of the complex probability amplitudes can, in some cases, increase the probability
of the desired outcome exploiting the superposition of states. In the Deutsch’s al-
gorithm, this operation is the use of the oracle Uf , which corresponds the following
gate, where f(x) is the value of the function for the input x:

|x⟩
Uf

|x⟩

|y⟩ |y ⊕ f(x)⟩

The full circuit that implements this algorithm is:

|q0⟩ = |0⟩ H
Uf

H

|q1⟩ = |0⟩ X H

Note that Uf is only evaluated once in the algorithm, while classical algorithms
would have called f twice to check both inputs. The output of the algorithm is
measured on q0, which is:

• |0⟩ if f is constant;

• |1⟩ if f is balanced.

The simulation has been run with a balanced f , i.e. f(x) = x, therefore the oracle
is equivalent to a CNOT gate (y ⊕ f(x) = y ⊕ x) and the circuit is [89]:

|q0⟩ = |0⟩ H • H

|q1⟩ = |0⟩ X H
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The algorithm is executed correctly since the most probable final state of q0 is
|1⟩, as expected for the balanced f . For t = 250 ns (Figure 6.10), the DKL is 0.0473
and the MATLAB/QuTiP error is minimal, but the results are quite degraded by
decoherence since the algorithm is quite long. For t = 14.2 ns (Figure 6.11), the
error is evidently larger, as DKL = 7.4771 and an error of 30%, meaning that the
off-resonance effects are very strong in this simulation.
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(b) QuTiP results.

Figure 6.10: Probability comparison for the Deutsch’s algorithm with balanced f
for t = 250 ns.
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Figure 6.11: Probability comparison for the Deutsch’s algorithm with balanced f
for t = 14.2 ns.
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Grover’s algorithm

Suppose a large list of N unsorted items is given. Among all items there is one
particular element that possess a special property: this is called the winner ω.
Using classical computation, one would have to check on average N

2 items to find
the winner (N items in the worst case). The Grover’s search algorithm [90] takes
roughly

√
N steps. The first building block of the circuit is the set of Hadamard

gates on each qubit to ensure superposition of states and combined evaluation. The
quantum parallelism is exploited by the oracle Uω, which adds a negative phase to
the winner state:

Uω |x⟩ =
{

|x⟩ for |x⟩ /= ω
− |x⟩ for |x⟩ = ω

. (6.10)

The oracle will be a diagonal matrix where only the term that corresponds to the
winner state has a negative phase. For two qubits and ω = |11⟩, it will be

Uω = UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (6.11)

The amplitude amplification of the winner state ω is performed by the diffuser US

[91]. The general Grover algorithm is then:

|q0⟩ = |0⟩ H
Uω US

|q1⟩ = |0⟩ H

The output |q1q0⟩ is the winner state ω. The simulation has been run for ω = |11⟩,
therefore the circuit is [92]:

|q0⟩ = |0⟩ H • H Z • H |1⟩

|q1⟩ = |0⟩ H • H Z • H |1⟩

Uω US

The most probable is indeed |11⟩, despite the relaxation and decoherence effects are
now clearly visible in the t = 250 ns simulation (Figure 6.12), since the algorithm
performs more gates than the previous circuits and thus the device manipulation
time is longer. However, the error between the two models is still very low, with a
DKL = 0.0669. On the other hand, the test with t = 14.2 ns carries out a better
result in terms of |11⟩ probability (Figure 6.13), since the non-ideal effects are weak.
However, the discrepancy between the models is quite large, giving DKL = 1.2241
and an error of 19.0532%.
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Figure 6.12: Probability comparison for the Grover’s algorithm with ω = |11⟩ for
t = 250 ns.
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Figure 6.13: Probability comparison for the Grover’s algorithm with ω = |11⟩ for
t = 14.2 ns.
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Chapter 7

Conclusions

The goal of this thesis was to realize a compact model able to simulate a semicon-
ductor double quantum dot device, looking for a compromise between accuracy and
computational complexity. The core of the work has been the construction of the
compact model itself, starting from the characteristic Hamiltonian of the quantum
system and using different types of approximations. The DQD device has been ini-
tially described by the six-state Hubbard model, whose basis has been reduced to
the computational one through the Schrieffer-Wolff transformation. The resulting
two-qubit spin Hamiltonian was observed to be similar to the NMR implementa-
tion up to a change of basis. For this reason, the model derivation has been shaped
following the inheritance of the compatible NMR formalism. This also permitted
to obtain a time-independent Hamiltonian of the system, which in turn allowed
a simpler evaluation of the qubits dynamics. The results of the model have been
compared to a reference simulator, QuTiP, capable of solving the Lindblad master
equation, and the model approximations have been verified in different operating
cases. Indeed, the two native gate regimes of a DQD device have been tested an the
MATLAB/QuTiP error has been analyzed for two-qubit and single-qubit gates.
The model has proved to be well performing in the simulation where the native gate
was the CPHASE, whereas the error was slightly but notably higher in the

√
SWAP

case. The main source of error in the simulations was the off-resonance effect when
performing single-qubit gates. In fact, the RWA employed on the Hamiltonian to
remove the time-dependent terms related to the non-target qubit was quite strong
and worked properly only when the qubits resonance frequencies were sufficiently
distant and the single-qubit gates were long enough. However, the state of the art
hardwares tend to utilize the CPHASE gate more often than the

√
SWAP one and

the single-qubit gates are usually the longest type of gate in spin-qubit devices,
therefore the model correctly works in the most common scenario.
Then, an efficient noise model developed in [15] to describe the relaxation and deco-
herence phenomena in spin qubit systems has been implemented in the MATLAB
compact model. The noise algorithm proved to be correctly achieving its purpose
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and its effect were evidently clear in the longer circuit simulations. On the other
hand, for smaller gate times, the off-resonance effects became relevant and the the
MATLAB/QuTiP error was notably degraded.
The most relevant advantage of the compact model has been its simulation time.
Indeed, the QuTiP simulations were very long and computationally demanding,
taking even hours for the most precise simulations (∼ 1200 data points). Instead,
the MATLAB model has always been very performing in this aspect, taking at
most seconds for the same set of simulations. Therefore, from the simulation time
point of view, the compact model has achieved its goal of outperforming a formal
exact simulation, still producing reliable results.
Overall, the compact model approach has demonstrated to be capable of handling
quite accurately a quantum circuit simulation. However, owing to the versatility
of the compact model, there are different types of enhancement applicable. The
most crucial one is the comparison with a real hardware: there are indeed some
already available frameworks that permit to execute quantum circuits on existing
semiconductor quantum computers, such as the Quantum Inspire by the QuTech
group at TU Delft [38], through a cloud access. Testing the compact model through
a physical device simulation is a very useful tool to evaluate the capabilities of the
model and, in particular, to compare the modelled noise to the device real noise.
This comparison would also permit to include in the compact model additional
noise sources, such as the temperature and the interaction with the magnetic field.
In this context, it is important to mention the modelling of the state readout op-
eration, which is one of the most crucial and problematic parts of semiconductor
quantum computers. Indeed, this operation is a fundamental piece of the device
functioning, and directly influences the outcome of a real hardware, since it is al-
ways performed after the manipulation. The readout introduces a huge amount of
noise and has to be performed in a very precise manner in order to yield a correct
outcome. Hence, in order to compare the model to a real hardware, one has to take
into account the readout operation and its strong non-ideality.
Another idea comes from the natural aim of a device simulation: being able to
inspect the performance of the device when varying the technological steps used
to realize it or its materials opens the possibility of device engineering. In order
to perform this type of simulation, one has to implement a low-level model, which
calculates the device physical parameters, such as g-factor, valley splitting — and,
more in general, the system energy levels distribution — and nuclear noise, from
the definition of the structure itself (i.e. the dimensions of the layers). This can
be done through the help of low-level simulators, whose results can be used to see
the behaviour — e.g. through a fitting — of the device relevant parameters for
different structure realizations. These results can be then implemented in the com-
pact model, which will take the structure technological parameters and perform an
extra step to compute the required system parameters. The outcome of the model
simulation will then be dependent on how the device has been practically realized,
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allowing performance optimizations.
Furthermore, as of now, the model is only able to handle a double quantum dot
structure and thus a maximum of two qubits. This matter can be solved from the
model programming point of view, expanding the analysis to the case of n qubits
by finding a general expression for the Hubbard model, able to describe n quantum
dots and their interaction. This proves to be useful in the simulation of more com-
plex structures involving more than two qubits and complex quantum circuits.
Since the model is based on the spin-1

2 encoding, it is straightforward that a fu-
ture improvement might be the implementation of different encodings, such as the
singlet-triplet, the exchange-only and the charge one. This would obviously require
the study of their manipulation techniques, which usually depend on the encoding.
Hence, the system theoretical analysis must be carried out again, but, since the
spin-1

2 qubits incorporate the most relevant features of the spin quantum dots de-
vice, one could probably make use of the work performed in this thesis and adapt
it to the case under study.
The route towards practically employable quantum computing must inevitably pass
through quantum device engineering. Even if the prototype model developed in this
thesis is still not able to allow a performance analysis based on low-level parame-
ters, it might still be a starting point towards the enhancement of semiconductor
quantum devices.
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