
POLITECNICO DI TORINO
Master’s Degree in Computer engineering

Master’s Degree Thesis

A methodology for the design of an
automotive network architecture

Supervisors

Prof. Fulvio RISSO

Ing. Paolo PICCIAFOCO

Candidate

Luca VALENTINI

April 2022





Summary

More than 100 years have passed since the first car was put on the market, and the
concept of the car has changed drastically over time. Initially, the car was conceived
as a vehicle whose task was limited to transporting people from point A to point
B. Now it continues to have its transport function but is also seen as a platform
for technology, where software is as important as hardware. The introduction
of new technologies and artificial intelligence has drastically revolutionized the
automotive sector, forcing it to employ a different approach for the construction of
the vehicle architecture, adopting a service-oriented methodology with the aim of
optimizing computational performance. This thesis, carried out in collaboration
with Italdesign Giugiaro S.p.A., is aimed at investigating and developing models
for the design of a service-oriented network architecture using the PREEvision
software. The PREEvision software uses a graphical notation for the design and
requires the definition of requirements, use-cases, logic diagrams, software diagrams
and hardware (network) diagrams for the generation of the communication model.

The project introduces the problem and complexity of modern vehicular archi-
tectures and shows a methodology for its design. By means of the PREEvision
software and using the CAN network only, a simplified part of the network archi-
tecture concerning the adaptive cruise control functionality is created. Through
the creation of various diagrams in the various layers provided by PREEvision, the
network architecture is created, starting from a logical schema, up to the definition
of signals, frames and the automatic generation of ARXML files for future ECU
development. Afterwards, the architecture is interrogated through metrics, i.e.
functions applied to the created communication model, to assess the efficiency of
the architecture in the design phase.

ii



iii



Acknowledgements

Ringrazio la mia famiglia che mi ha permesso di intraprendere questo percorso di
studi.

Ringrazio Giulia per essere stata fondamentale al fine di raggiungere questo grande
traguardo. Grazie di esserci sempre.

Ringrazio i miei nonni Lorenzo, Maria, Giuseppe e Anna per l’amore che mi
hanno saputo donare e per l’appoggio che non mi hanno mai fatto mancare.
A Nonno Lore, che nonostante il destino ci abbia diviso, continua a proteggermi e
a fare parte dei miei pensieri.

Ringrazio tutti i miei amici perché il loro sostegno e le grandi aspettative che
hanno sempre avuto nei miei confronti mi hanno spronato ad andare avanti e
migliorarmi.

Ringrazio Paolo e Domenico per avermi seguito durante il percorso di tesi. Grazie
alla loro disponibilità e alla loro conoscenza sono riuscito ad ambientarmi in un
mondo che non era il mio.

Ringrazio il professore Fulvio Risso per la disponibilità e la passione che mi ha
trasmesso in questi due anni di magistrale.

iv





Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1

2 Automotive Background 4
2.1 Electrical/Electronic Architecture . . . . . . . . . . . . . . . . . . . 4
2.2 AUTOSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 ARXML file . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Service Oriented Architecture . . . . . . . . . . . . . . . . . . . . . 11
2.4 V-Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 PREEvision software 17
3.1 Vector Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 PREEvision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Customer features and Requirements . . . . . . . . . . . . . 21
3.2.2 Logical, software and hardware architecture . . . . . . . . . 22
3.2.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Software and communication design process in PREEvision according
to AUTOSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 CAN protocol 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 CAN DBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



5 Adaptive Cruise Control Implementation 36
5.1 What is the ACC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Customer Features and Requirements . . . . . . . . . . . . . . . . . 37
5.3 Logical Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 System Software Architecture . . . . . . . . . . . . . . . . . . . . . 56
5.5 Hardware Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.6 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Metrics 77
6.1 Hop count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Bus load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 ECU load single core . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4 ECU load dual core . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Conclusion 95
7.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

A Export CAN DBC 100

B Export ARXML file 102

Bibliography 105

vii



List of Tables

5.2 Customer Features table . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Requirements table . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Speed indicator interfaces . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Accelerator interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Traction interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Cockpit interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Brake interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Radar interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 AdaptiveCruiseControl interfaces . . . . . . . . . . . . . . . . . . . 51
5.11 Mapping table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1 Hop count table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Bus load table without bit stuffing . . . . . . . . . . . . . . . . . . 85
6.3 Bus load table with bit stuffing . . . . . . . . . . . . . . . . . . . . 86
6.4 ECU credits table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Signal weights table . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.6 ECU load table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.7 ECU load table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Figures

1.1 Car functionalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Car technology through the ages . . . . . . . . . . . . . . . . . . . . 3

2.1 Evolution of E/E architecture . . . . . . . . . . . . . . . . . . . . . 6
2.2 AUTOSAR partners . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 ECU division into standard components . . . . . . . . . . . . . . . 8
2.4 AUTOSAR components and their communication . . . . . . . . . . 9
2.5 ARXML file chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Service architecture for a traffic service . . . . . . . . . . . . . . . . 13
2.7 Waterfall approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.8 V-Cycle approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Vector Informatik group logo . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Vehicle domains and connectivity . . . . . . . . . . . . . . . . . . . 18
3.3 PREEvision layers . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Customer Features and Requirements link . . . . . . . . . . . . . . 22
3.5 Relationship between customer features, requirements, logical archi-

tecture and hardware architecture mapping . . . . . . . . . . . . . . 23
3.6 Signal, PDU and Frame relationship . . . . . . . . . . . . . . . . . 24
3.7 AUTOSAR system and software design process in PREEvision . . . 25

4.1 CAN and the OSI model . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Can node components . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Base frame format . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Extended frame format . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 CAN voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6 CAN arbitration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 CAN DBC file with the explanation of the fields, from Csselectronics[14] 34

5.1 Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2 ACC controller in steering wheel . . . . . . . . . . . . . . . . . . . . 38
5.3 Sensors, ecu and actuators communication diagram . . . . . . . . . 42

ix



5.4 Speed indicator logic diagram . . . . . . . . . . . . . . . . . . . . . 45
5.5 Accelerator logic diagram . . . . . . . . . . . . . . . . . . . . . . . . 46
5.6 Traction logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 Cockpit logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8 Brake logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.9 Radar logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.10 AdaptiveCruiseControl logic diagram . . . . . . . . . . . . . . . . . 52
5.11 Model View in PREEvision . . . . . . . . . . . . . . . . . . . . . . 54
5.12 Logical architecture system diagram . . . . . . . . . . . . . . . . . . 55
5.13 Radar software diagram . . . . . . . . . . . . . . . . . . . . . . . . 57
5.14 ACC software diagram . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.15 Network diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.16 RPM sensor, from [15] . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.17 Can Frame Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Hop count metric diagram . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Bus load metric diagram . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3 Bus load chart with or without bit stuffing . . . . . . . . . . . . . . 87
6.4 ECU load single core metric diagram . . . . . . . . . . . . . . . . . 89
6.5 ECU load dual core metric diagram . . . . . . . . . . . . . . . . . . 93

7.1 V-cycle for ECU development . . . . . . . . . . . . . . . . . . . . . 96
7.2 Ethernet design in PREEvision . . . . . . . . . . . . . . . . . . . . 98
7.3 AUTOSAR ECU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

x





Acronyms

AI
Artificial Intelligence

ECU
Electronic Control Unit

E/E
Electrical/Electronic

ACC
Adaptive Cruise Control

ARXML
AUTOSAR Xtensible Markup Language

CAN
Controller Area Network

CAN DBC
CAN database

SOA
Service Oriented Architecture

ADAS
Advanced driver assistance system

SW-C
Software Component

xii



VFB
Virtual Function Bus

RTE
Runtime Environment

BSW
Basic Software

AUTOSAR
Automotive Open System Architecture

LDF
LIN Description File

SOME/IP
Scalable Service-Oriented MiddlewarE over IP

xiii



Chapter 1

Introduction

In the last years, technology has become part of our lives by changing people’s habits.
The technological innovation has improved in every field in terms of functionality,
although increasing the complexity during the product life cycle. One of the
industries most affected by the technological revolution is the automotive industry.
The modern cars are very different from the first cars produced, because nowadays
the concept of the car has changed drastically; in the beginning, people saw cars
as a means of replacing animals without any kind of intelligence, but nowadays
we see cars as a connected, smart and also autonomous means of transportation.
Alternatively, it is possible to think of the automobile as a platform for technology.
[1]

A short list of features in a car are shown in the image below (fig. 1.1). The
features are executed by microprocessor-controlled devices also called ECU; modern
cars can have more than 100 ECUs. The large number of ECUs generates several
problems with regard to cost, complexity and space [2]. By increasing the number
of features inside a car, more people will have to work on its development. The
car’s development is a complex process in which thousands of people are involved
and must collaborate together, and each function developed by group of engineers
must be tested and traced for safety reasons.

This thesis work will be carried out through the use of PREEvision software.
The aim of this thesis is not to create a manual for PREEvision software, but
to discover and test a methodology for the system design in automotive projects
that employs the service-oriented architecture and model-based approach and
to show its potential. The thesis has seven chapters: Chapter 1 introduces the
problem and complexity of modern vehicular architecture; chapter 2 explains the
main automotive concepts covered in this thesis, such as AUTOSAR; chapter 3
explains the division and use of the various layers of PREEvision, which will then
be implemented to create the network architecture for adaptive cruise control;
chapter 4 introduces the main concepts of the CAN network protocol, useful in the

1

https://www.vector.com/it/en/products/products-a-z/software/preevision/#c1750


Introduction

Figure 1.1: Car functionalities

following chapters since it is the only network protocol used in this thesis; in chapter
5, my architecture for adaptive cruise control functionality using the PREEvision
software is created, explaining the strategy adopted; chapter 6 is devoted to the
application to the previously created network architecture of the so-called metrics,
i.e. functions which make it possible to interrogate the created architecture, in
order to check its correct functioning; chapter 7 displays the pros and cons of this
approach and the future developments of this thesis.

In image 1.2 the main features introduced over time in the automotive field are
shown.

2



Introduction

Figure 1.2: Car technology through the ages

3



Chapter 2

Automotive Background

In this chapter, the main automotive arguments discussed in the thesis are explained.
The explanation will help understanding the aim and the strategies used in this
thesis.

2.1 Electrical/Electronic Architecture
Modern vehicular architectures are composed of thousands of electronic components
that make up the electrical and electronic (E/E) architecture. All the function-
alities inside a vehicle, starting from the simplest ones such as windows or lights
management, up to more advanced functionalities - such as autonomous driving or
infotainment - are managed by electronic components that communicate with each
other and also with sensors and actuators. The first introduction of electronic and
mechanical components that interacted with each other to provide functionality
dates back to the late 1950s, along with the introduction of the first version of
cruise control. 70 years later, this functionality has changed drastically, by allowing
the introduction of autonomous driving, and increasing driving safety through
the ability to avoid collisions in case the driver is distracted. In order to create
such complex and efficient functionality, the automobile became a platform for
technology and created a very complex system of ECUs, actuators, sensors and
connections between these components [3].

The E/E architecture is defined as the set of electronic components, software
applications, network architecture and physical links that make up the entire
automotive architecture. This is a generic definition of what is meant by E/E
architecture. The E/E architecture could be viewed from different perspectives,
which provide a better understanding of the utility of using such an architecture:

1. From the point of view of physical topology, it defines which are the components
of the vehicle, such as sensors, ECUs, switches, power supply etc., and how they

4



Automotive Background

are placed, including the network topology and the relative communication of
all components.

2. From the logical topology point of view, it defines all the components and the
relationships between them that make up the architecture from the logical
point of view, leaving out the implementation and physical details of the
elements.

3. The E/E architecture defines a set of rules for designing and building a
vehicular system to meet functionality and performance requirements.

In the past, E/E architectures were very different from those of today. Early
architectures had no domains, meaning each ECU performed a single function and
there was no communication between ECUs. Over the years, the second type of
E/E architecture has introduced the communication between ECUs and the concept
of domain. The domain is a network formed by several ECUs that communicate
with each other to perform functions inherent to that domain; communication
is also possible between different domains. Initially, four domains were created:
body/comfort, chassis, power train and infotainment. The problem with this
architecture was the limited communication between domains. In modern architec-
tures the central gateway has been added, i.e. a very powerful ECU connected to
all domains, which allows communication between domains through itself. This
architecture also allows to share resources between different domains through a
direct communication that does not pass through the central gateway [4].

Today’s central gateway-based architecture also has problems with inter-domain
communication. Such a topology hides the domains’ purposes and this can also be
a problem for the software development of applications. For example, given several
teams working on different functionalities, they could be running on the same ECU,
risking to get very high load rates. From autonomous driving to connecting adjacent
vehicles, the latest automotive innovations are leading to a new architecture design,
which has to manage interaction between different domains in a more efficient way
[5]. One solution could be to have a centralized domain that can manage the other
domains.

The 2.1 image graphically shows the evolution of E/E architectures.

5



Automotive Background

Body/comfort Chassis Power train

Infotainment

Central Gateway

1
2

3
today

Figure 2.1: Evolution of E/E architecture

2.2 AUTOSAR
Until around 2004, the automotive E/E architecture was characterized by propri-
etary solutions, making the automotive sector a closed environment, where each
automaker required components specific to Tier 1. Thanks to the creation and
use of AUTOSAR, the automotive world has drastically changed the way cars are
built. AUTOSAR stands for Automotive Open System Architecture, which is an
open architecture for deploying software in ECUs. AUTOSAR is a consortium
founded in 2003 by BMW, Robert Bosch GmbH, Continental AG, Daimler AG,
Siemens VDO, and Volkswagen [6]. Before the advent of AUTOSAR, solutions in
the automotive world were tailor-made, meaning OEMs required Tier 1 specific
solutions. This was a very expensive solution, because a lot of resources were
reserved for just one OEM. In order to reduce this cost, perhaps by sharing this
cost among several OEMs, AUTOSAR was born. AUTOSAR allows to create an
ECU by putting together different components chosen by the OEMs.

As the image 2.2 shows, AUTOSAR is composed of OEMs which are the car
manufacturers, Tier 1 which are the suppliers of OEMs producing ECUs, software
standards for ECU development, tools and services and semi-conductor companies.
In this architecture, software standards that allow to open the market to all
suppliers programming ECUs following these precise standards are defined. In

6



Automotive Background

order to program these ECUs, the programmer employs different tools and services,
which also allow him/her to hide the implementation choices. In the consortium
there are also the companies that produce the semi-conductors. In short, the
AUTOSAR consortium is composed of OEMs (the ones that make the requests
for certain functionalities), the Tiers 1 (the ones who are in charge of providing
a solution to the OEMs request). The Tier 1’s task of giving a response to the
OEMs request is possible thanks to tools and services, which allow them to generate
standard codes. Finally there are the semi-conductor companies.

4

What is AUTOSAR?
 AUTOSAR® (AUTomotive Open 

System ARchitecture) is an 
open and standardized 
automotive software 
architecture

 Partnership consisting of more
than 140 companies from the
global automotive industry

Source: AUTOSAR, status 04.01.2011

Figure 2.2: AUTOSAR partners

To make the ECU development process as generic as possible, ECUs are divided
into standard components:

• Application Software

• Basic Software

• Hardware

7



Automotive Background

Application

System-call interface

CPU manager
Memory 
manager

File manager Device manager

HW-specific 
services

Hardware

B
as

ic
 S

o
ft

w
ar

e

P
la

tf
o

rm

Figure 2.3: ECU division into standard components

Basic software fits on top of the hardware and exposes standardized set of services.
Above the basic software is the application, where these standardized set of services
are used. The advantage of having a standard is that it provides a well-defined
interface, giving the ability to decouple the development of the application from
the development of the platform, developing both parts in parallel, because in this
way we know from the beginning how these two parts will communicate. This is a
very important advantage for OEMs, because they can much better control the
cost of platform and application development, by assigning different competitors
to develop the components. Tiers 1 also have advantages, because one platform
can be reused across multiple applications [7].

The image 2.4 shows how communication occurs across AUTOSAR components.
Assuming we have a request that comes from an OEM to develop a feature in an
application, developers start working in an abstract layer leaving out the hardware
details. Developers will work with AUTOSAR SW-Cs that contain the functionality
that needs to be developed. The SW-C descriptions define the properties of the
application, in terms of how many building blocks need to be put together, how
they communicate, and what functionality is assigned to that SW-C. AUTOSAR
SW-Cs interact with each other through virtual buses, which are abstract interfaces.
AUTOSAR provides a tool-chain to select which SW-Cs are to be put into the
ECUs that make up the platform. The tool-chain (Deployment tools) in the center
of the image takes the information about what the ECUs are capable of doing,

8



Automotive Background

then takes the information about the functionality of the SW-Cs and produces the
software code to integrate the different SW-Cs into the ECUs [7].

Figure 2.4: AUTOSAR components and their communication

Inside an ECU there is RTE (run time environment) that implements the
communication described in the SW-C description, and allows different SW-C
to communicate. For instance, in the second ECU, SW-C 3 requests a service
from SW-C 2 and the communication will be handled by the RTE [7]. With this
architecture, the application is platform-independent, so the same application can
be used on different platforms using the deployment tools, i.e. the tool-chain to
generate the code. Through this approach, it is possible to obtain a portable system.
In summary, the components of the AUTOSAR architecture are as follows:

Software Component They are the atomic components of an application, i.e.
software components which cannot be decomposed and deployed in different
ECUs. The SW-Cs are always in one ECU.

Virtual Functional Bus It is a set of logical connections through which the
SW-Cs communicate.

Runtime Environment It is the specific code for an ECU. It is the code that is

9



Automotive Background

generated once the mapping between the component software and the ECU is
defined.

Basic Software This is also an ECU specific code that provides the services used
by the RTE to enable the execution of the software components.

AUTOSAR has two versions: classic and adaptive. AUTOSAR Classic allows
the development of basic functions within a car, such as turning on lights, man-
aging pedals, etc., and does not provide the ability to interact with components
outside the vehicle to create more complex functionality. AUTOSAR Adaptive, on
the other hand, supports complex applications with the ability to communicate
with components outside the vehicle, by using a much more powerful hardware
architecture. Through AUTOSAR Adaptive, it is possible to create applications
for autonomous driving, where high hardware performances are required. In this
thesis, only AUTOSAR Classic is used.

2.2.1 ARXML file
An ARXML file is a database of AUTOSAR configurations and is used to describe
different aspects of the ECUs, such as software components, communication, etc.
This file type was created to standardize data exchange between the various
companies that make up the automotive market. ARXML files are classified in
different types:

System Configuration It contains information related to the ECUs, especially
messages, signals sent and received by the ECUs, ports and interfaces of the
software components present in the ECUs.

ECU Extract It is a part of a system configuration file. OEMs prepare system
configuration files, while Tiers 1, who are responsible for an individual ECU,
are only interested in the ECUs they have to make, so they use ECU extract
files for the development of individual ECUs. This file contains the messages,
signals sent and received by an ECU, but also the details of SWCs like for
example ports and interfaces of an ECU.

ECU Configuration The input of the ECU configuration file is a portion of
the ECU extract file. The purpose of this file is to provide configuration
parameters for the BSW modules within an ECU. Starting from this file, it
is possible to generate and build the ECU executable. The relation between
system configuration, ECU extract and ECU configuration file is shown in the
following picture.

10



Automotive Background

Figure 2.5: ARXML file chain

SWC Description It is specific to software components; it contains the ports
and interfaces of a particular SWC. The difference with ECU extract files is
that this file does not contain any message or signal.

BSW Module Description It contains the definition of the data structures of all
configurable parameters of the BSW modules. These files are implementation
specific and are part of the static code of the BSW modules.

2.3 Service Oriented Architecture
As the chapter 1 reports, modern vehicles are no longer just mechanical components
for the purpose of moving the automobile, but they are a platform for the technology
with their own intelligence. The automobile, seen as a technological platform, is
dependent on the embedded systems, making their efficiency very relevant in order
for its performance to be optimal. The high number of ECUs and features inside
an automobile forces manufactures to create a very efficient system, that allows
ECUs to be connected and to take advantage of functionalities. Some examples of
advance functionalities are the autonomous driving, or the ability to install apps
inside the car like a smartphone. In order to understand the problem with today’s
systems, it is necessary to understand the difference between complex system and
traditional system; the difference is that the latter is homogeneous, bounded and
static, while the first one is heterogeneous, unbounded, dynamic and undefined.
Modeling and designing these new complexes engineered systems requires intern
and alternative paradigms in system architecture.

Service Oriented Architecture (SOA) is the most used and efficient software
design paradigm for high level systems in the automotive field. [8] SOA is an
approach or a template software architecture for distributed systems architecture
that employs coupled services, standard interfaces and protocols to deliver cross
platform features. In this approach, the participants provide or consume services
(features) using a defined protocol over a network. The goal is to distribute logic

11



Automotive Background

over a number of atomic services that will interact with each other to provide more
complex functions [9].

Services are the most important components of a service-oriented architecture.
A service can be any type of functionality, any type of feature or any type of
data. Services are loosely coupled to the system; this means that these different
modules can join or leave, couple or decouple from the system, thus maintaining
their independence and re-usability. A service [10]:

• represents functional unit

• is a black box for consumers

• is self-contained

• is stateless

• can consist of underlying services

• uses standardized interfaces to communicate

• re-usability
A service provides information and functions available to consumers when it acts as
a provider, while when it acts as a consumer, it uses the data or functions of other
services to provide its own functions. A complex service consists of multiple simple
services.[9] The communication between services is made by service interface that
consists of:

• method

• property (field, attribute)

• event
One of the possible methods is an operation called by a service, but executed by
another service, which can expose result data through properties. The service that
calls the method can also receive notification of changes of the field’s value through
event.

In the picture below 2.6 there is an example of a service oriented architecture,
which can be used in navigator inside a car. The main service LocalTraffic gives
information about the traffic for a specific city. The service plays both a provider
and a consumer role. The communication between the service provider and the
service consumer is made by the interface LocalTrafficInterface. The consumer
requests the traffic for a certain city and the main service bundles the information
and makes it available to consumers. Inorder to do this, the LocalTraffic gets
information from other services. The Location service returns a city on the basis of
the geographical coordinates. This allows to request the traffic status for a city
from the Traffic service.

12



Automotive Background

Tr
af

fi
c

Lo
ca

ti
o

n
Lo

ca
lT

ra
ff

ic

Tr
af

fi
cP

ro
vi

d
er

:[
Tr

af
fi

cI
n

te
rf

ac
e

]

Tr
af

fi
cC

o
n

su
m

er
:[

]u
se

s

Lo
ca

lT
ra

ff
ic

P
ro

vi
d

er
:[

Lo
ca

lT
ra

ff
ic

In
te

rf
ac

e]

Lo
ca

lT
ra

ff
ic

C
o

n
su

m
er

:[
]

u
se

s

Lo
ca

ti
o

n
P

ro
vi

d
er

:[
Lo

ca
ti

o
n

In
te

rf
ac

e
]

Lo
ca

ti
o

n
C

o
n

su
m

er
:[

]

u
se

s

Se
rv

ic
e

 P
ro

vi
d

er
:

Tr
af

fi
cP

ro
vi

d
er

Se
rv

ic
e

 In
te

rf
ac

e
Tr

af
fi

cI
n

te
rf

ac
e:

 (
se

rv
ic

e 
in

te
rf

ac
e)

•
tr

af
fi

cW
ar

n
in

g(
ev

en
t)

•
ge

tT
ra

ff
ic

(m
et

h
o

d
)

•
C

it
y 

(p
ar

am
et

er
)

Se
rv

ic
e

 P
ro

vi
d

er
:

Lo
ca

lT
ra

ff
ic

P
ro

vi
d

er

Se
rv

ic
e

 In
te

rf
ac

e
Lo

ca
lT

ra
ff

ic
In

te
rf

ac
e:

(s
e

rv
ic

e 
in

te
r)

•
ge

tC
u

rr
en

tT
ra

ff
ic

(m
et

h
o

d
)

•
cu

rr
en

tP
o

si
ti

o
n

(p
ar

am
)

Se
rv

ic
e

 P
ro

vi
d

er
:

Lo
ca

ti
o

n
P

ro
vi

d
er

Se
rv

ic
e

 In
te

rf
ac

e
Lo

ca
ti

o
n

In
te

rf
ac

e:
(s

er
vi

ce
 in

te
r)

•
ge

tC
it

y(
m

et
h

o
d

)
•

p
o

si
ti

o
n

(p
ar

am
)

d
ep

en
d

an
cy

d
ep

en
d

an
cy

F
ig
ur
e
2.
6:

Se
rv
ic
e
ar
ch
ite

ct
ur
e
fo
r
a
tr
affi

c
se
rv
ic
e

13



Automotive Background

In conclusion, SOA describes the interaction between services made by service
interfaces. The power of its abstract design is the creation of AUTOSAR compatible
systems and the advantages can be listed as follows:

Loosely coupled Services are independent, changes in one service do not affect
other services

Agility Reusable services allow to reuse code and reduce the number of lines
written by developer

Scalability Services can run across multiple platforms. A service can be executed
in all ECUs present in a car.

Reliability Services are small and independent, thus making it easier to test and
debug application

Easy Maintenance Maintaining or updating the application is easy because the
service-oriented architecture is an independent unit

2.4 V-Cycle
Software applications in the automotive world need a high degree of reliability
because of their application field, but most of all, once installed in the car, they
have to work well even without future updates. For example, the Adaptive Cruise
Control feature is developed by the car manufacturer, and once it is installed in
the car, it must work properly since the very beginning. This requires that the
number of bugs within the programmed software is close to zero, and that many
tests have been done to verify that the software works properly. Since the scope is
critical to human safety, a slightly different approach than the waterfall approach
must be used for programming the software. The traditional approach to software
development is called waterfall. In this approach, software development phases
are executed sequentially, because each phase depends on the previous one. The
phases are:

Requirements All the specifications that the software needs are brought together.
What the software needs to do is defined.

Design The programming languages and frameworks to be used are chosen, and
the software architecture is defined.

Development The application is developed.

Testing & Integration Tests are performed to verify the correct functioning of
the application

14



Automotive Background

Deployment The application is released for use.

Maintenance The application is modified through updates based on customer
requests.

Maintenance

Requirements

Design

Development

Testing & 
Integration

Deployment

Figure 2.7: Waterfall approach

This approach performs testing only after the development phase is complete. In
very complex systems, modifying parts in the previous phases in case of an error
significantly increases the time to release the software, because each phase will
have to be modified. In the automotive industry, there is a need to perform many
more tests to avoid such situations, but also to create a more reliable system.

The solution is to adopt the V-Cycle model/approach. In V-cycle, "v" stands for
verification and validation. In this approach, the development process is divided
into two parts, one for each arm of the V. In this model, two macro phases are
defined, the system definition phase and the test phase. Each macro phase has
micro phases in which actions are performed; each micro phase belonging to one
arm of the V communicates and interacts with the other micro phase in the other
arm, so each definition phase (phase in the first arm) has a related verification
and validation phase, that is defined before proceeding to the next phase. The
individual phases are:

Requirements Customer requirements are defined to understand the goal of the
application.

System Design The hardware and communication between the components that
will be used for the application is defined.

Architecture Design The architecture of the application and the communication
of the various modules that compose it are defined. The communication can
be internal to the system or external.

15



Automotive Background

Module Design The internal workings of all the modules that make up the system
are defined in detail.

Coding The code is developed

Unit Test The operation of each module is verified.

Integration Test The operation of the finished product is verified once all modules
are assembled together.

System Test It is verified that the created system meets the initial specifications.

Acceptance Test The application is validated by the client.

At each stage of system definition, tests for that stage are created and run when
the system is completed.

Requirements

System 
Design

Architecture 
Design

Module
Design

Unit 
Test

Integration
Test

System
Test

Acceptance
Test

Coding

Figure 2.8: V-Cycle approach

All automotive applications are developed following this approach, because it
allows to create very complex systems with an excellent quality and reliability of
the final product.

16



Chapter 3

PREEvision software

In this chapter there is a short explanation about the use of PREEvision and its
functionalities. More example are reported in the next chapter where there is the
explanation of the project using this software.

3.1 Vector Group
Vector Informatik is a computer company specialized in software and component
development for networking of electronic systems based on the serial bus systems.
Vector developed software tools like CANalyzer to analyze network protocols,
CANoe for development, testing and analysis of ECUs and entire ECU networks.
For my thesis, the most important one is PREEvision and it will be explained in
the next section.

Figure 3.1: Vector Informatik group logo

3.2 PREEvision
Given the large number of functionalities and hardware components inside a car,
such as autonomous driving, the design of a car is a very complex and critical
process. Nowadays the information needed by an ECU to work properly can be

17



PREEvision software

received locally or from the cloud. Due to the large number of ECUs and their
reliability in a car, an ECU must first be designed logically tracing all the signals
that are sent and received, and then developed.

PREEvision is a tool for model-based development of distributed, embedded
systems in the automotive industry; it supports the entire development process in
a single and integrated application. PREEvision has a lot of features for develop-
ing classic or service-oriented architectures, managing architecture requirements,
designing communication in an automotive architecture, designing vehicle safety,
developing AUTOSAR-compatible software and architectures, and even managing
wiring harnesses. [11]. Using this software all functions provided by E/E system of
a modern vehicle are assigned in different domains; Using this software all functions
provided by the E/E system of a modern vehicle are assigned in different domains;
the functions are networked within the domains, but can also communicate with
external domains. For example, advanced driver assistance functions communicate
through the network with transmission management, engine management, steering,
and braking systems. [12]

Figure 3.2: Vehicle domains and connectivity

18



PREEvision software

Today new functionalities have influenced and changed E/E architectures dras-
tically and they can be summarized as follows:

• New power-train concepts as electric and hybrid drives

• Cloud integration

• Advanced driver assistance systems

• New user interfaces such as gesture control.
PREEvision allows to design all these aspects and more, creating the best E/E

architecture with a model-based approach, supporting the design not only for a single
vehicle, but also supporting a complete product line of vehicles including many
variant options.[12] It uses a wide, domain-specific graphical specification language
and data model optimized for the development of embedded E/E systems; it has
an architecture modeling layers:

• Product goals

– Customer features
– Use cases
– Requirements

• Logical function architecture

• System software/service architecture (according to AUTOSAR)

– Service-oriented architecture
– Software library
– System software architecture
– Implementation

• Hardware architecture

– Hardware component architecture
– Hardware network topology (according to AUTOSAR)
– Electric circuit

• Wiring harness

– Wiring harness
– Geometry (vehicle topology)

• Communication (according to AUTOSAR)
All these layer are linked together by mappings.

19



PREEvision software

F
ig
ur
e
3.
3:

PR
EE

vi
sio

n
la
ye
rs

20



PREEvision software

For this thesis I didn’t use all layers, I just used customer features, requirements,
logical function architecture, system software architecture, hardware network topol-
ogy and communication. In the following sections there is a brief introduction to
these layers, but the full explanation is in chapter 5.

3.2.1 Customer features and Requirements

The customer features describe the characteristics of a vehicle or a functionality,
which are used to specify the features in a non-technical manner. A set of customer
features can describe all or most of the functions of a vehicle. An example of a
customer feature can be the description of the start-stop functionality or the car’s
air conditioning.

After writing the customer feature, one should write the requirements, i.e. a
redefinition of customer features in a technical manner, where one describes in
detail how those functionalities work. An example of requirement can be the
description of an ECU that is in charge of managing the start-stop functionality.
There are different types of requirements:

Requirement (shall) It is a requirement that engineers should meet.

e.g Center of mass should be at center of the vehicle (top view) and 40
cm from bottom.

It may not be exactly in the center.

Definition (must) It is a requirement that engineers must meet

e.g The maximum weight of the vehicle is not to exceed 1.5 tons.

This requirement must be satisfied.

Information (can) It is an additional requirement, not relevant to the functioning.
It can also be used to write useful information.

e.g Opening and closing of doors should make a nice sound.

Creating a link between customer features and requirements for traceability
reasons is a good practice.

21



PREEvision software

Requirement Analysis

CUSTOMER FEATURES

REQUIREMENTS

Link

Figure 3.4: Customer Features and Requirements link

3.2.2 Logical, software and hardware architecture

The logical function architecture provides graphical block elements that allow to
define an abstract graphical functional network; The graphical elements are used to
describe logical functions, sensors, actuators, building blocks (container of blocks),
etc.

In the software architecture, software components and their communication are
designed graphically, meaning that no code is required. Even if you can add to
graphical software components written code, PREEvision objective is to design the
architecture. As for the development, you should use other tools. The software
architecture supports the AUTOSAR methodology.

The hardware architecture allows the modelling of physical components, such
as the electronic components inside an ECU, actuator and sensor but also their
networking. The hardware architecture supports the AUTOSAR methodology. The
mapping between hardware architecture components and logical or software com-
ponents is required to use PREEvision functionalities such as the auto generation
of signals.

22



PREEvision software

Requirement Analysis

CUSTOMER FEATURES

REQUIREMENTS

Link

Design

LOGICAL ARCHITECTURE

HARDWARE 
ARCHITECTURE

Mapping

Mapping

Mapping

Figure 3.5: Relationship between customer features, requirements, logical archi-
tecture and hardware architecture mapping

3.2.3 Communication
The PREEvision communication design supports the AUTOSAR communication
design for all bus systems, such as LIN, CAN, CAN FD, FlexRay and Ethernet.
The communication layer contains all communication information such as signals,
PDU, frame. PREEvision offers table editors and automations for signal, frame and
PDU generation. In order to design network communication the Logical Function
Architecture, System Software Architecture and Hardware Architecture must be
defined, because specific components of these layers are needed. In PREEvision, all
components in the various layers are called artifacts; in the communication layer,
the main artifacts for this thesis are:

Signal IPDU It is a data packet that may contain one or more signals. PDUs
are transmitted via frames.

Signal It is the data exchanged between ECUs.

PDU Transmission It’s the transmissions of a PDU and its signals on a frame
to which the PDU is assigned.

CAN Frame It contains and transmits PDUs

23



PREEvision software

CAN Frame Transmission It is the representation of a CAN Frame, containing
PDUs, on a bus.

CAN Signal Transmission It contains the information for the transmission of
a CAN Signal.

Gateway A gateway ECU is an ECU that connects two or more ECUs. The
frames between the two ECUs will pass through the gateway ECU.

Signal Gateway Routing Entry It indicates the incoming signals and outgoing
signals transmissions over buses.

PDU Gateway Routing Entry It indicates the incoming PDUs and outgoing
PDUs transmissions over buses.

Frame Gateway Routing Entry It indicates the incoming Frames and outgoing
Frames transmissions over buses.

Channel Communication It groups relevant communication information like
ECU Interfaces, Frame, PDU and Signal Transmissions.

(This information are taken from PREEvision’s manual [11])
The relations between signal, PDU and frame are shown in the following figure.

Figure 3.6: Signal, PDU and Frame relationship

24



PREEvision software

3.3 Software and communication design process
in PREEvision according to AUTOSAR

In order to design communication in PREEvision that allows export of ARXML
files, there are several steps to follow represented in the figure 3.7. The process
starts with the creation of software and hardware architecture. When these two
architectures are finished, the software components must be mapped to the hardware
components where they should be executed. The mapping between software and
hardware refers to the assignment of each software component to an ECU, meaning
that a particular software component runs in that ECU. Software components
communicate with each other through data elements on a bus. The signal router
creates signals and signals transmissions based on software-hardware mapping, and
automatically maps data elements to corresponding signals. Running the signal
router also creates network routing. At the end, it’s possible to design the network
communication for every bus such as CAN, CAN FD, LIN, FlexRay and Ethernet.
With these design steps, PREEvision can export ARXML files useful for ECUs
implementation using AUTOSAR the basic software modules. (This information
are taken from PREEvision’s manual [11])

Figure 3.7: AUTOSAR system and software design process in PREEvision

"Signal routing is an automation mechanism which is able to automatically
analyze the defined communication dataflow to determine the best signal routes,
including, for communication bus systems, the optimal points at which to locate

25



PREEvision software

inter-bus gateways. The signal router is also able to generate the signals and
automatically carry out the required system signal mappings" [11].

After the signal routing the Frame-PDU synthesis allows the generation of Frame
Transmissions and PDU Transmissions. "The frame-PDU synthesis calculates the
transmissions based on the static communication information of the specific network
communication CAN, LIN or FlexRay" [11].

26



Chapter 4

CAN protocol

The first cars with some electronic components had few independent ECUs in
charge of executing few functionalities, there was no communication between them.
In order to implement advanced functionality, several ECUs had to communicate
with each other. At the beginning, the communication was carried out by physical
channels for each transmitted signal, then network protocols were introduced.
Due to its performance, upgrade-ability and flexibility in system design, the most
widespread protocol in automotive is the CAN protocol.

This chapter shows a brief introduction of the CAN protocol.

4.1 Introduction
The CAN (controller area network) bus protocol was invented by Robert Bosch
GmbH in 1986 for the automotive industry. Before CAN bus gained popularity,
vehicle wiring harnesses could contain miles of wire. The CAN network allows to
create a robust communication between ECUs with a single cable with a "high
immunity to electrical interference and the ability to self-diagnose and repair data
errors" [13].

The CAN protocol is implemented in hardware and defines the Data Link Layer
and part of the Physical Layer in the OSI model, the other layers can either be
implemented using existing non-proprietary higher layer protocols or they can be
defined by the system designer.

27



CAN protocol

Figure 4.1: CAN and the OSI model

The two ISO documents ISO 11898-2 and ISO 11898-3 describe two different
CAN physical layers:

• High-speed CAN physical layer

• Low-speed CAN physical layer

The differences between these two physical layers are the data transmission rates
and the voltages. The maximum speed for High-speed CAN (ISO 11898-2) is 1
Mbit/second while Low-speed CAN (ISO 11898-3) can go up to 125 kbit/second. A
CAN network has a set of CAN nodes linked via a CAN bus, a linear and shared bus.
The maximum network extension is 40 m with a maximum of 32 nodes. "The CAN
communication protocol is a carrier-sense, multiple-access protocol with collision
detection and arbitration on message priority (CSMA/CD+AMP) "[13], so each
node before sending data verifies if the bus is busy and in case of collisions, they
will be resolved through a bit-wise arbitration in the identifier field of a message.
The bus access will always be given to the higher priority identifier, that is the
message with the smaller identifier.

4.2 Node
An ECU in a CAN network is called node and two or more nodes create a network.
The nodes are connected between them through a can bus. Each node assigns a
CAN identifier to the messages it sends that make them unique in the network and

28



CAN protocol

allows the message arbitration, the process in which nodes decide who can access
the bus. The message arbitration is explained in the following chapter 4.4.

A CAN node consists of:

• Microcontroller

• CAN controller

• Transceiver

The microcontroller decides which messages must be sent and it understands
the content of received messages.

The CAN controller acts as a bridge between the microcontroller and the CAN
transceiver; it receives serial bits sent by other nodes through the CAN transceiver,
and it stores them in memory so that the microcontroller can retrieve them. It also
sends serial bits from microcontroller to CAN transceiver.

The CAN transceiver converts the data stream received and sent by CAN
bus, into a format useful for the controller and vice versa. Figure 4.2 shows the
components of a CAN node and their relationships.

CAN Node

Microcontroller

CAN Controller

CAN Transceiver

BUS

Figure 4.2: Can node components

29



CAN protocol

4.3 Frame
A CAN network can be configured for two different frame formats:

• Base frame format

• Extended frame format

The main difference is the identifier length, because the base frame format has 11
bits for the identifier having at most 211 = 2048 identifiers, while the extended
frame format reserves 29 bits having at most 229 = 537 million identifiers.

Figure 4.3: Base frame format

The image above shows the bit fields in the CAN base frame. The meaning of
the frame format is the following:

• SOF (Start Of Frame), it indicates the start of frame and it is useful to
synchronize the nodes.
1 bit length

• 11-bit Identifier, it represents the message priority.
11 bits length

• RTR (Remote Transmission Request), it indicates the frame type. It is 0 for
data frame and it is 1 for remote frame.
1 bit length

• IDE (Identifier Extension), it is 0 when it is a base frame with 11 bit identifier.
1 bit length

• r0 (Reserved Bit), it is a space for future standard.
1 bit length

• DLC (Data Length Code), it represents the number of data bytes transmitted.
4 bits length

• Data Field, It contains the data
from 0 to 8 bytes

30



CAN protocol

• CRC (Cyclic Redundancy Check), it is an error-detecting code.
16 bits length

• ACK, every node that receives a frame overwrites the 1 ACK field with 0,
indicating an error-free message has been sent. ACK is 2 bits, one is the
acknowledgment bit and the second is a delimiter.
2 bits length

• EOF (End of Frame), it indicates the end of a frame.
7 bits length

• IFS (Inter-Frame Spacing), it is the time that the controller needs to move a
frame into position in the buffer area.
3 bits length

Figure 4.4: Extended frame format

The image above show instead the extended frame format; the differences are:

• SRR (Substitute Remote Request), it is always 1
1 bit length

• IDE (Identifier Extension), it is 1 when the frame has an extended format
1 bit length

• 18-bit Identifier, it represents the message priority
18 bits length

• r1, it is a reserved bit typically set to 0
1 bit length

In CAN protocol there is also a distinction between the message types that can
be transmitted on a CAN bus; there are four different message types:

• Data Frame

• Remote Frame

• Error Frame

31



CAN protocol

The data frame is used to send and receive user data, because it contains the
data field.

The remote frame is a frame used to request a data frame from any CAN node.
It is similar to a data frame but it has two differences: it has no data field and it
has the RTR bit set to 1.

The error frame indicates the presence of an error in the communication. It is
sent by a node that detects an error, and the other nodes that receive the error
frame send another one. This process allows the data frame sender to re-transmit
the message without errors.

4.4 Bus
In a CAN network physical signal transmission is based on the transmission of
differential voltages, therefore the CAN bus has two lines, the CAN high line and
the CAN low line. When the CAN bus is in idle mode, the two lines runs at 2.5V,
when there is data transmission CAN high line runs at 3.75V and the CAN low
line runs at 1.25V

Figure 4.5: CAN voltage

The bus access has an event-driven approach: when there are two nodes which
try to occupy the bus at the same time, bus access is done with bit-wise arbitration
and in a non-destructive manner. Non-destructive means that after winning the
arbitration, the winning node does not start sending the message again, but
continues from the last bit sent. During arbitration, the node is never corrupted.
[13]. The arbitration is won by the CAN frame with the lowest ID, because the
lowest message identifier number has the highest priority. The CAN arbitration
process is handled automatically by a CAN controller, because each node that
sends data monitors its own transmission. When a node sends its identifier bits,
it checks if the bus state contains the value it wrote. If the value has changed,

32



CAN protocol

it means that there is another node with a lower identifier that wants to use the
channel, so the node with higher identifier stops the transmission. Figure 4.6 shows
an example of arbitration on a CAN bus: Node B can send its packet only at the
end because when it wants to write on the bus, there is always a frame with higher
priority on the bus. In the CAN bus there are idle moments between frames used
to synchronize nodes.

CAN BUS

Node C

Node B 1011

111

111 1011

Node A 11

11

111

111

1011

1011

Figure 4.6: CAN arbitration

4.5 CAN DBC
A CAN DBC file (CAN bus database) is a text file that contains information
such as message ID, message name, DLC, signal, sender and other information
for decoding RAW CAN bus data to human readable values. It is very useful for
tracking all the messages that populate a CAN network in the network design
phase, and it is used with raw CAN frames to understand their content exchanged
between can nodes. This section explains with examples taken from Csselectronics
[14] the rules and the utility of the these files.

DBC file has a well-defined structure where each value in a position has its own
meaning; the structure is shown in the picture below 4.7

33



CAN protocol

Figure 4.7: CAN DBC file with the explanation of the fields, from Csselectron-
ics[14]

The explanation of the message syntax is as follows:

• A message starts with BO_ and the ID must be unique and in decimal

• The DBC ID adds 3 extra bits for 29 bit CAN IDs to serve as an ’extended
ID’ flag

• The name must be unique, 1-32 characters and may contain [A-z], digits and
underscores

• The length (DLC) must be an integer between 0 and 1785

• The sender is the name of the transmitting node, or Vector__XXX if no name
is available

The explanation of the signal syntax is as follows:

• Each message contains one or more signals that start with SG_

• The name must be unique, 1-32 characters and may contain [A-z], digits and
underscores

• The start bit indicates the byte at which the data payload begins.

• The bit length is the signal length

• The @1 specifies that the byte order is little-endian/Intel. @0 for big-
endian/Motorola

• + indicates that the value type is unsigned. - for signed signals

• The (scale,offset) values are used in the physical value linear equation

• The [min|max] and unit are optional meta information

34



CAN protocol

• The receiver is the name of the receiving node (Vector__XXX is used as
default)

Starting from a physical CAN frame and a CAN DBC file, we can read and
understand the message inside.

Listing 4.1: Physical CAN frame
1 CAN ID Data bytes
2 0CF00400 FF FF FF 68 13 FF FF FF

Listing 4.2: Small part of a CAN DBC file
1 BO_ 2364540158 EEC1: 8 Vector_XXX
2 SG_ EngineSpeed : 24|16@1+ (0.125,0) [0|8031.875] "rpm" Vector_XXX

With some calculation, it is possible to obtain the decimal value of the engine speed,
that is 621 rpm. For a complete explanation of the steps, follow Csselectronics’s
explanation [14]

35



Chapter 5

Adaptive Cruise Control
Implementation

In this chapter I tested the efficacy and validity of a solution for the design of a
network architecture of a car, by designing the adaptive cruise control (ACC) and
related functionalities, such as car acceleration or deceleration, radar information,
etc. The ACC architecture scheme presented in the following sections will be a
simplified version, because the objective is not to improve the functionality, but to
outline it in PREEvision, thereby taking advantage of the features of this software,
for example the auto generation of arxml files. Some concepts of the functioning
of a car are deliberately neglected to keep the project as simple as possible.

In the next sections there is a brief explanation of what is and how the adaptive
cruise control works, and the explanation of my thesis.

5.1 What is the ACC
The adaptive cruise control is an intelligent system, capable of setting the car’s
speed, increasing or decreasing it according to traffic conditions. The main objective
is to keep a safe distance from the vehicles in front without pilot intervention. This
functionality detects the presence of vehicles or obstacles in the space in front of the
car, through cameras, radar and frontal sensors. In this way, once the driver sets
the speed and the distance he wants to keep from the car in front, the ACC will
automatically perform all braking and acceleration based on traffic conditions.If
the vehicle in front slows down, the ACC will reduce the speed to keep the safety
distance previously set. When the driver wants to overtake a vehicle, he must insert
direction indicator and the system will immediately understand the intention to
overtake or change lanes. Typically, in the steering wheel there is a controller for
the ACC, with which the driver can turn on the functionality and he can set the

36



Adaptive Cruise Control Implementation

speed and the distance to keep.
This feature allows to maintain a steady pace in a completely safe manner

because in case of obstacles, the reaction time of the vehicle is less than the human
one. Another advantage is the comfort of the trip because the driver must not
intervene on the pedals.

Figure 5.1: Adaptive Cruise Control

5.2 Customer Features and Requirements
In this section, there is the description of a simplified adaptive cruise control in
technical and non-technical manner. Both customer features and requirements are
schematized in table format (the table is simplified for graphic reasons), respecting
a hierarchy that allows to create levels. Customer features and requirements are
grouped according to the type of functionality, so the top level is the title and
below is its description.

The functionalities I tried to implement are the following. The car has two
driving modes:

Manual mode (classic) The driver plays the classic role of the pilot, steering,
accelerating and decelerating based on its needs and the environment around it.
On the one hand, in order to accelerate or decelerate the car, the driver must

37



Adaptive Cruise Control Implementation

press with his foot the pedal appropriate to the acceleration or deceleration of
the car. On the other hand, in order to steer the vehicle, the driver must use
the steering wheel that allows to steer the front wheels.

Advanced mode through ACC The driver has a controller in the steering wheel
to take advantage of the autonomous driving functionality. In short, this
feature allows the car to maintain the speed and distance set by the driver from
the car in front, without driver intervention. If the surrounding environment
does not allow to keep the set speed and distance, the car will automatically
decrease the speed and brake the car. The pilot will not have to intervene on
the pedal. In order to use this functionality, the driver must first turn on the
feature using the appropriate button on the steering wheel. Once turned on,
the commands present in the image below 5.2 will allow you to set the speed
and distance to keep. There is also a button on the controller that temporarily
disables the feature, thereby returning to manual driving mode, and a button
that resumes operation of the feature.

Figure 5.2: ACC controller in steering wheel

With this brief introduction, the customer features can be schematized in this way:

38



Adaptive Cruise Control Implementation

Customer Features
Level Text Type Links
1-1 1.1 Movement Heading 0
2-2 The car can decelerate in different ways:

• When you press the decelerator

• When the adaptive cruise control wants de-
celerate

Customer
Feature

3-2 The car can accelerate in different ways:

• When you press the accelerator

• When the adaptive cruise control wants ac-
celerate

Customer
Feature

4-2 The speed indicator allows you to understand the
current speed of the vehicle

Customer
Feature

0

39



Adaptive Cruise Control Implementation

Customer Features
Level Text Type Links
5-1 1.2 DriverAssistance Heading
6-2 Adaptive Cruise Control (ACC)

1. The driver sets the speed and the distance
(optional) to keep from the next car and the
car will follow these parameters

2. (ACC off) To turn on the ACC you must
hold down for 2 seconds the "cruise control"
button

3. (ACC on) To turn off the ACC you must
hold down for 2 seconds the "cruise control"
button

4. To temporarily enable or disable the acc you
must click the "Cruise control" button

5. Command scheme:

• "volume up" speed increased:
– Hold the button down; the speed will
be increased by 10 km/h every 0.5
ms

– One button click the speed will be
increased by 1 km/h

• "volume down" speed decreased
– Hold the button down; the speed will
be decreased by 10 km/h every 0.5
ms

– One button click; the speed will be
decreased by 1 km/h

• "+ button" distance increased
– One button click; the distance will
be increased by 1 km/h

Customer
Feature

8

40



Adaptive Cruise Control Implementation

Customer Features
Level Text Type Links
5-3

• "- button" distance decreased

– One button click; the distance will
be decreased by 1 km/h

• "CNL button"

– With this button you can deactive
the adaptive cruise control function-
ality. The ACC is enabled but is
not actived

• "RES button"

– This button allows to resume the
adaptive cruise control functional-
ity

Customer
Feature

8

7-1 1.3 Information Heading
8-2 The cockpit is a display that shows information

to the driver about the ACC and current speed
Customer
Feature

0

Table 5.2: Customer Features table

The movement of the vehicle is a process that involves several sensors, actuators
and ECUs that communicate with each other through the exchange of signals.
Deceleration or acceleration of the vehicle can occur in two different ways:

The driver acts on the pedal The pedal pressure information is transformed
into a value from 0 to 100, which will be sent to the unit that will act on the
brake calipers or engine to deliver more power.

ACC wants to slow down or speed up the car The speed to be held is sent
to the unit that will act on the brake calipers or the engine to deliver more
power.

The operation and related criteria of the ACC are as follows:
before the acc is put into operation, it must pass a series of tests to verify the
correct functioning of the sensors. Specifically, the radar, braking system and power
delivery system are checked for their correct operation. If there are any problems,

41



Adaptive Cruise Control Implementation

ECU

signal

signal

signal

Figure 5.3: Sensors, ecu and actuators communication diagram

an error signal should be sent and the use of the autonomous driving functionality
should be prohibited. ACC can be enabled only when the car speed is higher than
30 km/h. Once the feature is activated, the radar will produce information to build
the environment surrounding the car. The driver has to set the speed and distance
to be kept, which will then be sent to the unit that is in charge of moving the car.
If the radar notices obstacles in front of the car, the ACC will calculate the speed
to keep in order to maintain the distance set by the driver, and send the signal
containing the speed the car should keep to the unit that will take care of slowing
down or accelerating the car. If the driver does not set the distance, it will be used
a value calculated by the safety distance formula using the current speed. (Formula
for calculating the safety distance: The safety distance is the distance any vehicle
must maintain from the one in front of it in order to stop, when necessary, without
colliding with it. When evaluating the safety distance, it is important to take
certain factors into account: the driver’s reflexes; the type and state of efficiency
of the vehicle; speed; visibility and atmospheric conditions; traffic conditions; the
slope of the road and the characteristics and conditions of the road surface. A
simple formula to remember in order to roughly calculate a good safety distance
is as follows: divide your speed expressed in km/h by 10 and square the result;
the resulting number is a good indicator, in meters, of the safety distance to be
maintained. Example: at 50 km/h you should maintain a distance of 25 meters).
If the radar does not notice any obstacles, the current speed is less than the speed
set by the driver, and the current distance is greater than the distance set by the
driver, the acc will send a signal containing the speed to be reached to the power
unit.

42



Adaptive Cruise Control Implementation

Requirements
Level Text Type Links
2-2 DriveTrain Req

package
3-3 Brake Req

package
4-4 When the driver presses the brake pedal, the in-

formation is sent to the brake unit. The possible
values are mapped on a scale from 0 to 100

Req
(shall)

1

3-3 When the ACC needs to slow down, it sends that
information to an ECU that is involved to give
the information to the engine unit.

Req
(shall)

1

6-3 Accelerator Req
package

7-4 When the driver presses the accelerator pedal,
the sensor gets information and gives those infor-
mation to an ECU that is involved to give the
information to the engine unit.

Req
(shall)

1

8-4 When the Adaptive Cruise Controls needs more
speed, it sends that information to an ECU that
is involved to give the information to the engine
unit.

Req
(shall)

1

9-2 DriverAssistance Req
package

10-3 AdaptiveCruiseControl Req
package

11-4 The ACC works when the car speed is greater
than 30 km/h

Definition
(must)

1

12-4 Radar must pass the control test Definition
(must)

1

13-4 The driver sets the speed to be held during the
trip

Req
(shall)

1

14-4 Radar obtains information about the car’s sur-
roundings to see if there are cars or obstacles

Req
(shall)

1

15-4 When Radar sees nearby obstacles the car must
reduce the speed, braking automatically so the
ECU must send an information to the Brake unit.

Req
(shall)

1

16-4 If the distance is not set, the car uses a default
value calculated with the car speed (safety dis-
tance)

Req
(shall)

1

43



Adaptive Cruise Control Implementation

Requirements
Level Text Type Links
17-4 When radar doesn’t see obstacles, and the cur-

rent speed is lower than the set speed and the
distance is greater than the set distance, the car
must increase the speed; The ECU must send an
information to the PowerTrain unit

Req
(shall)

1

18-4 Formula for calculating the safety distance: The
safety distance is the distance any vehicle must
maintain from the one in front of it in order to stop,
when necessary, without colliding with it. When
evaluating the safety distance, it is important to
take into account certain factors: the driver’s re-
flexes; the type and state of efficiency of the vehi-
cle; speed; visibility and atmospheric conditions;
traffic conditions; the slope of the road and the
characteristics and conditions of the road surface.
A simple formula to remember to roughly calculate
a good safety distance is as follows: divide your
speed expressed in km/h by 10 and square the
result; the resulting number is a good indicator,
in meters, of the safety distance to be maintained.
Example: at 50 km/h you should maintain a dis-
tance of 25 meters.

Info
(can)

Table 5.3: Requirements table

5.3 Logical Architecture
This section explains the logic diagram relating to the customer features and
requirements written in the previous section. My approach has been to divide the
individual functionalities into logic diagrams contained in building blocks, which
are reusable containers to contain logic blocks. This allows you to break down a
complex functionality, for instance the ACC in small logic blocks, that connected
among them, compose the functionality in examination. The logical architecture
has a Type/Instance approach. All created and instantiated blocks are based on
types. Blocks of the same type will have identical behavior and the same interfaces;
This makes it possible to reuse the same logic block for functionalities that differ
only in the physical location of the vehicle. For example, car windows, brake
calipers etc. The blocks are connected to each other through ports.

44



Adaptive Cruise Control Implementation

Ports must have assigned interfaces that contain one or more data elements
describing the information exchanged by the logic blocks. A data element contains
an application data type, which is a numeric value mapped in a computation
method that indicates the range of possible values. Most of the choices made are
aimed at simplifying the solution, because the goal is to focus on the methodology
to create a vehicular architecture, rather than the correct functioning of the feature.

The speed indicator diagram (5.4) is a logical representation of how the speed
indicator works. It is composed of two sensors and a function. The sensors
WheelRotationSpeedRearLT and WheelRotationSpeedRearRT are placed in the rear
wheels and are used to calculate the rotation of the wheel. The value is sent to
the function CalculateSpeed that will calculate the value in km/h. The sensors

WheelRotationSpeedRearLT

Type: RPMWheel

CalculateSpeed

Type: CalculateSpeed

WheelRotationSpeedRearRT

Type: RPMWheel

SpeedIndicator - CF_8814

SpeedIndicator:SpeedIndicator_SRI

RPM:RPM_wheel_SRI

SpeedIndicator:SpeedIndicator_SRI

RPM:RPM_wheel_SRI

RPM:RPM_wheel_SRI

RPM:RPM_wheel_SRI

{-/SpeedIndicator_DE/-}

{-/RPM_wheel_DE/-}

{-
/R
PM

_w
he
el
_D
E/
-}

Figure 5.4: Speed indicator logic diagram

communicate with the function through the RPM_wheel interface sending the
RPM_wheel_DE data element. Possible values range from 0 to 5000 are contained
in the computation method RPM_wheel_CM. CalculateSpeed function has another
port with another associated interface, to send the speed value expressed in km/h
to the other logic blocks. The interface is SpeedIndicator_SRI, the data element is
SpeedIndicator_DE and the computation method is SpeedIndicator_CM. Possible
values range from 0 to 300. All this data will be useful in the end to understand
the content of the arxml and dbc files that will be generated.

In the image above (5.4) it’s also possible to see the mapping between the
customer feature and the logical block; the mapping is not mandatory, but it is
useful to indicate the type of functionality you are describing.

A summary of the interfaces, data elements and computation methods in the
logic diagram is shown in the following table (5.4):

45



Adaptive Cruise Control Implementation

Speed Indicator
Interface Data Element Computation

Method
RPM_wheel_SRI RPM_wheel_DE RPM_wheel_CM
SpeedIndicator_SRI SpeedIndicator_DE SpeedIndicator_CM

Table 5.4: Speed indicator interfaces

The accelerator diagram (5.5) is composed of a sensor (AcceleratorByPedal), a
function (DriveTrainFunction) and two signals (SpeedIndicator_DE and ACCOut-
putIncreaseSpeed_DE) coming from the building blocks of the AdaptiveCruiseC-
ontrol and the SpeedIndicator. Since the car can accelerate in two ways:

AcceleratorByPedal The driver presses the accelerator pedal, the pedal displace-
ment is mapped to a value between 0 and 100 and the value (Accelerator-
ByPedal_DE) is sent to the DriveTrainFunction.

AcceleratorByACC The AdaptiveCruiseControl sends a signal contained the
speed in km/h (ACCOutputIncreaseSpeed_DE) to the DriveTrainFunction,
while the SpeedIndicator sends the current speed.

The DriveTrainFunction receives this information, checks if there is a need to
increase the speed of the car and, if necessary, it sends a signal (AcceleratorTrac-
tion_DE) to the traction building block; possible values range for this data element
from 0 to 100.

AcceleratorByPedal

Type: AcceleratorByPedal DriveTrainFunction

Type: DriveTrain

Accelerator : --- - CF_1288

AcceleratorByPedalPort:AcceleratorBy...

AcceleratorByACCPort:ACCOutputIncr...

AcceleratorByACCPort:ACCOutputIncr...

AcceleratorByPedalPort:AcceleratorBy...

SpeedIndicator:SpeedIndicator_SRI
SpeedIndicator:SpeedIndicator_SRI

{-/ACCOutputIncreaseSpeed_DE/-}

{-/AcceleratorByPedal_DE/-}

{-/SpeedIndicator_DE/-}

AcceleratorTraction:AcceleratorTracti... AcceleratorTraction:AcceleratorTracti...{-/AcceleratorTraction_DE/-}

Figure 5.5: Accelerator logic diagram

46



Adaptive Cruise Control Implementation

Accelerator
Interface Data Element Computation Method
AcceleratorByPedal_SRI AcceleratorByPedal_DE AcceleratorByPedal_CM
SpeedIndicator_SRI SpeedIndicator_DE SpeedIndicator_CM
ACCOutputIncrease
Speed_SRI

ACCOutputIncrease
Speed_DE

ACCOutputIncrease
Speed_CM

AcceleratorTraction_SRI AcceleratorTraction_DE AcceleratorTraction_CM

Table 5.5: Accelerator interfaces

The traction diagram (5.6) is a simplified version containing only two actuators,
which simulate the delivery of power to turn the wheels in a front wheel drive car.
The DriveTrainFunction sends the signal concerning the power to be delivered to
the wheels to make them turn, through the AcceleratorTraction_SRI interface.
Possible values range for AcceleratorTraction_DE data element from 0 to 100.

FrontWheelLT

Type: FrontWheel

FrontWheelRT

Type: FrontWheel

AcceleratorTraction:AcceleratorTracti... TractionOutput:AcceleratorTraction_...

TractionOutput:AcceleratorTraction_...

{-/AcceleratorTraction_DE/-}

{-
/A
cc
el
er
at
or
Tr
ac
tio
n_
...

Figure 5.6: Traction logic diagram

Traction
Interface Data Element Computation Method
AcceleratorTraction_SRI AcceleratorTraction_DE AcceleratorTraction_CM

Table 5.6: Traction interfaces

47



Adaptive Cruise Control Implementation

The cockpit is the driver display where useful information is shown, such
as the current speed and the ACC status. Its diagram (5.7) is composed of
one function (CockpitFunction), one actuator(CockpitDisplay) and two signals
(SpeedIndicator_DE and ACCStatus_DE) coming from the building blocks of the
SpeedIndicator and the AdaptiveCruiseControl. The CockpitFunction receives the
current speed value (SpeedIndicator_DE) and the adaptive cruise control status
(ACCStatus_DE), and finally processes them to send them (CockpitInfo_DE) to
the display.

CockpitDisplay

Type: Cockpit

CockpitFunction

Type: CockpitFunction

Cockpit - CF_8816

SpeedIndicator:SpeedIndicator_SRI SpeedIndicator:SpeedIndicator_SRI

ACCStatus:ACCStatus_SRI

ACCStatus:ACCStatus_SRI

{-/SpeedIndicator_DE/-}

{-/ACCStatus_DE/-}

CockpitInfo:CockpitInfo_SRI {-/CockpitInfo_DE/-} CockpitInfo:CockpitInfo_SRI

Figure 5.7: Cockpit logic diagram

Cockpit
Interface Data Element Computation Method
SpeedIndicator_SRI SpeedIndicator_DE SpeedIndicator_CM
ACCStatus_SRI ACCStatus_DE ACCStatus_CM
CockpitInfo_SRI CockpitInfo_DE CockpitInfo_CM

Table 5.7: Cockpit interfaces

48



Adaptive Cruise Control Implementation

The brake diagram (5.8) is composed of one sensor (BrakeByPedal), four ac-
tuators (BrakeCaliperFronRT, BrakeCaliperFronLT, BrakeCaliperRearRT, Brake-
CaliperRearRT), one function (BrakeFunction) and two signals (ACCOutputDe-
creaseSpeed_DE and SpeedIndicator_DE) coming from the building block of the
AdaptiveCruiseControl and the SpeedIndicator. Since the car can decelerate in two
ways:

BrakeByPedal The driver presses the brake pedal, the pedal displacemenet is
mapped to a value between 0 and 100 and the value (BrakeByPedal_DE) is
sent to the BrakeFunction.

BrakeByACC The AdaptiveCruiseControl sends a signal contained the speed in
km/h (ACCOutputDecreaseSpeed) to the BrakeFunction, while the SpeedIndi-
cator sends the current speed.

The BrakeFunction receives this information, checks if there is a need to decrease
the speed of the car, and in case it sends a signal (BrakeCalipers_DE); possible
value range for this data element from 0 to 100.

BrakeByPedal

Type: BrakeByPedal

BrakeFunction

Type: BrakeFunction

BrakeCaliperFrontRT

Type: BrakeCallipers

Brake - CF_1282

BrakeCaliperFrontLT

Type: BrakeCallipers

BrakeCaliperRearRT

Type: BrakeCallipers

BrakeCaliperRearLT

Type: BrakeCallipers

BrakeByPedalPort:BrakeByPedal_SRI

BrakeCalipersFrontRTPort:BrakeCalip...

BrakeCalipersFrontLTPort:BrakeCalip...

BrakeCalippersPort:BrakeCalipers_SRI

BrakeCalippersPort:BrakeCalipers_SRI

BrakeByPedalPort:BrakeByPedal_SRI

ACCOutputDecreaseSpeed:ACCOutp...

SpeedIndicator:SpeedIndicator_SRI

BrakeCalipersPort:BrakeCalipers_SRI

BrakeCalipersPort:BrakeCalipers_SRI

BrakeCalipersPort:BrakeCalipers_SRI

BrakeCalipersPort:BrakeCalipers_SRI

ACCOutputDecreaseSpeed:ACCOutp...

SpeedIndicator:SpeedIndicator_SRI

{-
/B

ra
ke

By
Pe

da
l_D

E/
-}

{-/BrakeCalipers_DE/-}

{-/BrakeCalipers_...

{-/BrakeCalipers_DE/-}

{-/BrakeCalipers_DE/-}

{-/ACCOutputDecreaseSpeed_DE/-}

{-/SpeedIndicator_DE/-}

Figure 5.8: Brake logic diagram

Brake
Interface Data Element Computation Method
BrakeByPedal_SRI BrakeByPedal_DE BrakeByPedal_CM
ACCOutputDecrease
Speed_SRI

ACCOutputDecrease
Speed_DE

ACCOutputDecrease
Speed_CM

SpeedIndicator_SRI SpeedIndicator_DE SpeedIndicator_CM
BrakeCalipers_SRI BrakeCalipers_DE BrakeCalipers_CM

Table 5.8: Brake interfaces
49



Adaptive Cruise Control Implementation

The radar is a sensor that makes up the adaptive cruise control function. Without
this sensor it would be impossible to adapt the speed and detect obstacles. Its logic
diagram (5.9) is composed of a sensor (Radar) and a function (RadarFunction).
The first one takes information from the external environment and sends it to the
function through the RadarInfo_DE. To simplify the solution both data elements
can assume values between 0 and 300, indicating the distance of the car in front.
In a real solution, the sensor would send electromagnetic waves to detect and
determine the position and possibly the speed of objects. The data would be
formatted before being sent to the adaptive cruise control building block by the
RadarFunction.

Radar

Type: Radar

RadarFunction

Type: RadarFunction

AdaptiveCruiseControl - CF_8812

RadarOutput:RadarOutput_SRI

RadarInfo:RadarInfo_SRI

RadarOutput:RadarOutput_SRI

RadarInfo:RadarInfo_SRI{-/RadarInfo_DE/-}

{-/RadarOutput_DE/-}

Figure 5.9: Radar logic diagram

Brake
Interface Data Element Computation Method
RadarInfo_SRI RadarInfo_DE RadarInfo_CM
RadarOutput_SRI RadarOutput_DE RadarOutput_CM

Table 5.9: Radar interfaces

Adaptive cruise control is the main diagram (5.10) of this thesis. The goal is
to take information from the driver and other sensors in order to decide whether
to increase, decrease or maintain a constant speed. It is composed of six sensors,
one function and two signals coming from the building block of the SpeedIndicator
and the Radar. All sensors are buttons on the steering wheel that make up the acc
controller; the controller is the one in the picture 5.2. Buttons are as follows:

ACCIncreaseSpeed It sends the ACCIncreaseSpeed_DE data element contain-
ing the value of the speed in km/h to be increased. The data can take the
value of 1 (1 km/h) or 2 (10 km/h).

ACCStartButton It sends the ACCStartState_DE data element used to turn
on or turn off the ACC. The values that it can assume are 0 (off), 1 (on).

ACC_CNL It sends the ACC_CNL_DE data element used to disable the au-
tonomous driving functionality. When clicked it sends the value 1 which

50



Adaptive Cruise Control Implementation

indicates the intention to deactivate the cruise control.

ACCIncreaseDistance It sends the ACCIncreaseDistance_DE containing the
value of the distance to be increased. The value can be 1 indicating 10 meters.

ACCDecreaseDistance It sends the ACCDecreaseDistance_DE containing the
value of the distance to be decreased. The value can be 1 indicating -10 meters.

ACCDecreaseSpeed It sends the ACCDecreaseSpeed_DE data element contain-
ing the value of the speed in km/h to be decreased. The data can take the
value of 1 (-1 km/h) or 2 (-10 km/h).

The AdaptiveCruiseControlFunction takes all the information generated by the
radar and the driver, makes a decision and provides it to the other logic components
through three signals: it sends the ACC status to the cockpit (ACCStatus_DE)
consisting of speed to be held, distance to the car in front and whether the
ACC is on or off. It also sends the value in km/h of the speed to be reached
(ACCOutputIncreaseSpeed_DE or ACCOutputDecreaseSpeed_DE). The values
can range from 30 to 250 and represent the speed to be held. If the car has to slow
down this signal will be sent to the braking system, otherwise to the acceleration
system.

AdaptiveCruiseControl
Interface Data Element Computation Method
ACCIncreaseSpeed_SRI ACCIncreaseSpeed_DE ACCIncreaseSpeed_CM
ACCDecreaseSpeed_SRI ACCDecreaseSpeed_DE ACCDecreaseSpeed_CM
ACCIncreaseDistance
_SRI

ACCIncreaseDistance
_DE

ACCIncreaseDistance
_CM

ACCDecreaseDistance
_SRI

ACCDecreaseDistance
_DE

ACCDecreaseDistance
_CM

ACCStartButton_SRI ACCStartButton_DE ACCStartButton_CM
ACC_CNL_SRI ACC_CNL_DE ACC_CNL_CM
SpeedIndicator_SRI SpeedIndicator_DE SpeedIndicator_CM
RadarOutput_SRI RadarOutput_DE RadarOutput_CM
ACCOutputIncrease
Speed_SRI

ACCOutputIncrease
Speed_DE

ACCOutputIncrease
Speed_CM

ACCOutputDecrease
Speed_SRI

ACCOutputDecrease
Speed_DE

ACCOutputDecrease
Speed_CM

ACCStatus_SRI ACCStatus_DE ACCStatus_CM

Table 5.10: AdaptiveCruiseControl interfaces

51



Adaptive Cruise Control Implementation

A
da
pt
iv
eC
ru
is
eC
on
tr
ol
F
un
ct
io
n

Ty
pe

: A
da

pt
iv

eC
ru

is
eC

on
tr

ol
F

un
ct

io
n

A
C
C
_C
N
L

Ty
pe

: A
C

C
_C

N
L

A
C
C
D
ec
re
as
eD
is
ta
nc
e

Ty
pe

: A
C

C
D

ec
re

as
eD

is
ta

nc
e

A
C
C
D
ec
re
as
eS
pe
ed

Ty
pe

: A
C

C
D

ec
re

as
eS

pe
ed

A
C
C
In
cr
ea
se
D
is
ta
nc
e

Ty
pe

: A
C

C
In

cr
ea

se
D

is
ta

nc
e

A
C
C
In
cr
ea
se
S
pe
ed

Ty
pe

: A
C

C
In

cr
ea

se
S

pe
ed

A
C
C
S
ta
rt
B
ut
to
n

Ty
pe

: A
C

C
S

ta
rt

B
ut

to
n

A
d

ap
ti

ve
C

ru
is

eC
o

n
tr

o
l -

 C
F

_8
81

2

A
CC
O
ut
pu
tIn
cr
ea
se
Sp
ee
d:
A
CC
O
ut
p.
..

AC
CO

ut
pu
tD
ec
re
as
eS
pe
ed
:A
CC
O
ut
p.
..

AC
C
St
at
us
:A
CC
St
at
us
_S
RI

A
CC
In
cr
ea
se
Sp
ee
dP
or
t:A
CC
In
cr
ea
se
S.
..

A
CC
St
ar
tS
ta
te
:A
CC
St
ar
t_
SR
I

A
CC
D
ec
re
as
eS
pe
ed
Po
rt
:A
CC
D
ec
re
as
e.
..

A
CC
In
cr
ea
se
D
is
ta
nc
eP
or
t:A
CC
In
cr
ea
s.
..

A
CC
D
ec
re
as
eD
is
ta
nc
eP
or
t:A
CC
D
ec
re
a.
..

Sp
ee
dI
nd
ic
at
or
Po
rt
:S
pe
ed
In
di
ca
to
r_
S.
..

AC
CC
N
L:
AC
CC
N
L_
SR
I

Ra
da
rO
ut
pu
t:R
ad
ar
O
ut
pu
t_
SR
I

AC
CC
N
L:
AC
CC
N
L_
SR
I

A
CC
D
ec
re
as
eD
is
ta
nc
eP
or
t:A
CC
D
ec
re
a.
..

AC
CD

ec
re
as
eS
pe
ed
Po
rt
:A
CC
D
ec
re
as
e.
..

AC
CI
nc
re
as
eD
is
ta
nc
eP
or
t:A
CC
In
cr
ea
s.
..

AC
CI
nc
re
as
eS
pe
ed
Po
rt
:A
CC
In
cr
ea
se
S.
..

A
CC
St
ar
tS
ta
te
:A
CC
St
ar
t_
SR
I

A
CC
O
ut
pu
tIn
cr
ea
se
Sp
ee
d:
A
CC
O
ut
p.
..

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

AC
CO

ut
pu
tD
ec
re
as
eS
pe
ed
:A
CC
O
ut
p.
..

AC
C
St
at
us
:A
CC
St
at
us
_S
RI

Ra
da
rO
ut
pu
t:R
ad
ar
O
ut
pu
t_
SR
I

{-
/A
CC
In
cr
ea
se
Sp
ee
d_
D
E/
-}

{-
/A
CC
In
cr
ea
se
D
is
ta
nc
e_
D
E/
-}

{-
/A
CC
D
ec
re
as
eD
is
ta
nc
e_
...

{-
/A
CC
St
ar
tS
ta
te
_D
E/
-}

{-/ACCDecreaseSpeed_DE/-}

{-/ACCOutputIncreaseSpeed_DE/-}

{-
/A
CC
CN

L_
D
E/
-}

{-
/S
pe
ed
In
di
ca
to
r_
D
E/
-}

{-/ACCOutputDecreaseSpeed_DE/-}

{-/ACCStatus_DE/-}

{-
/R
ad
ar
O
ut
pu
t_
D
E/
-}

F
ig
ur
e
5.
10
:
A
da

pt
iv
eC

ru
ise

C
on

tr
ol

lo
gi
c
di
ag
ra
m

52



Adaptive Cruise Control Implementation

Each diagram created in PREEvision is schematized in a tree structure called
model view. This model view shows the hierarchy of the various diagrams.For
example, when a diagram is created that contains sensors, actuators and functions,
these will be children of a package or a building block. In my case, having used the
building blocks, the components of the diagram are children of a building block
that is also child of a logical package. In this way it is possible to create two types
of diagrams:

• Logical architecture diagram

• Logical architecture system diagram

The first one allows the creation of the diagrams explained before; it is used
to describe a logical block that can represent a part of a functionality, always
respecting the hierarchy of the packages. To understand how the hierarchy works,
look at the image below (5.11). Inside the AdaptiveCruiseControl building block
there are many sensors that cannot be used by other building blocks belonging
to other packages. The second type of diagram allows instead to create models
that do not respect the hierarchy. This makes it possible to connect the individual
logical components in order to create a complex functionality such as, the complete
functioning of the adaptive cruise control.

53



Adaptive Cruise Control Implementation

Figure 5.11: Model View in PREEvision

The image below(5.12) shows the logical architecture system diagram that I
created to compose the adaptive cruise control functionality. Only the building
blocks and the various connections between them are shown. This allows both to
inspect them internally and to modify their internal workings without impacting
other building blocks.

Communication between building blocks is done via the data elements and
interfaces explained above.

54



Adaptive Cruise Control Implementation

A
cc

el
er

at
or

Ty
pe

: A
cc

el
er

at
or

B
ra

ke

Ty
pe

: B
ra

ke

S
pe

ed
In

di
ca

to
r

Ty
pe

: S
pe

ed
In

di
ca

to
r

A
da

pt
iv

eC
ru

is
eC

on
tr

ol

Ty
pe

: A
da

pt
iv

eC
ru

is
eC

on
tr

ol
C

oc
kp

it

Ty
pe

: C
oc

kp
it

R
ad

ar

Ty
pe

: R
ad

ar

Tr
ac

tio
n

Ty
pe

: T
ra

ct
io

n

A
cc
el
er
at
or
By
A
CC
Po
rt
:A
CC
O
ut
pu
tIn
cr
...

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

AC
CO

ut
pu
tD
ec
re
as
eS
pe
ed
:A
CC
O
ut
p.
..

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

Ra
da
rO
ut
pu
t:R
ad
ar
O
ut
pu
t_
SR
I

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

AC
CS
ta
tu
s:
A
CC
St
at
us
_S
RI

AC
CO

ut
pu
tD
ec
re
as
eS
pe
ed
:A
CC
O
ut
p.
..

A
CC
O
ut
pu
tIn
cr
ea
se
Sp
ee
d:
A
CC
O
ut
p.
..

AC
CS
ta
tu
s:
AC
C
St
at
us
_S
RI

Sp
ee
dI
nd
ic
at
or
:S
pe
ed
In
di
ca
to
r_
SR
I

Ra
da
rO
ut
pu
t:R
ad
ar
O
ut
pu
t_
SR
I

Assembly Net

A
ss

em
bl

y 
N

e
t

A
ss

em
bl

y 
N

e
t

Assembly Net

A
ss

em
bl

y 
N

e
t

Assembly Net

A
ss

em
bl

y 
N

e
t

Assembly Net

A
cc
el
er
at
or
Tr
ac
tio
n:
A
cc
el
er
at
or
Tr
ac
ti.
..

A
ss

em
bl

y 
N

e
t

A
cc
el
er
at
or
Tr
ac
tio
n:
Ac
ce
le
ra
to
rT
ra
ct
i..
.

F
ig
ur
e
5.
12
:
Lo

gi
ca
la

rc
hi
te
ct
ur
e
sy
st
em

di
ag
ra
m

55



Adaptive Cruise Control Implementation

5.4 System Software Architecture
This section explains the software architecture diagram. This layer is essential for
generating ARXML files for future ECU development. In PREEvision, the logic
layer and the software layer are very similar, and depending on the user’s needs, it
is possible to avoid creating either one. In this case, since the primary goal is not
to program the ECUs using ARXML files, but to build a network architecture, this
layer has not been studied that much. In any case, in case you want to program
the ECUs, the software level and the hardware level are mandatory, because they
describe the use of the ECUs (the steps to follow are shown in the image 3.7).
However, in order to check how efficient this approach is, we tried to test this layer
as well. The difference between the logical layer and the software layer can be very
small, meaning that it is possible to have the same diagrams. By changing only
the artifacts that compose it, and reusing the components for communication, such
as interfaces, ports etc., it is then up to the user, according to the final goal to
decide whether to create both with a different level of abstraction, or do without
one of the two. In this thesis, two types of software diagrams were created.

The first type is the copy of the logic diagram, i.e. all the logic components
were recreated in the software layer, using the specific components of this layer,
so the building blocks were replaced with the Composition component, while
the logic functions were replaced with the Application SW Component. All the
communication that was created in the logical layer, i.e. the interfaces, data
elements and computation methods, was reused without the need to recreate them.
To avoid showing diagrams that are identical to the logic diagrams, they are not
shown and explained in this section, since they were explained in the previous
section. All components of the software diagrams have the same names as the
components of the logic diagrams. The choice to create identical diagrams was
forced by the fact that otherwise it would not have been possible to obtain the
ARXML files. Since the goal of this thesis is not the development of ECUs, but to
test a methodology for the creation of a vehicular architecture, the architecture
created by the diagrams is generic and basic, but useful to achieve the proposed
goal.

The second type of diagram tries to go into more detail about the single
components, specifically parts are added to the diagram relative to Radar and
Adaptive Cruise Control. The second type of diagram tries to go into more detail
about the single components, specifically parts are added to the diagram relative to
Radar and Adaptive Cruise Control. In spite of the addition in these two diagrams,
the inserted parts will not be considered in the generation of the ARXML files.

The Radar software diagram (fig. 5.13) contains the Radar sensor to obtain
information from the external environment, and two Application Software Com-
ponents to manipulate the data obtained from the sensor. The first software

56



Adaptive Cruise Control Implementation

component is the CreateEnvironment that has the task to create the environment
around the car, to verify the presence or not of obstacles. The second software
component is the Diagnostic useful to verify the correctness of the data provided by
the sensor. Both software components receive the data from the sensor through the
RadarInfo_SRI interface but the Diagnostic component receives also further useful
information for the diagnostics through the RadarInfoDiagnostic_SRI interface.
Both software components will provide the ACC with the results of their executions
via the RadarInfoForACC_SRI and RadarFault_SRI interfaces. In case Diagnostic
detects an error, the ACC must abort the autonomous driving operation.

CreateEnvironment

Type: CreateEnvironment / -;- (Application SW...

RadarSensor

Type: RadarSensor / -;- (Sensor Actuator SW ...

Diagnostic

Type: Diagnostic / -;- (Application SW Compo...

RadarInfoForACC:RadarInfoForACC_...RadarEnvironment:RadarInfoForACC...
RadarInfo:RadarInfo_SRIRadarInfo:RadarInfo_SRI

Diagnostic:RadarInfoDiagnostic_SRI

RadarFault:RadarFault_SRI

Diagnostic:RadarInfoDiagnostic_SRI

RadarInfo:RadarInfo_SRI

RadarStatus:RadarFault_SRI

{-/Rada...

{-/RadarInfoDiagnostic_D...

{-/RadarFault_DE/-}

{-/RadarInfoForACC_DE/-}

Figure 5.13: Radar software diagram

The software diagram related to the ACC (fig. 5.14) has three Application
Software Component: ButtonDetection to manage the inputs of the controller
placed in the steering wheel, ACCController to manage all the data useful for
the functioning of the ACC, and a FaultController that has to manage the case
of malfunction of some sensor, which can cause the incorrect functioning of the
autonomous driving functionality. ButtonDetection communicates through the
ACCValues_SRI interface with ACCController. This last one having all the
necessary information for the operation, carries out the elaboration to calculate
if to accelerate, to decelerate or to maintain the constant speed. This component
software also receives through the interface ACCAbort_SRI the signal to abort
the execution of ACC, in case there are problems in the system. This component
software communicates directly with the radar component software in order to
obtain information about the correct operation of the sensor. In case of problems,
the default controller will send a signal through the interface to inform all interested
ECUs in the car about the problem.

5.5 Hardware Architecture
The hardware layer allows you to create a hardware diagram of the car, showing
all the sensors, control units and actuators. The connections between the various
components are made through the bus system, which can be of all types, for
example, CAN bus, LIN bus, ethernet bus etc. In this thesis, for time reasons,

57



Adaptive Cruise Control Implementation

ACCStartButton

Type: ACCStartButton / -;- (Sensor Actuator S...

ACC_CNL

Type: ACC_CNL / -;- (Sensor Actuator SW Co...

ACCIncreaseSpeed

Type: ACCIncreaseSpeed / -;- (Sensor Actuat...

ACCDecreaseSpeed

Type: ACCDecreaseSpeed / -;- (Sensor Actua...

ACCIncreaseDistance

Type: ACCIncreaseDistance / -;- (Sensor Actu...

ACCDecreaseDistance

Type: ACCDecreaseDistance / -;- (Sensor Act...

buttonDetection

Type: buttonDetection / -;- (Application SW C...

ACCController

Type: ACCController / -;- (Application SW Co...

FaultController

Type: FaultController / -;- (Application SW Co...
SpeedIndicator:SpeedIndicator_SRI

AccOutputDecreaseSpeed:ACCOutpu...

ACCOutputIncreaseSpeed:ACCOutp...

ACCStatus:ACCStatus_SRI

RadarInfo:RadarInfoForACC_SRI

ACCStartState:ACCStart_SRI

ACCCNL:ACCCNL_SRI

ACCIncreaseSpeedPort:ACCIncreaseS...

ACCDecreaseSpeedPort:ACCDecrease...

ACCIncreaseDistancePort:ACCIncreas...

ACCDecreaseDistancePort:ACCDecrea...

ACCValues:ACCValues_SRI

ACCCNL:ACCCNL_SRI

ACCIncreaseSpeedPort:ACCIncreaseS...

ACCDecreaseSpeedPort:ACCDecrease...

ACCIncreaseDistancePort:ACCIncreas...

ACCDecreaseDistancePort:ACCDecrea...

ACCStartState:ACCStart_SRI

SpeedIndicator:SpeedIndicator_SRI

RadarInfo:RadarInfoForACC_SRI

ACCValues:ACCValues_SRI

RadarStatus:RadarFault_SRI

{-/ACCStartState_D...
{-/ACCCNL_DE/-}

{-/ACCIncreaseSpeed_DE/-}

{-/ACCDecreaseSpeed...

{-
/A

CC
In

cr
ea

se
D
ist

a.
..

{-/ACCDecreaseDistance...

{-/SpeedIndicator_DE/-}

{-/RadarInfoForACC_DE/-}

{-
/R

ad
ar

Va
lu

es
_D

E/
-}

{-/ACCOutputIncreaseSpeed_DE/-}

{-/ACCOutputDecreaseSpeed_DE/-}

{-/RadarFault_DE/-}

{-/ACCStatus_DE/-}

ACCOutputIncreaseSpeed:ACCOutp...

ACCOutputDecreaseSpeed:ACCOutp...

ACCStatus:ACCStatus_SRI

AbortAutonomousDriving:AbortAuto... AbortAutonomousDriving:AbortAuto...{-/AbortAutonomousDriving_DE/-}

RadarStatus:RadarFault_SRI

ACCAbort:ACCAbort_SRI{-/ACCAbort_DE/-}

ACCAbort:ACCAbort_SRI

Figure 5.14: ACC software diagram

the CAN bus has always been used even when a more powerful bus should have
been used, such as ethernet for radar communication. The use of the ethernet bus
in addition to the CAN bus would have definitely taken more time, risking not
being able to conclude the cycle of the architecture design. However, to keep in
line with the goal of this thesis, the use of other buses will definitely be future work
to continue this thesis. Future works will be discussed in the chapter 7.

The diagram I used was the network diagram (5.15), which allows you to create
a network architecture, by reporting only the essential elements to manage an
automotive network. PREEvision supplies ulterior diagrams in the hardware level,
like as an example the electric circuit diagram for the description of the electric
components, which make up the automotive architecture. To create the network
diagram my idea was to report in the network diagram all sensors and actuators
used in the logic model. The diagram I created is the as follows (5.15):

58



Adaptive Cruise Control Implementation

A
da

pt
iv

eC
ru

is
eC

...

M
ot

io
nE

C
U

P
ed

al
E

C
U

B
ra

ke
C

al
ip

er
F

ro
n.

..
B

ra
ke

C
al

ip
er

F
ro

n.
..

B
ra

ke
C

al
ip

er
R

e
ar

...
B

ra
ke

C
al

ip
er

R
ea

r..
.

S
te

er
in

gW
he

el
E

C
U

A
C

C
In

cr
ea

se
S

pe
...

A
C

C
D

ec
re

as
eS

p.
..

A
C

C
D

ec
re

as
eD

i..
.

A
C

C
S

ta
rt

B
ut

to
n

A
C

C
In

cr
ea

se
D

is
t.

..

A
C

C
_C

N
L

lu
ca

9 
20

21
-1

1-
07

 1
8:

47
 (

C
om

m
en

t)

Th
e 

st
ee

rin
gW

he
el

EC
U 

do
es

n'
t h

av
e 

in
fo

rm
at

io
ns

 a
bo

ut
 th

e 
cu

rr
en

t s
pe

ed
 o

r 
th

e 
se

t d
ist

an
ce

. I
n 

AC
CF

ra
m

e 
th

e 
in

fo
rm

at
io

n 
re

ga
rd

in
g 

th
e 

sp
ee

d 
or

 th
e 

di
st

an
ce

 is
:

+
10

 k
m

/h
 -

 1
0 

km
/h

 o
r +

10
 m

 o
r -

10
 m

A
CC

In
cr

ea
se

Sp
ee

d

A
CC

D
ec

re
as

eD
is

ta
nc

e

A
CC

_C
N

L

AC
CD

ec
re

as
eS

pe
ed

A
CC

St
ar

tB
ut

to
n

A
CC

In
cr

ea
se

D
is

ta
nc

e

D
riv

eT
ra

in
Fu

nc
tio

n

Br
ak

eF
un

ct
io

n

Ca
lc

ul
at

eS
pe

ed

A
cc

el
er

at
or

By
Pe

da
l

Br
ak

eB
yP

ed
al

A
da

pt
iv

eC
ru

is
eC

on
tr

ol
Fu

nc
tio

n

C
oc

kp
itE

C
U

C
oc

kp
itF

un
ct

io
n

D
is

pl
ay

R
ad

ar
EC

U

R
ad

ar

W
he

el
R

ot
at

io
nS

p.
..

W
he

el
R

ot
at

io
nS

p.
..

lu
ca

9 
20

21
-1

1-
12

 1
1:

37
 (

C
om

m
en

t)

el
ec

tr
on

ic
 d

iff
er

en
tia

l l
oc

k 
ta

ke
s 

th
e 

op
en

 d
iff

er
en

tia
l, 

an
d 

if 
on

e 
w

he
el

 s
pi

ns
 m

or
e 

th
an

 
10

0 
rp

m
s 

fa
st

er
 th

an
 th

e 
ot

he
r w

he
n 

st
ar

tin
g 

fro
m

 th
e 

st
op

, i
t t

ric
ks

 th
e 

di
ff

er
en

tia
l b

y 
ap

pl
yi

ng
 th

e 
br

ak
es

 to
 th

e 
w

he
el

 th
at

 is
 s

pi
nn

in
g 

an
d 

tr
an

sf
er

s 
th

e 
po

w
er

 to
 th

e 
w

he
el

 
th

at
 h

as
 tr

ac
tio

n.

Tr
ac

tio
nF

ro
nt

W
h.

..
Tr

ac
tio

nF
ro

nt
W

h.
..

Ra
da

r

C
oc

kp
itD

is
pl

ay

Fr
on

tW
he

el
LT

Fr
on

tW
he

el
RT

Br
ak

eC
al

ip
er

Re
ar

LT

Br
ak

eC
al

ip
er

Fr
on

tL
T

Br
ak

eC
al

ip
er

Fr
on

tR
T

Br
ak

eC
al

ip
er

Re
ar

RT

W
he

el
Ro

ta
tio

nS
pe

ed
Re

ar
RT

W
he

el
Ro

ta
tio

nS
pe

ed
Re

ar
LT

Ra
da

rF
un

ct
io

n

A
cc

el
er

at
or

B
yP

ed
al

B
ra

ke
B

yP
ed

al

--
- 

: B
A

_A
d

ap
tiv

eC
ru

is
eC

on
tr

ol
EC

U
_3

--- : BA_AdaptiveCruiseControlECU_3

--
- 

: B
A_

A
da

pt
iv

eC
ru

is
eC

on
tr

ol
EC

U
_2

--- : BA_MotionECU_2

--
- 

: B
A

_M
o

tio
nE

C
U

_1

--
- 

: B
A

_M
o

tio
nE

C
U

_3

--
- 

: B
A

_B
ra

ke
C

al
lip

er
Re

ar
LT

_E
C

U
_3

--
- 

: B
A

_P
ed

al
EC

U
_0

--
- 

: B
A_

Br
ak

eC
al

lip
er

Fr
on

tL
T_

0
--

- 
: B

A_
Br

ak
eC

al
lip

er
Fr

on
tR

T_
0

--
- 

: B
A_

Br
ak

eC
al

lip
er

Re
ar

LT
_0

--
- 

: B
A_

Br
ak

eC
al

lip
er

Re
ar

RT
_0

--
- 

: B
A

_A
CC

So
rt

er
EC

U
_7

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_1

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_0

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_5

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_4

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_3

--
- 

: B
A

_A
C

CS
or

te
rE

C
U

_2

--
- 

: B
A

_A
CC

In
cr

ea
se

Sp
ee

d_
0

--
- 

: B
A

_A
CC

D
ec

re
as

eS
pe

ed
_0

--
- 

: B
A

_A
CC

D
ec

re
as

eD
is

ta
nc

e_
0

--
- 

: B
A

_A
CC

St
ar

tB
ut

to
n_

0

--
- 

: B
A

_A
CC

In
cr

ea
se

D
is

ta
nc

e_
0

--
- :

 B
A_

AC
C_

CN
L_

0

--
- 

: B
A

_C
oc

kp
it_

1

--
- 

: B
A

_C
oc

kp
it_

2

--- : BA_Display_0

--- : BA_RadarECU_1

--- : BA_RadarECU_0

--
- 

: B
A

_R
ad

ar
_0

--- : RPM_LT

--- : RPM_RT

--- : BA_TractionFrontWheelLT_0

--- : BA_TractionFrontWheelRT_0

--
- 

: P
ed

al
-M

ot
io

...

--
- 

: B
us

Sy
st

em
13

1:
G

en
er

ic
Bu

sT
yp

e

--
- 

: B
us

Sy
st

em
13

5:
G

en
er

ic
Bu

sT
yp

e

--
- 

: B
us

Sy
st

em
13

2:
G

en
er

ic
Bu

sT
yp

e

--
- 

: B
us

Sy
st

em
13

3:
G

en
er

ic
Bu

sT
yp

e

--
- 

: B
us

Sy
st

em
13

6:
G

en
er

ic
Bu

sT
yp

e

--
- 

: B
us

Sy
st

em
13

4:
G

en
er

ic
Bu

sT
yp

e

--
- 

: A
CC

-W
he

el
-M

ot
io

n
:C

A
N

Ty
pe

--- : SteeringWheel-AC...

--- : Cockpit-MotionECU:CANType

--
- 

: D
is

pl
ay

-C
oc

kp
it:

--
- 

: R
ad

ar
-R

ad
ar

EC
U

:

--- : Rada...

--
- 

: A
CC

-T
ra

ct
io

n:

--
- 

...
--

- 
: B

A
_P

ed
al

EC
U

_1
--

- 
: B

A_
A

cc
el

er
at

or
By

Pe
da

l_0

--
- 

: B
u.

..

--
- 

: B
A

_P
ed

al
EC

U
_2

--
- :

 B
A_

Br
ak

eB
yP

ed
al

_0

F
ig
ur
e
5.
15
:
N
et
wo

rk
di
ag
ra
m

59



Adaptive Cruise Control Implementation

The sensors are:

ACC_CNL It’s a button used to disable the adaptive cruise control functionality.
It’s an electric button, so when pressed, it allows current to flow in the electric
circuit. the SteeringWheelECU receives the current flow and will make a
decision. The same applies to the other ACC buttons.

ACCDecreaseDistance It’s a button used to decrease the distance that the acc
must maintain.

ACCDecreaseSpeed It’s a button used to decrease the speed that the acc must
maintain.

ACCIncreaseDistance It’s a button used to increase the distance that the acc
must maintain.

ACCIncreaseSpeed It’s a button used to increase the speed that the acc must
maintain.

AcceleratorByPedal It’s is the accelerator pedal used to accelerate the car.

ACCStartButton It’s a button used to turn on the acc functionality.

BrakeByPedal It’s the brake pedal used to decelerate the car.

Display It is a driver display showing useful information such as current speed
and adaptive. cruise control status.

Radar Radar is the key technology for the development of advanced driver as-
sistance systems (ADAS), which can instantly measure distance, angle and
speed and produce detailed images of the surrounding environment. It is the
fundamental sensor for ACC.

WheelRotationSpeedRearLT It is the sensor in the left rear wheel for measur-
ing RPM. In the wheel next to the disc brake there is a cogwheel. An electric
field is emitted by the sensor perpendicular to the magnetic field produced by
the cogwheel. This results in the production of an alternating current. The
electronics of the sensor converts the analogue current signal into a numerical
current into a numerical signal.

WheelRotationSpeedRearRT It is the sensor in the right rear wheel for mea-
suring RPM. It is the same sensor as described above.

60



Adaptive Cruise Control Implementation

Figure 5.16: RPM sensor, from [15]

The actuators are:

BrakeCaliperFrontLT The brake caliper is one of the parts of the car’s braking
system. It is a metal part that allows you to adjust the intensity of your
brakes. When you apply the brake pedal, the caliper pushes the pads against
the disc, using the mechanical force generated by the flow of brake fluid into
the system. It is positioned in the left front wheel.

BrakeCaliperFrontRT It is the brake caliper located in the right front wheel.

BrakeCaliperRearLT It is the brake caliper located in the right rear wheel.

BrakeCaliperRearRT It is the brake caliper located in the right rear wheel.

TractionFrontWheelLT This actuator tries to simulate traction for the left front
wheel.

TractionFrontWheelRT This actuator tries to simulate traction for the right
front wheel.

61



Adaptive Cruise Control Implementation

Next I tried to define the ECUs to be installed in the car for ACC functionality.
As written before, all ECUs have only CAN interfaces. In the image (5.15) the
interfaces are represented by a green square. The ECUs are:

AdaptiveCruiseControlECU Its purpose is to receive all the information nec-
essary for the correct functioning of the autonomous driving functionality, so
that it can make elaborations on them, and finally it will exchange these elabo-
rations with the other ECUs such as MotionECU. It has three CAN interfaces:
the first with the SteeringWheelECU and the bus name is SteeringWheel-ACC.
The second with the RadarECU and the bus name is Radar-ACC. The third
shared withMotionECU,WheelRotationSpeedRearLT,WheelRotationSpeedRea-
rRT, BrakeCaliperRearLT, BrakeCaliperRearRT, BrakeCaliperFrontLT, Brake-
CaliperFrontRT and the bus name is ACC-Wheel-Motion.

CockpitECU It is used to format information received from other ECUs appro-
priately to show on the driver display. It has only one CAN interface in a
shared bus with MotionECU called Cockpit-MotionECU.

MotionECU It is the central ECU in this diagram because it communicates with
several ECUs that are meant to make the car move. MotionECU receives
parameters from AdaptiveCruiseControlECU, pedal pressure information from
PedalECU and it will decide whether to accelerate or decelerate the car, sending
signals to actuators such as traction or brake calipers. This ECU also commu-
nicates directly with the cockpitECU to send ACC status or current speed. It
has four CAN interfaces: the first to communicate with CockpitECU through
Cockpit-MotionECU bus. The second to communicate with AdaptiveCruiseC-
ontrolECU WheelRotationSpeedRearLT, WheelRotationSpeedRearRT, Brake-
CaliperRearLT, BrakeCaliperRearRT, BrakeCaliperFrontLT, BrakeCaliperFron-
tRT and the bus name is ACC-Wheel-Motion. The third to communicate
with TractionFrontWheelLT and TractionFrontWheelRT with the bus ACC-
Traction. The fourth to communicate with PedalECU through Pedal-Motion
bus.

PedalECU It is the ECU used to get the value of the pedal pressure from the
driver. Tt has only one CAN interface that is used to communicate with
motionECU, the other two ports visible in the picture (5.15) are ports dedicated
to electrical signals coming directly from the pedals;

RadarECU It obtains obstacle presence information from the radar sensor and
exchanges it with the AdaptiveCruiseControlECU. It has two CAN interfaces:
one for the bus Radar-ACC for the communication with AdaptiveCruiseCon-
trolECU, and the other for the bus Radar-RadarECU for the communication
with RadarECU.

62



Adaptive Cruise Control Implementation

SteeringWheelECU It receives commands from the acc controller in the steering
wheel and sends them to the AdaptiveCruiseControlECU which will process
them for proper operation. It has a CAN interface for communication with
AdaptiveCruiseControlECU through the SteeringWheel-ACC bus, while all
buttons that are placed in the steering wheel are electrical signals that are
sampled by the ECU itself, and then sent through the CAN interface.

More detailed information about signals, frames and other network information
are in the next section 5.6.

As it is explained in chapter 3.3, in order to perform the auto generation of
signals through the run signal router functionality, it is necessary first to perform
the mapping between the logical model or software model and the hardware model,
that is between the logical/software diagram and the network diagram. The
mapping is done between logic or software components and hardware components.
In this case, the mapping between logic and hardware is identical to the mapping
between software and hardware because as explained in the previous chapter, the
logic and software diagrams are identical. They can be seen in the network diagram
(5.15) through rectangles connected to the hardware component by dotted lines, or
it is outlined in the following table:

Mappings
Logic/Software Component Hardware Component
ACC_CNL SteeringWheelECU
ACCDecreaseDistance SteeringWheelECU
ACCDecreaseSpeed SteeringWheelECU
AcceleratoraByPedal PedalECU
ACCIncreaseDistance SteeringWheelECU
ACCIncreaseSpeed SteeringWheelECU
ACCStartButton SteeringWheelECU
AdaptiveCruiseControlFunction AdaptiveCruiseControlECU
BrakeByPedal PedalECU
BrakeCaliperFrontLT BrakeCaliperFrontLT
BrakeCaliperFrontRT BrakeCaliperFrontRT
BrakeCaliperRearLT BrakeCaliperRearLT
BrakeCaliperRearRT BrakeCaliperRearRT
BrakeFunction MotionECU
CalculateSpeed MotionECU
CockpitDisplay Display
CockpitFunction CockpitECU
DriveTrainFunction MotionECU
FrontWheelLT TractionFrontWheelLT

63



Adaptive Cruise Control Implementation

Mappings
Logic/Software Component Hardware Component
FrontWheelRT TractionFrontWheelRT
Radar Radar
RadarFunction RadarECU
WheelRotationSpeedRearLT WheelRotationSpeedRearLT
WheelRotationSpeedRearRT WheelRotationSpeedRearRT

Table 5.11: Mapping table

Through data mapping and signal routing, for each data element created in the
logic diagram, a signal mapped to the data element can be created. After mapping,
the next step is the creation of signals with the run signal router functionality,
which allows the automatic creation of signals. This feature has several options to
select for signal creation, such as automatically creating new gateways if needed,
and running frame-PDU synthesis, i.e. the creation of frame transmissions and
PDU transmission. With run signal router you have to choose the routing algorithm
to calculate the frame path. The default algorithm is the Dijkstra’s algorithm.
With this algorithm, you have to assign a cost to gateways, bus systems etc. The
routing algorithm will use these costs to calculate the cheapest path.

5.6 Communication
In the communication layer, all signals are generated manually or automatically
by run signal router functionality. In this layer there is no diagrams and it is
used to create all data needed for communication, such as frames and their bits.
The explanation of the communication layer follows the order of procedures to be
done using the methodology that PREEvision proposes. In this section there is an
explanation of all the signals with their length relative to the data created in the
previous layer. The reason for the length of the individual signals will be explained,
and how the frames were created.

Once the run signal router is executed, the signals generated are as follows:

1. ACCCNL_Signal

• Length: 1 bit
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal when the driver clicks the "CNL

button" in the steering wheel. It deactivates the ACC function.

2. ACCDecreaseDistance_Signal

64



Adaptive Cruise Control Implementation

• Length: 1 bit
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal with value 1 when the driver

clicks the "- button" in the steering wheel. It decreases the distance from
the car in front. -10 km/h will be subtracted from the distance to be kept
from the car in front.

3. ACCDecreaseSpeed_Signal

• Length: 2 bits
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal when the driver clicks the "vol-

ume down button" in the steering wheel. It decreases the current speed
by 1 km/h if the signal value is 1 or 10 km/h if the signal value is 2.

4. AcceleratorByPedal_Signal

• Length: 7 bits
• Path: PedalECU to MotionECU
• The PedalECU sends this signal when the driver presses the accelerator

pedal. The signal contains the value of the pedal pressure mapped from 0
to 100.

5. AcceleratorTraction_Signal

• Length: 7 bits
• Path: MotionECU to TractionFrontWheelLT and TractionFrontWheelRT
• The MotionECU sends this signal when the ACC wants to increase speed

or the driver presses the accelerator pedal. It is the consequence of one of
these two signals, namely AcceleratorByPedal_Signal or ACCOutputIn-
creaseSpeed_Signal.

6. ACCIncreaseDistance_Signal

• Length: 1 bit
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal with value 1 when the driver

clicks the "+ button" in the steering wheel. It increases the distance from
the car in front. 10 km/h will be added by the distance to be kept from
the car in front.

65



Adaptive Cruise Control Implementation

7. ACCIncreaseSpeed_Signal

• Length: 2 bits
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal when the driver clicks the "vol-

ume up button" in the steering wheel. It increases the current speed by 1
km/h if the signal value is 1 or 10 km/h if the signal value is 2.

8. ACCOutputDecreaseSpeed_Signal

• Length: 8 bits
• Path: AdaptiveCruiseControlECU to MotionECU
• The AdaptiveCruiseControlECU sends this signal to decrease the speed

and it is sent when there is a change, which may be brake pedal pressure,
the presence of an obstacle, or a decrease in speed or increase in distance
from the ACC controller. This signal contains the value of the speed to
hold.

9. ACCOutputIncreaseSpeed_Signal

• Length: 8 bits
• Path: AdaptiveCruiseControlECU to MotionECU
• The AdaptiveCruiseControlECU sends this signal to increase the speed

and it is sent when there is a change, which may be accelerator pedal
pressure, the absence of an obstacle, or an increase in speed or decrease
in distance from the ACC controller. This signal contains the value of the
speed to hold.

10. ACCStartState_Signal

• Length: 1 bit
• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• The SteeringWheelECU sends this signal when the driver clicks the "cruise

control button" in the steering wheel. It turns on or off the ACC function.

11. ACCStatus_Signal

• Length: 18 Bits
• Path: AdaptiveCruiseControlECU to CockpitECU. The MotionECU acts

as a gateway between the AdaptiveCruiseControlECU and the Cock-
pitECU.

66



Adaptive Cruise Control Implementation

• The AdaptiveCruiseControlECU sends this signal in cyclic mode contain-
ing the speed and distance set in the ACC and the active or inactive state
of the ACC. This information will be used to show data on the cockpit
display. Its length is 18 bits because it is composed of 8 bits for speed, 9
bits for distance and 1 bit for status.

12. BrakeByPedal_Signal

• Length: 7 bits
• Path: PedalECU to MotionECU
• The PedalECU sends this signal when the driver presses the brake pedal.

The signal contains the value of the pedal pressure mapped from 0 to 100.

13. BrakeCalipersFrontLT_Signal

• Length: 7 bits
• Path: MotionECU to BrakeCaliperFrontLT
• The MotionECU sends this signal when the ACC wants to decrease speed

or the driver presses the brake pedal. It is the consequence of one of
these two signals, namely BrakeByPedal_Signal or ACCOutputDecreas-
eSpeed_Signal. BrakeCalipersFrontLT_Signal contains the value from 0
to 100 that indicates the tightness of the left front brake caliper.

14. BrakeCalipersFrontRT_Signal

• Length: 7 bits
• Path: MotionECU to BrakeCaliperFrontRT
• The MotionECU sends this signal when the ACC wants to decrease speed

or the driver presses the brake pedal. It is the consequence of one of
these two signals, namely BrakeByPedal_Signal or ACCOutputDecreas-
eSpeed_Signal. BrakeCalipersFrontRT_Signal contains the value from 0
to 100 that indicates the tightness of the right front brake caliper.

15. BrakeCalipersRearLT_Signal

• Length: 7 bits
• Path: MotionECU to BrakeCaliperRearLT
• The MotionECU sends this signal when the ACC wants to decrease speed

or the driver presses the brake pedal. It is the consequence of one of
these two signals, namely BrakeByPedal_Signal or ACCOutputDecreas-
eSpeed_Signal. BrakeCalipersRearLT_Signal contains the value from 0
to 100 that indicates the tightness of the left rear brake caliper.

67



Adaptive Cruise Control Implementation

16. BrakeCalipersRearRT_Signal

• Length: 7 bits
• Path: MotionECU to BrakeCaliperRearRT
• The MotionECU sends this signal when the ACC wants to decrease speed

or the driver presses the brake pedal. It is the consequence of one of
these two signals, namely BrakeByPedal_Signal or ACCOutputDecreas-
eSpeed_Signal. BrakeCalipersRearLT_Signal contains the value from 0
to 100 that indicates the tightness of the right rear brake caliper.

17. CockpitInfo_Signal

• Length: 27 bits
• Path: CockpitECU to Display
• The CockpitECU sends this signal in cyclic mode to show the ACC status

and the current speed in the display. Its length is 27 bits because it is
composed of 18 bits for ACC status and 9 bits for current speed.

18. RadarInfo_Signal

• Length: 9 bits
• Path: Radar to RadarECU
• The Radar sends this signal in cyclic mode to to give information about

the environment in front of the car. Being a simplified version it only
provides the distance to an obstacle, from 0 to 300 meters.

19. RadarOutput_Signal

• Length: 9 bits
• Path: RadarECU to AdaptiveCruiseControlECU
• The RadarECU received the RadarInfo_Signal, it carries out some elabora-

tions and sends the RadarOutput_Signal to AdaptiveCruiseControlECU.

20. RPM_wheel_Left_Signal

• Length: 13 bits
• Path: WheelRotationSpeedRearLT to MotionECU
• The WheelRotationSpeedRearLT sends this signal in cyclic mode contain-

ing the number of rotations per minute of the left rear wheel.

21. RPM_wheel_Right_Signal

68



Adaptive Cruise Control Implementation

• Length: 13 bits
• Path: WheelRotationSpeedRearRT to MotionECU
• The WheelRotationSpeedRearRT sends this signal in cyclic mode contain-

ing the number of rotations per minute of the right rear wheel.

22. SpeedIndicator_Signal

• Length: 9 bits
• Path: MotionECU to AdaptiveCruiseControlECU and CockpitECU
• The MotionECU sends this signal containing the current speed after

calculating it through the two signals RMP_wheel_right_signal and
RMP_wheel_left_signal.

Each signal is transmitted in a frame. A frame can contain one or more signals.
Below is an explanation of the frames in this car architecture, giving the CAN
Frame ID, frame length, frame sending frequency, frame usage, and frame content.
The frames are 18:

1. ACC_CNL_Frame

• ID: 0x6E

• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• It only carries the ACCCNL_Signal

2. ACC_DecreaseDistance_Frame

• ID: 0x70

• Path: SteeringWheelECU to AdaptiveCruiseControlECU

69



Adaptive Cruise Control Implementation

• It only carries the ACCDecreaseDistance_Signal

3. ACC_DecreaseSpeed_Frame

• ID: 0x6F

• Path: SteeringWheelECU to AdaptiveCruiseControlECU

• It only carries the ACCDecreaseSpeed_Signal

4. ACC_IncreaseDistance_Frame

• ID: 0x72

• Path: SteeringWheelECU to AdaptiveCruiseControlECU

• It only carries the ACCIncreaseDistance_Signal

70



Adaptive Cruise Control Implementation

5. ACC_IncreaseSpeed_Frame

• ID: 0x71

• Path: SteeringWheelECU to AdaptiveCruiseControlECU

• It only carries the ACCDecreaseSpeed_Signal

6. ACC_OutputDecreaseSpeed_Frame

• ID: 0x14

• Path: AdaptiveCruiseControlECU to MotionECU

• It only carries the ACC_OutputDecreaseSpeed_Signal

7. ACC_OutputIncreaseSpeed_Frame

• ID: 0x15

• Path: AdaptiveCruiseControlECU to MotionECU

71



Adaptive Cruise Control Implementation

• It only carries the ACC_OutputIncreaseSpeed_Signal

8. ACC_Start_Stop_Frame

• ID: 0x6D

• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• It only carries the ACC_StartState_Signal

9. ACC_Status_Frame

• ID: 0x73

• Path: SteeringWheelECU to AdaptiveCruiseControlECU
• ID: 0x14

• Path: MotionECU to CockpitECU
• It only carries the ACC_Status_Signal but it has two CAN ID, because

it is sent on two different buses and in each bus has a different priority. It
is sent every 20 ms.

10. Accelerator_Traction_Frame

• ID: 0xB

72



Adaptive Cruise Control Implementation

• Path: MotionECU to TractionFrontWheelLT and TractionFrontWheelRT
• It only carries the ACC_AcceleratorTraction_Signal but it is received by

TractionFrontWheelLT and TractionFrontWheelRT

11. BrakeCalipers_Frame

• ID: 0xA

• Path: MotionECU to BrakeCaliperFrontLT, BrakeCaliperFrontRT, Brake-
CaliperRearLT and BrakeCaliperRearRT,

• It carries four signals, one for each brake caliper.They are in one frame
because the four actuators are on the same bus, and with one frame I can
assign the same priority for each signal. When the frame arrives at its
destination, the actuator will read the bit assigned to it.

12. CockpitInfo_Frame

• ID: 0x96

• Path: CockpitECU to Display
• It only carries the CockpitInfo_Signal. It is sent every 70 ms.

13. Pedal_Frame

• ID: 0x5

73



Adaptive Cruise Control Implementation

• Path: MotionECU to PedalECU
• It carries the AcceleratorByPedal_Signal and the BrakeByPedal_Signal

because these signals must have the same priority, and the driver can also
press the pedals at the same time.

14. RadarInfo_Frame

• ID: 0xF

• Path: Radar to RadarECU
• It only carries the RadarInfo_Signal. It is sent every 40 ms.

15. RadarOutput_Frame

• ID: 0xF

• Path: RadarECU to AdaptiveCruiseControlECU
• It only carries the RadarOutput_Signal

16. RPMLeft_Frame

• ID: 0x3C

• Path: WheelRotationSpeedRearLT to MotionECU
• It only carries the RPM_wheel_Left_Signal. It is sent every 50 ms.

74



Adaptive Cruise Control Implementation

17. RPMRight_Frame

• ID: 0x3D
• Path: WheelRotationSpeedRearRT to MotionECU
• It only carries the RPM_wheel_Right_Signal. It is sent every 50 ms.

18. SpeedIndicator_Frame

• ID: 0x60
• Path: MotionECU to AdaptiveCruiseControlECU
• ID: 0x15
• Path: MotionECU to CockpitECU
• It only carries the SpeedIndicator_Signal but it has two CAN ID, because

it is sent on two different buses and in each bus has a different priority.

The ones explained above are all frames that make up the network architecture of
this thesis. PREEvision offers different views for the frames, one for the description
of the individual bits as is shown in the images above, or a table summarizing all
the frames with frame information such as the CAN frame ID, frame length, timing
period, and interfaces involved.

Figure 5.17: Can Frame Overview

75



Adaptive Cruise Control Implementation

After creating all frames, through the run frame-PDU synthesis function, it is
possible to create the CAN frame transmission and the related PDU transmission,
in order to complete the communication within each channel or CAN Bus. The
differences between CAN frame and CAN frame transmission, or between PDU and
PDU transmission are reported in the chapter 3.3 . Once this function is executed,
the network architecture through PREEvision is completed. Once a complete
network architecture is obtained, it is then possible to perform calculations through
metrics that are another level of PREEvision, or it is possible to export useful
information of the architecture, such as CAN DBC or ARXML files.

76



Chapter 6

Metrics

PREEvision metrics are functions that can be applied to the various layers of
PREEvision to obtain estimates or concrete results; for instance, it’s possible to
create a metric to calculate the bus load of the network architecture. The metrics
are composed of graphical objects programmable in Java. Metrics are not associated
with a single architecture but are reusable. They can be used for a small part of an
architecture, for the entire architecture, or for a different architecture. PREEvision
metrics:

• They are used to perform calculations on the data model for analysis and
optimization.

• It is always executed on the full model, so the result is up to date.

• The output of metrics is streamed into reports or into GUI as lights, scales or
values.

• They are based on a graphical notation and can be expanded by Java code.

There are different metric artifacts such as Objects, Connection, Report and Chart
Block; they will be described in the next sections. (This information are taken
from PREEvision’s manual [11])

This chapter describes the metrics created through the use of the PREEvision
software, associated to the network architecture created in the previous chapter.
The objective is to understand the potentiality of the metrics, by making some
interrogations on the architecture in order to verify the correct realization or to
verify the presence of big critical points, or trying to understand which are the
points that can be improved. The development of these metrics has been a bit
extreme to understand the limit beyond which we can go in the realization of it,
however any conclusions are discussed in the chapter 7. The metrics developed are:

77



Metrics

• Hop Count

• Bus Load

• ECU Load Single Core

• ECU Load Dual Core

6.1 Hop count
The hop count metric calculates the number of ECU crossed by 18 CAN frames
that make up the architecture. In a big car architecture, it is useful to understand
if there is a frame that crosses many ECUs, since the big number of frames and the
graphical visualization of the hardware model doesn’t allow to get the data easily.
The number of ECUs crossed by a frame is an important information since typically
a frame does not cross more than 3 ECUs, and in case of network congestion, a
frame could have important delays. The metric is composed by a metric context
block artifact to insert the CAN frames to interrogate, a calculation block artifact
where there are the java code to make the calculation and a report result block
artifact to show the result in a table.

2

Calculation User Result

Result is a table

-

result

HopsCount
Language: Java

1

ACC_CNL_Frame / -;- (CAN Frame)
ACC_DecreaseDistance_Frame / -;- (C
ACC_DecreaseSpeed_Frame / -;- (CAN
ACC_IncreaseDistance_Frame / -;- (CA
ACC_IncreaseSpeed_Frame / -;- (CAN 
ACC_OutputDecreaseSpeed_Frame / -;
ACC_OutputIncreaseSpeed_Frame / -;-
ACC_Start_Stop_Frame / -;- (CAN Frame)
ACC_Status_Frame / -;- (CAN Frame)
AcceleratorTraction_Frame / -;- (CAN 
BrakeCalipers_Frame / -;- (CAN Frame)
CockpitInfo_Frame / -;- (CAN Frame)
Pedal_Frame / -;- (CAN Frame)
RadarInfo_Frame / -;- (CAN Frame)
RadarOutput_Frame / -;- (CAN Frame)
RPMLeft_Frame / -;- (CAN Frame)
RPMRight_Frame / -;- (CAN Frame)
SpeedIndicator_Frame / -;- (CAN Frame)

Frames

3EcuCount...

result

input

Context

input

Figure 6.1: Hop count metric diagram

The calculation of the calculation block artifact is always performed in the calcu-
lateResult method. In this case, the method performs a loop for each input frame,
obtains the number of frame transmission relative to the frame and increments it
by one. For each input frame, the result is shown in the table through the report
result block artifact.

78



Metrics

1 private static final String IN_INPUT = "input"; //$NON−NLS−1$
2 private static final String OUT_RESULT = "result"; //$NON−NLS−1$
3

4 private ITempTable table = TempTableFactory.createTable();
5

6 private ITempTableColumn colFrame = TempTableFactory.createTableColumn(table, "
Frame");

7

8 private ITempTableColumn colEcuCount = TempTableFactory.createTableColumn(table, "
ECU Count");

9

10 @Override
11 public Object calculateResult() {
12 if (getInput(IN_INPUT) instanceof Collection<?>) {
13 Iterator<?> f = ((Collection<?>) getInput(IN_INPUT)).iterator();
14 while (f .hasNext()) {
15 Object frame = f.next();
16 if (frame instanceof MCANFrame) {
17 int count = ((MCANFrame) frame).getFrameTransmissions().size() + 1;
18 ITempTableRow row = TempTableFactory.createTableRow(table);
19 table .createTableCell(colFrame, row, frame.toString() , String. class ) ;
20 table .createTableCell(colEcuCount, row, count, int. class ) ;
21 } else {
22 printErrorMessage("INSERT A CAN FRAME", "");
23 return null ;
24 }
25 }
26 }
27 setResult(OUT_RESULT, table);
28 return null ;
29 }

Listing 6.1: Hop count metric

Each frame has associated at least 1 frame transmission, which means it passes
through a bus. 2 frame transmission means that the frame crosses 2 buses. In
a bus there is a sender and one or more receivers, but in the calculation of the
crossed ECU, the number of hops will always be equal to 2. Only when a frame
crosses a gateway the number can be higher than 2, because the gateway ECU is
not interested in the information but must only forward the frame. This is the
reason for the increase of one in the Java code. The result is:

Hop Count
Frame ECU Count
ACC_CNL_Frame 2
ACC_DecreaseDistance_Frame 2

79



Metrics

Hop Count
Frame ECU Count
ACC_DecreaseSpeed_Frame 2
ACC_DecreaseSpeed_Frame 2
ACC_IncreaseDistance_Frame 2
ACC_IncreaseSpeed_Frame 2
ACC_OutputDecreaseSpeed_Frame 2
ACC_OutputIncreaseSpeed_Frame 2
ACC_Start_Stop_Frame 2
ACC_Status_Frame 3
AcceleratorTraction_Frame 2
BrakeCalipers_Frame 2
CockpitInfo_Frame 2
Pedal_Frame_Frame 2
RadarInfo_Frame 2
RadarOutput_Frame 2
RPMLeft_Frame 2
RPMRight_Frame 2
SpeedIndicator_Frame 3

Table 6.1: Hop count table

6.2 Bus load
The bus load metric calculates an estimate of the load of the buses entered as input.
By defining a time interval, the metric allows you to calculate the percentage of
bus load based on the amount of messages traversing that bus in that given time.
The bus load depends on the baud rate which is the speed at which messages are
transmitted on a bus; a baud rate of 125000 means that a maximum of 125000
bits per second can be transferred. The bus load depends not only on the baud
rate, but also on the length of messages sent between nodes and the frequency of
sending. Typically the value should never exceed 70% to avoid losing messages.
[16]

The metric is composed of a metric context block artifact to insert the buses to
be analyzed, a calculation block artifact where there is the java code that performs
the calculation, two parameter block artifacts to perform the calculation counting
also the stuffing bits, one to indicate the time interval to be analyzed, and finally a
report result block artifact to show the result in the table. In order not to count any
stuffing bits the statisticStuffBitInterval parameter must be equal to 0, otherwise
they will be counted. In my case the time interval is set to 100 ms.

80



Metrics

3

ACC-Traction : CANType / -;- (
Cockpit-MotionECU : CANTyp
Display-Cockpit : CANType / -;
Pedal-Motion : CANType / -;- (
Radar-ACC : CANType / -;- (Bu
Radar-RadarECU : CANType / -;
ACC-Wheel-Motion : CANType
SteeringWheel-ACC : CANType

BusSystems

4

Calculation User Result

Result is a table

-

result

CANBusLoad
Language: Java

5BusLoadT...

2
defaultCycleTim...

100

1
statisticStuffBitI...

0

Context

result

busSystems

defaultCycleTime

statisticStuffBitInterval

input

output

output

Figure 6.2: Bus load metric diagram

In this architecture the frames are all standard CAN frames and therefore are
composed of:

• 1 bit start bit.

• 11 bit identifier

• 1 bit RTR

• 6 bit control field

• 0 to 64 bit data field

• 15 bit CRC

• Bit stuffing is possible in the first 34 bits, for every sequence of 5 consecutive
bits of same level.

• 3 bit delimiter, ack etc.

• 7 bit end of frame

• 3 bit intermission field after frame.

81



Metrics

1 public Object calculateResult() {
2 getInputs();
3 Iterator<MBusSystem> busIterator = busSystems.iterator();
4 while (busIterator .hasNext()) {
5 BusLoad cumulatedLoad = new BusLoad();
6 MBusSystem bus = busIterator.next();
7 if ((bus.getBelongsToCluster() != null && bus.getBelongsToCluster().getBaudrate() !=

0.0)
8 || (bus.getBusType() != null && bus.getBusType().getBaudrate() != 0.0)) {
9 ArrayList<MSignalTransmission> signalTransmissions = new ArrayList<>();

10 Collection<MAbstractBusCommunication> communications = bus.
getBusCommunications();

11 Iterator<MAbstractBusCommunication> busComIt = communications.iterator();
12 while (busComIt.hasNext()) {
13 MAbstractBusCommunication aBusCom = busComIt.next();
14 if (aBusCom instanceof MCANCommunication) {
15 MCANCommunication canCom = (MCANCommunication) aBusCom;
16 if (canCom.isIncludedInActiveVariant() && canCom.isPartOfActiveVariant()) {
17 if (canCom.getBusRouting() != null) {
18 if (canCom.getBusRouting() instanceof MChannelCommunication) {
19 MChannelCommunication routing = (MChannelCommunication) canCom.

getBusRouting();
20 signalTransmissions.addAll(routing.getSignalTransmissions());
21 }
22 }
23 }
24 }
25 }
26 calculateLoad(signalTransmissions, bus);
27 }
28 }
29

30 setResult(OUT_RESULT, results);
31 return null ;
32 }

Listing 6.2: calculateResult() method

With this method, the buses passed as input are saved in an iterator. For each
bus the signals transmitted within that bus are obtained. Finally the method
private void calculateLoad(ArrayList<MSignalTransmission> signalTransmissions,
MBusSystem bus) is called.

82



Metrics

1 private void calculateLoad(ArrayList<MSignalTransmission> signalTransmissions,
MBusSystem bus) {

2 Iterator<MSignalTransmission> stIt = signalTransmissions.iterator();
3 BusLoad cumulatedLoad = new BusLoad();
4 while ( stIt .hasNext()) {
5 MSignalTransmission st = stIt.next();
6 if (BusLoadUtil.getBusType(st) != null && BusLoadUtil.getBusType(st) instanceof

MCANType) {
7 double transmissionRate = getTransmissionRateOfSigTrans(st);
8 if (transmissionRate > 0.0) {
9 double cycleTime = 0;

10 cycleTime = getCycleTime(st);
11 if (cycleTime > 0){
12 BusLoad load = calculateBusLoadPerTransmission(st, cycleTime,

transmissionRate);
13 cumulatedLoad.addBusLoad(load);
14 }
15 }
16 }
17 }
18 ITempTableRow values = TempTableFactory.createTableRow(results);
19 TempTableFactory.createTableCell(busSystemColumn, values, bus, MBusSystem.class);
20 TempTableFactory.createTableCell(avgLoadColumn, values, round(cumulatedLoad.getAvg

(), 2), Double.class);
21 }

Listing 6.3: calculateLoad() method

The calculateLoad method does not calculate the bus load yet, but prepares the data
to be able to calculate it. Specifically, it obtains the frame by sending frequency
from the signal attributes, then calls the method private BusLoad calculateBus-
LoadPerTransmission(MSignalTransmission signalTransmission, double cycleTime,
double transmissionRate) to perform the bus load calculation, and finally inserts
the obtained value in a row of the final table. Not all frames have a predefined
transmission rate in a cyclic manner. For all frames that do not have a sending
frequency, the value will be equal to the period under consideration or 100 ms.
This allows the worst case to be considered for the bus load calculation.

83



Metrics

1 private BusLoad calculateBusLoadPerTransmission(MSignalTransmission signalTransmission,
double cycleTime, double transmissionRate) {

2 BusLoad busLoadPerTransmission = new BusLoad();
3 if (signalTransmission != null && transmissionRate > 0.0) {
4 int frameLength = BusLoadUtil.getFrameLength(signalTransmission, 1);
5 double bitTime = 1 / transmissionRate;
6 double frameTime;
7 if ( statisticStuffBitInterval == 0) {
8 frameTime = ((47.0 + frameLength) ∗ (defaultCycleTime / cycleTime)) ∗ bitTime;
9 } else {

10 frameTime = (((44.0 + frameLength) + ((34 + frameLength − 1) / 4)) ∗ (
defaultCycleTime / cycleTime)) ∗ bitTime;

11 }
12 double load = (frameTime / (defaultCycleTime / 1000)) ∗ 100;
13 busLoadPerTransmission.setMax(load); signalLength, transmissionRate));
14 }
15 return busLoadPerTransmission;
16 }

Listing 6.4: calculateBusLoadPerTransmission() method

Bus load calculations can be summarized in 3 steps:

Bit time calculation It represents the transmission time of a single bit

Frame time calculation It represents the bus occupation time for the transmis-
sion of a frame

Bus load calculation Formula: (FrameTime/DefaultCycleT ime) ∗ 100

DefaultCycleTime is 100 ms and it is the time interval taken into account. For
example, given a bit rate of 500 kbit/s, a frame length of 64 bits and a time interval
of 100 ms:

1. bit time = 1/bitrate = 1/(500 ∗ 1000)s = 2 ∗ 10−6s = 2µs

2. frame time = 64 ∗ 2µs = 128µs

3. bus load = (128µs/100ms) ∗ 100 = 0.00128 ∗ 100 = 0.128%

The baud rate in the network architecture of this project is 125000 bits per second
for all buses. In case a frame is repeated several times within the DefaultCycleTime,
it is considered as a frame with n ∗ FrameLength, where n is the number of times
it is sent. If there is no bit stuffing in any frame the result of the bus load is the
following:

84



Metrics

Bus Load
BusSystem Load %
ACC-Traction 0.44
ACC-Wheel-Motion 8.77
Cockpit-MotionECU 1.07
Display-Cockpit 0.9
Pedal-Motion 1.01
Radar-ACC 0.5
Radar-RadarECU 1.26
SteeringWheel-ACC 2.64

Table 6.2: Bus load table without bit stuffing

The CAN protocol is asynchronous and in order to maintain synchronization
between CAN controllers it uses the bit stuffing technique. With the bit stuffing
technique, a bit with opposite polarity is added every 5 consecutive bits of the
same polarity. This increases the length of the CAN frame. CRC, ACK and end of
frame fields that are of a fixed size cannot be stuffed while all other fields can have
manipulation caused by this technique, while in the header only 34 bits of the 44
present can be influenced. In the data field varies according to its length. [17] To
calculate the size of a frame after bit stuffing, the formula is as follows:

8n+ 44 + (34 + 8n− 1)/4

n is the number of bytes used for the data field. In the worst case a bit is inserted
every 4 original bits after the first one (-1 at numerator). The worst case example
is this:

11111000011110000...

after the bit stuffing:
111110000011111000001...

The result with the bit stuffing is the following:

Bus Load
BusSystem Load %
ACC-Traction 0.5
ACC-Wheel-Motion 10.1
Cockpit-MotionECU 1.23
Display-Cockpit 1.05
Pedal-Motion 1.15
Radar-ACC 0.58

85



Metrics

Bus Load
BusSystem Load %
Radar-RadarECU 1.44
SteeringWheel-ACC 2.98

Table 6.3: Bus load table with bit stuffing

86



Metrics

0
2

4
6

8
10

12

AC
C-

Tr
ac

tio
n

AC
C-

W
he

el
-M

ot
io

n

Co
ck

pi
t-

M
ot

io
nE

CU

D
is

pl
ay

-C
oc

kp
it

Pe
da

l-M
ot

io
n

Ra
da

r-
AC

C

Ra
da

r-
Ra

da
rE

CU

St
ee

rin
gW

he
el

-A
CC

st
uf

fin
g

no
 st

uf
fin

g

F
ig
ur
e
6.
3:

Bu
s
lo
ad

ch
ar
t
w
ith

or
w
ith

ou
t
bi
t
st
uffi

ng

87



Metrics

Being the architecture created small, even in the worst case the bit stuffing does
not affect heavily the bus load. Obviously, the only bus that shows a slight increase
is ACC-Wheel-Motion because it is the one where most data bits travel, so it is
the one most affected by the increase of stuffed bits.

6.3 ECU load single core

The ecu load single core metric calculates an estimate of the load of the six ECUs
that populate the architecture created, assuming all ECUs are single core. The
calculation is based on the leaky bucket algorithm. Assuming to have a container
with a hole at the bottom, the leaky bucket algorithm is used to understand if
filling the container with water will leak from the top or or if it will remain in the
container thanks to the constant leakage from the hole at the base of the container.
Thus, it allows to understand if the average rate with which the water is poured
is greater than the average rate with which the water comes out of the hole. [18]
In this metric, water is replaced by credits. Each ECU has a defined number of
credits (bucket size) it can handle in a defined time interval, which in this case
amounts to 100 ms. Each signal has a defined weight in credits, and each time it
passes through an ECU (sending or receiving a frame), it subtracts its value in
credits from the total credits of the ECU. In this way it is possible to understand
if the ECU is able to manage all the signals that cross it or not. The purpose of
the credits is to simulate the complexity that requires the frame to be processed by
the ecu. In this case they are assigned based on the length of the signal. Since it is
not a simulation environment, we consider only the worst case, where all frames
populate the network in the given time interval. The final value will be shown in
percentage.

The metric is composed by a metric context block artifact where the ECUs to be
interrogated are inserted, three calculation block artifacts to populate a first table
with the useful data for the calculation, to perform the calculation and to create
a last table for the visualization of the result. There are also 4 parameter block
artifacts to set the operating parameters of the algorithm, which allow you to set
the period to be interrogated, the frequency of sending default frames, the default
weight of a frame that is used in case a frame does not have an assigned weight
and the default credits for the ECU. There are two report result block artifacts, one
to show the result in table format and the other for debugging.

88



Metrics

-1

ACC-Wheel-Motion : CA

Bus

-1

Calculation User Result

-
-

result

testWithECUInterface
Language: Java

-1

MotionECU_ACC-Wheel-

Metric Contextblock

-1

Calculation User Result

-
-

result

calculateSignalLength
Language: Java

-1
Table

6

SteeringWheelECU / -;- (ECU)
AdaptiveCruiseControlEC
RadarECU / -;- (ECU)
CockpitECU / -;- (ECU)
MotionECU / -;- (ECU)
PedalECU / -;- (ECU)

ECUs

7

Calculation User Result

Result is a table
-

result

populateTable
Language: Java

8Informatio...

1
defaultTiming (ms)

150

5
defaultWeight

10
8

Calculation User Result

Result is a table
-

result

calculateECUload
Language: Java

4
defaultPeriod (ms)

100

3
DefaultCredit

200
10

ECULoadT...

-1

MotionECU / -;- (ECU)

ECU

-1

Calculation User Result

-
-

result

SetCredits
Language: Java

README

ATTRIBUTES that need to be updated:
-"Weight" in Signal Transmission (Communication Package)
-"Credits" in ECU (Network Diagram)

For Debugging

9

Calculation User Result

Result is a table
-

result

CreateTableResult
Language: Java

Context

result

input

Context

result

input input

Context

result

ECUs

timing

weight

period

credit

input

output

output

result

input

output

output

input

Context

result

ECUs

result

input

Figure 6.4: ECU load single core metric diagram

The credits of the ECU and the weight in credits of the signals are shown in the
following two tables:

ECU credits
ECU Credit
AdaptiveCruiseControlECU 300
CockpitECU 400
MotionECU 600
PedalECU 100
RadarECU 200
SteeringWheelECU 200

Table 6.4: ECU credits table

Signal weights
Signal Weight
ACCCNL_Signal 5
ACCDecreaseDistance_Signal 5
ACCDecreaseSpeed_Signal 7
AcceleratorByPedal_Signal 15
AcceleratorTraction_Signal 15
ACCIncreaseDistance_Signal 5
ACCIncreaseSpeed_Signal 7
ACCOutputDecreaseSpeed_Signal 17
ACCOutputIncreaseSpeed_Signal 17
ACCStartState_Signal 5
ACCStatus_Signal 25

89



Metrics

Signal weights
Signal Weight
BrakeByPedal_Signal 15
BrakeCalipersFrontLT_Signal 15
BrakeCalipersFrontRT_Signal 15
BrakeCalipersRearLT_Signal 15
BrakeCalipersRearRT_Signal 15
CockpitInfo_Signal 31
RadarInfo_Signal 20
RadarOutput_Signal 20
RPM_wheel_Left_Signal 27
RPM_wheel_Right_Signal 27
SpeedIndicator_Signal 20

Table 6.5: Signal weights table

1 void populateTable(MFrameTransmission frame, MECU ecu, MECUInterface ecuInt, String
typeTransmission) {

2 frame.getContainedIPDUTransmissions().forEach(PDU −> {
3 PDU.getContainedSignalTransmissions().forEach(signal −> {
4 ITempTableRow row = TempTableFactory.createTableRow(table);
5 table .createTableCell(colECU, row, ecu.toString(), String. class ) ;
6 table .createTableCell(colECUInterface, row, ecuInt.toString() , String. class ) ;
7 Optional<MGenericAttribute> generic = ecu.getGenericAttributes().stream().filter(

attr −> attr.getName().equals("credits")).findFirst() ;
8 if (generic . isPresent()) {
9 table .createTableCell(colECUCredits, row, Double.parseDouble(generic.get().

getValue()), Double.class);
10 } else {
11 table .createTableCell(colECUCredits, row, defaultCredit, Double.class) ;
12 }
13 table .createTableCell(colSignal , row, signal .toString() , String. class ) ;
14 table .createTableCell(colTypeTransmission, row, typeTransmission, String.class) ;
15 generic = signal.getGenericAttributes().stream(). filter (attr −> attr.getName().

equals("weight")).findFirst() ;
16 if (generic . isPresent()) {
17 table .createTableCell(colWeight, row, Integer .valueOf(generic.get() .getValue()),

int . class ) ;
18 } else {
19 table .createTableCell(colWeight, row, defaultWeight, int . class ) ;
20 }
21 double t=0;
22 if (PDU.getCyclicTimings().size() > 0) {
23 t = PDU.getCyclicTimings().get(0).getTimePeriod();
24 }else {

90



Metrics

25 t = defaultTiming;
26 }
27 table .createTableCell(colTiming, row, t , Double.class) ;
28 if (t != 0) {
29 table .createTableCell(colNPeriod, row, (Double) (defaultPeriod / t) , Double.class)

;
30 } else {
31 table .createTableCell(colNPeriod, row, (Double) 0.0, Double.class) ;
32 }
33 });
34 });
35 }

Listing 6.5: populateTable() method

The populateTable method is called for each signal sent or received by each ECU.
Its purpose is to create an intermediate table containing all the information needed
to perform the ECU load calculation. The necessary information are: ECUs, ECU
interface, ECU credits, signals, type transmission (sending or receiving) , timing
(signal sending period), signal weight, NPeriod (number of times the signal is sent
or received in the predefined time interval).

1 public Object calculateResult() {
2 ITempTable table = getInput(IN_INPUT, ITempTable.class);
3 HashMap<String, Double> ECULoadMap = new HashMap<>();
4

5 double credit=0;
6 double creditTotal = 0;
7

8 double defaultPeriod = 0;
9 Object defaultPeriodInput = getInput("defaultPeriod");

10 if (defaultPeriodInput != null && defaultPeriodInput instanceof Double) {
11 defaultPeriod = ((Double) defaultPeriodInput).doubleValue();
12 }
13

14 String ECU = "";
15 for ( int j = 0; j < table.getRowCount(); j++) {
16 double cost = 0;
17 for ( int i = 0; i < table.getColumnCount(); i++) {
18 ITempTableCell cell = table.getCell( i , j) ;
19 if ( cell .getColumnName().equals("ECU")) {
20 ECU = cell.getRepresentedObject().toString();
21 }
22 else if ( cell .getColumnName().equals("ECUCredits")) {
23 ECULoadMap = populateECULoadMap(ECULoadMap, ECU, (double) cell.

getRepresentedObject());
24 ECUCreditMap = populateECULoadMap(ECUCreditMap, ECU, (double) cell.

getRepresentedObject());

91



Metrics

25 creditTotal = (double) cell .getRepresentedObject();
26 }
27 else if ( cell .getColumnName().equals("Weight")) {
28 cost = Double.parseDouble(cell.getRepresentedObject().toString());
29 } else if ( cell .getColumnName().equals("NPeriod")) {
30 cost ∗= (double) cell .getRepresentedObject();
31 ECULoadMap.put(ECU, ECULoadMap.get(ECU) − cost);
32 }
33 }
34 }
35 ECULoadMap.forEach((k, v) −> {
36 ITempTableRow row = TempTableFactory.createTableRow(resultTable);
37 resultTable .createTableCell(colECU, row, k, String. class ) ;
38 double result = ((ECUCreditMap.get(k) − v) / ECUCreditMap.get(k)) ∗ 100;
39 result = result > 0 ? result : result ∗ −1;
40 resultTable .createTableCell(colECULoad, row, round(result, 2) + "%", String.class) ;
41 });
42 setResult(OUT_RESULT, resultTable);
43 return null ;
44 }

Listing 6.6: calculateResult() method

The calculateResult() method belonging to the calculateECUload artifact calculates
for each entry of the previously created table, the number of credits for each signal
expressed as the number of times the signal crosses an ECU, multiplied by its
weight. The resulting value is subtracted from the credits of the affected ECU.
Finally, for each ECU the load percentage is calculated and a table is created again
which will be passed to another calculation block to perform the final visualization.
The final result is the following:

ECU load single core
ECU Load
AdaptiveCruiseControlECU 65.67%
CockpitECU 18.57%
MotionECU 61.5%
PedalECU 20.0%
RadarECU 31.67%
SteeringWheelECU 11.33%

Table 6.6: ECU load table

92



Metrics

6.4 ECU load dual core
The ECU load dual core metric estimates the load on the ECUs that populate the
architecture, using the same algorithm as the ECU load single core metric, but
assuming that all ECUs are dual core, and that frames are handled in the cores
based on the frame id (The operation of the algorithm is explained in the previous
section 6.3). On the basis of the filter on the frame id entered by the user, a frame
is handled by one core rather than another.

The metric is composed by a metric context block artifact to insert the ECUs to
interrogate, a calculation block artifact to populate a first table where are inserted
all the useful data to perform the calculation, and a second calculation block artifact
to perform the calculation of the ECUs load. There are also 5 parameter block
artifacts to set the period of time to be interrogated, to define the frame sending
frequency for all frames that do not have a defined cyclic sending frequency, to
define the default weights and credits for frames and ECUs that do not have them
defined, finally a last parameter block to set the frame id threshold beyond which
the frame is managed by the second ECU core. To visualize the data there are two
tables, a final one and an intermediate one, used for debugging purposes. In this
case the frame id threshold is 100, so all frames with decimal frame id greater than
100 are handled by the second core.

7

CockpitECU / -;- (ECU)
MotionECU / -;- (ECU)
PedalECU / -;- (ECU)
RadarECU / -;- (ECU)
AdaptiveCruiseControlEC
SteeringWheelECU / -;- (ECU)

ECUs

8

Calculation User Result

Result is a table

-

result

populateTable
Language: Java

-1Metric Context Block1411
-1

Calculation User Result

-
-

result

Calculation Block1295
Language: Java

9Report Re...

6
priorityRangeId

100

4
defaultTiming (ms)

150

3
defaultWeight

10

2
defaultCredit

200

1
defaultPeriod (...

100

9

Calculation User Result

Result is a table
-

result

calculateECULoad
Language: Java

10Report Re...

Context

period

result

ECUs

priorityRangeId

timing

weight

credit

Context
result

input

input

output

output

output

output

output

result

input

input

Figure 6.5: ECU load dual core metric diagram

Based on the created architecture, the result of the metric is as follows (all frame
ids can be seen in the chapter 5.6):

93



Metrics

ECU load dual core
ECU Core 1 Core 2
AdaptiveCruiseControl
ECU

16.44 % 49.22 %

CockpitECU 7.5% 11.07 %
MotionECU 40.67 % 20.83 %
PedalECU 20.0% 0.0 %
RadarECU 31.67% 0.0 %
SteeringWheelECU 0.0 % 11.33%

Table 6.7: ECU load table

94



Chapter 7

Conclusion

In this final chapter, I discussed the approach used for the creation of the network
architecture, by highlighting its positive and negative aspects. In this case, although
the approach was strongly influenced by the PREEvision software, this chapter
tries to discuss the importance of adopting an efficient strategy for the development
of a complex system, thus avoiding a review of the software used. Instead, the last
paragraph is used to introduce the future developments of this thesis.

The work of this thesis analyzes, verifies and produces an automotive network
architecture following a methodology compatible with AUTOSAR. The model-
based approach used by PREEvision allows to have well-defined graphical models
for the definition of the architecture, thereby allowing not only the collaboration of
several people in the same project, but also - and above all - a rapid design of a
very complex system from scratch. The use of a model-based approach has become
mandatory, especially given the complexity and the large number of ECUs present
in a vehicle architecture. Although the creation of the architecture is done through
graphical models, these models allow anyway the export of files and data needed
for the ECU programming, speeding up the ECU development process, thanks
to the definition of the communication and the functioning of the ECUs (more
information about the ECU development are present in the next paragraph).

The design of the adaptive cruise control functionality has been deliberately
simplified, in order to focus more on the aspects of the methodology to be followed for
the design; therefore, although this created architecture cannot have an application
in the real context, the initial goal is fully achieved, because it defines a step-based
methodology which leads to the generation of the necessary files for the ECU
development. The goal was to introduce and understand the approach to be
followed, highlighting its positive and negative aspects. Although the PREEvision
layers to be created for the ARXML file generation were only the software, hardware
and communication layers, also the customer features, requirements and logic layers
were very useful, since they allow to follow the v-cycle model that is used in the

95



Conclusion

design and development of automotive applications. The correct application of the
v-cycle model surely allows to obtain a consistent architecture already at a first
final version, without having to make big changes in the future.

In the project, the metrics created were useful in obtaining an estimate of
how the architecture worked. Through the PREEvision software, a conceptual
architecture is created in which true simulations cannot be done because it is
not possible to influence the various sensors, creating situations that could occur.
Despite this, being able to make static queries on the architecture created is very
important because it allows the same to understand any inefficiencies before the
development phase.

The work provides a complete architecture design, following the v-cycle process
in figure 7.1. The first one called system design is practically completed and this
allows to continue to the second step for the ECU development. In the figure only
the software belonging to the Vector company are shown, but the fact of having
ARXML files allows the use of any other tool, since being AUTOSAR specific files,
the AUTOSAR consortium has many Tools and Services that can be used.

Figure 7.1: V-cycle for ECU development

Given the complexity of modern systems, the model-based approach is definitely
a winning strategy compared to other approaches for designing a vehicle architecture.

96



Conclusion

This approach has no major disadvantages in the automotive domain, although it
is not a methodology that allows to obtain a working system in a very short time.
However, the time spent on model-based design allows for higher quality on the
final product. Other approaches could obtain a final product in a shorter time but
with a lower quality. Relevant positive aspects are:

• Communication between the team members who will develop the system is
facilitated, allowing efficient analysis and verification of the system.

• Errors are easy to find. This benefits the production of the system because it
perfectly delimits the system to be developed, without having to make any
future changes.

• Models and their components are reusable.

97



Conclusion

7.1 Future work
In order to make the architecture created more complex and usable in a real-
world context, the Ethernet protocol should be added to the design for managing
the radar/cameras for autonomous driving. The sensors used for autonomous
driving generate large amounts of data that must be processed in a very short
time, and therefore cannot be sent through the simplest buses such as CAN or
LIN. In order to have a highly performative communication, the Ethernet bus
was recently introduced also in the automotive field. The creation of an ethernet
network architecture is slightly more complex than the one seen in the previous
chapters, because a service oriented design is used. The 7.2 shows the steps to
follow for ethernet design in PREEvision. The final part is identical to the one
seen for the architecture design of this thesis, while the initial part is about the
definition and creation of services. Services are requested and received between
ECUs. The ECUs communicate with each other through the SOME/IP protocol.
Through this protocol, the communication takes place dynamically, following a
request of the service and its response. In the ECUs, the service interfaces that are
used to provide and receive services are defined. Thus, a future development is to
add Ethernet to the architecture, delving into the SOME/IP protocol and service
oriented architecture.

Figure 7.2: Ethernet design in PREEvision

Another future development for this thesis could be the programming of the
ECUs, which stands as the second phase of the v-cycle shown in figure 7.1. Having

98



Conclusion

already defined the SW-Cs, the ports, the interfaces, the data and also the mapping
between the SW-Cs and the ECUs, and having exported the ARXML file related
to the whole system, we could start the development of the single ECUs. The
basic functions of an AUTOSAR ECU such as communication and diagnostics are
implemented by the Basic Software (BSW), while RTE handles data exchange and
execution of the component software. Developing an AUTOSAR ECU therefore
means implementing the BSW and RTE of each ECU. In order to do this, specific
tools should be used, together with the generated ARXML files, because they allow
the automatic generation of the files needed for the development.The files that will
be generated can be for example, .c and .h files, with already present data that
have been created in the design phase of the architecture.

ECU
SW-C

A
SW-C

B
SW-C

C

SW-C
D

SW-C
E

RTE (Runtime Environent)RTE (Runtime Environent)

BSWBSW

Microcontroller

Figure 7.3: AUTOSAR ECU

99



Appendix A

Export CAN DBC

1 VERSION ""
2

3 NS_ :
4 NS_DESC_
5 CM_
6 BA_DEF_
7 BA_
8 VAL_
9 CAT_DEF_

10 CAT_
11 FILTER
12 BA_DEF_DEF_
13 EV_DATA_
14 ENVVAR_DATA_
15 SGTYPE_
16 SGTYPE_VAL_
17 BA_DEF_SGTYPE_
18 BA_SGTYPE_
19 SIG_TYPE_REF_
20 VAL_TABLE_
21 SIG_GROUP_
22 SIG_VALTYPE_
23 SIGTYPE_VALTYPE_
24 BO_TX_BU_
25 BA_DEF_REL_
26 BA_REL_
27 BA_DEF_DEF_REL_
28 BU_SG_REL_
29 BU_EV_REL_
30 BU_BO_REL_
31 SG_MUL_VAL_
32

33 BS_:

100



Export CAN DBC

34

35 BU_: AdaptiveCruiseControlECU SteeringWheelECU
36

37

38 BO_ 109 ACC_Start_Stop_Frame: 1 SteeringWheelECU
39 SG_ ACCStartState_Signal : 0|1@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
40

41 BO_ 110 ACC_CNL_Frame: 1 SteeringWheelECU
42 SG_ ACCCNL_Signal : 0|1@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
43

44 BO_ 111 ACC_DecreaseSpeed_Frame: 1 SteeringWheelECU
45 SG_ ACCDecreaseSpeed_Signal : 0|2@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
46

47 BO_ 112 ACC_DecreaseDistance_Frame: 1 SteeringWheelECU
48 SG_ ACCDecreaseDistance_Signal : 0|1@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
49

50 BO_ 113 ACC_IncreaseSpeed_Frame: 1 SteeringWheelECU
51 SG_ ACCIncreaseSpeed_Signal : 0|2@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
52

53 BO_ 114 ACC_IncreaseDistance_Frame: 1 SteeringWheelECU
54 SG_ ACCIncreaseDistance_Signal : 0|1@1+ (1,0) [0|0] "" AdaptiveCruiseControlECU
55

56

57 VAL_ 112 ACCDecreaseDistance_Signal 1 "−10 m";

Listing A.1: CAN DBC file of SteeringWheel-ACC bus

101



Appendix B

Export ARXML file

1 ...
2 <APPLICATION−SW−COMPONENT−TYPE UUID="

Obfa8380117e6793bc3e47a96XObfa8380117e6793bc3e47a9500">
3 <SHORT−NAME>AdaptiveCruiseControlFunction</SHORT−NAME>
4 <PORTS>
5 <P−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4a26300">
6 <SHORT−NAME>ACCOutputDecreaseSpeed</SHORT−NAME>
7 </P−PORT−PROTOTYPE>
8 <P−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4a31000">
9 <SHORT−NAME>ACCOutputIncreaseSpeed</SHORT−NAME>

10 </P−PORT−PROTOTYPE>
11 <P−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4943700">
12 <SHORT−NAME>ACCStatus</SHORT−NAME>
13 </P−PORT−PROTOTYPE>
14 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e47aa000">
15 <SHORT−NAME>ACCCNL</SHORT−NAME>
16 </R−PORT−PROTOTYPE>
17 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e482b200">
18 <SHORT−NAME>ACCDecreaseDistancePort</SHORT−NAME>
19 </R−PORT−PROTOTYPE>
20 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4818600">
21 <SHORT−NAME>ACCDecreaseSpeedPort</SHORT−NAME>
22 </R−PORT−PROTOTYPE>
23 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4821900">
24 <SHORT−NAME>ACCIncreaseDistancePort</SHORT−NAME>
25 </R−PORT−PROTOTYPE>

102



Export ARXML file

26 <R−PORT−PROTOTYPE UUID="
Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e480f300">

27 <SHORT−NAME>ACCIncreaseSpeedPort</SHORT−NAME>
28 </R−PORT−PROTOTYPE>
29 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4806300">
30 <SHORT−NAME>ACCStartState</SHORT−NAME>
31 </R−PORT−PROTOTYPE>
32 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e488c500">
33 <SHORT−NAME>RadarOutput</SHORT−NAME>
34 </R−PORT−PROTOTYPE>
35 <R−PORT−PROTOTYPE UUID="

Obfa8380117e6793bc3e47a96xObfa8380117e6793bc3e4896d00">
36 <SHORT−NAME>SpeedIndicator</SHORT−NAME>
37 </R−PORT−PROTOTYPE>
38 </PORTS>
39 </APPLICATION−SW−COMPONENT−TYPE>
40 ...
41 <SENDER−RECEIVER−INTERFACE UUID="

Obfa8380117cf9d1152e44fe7XObfa8380117cf9d1152e44fe600">
42 <SHORT−NAME>ACCCNL_SRI</SHORT−NAME>
43 <IS−SERVICE>false</IS−SERVICE>
44 <DATA−ELEMENTS>
45 <VARIABLE−DATA−PROTOTYPE UUID="

Obfa8380117cf9d1152e4503cXObfa8380117cf9d1152e4503b00">
46 <SHORT−NAME>ACCCNL_DE</SHORT−NAME>
47 <TYPE−TREF DEST="APPLICATION−PRIMITIVE−DATA−TYPE">/

DataTypes/ApplicationDataTypes/ACCCNL_ADT</TYPE−TREF>
48 </VARIABLE−DATA−PROTOTYPE>
49 </DATA−ELEMENTS>
50 </SENDER−RECEIVER−INTERFACE>
51 <SENDER−RECEIVER−INTERFACE UUID="

Obfa8380117c73c6632d45806XObfa8380117c73c6632d4580500">
52 <SHORT−NAME>ACCDecreaseDistance_SRI</SHORT−NAME>
53 <IS−SERVICE>false</IS−SERVICE>
54 <DATA−ELEMENTS>
55 <VARIABLE−DATA−PROTOTYPE UUID="

Obfa8380117c73c6632d45862XObfa8380117c73c6632d4586100">
56 <SHORT−NAME>ACCDecreaseDistance_DE</SHORT−NAME>
57 <TYPE−TREF DEST="APPLICATION−PRIMITIVE−DATA−TYPE">/

DataTypes/ApplicationDataTypes/ACCDecreaseDistance_ADT</TYPE−TREF>
58 </VARIABLE−DATA−PROTOTYPE>
59 </DATA−ELEMENTS>
60 </SENDER−RECEIVER−INTERFACE>
61 <SENDER−RECEIVER−INTERFACE UUID="

Obfa8380117c73c6632d440daXObfa8380117c73c6632d440d900">
62 <SHORT−NAME>ACCDecreaseSpeed_SRI</SHORT−NAME>
63 <IS−SERVICE>false</IS−SERVICE>

103



Export ARXML file

64 <DATA−ELEMENTS>
65 <VARIABLE−DATA−PROTOTYPE UUID="

Obfa8380117c73c6632d44136XObfa8380117c73c6632d4413500">
66 <SHORT−NAME>ACCDecreaseSpeed_DE</SHORT−NAME>
67 <TYPE−TREF DEST="APPLICATION−PRIMITIVE−DATA−TYPE">/

DataTypes/ApplicationDataTypes/ACCDecreaseSpeed_ADT</TYPE−TREF>
68 </VARIABLE−DATA−PROTOTYPE>
69 </DATA−ELEMENTS>
70 </SENDER−RECEIVER−INTERFACE>
71 <SENDER−RECEIVER−INTERFACE UUID="

Obfa8380117c73c6632d45280XObfa8380117c73c6632d4527f00">
72 <SHORT−NAME>ACCIncreaseDistance_SRI</SHORT−NAME>
73 <IS−SERVICE>false</IS−SERVICE>
74 <DATA−ELEMENTS>
75 <VARIABLE−DATA−PROTOTYPE UUID="

Obfa8380117c73c6632d452dcXObfa8380117c73c6632d452db00">
76 <SHORT−NAME>ACCIncreaseDistance_DE</SHORT−NAME>
77 <TYPE−TREF DEST="APPLICATION−PRIMITIVE−DATA−TYPE">/

DataTypes/ApplicationDataTypes/ACCIncreaseDistance_ADT</TYPE−TREF>
78 </VARIABLE−DATA−PROTOTYPE>
79 </DATA−ELEMENTS>
80 </SENDER−RECEIVER−INTERFACE>
81 <SENDER−RECEIVER−INTERFACE UUID="

Obfa8380117c73c6632d4394eXObfa8380117c73c6632d4394d00">
82 <SHORT−NAME>ACCIncreaseSpeed_SRI</SHORT−NAME>
83 <IS−SERVICE>false</IS−SERVICE>
84 <DATA−ELEMENTS>
85 <VARIABLE−DATA−PROTOTYPE UUID="

Obfa8380117c73c6632d439a2XObfa8380117c73c6632d439a100">
86 <SHORT−NAME>ACCIncreaseSpeed_DE</SHORT−NAME>
87 <TYPE−TREF DEST="APPLICATION−PRIMITIVE−DATA−TYPE">/

DataTypes/ApplicationDataTypes/ACCIncreaseSpeed_ADT</TYPE−TREF>
88 </VARIABLE−DATA−PROTOTYPE>
89 </DATA−ELEMENTS>
90 </SENDER−RECEIVER−INTERFACE>
91 ...

Listing B.1: A part of a system configuration arxml file

104



Bibliography

[1] An Evolution Of Car Technology. url: https://mashable.com/archive/
car-tech-ces (cit. on p. 1).

[2] Andr Hergenhan and Gernot Heiser. «Operating Systems Technology for
Converged ECUs». In: (Jan. 2008) (cit. on p. 1).

[3] Shugang Jiang. «Vehicle E/E Architecture and Its Adaptation to New Tech-
nical Trends». In: 08 (Jan. 2019), p. 10 (cit. on p. 4).

[4] Electrical/Electronic architecture is evolving toward a centralized setup. url:
https://www.mckinsey.com/industries/automotive-and-assembly/
our - insights / automotive - software - and - electrical - electronic -
architecture-implications-for-oems (cit. on p. 5).

[5] Automotive E/E Architectures Are Key To Continued Innovation. url: https:
//semiengineering.com/automotive-e-e-architectures-are-key-to-
continued-innovation/ (cit. on p. 5).

[6] AUTOSAR. url: https://www.autosar.org (cit. on p. 6).
[7] Massimo Violante. Model-Based Software Design Course. 2019 (cit. on pp. 8,

9).
[8] G. L. Gopu, K. V. Kavitha, and James Joy. «Service Oriented Architecture

based connectivity of automotive ECUs». In: 2016 International Conference
on Circuit, Power and Computing Technologies (ICCPCT). 2016, pp. 1–4.
doi: 10.1109/ICCPCT.2016.7530358 (cit. on p. 11).

[9] Marcelino Varas. «Service-Oriented Software Architectures: Bridging the
Gap Between AUTOSAR Classic and Adaptive Systems». In: (Nov. 2019).
url: https://cdn.vector.com/cms/content/know- how/_technical-
articles/PREEvision/PREEvision_AUTOSAR_Integration_SOA_Elektron
ikAutomotive_PressArticle_201911_EN.pdf (cit. on p. 12).

[10] Marcelino Varas. Service-Oriented Software Architectures and Ethernet design.
url: https://cdn.vector.com/cms/content/events/2019/vAES19/
vAES19_03_Varas_Vector.pdf (cit. on p. 12).

105

https://mashable.com/archive/car-tech-ces
https://mashable.com/archive/car-tech-ces
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/automotive-software-and-electrical-electronic-architecture-implications-for-oems
https://semiengineering.com/automotive-e-e-architectures-are-key-to-continued-innovation/
https://semiengineering.com/automotive-e-e-architectures-are-key-to-continued-innovation/
https://semiengineering.com/automotive-e-e-architectures-are-key-to-continued-innovation/
https://www.autosar.org
https://doi.org/10.1109/ICCPCT.2016.7530358
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_AUTOSAR_Integration_SOA_ElektronikAutomotive_PressArticle_201911_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_AUTOSAR_Integration_SOA_ElektronikAutomotive_PressArticle_201911_EN.pdf
https://cdn.vector.com/cms/content/know-how/_technical-articles/PREEvision/PREEvision_AUTOSAR_Integration_SOA_ElektronikAutomotive_PressArticle_201911_EN.pdf
https://cdn.vector.com/cms/content/events/2019/vAES19/vAES19_03_Varas_Vector.pdf
https://cdn.vector.com/cms/content/events/2019/vAES19/vAES19_03_Varas_Vector.pdf


BIBLIOGRAPHY

[11] Vector Informatik GmbH. PREEvision manual. Vector Informatik GmbH.
Ingersheimer Straße 24 70499 Stuttgart, Germany (cit. on pp. 18, 24–26, 77).

[12] Jörg Schäuffele. E/E architectural design and optimization using preevision.
Tech. rep. SAE Technical Paper, 2016 (cit. on pp. 18, 19).

[13] Steve Corrigan. «Introduction to the controller area network-texas instru-
ments». In: Tech. Rep. SLOA101, Texas Instruments (2016) (cit. on pp. 27,
28, 32).

[14] CAN DBC File Explained - A Simple Intro [+Editor Playground]. url: https:
//www.csselectronics.com/pages/can-dbc-file-database-intro (cit.
on pp. 33–35).

[15] SENSORE ABS. url: https://www.hella.com/techworld/it/Tecnica/
Sensori-e-attuatori/Sensore-ABS-4074/ (cit. on p. 61).

[16] Samir Fassak, Younes El Hajjaji El Idrissi, Noureddine Zahid, and Mohamed
Jedra. «A secure protocol for session keys establishment between ECUs in
the CAN bus». In: 2017 International Conference on Wireless Networks and
Mobile Communications (WINCOM). 2017, pp. 1–6. doi: 10.1109/WINCOM.
2017.8238149 (cit. on p. 80).

[17] CAN bit stuffing. url: https://en.wikipedia.org/wiki/CAN_bus#Bit_
stuffing (cit. on p. 85).

[18] Wikipedia contributors. Leaky bucket — Wikipedia, The Free Encyclopedia.
[Online; accessed 22-February-2022]. 2022. url: https://en.wikipedia.
org/w/index.php?title=Leaky_bucket&oldid=1070590064 (cit. on p. 88).

106

https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.hella.com/techworld/it/Tecnica/Sensori-e-attuatori/Sensore-ABS-4074/
https://www.hella.com/techworld/it/Tecnica/Sensori-e-attuatori/Sensore-ABS-4074/
https://doi.org/10.1109/WINCOM.2017.8238149
https://doi.org/10.1109/WINCOM.2017.8238149
https://en.wikipedia.org/wiki/CAN_bus#Bit_stuffing
https://en.wikipedia.org/wiki/CAN_bus#Bit_stuffing
https://en.wikipedia.org/w/index.php?title=Leaky_bucket&oldid=1070590064
https://en.wikipedia.org/w/index.php?title=Leaky_bucket&oldid=1070590064

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Automotive Background
	Electrical/Electronic Architecture
	AUTOSAR
	ARXML file

	Service Oriented Architecture
	V-Cycle

	PREEvision software
	Vector Group
	PREEvision
	Customer features and Requirements
	Logical, software and hardware architecture
	Communication

	Software and communication design process in PREEvision according to AUTOSAR

	CAN protocol
	Introduction
	Node
	Frame
	Bus
	CAN DBC

	Adaptive Cruise Control Implementation 
	What is the ACC
	Customer Features and Requirements
	Logical Architecture
	System Software Architecture
	Hardware Architecture
	Communication

	Metrics
	Hop count
	Bus load
	ECU load single core
	ECU load dual core

	Conclusion
	Future work

	Export CAN DBC
	Export ARXML file
	Bibliography

