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Abstract

Service Function Chains (SFCs) are typical components of the edge networks of
telecommunications operators. They are composed by chained network functions
which were originally deployed as physical appliances, subsequently as Virtual
Network Functions (VNFs) and recently a new paradigm shift towards Cloud
Native Network Functions (CNFs) is taking place. Kubernetes is the reference
platform for running cloud native workloads, however it is not natively oriented
to network functions. This thesis presents the prototype of a system to integrate
SFCs in Kubernetes, with support for seamless autoscaling of chain elements. The
proposed solution enables the creation of arbitrary chains starting from a logical
description and a set of network functions deployments. In order to dynamically
adapt to the horizontal scaling of network functions, a controller that watches and
reacts to the events concerning scaling is included in the system. Traffic among
network functions replicas is distributed by transparent load balancers implemented
using eBPF (Extended Berkeley Packet Filter), whose logic is directly injected in
the host network interfaces corresponding to the ends of pod links. Requirements for
multiple interfaces in pods are satisfied using Multus CNI and a custom Container
Network Interface (CNI) plugin. All this is done in a transparent way towards
network functions which perceive as they are always connected to single instances of
other network functions. The solution has been validated implementing a possible
use case of a SFC and evaluated in terms of reaction times to the scaling of network
functions. Furthermore, eBPF-based load balancer performance has been compared
to other interconnections mechanisms provided by Linux Kernel. The proposed
prototype supports the creation of chains for replicas that are all on the same
node, future works may extend this feature to support more complex cross-node
scenarios.
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Chapter 1

Introduction

Telecommunications operators are exploring possibilities to shift their functionalities
towards Cloud Native infrastructures such as Kubernetes, which promise to bring
benefits mainly in terms of increased flexibility, scalability, availability, and cost
saving. A substantial part of their workloads is represented by Network Functions
(NFs) which are often chained together forming Service Functions Chains (SFCs).

NATShaper

Router A Router B

Access 
Network

Firewall

Core 
Network

Figure 1.1: A possible Service Function Chain.

Although Kubernetes is currently de facto standard orchestrator for general-
purpose workloads, it lacks some functionalities required by network functions
workloads, such as chaining mechanisms and the possibility to have pod with
multiple network interfaces.

Furthermore, the Service abstraction provided by Kubernetes, which enables
scaling and load balancing for applications, is not suitable for network functions
since typically they are not the final recipient of the network traffic. Projects such
as Multus CNI and Network Service Mesh (NSM) aim to overcome some of these
limitations in Kubernetes. In particular Multus enables Pod with multiple network
interfaces, while NSM goes even further allowing the creation of chains, or more in
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Introduction

general meshes of network functions, but it does not have a native logic to take
advantage of the scaling features of Kubernetes.

NAT

Router A1 Router B1

Access 
Network

Core 
Network

Firewall 1

NAT

Shaper

Router A2 Router B2
Firewall 2

NAT

Logical Link

Shaper

Figure 1.2: A possible scaled Service Function Chain.

This work describes the prototype of a new alternative system to integrate SFCs
in Kubernetes with the aim to leverage the autoscaling capabilities provided by
orchestrator itself. In the next chapters the architecture and the implementation
of the system will be described in detail.

1.1 Goals of the thesis
All the work of this thesis was conducted with three main objectives in mind:

• Enabling seamless autoscaling of SFCs: the connectivity among replicas must
be handled in a transparent way towards network functions, which do not
have to notice anything different while system adapts to replicas variations.

• Allow declarative definition of SFCs: it should be possible to create a SFC
with a simple description at logical level on how elements in the chain should
be interconnected, without any further low-level detail.

• Allow the creation of SFCs at both L2/L3 levels: it’s required the support
for Network Function that works at Layer 3, namely, services that have an IP
address and receive frames with destination MAC set to that of their ingress
interface, or Layer 2, namely, transparent Network Functions which don’t
have IP addresses and receive frames with destination MAC being that of the
original destination.
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In the following chapters, after an overview of the technologies and tools used, it
will be described how these objectives have been achieved.
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Chapter 2

Background

In this chapter there is an overview of the context in which this work is placed.
A brief history of the of Network functions will be presented, followed by the
description of the Kubernetes architecture. In the end is proposed a related work
on SFCs integration in Kubernetes.

2.1 Evolution of Network Functions

A Network function is a functional building block within a network infrastructure
that has well-defined external interfaces and a well-defined functional behaviour [1]

Although the concept has never changed, NF has been implemented using
various technologies over the years. In this section is shown how their evolution
took place; content is freely drawn from the Telecom User Group White Paper [2].

2.1.1 Network Functions as Physical Devices

Until the 1990s, most functionality and applications for telecommunications resided
primarily in physical hardware, known also as “appliances”. Their software func-
tioned more like firmware and was not easy to abstract and run on in virtual
environments.

This approach was resource intensive, expensive and not flexible as it required
physical intervention by operators in the event of malfunctions or changes. In
this scenario, redundancy meant acquiring multiple physical instances of required
appliances. Furthermore, this architecture encouraged the bundling of services and
capabilities into monolithic physical systems.
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2.1.2 The emergence of VNFs

In the late 1990s, the concept of virtualization for enterprise computing gained
interest as enterprises were tired of excessive costs of high-powered servers. Simul-
taneously, there was a rapid rise in the popularity of the commodity Open Source
Linux Operating System.

In 1999, VMware released its first virtualization product for x86 devices. In the
early 2010s, the concept of Network Functions Virtualisation (NFV) emerged as
telcos sought to virtualize their networking functionality, enhance resiliency, and
take advantage of commodity hardware. With constructs such as NFV-encapsulated
Virtual Network Functions (VNFs), Network Function Infrastructure (NFVI), and
an orchestration component (MANO), the entire NFV hardware and software stack
could be integrated and distributed across data centers.

In 2017, Open Networking Automation Platform (ONAP) emerged as the open
source standard platform for orchestrating and automating physical and virtual
network elements with full lifecycle management. NFV and ONAP primarily
focused on creating and orchestrating virtual analogues for physical equipment,
i.e. virtual boxes. This was the same pattern followed during server virtualization
when initial efforts focused on replicating physical servers as virtual entities.

2.1.3 The advent of CNFs

With the arrival and spread of cloud platforms, a new paradigm shift has begun
towards cloud native network functions. A cloud native network function (CNF) is
a cloud native application that implements a network functionality. A CNF consists
of one or more microservices developed using Cloud Native Principles and deployed
as containers. An example of a simple CNF is a packet filter that implements a
single piece of network functionality as a microservice. A firewall is an example of
a CNF which may be composed of more than one microservice (i.e. encryption,
decryption, access lists, packet inspection, etc.).

The emergence of Kubernetes as the most widely used container orchestrator
allows telecommunications operators to shift their infrastructure to a de facto
standard platform, saving money required to maintain custom platforms and
improving performance and resiliency.

However, this transition comes with many challenges due to two main factors.
On one hand there are gaps between the functionalities offered by the orchestrator
and those required by network functions. On the other hand, the network functions
must be entirely rewritten following the Cloud Native Principles in order to benefits
from the cloud environment. Many projects under the Cloud Native Computing
Foundation (CNCF) try to solve these problems.
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2.2 Service Function Chains
In the edge network of telecommunication operators is common to have network
functions that provide added-value services to end users. Typically, what happens
is that there are several network functions in succession that create what is called
a chain. The term Service Function Chain was introduced when SDN technology
was used together with NFV for the implementation of composed services in
virtual environments, even if the same term is commonly used for other types of
implementations as well. Each network function in a SFC has a specific task to
perform on traffic, they can work at any level of the OSI stack. Some examples of
SFs are Firewalls, NATs, Traffic Shapers, Traffic Optimizers and so on.

SFC are defined by a list of SFs and a set of rules which determine in which
order the traffic must flow among them. They can be unidirectional or bidirectional.
In the first case the traffic is only forwarded in one direction and the reverse traffic
is not processed, whereas in the second case the traffic must pass through the chain
in both directions in a symmetric way.

With the advent of cloud technologies and CNFs, new possibilities have opened
up for the implementation of more flexible chains that can benefit from cloud
environments features.

2.3 Kubernetes
Kubernetes is a portable, extensible, open-source platform for managing container-
ized workloads and services, which facilitates both declarative configuration and
automation [3].

When it is deployed, a cluster is obtained. A cluster consists of a set of worker
machines, called nodes, that run containerized applications. Every cluster has at
least one worker node.

The worker nodes host the Pods that are the components of the application
workload. The control plane manages the worker nodes and the Pods in the
cluster. In production environments, the control plane usually runs across multiple
machines and a cluster usually runs multiple nodes, providing fault-tolerance and
high availability. The Figure 2.1 shows some of the main Kubernetes components.

2.3.1 Control Plane Components
The control plane’s components make global decisions about the cluster, as well as
detecting and responding to cluster events. Control plane components can be run
on any machine in the cluster. However, for simplicity, set up scripts typically start
all control plane components on the same machine, and do not run user containers
on this machine.
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Figure 2.1: Components of a Kubernetes cluster [4].

Here is the list of components with a brief description:

• kube-apiserver : component of the Kubernetes control plane that exposes the
Kubernetes API. The API server is the front end for the Kubernetes control
plane. The main implementation of a Kubernetes API server is kube-apiserver,
it is designed to scale horizontally.

• etcd: consistent and highly-available key value store used as Kubernetes’
backing store for all cluster data.

• kube-scheduler : control plane component that watches for newly created Pods
with no assigned node and selects a node for them to run on.

• kube-controller-manager : control plane component that runs controller pro-
cesses. Logically, each controller is a separate process, but to reduce complexity,
they are all compiled into a single binary and run in a single process.
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• cloud-controller-manager : control plane component that embeds cloud-specific
control logic. The cloud controller manager links cluster to cloud provider’s
API. The cluster does not have a cloud controller manager when it runs
on-premises infrastructure.

2.3.2 Node Components
Node components run on every node, maintaining running pods and providing the
Kubernetes runtime environment.

• kubelet: An agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod. The kubelet takes a set of PodSpecs that
are provided through various mechanisms and ensures that the containers
described in those PodSpecs are running and healthy. The kubelet does not
manage containers which were not created by Kubernetes.

• kube-proxy: kube-proxy is a network proxy that runs on each node in the cluster,
implementing part of the Kubernetes Service concept. kube-proxy maintains
network rules on nodes. These network rules allow network communication
to Pods from network sessions inside or outside of cluster. kube-proxy uses
the operating system packet filtering layer if there is one and it is available.
Otherwise, kube-proxy forwards the traffic itself.

• Container runtime: The container runtime is the software that is responsible
for running containers. Kubernetes supports container runtimes such as
containerd, CRI-O, and any other implementation of the Kubernetes CRI

2.3.3 Workloads
A workload is an application running on Kubernetes. Whether workload is a single
component or several that work together, on Kubernetes it runs inside a set of
Pods. Pods are the smallest deployable units of computing in Kubernetes, they
represent a set of running containers and they have a defined lifecycle. Even if it is
possible to manage each Pod directly, typically their management is delegated to
other resources. Workload resources can be used to manage the entire pod lifecycle.
They configure controllers that make sure the right number of the right kind of
pod are running, in order to match the state specified.

Kubernetes provides several built-in workload resources:

• Deployment and ReplicaSet, which represent the best choice for managing a
stateless application workload on clusters, where any Pod in the Deployment
is interchangeable and can be replaced if needed.
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• StatefulSet, that allows to run one or more related Pods that do track state
somehow. For example, if workload records data persistently, a StatefulSet
that matches each Pod with a PersistentVolume can be used.

• DaemonSet, that defines Pods which provide node-local facilities. These might
be fundamental to the operation of the cluster, such as a networking helper
tool, or be part of an add-on. Every time a node that matches the specification
in a DaemonSet is added to the cluster, the control plane schedules a Pod for
that DaemonSet onto the new node.

• Job and CronJob, that define tasks which run to completion and then stop.
Jobs represent one-off tasks, whereas CronJobs recur according to a schedule.

In the wider Kubernetes ecosystem, there are third-party workload resources
that provide additional behaviours. Using a custom resource definition, is possible
to add a third-party workload resource to obtain a specific behaviour that’s not
part of Kubernetes’ core.

2.3.4 Network model
In Kubernetes, every Pod must get its own IP address, routable inside the cluster.
This means users usually do not need to explicitly create links between Pods and
they almost never need to deal with mapping container ports to host ports.

Kubernetes imposes the following fundamental requirements on any networking
implementation:

• pods on a node can communicate with all pods on all nodes without NAT

• agents on a node (e.g. system daemons, kubelet) can communicate with all
pods on that node

Additionally for those platforms that support Pods running in the host network
(e.g. Linux):

• pods in the host network of a node can communicate with all pods on all
nodes without NAT

Kubernetes IP addresses exist at the Pod scope, containers within a Pod share
their network namespaces, including their IP address and MAC address. This
means that containers within a Pod can all reach each other’s ports on localhost.
This also means that containers within a Pod must coordinate port usage, but this
is no different from processes in a VM. This is called the IP-per-pod model.
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Networking addresses four concerns:

1. Highly-coupled container-to-container communications: this is solved by Pods
and localhost communications.

2. Pod-to-Pod communications: solved by network providers and their CNI
plugins.

3. Pod-to-Service communications: this is covered by services.

4. External-to-Service communications: this is covered by services.

Kubernetes built-in network support, kubenet, can provide some basic network
connectivity. It does not, of itself, implement more advanced features like cross-
node networking or network policies. For this reason, it is more common to use
third party network implementations which plug into Kubernetes using the CNI
(Container Network Interface) API.

Container Network Interface is a Cloud Native Computing Foundation project that
consists of a specification and libraries for writing plugins to configure network
interfaces in Linux containers, along with a number of supported plugins. CNI
concerns itself only with network connectivity of containers and removing allocated
resources when the container is deleted [5].

2.3.5 Services
Services are an abstract way to expose an application running on a set of Pods as
a network service. Kubernetes gives a single DNS name for the set of Pods and
can load-balance across them.

This is necessary because Pods are non-permanent resources. Each Pod gets its
own IP address, however in a Deployment, the set of Pods running in one moment
in time could be different from the set of Pods running that application a moment
later. This leads to a problem: if some set of backends Pods provides functionality
to other frontends Pods inside the cluster, how do the frontends find out and keep
track of which IP address to connect to, so that the frontend can use the backend
part of the workload? The problem is solved by Services.

In Kubernetes, a Service is an abstraction which defines a logical set of Pods
and a policy by which to access them. The set of Pods targeted by a Service is
usually determined by a selector.

Within the cluster the network service is usually represented as virtual IP address,
and kube-proxy load balances connections to the virtual IP across the group of pods
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backing the service. The virtual IP is discoverable through Kubernetes DNS. The
DNS name and virtual IP address remain constant for the lifetime of the service,
even though the pods backing the service may be created or destroyed, and the
number of pods backing the service may change over time [6].

2.3.6 Custom Resources and Operator Pattern
A custom resource is an extension of the Kubernetes API that is not necessarily
available in a default Kubernetes installation. It represents a customization of a
particular Kubernetes installation.

Custom resources can appear and disappear in a running cluster through dynamic
registration, and cluster admins can update custom resources independently of the
cluster itself. Once a custom resource is installed, users can create and access its
objects using kubectl, just as they do for built-in resources like Pods.

On their own, custom resources allow to store and retrieve structured data. When
a custom resource is combined with a custom controller, custom resources provide
a true declarative API. The Kubernetes declarative API enforces a separation of
responsibilities. Users declare the desired state of their resources and the Kubernetes
controllers keep the current state of Kubernetes objects in sync with the declared
desired state. This is in contrast to an imperative API, where the user instructs a
server what to do.

Custom controller can be deployed on a running cluster, independently of the
cluster’s lifecycle. Custom controllers can work with any kind of resource, but they
are especially effective when combined with custom resources.

The Operator pattern combines custom resources and custom controllers. Custom
controllers can be used to encode domain knowledge for specific applications into
an extension of the Kubernetes API.

Kubernetes is designed for automation. Out of the box, there are a lots of built-
in automation from the core of Kubernetes. Kubernetes can automate deploying
and running workloads, and user can automate how Kubernetes does that.

Kubernetes’ operator pattern concept allow to extend the cluster’s behaviour
without modifying the code of Kubernetes itself by linking controllers to one or
more custom resources. Operators are clients of the Kubernetes API that act as
controllers for a Custom Resource.

2.4 Related Work
Network Service Mesh (NSM) is a Cloud Native Computing Foundation sandbox
project [7], that can be used to integrate SFCs in Kubernetes.

NSM try to solve a fundamental problem in Runtime Domains (like Kubernetes):
allow individual workloads, wherever they are running, to connect securely to
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Network Services that are independent of where they run.
A Network Service in NSM is something that provides some features in terms

of Connectivity, Security and Observability to the traffic that they handle. The
payload of these services can be either IP or Ethernet. For this reason, NSM is
complementary to traditional Service Meshes like Istio and Linkerd which focus
mainly on L4-L7 payloads.

Examples of Network Services can be a simple distributed vL3 that allows the
workloads in the domain to communicate via IP, or a more complex composition of
services like a Service Function Chain. NSM allows workloads to consume, more
generally, Network Services that are provided by a graph of Endpoints composed
together.

In NSM, Network Service Clients (NSCs) are workloads that desire to be
connected to a Network Service. Network Service Endpoints (NSEs) are the element
that provide Network Services. Both may be Pods but also VMs or physical devices.

Clients are connected to Endpoints through Virtual Wires (vWire), each vWire
carries traffic for exactly one Network Service.

Forwarders are the data plane components that enable vWire abstraction, NSM
provides some reference forwarders based on different technologies such as VPP,
OvS, SR-IOV.

Although NSM supports chaining mechanisms for network services, it does not
natively provide any load balancing mechanism among replicas that takes advantage
of the scaling of the NSEs in the chain. This means that even if a new replica of a
network function in a Network Service is instantiated, this will not be leveraged
and traffic will follow the original data path, it only may be selected for other new
chains or if the current used replica fails.

The main limitation comes from Forwarders which have traditionally been Point-
to-Point (P2P), in other words, they were designed to transfer packet from a single
ingress to a single egress. Starting with version v1.1.0 [8], NSM introduced support
for Point-to-Multi-Point (P2MP) forwarders which can manage connections with
multiple replicas. However, reference forwarders are still P2P only, this means that
currently there is no provided implementation for a P2MP forwarder.
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Chapter 3

Foundation technologies

In this chapter the main technologies used for the implementation of the prototype
are presented. The first one to be presented is eBPF, that is the technology on which
the data plane of the load balancers is based. Netlink is mentioned next, along
with two libraries based on its interface which have been used for the manipulation
of network interfaces. Then Multus is introduced, a meta-CNI that allows the
execution of multiple CNIs and enables Pods with multiple interfaces. In the end, is
presented the Kopf framework which was used to implement a Kubernetes operator.

The content of the following sections is mainly drawn from official documenta-
tions.

3.1 eBPF (extended Berkeley Packet Filter)
eBPF (Extended Berkeley Packet Filter) is a highly flexible and efficient virtual
machine in the Linux kernel that allows to execute bytecode at various hook points
in a safe manner [9]. eBPF programs are event-driven and are run when the kernel
or an application passes a certain hook point.

It is an evolution of the “classic” BPF (cBPF), which was one of the first packet
filter implementation in kernel. The new eBPF instead, has an instruction set
that is generic and flexible that make it usable in many other scenario apart from
networking. eBPF does not have only a wider instruction set, but it has a whole
new infrastructure that expand kernel functionalities.

3.1.1 eBPF vCPU
The vCPU is based on a general-purpose RISC instruction set. It is possible to
write programs in a subset of C language which are then compiled into vCPU
instructions through a compiler. However, those instructions can be mapped to
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native opcodes by a JIT compiler in the kernel for optimal execution performance.
eBPF consists of eleven 64 bit registers with 32 bit subregisters, a program

counter and a 512 byte large eBPF stack space. Registers are named r0 - r10.
The operating mode is 64 bit by default, the 32 bit subregisters can only be
accessed through special ALU (arithmetic logic unit) operations. The 32 bit lower
subregisters zero-extend into 64 bit when they are being written to. Register r10
is the only register which is read-only and contains the frame pointer address in
order to access the eBPF stack space. The remaining r0 - r9 registers are general
purpose and of read/write nature.

Upon entering execution of a BPF program, register r1 contains the context
for the program. The context is the input argument for the program, similar to
argc/argv pair for a typical C program. The context is defined by the program
type, for example, a networking program can have a kernel representation of the
network packet (skb) as the input argument.

The maximum instruction limit per program is restricted to 4096 eBPF instruc-
tions, which, by design, means that any program will terminate quickly. For kernel
newer than 5.1 this limit was lifted to 1 million eBPF instructions.

3.1.2 Verifier
eBPF works together with kernel, for this reason it has to provide the same safety
guarantees which kernel provides. eBPF programs are verified through an in-kernel
verifier in order to ensure that they cannot crash the kernel, always terminate not
affecting kernel’s stability.

Although the instruction set contains forward as well as backward jumps, the
in-kernel BPF verifier will forbid loops so that termination is always guaranteed.
This means that from an instruction set point of view, loops can be implemented,
but the verifier will restrict that.

Furthermore, verifier ensure that every possible memory access by an eBPF
program is safe. It verifies that inside the code there are the needed checks to
avoid invalid memory accesses, preventing out of bound accesses or null pointer
dereferencing.

3.1.3 Helpers
Helper functions are a concept which enables eBPF programs to consult a core
kernel defined set of function calls in order to exchange data with kernel. Available
helper functions may differ for each eBPF program type. Each helper function is
implemented with a commonly shared function signature similar to system calls.

They allow to enrich eBPF programs with more complex operations that over-
come verifier limitations. However, since they are statically defined in the kernel,
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they cannot be extended or modified.

3.1.4 Maps
Maps are efficient key/value stores that reside in kernel space. They can be
accessed from an eBPF program in order to keep state among multiple eBPF
program invocations. They can also be accessed through file descriptors from
user space and can be arbitrarily shared with other eBPF programs or user space
applications.

User space App 1 User space App 2

eBPF program 2

User space

Kernel space

eBPF program 1 eBPF program 3

Key Value

eBPF MAP

R/WR/W

R/W
R/W

R/W

Figure 3.1: eBPF map accessed by multiple programs.

Map implementations are provided by the core kernel. There are generic maps
that can read or write arbitrary data, but there are also a few non-generic maps
that are used along with special helper functions. Generic maps all use the same
common set of eBPF helper functions in order to perform lookup, update or delete
operations while implementing a different backend with differing semantics and
performance characteristics.

They can be divided in two categories:

• per-CPU : each map is replicated for each CPU, and each CPU reads or writes
only from its specific instance

• shared: there is only a single instance of the map that is shared across all the
program instances that refer to it
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It is important to note that shared eBPF maps can be accessed concurrently
not only from different programs, but also from user space programs and even from
other instances of the same eBPF program running on different CPU cores. To
avoid interference problems is possible to use spinlocks primitives provided by eBPF
itself. At the same time per-CPU maps, does not have to handle synchronization
at all as there is no concurrency, and this brings as a result an improvement in
performance.

3.1.5 Object Pinning
eBPF maps and programs act as a kernel resource and can only be accessed through
file descriptors, backed by anonymous inodes in the kernel. With this approach
there are advantages and disadvantages: user space applications can make use of
most file descriptor related APIs, but at the same time, file descriptors are limited
to a processes’ lifetime, which makes options like map sharing rather difficult to
carry out.

Thus, this brings a number of complications for certain use cases such as iproute2,
where TC or XDP sets up and loads the program into the kernel and terminates
itself eventually. With that, also access to maps is unavailable from user space side,
where it could otherwise be useful, for example, when maps are shared between
ingress and egress locations of the data path. Also, third party applications may
wish to monitor or update map contents during eBPF program runtime.

To overcome this limitation, a minimal kernel space BPF file system has been
implemented, where BPF map and programs can be pinned to. This process is
called object pinning. The BPF system call has therefore been extended with
two commands which can pin (BPF_OBJ_PIN) or retrieve (BPF_OBJ_GET) a
previously pinned object.

3.1.6 Program Types
eBPF supports many different kind of program types. As concerns networking,
there are two main program types: XDP eBPF and TC eBPF.

eXpress Data Path (XDP)

XDP stands for eXpress Data Path and provides a framework for eBPF that enables
high-performance programmable packet processing in the Linux kernel. It runs the
eBPF program at the earliest possible point in software as soon as the network
driver receives the packet. At this point the driver has only picked the packet, but
it has not made yet any allocation for the skb structure or any other expensive
operation.
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Key Value

eBPF MAP 1
tmp/m1

Key Value

eBPF MAP 2
sfc/m2

BPF File System: /sys/fs/bpf/
Program 1

Program 2

fd = bpf(BPF_MAP_CREATE)
bpf(BPF_OBJ_PIN,fd)

[...]
close(fd)

fd = bpf(BPF_OBJ_GET)

[...]
close(fd)

Figure 3.2: An example of object pinning on BPF file system.

XDP does not bypass the kernel, it works together with it and can benefit of
all the advantages of kernel space. Since it includes support of eBPF, it benefits
from all its programmability and safety features. eBPF allows to access packet
data directly, and the framework contains XDP action codes which can be used by
the eBPF code to instruct the driver how to proceed with the packet (i.e. DROP,
REDIRECT, etc.)

It is important to point out that XDP supports only the ingress point of
networking data path, so it can be triggered only on the incoming traffic on an
interface.

Traffic Control (TC)

eBPF can be used also in the kernel Traffic Control (TC) layer in the networking data
path. In TC the eBPF input context is a sk_buff, because when the networking
stack receives a packet after the XDP layer, it wraps it in this structure with
some additional metadata about the packet itself. This additional information
is provided as context for the eBPF program which can benefit of a wider set of
helpers, however it costs in term of performance since the sk_buff obtained after
the parsing of the packet.

Differently from XDP, TC eBPF programs can be triggered out of ingress and
also egress points in the networking data path. Furthermore, TC eBPF programs
does not require driver changes since their hook points are in layers that are generic
to all interfaces. Changes are only required when TC eBPF offloading is desired.

eBPF programs in the TC layer are run from the cls_bpf classifier, however
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this name can be misleading because programs here are fully capable of not only of
reading packets but also of modifying them. They can also decide how the packet
processing should continue returning an action code. Both the TC ingress and the
egress hook, where cls_bpf itself can be attached to, are managed by a pseudo
queuing discipline called sch_clsact.

A queuing discipline is a network scheduler. Scheduling is the mechanism by
which packets are arranged between input and output of a particular queue [10].
The sch_clsact qdisc is not a real queuing discipline, it is only a convenient object
where filter can be attached to, in order to process packets incoming and outgoing
from an interface.

BPF Compiler Collection

BPF Compiler Collection (BCC) is a toolkit for creating efficient kernel tracing
and manipulation programs. BCC makes eBPF programs easier to write, with
kernel instrumentation in C, and front-ends in Python and LUA. It is suited for
many tasks, including performance analysis and network traffic control [11].

On one hand it provides macros to simplify the writing of eBPF C code, on
the other hand it supports the creation of user space programs in Python. In the
latter case, it makes it possible to write short but expressive programs with all the
high-level languages advantages of Python that are missing with C. For example,
is possible to handle eBPF maps as normal dictionaries, making them easy to use.
Underneath there are always calls to eBPF helpers, but they are hidden to the
programmer that uses the library.

3.2 Netlink
Netlink is a socket family used to transfer information between kernel and user-
space processes. It consists of a standard sockets-based interface for user space
processes and an internal kernel API for kernel modules [12].

Using Netlink, an application can send/receive information to/from different
kernel features, such as networking, to check their current status and to control
them.

Rtnetlink is a specialized netlink family that allows to manage networking
environment [13]. Most used network utilities such as iproute2 are based on
it. Functionalities that can be controlled with rtnetlink are network routes, IP
addresses, link parameters, neighbour setups, queueing disciplines, traffic classes
and packet classifiers.
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3.2.1 Pyroute2
Pyroute2 is a pure Python netlink library [14], it consists of a common netlink
messages coder/decoder and a number of protocol-specific modules. It may be used
to work with existing protocols such as RTNL, as well as to create new netlink
protocols.

Pyroute2 provides a low-level IPRoute module that can be used to manage Linux
network configuration. The IPRoute class is a 1-to-1 rtnetlink mapping providing
access to rtnetlink as is.

This enables development of Python programs that can obtain network configu-
ration and alter it. For example, is possible to add a queuing discipline and a filter
to an interface, or to change attributes of a link, or to modify the routing table.

3.2.2 netlink (go package)
The go netlink package provides a simple netlink library [15]. It can be used to
add and remove interfaces, set ip addresses and routes, configure ipsec etc. The
library attempts to provide an api that is loosely modeled on the CLI provided by
iproute2.

As it is a project still under development, some netlink functions are not yet
available in the high-level interface provided. Nonetheless, it is widely used in
go-based applications that have to manipulate the network configuration, such as
most of the CNI plugins for Kubernetes.

3.3 Multus CNI
Multus CNI is a container network interface (CNI) plugin for Kubernetes that
enables attaching multiple network interfaces to pods [16]. Typically, in Kubernetes
each pod only has one network interface, with Multus is possible to create a multi-
homed pod that has multiple interfaces. This is accomplished by Multus acting as
a "meta-plugin", a CNI plugin that can call multiple other CNI plugins.

In the Figure [3.3] there is a Pod with three interfaces. The eth0 is the default
interface that connects to Kubernetes Cluster Network, which is used to communi-
cate with API or with other Pods in the network. Net0 and Net1 are additional
interfaces that connect the Pod to other networks using other CNI plugins.

To enable configuration of multiple network interfaces, Multus provides a Custom
Resource Definition called NetworkAttachmentDefinition. This custom resource
must be used to specify the network configuration object of the other CNI plugins
for additional interfaces. The NetworkAttachmentDefinition can contain a whole
JSON CNI configuration object or a name corresponding to the name field of a
config file in the CNI configuration directory.
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Figure 3.3: A pod with multiple attached interfaces [16].

When a NetworkAttachmentDefinition object is created and committed to the
API it can be used to attach additional interfaces to Pods. To enable this behaviour
is necessary to add a specific annotation to Pod metadata:

k8s.v1.cni.cncf.io/networks: {NetAttachDefName}@{ifName}

In this way, when Pod will be scheduled and the Container Runtime will call
the ADD command on the CNI plugin, Multus plugin will fetch Pod object from
API server and search for the networks annotation: for each value of the annotation,
it will delegate the add to the corresponding CNI plugin providing the configuration
object specified in the NetworkAttachmentDefinition and the interface name as
arguments.

In the Figure 3.4 is showed the typical workflow:
It is important to specify that the default network plugin is always executed,

there is no need to specify it with additional annotations.

3.4 Kubernetes Operator Pythonic Framework
(Kopf)

Kopf (Kubernetes Operator Pythonic Framework) is a framework and a library to
simplify development of Kubernetes operators in Python code [17].

It provides toolkit to run the operator, to talk to the Kubernetes cluster, and to
marshal the Kubernetes events into the pure Python functions of the Kopf-based
operator, and the libraries to assist with a limited set of common tasks for manipu-
lating the Kubernetes objects [18].

20



Foundation technologies
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delegateAdd()
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Figure 3.4: Multus network workflow in Kubernetes [16].

Any operator built with Kopf is based on handlers.

In the following sections key features of Kopf are described.

3.4.1 Handlers
Kopf operators differently from other operators built with other frameworks like
Operator SDK and Kubebuilder, is not based by default on a reconcile loop. The
idea behind reconciliation loop is that operator logic should reconsider the whole
resource state and check if it matches the desired state, independently from the
nature of the event that triggered the reconciliation itself. This approach is referred
to as level-based as opposed to edge-based triggering which idea, instead, is to
receive an event and react to a state variation.

Kopf embraces this second approach, providing a set of high-level handlers that
react to state changes. Whenever an event happens for a watched object, Kopf
framework detects what actually happened, in particular it can determine if the
object was just created, if it was edited and which fields specifically were edited, if
it was deleted or marked for deletion. When the cause is determined, it triggers
the appropriate handler passing all the needed information.

However, Kubernetes only notifies when something is changed in a resource, but
it does not specify what changed. In order to enable the state-changing handlers
Kopf needs to keep track of the state of the handlers, to do that it stores needed
information inside resources under special annotations or status fields. All this
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complexity is hidden, and this behaviour is completely transparent to the developer
which has only to write the handlers logic for each desired state-changing handler.

Along with state-changing handlers Kopf provides two other special kinds:

• Event-watching handlers: they can be considered as low-level handlers for
events that are received from K8s “as is”; they are the equivalent of the
informers. With this kind of handler events can be intercepted and handled
silently, without storing the handlers’ status on objects.

• Resuming handlers: they are executed only when an operator restarts and
detects an object that existed before. With resuming handler, in addition to
creation/update/deletion handlers no object will be left unattended even if it
does not change over time.

To register a handler for an event, the @kopf.on decorator must be put on the
handler function definition.
All available options are: @kopf.on{event,create,update,delete,resume}

Kopf provides a lot of kwargs for handlers functions, regarding configuration,
logging, indexes, but most importantly resource related arguments. In order to
obtain resource object related to the event in the handler, it is sufficient to declare
an argument body. In an analogous way it is possible to declare other arguments
such as metadata, spec, status and so on, which provide access to specific part of
the resource.

3.4.2 Filters
Handlers can be restricted to be executed only when a resource match certain
criteria. This is useful to avoid not necessary calls of the handlers on each event
regarding the resource. Filters can be specified as special parameters inside the
decorators for handlers functions.

Kopf provides various kinds of checks:

• Specific values: with Python literals values

• Presence of values: with special markers kopf.PRESENT/kopf.ABSENT.

• Per-value callbacks: with a callable object which returns true/false.

• Whole-body callbacks: with a callable object which returns true/false.
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Those checks can be applied in multiple ways, even combined. Metadata is the
most commonly filtered aspect of the resources, but also other specific fields in
the spec or in the status can be checked. For update handlers, Kopf provide the
possibility to check separately old and new values with different filters allowing an
improved filtering precision.

3.4.3 Indices
Indexers automatically maintain in-memory overviews of resources, commonly
named indices, grouped by keys that are usually calculated based on these resources.

Indices can be used for cross-resource awareness, sometimes when a resource
is changed, it may be necessary to get all the information about all resources of
another kind. Instead of requesting those resources to the Kubernetes API, which
is an expensive operation, with indices is possible retrieve those information from
a local store.

Kopf automatically handles all the operations needed to create and update
indices to reflect the state of the resources in the cluster. The developer has only to
specify a mapping function for the index that map a resource to a dictionary entry,
optionally it can also accept a filter on the resources that should be considered
in equivalent way to handlers. When a resource is created or starts matching the
filters, it is processed by all relevant indexing functions, and the result is put into
the indices. When a previously indexed resource is deleted or stops matching the
filters, all associated values are removed.

To declare an index the @kopf.index decorator must be put on an indexing
function. Indices are available to all handlers functions as kwargs named exactly
same as the indices, and they can be used as traditional dictionaries.

3.4.4 Peering
Usually, one and only one operator instance should be deployed for a resource.
However, for redundancy purposes many replicas may be deployed, but this can
cause collisions.

To prevent collisions, Kopf by default assign a priority to each operator instance,
and when an operator notices other operators with higher priority it pauses until
those stop working. All running operators communicate with each other via peering
objects, so they know about each other.

However, in some specific cases operators must be deployed as DaemonSet to
allow per-node actions. In this scenario, multiple operators must be active and
react to the same resources events. To enable this behaviour the standalone mode
for Kopf operator is required. The standalone mode prevents an operator from
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peering and talking to other operators. Even if other operators with higher priority
will start handling the same objects the operator will not stop.

When multiple operators react to same resource events, in particular when
state-changing handlers are involved, names of the annotations or status fields used
as handlers’ state store must be customized with node-specific information. This is
a fundamental point to avoid collision of different operators that handle the same
object and store their handler’s state on the object itself. Kopf allows to configure
these aspects through settings that can be specified in the operator startup handler.

3.4.5 Eventual consistency
Kopf provides eventual consistency of handling. When arbitrary errors occur during
handler execution it will retry later until it succeeds. The framework provides
several configuration options that include custom limits for the number of attempts,
specifying unrecoverable exception, backoff time between arbitrary errors and
timeouts for handlers.
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Chapter 4

Prototype Architecture

This chapter describes the general prototype architecture and provides an overview
of each component. All the implementation details will be explained in the next
chapter.

4.1 General Architecture
The system was conceived to be fully integrated with Kubernetes. For this reason,
some of prototype components have been designed to leverage the extensibility
features of the aforementioned platform. Further detail will be provided for each
component.

The prototype architecture is composed of:

• CNI plugin: this is the component that configures the network interfaces of
network functions involved in the chain.

• Load Balancers: these are the components that implement the cross-connections
between network functions and that enable the split of the traffic among dif-
ferent replicas in the chain.

• Operator : this is the element that allows chain creation and enables the
seamless adapting features of the system.

From the combined action of these elements, the system is able to create and
manage the chains of network functions. The CNI plugin configures the desired
interfaces on the network function and the Operator connect those interfaces to the
load balancers according to the chain definition. The behaviour of these elements
is configured by means of user-defined resources in the cluster.
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In Figure 4.1 is depicted a possible scenario in a Kubernetes cluster, in which
all the architectural elements are present.

Host Namespace

worker

NF-B

L2 L2

NF-A

10.240.0.1/24

NF-C

10.240.0.2/24

L2 L2

eth1 eth2eth1 eth1

veth-a-1 veth-b-1-1 veth-b-2-1 veth-c-1

eth1 eth2

veth-b-1-2 veth-b-1-2

NF-B

Load Balancer Load Balancer

CNI Plugin Operator

Network 

Configuration

Chain 

Resources

Figure 4.1: System components on a Kubernetes node.

4.2 CNI plugin
The CNI plugin is in charge of configuring all the necessary additional interfaces on
pods. It is suitable for configuring only interfaces involved with the chains, for this
reason it must be used in conjunction with the main plugin of the cluster network
provider. Hence, Multus CNI is required, in order to be able to use the custom
plugin together with the main plugin.

The plugin supports configurations for interfaces both at L2/L3 level. This
means that it can add interfaces that have IP addresses, but at the same time it
allows to simply create interfaces that does not have an IP and provide a simple
L2 link. This last aspect is useful when transparent network functions that do not
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have an IP address are in the chain.
It is important to point out that this plugin does not provide itself cross-

connection mechanism between NFs. All the interfaces configured by this plugin,
provide a link between Pods and their host. How the traffic is then forwarded
between chain elements is in charge of load balancers.

4.2.1 IP-MAC address management
As regards the management of the IP and MAC addresses assigned by the custom
CNI plugin to pod interfaces, a very specific choice has been made in order to
guarantee the transparency of the solution towards network functions and to keep
the load balancing logic simple.

What is normally expected from CNIs is that they configure interfaces with
unique addresses for each pod, so that all kind of communication in the cluster are
enabled without conflicts. This is certainly the kind of approach needed to ensure
basic cluster networking, but it may not be the best one for managing addressing
in scaling chains of network functions. In other words, when there are multiple
replicas of the same network function, it may be more convenient to assign each
interface involved in the chain the same addresses.

The proposed solution is based on this alternative approach. As shown in Figure
4.2 each replica has same MAC and IP addresses on the interfaces linked to the
load balancer.

Network Function A1

10.240.0.1 10.240.0.2

0E:00:00:11:11:11 0E:00:00:22:22:22

10.240.0.1
0E:00:00:11:11:11

10.240.0.2

0E:00:00:22:22:22

Load Balancer

Network Function A2

NF-A

Network Function B1

NF-B

Network Function B2

NF-B

Destination Next Hop Interface

default 10.240.0.2 eth0

10.240.0.0/24 10.240.0.1 eth0

NF-A

Routing Table

Figure 4.2: Network function replicas with same addresses configured.

From NF-A replicas point of view the next hop for the default route is only one,
in this way the presence of other replicas is hidden to network functions, which
behave as if they were linked to a singular instance. On the contrary, if there had
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been several IP addresses on the interfaces, there would have been more entries
in the routing table and as a consequence transparency on the number of replicas
would have been lost. Moreover, in this in this hypothetical scenario there would
be no need at all for an additional load balancing logic, but an alternative one
would have to be configured directly on the network functions.

In addition to IP address, also MAC address is the same for each replica. The
reason behind that comes from the need to be able to manage the ARP protocol
and L2 addressing between network functions. Without the same MAC addresses
there is a conflict between the load balancing logic and the L2 addressing. The load
balancing logic works on the quintuple of the packets session and do not consider
the L2 addresses, but at the same time these packets have a specific MAC address
destination of a replica, which is obtained through an ARP request. In other words,
each network function sends packets with the destination MAC address set to the
value obtained through ARP, but then these packets are distributed by the load
balancers among the various replicas regardless of their MAC address. This means
that traffic could be forwarded to replicas that have a MAC address on the interface
which is different from the destination of the packets.

As mentioned above, a possible way to reconcile ARP management, L2 addressing
and load balancing logic is, to assign the same MAC addresses to all replicas. In
this way it does not matter which replica answer to the ARP requests, the result
will be always the same and as a consequence traffic can be split among replicas
without the risk of packet drops caused by L2 addresses mismatch.

4.3 Load Balancers
The load balancer is the component that is in charge of implementing cross-
connections among NFs in SFCs. They are completely transparent elements, which
act without any interaction with network functions. They only provide forwarding
and load balancing logic to forward packet among NFs replicas.

Load balancers are two-sided and bidirectional. They are deployed for each
pair of NFs in a chain, and they deliver traffic on both directions, namely traffic
going from NF-A to NF-B replicas and traffic going from NF-B to NF-A replicas.
Internally they have information about interfaces attached on one side and on the
other side and they only forward traffic between interfaces of opposite sides.

Since they are bidirectional there is no real distinction between the two sides,
but to disambiguate sometimes one side it is called frontend and the other backend,
even though there is no difference.

Load balancers work on sessions; they keep track of all the handled session flows
and involved interfaces. The first time that a packet of an untracked session is

28



Prototype Architecture

received, an egress interface is selected and information about interfaces and session
flow is registered. The following times the interfaces are selected retrieving recorded
information related to the session. This is necessary because some connection-
oriented protocols such as TCP can have problem if sessions’ packets go on different
paths.

In Figure 4.3 is shown the information available to the load balancers when a
packet from a new session arrives:
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Interface-8

Backends

Interface-5

Interface-6

Interface-9

Interface-4

Interface-8

Interface-7

Interface-5

Interface-6

Interface-9
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SESSION A 4 6

SESSION B 4 9

… … …

SESSION F 8 ?

Session F

Figure 4.3: A load balancer receiving a packet for a new session.

However, Load balancers does not have the capability to understand which are
the specific frontend and backend interfaces to handle, they require an external
component that act as a control plane and injects all the needed information. This
is one of the Operator’s jobs.

4.4 Operator
The operator is a Kubernetes Operator; it is the component that contains all
the logic needed to create chains and to adapt the system to the variation of NF
replicas. This means that on one hand it has to transform logical description of
the chain into real cross-connections between NFs while on the other hand it has
to manage those cross-connections in order that they adapt to cluster changes.

Logical description of the chains is provided by means of a Kubernetes Custom
Resource, the operator watches events related to those resources and reacts accord-
ingly. It handles the full lifecycle of chains, from the creation to the deletion. This
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includes the creation and the handling of cross-connections between elements in
the chain.

As concerns cross-connections, it acts as a control plane for load balancers
making them consistent with the chain state. In order to do that, operator watches
all the events from the cluster that involve NFs pod in handled chains. When it
receives those events, it reacts to them provoking a reconciliation between the chain
state and information injected in involved load balancers. If the event was the
deletion of a Pod replica, this means that its interfaces must be removed from the
load balancers it was connected to, on the contrary if the event was the creation of
a new Pod this means that its interfaces must be added to the load balancers it
will be connected to.
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Prototype implementation

In this chapter is presented the implementation of the architectural elements
described in the previous sections. For each element are provided reasons behind
implementation choices and detailed descriptions of main functions in the code.

Different programming languages have been used: Go for the CNI plugin, Python
for the Operator and C for load balancers data plane. Furthermore, YAML and
JSON were used as data-serialization languages for Kubernetes resources and CNI
configuration files, respectively.

5.1 CNI plugin: sfc-ptp
The custom CNI plugin, called sfc-ptp, has been implemented according to the
model provided by the reference plugins of CNI project. In particular it was
inspired by the ptp plugin for the code structure, even though the custom CNI
enables different kind of configurations. Moreover, it was designed to be used in a
Kubernetes environment in conjunction with Multus CNI, so it is not suitable for
more general contexts.

In addition to the creation of the veth pairs between Pod and host, this plu-
gin stores some information related to the configured interfaces within the Pod
resources in the cluster. This is essential for the operator to manage correctly
cross-connections between chain elements.

5.1.1 Plugin Configuration
Like all plugins that follow the CNI specification, it accepts a configuration ob-
ject written in JSON, which describes the network configuration desired. This
configuration object is passed to the plugin at runtime. A part from required and
well-known fields, the plugin defines additional fields necessary for the management

31



Prototype implementation

of the chains by the prototype.
It is important to point out that the plugin configuration for sfc-ptp is intended

to be for a single interface of a specific network function. Usually for other CNI
there is only one configuration object for each node in the cluster, but since this
plugin configures additional interfaces with specific parameters, it needs different
configuration objects for each type of interface.

The most important configuration fields are listed below:

• name (string, required): the name of the network configured

• type (string, required): matches the name of the CNI plugin binary, must be
sfc-ptp for this plugin

• mtu (integer, optional): explicitly set MTU to the specified value. Defaults
to value chosen by the kernel.

• ipam (dictionary, optional): IPAM configuration to be used for this net-
work. Although any type of IPAM plugin is supported, the use of the static
IPAM plugin is required. If no configuration is specified, the interface config-
ured will be L2 only.

• macGenerationString (string, required): a string that is used to generate
a MAC address for the pod interface. Equal strings generate equal MAC
addresses.

• hostInterfacePrefix (string, optional): the prefix of the network inter-
face name that will be created in the host side. It can be useful in case of
debugging. If not specified, a random name will be given to the interface.

• dataDir (string, optional): path to a directory where the plugin can
store/retrieve information necessary for interface configuration. If not specified,
a default location is chosen.

• kubeconfig (string, optional): path to a kubeconfig file that is used by
the plugin to authenticate to the API server, in order to be able to read
and update Pod resources. If not specified, the default path for the Multus
kubeconfig file will be selected.

In the following listing is provided an example of configuration for the sfc-ptp
plugin.

1 {
2 "cniVersion": "0.3.1",
3 "name": "net1",
4 "type": "sfc−ptp",
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5 "ipam": {
6 type": "static",
7 "addresses": [
8 {
9 "address": "10.240.0.1/24",

10 "gateway": "10.240.0.254"
11 }
12 ],
13 "routes": [
14 {"dst": "0.0.0.0/0", "gw": "10.240.0.254"}
15 ]
16 },
17 "hostInterfacePrefix": "veth−client",
18 "macGenerationString": "client",
19 "dataDir": "/var/lib/cni/sfc−ptp"
20 }

Listing 5.1: Configuration example for the sfc-ptp plugin

When the sfc-ptp plugin is executed providing the previous configuration file and
the additional required arguments for the target pod, it will configure a veth pair
between the pod and the host. In this specific case, through the static IPAM plugin
will be configured an IP address and a default route in the pod. Furthermore, the
value of hostInterfacePrefix specified will be used to generate a name for the
end of the veth pair that resides in the host. To do this, the CNI plugin simply
add an increasing index to the prefix making each name unique. For each different
prefix, the CNI plugin keeps track of the last index used in specific files under the
specified dataDir path. In Figure 5.1 is shown the result in a scenario where the
plugin was invoked in a node of a Kubernetes cluster to configure a Pod network.

It is important to note that the sfc-ptp plugin does not enable any kind of
communication between pods or between pods and host network. From the host
point of view there is visibility only on its veth end, but there is no additional
information about the address configuration of the other end and consequently
there are no routes configured to reach those addresses.

For this reason, the sfc-ptp plugin can be only used in conjunction with another
CNI plugin that satisfy the networking requirements of Kubernetes, thus allowing
the pod to communicate across the cluster network. In order to do that Multus
CNI is used, so that the main plugin is always executed for each Pod in the cluster,
while the sfc-ptp is only executed when it is required by network functions pods
who need additional interfaces.

In this way traditional traffic can be handled by cluster networking, while traffic
among network functions in the chains, namely, traffic that passes through sfc-
ptp interfaces can be handled differently. In particular, in the proposed solution,
SFCs traffic is forwarded between network function pods through load balancers.
Without the load balancers forwarding logic there would be no forwarding at all
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Host Namespace

worker

pod

eth0

veth-client-1

Destination Next Hop Interface

default 10.240.0.254 eth0

10.240.0.0/24 10.240.0.1 eth0 IP 10.240.0.1/24

MAC 0e:00:00:de:cd:56

MAC 0e:5f:f4:ce:9f:cb

Figure 5.1: Pod connected with host through a veth pair created by sfc-ptp.

and consequently there would be no connectivity in the chain.
Summing up, the sfc-ptp plugin only creates a veth pair between a Pod and its

host, and configures some specific aspects on the interfaces, but it does not enable
or configure any forwarding mechanism in the host. Without additional logic all
the traffic is dropped by the host immediately upon receiving it from its veths ends.

5.1.2 Host-link Pod annotation
As mentioned before, the sfc-ptp plugin saves some information about the configured
interfaces inside the Pod resources. In particular, it is stored in a specific annotation
created on purpose: servicefunctionchain.polito.it/host-link

The value of this annotation is intended to be a JSON string, whose properties
are the names of the interfaces in the pod, while the values are the indexes of the
corresponding interfaces on the host side. Therefore, through this annotation it is
possible to retrieve, for each pod interface added through the sfc-ptp plugin, the
index that identifies the other end of the link inside the host. The Figure 5.2 shows
in detail how the annotation is created.

The reason this annotation was introduced is due to the fact that when the
operator observes an event concerning a network function pod, it must have details
of the involved interfaces, both on the pod side and on the host side, to proceed
with his work. Without this annotation, the operator would have no way of
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Host Namespace

worker

pod

eth1

veth-client-1

sfc-ptp

Kind: Pod
apiVersion: v1
metadata:
name: client
annotations:
# Multus Annotation (provided by the user)
k8s.v1.cni.cncf.io/networks: sfc-ptp-client@eth1
# sfc-ptp Annotation (created by the plugin)
servicefunctionchain.polito.it/host-link: '{"eth1":"10"}'

spec:
containers:
- name: client
image: fmonaco96/iperf3-client:latest

root@worker:/# ip link
1: lo ...
2: tunl0 ...
...
10: veth-client-1 ...

Figure 5.2: Host-link annotation configured in a Pod resource.

obtaining this information, because within the Pod resource there is no reference
to its network namespace. On the contrary, the CNI plugin has all this information
available during its execution. Therefore, by adding the necessary details to the
resource it can make them easily available to the operator.

It is important to point out that in order to do that, the sfc-ptp plugin needs a
kubeconfig file configured with a subject that has the right permissions to read and
write Pod resources.

5.1.3 Host interface name
As anticipated in the description of the configuration file for sfc-ptp plugin, there
is an optional field named hostInterfacePrefix in which a prefix name for the
host interface can be specified. The reason this field was introduced is that it can
be used to simplify debugging in development. What CNIs typically do is configure
links between pods and host, giving arbitrary names to the host ends. In figure 5.3
is depicted a common scenario.

From the host network point of view, it is not easy to understand which pod each
interface corresponds to, even with the additional information that can be obtained
by inspecting those interfaces. Therefore, the hostInterfacePrefix field was
introduced among configuration options: by specifying a prefix it is possible to have
recognizable interfaces. The reason there is a prefix name and not simply a name
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Host Namespace
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NF
replica2

NF 
replica1

NF
replica3

eth0 eth0

veth8fa174 veth78ce4a

eth0

vethb553df

Figure 5.3: Veth interfaces with arbitrary names on the host side.

is due to the fact that there can be multiple replicas of the same network function
pod that are configured executing the sfc-ptp with the same configuration object.
To have a unique name an index must be added to the prefix. This behaviour is
shown in the Figure 5.4, where as prefix is used "veth-nf".

Host Namespace

worker

NF
replica2

NF 
replica1

NF
replica3

eth0 eth0

veth-nf-1 veth-nf-3

eth0

veth-nf-2

Figure 5.4: Veth interfaces with "veth-nf" set as hostInterfacePrefix.
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5.1.4 Implementation Code
The sfc-ptp plugin is entirely written in Go. Golang is currently widely used to
write code for applications in cloud environment. Therefore, CNI plugins, like most
Kubernetes related software, are commonly written using this language. However,
the CNI specification is language agnostic, so basically a CNI plugin can be written
using any language that generates an executable.

The choice of Go was also motivated by the fact that there are libraries, provided
by the developers of the CNI project themselves, which facilitate the writing of new
CNI plugins. These, in turn, exploit the netlink package for interface management.

The plugin implements the ADD and DEL operations but not CHECK as it is
not yet exploited in Kubernetes. Hereinafter, the most important pieces of code
for ADD and DEL operations are shown. For the sake of simplicity, code about
error handling and creation of result object is not included.

ADD Operation

In the ADD operation the CNI plugin receives a JSON configuration object and
some environments parameters as arguments. Its job is to create the desired
interface inside a pod, and to output a JSON-serialized result on the standard
output. Moreover, it has to store some information of the configured interface
inside the annotations of the Pod resource, in order to be available to the operator
which has to work on these interfaces.

In Listing 5.2 is shown the main code of the ADD. First of all, the name for
the host interface and the MAC address of the pod interface are created. Then,
code is divided between L3 or L2 only configuration for the link. In the L3 case
it is also executed the ADD operation on the IPAM plugin, in order to obtain
the IP configuration to apply to the pod interface. In the end, there is a call to
the function which updates the Pod annotation with information related to the
interface configured.

1 func cmdAdd(args *skel.CmdArgs) error {
2 // Parse configuration from stdin
3 conf, err := parseConfig(args.StdinData)
4 // Create host veth name from the prefix (if specified)
5 hostVethName, err := createHostVethName(conf.HostInterfacePrefix,

conf.DataDir)
6 // Create pod veth address from the given string
7 podVethMac := createPodVethMac(conf.MacGenerationString)
8 var result *current.Result
9 // Check if IPAM configuration is required

10 isLayer3 := conf.IPAM.Type != ""
11 if isLayer3 {
12 // Run the IPAM plugin and get back the config to apply
13 r, err := ipam.ExecAdd(conf.IPAM.Type, args.StdinData)
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14 // Convert the IPAM result into the current Result type
15 result, err = current.NewResultFromResult(r)
16 // Get pod network namespace
17 netns, err := ns.GetNS(args.Netns)
18 // Setup L3 veth
19 _, _, err = setupL3Veth(netns, args.IfName, hostVethName,

conf.HostInterfacePrefix, conf.MTU, podVethMac, result)
20 } else {
21 // Layer 2 only
22 // Get pod network namespace from args
23 netns, err := ns.GetNS(args.Netns)
24 // Setup L2 veth
25 hostInterface, podInterface, err := setupL2Veth(netns, args.

IfName, hostVethName, conf.HostInterfacePrefix, conf.MTU,
podVethMac)

26 }
27 // Set Pod Network Interface
28 err = setPodNetworkInterface(conf.Kubeconfig, args.IfName,

hostInterface.Name, k8sArgs)
29 ...
30 // Return result
31 return types.PrintResult(result, conf.CNIVersion)
32 }

Listing 5.2: ADD operation code.

The interface name is built from the hostInterfacePrefix if provided, while
the pod veth MAC is always obtained from the given string. In the first case the
string is used as a base for the name, in the second case the string is hashed in
order to obtain random digits which are then properly combined to get a MAC
address. Listing 5.3 shows how it is created an unique name from the prefix, while
Listing 5.4 shows how the MAC is generated.

1 func createHostVethName(hostInterfacePrefix string, dataDir string) (
string, error) {

2 ...
3 // Get path for the handled interface prefix
4 // and create all necessary folders
5 dir := filepath.Join(dataDir, hostInterfacePrefix)
6 if err := os.MkdirAll(dir, 0755); err != nil {
7 return "", err
8 }
9 // Create file lock

10 lk, err := disk.NewFileLock(dir)
11 ...
12 // Acquire lock on file lock to avoid interference
13 // between simultaneous plugin calls
14 lk.Lock()
15 defer lk.Unlock()
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16 // Read last index for this host interface name from file
17 var index int
18 indexFilePath := filepath.Join(dir, "index")
19 data, err := os.ReadFile(indexFilePath)
20 if err != nil {
21 ...
22 } else {
23 // File exist, get last used index
24 index, err = strconv.Atoi(string(data))
25 ...
26 }
27 // Open file to update last used index
28 indexFile, err := os.OpenFile(indexFilePath, os.O_WRONLY|os.

O_CREATE|os.O_TRUNC, 0644)
29 ...
30 // Write new last used index
31 index += 1
32 _, err = indexFile.WriteString(strconv.Itoa(index))
33 ...
34 // Return host veth name (hostInterfacePrefix−{index})
35 return hostInterfacePrefix + "−" + strconv.Itoa(index), nil
36 }

Listing 5.3: Host interface name creation.

A progressive index is read from a file, then it is incremented and added to
the interface prefix. Finally, the updated index is stored in the same file. It
is important to highlight that file is accessed in mutual exclusion, in order to
avoid race conditions between multiple execution of the plugin. The file path is
determined by combining the dataDir path and the prefix.

1 ...
2 // MAC prefix that will be combined with hashed value
3 var macPrefix string = "0E:00:00"
4 ...
5 func createPodVethMac(macGenerationString string) string {
6 // Hash macGenerationString to make a MAC suffix
7 hash := hashString(macGenerationString)
8 return fmt.Sprintf("%s:%s:%s:%s", macPrefix, hash[:2], hash[2:4],

hash[4:6])
9 }

Listing 5.4: Pod interface MAC creation.

The MAC address obtained with this procedure will be the same for equal
prefixes. Hence, replicas with the same plugin configuration will have the same
MAC address, as it is required by the solution.

The following listing show the specialized function for configuring the veths for the
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L3 case. The setup is done starting from parameters of the configuration object and
from those derived in the previous functions. The function is based on the library
function ip.SetupVethWithName() which creates both veth devices and moves
the host-side veth into the provided host namespace. The code is executed in the
context of the pod namespace. The function for the L2 case is similar with the only
difference that for the L3 case there is also the configuration of IP addresses on the
interface. This is also done through a library function ipam.ConfigureIface().

1 func setupL3Veth(netns ns.NetNS, ifName string, hostIfname string,
hostInterfacePrefix string, mtu int, mac string, pr *current.
Result) (*current.Interface, *current.Interface, error) {

2 ...
3 err := netns.Do(func(hostNS ns.NetNS) error {
4 hostVeth, contVeth0, err := ip.SetupVethWithName(ifName,

hostIfname, mtu, mac, hostNS)
5 ...
6 // Configure pod veth with given IPAM configuration
7 if err = ipam.ConfigureIface(ifName, pr); err != nil {
8 return err
9 }

10 return nil
11 })
12 ...
13 }

Listing 5.5: L3 veth pair creation.

Finally, in the last listing is shown how the host interface index corresponding to
the configured interface in the Pod is stored in the annotations of the Pod resource.
The code operates as follow:

1. The index of the host interface is obtained from its attributes

2. A Kubernetes client is instantiated to communicate with the API server

3. The resource of the current Pod is requested to the API server

4. A map that will contain the information about interfaces is created

5. If the resource has already the annotation set the value is unmarshalled in the
map

6. The current pod interface is added to the map with the corresponding host
index

7. The map is marshalled into the annotation

8. The updated Pod is sent with an update request to the API server
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9. If the request fails, the steps starting from the third onwards are repeated

1 func setPodNetworkInterface(kubeconfigPath string, ifName string,
hostIfname string, k8sArgs *K8sArgs) error {

2 // Get host link index
3 hostLink, err := netlink.LinkByName(hostIfname)
4 index := hostLink.Attrs().Index
5 // Create Kubernetes client to interact with the API server
6 restClientConfig, err := clientcmd.BuildConfigFromFlags("",

kubeconfigPath)
7 clientset, err := kubernetes.NewForConfig(restClientConfig)
8 coreClient := clientset.CoreV1()
9 // Get details about the current Pod from arguments

10 name := string(k8sArgs.K8S_POD_NAME)
11 namespace := string(k8sArgs.K8S_POD_NAMESPACE)
12

13 // Set the host−link annotation
14 resultErr := retry.RetryOnConflict(retry.DefaultRetry, func()

error {
15 // Get Pod object from the API server
16 pod, err := clientset.CoreV1().Pods(namespace).Get(context.

TODO(), name, metav1.GetOptions{})
17 // Create link map [podIfname] −> hostIfindex
18 linkMap := map[string]string{}
19 // Check if pod has host−link annotation already
20 _, ok := pod.Annotations[linkAnnotation]
21 if ok {
22 err = json.Unmarshal([]byte(pod.Annotations[

linkAnnotation]), &linkMap)
23 }
24 // Add link to map
25 linkMap[ifName] = strconv.Itoa(index)
26 // Marshal map to JSON
27 jsonData, err := json.Marshal(linkMap)
28 // Try to add annotation
29 pod.Annotations[linkAnnotation] = string(jsonData)
30 _, err = coreClient.Pods(namespace).UpdateStatus(context.TODO

(), pod, metav1.UpdateOptions{})
31 return err
32 })
33 ...
34 return nil
35 }

Listing 5.6: Set up of the host-link annotation in the Pod.
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DEL Operation

As in the ADD operation, DEL receives a JSON configuration object and some
environments parameters as arguments. Its job is to clean-up the interfaces created
with a previous ADD. In the case of L3 configuration it is executed also the DEL
operation of the IPAM plugin. For the link deletion is used the library function
ip.DelLinkByNameAddr().

1 func cmdDel(args *skel.CmdArgs) error {
2 // Parse configuration from stdin
3 conf, err := parseConfig(args.StdinData)
4 ...
5 // Check if IPAM clean−up is required
6 isLayer3 := conf.IPAM.Type != ""
7 if isLayer3 {
8 if err := ipam.ExecDel(conf.IPAM.Type, args.StdinData); err

!= nil {
9 log.Printf("ipam.ExecDel returned error %v", err)

10 return err
11 }
12 }
13 ...
14 // Delete can be called multiple times
15 // if the device is already removed it is not an error
16 err = ns.WithNetNSPath(args.Netns, func(_ ns.NetNS) error {
17 var err error
18 _, err = ip.DelLinkByNameAddr(args.IfName)
19 if err != nil && err == ip.ErrLinkNotFound {
20 return nil
21 }
22 return err
23 })
24 ...
25 return nil
26 }

Listing 5.7: DEL operation code.

Since the DEL operation, unlike the ADD, can be called multiple times for the
same configuration, it may happen that there is nothing left to clean-up after the
first run. For this reason, it is not considered an error when the interface is not
found.

5.1.5 Usage with Multus
As stated previously, the sfc-ptp is designed to be used with Multus. In this section
is presented an example configuration of a Kubernetes Deployment in which Pods

42



Prototype implementation

have two additional interfaces. In particular each pod is an instance of an iptables
firewall, which uses the additional interfaces as ingress and egress respectively.

First of all, the plugin configuration for the two interfaces must be created, and
the objects must be included in a NetworkAttachmentDefinition as required by
Multus.

Here is shown the configuration object for one of the two interfaces in a Net-
workAttachmentDefinition resource.

1 apiVersion: "k8s.cni.cncf.io/v1"
2 kind: NetworkAttachmentDefinition
3 metadata:
4 name: sfc−ptp−firewall−1
5 spec:
6 config: ’{
7 "cniVersion": "0.3.1",
8 "name": "sfc−ptp",
9 "type": "sfc−ptp",

10 "hostInterfacePrefix": "veth−fw−1",
11 "macGenerationString": "firewall1"
12 }’

Listing 5.8: NetworkAttachmentDefinition for a L2 firewall interface

In this case the interface of the firewall is pure L2, so there is no IPAM
configuration specified. The NetworkAttachmentDefinition of the second interface
is equivalent, only the hostInterfacePrefix and the macGenerationString in
the configuration change in veth-fw-2 and firewall2 respectively.

Once these resources are defined, they can be referenced in pods definition. In
Listing 5.9 is shown how NetworkAttachmentDefinitions are used. They are values
of a special annotation required by Multus that is k8s.v1.cni.cncf.io/networks.

1 kind: Deployment
2 apiVersion: apps/v1
3 metadata:
4 name: firewall−deployment
5 spec:
6 replicas: 2
7 selector:
8 matchLabels:
9 servicefunctionchains.polito.it/networkFunction: firewall

10 template:
11 metadata:
12 annotations:
13 k8s.v1.cni.cncf.io/networks:
14 sfc−ptp−firewall−1@eth1, sfc−ptp−firewall−2@eth2
15 labels:
16 servicefunctionchains.polito.it/networkFunction: firewall
17 spec:

43



Prototype implementation

18 containers:
19 − name: firewall
20 image: fmonaco96/iptables−firewall:latest
21 securityContext:
22 privileged: true

Listing 5.9: YAML Manifest of a firewall deployment.

When the two pods of this deployments will be scheduled, and Multus CNI will
be called, a default interface will be added using the main plugin and two other
interfaces will be added with the sfc-ptp as specified in the NetworkAttachment-
Definitions referenced.

In Figure 5.5 is depicted the final result of this configuration. For the sake of
clarity, the interface handled by main plugin is not shown.

worker

firewall
(iptables)

L2 L2

L2 L2

eth1 eth2

veth-fw-1-1 veth-fw-2-1

eth1 eth2

veth-fw-1-2 veth-fw-1-2

firewall
(iptables)

Host Namespace

Figure 5.5: Firewall deployment with two replicas configured.

At the same time, the host-link annotations in the Pod resources will be
appropriately set to reflect the respective configured interfaces.
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5.2 Load Balancers

The Load Balancers data plane implementation is based on eBPF technology. The
code, written in C, uses the macros provided by BCC for the declaration and access
to the eBPF maps. The control plane, instead, is included in the operator logic
and will be presented in the next section. Therefore, how the interfaces maps are
filled is not covered here but only how they are used.

The eBPF program is injected directly into the TC layer of the host interfaces
involved in the chain, in particular on the ingress path. Therefore, each interface
has its own program, but at the same time, related data structures are shared
among these. In this way, even if there are several instances of the load balancer
program there is a single common state. For the sake of clarity, in all the figures
the load balancer is represented as a single object linked to replicas’ interfaces but
actually, as mentioned before, each interface has its own program instance while
the state is shared among them.

In Figure 5.6 is represented a chain of network functions connected through load
balancers. The code is injected into the interfaces from the host namespace side.
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Load Balancer Load Balancer
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Figure 5.6: Load balancers between network functions in a chain.
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A packet arriving from pod interfaces is intercepted as soon as it arrives at
the host interface ingress. Once processed, the packet is redirected directly to the
egress of the host interface selected by the load balancing logic, and from here it
will follow the link to the pod.

5.2.1 Data structures
The load balancer data structures are six eBPF maps:

• sessions: BPF_MAP_TYPE_LRU_HASH that act as a session table, here is stored
for each session the information about interfaces of the involved network
function replicas, in order that traffic for a session is always forwarded to the
same replicas.

• frontends_interfaces: BPF_MAP_TYPE_ARRAY in which are stored the indexes of
the frontend interfaces, namely, indexes of replicas interfaces on the frontend
side of the load balancer.

• num_frontends: BPF_MAP_TYPE_ARRAY composed by single element that store
the number of frontends interfaces in the frontends_interfaces map.

• backends_interfaces: BPF_MAP_TYPE_ARRAY in which are stored the indexes of
the backend interfaces, namely, indexes of replicas interfaces on the backend
side of the load balancer.

• num_backends: BPF_MAP_TYPE_ARRAY composed by single element that store
the number of backends interfaces in the backends_interfaces map

• arp_cache: BPF_MAP_TYPE_LRU_HASH that is used as a cache for the ARP
replies, in order to simplify the ARP protocol management across the load
balancer. Since ARP packets do not have a session, it is not possible to use the
usual load balancer logic. With this cache, only the first time that a replica
performs an ARP request the packet is forwarded in order to get a reply. Once
the reply has been received it is stored in this cache and load balancer will
answer directly to following requests.

In the following Listing is shown how those maps are declared, it is important
to highlight that they are all pinned maps.

1 BPF_TABLE_PINNED("lru_hash", struct session, struct
session_interfaces, sessions, MAX_SESSIONS, "/sys/fs/bpf/nsc/
__LB_NAME__/session_map");

2

3 BPF_TABLE_PINNED("array", __u32 , __u32, num_backends, 1, "/sys/fs/
bpf/nsc/__LB_NAME__/num_backends_map");
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4

5 BPF_TABLE_PINNED("array", __u32 , __u32, backends_interfaces,
MAX_INTERFACES, "/sys/fs/bpf/nsc/__LB_NAME__/
backends_interfaces_map");

6

7 BPF_TABLE_PINNED("array", __u32 , __u32, num_frontends, 1, "/sys/fs/
bpf/nsc/__LB_NAME__/num_frontends_map");

8

9 BPF_TABLE_PINNED("array", __u32 , __u32, frontends_interfaces,
MAX_INTERFACES, "/sys/fs/bpf/nsc/__LB_NAME__/
frontends_interfaces_map");

10

11 BPF_TABLE_PINNED("lru_hash", __u32, struct arp_reply_frame, arp_cache
, MAX_ARP_CACHE, "/sys/fs/bpf/nsc/__LB_NAME__/arp_cache_map");

Listing 5.10: Load Balancer eBPF maps declaration.

The path of the BPF file system, where the maps are pinned, is specified as a
template in the source code. The string __LB_NAME__ is replaced at runtime by
the operator with the real name of the load balancer, before compiling the code.
Each load balancer has its own set of maps pinned to an exclusive path in the file
system. The use of pinned maps allows the operator to never lose the reference
to the state, this is particularly useful when it has to restore after an unexpected
crash.

In Listing 5.11 are shown the definitions of structs that are used as keys and
values in the sessions map and in the arp_cache map

1 // Session quintuple
2 struct session {
3 __be32 ip_src; // Source IP
4 __be32 ip_dst; // Destination IP
5 __be16 port_src; // Source Port
6 __be16 port_dst; // Destination Port
7 __u8 proto; // Protocol Type
8 } __attribute__((packed));
9

10 // Indexes of interfaces
11 // involved with a session
12 struct session_interfaces {
13 __u32 frontend;
14 __u32 backend;
15 } __attribute__((packed));
16

17 // Arp reply buffer struct
18 struct arp_reply_frame {
19 unsigned char bytes[ARP_FRAME_LEN];
20 } __attribute__((packed));

Listing 5.11: Structs definitions
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The struct session is used as key in the sessions map, while value is a
struct session_interfaces. It is essential to underline that fields of the struct
session_interfaces, that are frontend and backend, must not be considered
strictly as ingress and egress interface, respectively. In other words, a fronted
can be both an ingress and an egress interface and the same is true for a backend.
That depends on the direction of the traffic: if the packet of a known session is
received from a frontend interface the load balancer will use the stored backend
interface associated to the session as egress. Similarly, in the opposite direction
when a packet is received from a backend interface, the stored frontend interface
will be considered as the egress.

The struct arp_reply_frame is used as value in the arp_cache map, it stores
the entire frame for ARP replies. Since the target IP is used as the key in the map,
there is no additional struct but a simple integer on 32 bits is sufficient.

5.2.2 Data plane implementation
The data plane is composed by two eBPF programs, one for the frontend interfaces
and the other for the backend interfaces. The two programs are absolutely equivalent
with the only exception that the one on the backend side has an additional action
that simply swaps the session parameters so that the quintuple considered is
equivalent in both directions.

Since the program is executed in the TC hook of the networking stack, the
context in the eBPF program will be the struct __sk_buff. This struct contains
the pointer to the packet buffer and other useful metadata such as the index of the
interface from which the packet was received.

In Listing 5.12 are shown the main lines of code that implements the load
balancing logic for packets arriving from a frontend interface. For the sake of
brevity, all mandatory checks on packet size and pointer validity are omitted. First
of all, pointers relative to the memory of the packet and the index of the interface
from which packet was received, are retrieved from the context __sk_buff. After
that, the packet is parsed in order to get session parameters which are stored in a
struct. At this point, is possible to start the load balancing operations.
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1 int handle_loadbalance_fe(struct __sk_buff *ctx) {
2 // Retrieve pointers to the begin and end of the packet buffer
3 void *data = (void *)(long)ctx−>data;
4 void *data_end = (void *)(long)ctx−>data_end;
5

6 // Get ingress interface index
7 __u32 ingress_ifindex = ctx−>ifindex;
8 ...
9 // Session parameters

10 struct session session_key = {};
11

12 int success = get_packet_session(data,data_end,&session_key);
13 ...
14 // Load balancing
15 // Check if session is present in session table
16 struct session_interfaces new_interfaces = {};
17 struct session_interfaces *interfaces = sessions.lookup(&

session_key);
18

19 if(!interfaces){
20 // Session is not present in the table
21 // Calculate index of backend interface
22

23 // Get num of backend interfaces
24 unsigned int zero = 0;
25 __u32 *n_backends = num_backends.lookup(&zero);
26 ...
27 // Calculate backend index
28 __u32 hash = jhash((const void *)&session_key, sizeof(struct

session), JHASH_INITVAL);
29 __u32 backend_index = hash % (*n_backends);
30 // Get egress interface index
31 __u32 *egress_ifindex = backends_interfaces.lookup(&

backend_index);
32 ...
33 // Create a new entry
34 new_interfaces.frontend = ingress_ifindex;
35 new_interfaces.backend = *egress_ifindex;
36 interfaces = sessions.lookup_or_try_init(&session_key,&

new_interfaces);
37 ...
38 }
39 return bpf_redirect(interfaces−>backend,0);
40 }

Listing 5.12: Load balancer implementation for frontends interfaces.

After getting the session parameters, it is checked whether the session is present in
the session map or not. If it is already present, the index of the egress interface is
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simply taken from the field of the entry value. If the session does not have an entry
yet, the index of an egress interface is drawn, and it is saved in the session table.
In both cases, if there are no errors, the last statement calls the bpf_redirect(),
which redirects the packet to the egress of the specified interface.

The selection of the egress interface for a new session is done by hashing the
session parameters and by calculating the modulo against the number of the
available interfaces. The result is used as index to get the corresponding interface
in the interfaces array map. The selected interface is then stored, together with
the interface from which the packet was received, in a session_interfaces struct.
This struct, in turn, is inserted into the session map with the corresponding session
key obtained from the packet in order that it will be enough a simple lookup to
forward the following packets.

ARP handling

Before the load balancing, there is a specific section of the code dedicated to the
management of the ARP protocol which is executed only when protocol-related
packets are processed. The reasons behind this protocol-specific handling have
already been presented in the section discussing IP/MAC addressing management.

First of all, when an ARP packet is received it is checked whether it is a request
or a response. If it is a request, it is checked whether for the target ip there is
an entry in the arp_cache map. If there is a cache hit, the incoming packet is
overwritten with the cached reply, and it is redirected to the same interface it
came from. Otherwise, if there is a cache miss nothing is done, and the execution
proceeds with the load balancing logic.

Instead, when it is processed an ARP reply, this is immediately stored in the
cache in order to be available for the future requests. After that the execution
proceeds with the usual load balancing logic which will forward the ARP reply to
the interface from which the previous request arrived. This happens only for the
first packet, for the following packets the cache comes into play.

In Listing 5.13 is shown the code that handles ARP packets.
1 ...
2 // Check if packet is an ARP packet
3 ...
4 if(eth−>h_proto == htons(ETH_P_ARP)){
5 // Get pointer to the ARP header
6 struct arphdr *arph = (struct arphdr*)((void*)eth + sizeof(struct

ethhdr));
7 ...
8 // Get target and sender IP
9 __be32 target_ip = arph−>ar_tip;

10 __be32 sender_ip = arph−>ar_sip;
11
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12 // Check if it is an ARP request
13 if(arph−>ar_op == htons(ARPOP_REQUEST)){
14 // ARP request
15

16 // ARP reply frame
17 struct arp_reply_frame *arp_reply;
18 struct arp_reply_frame *arp_buffer = data;
19

20 // Check if the reply for target IP is in the cache
21 arp_reply = arp_cache.lookup(&target_ip);
22 if(arp_reply){
23 // Cache hit: respond with cached reply
24 *arp_buffer = *arp_reply;
25 return bpf_redirect(ingress_ifindex,0);
26 }
27

28 } else if (arph−>ar_op == htons(ARPOP_REPLY)){
29 // ARP reply
30 // Add reply to cache
31 struct arp_reply_frame *arp_buffer = data;
32 arp_cache.update(&sender_ip,arp_buffer);
33 }
34 ...

Listing 5.13: ARP protocol handling
It is important to highlight that when the ARP packets are handled, a dummy

session is created. This is necessary because session parameters are required by
load balancing logic. The parameters of the session are created as reported in the
following listing.

1 static inline int get_packet_session(void *data, void* data_end ,
struct session *session_key){

2 // Interpret the first part of the packet as an ethernet header
3 struct ethhdr *eth = data;
4 ...
5 // Only IP and ARP are handled
6 switch(eth−>h_proto) {
7

8 case htons(ETH_P_IP): // ipv4 packet
9 ...

10

11 case htons(ETH_P_ARP): // arp packet
12 {
13 // Get pointer to the ARP header
14 struct arphdr *arph = (struct arphdr*)((void*)eth +

sizeof(struct ethhdr));
15 if ( (void*)arph + sizeof(struct arphdr) > data_end){
16 return 0;
17 }
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18 session_key−>ip_src = arph−>ar_sip;
19 session_key−>ip_dst = arph−>ar_tip;
20 // Since ETH_P_ARP is on two bytes
21 // We use 0 as protocol
22 session_key−>proto = 0;
23 // We don’t have ports here
24 session_key−>port_src = 0;
25 session_key−>port_dst = 0;
26 break;
27 }
28

29 default:
30 return 0;
31 }
32 return 1;
33 }

Listing 5.14: Creation of a dummy session for ARP packets

The IP addresses are taken from the packet, while ports and protocol are set to
zero. This dummy session is then treated by the load balancer like all the others,
although only the first packets actually propagate through the chain.

5.3 Operator: sfc-operator

The sfc-operator is the element that implements all the logic that handles the full
life cycle of the service function chains. That includes the management of the load
balancers and their control and data plane. It implements the Operator Pattern of
Kubernetes acting as a controller for custom resources.

The sfc-operator has been developed using Kopf framework, therefore it is
entirely written in Python. The advantage of using Python as a language is the
possibility of directly exploiting the BCC toolkit as well. In this way, it was
possible to create a single program that can deal with the management of events
concerning Kubernetes resources but also with the practical aspects concerning
the configuration of the data plane of load balancers. On one hand, events are
managed through Kopf-based handlers. On the other hand, control plane of the
load balancers is implemented with the support of a LoadBalancer class, which
provides methods to manipulate their data structures but also to manage their life
cycle.

The operator job can be summarized as follows: it handles events involving
chain resources and configures the cross-connections through the LoadBalancer
class instances, in order that the desired state of the chain is reflected in the cluster.

52



Prototype implementation

5.3.1 Deployment
The sfc-operator is deployed as a DaemonSet whose pods run in the host network
namespace with special privileges. The reason it is deployed as a DaemonSet is
that it is necessary that each node has its own instance of the operator, which
handles the resources related to the node itself. Moreover, since it has to perform
operations on host network interfaces it must be able to interact with the host
network namespace, where it has full visibility of the host ends of veth links to
pods. Furthermore, it needs to be privileged because it must be able to apply
changes to the network stack, for example injecting eBPF programs into interfaces.
Finally, it requires two hostPath to be mounted as volumes: the first one must
contain the header files of the kernel used by the node, the second one must be
a path in a mounted BPF file system. The first is needed because the operator
through BCC has to compile the C code into eBPF byte code, the latter is needed
because the load balancers are based on pinned maps which require a file system
configured to support that.

Regarding RBAC permissions, sfc-operator has its own ServiceAccount associated
with a ClusterRole, that defines read/write permissions needed to access the handled
resources. Since it is deployed as a DaemonSet, the Kopf operator must be started
in standalone mode in order to allow the execution of all instances.

5.3.2 Handled Resources
The sfc-operator handles three different Kind of resources:

• ServiceFunctionChain: a Custom Resource that represent the logical definition
of the desired chain of network functions.

• LoadBalancer : a Custom Resource that represent an instance of a load balancer
between two network functions in the chain.

• Network Function (Pod): a Pod resource with a special label which specifies
what kind of network function it is running.

ServiceFunctionChain

This resource represents the desired state of the chain, describing its composition
and how network functions are linked together.

The ServiceFunctionChain spec, that represent the description of the chain, is
defined by the following fields:

• targetNodeName (string): specifies the name of the node on which the chain
is created and therefore the node where all its network functions are deployed.
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• networkFunctions ([]NetworkFunction): list of the network functions that
compose the chain. Each NetworkFunction is characterized by:

– name (string): specifies the name of the network function
– links (map[string][string]): map of network function links where the

key is the name of the linked network function, and the value is the name
of the interface of the current network function to which it is logically
connected.

By applying a manifest for this resource, a user provides the logical description
of the chain to the operator, which can proceed with the instantiation of the
cross-connections among network functions specified.

LoadBalancer

The LoadBalancer resource, differently from the ServiceFunctionChain, is typically
not used directly by users, but instead it is created by the operator. This resource
represents a physical instance of a deployed load balancer that cross-connect network
functions. For each resource there is a corresponding load balancer with its control
and data plane.

The LoadBalancer spec is defined as follows:

• targetNodeName (string): specifies the name of the node on which the load
balancer is deployed.

• frontend (Frontend): describes the type of network function on the frontend
side of the load balancer.

– name (string): specifies the name of the network function.
– interface (string): specifies the name of the interface of the network

function pods linked to the load balancer.

• backend (Backend): describes the type of network function on the backend
side of the load balancer.

– name (string): specifies the name of the network function
– interface (string): specifies the name of the interface of the network

function pods linked to the load balancer.

The instances of this resource are created by the operator during the processing
of the ServiceFunctionChain manifests. For each pair of network functions linked
together, a LoadBalancer resource is created. After that, it will be the operator
itself to proceed with the instantiation of the real load balancer compiling and
injecting the eBPF code in the kernel. The handlers involved in these operations
will be described in the dedicated section.
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Network Function (Pod)

Service chains are made up of network functions, in this context they are deployed
as Pods. In order to distinguish the Pods representing network functions from
those representing generic workloads, a specific label is added to the metadata:

• servicefunctionchain.polito.it/networkFunction: its value specifies
the name of the network function that the Pod runs.

The value specified in this label is the same that is used in the definition of
the ServiceFunctionChain and LoadBalancer and it must be the same for all the
pods that run the same type of network function. With this label, the operator is
capable of recognizing network functions, and it can react to events that involve
these resources.

In addition to this label is necessary to explicitly specify in the Pod spec, the
nodeName of the node where the pod should be scheduled. The name must be the
same not only for all the replicas of the same network function, but also for all the
replicas of other network functions in the chain. The same node name must be
used in the definition of ServiceFunctionChain. This is necessary because currently
operators only manage resources if they are all on the same node.

5.3.3 Indices
Before starting with the description of the handlers, some auxiliary data structures
are shown, that are the Kopf indices. They are used to index load balancers by
network function they are linked to, and to index pod by the type of network
function that they are running. Namespaces of the resources are also considered in
all the indices.

LoadBalancers indices

The load balancer indices are two: one indexes load balancers resources by frontend
network function and the other one by backend network function. These are
particularly useful when it is necessary to understand which load balancers need to
be updated when an event involves a specific network function. What they provide
is a dictionary that has the namespace and the name of a network function as key
and list of objects, composed by the load balancers name and their frontend/backend
interface name, as values. This information is extracted from the LoadBalancers
resources. The definition of the indices is presented in the Listing 5.15.
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1 @kopf.index(’loadbalancers’, field=’spec.targetNodeName’, value=
node_name)

2 def lb_by_frontend_index(name, namespace, spec,**_):
3 nf_name = spec[’frontend’][’name’]
4 fe_interface = spec[’frontend’][’interface’]
5 return { (namespace, nf_name): {’name’: name, ’interface’:

fe_interface} }
6 @kopf.index(’loadbalancers’, field=’spec.targetNodeName’, value=

node_name)
7 def lb_by_backend_index(name, namespace, spec,**_):
8 nf_name = spec[’backend’][’name’]
9 be_interface = spec[’backend’][’interface’]

10 return { (namespace, nf_name): {’name’: name, ’interface’:
be_interface} }

Listing 5.15: LoadBalancers indices definition.

Network Function Pods index

The network function pod index is useful when it is needed to get the list of all the
pods that are running a particular kind of a network function. This happens for
example when a load balancer is created to cross-connect two network functions
in a chain, and it is necessary to link the replicas of the network functions to its
frontend and backend.

This index not only stores the list of pod names for each network function type,
but also the details about its interfaces which are retrieved from the host-link
annotation. The content of the annotation is loaded as a JSON object in order to
be accessed like a dictionary, and it is stored along with the name of the pod to
which it belongs. As a result, for each network function type in a namespace the
index provides a list of objects, each one representing a specific pod instance and
its interfaces.

The definition of the index is presented in the Listing 5.16.
1 @kopf.index(’pods’,
2 annotations={’servicefunctionchain.polito.it/host−link’: kopf.

PRESENT},
3 labels={’servicefunctionchain.polito.it/networkFunction’: kopf.

PRESENT},
4 field=’spec.nodeName’, value=node_name)
5 def pod_by_networkfunction(name, namespace, annotations, labels,**_):
6 nf_name = labels[’servicefunctionchain.polito.it/networkFunction’

]
7 return { (namespace, nf_name): {’name’: name, ’interfaces’: json.

loads(annotations[’servicefunctionchain.polito.it/host−link’])}}

Listing 5.16: Network Function Pod index definition.

56



Prototype implementation

5.3.4 Handlers
The elements that enable the operator functionalities are the handlers. They are
used to manage all the resources described in the previous section. It is important
to point out that all the handlers apply filters on the resources to be managed, in
particular each handler manages only the resources that belong to the node on
which it is running.

ServiceFunctionChain creation handler

This handler is executed only once, when a new ServiceFunctionChain resource is
created. It operates as follows: it iterates over the links of each network function
specified in the chain, and for each link it creates a LoadBalancer resource. This
resource is adopted by the current ServiceFunctionChain, which means that it will
inherit the namespace and it will have a ownerReference to it. The latter enables
the mechanism of cascading deletion, meaning that Kubernetes will automatically
delete the LoadBalancer resources when their owner, a ServiceFunctionChain
instance, is deleted. Lastly, it pushes this new resource to the API server.

In the following Listing is shown the code snippet that creates the LoadBalancers.
1 @kopf.on.create(’servicefunctionchain’, field=’spec.targetNodeName’,

value=node_name)
2 def create_nsc_fn(spec, name,namespace,**_):
3 ...
4 for target_name, current_ifname in current_nf[’links’].items():
5 # Get link from the target NF corresponding to the current NF
6 target_ifname = nf_dict[target_name][’links’][current_name]
7 # Create load balancer name
8 lb_name = "lb−"+current_name[:min(len(current_name),

NF_PREFIX_NAME_LEN)] + "−" + target_name[:min(len(target_name),
NF_PREFIX_NAME_LEN)]

9 # Create the load balancer manifest from a template
10 lb_text = lb_template.format(name=lb_name, ...)
11 lb_data = yaml.safe_load(lb_text)
12

13 # Make this loadbalancer a child of current chain object
14 # (set owner reference... enable cascade deletion)
15 kopf.adopt(lb_data)
16 try:
17 # Create the loadbalancer resource using K8s client
18 api.create_namespaced_custom_object(
19 group=’servicefunctionchain.polito.it’,
20 version=’v1’,
21 namespace=namespace,
22 plural=’loadbalancers’,
23 body=lb_data
24 )
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25 except client.ApiException as err:
26 ...

Listing 5.17: ServiceFunction creation handler.

The name of the LoadBalancer is built from the names of the linked network
functions while the manifest is created customizing a template.

LoadBalancer creation and resuming handler

This handler is called when a LoadBalancer resource is created and when the
operator is resumed after a downtime. The task of this handler is to instantiate a
LoadBalancer object of the homonymous Python class, which provides an abstrac-
tion for control and data plane management of eBPF load balancers. This class
will be presented in detail in the next subsection.

After the creation of the object, it is ensured that the interfaces of all the network
function replicas, which the load balancer must connect, are properly configured in
its data plane in order to enable the forwarding. In order to get all the network
functions involved, the handler uses the pod index. As mentioned in the index
description, for each pod are available the details of its links and this allows the
operator to know which interfaces he has to work on. In the end, the object created
is added to a global dictionary in order to be accessible, when it is necessary, in
other handlers that have to perform actions on it.

1 @kopf.on.resume(’loadbalancers’, deleted=True ,field=’spec.
targetNodeName’, value=node_name)

2 @kopf.on.create(’loadbalancers’, field=’spec.targetNodeName’, value=
node_name)

3 def create_lb_fn(pod_by_networkfunction: kopf.Index, spec, name,
namespace,**_):

4 # Get interface names
5 fe_interface = spec[’frontend’][’interface’]
6 be_interface = spec[’backend’][’interface’]
7 # Create loadbalancer object
8 loadbalancer = sfc.LoadBalancer(name)
9

10 # Get all frontends network functions to link
11 fe_pods = pod_by_networkfunction.get((namespace, spec[’frontend’

][’name’]), [])
12 for fe_pod in fe_pods:
13 # Get corresponding frontend interface index
14 ifindex = fe_pod[’interfaces’].get(fe_interface)
15 # Ensure interface in load balancer frontend interfaces
16 loadbalancer.ensure_frontend_interface(int(ifindex))
17

18 # Get all backends network functions to link
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19 be_pods = pod_by_networkfunction.get((namespace, spec[’backend’][
’name’]), [])

20 for be_pod in be_pods:
21 # Get corresponding backend interface index
22 ifindex = be_pod[’interfaces’].get(be_interface)
23 # Ensure interface in load balancer backend interfaces
24 loadbalancer.ensure_backend_interface(int(ifindex))
25

26 # Add loadbalancer to dictionary
27 loadbalancers_dict[name] = loadbalancer

Listing 5.18: LoadBalancer creation and resuming handler.

After the creation of the LoadBalancer object, as mentioned before it is ensured
that all the interfaces of the frontend and backend network functions are correctly
configured, which means that the eBPF code has been injected in them, and that
their index number has been added to the load balancer data structures. The
reason it is ensured that they have already been configured, instead of configuring
them directly, derives from the fact that this handler is called both in case of load
balancer creation and in case of operator resume after a downtime. In the latter
case it is not clear which interfaces have already been configured and which are
not. Therefore, it is necessary to process them all again and add only the missing
ones, and this is the behaviour that the "ensure" methods of the LoadBalancer
class provide.

LoadBalancer deletion handler

The LoadBalancer deletion handler is in charge of performing cleaning up operations
on the load balancers. This task is delegated to a method of the corresponding
Python object. After that, the deleted load balancer is removed from the dictionary.

1 @kopf.on.delete(’loadbalancers’, field=’spec.targetNodeName’, value=
node_name)

2 def delete_lb_fn(spec,name,**_):
3 # Cleanup loadbalancer and delete from dictionary
4 lb = loadbalancers_dict.get(name)
5 if lb:
6 lb.cleanup()
7 del loadbalancers_dict[name]

Listing 5.19: LoadBalancer deletion handler.

NetworkFunction Pod update and deletion handlers

The Network Function Pod handlers allow the operator to intervene in two key
moments of the Pod life cycle: when it starts running and when it is going to
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be deleted. It is important to highlight that these are the handlers that enable
the seamless adapting features of the solution to the scaling of network function
replicas. When a new replica starts running the operator catch this status update
and ensures that the pod is included in the chain, so that it can be selected by
the load balancers. On the other hand, when a replica is going to be deleted the
operator proceeds with the removal of the replica from the chain, so that traffic no
longer passes through that pod.

The operations performed by the two handlers are very similar, the only difference
is that in the first case pod interfaces are added to the load balancers involved,
while in the second case they are removed. To be precise, the interfaces involved in
the load balancer logic are those on the host namespace side and not those on the
pod side, as explained previously. In order to do their operations for each Pod, the
handlers need to get the indexes of the corresponding interfaces on the host side,
and the lists of the load balancers that must be updated. The former are obtained
from the host-link annotation in the pod resource, while the latter from the load
balancers indices.

After that, for each load balancer frontend/backend that must be updated, it is
necessary to determine with which specific host interface it is associated. To do
this, it is sufficient to obtain the interface name string from the object obtained
from the index and get the value corresponding to this name inside the dictionary
obtained from the host-link annotation. Once the host interface index has been
found, it is possible to proceed with the addition or removal operations.

In the Listing 5.20 is presented the code that implements the update handler.
This, unlike the creation handler, enables the definition of special filters that allow
operator to react exactly when the pod changes from the Pending to the Running
state. This prevents the pod from being added to the chain before it is actually
ready to receive traffic.

1 @kopf.on.update(’pods’,
2 labels={’servicefunctionchain.polito.it/networkFunction’: kopf.

PRESENT},
3 annotations={’servicefunctionchain.polito.it/host−link’: kopf.

PRESENT},
4 field=’status.phase’, old=’Pending’, new=’Running’,
5 when=lambda spec, **_: spec.get(’nodeName’, ’’) == node_name)
6 def update_pod_fn(lb_by_frontend_index: kopf.Index,

lb_by_backend_index: kopf.Index, namespace, annotations, labels,**
_):

7 # Get network function name from label
8 nf_name=labels[’servicefunctionchain.polito.it/networkFunction’]
9 # Get network function interfaces

10 interfaces=json.loads(annotations[’servicefunctionchain.polito.it
/host−link’])

11
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12 # Search using index the involved loadbalancers
13 lb_to_add_fe=lb_by_frontend_index.get( (namespace, nf_name), [])
14 lb_to_add_be=lb_by_backend_index.get( (namespace, nf_name), [])
15 # For each loadbalancer involved on the frontend
16 for lb_cr in lb_to_add_fe:
17 # Get lb name
18 lb_name = lb_cr[’name’]
19 # Get the interface name attached to the frontend
20 fe_ifname = lb_cr[’interface’]
21 # Get the ifindex corresponding to the ifname
22 ifindex = interfaces.get(fe_ifname)
23 # Get LoadBalancer object from the dictionary
24 lb_obj: sfc.LoadBalancer = loadbalancers_dict.get(lb_name)
25

26 if lb_obj and ifindex:
27 # Ensure interface ifindex is among lb frontends
28 lb_obj.ensure_frontend_interface(int(ifindex))
29 # For each loadbalancer involved on the backend
30 for lb_cr in lb_to_add_be:
31 # Get lb name
32 lb_name = lb_cr[’name’]
33 # Get the interface name attached to the backend
34 be_ifname = lb_cr[’interface’]
35 # Get the ifindex corresponding to the ifname
36 ifindex = interfaces.get(be_ifname)
37 # Get LoadBalancer object from the dictionary
38 lb_obj: sfc.LoadBalancer = loadbalancers_dict.get(lb_name)
39

40 if lb_obj and ifindex:
41 # Ensure interface ifindex is among lb backends
42 lb_obj.ensure_backend_interface(int(ifindex))

Listing 5.20: Network Function Pod update handler.

In the definition, there are also some additional filter that restrict the execution
only to pods that match specific conditions. In particular are handled only update
events of pods with the networkFunction label and with the host-link annotation.
Similarly to the other cases, there is also the requirement that pods must be on
the same node as the operator. The combination of all these filters ensures that
only pods that have been correctly configured and started will be handled.

The deletion handler, as mentioned before, has the same structure as the update
handler, with the only difference that it is executed when a pod is about to be
deleted. Its job is to remove the pod interfaces from load balancers as soon as
possible to prevent traffic from being forwarded to it after its termination.

1 @kopf.on.delete(’pods’,
2 labels={’servicefunctionchain.polito.it/networkFunction’: kopf.

PRESENT},
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3 annotations={’servicefunctionchain.polito.it/host−link’: kopf.
PRESENT},

4 when=lambda status, spec, **_: spec.get(’nodeName’, ’’) ==
node_name)

5 def delete_pod_fn(lb_by_frontend_index: kopf.Index,
lb_by_backend_index: kopf.Index, namespace, annotations, labels,**
_):

6 # Get network function name from label
7 nf_name = labels[’servicefunctionchain.polito.it/networkFunction’

]
8 # Get network function interfaces
9 interfaces = json.loads(annotations[’servicefunctionchain.polito.

it/host−link’])
10

11 # Search using index the involved loadbalancers
12 lb_to_del_fe=lb_by_frontend_index.get( (namespace, nf_name), [])
13 lb_to_del_be=lb_by_backend_index.get( (namespace, nf_name), [])
14 # For each loadbalancer involved on the frontend
15 for lb_cr in lb_to_del_fe:
16 # Get lb name
17 lb_name = lb_cr[’name’]
18 # Get the interface name attached to the frontend
19 fe_ifname = lb_cr[’interface’]
20 # Get the ifindex corresponding to the ifname
21 ifindex = interfaces.get(fe_ifname)
22 # Get LoadBalancer object from the dictionary
23 lb_obj: sfc.LoadBalancer = loadbalancers_dict.get(lb_name)
24

25 if lb_obj and ifindex:
26 # Delete interface ifindex from lb frontends
27 lb_obj.del_frontend_interface(int(ifindex))
28 # For each loadbalancer involved on the backend
29 for lb_cr in lb_to_del_be:
30 # Get lb name
31 lb_name = lb_cr[’name’]
32 # Get the interface name attached to the backend
33 be_ifname = lb_cr[’interface’]
34 # Get the ifindex corresponding to the ifname
35 ifindex = interfaces.get(be_ifname)
36 # Get LoadBalancer object from the dictionary
37 lb_obj: sfc.LoadBalancer = loadbalancers_dict.get(lb_name)
38

39 if lb_obj and ifindex:
40 # Delete interface ifindex from lb backends
41 lb_obj.del_backend_interface(int(ifindex))

Listing 5.21: Network Function Pod deletion handler.
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5.3.5 LoadBalancer Class
The LoadBalancer class implements an interface for controlling the eBPF data
plane of the load balancers instances. Moreover, it provides methods to handle the
full lifecycle of the eBPF programs, from the code compiling and injection into
interfaces to the clean-up of allocated resources. In order to that, it relies on BCC
and pyroute2 libraries.

Each instance of the class has a one-to-one correspondence with an instance of
a load balancer data plane. When an object is created, a relative eBPF program is
immediately compiled and its maps instantiated, and thanks to the abstraction
of BCC is possible to embed their handles as normal instance variables. These
variables are then used by the methods to perform operations on the corresponding
objects. For example, it is possible to inject the eBPF program associated to the
load balancer into a given interface but it is also possible to add a given interface
index in a map in order to be used by load balancing logic. The operations for
injecting the eBPF programs are done by means of the tc method of the IPRoute
class from pyroute2 library which provides an interface to interact with the traffic
control layer. Instead, the manipulation of the eBPF maps is done directly by
exploiting the abstractions of BCC, which allows the use of these maps as if they
were python dictionaries.

The sfc-operator by means of the methods of this class can act as a control
plane for load balancers configuring their behaviour. Hereinafter, the structure of
the class and the most important methods are shown.

Class structure

The LoadBalancer class has only one class variable that is a lock, that is used only
in the __init__ method. Apart from this, it defines a set of methods that manage
the operations concerning the load balancers, from the initialization to the clean-up.
The methods can be divided between those that act on the frontend side of the
load balancer and those that act on the backend side, but their logic is absolutely
equivalent. In general, these methods work on the index of the interfaces, which is
the identification number that the kernel assigns to each interface.

Furthermore, the class is entirely thread-safe, so it is possible for several threads
to work on the same instances without the risk of destructive interference.

Initialization method

The __init__ method is in charge of the instantiation of the eBPF program and of
the definition of the related instance variables in the object. First of all, it stores the
metadata associated with the load balancer, such as the name. Moreover, it creates
the re-entrant lock that will be used in all the methods to ensure thread safety.
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Finally, through the BPF class it instantiates an object that represent the eBPF
program instance. This object is created providing the source code of the load
balancer data plane, which was described in a dedicated section. It is important to
point out that the source code is a template, so it has to be specialized and this is
done using the name of the current instance. Once the BPF object has been created,
all the needed handles for functions and maps in the program are extracted from it
and stored as instance variables, in order to be easily used by other methods.

In the following listing is shown the code of the __init__ method:
1 def __init__(self, name: str):
2 self.init_lock.acquire()
3 try:
4 # Save loadbalancer name
5 self.name = name
6 # Create lock object
7 self.lock = threading.RLock()
8

9 # Create bpf object
10 dp_source = dp_template.replace(’__LB_NAME__’,name)
11 self.bpf_handle = BPF(text=dp_source)
12 # Get functions
13 self.frontend_lb_fn = self.bpf_handle.load_func("

handle_loadbalance_fe", BPF.SCHED_CLS)
14 self.backend_lb_fn = self.bpf_handle.load_func("

handle_loadbalance_be", BPF.SCHED_CLS)
15 # Get maps
16 self.session_map = self.bpf_handle.get_table("sessions")
17 self.frontends_map = self.bpf_handle.get_table("

frontends_interfaces")
18 self.num_frontends_map = self.bpf_handle.get_table("

num_frontends")
19 self.backends_map = self.bpf_handle.get_table("

backends_interfaces")
20 self.num_backends_map = self.bpf_handle.get_table("

num_backends")
21 finally:
22 self.init_lock.release()

Listing 5.22: LoadBalancer instance initialization

Another thing, that is important to underline is that maps handles do not
necessarily refer to new instances, but it is possible that they refer to pre-existing
instances instead. This derives from the fact that the maps are pinned, so it is
possible to recover their state as long as they are mounted on the BPF file system.
The consequent advantage is that, after a possible crash of the program, it is
possible to recreate the LoadBalancer objects and automatically obtain a reference
to the previously created maps.
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As shown in the previous listing, even the init requires a lock, because the BPF
class relies on modules that must be used in mutual exclusion.

Methods for adding interfaces

When it is necessary to add an interface to a load balancer, there are three operations
that must be done:

1. The clsact qdisc must be added to the interface, in order to attach a filter

2. The eBPF function code must be injected as a filter into the ingress hook of
the interface

3. The interface index number must be added to the corresponding load balancer
map

As soon as the eBPF program is injected in the interface, all the traffic that
will be sent on that interface will be processed by the load balancer logic. On the
other hand, as soon as the interface is added to the map of interfaces, it can be
selected as an egress interface by the load balancer logic for packets of a session.

Here is shown the implementation of the add for a backend interface:
1 def add_backend_interface(self, ifindex):
2 self.lock.acquire()
3 try:
4 # Add appropriate qdisc to the interface
5 # But first check if the old one has to be cleaned up
6 qdiscs = iproute.get_qdiscs(ifindex)
7 for nlmsg in qdiscs:
8 tca_kind = nlmsg.get_attr(’TCA_KIND’)
9 if(tca_kind == "clsact"):

10 # Cleanup old qdisc (this will clean all filters)
11 iproute.tc("del", "clsact", ifindex)
12 iproute.tc("add","clsact", ifindex)
13

14 # Add filter to the interface
15 iproute.tc("add−filter", "bpf", ifindex, ":1", fd=self.

backend_lb_fn.fd, name=self.backend_lb_fn.name,parent="ffff:fff2",
direct_action=True,classid=1)

16

17 # Get current number of backends
18 num_be = self.num_backends_map[0].value
19

20 # Add backend interface to map
21 be_leaf = self.backends_map.Leaf(ifindex)
22 self.backends_map[num_be] = be_leaf
23 # Update number of backends
24 num_be_leaf = self.num_backends_map.Leaf(num_be+1)
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25 self.num_backends_map[0] = num_be_leaf
26 finally:
27 self.lock.release()

Listing 5.23: Method to add a backend interface

If a clsact qdisc is already present, this is deleted before adding the new one, so
that any pre-existing filters are deleted. The new filter is added loading the eBPF
function corresponding to the backend side on the ingress hook of the interface.

Other methods related with the add, are those that ensure that a given interface
is linked to the load balancer. These check if the index of a specific interface is
present in a load balancer map. If it is already present, they do nothing, if it is
not, then they call the corresponding add method.

In the following Listing is shown the code of the method that ensures that a
backend interface is added to the load balancer:

1 def ensure_backend_interface(self,ifindex):
2 self.lock.acquire()
3 try:
4 # Get backend interfaces
5 num_be = self.num_backends_map[0].value
6 be_interfaces = list(map(lambda ifindex: ifindex.value,self.

backends_map.values()[:num_be]))
7

8 # Check if ifindex is already in the map
9 if ifindex in be_interfaces:

10 return
11

12 # Add interface to frontends
13 self.add_backend_interface(ifindex)
14 finally:
15 self.lock.release()

Listing 5.24: Method to ensure that a backend interface is added

Methods for removing interfaces

When an interface must be removed from a load balancer, there are three operations
that must be done:

1. The clsact qdisc must be removed from the interface

2. The interface index must be removed from the corresponding load balancer
map

3. All the entries that included the interface in the session table must be removed
from it
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First of all, the clsact qdisc is removed, in order that all the attached eBPF filters
are implicitly removed too. After that, the interface must be removed from the
maps, in order that the load balancer no longer selects it as a possible egress.
Finally, all sessions that were forwarded on that interface must be reassigned to
other interfaces. This behaviour is enabled by simply removing all the entries that
included the deleted interface.

Here is shown the implementation of the del for a frontend interface:

1 def del_frontend_interface(self, ifindex):
2 self.lock.acquire()
3 try:
4 # Delete qdisc if present (this will remove all filters)
5 qdiscs = iproute.get_qdiscs(ifindex)
6 for nlmsg in qdiscs:
7 tca_kind = nlmsg.get_attr(’TCA_KIND’)
8 if(tca_kind == "clsact"):
9 iproute.tc("del", "clsact", ifindex)

10

11 # Get current number of frontends
12 num_fe = self.num_frontends_map[0].value
13

14 # Search index of the interface in the map
15 index = None
16 found = False
17 for i in range(num_fe):
18 if(self.frontends_map[i].value == ifindex):
19 index = i
20 found = True
21 break
22 if(not found):
23 return
24

25 # Get last ifindex in the map
26 last_ifindex = self.frontends_map[num_fe−1].value
27 # Substitute the deleted ifindex with the last ifindex
28 fe_leaf = self.frontends_map.Leaf(last_ifindex)
29 self.frontends_map[index] = fe_leaf
30 # Update number of frontends
31 num_fe_leaf = self.num_frontends_map.Leaf(num_fe−1)
32 self.num_frontends_map[0] = num_fe_leaf
33

34 # Cleanup of sessions
35 self.cleanup_sessions(ifindex)
36 finally:
37 self.lock.release();

Listing 5.25: Method to delete a frontend interface
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Methods for cleaning up LoadBalancer

Finally, the LoadBalancer class provide some methods to clean-up all the involved
resources. They allow to clear specific maps such as frontends and backends but
also to unpin them from the file system in order that kernel resources can be fully
released. Along with the cleaning of the maps, the cleaning of the interfaces is
obviously done, from which the clsact qdisc and consequently all the filters are
removed. These methods are useful when a LoadBalancer resource has to be
finalized because it is going to be deleted.

In the following listing is shown the method that finalize the LoadBalancer
object:

1 def cleanup(self):
2 self.lock.acquire()
3 try:
4 # Clear all frontend and backend interfaces
5 # (to remove eBPF filter from interfaces)
6 self.clear_frontends()
7 self.clear_backends()
8

9

10 # Delete folder of pinned eBPF maps (unpin of eBPF maps)
11 shutil.rmtree(NSC_BPFFS_PATH+’/’+self.name,ignore_errors=

False)
12 finally:
13 self.lock.release()

Listing 5.26: Method to clea up LoadBalancer object

To clear maps are called specialized methods that simply delete all the entries
and for each entry they proceed with the clean-up of the associated interface, which
consists in eliminating the added clsact qdisc.
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Chapter 6

Evaluation

In this chapter is provided a performance evaluation of the system based on different
kind of tests. The evaluations are made on the performance of the load balancers
and on the reaction time of the overall system to the occurrence of specific events.
First of all, a description of the tests environment will be given, then all tested
scenarios will follow.

6.1 Testbed characteristics
Tests were conducted on a desktop machine on which was deployed a Kubernetes
cluster composed of two nodes: one master node and one worker node. To deploy
the cluster Kind1 was used, it allows to run a Kubernetes cluster using Docker
containers as nodes. As main benchmarking tool was used iperf3.

Machine characteristics are listed below:

• Processor: Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz with 4 cores and
Hyper-threading enabled

• Memory: 16 GB of DRAM

• Kernel Version: Ubuntu 20.01.1

• Kernel Release: 5.11.0-41-generic

Software versions:

• Kind: 0.11.1

1https://kind.sigs.k8s.io/
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• Kubectl client: 1.21.2

• Kubernetes API: 1.21.1

• Docker Engine: 20.10.7

• iperf3: 3.7

Deployments

In the tests different kinds of Kubernetes deployments have been used, which are
based on three Docker images:

• iperf3-client: an image with iperf3 installed and some scripts for testing. By
default, it sleeps indefinitely to allow a shell to be attached.

• iptables-firewall: an image that contains an init script which set up a bridge
between two interfaces and install iptables rules on it.

• iperf3-server : an image with iperf3 installed which by default starts iperf3 in
server mode and waits for connections.

All these images are based on Alpine Linux, which is an extremely lightweight
distribution. It is important to highlight that for the tests conducted, there were
no special rules configured on the firewall, it simply accepted all traffic in transit.

6.2 Load Balancer performance
In this section is analyzed the load balancer performance. First, it will be com-
pared to other Kernel interconnection mechanisms and then will be evaluated how
performance changes as handled interfaces increase.

6.2.1 Performance comparison
The load balancer performance has been evaluated and compared to other two
interconnection mechanisms provided by Linux kernel that are virtual ethernet
pairs and bridges. The tests have been conducted in two different scenarios:

• A chain composed of a client pod and a server pod

• A chain composed of a client pod a transparent firewall pod and a server pod

For each scenario there is a specific sub-case for each cross-connection mechanism.
All cases for both scenarios are shown in Figures 6.1-6.6:
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First scenario sub-cases
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Figure 6.1: Client-Server connected through a veth pair.
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Figure 6.2: Client-Server connected through a load balancer.
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Figure 6.3: Client-Server connected through a linux bridge.
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Second scenario sub-cases

firewall

(iptables)

L2 L2

client

10.240.0.1/24

server

10.240.0.2/24

eth1 eth2eth1 eth1

Host

Figure 6.4: Client-Firewall-Server connected through veth pairs
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Figure 6.5: Client-Firewall-Server connected through load balancers.
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Figure 6.6: Client-Firewall-Server connected through linux bridges.
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Results

Results in Figure 6.7 shows that the load balancer performance is in an intermediate
position between that of veth and bridge. Since load balancer introduces additional
logic compared to the simple veth is comprehensible that it introduces higher
latencies and as a result a lower throughput. However, thanks to the efficiency and
high performance provided by eBPF technology, performance is only slightly lower
than veth, even though load balancer introduces more complex logic. On the other
hand, the load balancer outperforms noticeably the linux bridge.
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Figure 6.7: Performance comparison between scenarios’ subcases.

6.2.2 Performance as replicas increase

With the following tests is evaluated the variation in performance of load balancer
as number of replicas increases. The chain deployed for this test is again composed
by three kind of pod: a client, a firewall and a server. Client and server are always
based on iperf3 and again the firewall is based on a bridge internal to the pod that
connects the two interfaces.

The figure 6.8 shows the tested scenario. The firewall is the pod that is scaled
in order to have an increasing number of replicas.
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Figure 6.8: Chain with multiple firewall replicas.

Results

From the results in Figure 6.9 it turns out that number of replicas does not affect
load balancer performance. This result is not surprising considering how the load
balancer logic is implemented. Its forwarding operations are based on a session
table, which is implemented via a hash table and its performance is independent of
the number of interfaces. The only operation in which the number of replicas is
explicitly involved is the one that selects the egress interface for the first packet of
a new session, but since this is simply a modulo operation that occurs for a single
packet, the effect is absolutely negligible.
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Figure 6.9: Performance as firewall replicas increase.
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6.3 System Reaction time
In this section is evaluated the reaction time of the system following the creation or
deletion of a network function replica in a chain. In order to do this, it is measured
how much time passes from the change of state of a replica to when the operator
notices it, and also how long it takes to the operator to configure/clean-up the
interfaces and update the load balancers involved with the event.

For the tests, a generic network function with two network interfaces was used.
For this reason, the add or remove operations on the interfaces are performed twice
for each event.

6.3.1 New Replica
Here is analyzed the reaction time to a new replica running event for a network
function deployment in a chain. This test evaluates how long it takes from when
a pod starts running until it is fully included in the chain. When the operator
notices that there is a new replica up and running, it starts the handler which has
to find all the load balancers that need to be updated in order to consider the new
replica. Once found, it proceeds with all the necessary operations, starting from
obtaining the indexes of the network function interfaces on the host namespace
side, up to the injection of the eBPF code in those interfaces and the updating of
the load balancers maps.

For the test, first of all, it was measured how much time passes from the start
of the Pod execution to when the operator notices it. After that, the total activity
time of the operator was measured, which is mainly composed of the time needed
to add the clsact qdiscs and the eBPF programs to the interfaces. The time taken
to search for the load balancers involved and to update the eBPF maps is not
shown in the results. The reason is that its contribution to total uptime is so low
that can be considered negligible.

Results in Figure 6.10 show that most of the delay is introduced by the propaga-
tion in the cluster of the event regarding pod running status. The time required by
the operator activity is much less compared to it. This means that the delay intro-
duced by operator is less significant than the latency introduced by the generation
and propagation of events in the cluster. From the chart it can be seen that the
most time-consuming operation is the injection of the eBPF filter with the load
balancing logic into the ingress TC hook of an interface.

It is important to point out that the operator could react to the pod creation
event, which means even before it is actually running. However, this would result
in the pod being prematurely added to the chain. After a pod resource is created,
it takes some time to set up its sandbox and start up its containers. Consequently,
when the operator would react to the creation, there could be the risk of trying
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Figure 6.10: Reaction time composition for a new replica event.

to include in the chain a network function that does not yet have the interfaces
configured or that is not yet ready to receive traffic. For this reason, the operator
only reacts when it is sure that the pod is running.

6.3.2 Replica deleted
The opposite case to the previous is the deletion of a replica. In this case, the
operator reacts as soon as it detects that a pod is going to be deleted. This test
measures how long it takes from when the pod begins its graceful termination to
when it is successfully removed from the chain. The operator acts by removing
the clsact qdisc previously added in the interfaces and updates the load balancers
maps so that they no longer select the interfaces of the pod that is about to be
deleted. As in the previous case, the time to find the load balancers involved and
to update the maps is not shown in the results as it was negligible.

The tests measured how much time passes from the beginning of the pod
termination to when the operator reacts to it. In addition to this, the total activity
time for the operator was also evaluated, which in this case is mainly composed
of the time required for the removal of the clsact qdisc from the interfaces of the
network function. It is also important to specify that the pod used in testing took
about 0.5 seconds to gracefully terminate. The obtained results are shown in Figure
6.11.

From the diagram it can be seen that the total activity time of the operator
is similar to the previous one. In this case the main contribution is given by
the removal of the clsact qdisc from the interfaces, which takes more time than
its addition. This derives from the fact that when the qdisc is deleted, all the
associated filters are also implicitly removed, which in this case involves the removal
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Figure 6.11: Reaction time composition for a terminating replica event.

of the eBPF programs previously injected. Even in this case the operator reacts
after a slight delay as evidenced by the grey bar in the graph, this is always due to
event propagation delays in the cluster.

However, a very important aspect to consider in this scenario is the time it takes
for the pod to terminate. As mentioned previously, in the tests it was used a pod
which gracefully terminates in 0.5 seconds, however other pods may take less and
others longer. What is important is that the operator finishes his operations before
the pod terminates. If a pod terminates earlier, there may be temporary packet
losses in the chain because load balancers try to send traffic to replicas that no
longer exist, because they haven’t been updated yet. For the case considered, the
dashed red line in the chart highlights the moment from which the replica is no
longer part of the chain. If the pod had been terminated immediately in 10 ms,
there would have been a time window in which packets would have been dropped.

Since there are unavoidable propagation delays of events and the operator’s
actions are not instantaneous, it is needed to force the network functions not to
terminate too fast to prevent these problems.
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Chapter 7

Conclusions

This thesis has presented the prototype of a system to integrate Service Function
Chains in Kubernetes, enabling seamless autoscaling of network functions through
the deployment of eBPF-based load balancers among replicas. The main focus was
on trying to bring the benefits of Cloud Native platforms to network workloads
and the proposed solution has shown a possible approach in this direction.

The system was composed by elements designed to be natively integrated into
Kubernetes environment, leveraging the extensibility features of the aforementioned
platform. This was the case of the custom CNI that configures network interfaces
of NFs, and of the Operator which act as controller of system functionalities.

As concerns load balancers, the use of eBPF allowed the integration of their logic
directly into the networking data path, with advantages in terms of performance
and transparency towards network functions.

The evaluation of the prototype showed that the overhead of the additional
load balancing logic is low, and this is mainly due to efficiency of eBPF technology.
Moreover, the analysis of reaction time to replicas creation/deletion showed that
system quickly reacts to their variations, highlighting that most of the delay is due
to the propagation delays of events themselves.

7.1 Future Works
The solution, being a prototype, has some limitations which can be overcome by
future works. The main objective of this work was to create a proof of concept of a
system capable of managing chains with a variable number of replicas, therefore
it was developed considering simplified scenarios in order to obtain results on
feasibility in a short time.
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Possible improvements include:

• Cross-node chains: at the moment, chain creation is made per-node, therefore
only replicas on the specified node are considered. To enable cross-node chains
is necessary to add a tunneling logic that handles links across nodes, and the
operators must consider also remote replicas while configuring load balancing
logic.

• Weighted Load Balancing: currently load balancing on replicas is made using
an index obtained by a number derived from the hash of a session quintuple
and from the number of replicas. This logic does not consider any additional
parameter. It might be beneficial to consider network load metrics of the
available replicas, in order to select less stressed ones.

• Support for different technologies: at present the system uses eBPF-based load
balancers that work on veth interfaces. In future works could be explored the
possibility of implementing the same system using different technologies that
enable the same functionalities using user space resources as an alternative.
This would allow the solution to have more integration possibilities with
existing systems and would require fewer privileges than a solution totally
based on kernel mechanisms.
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