
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Mining user reviews on public transport
systems using machine learning

techniques

Supervisors

Prof. Silvia Anna CHIUSANO

Prof. Luca CAGLIERO

Dott. Elena DARAIO

Candidate

Daniela MARTORANA

April 2022

Summary

Nowadays, with the increasingly pervasive advent of the digital world, we are
inundated with large amounts of data of every kind. An important category of such
data is the text format. This data might be automatically generated by machines,
but more frequently it is user-generated content and it is linked to many daily
contexts.
An important part of this data, which will be dealt with in this thesis work, concerns
user reviews of products and services. The challenges in this context are both (i)
to analyse this large amount of information content to automatically obtain useful
and concise information on what people think of a product or service and (ii) to
ensure that, with this information, the companies and authorities involved make
improvements to their current systems.
Machine learning techniques have been frequently used to analyse text data and
extract useful insights. This type of text analysis belongs to the area of Natural
Language Processing (NLP).

In this thesis work, we will focus on the field of Sentiment Analysis (SA), to
build a classification model able to label a sentence with a positive or a negative
sentiment. In this thesis work, two other NLP fields will also be discussed: Topic
Modeling and Text Mining. In parallel, preprocessing techniques will also be ad-
dressed.

As a reference case study, a collection of user-provided reviews regarding mo-
bility services and their sustainability in the city of Dubrovnik (Croatia) has been
considered. The data corpus contains 2000 labelled reviews that were first retrieved
from Trip Advisor and then selected, cleaned and collected into the so-called Gold
Standard Corpus (GSC) in a previous research work. Indeed, it is thought to be
more useful to directly analyse comments freely provided on social networks, rather
than official statistics and traditional surveys carried out by public administrations,
as the former are more reflective of the real opinion of users. This analysis is
particularly useful because transport practices have an impact on sustainability
from a social, economic and environmental perspective and politicians are looking

ii

for ways to address these problems by increasing the efficiency and sustainability
of the transport system. Sentiment Analysis, by analysing the opinions expressed
by users, can help them to make more informed decisions.

The main objectives of this thesis work are the followings: (i) to define a new
methodology to analyse textual data with respect to the traditional methods; (ii)
to build consequently a sentiment analysis algorithm that classifies the instances
correctly into positive and negative reviews; (iii) to find a classification model that
satisfies the objective (ii), while providing a compact and interpretable representa-
tion of the model. The model should highlight terms and concepts related to the
strengths and weaknesses of mobility system.

A new methodology for Sentiment Analysis has been designed to achieve good
accuracy, but also provide an interpretable classification model. Specifically, the
textitAssociative Classifier L3 was chosen to be used. In L3 the classification
model is a set of classification rules. This model is very accurate in many different
application domains. In addition this model is easily readable and interpretable.
Before creating the classification model, many other preliminary steps have been
addressed in this thesis work. First, several textual pre-processing and data trans-
formation techniques were investigated and applied in order to generate a clean
data collection compatible with L3 or other machine learning algorithms. More
specifically, the following operations have been carried out: correction of some
formatting errors in the text, expansion of contracted forms, removal of special
characters, numbers, accents, extra spaces and stopwords from the text, subdivi-
sion of sentences into tokens, PoS tagging of tokens and finally the application of
stemmatization and lemming to individual tokens.
Then, Topic Modeling techniques (such as Latent Dirichlet Allocation (LDA)) were
used to derive additional information content from the data, to carry out both
features selection and features extraction, and finally obtain a data representation
suitable for the L3 classification method.
Specifically, based on Topic Modeling five different solutions have been designed and
implemented. In Method 1 the n most important words in the k chosen topics were
selected, and then the data were filtered based only on the set of selected words.
A Bag of Words representation was created to obtain a configuration compatible
with L3, in which features are the selected words. The other methods map each
instance to the corresponding topic representation of that instance (Method 2A) or
to the corresponding topic representation of each word of that instance (Methods
2B and 2C). Therefore in these methods the features are the k topics chosen.
Finally, Method 3 is very similar to Method 1 : the n most important words in the
k chosen topics were selected, and the data were filtered based only on the set of
selected words. Furthermore, each word in the sentence will be mapped to the

iii

corresponding topic. A Bag of Words representation was created, in which features
are the selected words + the k topics.
In all these methods, a search in the parameter space was carried out, looking for
the values of the parameters n and k (and some other metric depending on the
method) that would maximise the value of the accuracy of the prediction of the L3

classifier applied on the test set.
Different baselines were also considered without the use of topic modeling and/or
with a different classifier, such as Support Vector Machines (SVM), in order to
have a term of comparison.
The results obtained in this thesis work demonstrate the accuracy and the validity
of our proposed approach, which can be extended to other datasets and contexts.
The best results obtained are quite good. They are also better than the performance
of the baselines with the SVM classifier, when models with the same number of
features are compared.
More specifically, the best results of Method 1 and Method 3 emerge, which achieve
the accuracies of 0.887 and 0.896, respectively. These are the highest results ob-
tained in this work. They are also higher than the accuracies of the corresponding
baselines with the SVM classifier applied to data transformed using Method 1 and
Method 3 (0.882 and 0.891 of accuracies, respectively).
This is an important result even if the gap is not very high. Indeed, it must be
considered that SVM is one of the best performing algorithms in machine learning
and also specifically in Sentiment Analysis. So, the fact that our method produces
a slightly better result than SVM, is a very valuable point.
More generally, as regards Method 1, when varying the number of features fed to
the classifier, the following considerations can be made. The results with L3 are
significantly higher than the results of the baselines created without the use of Topic
Modeling. The results of Method 1 with L3 are also slightly better than the results
after applying SVM to the same method. Only in a few cases the results with the
SVM classifier are slightly superior. This happens usually when the number of
features fed to the SVM classifier is significantly higher than a number of features
compatible with the L3 classifier. Indeed, the downside of the method defined in
this thesis work is that the process is very slow as the number of features increases.
In particular, the computation time starts to become unsustainable when more
than 23/24 features are used.
The other methods developed in this thesis work represent the data using topics
only. They produced lower accuracies than Methods 1 and 3. Probably because
mapping the data directly with topics leads to too synthetic representation and
too much information is lost. When applying SVM to these methods, L3 generally
produces comparable or slightly inferior results. However, SVM produces a model
that is not readable and not interpretable, unlike the rules produced by L3. These
rules are perfectly readable, both with the human eye, with algorithms, and with

iv

graphs.

Deepening this last concept, through the use of these rules, we were able to
obtain a readable and summarizing model. It provides the main words and concept
associations, regarding positive and negative opinions, about sustainable transport.
Through this model, a graphical representation has been created that allows an
immediate visual analysis of these concepts. In particular, it allows to analyse
the correlation and co-occurrence of concepts and terms together. The insights
obtained from this representation can be used by the administrations to improve
the service offered.
An alternative representation of the model using SHAP and applying it to SVM
was also presented. This was done in order to possibly highlight the strengths of
our representation and to assess the complementarity of the two representations
and obtain more information.

Many of the things that have been done in this work and the methodology de-
veloped, in the future could be extended to other works of the same type. Some
improvements that could be carried out are as follows. A way to parallelise the
process can be studied or more powerful machines can be used. In this way, the L3

classifier could also be used with a greater number of features. One could also try
other Topic Modeling algorithms, which maybe work better for this dataset and
task. For example, Non-Negative Matrix Factorization (NMF) algorithm has good
performance even with a limited size dataset, like ours. Finally, the interpretability
aspect of the model could be further investigated. The preliminary analysis made
in this thesis work on SHAP can be deepened, and the complementarity of this
method with the rules produced by L3 can be studied.

v

Table of Contents

List of Figures ix

Acronyms xii

1 Introduction 1

2 Theoretical background 5
2.1 Text Mining . 6
2.2 Sentiment Analysis . 7

2.2.1 Types of Sentiment Analysis 8
2.2.2 Sentiment Analysis algorithms 8
2.2.3 Rule-based or lexicon-based approach 9
2.2.4 Machine Learning approach 11

2.3 Topic Modeling . 23
2.3.1 Latent Dirichlet Allocation (LDA)) 24

3 Methodology 29
3.1 Dataset used . 29
3.2 Pre-processing phase . 30
3.3 L3 and L3 wrapper usage . 34
3.4 Baselines . 34

3.4.1 Baseline 1: N most frequent words 35
3.4.2 SVM baselines . 36
3.4.3 Vader . 37

3.5 The application of Topic Modelling 37
3.5.1 Parameter search . 39
3.5.2 Generation of methods . 40

3.6 The 5 methods with features obtained through topic modelling . . . 40
3.6.1 Method 1 . 40
3.6.2 Method 2A . 41
3.6.3 Method 2B . 42

vii

3.6.4 Method 2C . 42
3.6.5 Method 3 . 43

4 Practical results 45
4.1 Preliminary statistics on frequency 45
4.2 Baseline results . 48

4.2.1 Baseline 1: N most frequent words 50
4.2.2 N most frequent words + SVM 50
4.2.3 Method 1 + SVM . 52
4.2.4 Method 2B + SVM . 53
4.2.5 Method 3 + SVM . 54
4.2.6 Vader . 56

4.3 Results of the 5 methods used for Sentiment Analysis 57
4.3.1 Method 1 . 57
4.3.2 Method 2A . 58
4.3.3 Method 2B . 59
4.3.4 Method 2C . 61
4.3.5 Method 3 . 62

4.4 Interpretability . 64
4.4.1 Graphical representations and L3 Human readable 64
4.4.2 Further study: an alternative and complementary represen-

tation with SHAP . 72

5 Conclusion 81
5.1 Future work . 82

Bibliography 84

viii

List of Figures

2.1 L3 classifier generation. 22
2.2 LDA process pseudocode . 25
2.3 Graphical model representation of LDA 26

4.1 Frequencies of the number of words for review in the dataset 46
4.2 Frequencies distribution of the top 30 tokens in the dataset after

pre-processing . 47
4.3 Frequencies distribution of the top 30 tokens in the dataset after

pre-processing with a TF-IDF vectorization 48
4.4 Complete results of the Baseline 1 51
4.5 Complete results of the Baseline 1 + SVM 52
4.6 Complete results of Method 1 + SVM 53
4.7 Complete results of Method 2B + SVM 55
4.8 Complete results of Method 3 + SVM 56
4.9 Complete results of Method 1 . 59
4.10 Complete results of Method 2A . 60
4.11 Complete results of Method 2B . 61
4.12 Complete results of Method 2C . 63
4.13 Complete results of Method 3 . 64
4.14 Example of Human readable representation 66
4.15 Rules obtained with Method 1 for positive instances 68
4.16 Rules obtained with Method 1 for negative instances 69
4.17 Rules obtained with Method 3 for positive instances 70
4.18 Rules obtained with Method 3 for negative instances 71
4.19 Summary plot . 73
4.20 Dependence plot 1 . 74
4.21 Dependence plot 2 . 75
4.22 Force plot 1 . 76
4.23 Force plot 2 . 76
4.24 Waterfall plot 1 . 77
4.25 Waterfall plot 2 . 77

ix

4.26 Bar chart . 78

x

Acronyms

NLP
Neural Language Processing

SA
Sentiment Analysis

GSC
Gold Standard Corpus

AC
Associative Classifier

SVM
Support Vector Machine

VADER
Valence Aware Dictionary and sEntiment Reasoner

NLTK
Natural Language Toolkit

LDA
Latent Dirichlet allocation

PoS
Part of Speech

BoW
Bag of Words

xii

TF-IDF
Term Frequency-Inverse Document Frequency

SHAP
SHapley Additive exPlanations

xiii

Chapter 1

Introduction

General context, problem and traditional solutions
Nowadays, with the increasingly pervasive advent of the digital world, we are
inundated with large amounts of data of every kind. An important category of such
data is the text format. This data might be automatically generated by machines,
but more frequently it is user-generated content and it is linked to many daily
contexts.
An important part of this data, which will be dealt with in this thesis work, concerns
user reviews of products and services. The challenges in this context are both (i)
to analyse this large amount of information content to automatically obtain useful
and concise information on what people think of a product or service and (ii) to
ensure that, with this information, the companies and authorities involved make
improvements to their current systems.
Machine learning techniques have been frequently used to analyse text data and
extract useful insights. This type of text analysis belongs to the area of Natural
Language Processing (NLP).

In this thesis work, we will focus on the field of Sentiment Analysis (SA), to
build a classification model able to label a sentence with a positive or a negative
sentiment. In this thesis work, two other NLP fields will also be discussed: Topic
Modeling and Text Mining. In parallel, pre-processing techniques will also be
addressed.

As far as Sentiment Analysis is concerned, there are many methods to carry
out this kind of analysis in literature. Roughly speaking, there are mainly two ways
to address the problem of Sentiment Analysis: rule or lexicon-based approaches and
machine learning algorithms, which are then divided into classical machine learning
algorithms (e.g. Support Vector Machines, Naïve Bayes, Linear Regression) and

1

Introduction

neural networks (e.g. Convolutional Neural Network, Recurrent Neural Network)
[1].

As a reference case study, a collection of user-provided reviews regarding mo-
bility services and their sustainability in the city of Dubrovnik (Croatia), has
been considered. A data analysis methodology based on NLP techniques has been
defined to mine useful insights from this data collection.
The data corpus contains 2000 labelled reviews that were first retrieved from Trip
Advisor and then selected, cleaned and collected into the so-called Gold Standard
Corpus (GSC), in a previous research work of Serna, Soroa, Agerri [2]. Indeed,
it is thought to be more useful to directly analyse comments freely provided on
social networks, rather than official statistics and traditional surveys carried out by
public administrations, as the former are more reflective of the real opinion of users.
This analysis is particularly useful because transport practices have an impact on
sustainability from a social, economic and environmental perspective and politi-
cians are looking for ways to address these problems by increasing the efficiency
and sustainability of the transport system. Sentiment Analysis, by analysing the
opinions expressed by users, can help them to make more informed decisions.

The main objectives of this thesis work are the followings: (i) to define a new
methodology to analyse textual data with respect to the traditional methods; (ii)
to build consequently a Sentiment Analysis algorithm that classifies the instances
correctly into positive and negative reviews; (iii) to find a classification model that
satisfies the objective (ii), while providing a compact and interpretable representa-
tion of the model. The model should highlight terms and concepts related to the
strengths and weaknesses of mobility system.

A new methodology for Sentiment Analysis has been designed to achieve good
accuracy, but also provide an interpretable classification model. Specifically, the
Associative Classifier (AC) L3 [3] was chosen to be used. In L3 the classification
model is a set of classification rules. This model is very accurate in many different
application domains. In addition this model is easily readable and interpretable.
Before creating the classification model, many other preliminar steps have been
addressed in this thesis work.
First, several textual pre-processing and data transformation techniques were in-
vestigated and applied in order to generate a clean data collection compatible with
L3 or other machine learning algorithms.
Then, Topic Modeling techniques (such as Latent Dirichlet Allocation (LDA)) were
used to derive additional information content from the data, to carry out both
features selection and features extraction, and finally obtain a data representation
suitable for the L3 classification method.

2

Introduction

Specifically, based on Topic Modeling five different solutions have been designed
and implemented.

To summarise, the main contributions and results of this work are to create
a new Sentiment Analysis algorithm with high performance and, at the same time,
provide an interpretable model, in contrast to other algorithms in literature.
In order to estimate the quality of the proposed approach, it has been compared
with traditional solution methods, such as Support Vector Machines (SVM).

The thesis work is organised as follows. Chapter 1 is a general introduction
to the context, the problem and the methodologies adopted. Chapter 2 will analyse
the theoretical background and literature underlying this thesis work. Chapter 3
will discuss the methodology that has been adopted in this thesis work to achieve
the established objectives. Chapter 4 will present and comment on the practical
results obtained with this methodology. It will also deal with interpretability
aspects of this approach. Finally, Chapter 5 will draw the final and summary
conclusions of this thesis work. After this, there will be a section dedicated to the
Bibliography.

3

Chapter 2

Theoretical background

In this section the fundamental concept behind this thesis will be introduced, which
is the Natural Language Processing (NLP). Its main characteristics and some types
of NLP tasks will be presented, focusing in particular on those that have been
addressed in this work.

Natural Language Processing is a field of computer science and, more specifi-
cally, of Artificial Intelligence, which aims to program computers so that they
understand natural language data (text and spoken words) in a similar way to
humans, by processing large amounts of this kind of data.
NLP is the union of computational linguistics, a way to model human language
with rules, with statistical, machine learning, and deep learning models. These
techniques allow computers to process natural language data and to understand its
meaning and the sentiment behind them.
In order to mention a few examples of the capability of NLP techniques, they can
generate computer programs that can translate text [4, 5, 6], can answer to voice
commands [7, 8], and can synthesise large volumes of text quickly [9, 10, 11]. NLP
can be used also for voice-operated GPS systems, digital assistants, speech-to-text
dictation software. It can also be adopted in company solutions that help speed up
and simplify business operations and increase employee productivity [12].
Unfortunately, NLP is not an easy field, since human language is filled with ambi-
guities that make very difficult to make a program that determines in a correct
way the true meaning of text or voice data. Also humans take years to learn
some ambiguities of the language, but software and application must identify and
understand them accurately from the start.
For this reason, several NLP tasks decompose human text and voice data in ways
that help the software to grasp the meaning of what it’s processing.
Some of the most common tasks of NLP are explained in the following:

5

Theoretical background

• Speech recognition: is the task of transforming voice data into text [7], [13].

• Part of speech tagging: is the process of identify the part of speech of a word
based on its usage and context.

• Word sense disambiguation: is the selection of the meaning of a word with
multiple meanings in order to select the word that makes the most sense in
that situation, in order to avoid ambiguity.

• Named entity recognition: identifies words or phrases as useful entities.

• Co-reference resolution: identifies if two words relate to the same entity.

• Sentiment Analysis: tries to retrieve subjective sentiments (such as attitudes,
emotions, sarcasm, confusion, and so on) from the text, giving them a positive
or negative or neutral connotation.

• Natural language generation: tries to put some structured information into
human language.

In this thesis, in particular, it will be worked on and deepened three tasks of NLP:
Text Mining, Sentiment Analysis and Topic Modelling.

2.1 Text Mining
Text Mining is the process of deriving high-quality and previously unknown infor-
mation from text. More specifically, it is an Artificial Intelligence technique that
uses Natural Language Processing to transform free and unstructured text from
documents/databases, such as web pages, articles, emails, social media posts/com-
ments etc., into structured and normalised data, in order to identify meaningful
patterns and new insights, automatically extracting information from the different
resources. High-quality information is typically obtained by devising patterns and
trends by means such as statistical pattern learning.
In this way companies will be able to explore and discover hidden relationships
within their unstructured data.
Common text mining challenges involve categorising text, clustering text, extracting
concepts/entities, summarising documents and modelling relationships between
entities.

Text is one of the most common data types in databases and documents. This
kind of data can be broadly organised into three categories:

• Structured data: These data are organized into a tabular format with many
rows and columns.

6

Theoretical background

• Unstructured data: These data do not have a standardised format.

• Semi-structured data: These data are a mixture of structured and unstructured
data. They have some structure, but do not have enough organization to
satisfy the criteria of a structured database.

Since the majority of digital textual data resides in an unstructured format, text
mining is a very valuable practice in organisations, since, by processing the data,
making it structured and deriving information from it, it improves the decision-
making process of the companies, leading to better business results.

2.2 Sentiment Analysis
Sentiment Analysis (SA) is a fields of Natural Language Processing, which is
concerned with building programs for the exploration and extraction of subjective
opinions or sentiments gathered from written sources on a certain topic.
The objectives of Sentiment Analysis may stop at exploratory analysis of users’
opinions, but often the information and opinions extracted are used to the advan-
tage of some business or public interest operation, such as some aspect of city
management. The algorithms of SA study the text in depth and find the basic
concepts that indicate the attitude towards a certain product or service. Thus,
Sentiment Analysis is an occasion to study the psychology of the public, investigate
the article from the point of view of interest and understanding the market.
For example, Sentiment Analysis is used for activities as market research, public
relations, product reviews, reputation management, customer service, product
feedback and so on [14, 15, 16, 17, 18, 19, 20].
From a more technical point of view, Sentiment Analysis is a classification algorithm
aimed at finding an opinion and information of particular interest in the process.
Taking a step back, the classification process aims to define a model of a collection
of classes, called classifier, which is constructed from a set of labelled data, called
training set. The classifier is subsequently employed to properly classify new data
for which the class label is unknown. Sentiment Analysis, in particular, is a clas-
sification algorithm that aims to label a new review as belonging to the positive,
negative or neutral class.
It is composed from the following tasks: (i) finding and extracting opinion data on
a given platform; (ii) assessing polarity (positive or negative) of data; (iii) define
the topic (what is being talked about); (iv) determine the owner of the opinion.

Moreover, this algorithm could be used at different levels:

• Document level: for the whole text;

7

Theoretical background

• Sentence level: retrieves the sentiment of a phrase;

• Sub-sentence level: gets the sentiment of sub-expressions in a phrase.

Since the SA deals with opinions, they are subjective, so extracting them is often
complicated. Indeed, opinions are diverse and some are more valuable than others.
Opinions have therefore been divided into subcategories:

• Direct opinion: directly states something and express a legitimate argument.

• Comparative opinion: here two products are compared on the basis of certain
parameters. It is both an opinion of the product and also serves as a competitive
research.

• Explicit opinion: all is plainly stated.

• Implicit opinions: are implied but not distinctly declared.

2.2.1 Types of Sentiment Analysis
Sentiment Analysis is divided into several types:

• Fine-grained Sentiment Analysis: it means determining the polarity of opinion.
This can be a simple binary differentiation of sentiment in positive and negative
classes, or it can also be a multi class differentiation, becoming more specific
(e.g. as in Amazon reviews with 5 levels) [21].

• Emotion detection: it is used to identify cues to certain emotional moods.
Typically, there is a mixture of lexicons and machine learning algorithms that
identify states and the motivations [22], [23].

• Aspect-based Sentiment Analysis: its objective is to detect an opinion on a
particular piece of the product. It is generally used in product analytics to
monitor how the product is felt and what its strengths and weaknesses are
from the user’s point of view [24], [25], [26].

• Intent analysis: its aim is to assess what type of intention and action is
manifested in the text of a message. It is widely used in client support systems
to optimise the job [27], [28].

2.2.2 Sentiment Analysis algorithms
After finding the dataset and pre-processing the text appropriately, the next step
is to decide on the algorithm model to identify the sentiment underlying the text.
The model chosen will depend on several factors, for example the amount of data

8

Theoretical background

to process, the precision needed for a certain purpose, or whether one wants an
interpretable model or not.
Speaking broadly, sentiment analysis algorithms can be classified into two categories:
Rule-based or lexicon-based approach and Machine Learning approach.

2.2.3 Rule-based or lexicon-based approach
This approach is based on manually created rules for classifying data to identify
sentiment. This method uses dictionaries of words with positive or negative val-
ues to denote their polarity and strength of feeling to compute a score. Further
functionality can be provided by incorporating expressions. This kind of sentiment
analysis algorithms can be tailored to the context, developing more intelligent rules.

Functioning: There are two lists of words. One contains only positive words, the
other contains negative words. It counts the number of positive and negative words
in the text. If the number of negative words is greater than the number of positive
words, it will give a positive sentiment, or vice-versa. If the two numbers are equal,
it will result in a neutral sentiment.

Disadvantages: The disadvantage of this approach is that it does not take
into consideration how words are combined in a phrase and the context, it only
looks at occurrences, it lacks in flexibility and precision.
It is quick to implement, but then comes at an additional cost in that it needs
regular maintenance in order to achieve consistent and better results.
This approach can be used for non-specific purposes to determine the tone of texts,
which can be useful for client support.
Furthermore, rule-based Sentiment Analysis is commonly used to lay the founda-
tions for the subsequent implementation of machine learning approaches.

In the following, the rule-based Sentiment Analysis algorithms used in this work
will be introduced and discussed more in detail.

Vader
VADER (Valence Aware Dictionary and sEntiment Reasoner) [29] is a lexicon
and rule-based Sentiment Analysis instrument which works particularly well with
sentiments expressed in social media.
This will be used as a comparison and baseline in this work, as in this thesis we
will use an associative classifier which classifies by means of rules derived from data
collected from reviews expressed on a platform.
Vader is a model that is sensible to both the polarity (positive/negative) and
intensity (strength) of the feeling. It is provided in the Natural Language Toolkit

9

Theoretical background

(NLTK) [30] package and can be applied directly to the text and also to unlabelled
data.
VADER’s Sentiment Analysis is based on a dictionary that maps lexical features
of words to the intensities of feelings. These are called sentiment scores and the
sentiment score of a complete text can be calculated by adding up the intensity of
each word in the text.
In addition to assessing the sentiment of individual words, VADER is smart enough
to understand the context of these words, such as the presence of a not that creates
a negative affirmation. It also comprehends the significance of capitalisation and
punctuation.
Vader’s objectives are: (i) classify sentence polarity (i.e. whether the text expresses
a positive, negative or neutral opinion), (ii) document-level scope (i.e. assess the
overall opinion by aggregating all sentences in a document), (iii) coarse analysis
(i.e. figure out if the review is negative or positive without trying to figure out the
degree of positivity or negativity).

Let us take a closer look at how Vader’s classification of sentence polarities works.
Vader uses the library SentimentIntensityAnalyzer imported from NLTK in order
to carry out the classification.
VADER’s SentimentIntensityAnalyzer() takes in input a string and, by using the
function polarity_scores, returns a dictionary of scores for four categories:

• negative: the score for this category is referred as neg and denotes the score
for the negative category for that sentence, it ranges from 0 to 1.

• neutral: the score for this category is referred as neu and denotes the score
for the neutral category for that sentence, it ranges from 0 to 1.

• positive: the score for this category is referred as pos and denotes the score
for the positive category for that sentence, it ranges from 0 to 1.

• compound: this score is calculated by summing the valence scores of each
word in the lexicon and then by normalizing to be between -1, that indicates
the most negative, and +1, that indicates the most positive.
This metric is very useful when it is required a unique measure of sentiment
for a phrase.
Moreover, it is used when thresholds are to be set to classify sentences as
positive, neutral or negative.
Common threshold levels are:

– negative sentiment: compound ≤ −0.05
– positive sentiment: compound ≥ 0.05

10

Theoretical background

– neutral sentiment: (compound > −0.05) and (compound < 0.05)

The compound sentiment, in general, is the most commonly used.

Note that the pos, neu and neg scores are ratios for the proportions of text that
fall into each category, i.e. they should all add up to be 1.
These three metrics are useful for investigating the context and the way in which
sentiment is communicated in a sentence.
For example, some writing styles may reflect a penchant for rhetoric heavily skewed
in positive and negative sentiments (at different points in the same text), while
other styles may use a large amount of neutral text and ultimately both types
of writing will deliver a similar overall compound sentiment. So, using only the
compound metric, such differences can’t be identified.

The application of the function polarity_scores produces results of the type shown
in the following example of output:

VADER is smart, handsome, and funny.—— ’pos’: 0.746, ’compound’: 0.8316,
’neu’: 0.254, ’neg’: 0.0
VADER is smart, handsome, and funny!—— ’pos’: 0.752, ’compound’: 0.8439,
’neu’: 0.248, ’neg’: 0.0
VADER is VERY SMART, handsome, and FUNNY.—— ’pos’: 0.754, ’compound’:
0.9227, ’neu’: 0.246, ’neg’: 0.0
VADER is VERY SMART, handsome, and FUNNY!!! ——’pos’: 0.767, ’com-
pound’: 0.9342, ’neu’: 0.233, ’neg’: 0.0
VADER is not smart, handsome, nor funny.—— ’pos’: 0.0, ’compound’: -0.7424,
’neu’: 0.354, ’neg’: 0.646
At least it isn’t a horrible book.—— ’pos’: 0.363, ’compound’: 0.431, ’neu’: 0.637,
’neg’: 0.0

2.2.4 Machine Learning approach
These Sentiment Analysis models use Machine Learning to understand the latent
concept of affirmations, instead of using defined rules. With this type of algorithms,
the accuracy of the analysis generally improves. This approach involves mainly the
use of supervised machine learning algorithms.
These algorithms are trained with a lot training data until they can accurately
predict the sentiment of the text. At this point new data are given to the classifier,
which predicts the sentiment of the new data generally as negative, neutral or
positive.
Additionally, unsupervised machine learning algorithms are used to explore the

11

Theoretical background

data.

Machine learning approach with traditional models
Traditional models are predominantly used to establish text polarity. They are
simpler and faster than deep learning models, but are less accurate.
The traditional machine learning methods mainly used are Naïve Bayes [31], Logis-
tic Regression [32] and Support Vector Machines (SVM) [33].
They are widely used for large-scale sentiment analysis because they are capable of
scaling to varying numbers of data.

One of these approaches, the Support Vector Machine (SVM), will now be discussed
in more detail, as it is one of the most powerful algorithms in traditional machine
learning and thus also in the field of NLP. Furthermore, it will later be used in this
work as a baseline and a term of comparison for the new models implemented in
this thesis.
Subsequently, the L3 classifier, the method mainly used in this thesis, will be
discussed.

Support Vector Machines (SVM)
Support-vector machines are ones of the most robust and most important super-
vised learning models to analyse data.
Given a set of training examples, each marked as belonging to one of two categories,
an SVM training algorithm builds a model that assigns new examples to one
category or the other.
More in detail, support-vector machine constructs a hyperplane in a high - or
infinite - dimensional space that is used to classify new data depending on which
side of the hyperplane they fall. Intuitively, a good separation is achieved by the
hyperplane that has the largest distance to the nearest training-data point of any
class, since, in general, the larger the margin, the lower the generalization error of
the classifier is. So, in plain words, SVM try to find the plane in such a way to
maximize the width of the gap between the two categories.

For what concerns the linear SVM, we are given a training dataset of n points of
the form: (x1, y1), ..., (xn, yn) where the yi are either 1 or − 1 label and xi is a real
vector of data of size p.
In general, if our data can be perfectly separated using a hyperplane, then there
will exist an infinite number of such hyperplanes. This is because a separating
hyperplane can usually be rotated or shifted up or down, without coming into
contact with any of the observations.
So, in this case, where the training data are linearly separable, we want to find the

12

Theoretical background

hyperplane with maximum margin that separate the two classes of data, so that
the distance between them is as large as possible. The margin is defined as the dis-
tance between the closer point of the training set and a given separating hyperplane.

By analysing the problem from a mathematical point of view, we can write the
equation of a general hyperplane as: < w, x > +b = 0 . Where x are the set of
points in the space, w is the normal vector to the hyperplane and b is a costant.
After some reasoning and mathematical calculation, the final optimisation problem
for the linear SVM with hard margin is reached. This is expressed with the following
equation: (w, b) = argmin(w,b)

1
2 ||w||2 s.t. yi(< w, xi > +b) ≥ 1.

The final solution obtained is: w = q
i αiyixi.

So the solution, that defines the hyperplane, is a weigthed linear combination of
the points of the two classes that lie on the margins, because for other points α = 0.
Those vectors are called support vectors, because they are the only vectors that
support and define the decision function.

It is important to point out that there are other formulations of the SVM al-
gorithm. There are Soft-Margin SVM and the Kernel SVM.
The Soft-Margin SVM is applied when the data are not perfectly linearly separable.
It is a relaxation of the hard-SVM rule, discussed above, that can be applied if the
training set is not perfectly linearly separable.
A natural relaxation is to allow the constraint to be violated for some of the
examples in the training set, by keeping margin as wide as possible at the same
time, so that other points can still be classified correctly.
This can be modeled by introducing non-negative slack variables ξi > 0, and replac-
ing each constraint yi(< w, xi > +b) ≥ 1 by the constraint yi(< w, xi > +b) ≥ 1 -
ξi. It’s obtained an optimization problem and a solution similar to the hard-SVM
rule.

The Kernel-SVM is applied when the data are not linearly separable at all.
A solution is to create nonlinear classifiers by applying the Kernel trick.
Specifically, in order to separate the data not linearly separable with the standard
SVM, and so with a linear hyperplane, the data are mapped into a new feature
space F with higher dimension and here the samples result linearly separable.
The Kernel trick avoids this explicit mapping and computation to an high dimen-
sional space, that could be computationally expensive. Indeed, applying a kernel,
is like implement a mapping function Φ that move the inner product in a higher
dimension space F. The kernel can be defined as K(x, x′) =< Φ(x), Φ(x′) >.
The kernel can be easily applied and is very useful since can be shown that both
the Decision Rule and Optimization Problem depend only on the dot product of
the samples. Then the resulting algorithm is similar to the standard one, except

13

Theoretical background

that every dot product is replaced by this nonlinear kernel function.
This allows the algorithm to fit the maximum-margin hyperplane in a transformed
feature space. So, the classifier is a hyperplane in the transformed feature space,
while it may be nonlinear in the original input space.

L3 classifier
L3 is an associative classifier, that is an algorithm that produces association rules,
that are a valuable tool for classification tasks. In this context, the rule consequent
is a class label, and the classifier is a set of association rules.
Since association rules represent the correlation among values of different attributes
simultaneously, in general, associative classifiers yield better accuracy than other
rule-based classifiers.
The generation of an associative classifier consists of two steps. First, classification
rules are extracted from the training data. Then, pruning techniques are applied
to select a small subset of high-quality rules.
Usually, a large rule set is mined to allow the generation of accurate classifiers.
However, rule mining may yield a huge number of classification rules. Rule ex-
traction becomes difficult (or at least time consuming), and it becomes hard to
optimally exploit the generated rules. Hence, pruning techniques, are exploited to
reduce the complexity of the extraction task.
Excessive rule pruning affects associative classifiers, by discarding also useful knowl-
edge together with low-quality rules, so pruning should be limited to a minimum.
To address both an excessive rule set size and overpruning, L3 algorithm is a new
associative classifier that relies on a lazy pruning approach coupled with a compact
representation of the rule set. L3 stands for Live and Let Live, i.e. pruning only
takes place when strictly necessary. The lazy pruning technique performs a reduced
amount of pruning by eliminating only rules that only misclassify training data.
During classification, L3 adopts a two-step approach in which high-quality rules
(rules used in the classification of training data) are considered first, and unchecked
rules (rules unused during the training phase) are used next to classify unlabeled
data, when them cannot be classified by means of the first type of rules.
Moreover, the compact form proposed in the work of L3 represents a rule set
without information loss and allows the regeneration of the complete rule set. This
form allows reaching very low support thresholds and mining large rule sets. Rule
compression provides a space-effective representation of these large rule sets in the
classifier.

In the L3 associative classifiers, the data of interest for classification are rep-
resented as a single relation D, whose schema is given by k distinct attributes and

14

Theoretical background

a class attribute C.
A training data instance is a tuple in D where the class label is known, whereas a
test data instance is a tuple in D where the class label is unknown. Each tuple in
D is a set of pairs (attribute, integer value) plus a class label, each pair is called
item. Each tuple is a transaction in D, characterized by a transaction ID (tid).
Association rules are rules in the form X → Y , where both X and Y are sets of
items. A rule X → Y is said to match a tuple d ∈ D when X ⊆ d. The quality
of an association rule is usually measured by two indexes: its support, given by
the number of tuples matching X ∪ Y over the number of tuples in D, and its
confidence, given by the number of tuples matching X ∪ Y over the number of
tuples matching X. When association rules are used for classification purposes,
Y is a class label. In associative classification, the chi-square (χ2) test has been
proposed, to select rules whose antecedent and consequent are positively correlated.
An associative classifier is built by selecting a set of high-quality association rules for
its model. The usual approach is the extraction of a large number of classification
rules from which high-quality rules are selected during a post-processing phase
called rule pruning. The approach proposed in the paper of L3, is the lazy pruning,
in which only a much reduced amount of pruning is performed.
Given a classification rule set R, by means of lazy pruning, rules in R are partitioned
in three subsets:

1. Used rules. These are rules that have already correctly classified at least
one training data instance.

2. Spare rules. These are rules that have not been used during the training
phase to cover any training data, but may become useful to classify (test)
data not classified by used rules.

3. Harmful rules. These are rules that only wrongly classify training data.
These rules are pruned, since they do not contribute in increasing classification
accuracy.

The used rule set provides a high-level model of the training data including a set
of rules abstracting the most relevant characteristics of each class. Since used rules
represent the most frequent characteristics of each class, some slight variations,
possibly less frequent, might not be covered by this model. The spare rule set
allows the classifier to cover a wider range of (test) data. This rule set may include
a large number of rules, and appropriate compression techniques are proposed to
store this information. The used and spare rule sets are combined to create a
two-level classifier.
Classification occurs in two steps. Initially, used rules are considered. If no rule
classifies the new data, then spare rules are considered for classification. The avail-
ability of a large number of rules is important to allow the selection of high-quality

15

Theoretical background

rules for the generation of an accurate classifier. However, is necessary to limit
the complexity of the extraction task and the size of the resulting rule set. In this
work, is proposed a compact form to represent rule sets with similar characteristics.

Compact rule set representation
This work proposes a compact form that provides a concise and complete represen-
tation of a set of classification rules.
The compression performed is lossless and the original rule set can always be
regenerated from the compact form. This important property was not guaranteed
by the compact forms proposed previously.
The proposed compact form is based on the concept of a compact rule. A compact
rule encodes a set of rules labelled by the same class label, and characterised by
the same value of measures of interest such as support, confidence and χ2.

Correlated items are items that are contained in the same set of transactions.
A set of correlated items is represented by the concept of macroitems. Replacing
each set of correlated items in the data set D with the corresponding macroitem,
we obtain an alternative representation of D, the macrodata set associated to D,
which will be referred to as D̄ in the following. D and D̄ include the same set of
transactions.

A closed itemset is the maximal set of items common to a set of transactions.
Closed itemsets have been described by means of the Galois closure operator γ.
The closure of an itemset X was defined by means of the operator γ as the itemset
γ(X). X and γ(X) are in the same transactions and therefore have the same
support. X is a closed itemset if γ(X) = X.
Among the itemset represented in a closed itemset X, the shortest are called
generators of X, and are denoted as G.
A closed itemset can have several generators. Macrogenerator and macroclosed
itemsets are obtained by considering macroitems in D̄ instead of items in D. These
concepts are exploited to define the structure of a compact rule.

Definition 1 (Compact rule). Let S̄ be an arbitrary macroclosed itemset,
Ḡ be an arbitrary macrogenerator itemset of S̄, and c be an arbitrary class label
in D̄. r̄ :< Ḡ; S̄ >→ c is a compact rule.
A compact rule in D̄ represents a set of classification rules in D.

Definition 2. Let r : X → ci be an arbitrary rule in D and r̄ :< Ḡ, S̄ >→ cj be an
arbitrary compact rule in D̄. r is encoded in r̄ if 1) ci = cj , 2)∀α ∈ Ḡ, ∃i ∈ X|i ∈ α,
and 3) ∀i ∈ X, ∃α ∈ S̄|i ∈ α.

16

Theoretical background

The longest rule encoded in a compact rule r̄ :< Ḡ, S̄ >→ c is the rule whose
antecedent contains all the items in S̄.
This rule will be denoted as rl. Instead, the shortest rules represented in r̄ are the
rules whose antecedent contains one single item for each macroitem in Ḡ.

Theorem 1. Let r̄ :< Ḡ, S̄ >→ c be an arbitrary compact rule in D̄ and
r : X → c be an arbitrary rule in D, encoded in r̄. Then, X, Ḡ, and S̄ have the
same tidset.

To build the classification model, rules are selected by means of the support,
confidence, and χ2 quality indexes.
The next property states that rules encoded in the same compact rule have the
same values for all these quality indexes. Furthermore, they cover the same training
data.
Property 2. Let r̄ :< Ḡ, S̄ >→ c be an arbitrary compact rule in D̄ and ri : X → c
and rj : Y → c be two arbitrary rules in D encoded in r̄. Then, 1) sup(X) = sup(Y),
2) sup(ri) = sup(rj), and 3) ri and rj cover the same data in D.
Hence, two rules that satisfy Property 2 have the same contingency table and, thus,
the same χ2 value.

Property 3. Let r̄ :< Ḡ, S̄ >→ c be an arbitrary compact rule in D̄ and
ri : X → c and rj : Y → c be two arbitrary rules in D encoded in r̄. Then,
γ(X) = γ(Y).

Property 4. Let r̄ :< Ḡ, S̄ >→ c be an arbitrary compact rule in D̄ and
r : X → c be an arbitrary rule in D, encoded in r̄. Then, 1) X is a closed itemset
iff it includes all items in S̄, and 2) X is a generator itemset iff it includes only one
item for each macroitem in Ḡ.

Theorem 5. Let R be the rule set in D that satisfies the given support, confidence,
and χ2 constraints and R̄ be the compact rule set in D̄ that satisfies the same
constraints. R̄ is a complete representation of R.
So, with this representation, compact rules contain all information needed to gener-
ate all rules encoded in them. Hence, it is always possible to regenerate R from R̄.

The L3
Gen mining algorithm

The L3
Gen algorithm mines the compact representation R̄ of rule set R. It performs a

recursive projection of macrodata set D̄ with respect to its macroitems. We denote
as projection sequence the set Ḡ of macroitems used for the recursive projection
of D̄ and projected data set the resulting data set D̄Ḡ. This data set includes the

17

Theoretical background

transactions in D̄ that contain the macroitems in Ḡ.
Macroitems in D̄ are first sorted on support and lexicographically. Next, they are
considered in increasing order.
At each recursion level, L3

Gen analyzes the projected data set D̄Ḡ and performs five
main operations, briefly described in the following.

Macroitem merging. The projection process preserves item correlation. Further-
more, new correlations between items may arise in D̄Ḡ, because of the reduced set
of transactions included in it. Hence, correlations are recomputed after projection,
and newly correlated items are merged together into new macroitems. By exploiting
this property, the solution set is further compressed and the complexity of the
extraction process is reduced.

Set S̄ updating. Set S̄ contains macroitems in Ḡ. It also contains macroitems
included in all transactions in D̄Ḡ, which are removed from D̄Ḡ. When projecting
D̄Ḡ with respect to one of these macroitems, the new projection sequence Ḡ

′ ⊃ Ḡ
has the same tidset as Ḡ.

Compact rule mining. L3
Gen analyzes D̄Ḡ to mine the compact rules that satisfy

the support, confidence, and χ2 constraints. Each rule has the pair < Ḡ, S̄ > as
antecedent and is labeled by a class label in D̄Ḡ.

Support-based pruning. A macroitem is pruned when, for all classes in D̄Ḡ, its
frequency is below the support threshold.

Data set projection. At each recursion step, data set D̄Ḡ is further projected
with respect to its macroitems. Each macroitem, once used for projecting D̄Ḡ, is
removed from D̄Ḡ.

L3
Gen mines a complete and lossless representation of rule set R.

The compact rule set mined by L3
Gen encodes all rules in R with generator itemsets

as antecedents. To encode all other rules in R, L3
Gen collects in set S̄ the macroitems

that belong to all transactions in D̄Ḡ. By the properties of closed itemsets, S̄ is
the macroclosed itemset for set Ḡ.
To avoid generating the same projection sequence multiple times, L3

Gen discards
macroitems used to project D̄Ḡ. As a consequence, the classification rules encoded
by the compact rules in R̄ are disjoint sets.
To implement the algorithm, they adopted a prefix-based tree structure and an
item-based projection algorithm similar to FP-growth.

18

Theoretical background

Classification model generation
The generation of the classification model is performed in two steps:

1. Classification rule extraction. Since the support is not a good quality
index for rule selection, in this work they exploit their compact representation
to perform rule extraction with very low support thresholds. This yields a wide
selection of rules from which high-quality rules are selected in the following
step.

2. Classification rule pruning. Several techniques are applied to the extracted
rule set to select the most appropriate rules to include in the classification
model. A rule-rich classification model provides useful knowledge for the
classification of a wide range of test data. Hence, in L3, only a reduced
amount of pruning is performed. In particular, a confidence threshold and a
χ2 test are enforced. Then, lazy pruning is performed.

Before applying lazy pruning, rules below a 50 percent confidence threshold are
pruned. Also, rules with a χ2 value lower than a fixed threshold (3.84 at 95 percent
significance level) are pruned. Since by Property 2 all rules encoded in a compact
rule have the same confidence and χ2 values, both pruning techniques can be
directly applied on compact rules.

Lazy pruning
The main idea behind lazy pruning is to perform a mild pruning of the extracted
rule set. Only rules that exclusively misclassify training data, denoted as harmful
rules, are discarded from the model. The remaining rules are partitioned in two
sets: 1) a small set of rules, denoted as used rules, which correctly classify at least
one training data, and 2) a large set of rules, denoted as spare rules, which have
not been used to perform classification during the training phase.
During classification, used rules are considered first. If no used rule classifies a given
unlabeled data, then spare rules are exploited for classification. Hence, spare rules
provide additional knowledge, which allows the classification of more unlabeled
data and thus improves the quality of the classifier. The used rule set, which is
characterized by a small number of high-quality rules, provides a general class
model.
Lazy pruning is based on the database coverage technique, a pruning technique
that selects the minimal number of rules necessary to cover each training data. As
the first step, a sort order based on confidence, support, and rule length is imposed
on rule set R.
Definition 3 (Rule rank). Let ri and rj be two arbitrary rules in R. Then, ri

precedes rj if

1. conf(ri) > conf(rj), or

19

Theoretical background

2. conf(ri) = conf(rj), and sup(ri) > sup(rj), or

3. conf(ri) = conf(rj), and sup(ri) = sup(rj), and len(ri) > len(rj) or

4. conf(ri) = conf(rj), and sup(ri) = sup(rj), len(ri) = len(rj), and lex(ri) >
lex(rj),

where len(r) denotes the number of items in r, and lex(r) denotes the position of
r in the lexicographic order on items.
The longest one (specialistic rule) is preferred to the shortest one (general rule).
A specialistic rule covers the same training data but includes more constraints.
Hence, it is considered more accurate. Since general rules are not pruned, they will
be considered on any data not matched by specialistic rules.
Lazy pruning considers rules in set R one by one in sort order. For each rule r,
all training data in D covered by it are selected. Rule r is included in the used
rule set if it correctly classifies at least one data. All data in D matched by r
are not considered further. Instead, rule r is pruned if it only performs wrong
classifications.
The process continues until either all training data has been covered or all rules
in R have been analyzed. All rules in R that have not been considered in this
phase are included in the spare rule set. The used and spare rule sets are exploited
to generate a two-level classifier. In particular, used rules are assigned to Level
I, and spare rules are included in Level II. Harmful rules are pruned and do not
contribute to the classifier.
In L3, set R is represented by its corresponding compact rule set R̄. In the following,
it is described how lazy pruning is efficiently performed directly on compact rules,
without decompressing them.
Lazy Pruning and Compact Rules. It is first introduced the concept of compact
rule matching. Matching occurs when any rule represented in the compact rule
matches the considered data instance.
Lazy pruning is performed without extracting all rules included in a compact rule.
Instead, only the longest rule rl is considered. When rl 1) correctly classifies at
least one training data or 2) does not classify any training data, by considering
only rl, it is possible to assign all rules in r̄ to the appropriate level. Hence, this
property significantly increases the efficiency of the pruning step. The next theorem
proves it.
Theorem 6. Let r̄ :< Ḡ, S̄ >→ c be an arbitrary compact rule in D̄. Let ri denote
an arbitrary rule in r̄ and rl be the longest rule in r̄. Then,

1. If rl correctly classifies at least one training data (that is, rl is a used rule),
then ∀ri ∈ r̄, ri /= rl, ri does not match any training data (that is, ri is a spare
rule).

20

Theoretical background

2. If rl does not match any training data (that is, rl is a spare rule), then
∀ri ∈ r̄, ri /= rl, ri does not match any training data (that is, ri is a spare rule).

Given a compact rule r̄, by Theorem 6.1, when rl is a used rule, it is included in
Level I, and the compact rule encoding it is included in Level II. On the other
hand, by Theorem 6.2, when rl is a spare rule, the compact rule encoding it is
included in Level II.
Consider now the case in which rl only wrongly classifies training data, that is, it
is a harmful rule. Lazy pruning should discard rl without affecting the training
set. By Property 2, all rules in r̄ cover the same training data. Hence, all other
rules in r̄ are also potentially harmful, that is, candidates to be pruned. For the
sake of efficiency, when rl is a harmful rule, we consider all rules in r̄ to be not
accurate, and we prune r̄. The pseudocode in the figure 2.1 shows how lazy pruning
is implemented in L3. The compact rule set R̄ and the training data set D are
input parameters. Since only the longest rule in each compact rule is considered,
set R̄ is sorted by considering these rules (line 1). The longest rule rl is extracted
from the first compact rule in the sort order (lines 3-4). For each training data
d matched by rl (lines 5- 11), its correct or wrong classification is recorded. If rl

covers correctly at least one data, it is included in Level I, and its compact rule r̄
is included in Level II (Theorem 6.1). Then, all data (both correctly and wrongly)
covered by rl are removed from D (lines 12-16). Hence, each data is removed once
covered by a rule that correctly classifies at least one data. If rule rl does not
match any data, by Theorem 6.2 r̄ is included in Level II (lines 17-18). If rl only
misclassifies data, r̄ is pruned. The outer loop (lines 2-20) is repeated until either
R̄ or D is empty. All the compact rules in r̄ that were not analyzed because D
became empty are included in Level II (line 21).

Classification
To classify an unlabeled data d, Level I is first considered. The first rule that
matches d labels it. If no rule in Level I matches d, then Level II is considered.
The first matching rule in Level II classifies d. If no rule matches d, d is not labeled.
Since Level II includes compact rules, the search of the first matching rule is slightly
more complex in Level II than in Level I.
Given an arbitrary compact rule r̄, all the rules encoded in it cover the same
training data but not necessarily the same test data. Hence, different from the
training phase, during the classification phase, the longest rule in r̄ matching d
may be different from the longest rule rl in r̄. Thus, all rules encoded in r̄ should
be considered and not only rule rl. However, it is possible to extract from r̄ the
longest rule matching d without extracting all rules.
Definition 5. Let d be an arbitrary data instance and r̄ :< Ḡ, S̄ >→ c be an
arbitrary compact rule in D̄ matching d. Let r : X → c be an arbitrary rule in r̄.
r is the longest rule matching d if ∀α ∈ S̄ and ∀i ∈ α, when i ∈ d, then i ∈ X.

21

Theoretical background

Figure 2.1: L3 classifier generation.

Compact rules in Level II are sorted by considering the longest encoded rule
rl and according to the sort order in Definition 3. Then, the first compact rule
r̄ matching d is selected. In particular, the longest rule ri ∈ r̄ matching d is
considered. Two cases are given:

1. ri = rl. So, all compact rules r̄
′ that follow r̄ encode rules rj with a lower

rank than ri, Thus, the data instance d is labeled by ri.

2. ri /= rl. In this case, there might be a compact rule r̄
′ following r̄ in the sort

order, which has the same support and confidence and encodes a rule rj longer
than ri and matching d. Thus, all the compact rules with the same confidence
and support as r̄ should be considered. The longest matching rules encoded
in them are extracted. The rule with the highest rank labels d.

22

Theoretical background

Compact rule matching can be performed efficiently. At most one scan of all the
items included in a rule is performed to check which items are included in d. During
the scan, matching items are stored. Hence, at the end of the matching process, the
longest matching rule ri encoded in the compact rule r̄ is immediately available.

Machine Learning approach with Deep Learning models
In general deep learning models give more accurate results than traditional models.
For NLP tasks, such the Sentiment Analysis, deep learning is able to learn patterns
across lot of layers from unstructured and unlabelled or labelled data. However,
deep learning tends to need more data and is less scalable than traditional algo-
rithms.
Some of the most popular deep learning models are neural networks such as CNN
(Convoluted Neural Network), RNN (Recurrent Neural Network) and DNN (Deep
Neural Network).

In general, the most common models of machine learning used for Sentiment
Analysis classification algorithms are Naïve Bayes, SVM and Deep Learning, in
particular RNNs.

Finally, there are also hybrid models for Sentiment Analysis [34]. They are a
combination of rule-based and automatic models and in some circumstances man-
age to achieve the advantages of both approaches described above. If they are
well developed, they offer the power of machine learning combined with rule cus-
tomisation. Hybrid models are the newest and most efficient models in Sentiment
Analysis and are nowadays a very popular approach in this field.

2.3 Topic Modeling
Topic modeling is an unsupervised machine learning and Natural Language Process-
ing technique that is able to scan a set of documents, discover patterns of words and
phrases, and group together similar words that best represent a set of documents.
In other words, a topic model is a type of statistical model for discovering abstract
topics occurring in a set of documents, hidden semantic structures in a text and
what the balance of topics is in each document.
The topics generated by topic modelling methods are sets of similar words.
Since a document deals with some particular topics, it is expected that specific and
correlated words will occur in the document more frequently, indeed a document
usually deals with multiple topics in different proportions.
These models are also called probabilistic topic models, as they use statistical

23

Theoretical background

algorithms to discover the latent semantic structures of a text.
Topic models can help organise and can provide an intuition for comprehending
huge collections of unstructured text data, that a human being could not process.
By detecting patterns such as word frequency and distance between words, a topic
model groups together similar feedback, and underlines the words that appear most
often. With this knowledge, it is possible to rapidly infer what each collection of
texts is about.
Topic models, in general, have been used as a text-mining tool and also in order to
detect informative structures in data like genetic information, images and networks.
So they also have applications in areas such as bioinformatics and computer vision
[35, 36, 37].
As topic modeling needs no training, it is a fast and easy way to start analysing
data. However, there is no guarantee that the outcome will be accurate.

General Functioning
In general, Topic Modeling is a process that separates a corpus of documents into
two parts:

1. A list of the topics addressed by the data in the corpus;

2. Different sets of documents of the corpus clustered according to the topics
covered.

Each document involves a statistical distribution of topics that can be obtained
by combining all the distributions for all the topics. Topic modeling methods try
to understand which topics are present in each document and how strong and
probable this presence is.

In the next section, will be explored how one of the most popular methods of
topic modeling works, namely Latent Dirichlet Allocation (LDA) [38], which will
be used later in this thesis.

2.3.1 Latent Dirichlet Allocation (LDA)
The aim of topic modeling, and so of LDA, is to automatically discover the topics
from a set of documents. LDA is based on the concept that the documents can be
observed, while the topic composition and distribution are hidden. Thus, the goal
is reached by using these observed documents to infer the hidden parameters.
LDA is a statistical and unsupervised model that is based on the intuition that
documents have multiple topics.
An important premise to make is that in LDA documents are treated as Bags of
Words, i.e. the order of documents and the order of words in documents do not

24

Theoretical background

matter.
It is characterised by its generative process, i.e. the basic assumption from which
the LDA process starts is that the way a document was generated was to choose a
set of topics and then for each topic to choose a set of words. This is an idealistic
random process from which the model assumes that documents are generated.
LDA, in order to find the topics, reverse engineers this process.

Generative process
In order to describe at a high level the generative process underlying LDA, the
following is assumed.
It is supposed that there are a certain number k of topics. Each document in the
collection is represented as a mixture of topics and each topic βk is represented as
a probability distribution over the words in the vocabulary.
The generative process of LDA is described by the following pseudocode:

Figure 2.2: LDA process pseudocode

The topic distributions for the d-th document are denoted as θd, where θd,k is
the topic distribution for topic k in document d, that are the probabilities that a
document d belongs to a certain topic k: documents are seen as a distribution over
the latent topics. This distribution is described by the Dirichlet distribution.
Then, for each word, the topic assignments for the d-th document are denoted as
zd, where zd,n is the topic assignment for the n-th word in document d.
Finally, the observed words for document d are denoted as wd, where wd,n is the
n-th word in document d, which is an element from the fixed vocabulary and is
extracted from a distribution that depends on the probability distribution of the
words in the topic sampled.
This document generating process has to be repeated for all the documents belong-
ing to the corpus.

25

Theoretical background

Probabilistic Graphical model representation
Another way to describe LDA is with a graphic representation and in particular
with a probabilistic graphical model, that is a technique that provides a graphical
language for describing families of probability distributions.
In particular, with the plate notation, which is often used to represent probabilistic
graphical models, dependencies between the variables can be caught in a concise
manner.

Figure 2.3: Graphical model representation of LDA

Each node in the figure 2.3 is a random variable and is labelled in relation to its
role in the generative process. Rectangles denote the plate notation, which is used
to encode the replication of variables.
There are three different levels in the schema, that are: the corpus, the documents
and the terms.
The definitions of the variables are the following:

• M is the number of documents and the M plate denotes the collection of
documents;

• N is the number of words in a given document and the N plate denotes the
collection of words in the documents;

• α is the per-document topic distributions;

• β is the per-topic word distribution;

• θ is the topic distribution for document m;

• z is the topic for the n-th word in document m;

• w is the specific word.

26

Theoretical background

It can be seen that the variable w is in grey. This is because it is the only observable
variable in the system, while the others are hidden and are denoted in white.
Moreover, due to the presence of multiple levels, it can be noticed that z and w
are sampled for each n: this means that the topic is sampled for each word in the
document, and thus the same document can be characterized by several topics.
Instead, the variables θ are sampled one time per document and the variables α
and β are sampled once for the entire generation process.
It is precisely these last parameters that can be worked on by tuning them, in order
to modify the model and improve it, if necessary.
In particular, α is a matrix where each row is a document and each column is a
topic. A value in a cell represents the probability that document i contains topic j.
A symmetrical distribution would mean that each topic is uniformly distributed
in the document, vice versa for an asymmetrical distribution. This concept can
be used when one has a priori knowledge of how the topics are distributed, and
adjusts the α matrix accordingly, in order to achieve better performance.
Instead, β is a matrix where on the rows there are topics and on the columns there
are words. A value in a cell represents the probability that topic i contains word j.
Usually, the distribution of words throughout a topic is uniform. Therefore this
parameter can be used to favour certain topics and words if necessary.

27

Chapter 3

Methodology

3.1 Dataset used

Regarding the dataset used in this work, a long search and exploration was carried
out. The objective was to find information on sustainable mobility and in particular
to find information derived from the content freely produced by users. This was
done because it is believed that this content, which is derived from direct and
voluntary feedback from users, is more reflective of reality than surveys, official
statistics and traditional methods and provides an excellent and realistic source
of information that transmits users’ feelings about the mobility domain. This
information could be used by public administrations at a later stage to make
improvements taking into account both the sustainability of transport and the
opinion of users.
The dataset created in the work [2] by Serna, Soroa and Agerri was chosen in this
thesis to meet these aims. In the work [2], they exploited user-generated content
to obtain a high-precision Sentiment Analysis model in the transport domain, in
order to contribute to the analysis of transport sustainability. To develop such
a model, they semi-automatically generated an annotated corpus of opinions on
transport, which was then used to develop a classifier obtained through the fine-
tuning of a pre-trained deep learning model based on the Transformer architecture,
i.e. XLM-RoBERTa [39]. They also provide a transport classification score with
respect to the sustainability of the transport types mentioned in that dataset.
More specifically, for what concerns the dataset, there is a scarcity of valid corpora
for the field of transports. In order to overcome this lack, they provide a Gold-
standard Corpus (GSC) dataset for this field, by hand annotating 2000 reviews from
a User Generated Content (UGC) corpus of 117K comments written in English
retrieved from TripAdvisor. These reviews cover a range of transportation modes,
with varying degrees of sustainability, in a period between 2007 and 2020 and are

29

Methodology

about travelling in Croatia.
The authors carried out a search through the different sections, capturing, down-
loading and selecting reviews and their original evaluations from 1 to 5. These
sections cover public and private transport, such as electric trams, funiculars, ferries
and taxi boats, shuttle, cycling, walking, etc.
They then did a cleaning and pre-processing only of the sentences evaluated with 1
and 5 stars to produce the Gold Standard Corpuss, as these extreme cases may
be more reliable. They subsequently created the GSC with a manually labelled
polarity and then manually checked each sentence to detect the true positive and
negative polarity. They found many cases where the original TripAdvisor star
rating did not correspond to reality. The sentences whose sentiment was not clear
or which do not make sense after splitting the reviews into sentences were discarded.
Additionally, those phrases considered to be incorrectly classified are discarded
until a balanced dataset of 1000 positive and 1000 negative sentences was obtained.
In the paper, the authors also classify the types of transport in the dataset ac-
cording to sustainability principles. Based on some indicators, they have created
a transport classification in which the means of transport are sorted in order of
sustainability and they listed the transportation modes found in UGC based on
this classification.

3.2 Pre-processing phase
Before different machine learning techniques are applied, it is needed to start with
text pre-processing, that is the process of cleaning and transforming text data into
a usable format compatible with the algorithm that will be applied in the future.
The pre-processing is an essential phase in the field of NLP as it substantially
changes the results, since the quality of the data affects the capability of the model
to learn, and it also serves to explore the data and understand some critical issues.

Specifically in this work, after importing the dataset from the github reposi-
tory derived from the paper [2], it was read and collected in two lists: the first
representing the original text of the reviews, called X; the second containing the
labels, called Y .
At this point, some statistics on words and their frequency have been calculated
and they will be presented in the next chapter.
From now on, a text pre-processing phase was implemented, in order to clean the
data for the classification algorithms that will be used later.
This phase is carried out with the help of Natural Language Toolkit (NLTK) [30],
that is a suite of libraries and programs for building Python programs to work with

30

Methodology

natural language data.

The pre-processing steps involve the following techniques:

• Remove accent and errors:
The first pre-processing operation applied is aimed at removing accents from
words and errors in the text.
In general, for many cases, it might be better to remove the wrong characters
and accent. The wrong characters could be formatting errors or typoes.
Therefore, there is often no single, predefined way to do it, but it depends on
the specific situation and dataset.
In this work, the accent from the characters is removed by first performing
a normalisation through the unicodedata library, then an ascii encoding and
finally a utf-8 decoding.
It has also been noted that there are characters in the reviews that generate
formatting errors, producing meaningless characters in the dataset, that cannot
be interpreted in a correct way.
I tried to identify most of these characters manually and through visual
evaluation. It was noticed that most of the time they were apostrophes ("’").
So an attempt was made to locate them and replace them correctly with
apostrophes and thus obtain correct sentences and words.

• Remove special characters:
It is often better to remove special characters, such as brackets, punctuation
symbols, numbers, etc., from the text as they do not provide information
content.
It was done by using regular expressions, with the help of the library called re.

• Remove spaces:
often text data contain extra spaces that have to be removed. In this work, it
was done thanks to a function that removes extra spaces between words in
the text by using regular expressions, with the help of the library called re.

• Expand contraction:
often, some words have an abbreviated form, especially in the English language.
For example, the form don’t stands for do not, it’s stands for it is. Therefore,
in order to carry out a more accurate and correct analysis, it is advisable to
expand the contractions in the text data.
In this work, it was done using the library contraction.

• Tokenization:
is the procedure of breaking down the text provided in natural language
into the smallest unit of a sentence, called token. Punctuation marks, single

31

Methodology

words and numbers can be considered tokens. Thus, the body of text will be
converted into a list of tokens.
It is used the module of NLTK called tokenize, and in particular the word_tokenize()
method to split sentences into tokens of words, since punctuation, number
and other special characters have already been removed.
There exists also the sent_tokenize() method to split a document or paragraph
into sentences.

• To Lower Case:
upper and lower case characters are interpreted differently by the machine
and, consequently, so are words containing these characters. Therefore, it is
preferable to render the words in the same case, since in this way the model
interprets the words in the correct way.
In this work, all letters were converted to lower case by uniforming the
capitalisation.

• Stop-words removal:
Stop-words are words that do not have a strong meaning and usually refer
to the most common words in a language, e.g. and, the, a, is, they, etc.
These are important when are used to communicate in human language, but
for a program they are not very useful, since they do not carry specific and
distinctive information to determine the polarity of a text, also because they
are too common and evenly distributed in sentences, and are considered as
noise in the text.
Moreover, removing stopwords will save a huge amount of computing power
and therefore time, by not giving to a model texts with so many useless and
misleading words.
In order to deal with stopwords can be used different methods, for example
NLTK or Scikit-learn [40], which provide lists of stopwords. It is important
to notice that there is no universal list of stopwords because it can change
depending on the problem.
Specifically, stopwords imported from the Scikit-learn library have been used.
However, the word not has been removed from this list as it is considered
to be vehicle of information regarding the determination of sentiment, since
combined with other words in the sentence, it could overturn the final sentiment
of that sentence.

• Parts of Speech (PoS) tagging:
Part of speech (PoS) are the properties of words that define their function and
usage in a sentence. Some examples of PoS tags are: noun, verb, adjective,
and so on. The PoS is determined by the relationships of words in the phrase.
This method tags each token in the list of tokenized words, with a corresponding

32

Methodology

Parts of Speech identifier and thus generates tuples. After knowing the role of
each word in the phrase, it’s easier for the algorithm to understand what the
sentence is talking about.
It is executed via the pos_tag method imported from the NLTK library and
for each word, a tuple is produced as output, containing the word and its PoS
tag.

• Stemming:
is the process of reducing words to their roots. A word stem is not necessary
the same root as a dictionary-based morphological root, it is just an identical
or smaller form of the word.
When stemming words, sometimes the result is incorrect, as stemming works
on a rule-based basis, cutting suffixes in words following a given rule. This
can lead to errors: overstemming and understemming.
Overstemming happens when words are truncated excessively. In these cases,
the sense of the word may be distorted. Understemming occurs when two
different words are derived from the same root.
The NLTK library provides several stemmers such as PorterStemmer [41],
SnowballStemmer [42] and LancasterStemmer [43].
In this work it was used the PorterStemmer from the NLTK library.

• Lemmatization:
the last step of the pre-processing was the lemmatization. The purpose of
lemmatization is to reduce inflectional forms to a common base form, i.e.
finding the form of the correlated word in the dictionary. It is different from
stemming in that lemmatization does not simply cut words, but uses lexical
knowledge to obtain proper and existing base forms. It involves processes that
take more time to compute than stemming.
The WordNetLemmatizer from the NLTK library was used for this step. In
addition, for the correct functioning of this lemmatizer, it is necessary to have
the PoS tags and to define a dictionary of tags.

The ones that have been presented, are some of the most common text data pre-
processing techniques. These can be adapted and modified according to the context
and the specific case. Of course there are also other techniques that can, or should
be, used depending on the situation and on the data.

Finally, empty or duplicated reviews after applying these transformations were re-
moved, thus producing the final clean and preprocessed dataset, so that subsequent
machine learning algorithms would work well on it and in a correct way. This final
dataset consists of 1933 instances.

33

Methodology

3.3 L3 and L3 wrapper usage
To carry out the sentiment analysis on this dataset, the Associative Classifier L3

was chosen. In particular, this technique was chosen for the purpose of having an
interpretable and readable model, instead of having a non-interpretable model like
SVM and neural networks.
More specifically, thanks to L3 many association rules are produced, with a higher
or lower confidence. In this way we can have a complete and visual representation
of the model, of the rules and therefore of the words that compose them. So, it
is easier to identify at a glance, or with statistical and graphical methods, the
concepts related to mobility that have been the vehicle of a positive or negative
sentiment, together with their confidence.
In more details, L3 was used through the L3 wrapper [44] , that is a wrapper in
which L3 is run for ease of use and that has auxiliary functions.
L3, through this wrapper, is intended for categorical/discrete attributes, and there-
fore requires an object data type as input. Consequently, the data of this work,
which will be converted into numbers to obtain some meaningful representations
that will be explained later, will be considered an object.
So, as mentioned earlier, the L3 wrapper, in addition to providing accuracy, also
provides some extra functionality. One of the most important, is the possibility of
having a human readable representation of the rules. In particular, for this function,
we need to pass the names of the columns.
The printed rules will have a series of fields containing the following information:
<rule_id> <antecedent> <class label> <support count> <confidence(%)> <rule
length>

3.4 Baselines
At this point, some baselines for the models devised in this project will be presented,
in order to have a comparison and highlight the strengths of these methods and, if
present, some critical points.
It is important to emphasise that, in most of the following baseline methods, and
also in most of the new methods designed in this work, the sentences of the dataset
are transformed into a Bag of Words (BoW) [45] representation as a last step before
being fed to the various classifiers.

Bag of Words representation:
One of the issue with text processing is that it is unorganized, and machine learning
algorithms prefer well-defined fixed-length inputs and outputs. Furthermore, they

34

Methodology

cannot work directly with the unprocessed text, but the text must be converted
into numbers and in particular, vectors of numbers, which reflect characteristics of
the text. This process is called feature extraction.
A well-known and straightforward method of extracting features from text to feed
into machine learning algorithms is the so called Bag of Words (BoW). It is a
simplifying representation of data that is frequently employed in the field of NLP,
indicating the multiplicity of words within a document, disregarding grammar and
words order. Thus, the frequency of each word within a document is employed as a
feature to train a classifier.
In practice, the BoW transforms arbitrary text into vectors of fixed length, equal
to the number of distinct words in the documents (or a subset of words under
consideration) and counts how many times each word appears. So finally the
dataset will be a matrix of dimensions: the number of documents, on the rows,
and the number of distinct words, on the columns. This process is often also called
vectorization.
The idea is that if the content of the document is similar, so the document is
similar and that, from the content alone, it is possible to get some insights about
the meaning of the document.
This process involves two things: (i) a vocabulary of known words; (ii) a metric of
the occurrence of known words.
Therefore, this model is called bag of words because the only thing that matters
is whether the known words are present or not, without giving any information
about the order and structure.

From an implementation point of view, the BoW representation is obtained either
manually or by using the CountVectorizer function provided by the Scikit-learn
library. This function, will also be used to perform other more general actions,
such as calculating the frequency of words and automatically selecting the most
frequent ones.

3.4.1 Baseline 1: N most frequent words
The first baseline to be analysed is based on the use of L3, but with a different way
of deriving features from the data than the methods created in this work.
In particular, this baseline method computes the frequency of words in the text, that
is calculated using the CountVectorizer function provided by the Scikit-learn library.
So, the n most frequent words, and therefore the most significant ones, are identified
by this function and by setting the corresponding parameter max_features, which
determines the number of top words that will be found. At this point, the various
sentences are filtered, keeping only those words in each sentence that are present in
the set of the most frequent and significant words. Consequently, some sentences

35

Methodology

will remain completely empty. It was chosen to eliminate these instances as it was
assumed that they did not provide any information content. As a result, as the
number of the most frequent words selected changes, the total number of instances
in the dataset will also change.
The number n of most frequent words is chosen mainly on the basis of the corre-
sponding number of features used in the methods designed in this work. But, in
any case, a tuning of this parameter is carried out in order to have more results to
make comparisons and evaluations. A number of words which is too large or too
small is not typically chosen. Indeed, if the number of words is too large, the model
will be less compact and too specific; moreover, with a high number of features,
the training of L3 classifier will be more difficult and much slower and therefore
unmanageable, as will be emphasised several times in the next chapter on practical
results. Vice versa, if the number of top words is too small, the model will lose
its meaning because too many instances would be eliminated, as they will remain
empty after filtering, and so too much data will be wasted. Therefore, intermediate
values are chosen in order to find a balance, by making a selection of the most
significant data, but without losing too much information.
After making this selection of data and features, the sentences are transformed
into a Bag of Words representation to be fed to the classifier. So, the features that
will be fed to the classifier will be the top n words and the value of these features,
for each sentence, will indicate the presence or absence of those words in those
sentences and will therefore have a value greater than or equal to 0.

3.4.2 SVM baselines

The second group of baselines analysed use the SVM algorithm for the classification
instead of L3 classifier, and is composed from four baselines.
The first of these baselines, is the so called SVM baseline. Here the data are
modified in the same way as in the Baseline 1, in order to be compatible with
the SVM classifier. For this reason, the word frequencies are calculated with the
CountV ecotorizer method and then the n most frequent words are selected. On
the basis of these, a Bag of Words is created. The resulting matrix will be fed to
the classifier, which in this case is SVM.
Furthermore, in order to have complete and valid baselines, other three baselines
have been created with the SVM classifier.
Specifically, SVM was used as a classifier with the data obtained after applying the
feature extraction of Methods 1, 2B and 3.
These methods will be explained in detail in the following of this chapter. We
anticipate that they are data transformation and feature extraction methods,
devised in this work, that are based on the use of Topic Modeling techniques.

36

Methodology

3.4.3 Vader
The last tested baseline is based on Vader. This method, as explained in the
previous chapter, is rule-based, and has been used as a competitive method to the
one in this thesis, as L3 also classify by making use of rules.
Unlike L3 and SVM, in this method the data is not transformed and pre-processed
to be passed to the classifier, but a string containing the original text is directly
fed to Vader for each sentence.
Specifically, to calculate Vader’s accuracy with our data, has been used the value
of the compound attribute, produced by Vader using the polarity_scores() method.
This attribute, as explained previously, is calculated by summing the valence scores
of each word in the lexicon and then normalised to be between -1 and +1. This is
the metric used when one wants a single overall measure of sentiment in a sentence.
Specifically, a threshold is set and then the value of the compound metric is
compared to the threshold value and a positive, negative or neutral sentiment is
assigned to the sentence, according to the result of this comparison.
In this work, in which sentences are labeled with only positive or negative feelings
and there is no neutral category, sentences are only assigned a positive or negative
sentiment and the value 0 was used as the threshold value.
More specifically:

• if the value of compound is greater than 0, a positive label is attributed to the
sentence;

• if the compound value is less than or equal to 0, a negative label is attributed
to the sentence.

Once this was done, the accuracy, i.e. the number of sentences of the test set
correctly predicted by Vader’s algorithm with this threshold divided by the number
of total sentences of the test set, was calculated.

3.5 The application of Topic Modelling
Topic Modeling, besides being used in the proper tasks, whose goal is to extract
topics and classify documents as belonging to one topic or another, can also be
used for other purposes.
In particular, in this work, it is not used as an end in itself, but it is used as an
intermediate procedure, with the aim of extracting features from the data that give
additional and complementary information, which helps to produce better final
results, once fed to the L3 classifier.
In this work, specifically, the Gensim [46] library was used for topic modeling.
Gensim is a free open-source Python library for representing documents as semantic

37

Methodology

vectors, in the most efficient way possible. It is intended to process digital text
using unsupervised machine learning algorithms.
The Gensim algorithm that was used in this work is Latent Dirichlet Allocation
(LDA). This, like other algorithms in this library, is an unsupervised algorithm
that automatically discovers the semantic structure of documents by examining
statistical patterns of co-occurrence in training data.
Specifically, the topics are found with Gensim’s LDAmulticore function [47]. This
function allows the Latent Dirichlet Allocation technique to be used online in
Python. It allows all CPU cores to be used, to parallelize and accelerate model
training. The parallelization uses multiprocessing.
The training algorithm:

• is streaming: training data can arrive sequentially, no random access is needed.

• runs in constant memory with respect to the amount of documents: the
dimension of the training corpus does not influence the memory footprint, it
can handle corpora bigger than RAM.

Importantly, this tool enables both the evaluation of the LDA model from a training
dataset and the inference of topic distribution on fresh non-viewed documents. The
model can also be refreshed with new data for online training.
This function can receive many parameters as input. The main ones, and the ones
that have been used in this work, are:

• corpus: it is a set of document vectors or sparse matrix with shapes:
num_documents, num_terms. In this project it is a bag of words obtained
with the doc2bow() function called on the id2word dictionary.

• id2word: This is a dictionary that maps word IDs to words. It is used to
measure the dimension of the vocabulary, for debugging and to print topics.

• num_topics: it is the number of hidden topics to be extracted from the
training data. In our case the parameter k is passed as num_topic, which
changes from time to time.

• passes: this parameter represents the number of passes through the corpus
during training. In all models in this work it will be set to 10.

• iterations: it represents the maximum number of iterations through the dataset
when deducing the distribution of the topic of a corpus. It will be set to 100
in all models.

• random_state: it is a randomState object. It is used for reproducibility, so
that random operations always have the same output for the same input

38

Methodology

parameters. Notice that the outputs may still differ due to undeterminism in
the programming of the work process operating system. In all models it will
be set to 10.

3.5.1 Parameter search
The most difficult part of the topic modeling task is to work out how many (and
which) topics are present in the corpus of documents.
One of the parameters to pass to the LDAmulticore function, indeed, is precisely
this number of topics.
One way to find the optimal value of this parameter, and also of other secondary
parameters of the LDAmulticore function, is to search among the parameter space
as exhaustively as possible, and finally choose the parameter (or combination of
parameters) that maximises some metric or criterion.
To do this, in this work have been tried basically three approaches:

1. Extrinsic a posteriori evaluation after classification with L3: the performances
are evaluated directly on the result after applying L3, and parameter values
are chosen with the aim of maximising performance (accuracy).

2. Maximisation of a metric: in this work the Coherence CV [48] metric was
used, which is a very common metric for topic modelling in the literature.
The topic Coherence is defined as a measure that assesses a single topic
by evaluating the degree of semantic similarity between words with a high
score in the topic. This measure helps to distinguish between topics that are
semantically interpretable and topics that are statistical inference artefacts.
Therefore, it was tried to find a number of topics that would maximise this
metric.

3. A visual analysis of the topics through visualisation tools: specifically pyLDAvis
[49] was used in this work, which is an interactive topic visualisation tool.
Through this visualisation and by trying out different num_topic values, it
should be possible to work out which num_topics parameter value splits the
documents better, by simply looking at the graph produced by this tool.

However, from a practical point of view, it was noted that the Coherence metric
was not indicative for the specific task of this work, as it had low values even with
a number of topics that turned out to be favourable for high accuracy after the
application of the classifier. Moreover, it gave higher results for a number of topics
that was definitely high and not compatible with the computational capabilities of
L3, as it will be underlined below.
Also the visual evaluation using the pyLDAvis tool did not help in choosing the
best number of topics, as the topics were not easily distinguishable and assessable

39

Methodology

by the human eye.
So, finally, the number of topics was chosen by means of an extrinsic a posteriori
evaluation after classification with L3.

3.5.2 Generation of methods
Through the use of topic modeling, the five methods used in this work were created.
In particular, topic modeling was used to transform the data into features which
were then passed to the model. In fact, it was thought that giving the extra
information from the topic could be useful for classification purposes, adding
information content at a higher level compared to features derived from the pure
sentences alone.
In particular, 5 different methods have been designed through the help of topic
modeling, that will be deepened in the following section.

3.6 The 5 methods with features obtained through
topic modelling

In the following, the 5 methods created in this project will be presented and
explained. In particular, these methods aim to transform the data finding features
and so creating data compatible with the use of the L3 classifier.
In general, for all methods, the parameters were tested and chosen by extrinsic
evaluation, i.e. based on the accuracy after applying L3 to the data obtained with
the different methods.
The topics are found with Gensim’s LDAmulticore function, as discussed above.

3.6.1 Method 1
In this method the n most important words in the k chosen topics are identified. So
the two parameters to be evaluated are n and k: the parameter n will indicate the
number of words chosen within a topic and the parameter k indicates the number
of topics chosen.
The topics are found through the function LDAmulticore to which a certain param-
eter k, indicating the number of topics, is passed, and the other parameters are the
ones cited above. The tuning of this parameter was done through the evaluation of
the resulting accuracy on the test set, once the L3 classifier was applied.
The most important words are found through the function LDAmodel.show_topic(),
which finds the n most important words for the i-th topic. Also for the number n
of top words, a tuning was performed according to the resulting accuracy once L3

40

Methodology

was applied, varying n in order to maximise it.
The most important words for each topic were then added to the list of top terms
and, lastly, the duplicates were removed.
At this point, scrolling through the dataset again, each sentence is transformed
into the corresponding sentence that contains only the words that are in the set of
top words selected in the previous step.
Moreover, since the sentences are filtered by removing the words not in the set of
top terms, it may happen that some sentences remain completely empty. These
instances are identified and removed because they are deemed not to carry infor-
mative content for Sentiment Analysis.
Finally, the CountVectorizer function is used to obtain a matrix with the same
number of columns, creating a Bag Of Words.
So, L3 will be fed by a matrix that has as columns, and therefore as features, all
the words in the set of selected words and on the rows the different documents. So
in each cell there will be the number of times a given word appears in a certain
document.

In the following methods, instances are mapped directly with the topics corre-
sponding to that instance or to words of that instance, leaving out the actual text
content. This is done using three different techniques.

3.6.2 Method 2A

The topic model is found with the function LDAmulticore, with the parameters
cited before.
A number k of topics is used and each document is mapped to the corresponding
probability distribution that the document belongs to each topic, obtained using
the Gensim’s function get_document_topics, that is applied to the LDA model.
This function obtains distribution of the topics for the given document and returns
a list of (int, float) that contains this distribution for the whole document. Each
item in the list is a couple of ID of a topic and the probability that the document
belongs to it.
Subsequently, a matrix will be created from this information, where on the columns
there will be the topics found and on the rows there will be the various documents
and each cell will contain the probability that each document belongs to a certain
topic. This matrix is passed directly to L3.
The parameter to evaluate is k, which is chosen according to the result of L3 after
applying this method.

41

Methodology

3.6.3 Method 2B

Also in this method, the model is found with the function LDAmulticore, with the
same parameters as previous models.
Here is used the Gensim get_term_topics function and is applied to the model
obtained in this way. This function get the most relevant topics to the given word.
More specifically, for each word, it returns the list of topics assigned to the word
represented as pairs of their ID and their assigned probability, sorted by relevance.
In particular in this work is chosen only one topic for each term (the one with the
highest probability) and the data are mapped to the corresponding topics. So each
row is transformed into a vector with a topic for each word in the sentence.
Then, to obtain a matrix with the same number of columns, the data are transformed
manually in a Bag of Words representation, producing a matrix with the documents
on the rows and the IDs of the topics on the columns. So, each cell represents the
presence of that topic in that document.
The parameters to be evaluated are: k, which indicates the number of topics, as in
the previous cases, and unique, which indicates whether the topics within a row
are to be repeated or not.
Also these parameters and their values, are evaluated after the application of
L3 classifier, by looking the accuracy obtained on the test set and by trying to
maximize it.

3.6.4 Method 2C

This method is a slight variation of the previous method.
Here again, the model is found with the function LDAmulticore, with the same
parameters as previous models and the Gensim get_term_topics function is used,
which returns the probability of belonging to one of the various topics for each
term.
This time, several topics are chosen for each term, i.e. those with the highest
probabilities until a total probability of 0.5 is reached (among the topics chosen
for each term) and than each sentence is mapped to the corresponding topics, i.e.
each row is transformed into a vector with one or more topics for each word in the
sentence.
Then, to obtain a matrix with the same number of columns, the data are transformed
manually in a Bag of Words representation, producing a matrix with the documents
on the rows and the IDs of the topics on the columns. So, each cell represents the
presence of that topic in that document.
The parameters to be evaluated are: k, which indicates the number of topics as in
the previous cases and unique, which indicates whether the topics within a row are
to be repeated or not.

42

Methodology

3.6.5 Method 3
In this method, a concatenation of Methods 1 and 2B together is carried out.
That is, the n most important words for each of the k topics are selected and each
row is mapped accordingly by selecting only the terms included in the chosen set
of words, that form the features, and furthermore, a certain number of features k
is added to each row, which represent the information of the presence of that topic
or not in that sentence.
Consequently each row will be the concatenation of two pieces of information at
two different levels, i.e. both the most relevant words and the topics present in
a sentence. Indeed, it was thought that combining two pieces of information of
different types could be beneficial because the additional content in each line is
particularly significant and not redundant.
As far as the rows are concerned, are selected only those that are not discarded
due to the application of Method 1, since according to the number of words and
topics, some rows, once filtered, are empty and are discarded because they are not
considered to have a useful information content.
Intuitively, to get a meaningful result, one would have to get a lot of features, as
this method is the the concatenation of two methods, and it might not be feasible
or make sense as the information would not be compact enough. But, it will be
shown later, that this intuition is not necessarily true.
Here again the parameters are evaluated on the basis of accuracy after applying
L3 classifier and have been chosen with a focus on maximising it. They are the
following: k, which indicates the number of topics for both Method 1 and Method
2, and unique, which indicates whether the topics within a row are to be repeated
or not.
Also here is used the Gensim library and its functionalities to find topics and top
terms. In particular: the topics are found through the function LDAmulticore to
which the parameter k is passed; the most important words are found through
the function LDAmodel.show_topic(), which finds the n most important words
for the i-th topic; finally, the get_term_topics function is used, which returns the
probability of belonging to one of the various topics for each term.
At the end, the features obtained are concatenated in a matrix that was done by
making a Bag of Words, in which the rows contain the documents and the columns
contain the most important words for the different topics that have been selected
and the IDs of these k topics. The cells contain the frequency of those words and
topics for that document.

43

Chapter 4

Practical results

In this section will be discussed the practical results of the methods and theoretical
implementations presented in the previous chapter. The results will be commented
and explained, and sometimes accompanied by graphs and plots to further illustrate
their information content.
The various methods were implemented in Python language and executed on a
machine provided by the Politecnico of Turin, as they often required too much
computational power to run locally or on free online Jupyter notebook services, e.g.
Google Colaboratory [50]. The Google Colaboratory notebook was used instead to
print the graphs and to compute the preliminary statistics.

4.1 Preliminary statistics on frequency
Before applying the various methods, preliminary analyses on frequency were
carried out in order to explore the dataset and understand certain properties.

Words distribution in documents
The first analysis made concerns the length of the sentences and therefore the
counting of the number of words per document. The results in this case are repre-
sented with a graph containing a histogram, as it is an intuitive representation.

As we can see from Figure 4.1, the sentences are in general small: most documents
contain between 10 and 25 words.
In particular, the most frequently occurring number of words per document is 10
with 102 occurrences, followed by 9, 13 and 16 with 94 occurrences, and by 14 with
93 occurrences.
This could be a problem for some classification and topic modeling algorithms [51],
aggravated by the fact that, with the additional pre-processing steps, the sentences

45

Practical results

Figure 4.1: Frequencies of the number of words for review in the dataset

could be further reduced, until they contain a number of words close to 0 and
therefore the algorithms may not have enough information for classification.

Frequency of distinct words
The second frequency analysis was carried out after applying pre-processing. The
aim of this analysis was to see the frequency of individual words within the corpus,
once preprocessed
In particular, the first n most frequent and therefore most important and significant
words are printed (after having removed the stopwords).
To do this, the CountVectorizer function is used, in order to crate a Bag of Words.
Subsequently, the graph is printed thanks to the FreqDistVisualizer function from
yellowbrick [52], to which the features obtained from the CountVectorizer are
passed, i.e. the words and their frequencies; the number n of the most frequent
words to be printed is also passed as parameter to the FreqDistVisualizer function.
The FreqDistVisualizer is a method of visualising the frequency of tokens in datasets
by means of the frequency distribution, which tells us how the total number of
word tokens in the text is distributed among the vocabulary elements. It does not
perform any normalisation or vectorialisation, and assumes that it receives text
that has already been vectorized.
More in detail, after instantiating a FreqDistVisualizer object, a fit method is called

46

Practical results

on it, which calculates the frequency distribution. The visualiser then draws a bar
graph of the first n most frequent terms in the dataset, which is shown in Figure
4.2, where the 30 most frequent words are represented.

Figure 4.2: Frequencies distribution of the top 30 tokens in the dataset after
pre-processing

The same kind of plot was also obtained using a vectorization with the Term
Frequency-Inverse Document Frequency (TF-IDF) [53], [54]. This measure is a
numerical statistic that aims to capture how relevant a word is to a document
in a collection. The TF-IDF value grows in relation to the number of times a
word occurs in the document and is weighted by the number of documents in the
collection that include the word, which aids in regulating the fact that certain
words occur more frequently in general. TF-IDF is one of the most common term
weighting patterns nowadays.
It is applied with the function TfidfVectorizer, that convert a collection of raw
documents to a matrix, which has as its values the result of the TF-IDF operation
instead of the frequency of words in documents, as a simple Bag of Words.
The result of this operation is reported in Figure 4.3.

47

Practical results

Figure 4.3: Frequencies distribution of the top 30 tokens in the dataset after
pre-processing with a TF-IDF vectorization

As we can see from the plots, the distribution of word frequencies, when
CountVecorizer or TfidfVectorizer are used, is very similar; the value of the fre-
quencies changes a little, in particular the use of TfidfVectorizer allows a clearer
distinction to be made.
In both plots, it can be seen that the most frequent word is view, which could
indicate that it is an important factor for travellers. Among the most common
words there are also car, which may indicate that many travellers use cars, and
city, as can be expected since we are talking about traveling in a city.

4.2 Baseline results
Before analysing the results of the baselines and methods, it is necessary to make a
few general considerations that apply to many of the methods that will be analysed.

48

Practical results

Computational Time
It has been noted that the L3 classifier has a training and classification speed which
decreases exponentially as the number of features of the data fed to the classifier
increases.
More specifically, it is quite fast (order of seconds/minutes) up to 20 features. But
from 20 features onwards, it slows down substantially, until it takes hours when
24/25 features are used.
For this reason, when using L3, the analysis has been limited to data with a
maximum of 24 features for most cases, since with 25 features the time taken is
not sustainable and the process often does not end.
On the other hand, the classification of SVM baselines is very fast, even with a
large number of features, and there are not the problems that occur with L3.
So, all the algorithms discussed in the following sections, both baseline and non-
baseline (except Vader) have been tested on a machine provided by the Politecnico
of Turin, as mentioned before. Indeed, since L3 is very heavy, often, on online
services as Google Colaboratory, the training fails to finish as the number of features
increases, due to RAM or disk space problems, as well as being slower than on the
machine of Politecnico.

Another important consideration, which applies to both baselines and methods,
is that an attempt was made to explore the parameters search space as much as
possible. However, doing an exhaustive search in this space is almost impossible
and would have required too much time and resources, because it is a very huge
space and is often even larger as it has a high number of parameter combinations.
Therefore, in the following, the results for a sustainable number of attempts and
parameter combinations will be reported, in order to explore the search space as
exhaustively as possible and to give an idea of the trend of results, choosing the
combinations and attempts that were deemed most significant.
Furthermore, not all the results obtained and the numerous attempts made will be
reported in the descriptions and tables below, in order not to make the discussion
too heavy and confusing.
The accuracies that will be reported in the results are obtained after applying the
classifiers to the test set.

Finally, it should be recalled that the number of starting data for all methods is
1933 instances, obtained after applying the pre-processing techniques.

49

Practical results

4.2.1 Baseline 1: N most frequent words
The first baseline that is analysed is the one called N most frequent words, here
only the most frequent words in the corpus are taken into consideration and the
sentences are filtered accordingly. Once the data have been transformed into the
Bag of Words representation, they are fed to the L3 classifier.
The parameter for which the tuning is to be carried out in this case is n, that
concerns the number of words. The value of this parameter will represent the
number of features that will be fed to the classifier.
The accuracy, precision and recall are collected for each value of this parameter.
The reference value is taken as n = 17 features, as it is the same as the reference
value used in some methods created in this work and represents a significant number
of features: i.e. they are not too few, causing the loss of too much information
(and also data when the documents are filtered); nor are they too many, creating
problems of classification speed, compactness and interpretability of the result.

With n = 17, and thus 17 features, the accuracy of this method is about 0.816 and
the remaining sentences are 1379 (i.e. 71.3%), as 554 lines are discarded due to the
operation of this method.
With different numbers of features, sometimes the results are higher. For example,
the highest results are obtained with 22 and 23 features and have an accuracy
of about 0.864 and 0.861 respectively, and 1507 (i.e. 78%) and 1520 (i.e. 78.6%)
remaining data, respectively.
When tested beyond 24 features, the method is too slow and does not produce
results at all.
The absolute highest accuracy is about 0.870 and is achieved with only 2 features.
But this value was not considered significant because too much information and
especially too much data is lost and wasted. In fact, at the end of the process there
are only 861 (i.e. 44.5%) instances.
This baseline has worse results than the corresponding method created in this
work with the aid of topic modeling, i.e. Method 1, as will be shown and discussed
subsequently.
More details on the results can be found in Figure 4.4, where the exact accuracy,
the precision, for positive and negative instances, and the recall, for positive and
negative instances, are presented.

4.2.2 N most frequent words + SVM
The second baseline that is analysed is N most frequent words + SVM. Again
only the most frequent words in the corpus are considered and the sentences are
filtered accordingly. Once the data has been transformed into the Bag of Words

50

Practical results

Figure 4.4: Complete results of the Baseline 1

representation, this time, unlike the previous baseline, it is fed to SVM classifier.
The parameter for which tuning must be carried out also in this case is n, that
represents the number of the most important words selected. The value of this
parameter will represent the number of features that will be fed to the classifier.
Accuracy, precision and recall are collected for each value of this parameter.
The reference value again is n = 17 features for the same reason as before.
With n = 17, and thus 17 features, the accuracy of this method is about 0.829 and
the remaining sentences are 1379 (71.3%), as 554 of rows are discarded due to the
operation of this method.
With different numbers of features, the results are sometimes higher. For example,
with 23 and with 10 features is achieved 0.857 and 0.859 of accuracy respectively,
with 1520 (78.6%) and 1223 (63.3%) data remaining respectively. With 10 features,
although the accuracy is quite high, it is felt that too much information is lost.
The absolute highest accuracies are obtained by increasing the number of features.
For example with 27, 45 and 50 features are obtained about 0.878, 0.899 and 0.888
accuracy respectively. This is quite understandable, since, in this way, increase the
information and data, but it is a less compact representation and, above all, they
are numbers of features incompatible with the timing of L3.
More details on the results can be found in Figure 4.5, where the exact accuracy as
the number of features changes, the precision, for positive and negative instances,
and the recall, for positive and negative instances, are presented.

51

Practical results

Figure 4.5: Complete results of the Baseline 1 + SVM

4.2.3 Method 1 + SVM

This baseline uses the Method 1 + SVM classifiers. So the n most important words
in the chosen k topics are taken and the sentences are filtered accordingly. Once
the data has been transformed into the Bag of Words representation, it is fed to
the SVM classifier.
The parameters for which tuning must be carried out in this case are two: k and n,
which are respectively the number of topics and the number of main words for each
topic. Each combination of parameters will create a different number of features,
which equals the number of unique words found for those topics. The Bag of Words
with these resulting features will be fed to SVM.
Accuracy, precision and recall are collected for different combinations of these
parameters.
In this method, the reference configuration is n = 4, k = 4, that produces 13
features and obtain an accuracy of about 0.882 and the remaining sentences are
1339 (69.3%), since a number of rows are discarded due to the operation of this
method.
With different combinations of parameters, that produce higher numbers of features,
other slightly better results are obtained. For example by varying both n and k,
the configuration n = 9, k = 5 produces 33 features, and it is obtained an accuracy
of 0.899 and 1592 (82.4%) data; by varying k and setting n = 9, k = 6 are produced
39 features and an accuracy of 0.901 and with the configuration n = 10, k = 7

52

Practical results

are produced 46 features and is obtained an accuracy of 0.891. These higher
results are quite understandable, as, increasing the number of features, increases
the information, but they are less compact representations and, moreover, they are
a number of features incompatible with the timing of L3.
A good accuracy of about 0.879 is obtained even with 24 features with the configu-
ration n = 5, k = 6, that produces 1471 (76.1%) instances.
Probably, a more comprehensive and dense search for parameters would yield better
results, these are just a few examples of good values. But an exhaustive search is
not possible, so we are looking for some examples that give an indication of the
accuracy trend.
More details on the results can be found in Figure 4.6, where the exact accuracy,
the precision, for positive and negative instances, and the recall, for positive and
negative instances, are presented.

Figure 4.6: Complete results of Method 1 + SVM

4.2.4 Method 2B + SVM
This baseline uses Method 2B + SVM. This time all words are considered and are
simply associated with a topic. The phrases are not filtered and the dataset will
therefore always be fully exploited. The data is then transformed into the Bag of
Words representation and fed to the SVM classifier.
The parameter for which the tuning must be carried out in this case are two: k,
that represent the number of topics; unique, which takes binary values (yes or not),
and indicates whether to consider repeated topics one or more times. The topics

53

Practical results

will be the features and the value of the parameter k will represent the number of
features that will be fed to the classifier.
Accuracy, precision and recall are collected as the value of this parameter changes.
In general, the value of accuracy with this method is lower than with the previous
methods.
The reference combination is k = 17, unique = yes.
With this combination (and therefore 17 features), the accuracy of this method is
about 0.814. When the is set unique = no, the accuracy is about 0.817.
Analyzing the results with a different number of topics, and therefore of features,
can be observed that, for example, with the configurations k = 22, unique = yes
and k = 23, unique = yes, you get approximately 0.817 and 0.825 accuracy
respectively; when is set unique = no, the accuracy is about 0.843 and 0.837
respectively. With k = 25, unique = yes and k = 28, unique = yes are obtained
lower results, respectively 0.782 and 0.809 of accuracy; when unique = no the
accuracy is about 0.801 and 0.809 respectively. Finally with k = 33, unique = yes
and k = 33, unique = no the highest results are found, that are 0.853 and 0.848 of
accuracy approximately.
It is important to point out that the SVM classifier is quick to train, unlike L3

which is very slow with the Method 2B. Consequently, no other tests were carried
out with a higher number of features because the baseline would not have been
comparable to the actual method.
More details on the results can be found in Figure 4.7, where the exact accuracy
as the number of features varies, the precision, for positive and negative instances,
and the recall, for positive and negative instances, are reported.

4.2.5 Method 3 + SVM
This baseline uses Method 3 + SVM, which is the union of Methods 1 and 2B. So,
only a subset of words (the most important ones) are considered and the phrases
are filtered accordingly. The data is then transformed into the Bag of Words
representation and sent to the SVM classifier. The features that will be provided
to the classifier are the concatenation of selected words + the k topics.
The parameters for which the tuning must be carried out in this case are three:
number of top words per topic, n; number of topics, k; unique, which takes binary
values (yes or not), and indicates whether to consider repeated topics one or more
times.
Accuracy, precision and recall are collected as the values of these parameters vary.
The reference is the set of parameters formed by: k = 4, n = 4, unique = yes, which
produces 17 features and 1339 (69.3%) data. With these parameters the accuracy
is about 0.891. By varying the unique parameter and setting it to unique = no, we

54

Practical results

Figure 4.7: Complete results of Method 2B + SVM

get an accuracy of: 0.871 . Also varying n and k and analyzing the configuration
formed by: k = 5, n = 5, unique = yes (producing 24 features and 1433 data, i.e.
74.1%), the accuracy obtained is about 0.867; when unique = no the accuracy is
0.886.
By further varying the parameters and trying the configurations: k = 6, n =
3, unique = yes and k = 6, n = 3, unique = no (producing 21 features and 1320
data, i.e. 68.3%), the accuracies obtained are approximately 0.856 and 0.865
respectively.
It can be noted that the highest results are obtained with a number of features
of 17. Probably, by varying the parameters in order to obtain a higher number of
features, even higher accuracies could have been obtained, but this was not done
as L3 does not works efficiently with a large number of features (greater than 24

55

Practical results

for example) and it would not have been possible to make a comparison.

More details on the results can be found in Figure 4.8, where the following are
reported: the exact accuracy as the combination of parameters (and so the number
of features) varies, the precision, for positive and negative instances, and the recall,
for positive and negative instances.

Figure 4.8: Complete results of Method 3 + SVM

4.2.6 Vader
As regards the results of the V ader method applied to our dataset, this algorithm
works quite well.
It is important to remember that this algorithm is based on scores given to words
and sentences and no training is carried out.
The results that are produced by setting the threshold to 0 for the compound
attribute, as explained in the previous chapter, are as follows:

• Incorrectly predicted instances = 340, i.e. 17.0%.

• Instances predicted correctly = 1660, i.e. 83.0%.

So, this method obtain 83% of accuracy.
As will be seen in the following, the methods devised in this work will achieve
accuracies that tend to be higher than that of V ader.

A couple of examples of instances predicted incorrectly are as follows:

56

Practical results

• Homelands War exhibition just behind the top station was interesting and
moving . - True: POSITIVE - predicted: NEGATIVE

• I would never again book with Select Dubrovnik as they do not have the tourists
’ best interest in mind . - True: NEGATIVE - Predicted: POSITIVE

Where True represents the ground truth and Predicted represents the predicted
label.

4.3 Results of the 5 methods used for Sentiment
Analysis

4.3.1 Method 1
In Method 1, the n most important words in the chosen k topics are taken and the
sentences are filtered accordingly, discarding some rows. The parameters for which
tuning must be carried out in this case are two: k and n, which are respectively
the number of topics and the number of the most important words in each topic.
Each combination of parameters will create a different number of features, which
correspond to the number of unique top words found for all those topics.
Once the data has been transformed into the Bag of Words representation, the
resulting features will be fed to the L3 classifier.
Accuracy, precision and recall are collected for different combinations of these
parameters.
The reference configuration for this method is k = 5, n = 5 yielding 19 features
and 1433 data (i.e. 74.1% of the total). With this configuration is obtained an
accuracy of about 0.873.
If the parameter n varies, placing n = 6, is produced a higher number of features
and data (24 and 1471 respectively, i.e. 76.1%), but the accuracy remains approxi-
mately the same, equal to 0.872.
By varying k instead, thus placing k = 6 and n = 5 are produced 25 features and
1510 (78.1%) remaining data, with an accuracy of about 0.880.
By further varying k and placing k = 7 and n = 5 are produced 25 features and
1486 (76.9%) remaining data, with a higher accuracy of about 0.884 .
Varying further k and n and setting k = 4, n = 4, a slightly higher accuracy is
obtained, about 0.887, but the number of features is reduced to 13 and consequently
also the data, which become 1339 (69.3%), thus losing some extra information
content, but this can also be viewed as a further step of data selection.
So the maximum performance of this method, with the combinations of parameters
tested in this work, is around 0.884 or 0.887 of accuracies, depending on whether
the reduced number of data of this case is considered a problem or not.

57

Practical results

The results of this method are considered very good as it outperforms most of the
baselines.
For example, it is much better than Vader, which is rule-based, and it also outper-
forms Baseline 1, which is a related method, but without the aid of topic modelling.
As for Baseline 1 + SVM, it has in general lower results than Method 1, except in
some cases where Baseline 1 + SVM performs better than Method 1, but with a
higher number of features.
Finally, comparing Method 1 with L3 and Method 1 + SVM, the results appear in
general comparable.
Specifically, with the same number of features (13 and 25 in particular), the results
of Method 1 + SVM, appear a bit lower. By increasing the number of features,
for example using 33 or 39 features, the performances with Method 1 + SVM are
higher: 0.899 and 0.901 respectively (a similar thing happens when we increase the
features of Baseline 1 + SVM).
This is not a bad thing, since not only with Method 1 we obtain higher values
with a lower number of features, but we also obtain a readable and interpretable
method, that can be a vehicle for useful information on the mobility issues, as will
be discussed in detail at the end of this chapter.

Obviously one could do a more exhaustive search in parameter space and try
other combinations to produce different numbers of output features, even higher
than 24/25, perhaps using more powerful machines for calculation (as, with more
than 25 features, this method is too slow) and maybe with more features can be
produced also higher accuracies.
More details of the results can be found in Figure 4.9, where the exact accuracy,
precision, for positive and negative instances, and recall, for positive and negative
instances, are presented.

4.3.2 Method 2A
In Method 2A each sentence is mapped with the probability of belonging to each of
the k topics. The features obtained, therefore, are equivalent to the number k of
topics chosen and are fed to the L3 classifier. The parameter to tune is only k.
Accuracy, precision and recall are collected for different values of this parameter.
The reference configuration is to set k = 15. With this configuration a very
low accuracy is obtained, about 0.614. As the value of k increases, the accuracy
increases: for k = 19, an accuracy of 0.649 is obtained; for k = 21, we get an
accuracy of 0.729.
It can be seen that as k increases, the performance tends to increase, even if it

58

Practical results

Figure 4.9: Complete results of Method 1

remains quite low and furthermore with k = 23 and k = 24 the accuracy has again
a drop (0.715 and 0.708 respectively).
Therefore, in general, this method produces lower results and is not competitive
with the other methods and with the baselines, and for this reason a baseline using
this method for data transformation + SVM as classifier was not created.
In addition, higher values were not tested because the method is very slow and
fails to conclude the training.
More details of the results can be found in Figure 4.10, where the exact accuracy,
precision, for positive and negative instances, and recall, for positive and negative
instances, are presented.
Probably the poor results of this method are due to the fact that the topic-only
representation at sentence level is too summarizing and is not sufficient to describe
the sentences in an exhaustive way and to give enough information for the L3

classifier, which therefore cannot construct sufficiently precise and correct rules
that correctly discriminate positive from negative reviews.

4.3.3 Method 2B
In Method 2B, each word in a sentence is mapped to the most likely topic for that
word. Subsequently the data is then transformed into the Bag of Words represen-
tation and sent to the L3 classifier. So, the number of features will correspond to
the parameter k which indicates the number of topics.
The parameters on which the tuning is carried out are: k, which corresponds
to the number of topics, and unique which has binary values (yes or no) and

59

Practical results

Figure 4.10: Complete results of Method 2A

indicates whether the topic is counted only once or more times in the Bag of Words
representation, when the topic is repeated several times in the same sentence.
Accuracy, precision and recall are collected as the values of these parameters vary.
The reference configuration is k = 15, unique = yes, which has an accuracy of
about 0.817. By varying k, with k = 19 the accuracy is about 0.814, for k = 20 we
obtain an accuracy of approximately 0.821 and for k = 22 we obtain an accuracy
of approximately 0.782.
Similarly, in the configurations with the same values of k and value of unique = no,
we get the following values of accuracies: for k = 15 is obtained an accuracy of
about 0.829, for k = 19 the accuracy is about 0.801, for k = 20 it is about 0.809
and for k = 22 it is about 0.792.
It was not possible to try higher values of k, as L3, with the features obtained
with this method, is even slower than in other methods and cannot produce results
above the 22 features.
It is important to note that this method, although based on the topics, gives better
results than the Method 2A. This is due to the fact that the data is mapped to
topics with a higher granularity. Indeed, instead of assigning a topic (by means of a
probability distribution) to a sentence, as in Method 2A, here the topic is assigned
to each word of the sentence.
However, the results are less accurate than Method 1. Evidently, although the
representation of the topics is more specific than before, it is still more generic
than taking the exact words and selecting them.
Finally, the results of this method using L3 are comparable or slightly lower than
those of the same method but using SVM classifier (Method 2B + SVM), with the

60

Practical results

same number of features. As is to be expected, SVM, produces some higher results
with a number of features higher than 22, as SVM computation is faster even if
the number of features increases, unlike L3.
More details of the results can be found in Figure 4.11, where the exact accuracy,
precision, for positive and negative instances, and recall, for positive and negative
instances, are presented.

Figure 4.11: Complete results of Method 2B

4.3.4 Method 2C
In Method 2C, which is a slight variation of Method 2B, the number of features will
correspond to the parameter k which indicates the number of topics.
The parameters on which the tuning is performed are: k, which corresponds to the
number of topics, and unique which has binary values (yes or no) and indicates

61

Practical results

whether the topic is counted once or several times in the Bag of Words representa-
tion, when the topic is repeated several times in the same sentence.
Accuracy, precision and recall are collected as the values of these parameters vary.
Taking as a reference configuration k = 19, unique = yes, we can see that the
accuracy is very low (about 0.654) and setting unique = no, it increases a little,
but remains low, equal to about 0.707.
Increasing progressively the number of features, we observe that the accuracy
increases and is always higher when the parameter unique = no, so the multiplicity
of topics matters more in this method than in others.
However, it remains low around 24 features: it is about 0.693 for unique = yes
and 0.765 for unique = no.
In addition, higher values of k have not been tested for unique = yes due to slow
computation. For unique = no, the computation is a bit faster, so other higher
values of k have been tried, but they did not give very high performances: the
accuracy did not exceed about 0.792 (with 29 features), and by increasing the
number of features beyond 35, the computation becomes very slow also in this
setting.
Therefore, this method gives inferior results and is not comparable with the other
methods and with the baselines. Evidently, taking more topics for a word is
misleading for the L3 classifier.
In the future we could try to change the value of the threshold to explore more
this technique.
More details on the results can be found in Figure 4.12, where the exact accuracy,
the precision, for positive and negative instances, and the recall, for positive and
negative instances, are presented.

4.3.5 Method 3
Method 3 is the union of Method 1 and Method 2B, so only a subset of words
(the most important) are considered and the phrases are filtered accordingly. The
data is then transformed into the Bag of Words representation and sent to the L3

classifier. The features that will be provided to the classifier are the selected words
+ the k topics.
The parameters for which the tuning must be carried out in this case are 3: number
of main words per topic, n; number of topics, k; unique, which takes binary values
(yes or no) and indicates whether to consider repeated topics one or more times.
Accuracy, precision and recall are collected as the values of these parameters vary.
The reference is the set of parameters formed by: n = 4, k = 3, unique = yes,
which produces 13 characteristics and 1205 (62.3%) data. With these parameters

62

Practical results

Figure 4.12: Complete results of Method 2C

the accuracy is about 0.859. By varying the unique parameter and setting it to
unique = no, we get the same accuracy.
Varying k and analyzing the configuration formed by: n = 4, k = 4, unique = yes
(producing 17 characteristics and 1339 (69.3%) data), the accuracy obtained is
about 0.896. When unique = no, the accuracy is approximately 0.864. By further
varying the parameter k and trying the configurations: n = 4, k = 5, unique = yes
and n = 4, k = 5, unique = no (producing 21 characteristics and 1406 (72.7%)
data), the accuracy obtained is approximately 0.841 in the first case and 0.864 in
the second.
By varying also n and setting n = 5, k = 5, unique = yes, we obtain 24 features
and 1433 (74.1%) data and an accuracy of about 0.867; when unique = no the
accuracy is about 0.871.
It can be seen that the highest result is obtained with a number of features equal
to 17 and unique = yes.
This is the absolute highest result of all the methods created in this work and
the baselines (for a number of features compatible with L3). The corresponding
baseline Method 3 + SVM, with 17 features and unique = yes, achieved a slightly
lower accuracy, having also the disadvantage of being a non-interpretable method.

63

Practical results

Method 3 integrates Method 1, which with the corresponding combination of k and
n obtained 13 features and a slightly lower accuracy of 0.887. Indeed, by adding
topics to the top words, there are two different types of information and at two
different levels of granularity, favoring the classification with L3 positively.

It is possible that by varying the parameters in an ad-hoc way to obtain a certain
number of features, even greater accuracies could have been obtained, but this has
not been done as it is not possible to explore the entire search space.
More details on the results of this method can be found in Figure 4.13, where the
following are reported for different parameter combinations (and thus for different
number of features): the exact accuracy, the precision, for positive and negative
instances, and the recall, for positive and negative instances.

Figure 4.13: Complete results of Method 3

4.4 Interpretability
4.4.1 Graphical representations and L3 Human readable
This section deals with the problem of interpretability of the results and of the
model. Indeed, one of the objectives of this thesis is to extract useful information,
concepts and words associated with sustainable mobility, which can be used by

64

Practical results

third parties. In particular the extraction of this information, could be useful for
the authorities to have a better knowledge of the strengths and weaknesses of the
services, according to the users opinion, and to be able to do something concrete
with the aim to improve the service and the customer satisfaction.
Also for these reasons it was chosen to use an Associative Classifier that produces
rules, which make the model explicit and can provide useful insights for the purposes
expressed above.
In particular, L3, with the use of the L3 wrapper, has the so-called Human readable
representation, thanks to which one has access to the rules (I and II level rules), in
extended format.
More specifically, the printed rules will have a series of fields containing the following
information:
<rule_id> <antecedent> <class label> <support count> <confidence(%)> <rule
length>.
The field named antecedent in particular will have the following form:
attr1:value, attr2:value, attr3:value ... , attrn:value.
In our case, the attributes will be the features used in that specific model, so they
will be typically the top words and/or topics, and the values of the features will be
typically 0 or more than 0, thus indicating the presence or absence of that attribute
in that rule and its frequency.
Therefore, the intuition of this work, was to use this readable representation in
order to analyse the results and capture the predominant concepts.
In particular, the first level rules will be read and analysed, as they are in the order
of hundreds, unlike the second level rules which are in the order of thousands and
hundreds of thousands and could not be read by the human eye.
In addition, a compact and graphical representation of the rules has been created. It
aids overall visual understanding and allows trends and tendencies to be identified
thanks to its summary information, which would not have been possible by reading
the specific rules in detail one by one (this representation was created on Google
Colaboratory).

In the following will be shown the Human readable representation and the graphical
and compact representation of the I level rules of Method 1 and Method 3, which
are the methods that produced the best results.

Figure 4.14 shows an extract of the human readable representation produced
by the L3 classifier (Method 1 with k = 4, n = 4).

Figures 4.15, 4.16, 4.17 and 4.18, instead, show the graphical and compact repre-
sentation, divided by positive and negative instances, of Method 1 and Method 3 in
the best configurations: k = 4, n = 4 and k = 4, n = 4, unique = yes, respectively.

65

Practical results

Figure 4.14: Example of Human readable representation

The reported plots have the appearance of a confusion matrix. In the rows are
present the various rules created from the model, on the columns are present the
features, that are the top words and/or the topics.
In every cell is present the number 0, 1, or more, that represents the presence of
that attribute in that rule and its frequency.
The color indicates if they are rules with positive (blue) or negative (green) class
label.
Finally, the intensity of the color indicates the confidence level of the rule: the
more intense the color, the more confidence the rule will have, i.e. the rule is more
reliable and true, vice versa when the color is less intense.
In order to make the concept clearer, the definition of confidence of a rule is the
following: the confidence of an association rule is a percentage value that indicates
how frequently the consequent (head) of the rule is verified among all groups that
contain the antecedent (body) of the rule. The confidence indicates how trustworthy
this rule is. Numerically, the confidence of a rule is the m

n
ratio as a percentage,

where m is the amount of groups that contain the head and body of the rule
together; n is the number of groups that contain only the body of the rule.
In the plots shown here, the confidence of all rules is quite high (> 0.7), because
only the I level rules are shown, which tend to have higher confidence and reliability
than the II level rules.

These plots, when analysed, can provide very interesting information on how
the model works.

66

Practical results

In particular, we can see how both the presence and the absence of certain words
is an integral part of the rules that are produced, as well as the co-occurrence of
terms together.
It can be noted, for example, that the absence of words like love and great is neces-
sary to determine that a sentence is negative. This observation is quite intuitive,
but one can also discover less immediate things.
For example, the absence of the word company is necessary for positivity of the
sentence. This is, perhaps, because it tends to be that, when company is mentioned,
it is to criticise something.
One can also observe for example that for many positive rules, the word wait is
required to be absent.
It can also be noted that, for negative rules, the word worth often does not have to
be there. Instead, it can be present when it is also accompanied by the word not.
In the negative rules we can also observe that the presence of the word not is often
required, even more than once, and instead the word restore is required not to be
present.
Finally, can also be noticed that in the negative rules it is often required that the
word view is not present, unlike for the positive rules where, when it is present, its
value is required to be 1 in general.

With regard specifically to Method 3, can be made similar observations with
respect to words and can be also made additional considerations with respect to
topics.
Indeed, with this method, can also be seen the presence or absence of topics, that
tends to influence the class label of the rules.
For example, can be seen that topic 0 is particularly requested to be 1 in the
positive rules, unlike topic 2, which is instead particularly requested to be 1 in the
negative ones.

Therefore, it is also important to analyse the topics because, not only do they
give improvements in accuracy, but these could also be explored in the future, by
looking at the words from which they are composed and, in this way, it is possible
to analyse in more detail the results of these methods.

67

Practical results

Figure 4.15: Rules obtained with Method 1 for positive instances
68

Practical results

Figure 4.16: Rules obtained with Method 1 for negative instances
69

Practical results

Figure 4.17: Rules obtained with Method 3 for positive instances

70

Practical results

Figure 4.18: Rules obtained with Method 3 for negative instances

71

Practical results

4.4.2 Further study: an alternative and complementary
representation with SHAP

This section will present a further analysis carried out in this work, with the aim
of making a preliminary analysis in the field that will be covered, that will give
some ideas for future works or for the continuation of this work. Consequently, it
will not be an exhaustive treatment, but only a mention of the most significant
and relevant results obtained.
Specifically, the SHapley Additive exPlanations (SHAP) method has been used,
with the aim of providing an alternative and complementary representation to the
one argued in the paragraph above, so as to highlight the strengths of our method
and at the same time complete and extend it, giving an increasingly comprehensive
interpretation of the model obtained.

SHAP is a game theoretic method, based on Shapley values [55] and their ex-
tensions, of explaining the output of machine learning models; it links optimal
credit allocation with local explanations [56], [57].
From a mathematical point of view, Shapley values from game theory have theoret-
ical guarantees, which are applied to local explanations of predictions of machine
learning models.
By using SHAP, Shapley values are calculated by feeding each feature, one by one,
into a conditional expectation function of the model output, and assigning the
shift generated at each step to the feature that was introduced, then averaging this
process over all available ordering of features [58].

The SHAP method can be applied both to models such as L3, that is already
explainable by itself, but mainly it can be applied to other machine learning algo-
rithms, such as SVM, which otherwise would not be interpretable.
In this thesis work it has only been applied to SVM, both because SVM is one of
the mothods that has been treated, and also to show the potential of this additional
layer applied to algorithms that cannot be interpreted directly. It has been used
the Method 1 to obtain the features.

Through the use of SHAP, a series of graphs is produced. The graphs allow
the global interpretation of the model, i.e. the impact of the input characteristics
on the model as a whole, and, more importantly, allow the local interpretation,
which reveals the impact of the input features on the individual predictions (i.e.
for a individual sample).

In this thesis, specifically, have been produced some graphs using the Explainer and
the kernelExpainer from [56], [57], which can provide useful and complementary

72

Practical results

information to our graphical representation. They will be analysed in the following.

1. Summary plot

Figure 4.19: Summary plot

SHAP Summary plot shows the magnitude, prevalence and direction of the
effect of a feature and it shows the positive and negative relationships of the
predictors with the target variable. It avoids conflating the magnitude and
prevalence of an effect into a single number, and thus reveals the rare large
effects.
This plot is shown in Figure 4.19, where in the x-axis there is the SHAP value,
that is the impact that feature has on the model prediction for that instance,
and on the y-axis there is the indication of the features. In this plot, each
point corresponds to a single instance, when several points stop at the same x
position, they accumulate to show the density [58].
The graph reveals also the feature importance, since variables are ranked in
descending order, and the direction of effects, e.g., how the presence of the
view attribute tends to lead to positive sentiment and its absence leads to
negative sentiment; vice versa, for example, for the not attribute. The color
indicates whether that variable is present (in red) or absent (in blue) for that

73

Practical results

observation.
The summary plot also shows the distribution of effect sizes, such as the long
right tails of many attributes. These long tails mean that attributes with a
low global relevance can be highly relevant for specific instances.
It can also be seen that most of the rare predictions are to the right and
therefore there are more ways to classify abnormally positive than negative,
except as regards the feature not.

2. Dependence plot
SHAP dependence plot shows how a feature’s value on x-axis impacts the
prediction on y-axis of every sample. It shows the marginal effect that one or
two attributes have on the expected output of a model and shows if the link
between the target and the variable is linear, monotonic or more complicated.
In addition, the Python SHAP module automatically integrates another fea-
ture with which the feature chosen interacts the most, so we can see how the
two variables interact [59].
In Figure 4.20, can be seen that the joint presence of not=1 and worth=1,
tends to reduce the SHAP value, driving to a negative prediction.
Another example of this plot can be found in Figure 4.21.

Figure 4.20: Dependence plot 1

74

Practical results

Figure 4.21: Dependence plot 2

3. Force plot
The force plot depicts the contribution of each feature to the process of moving
the value of the decision score from the base value (the average model output
over the dataset) to the value predicted by the classifier. Features that push
the prediction higher are shown in red, those that push the prediction lower
are shown in blue and the lengths of the bars are the corresponding feature
attributions [57].
It is a local explanation, in fact a single instance is passed at a time.

Let’s describe in more details the components of this plot.

• The output value is the prediction for that observation.
• The base value is “the value that would be predicted if we did not know

any features for the current output.” [60]; in simple terms, it is the mean
prediction.

• Red/blue: features that drive the forecast higher (positive prediction)
are displayed in red, and those that drive the forecast lower (negative
prediction) are displayed in blue.

In Figure 4.22, can be noticed that the prediction is 1 (positive) and
that the features not=0, view=1, city=1 push the prediction to an high
value, vice-versa the features restaur=0, great=0, that drive the prediction

75

Practical results

to a low value.
Similar observations can be done for the graph in Figure 4.23, in which
the prediction value is 0, i.e. negative prediction [61].

Figure 4.22: Force plot 1

Figure 4.23: Force plot 2

4. Waterfall plot
The Waterfall plot is an alternative and extended representation of the force
plot, but contains a similar information content. These plots are used to show
explanations for individual predictions.
The bottom of a waterfall diagram begins as the expected value of the model
output, and then each row shows how the positive (red) or negative (blue)
contribution of each feature shifts the value from the expected model output
on the background dataset to the model output for this prediction.
A couple of examples of a waterfall plots for two istances are reported in
Figures 4.24 and 4.25, where the outputs are respectively a positive and a
negative prediction and the features are sorted in order of importance.

76

Practical results

Figure 4.24: Waterfall plot 1

Figure 4.25: Waterfall plot 2

77

Practical results

5. Bar chart
The Bar chart plot in Figure 4.26 represents the average absolute value of the
SHAP values for each attribute. The objective is to obtain a standard bar
graph in which the importance of each attribute in determining a negative or
positive sentiment is highlighted.
As can be seen from Figure 4.26, the most important attribute is view, followed
by not and great.

Figure 4.26: Bar chart

As can be seen from these example graphs, SHAP certainly provides a rich and
accurate visualisation of the model. However, a point in favour of our rules repre-
sentation, which remains implicit in SHAP, is the highlighting of co-occurrence of
terms together, or more in general the correlation of terms with each other and the
label in output, as SHAP focuses mainly on the impact of features taken individually.

These were just a few examples of the plots that can be made with SHAP. There
are other plots that can be investigated, both generic for all machine learning
algorithms and more specific for tree classifiers or natural language models, like
those in the Hugging Face transformers library, for example.

An interesting further analys that could be done in the future is to apply SHAP
to individual instances of the dataset and identify the L3 rules that classify these
instances. In this way, could be possible to see at a glance the differences between

78

Practical results

the two methods of interpretation and visualisation and the added value of using
them together.

79

Chapter 5

Conclusion

To draw conclusions from this thesis work, it is stressed that, in order to obtain a
good Sentiment Analysis model, textual content on social networks, generated by
users voluntarily, on transport and sustainability, was exploited.
Indeed, it is thought to be more useful to directly analyse comments freely provided
on social networks, rather than polls, official statistics and traditional surveys
carried out by public administrations. Indeed, free comments, are more reflective
of the real opinion of users, who feel free to dwell on the aspects that struck them
most. A potentially valid idea is also that of integrating these two kinds of data
sources.
This analysis is particularly useful because transport pollution has increased a
lot in recent years, and, more in general, transport practices have an impact on
sustainability from a social, economic and environmental perspective [62], [63].
Consequently, politicians are looking for ways to address these problems by increas-
ing the efficiency and sustainability of the transport system.
Sentiment Analysis can therefore help them to this aim. In particular, it can help
to analyse the surveys and opinions expressed by users and so policy makers can
make more informed decisions, as they have more information to work with.
The results obtained in this work demonstrate the accuracy and the validity of this
approach, which can be extended to other datasets and contexts.

Now will be analyzed and summarized the major findings from this thesis work,
that are the following:

1. A new methodology to perform Sentiment Analysis has been defined, i.e.
through the use of rules and Associative Classifier and with the help of Topic
Modeling.

2. The best results obtained are quite good. They are also better than the
performance of the baselines with the SVM classifier (both those that use

81

Conclusion

topic modeling and those that do not), when models with the same number of
features are compared.
More specifically, the best results of Method 1 and Method 3 emerge, which
achieve the accuracies of 0.887 and 0.896, respectively. These are the highest
results obtained in this work. They are also higher than the accuracies of the
corresponding baselines with the SVM classifier applied to data transformed
using Method 1 and Method 3 (0.882 and 0.891 of accuracies, respectively).
This is an important result even if the gap is not very high. Indeed, it must
be considered that SVM is one of the best performing algorithms in machine
learning and also, specifically, in Sentiment Analysis. So the fact that our
method produces a slightly better result than SVM, is a very valuable point.
Moreover, SVM produces a model that is not readable and not interpretable,
unlike the rules produced by our method. These rules are perfectly readable,
both with the human eye, with algorithms and with graphs.

3. Through the use of L3 and the production of association rules, we were able
to obtain a readable and summarizing model. It provides the main words
and concept associations, regarding positive and negative opinions, about
sustainable transport.
Through this model, a graphical representation has been obtained that allows
an immediate analysis of these concepts. In particular, it allows to analyse the
correlation and co-occurrence of concepts and terms together. The insights
obtained from this representation can be used by the administrations to
improve the service offered.
In addition, the issue of interpretability was further explored by implementing
an alternative representation using SHAP. This provides additional information
about the models and the contribution of the features. It can be used in
conjunction with our representation.

The negative aspect of the method defined in this thesis work is that the process is
very slow as the number of features fed to the model increases. In particular, the
computation time starts to become unsustainable beyond 23 features.

5.1 Future work
Many of the things that have been done in this thesis work and the methodology
developed, in the future could be extended to other works of the same type,
analyzing larger corpora or other types of data. This methodology can also be
applied in other different contexts.
On a practical side, the improvements that could be carried out are as follows.
Probably, a better parameter tuning technique can be implemented, so as to cover

82

Conclusion

the search space more exhaustively and find better configurations.
Moreover, it could be found a way to parallelize the process or to use more powerful
machines. In this way, the L3 classifier could also be used with a greater number
of features.
In addition, could be investigated the Topic Modeling aspects. Can be found a
metric that works correctly for our purpose and that allows us to create better
subdivided topics, instead of relying on extrinsic evaluation after applying L3

classifier.
One could also try other Topic Modeling algorithms, which maybe work better for
this dataset and task. For example, Non-Negative Matrix Factorization (NMF)
algorithm has good performance even with a limited size dataset, like ours [64].
Finally, the interpretability aspect of the model could be further investigated. The
preliminary analysis made in this thesis work on SHAP can be deepened and the
complementarity of this method with the rules produced by L3 can be studied.
For example, one could apply SHAP to individual instances of the dataset and
devise a way to identify the L3 rules that classify these instances. In this way,
could be possible to see at a glance the differences between the two methods of
interpretation and visualisation, and the added value of using them together.

83

Bibliography

[1] B.B. Gupta, D. Perakovi?, A.A. Abd El-Latif, and D. Gupta. Data Min-
ing Approaches for Big Data and Sentiment Analysis in Social Media. Ad-
vances in Data Mining and Database Management. IGI Global, 2021. isbn:
9781799884156. url: https://books.google.it/books?id=jP16zgEACAAJ
(cit. on p. 2).

[2] Ainhoa Serna, Aitor Soroa, and Rodrigo Agerri. «Applying Deep Learning
Techniques for Sentiment Analysis to Assess Sustainable Transport». In:
Sustainability 13.4 (2021). issn: 2071-1050. doi: 10.3390/su13042397. url:
https://www.mdpi.com/2071-1050/13/4/2397 (cit. on pp. 2, 29, 30).

[3] Elena Baralis, Silvia Chiusano, and Paolo Garza. «A Lazy Approach to
Associative Classification». In: IEEE Transactions on Knowledge and Data
Engineering 20.2 (2008), pp. 156–171. doi: 10.1109/TKDE.2007.190677
(cit. on p. 2).

[4] Venkata Sai Rishita Middi, Middi Raju, and Tanvir Ahmed Harris. «Machine
translation using natural language processing». In: MATEC Web of Confer-
ences 277 (Jan. 2019), p. 02004. doi: 10.1051/matecconf/201927702004
(cit. on p. 5).

[5] Ye Jia, Ron J. Weiss, Fadi Biadsy, Wolfgang Macherey, Melvin Johnson, Z.
Chen, and Yonghui Wu. «Direct speech-to-speech translation with a sequence-
to-sequence model». In: ArXiv abs/1904.06037 (2019) (cit. on p. 5).

[6] Martin Popel, Markéta Tomková, Jakub Tomek, Łukasz Kaiser, Jakob Uszko-
reit, Ondrej Bojar, and Z. Žabokrtský. «Transforming machine translation: a
deep learning system reaches news translation quality comparable to human
professionals». In: Nature Communications 11 (2020) (cit. on p. 5).

[7] Vyacheslav Lyashenko, F. Laariedh, Lana Sotnik, and Ayaz Ahmad. «Recog-
nition of Voice Commands Based on Neural Network». In: TEM Journal 10
(May 2021), pp. 583–591. doi: 10.18421/TEM102-13 (cit. on pp. 5, 6).

84

https://books.google.it/books?id=jP16zgEACAAJ
https://doi.org/10.3390/su13042397
https://www.mdpi.com/2071-1050/13/4/2397
https://doi.org/10.1109/TKDE.2007.190677
https://doi.org/10.1051/matecconf/201927702004
https://doi.org/10.18421/TEM102-13

BIBLIOGRAPHY

[8] Ted Zhang, Dengxin Dai, Tinne Tuytelaars, Marie-Francine Moens, and Luc
Van Gool. «Speech-Based Visual Question Answering». In: ArXiv abs/1705.00464
(2017) (cit. on p. 5).

[9] Catalin Ungurean and Dragos Burileanu. «An advanced NLP framework for
high-quality Text-to-Speech synthesis». In: (May 2011). doi: 10.1109/SPED.
2011.5940733 (cit. on p. 5).

[10] Ishitva Awasthi, Kuntal Gupta, Prabjot Singh Bhogal, Sahejpreet Singh
Anand, and Piyush Kumar Soni. «Natural Language Processing (NLP) based
Text Summarization - A Survey». In: 2021 6th International Conference
on Inventive Computation Technologies (ICICT). 2021, pp. 1310–1317. doi:
10.1109/ICICT50816.2021.9358703 (cit. on p. 5).

[11] Mehdi Allahyari, Seyedamin Pouriyeh, Mehdi Assefi, Saeid Safaei, Elizabeth
D. Trippe, Juan B. Gutierrez, and Krys Kochut. «Text Summarization Tech-
niques: A Brief Survey». In: International Journal of Advanced Computer
Science and Applications 8.10 (2017). doi: 10.14569/IJACSA.2017.081052.
url: http://dx.doi.org/10.14569/IJACSA.2017.081052 (cit. on p. 5).

[12] Rachit Garg, Arvind W Kiwelekar, Laxman D Netak, and Akshay Ghodake.
«i-Pulse: A NLP based novel approach for employee engagement in logistics
organization». In: International Journal of Information Management Data
Insights 1.1 (Apr. 2021), p. 100011. issn: 2667-0968. doi: 10.1016/j.jjimei.
2021.100011. url: http://dx.doi.org/10.1016/j.jjimei.2021.100011
(cit. on p. 5).

[13] Kavitha Raju. «Speech Based Voice Recognition System for Natural Language
Processing». In: International Journal of Computer Science and Information
Technogy (Aug. 2014) (cit. on p. 6).

[14] Meena Rambocas. «Marketing research: The role of sentiment analysis». In:
FEP WORKING PAPER SERIES (Apr. 2013) (cit. on p. 7).

[15] Cane Leung and Stephen Chan. «Sentiment Analysis of Product Reviews».
In: (Jan. 2008) (cit. on p. 7).

[16] Nicola Capuano, Luca Greco, Pierluigi Ritrovato, and Mario Vento. «Senti-
ment analysis for customer relationship management: an incremental learning
approach». eng. In: Applied intelligence (Dordrecht, Netherlands) 51.6 (2020),
pp. 3339–3352. issn: 0924-669X (cit. on p. 7).

[17] Georgios Petasis, Dimitris Spiliotopoulos, Nikos Tsirakis, and P. Tsantilas.
«Large-scale Sentiment Analysis for Reputation Management». In: Sept. 2013
(cit. on p. 7).

85

https://doi.org/10.1109/SPED.2011.5940733
https://doi.org/10.1109/SPED.2011.5940733
https://doi.org/10.1109/ICICT50816.2021.9358703
https://doi.org/10.14569/IJACSA.2017.081052
http://dx.doi.org/10.14569/IJACSA.2017.081052
https://doi.org/10.1016/j.jjimei.2021.100011
https://doi.org/10.1016/j.jjimei.2021.100011
http://dx.doi.org/10.1016/j.jjimei.2021.100011

BIBLIOGRAPHY

[18] Federico Neri, Carlo Aliprandi, Federico Capeci, Montse Cuadros, and Tomas
By. «Sentiment Analysis on Social Media». In: Aug. 2012. doi: 10.1109/
ASONAM.2012.164 (cit. on p. 7).

[19] Thilageswari a/p Sinnasamy and Nilam Nur Amir Sjaif. «A Survey on Sen-
timent Analysis Approaches in e-Commerce». In: International Journal of
Advanced Computer Science and Applications 12.10 (2021). doi: 10.14569/
IJACSA.2021.0121074. url: http://dx.doi.org/10.14569/IJACSA.2021.
0121074 (cit. on p. 7).

[20] Antony Samuels and John Mcgonical. Sentiment Analysis on Customer Re-
sponses. July 2020 (cit. on p. 7).

[21] Zhaoxia Wang, Chee Seng Chong, Landy Lan, Yinping Yang, Seng Ho, and
Joo Tong. «Fine-grained sentiment analysis of social media with emotion
sensing». In: Dec. 2016, pp. 1361–1364. doi: 10.1109/FTC.2016.7821783
(cit. on p. 8).

[22] Bharat Gaind, Varun Syal, and Sneha Padgalwar. «Emotion Detection and
Analysis on Social Media». In: ArXiv abs/1901.08458 (2019) (cit. on p. 8).

[23] Francisca Acheampong, Chen Wenyu, and Henry Nunoo-Mensah. Text-Based
Emotion Detection: Advances, Challenges and Opportunities. Apr. 2020 (cit.
on p. 8).

[24] Haoyue Liu, Ishani Chatterjee, Mengchu Zhou, Sean Lu, and Abdullah Abusor-
rah. «Aspect-Based Sentiment Analysis: A Survey of Deep Learning Methods».
In: IEEE Transactions on Computational Social Systems PP (Nov. 2020),
pp. 1–18. doi: 10.1109/TCSS.2020.3033302 (cit. on p. 8).

[25] R. Sunitha Syam Mohan E. «Survey On Aspect Based Sentiment Analysis
Using Machine Learning Techniques». In: European Journal of Molecular amp;
Clinical Medicine 7.10 (2021), pp. 1664–1684. issn: 2515-8260. eprint: https:
//ejmcm.com/article__fc9dd6d90bfe72a036f8a9ea0ede617e6773.pdf.
url: https://ejmcm.com/article_6773.html (cit. on p. 8).

[26] Souvic Chakraborty, Pawan Goyal, and Animesh Mukherjee. «Aspect-based
Sentiment Analysis of Scientific Reviews». In: Proceedings of the ACM/IEEE
Joint Conference on Digital Libraries in 2020 (Aug. 2020). doi: 10.1145/
3383583.3398541. url: http://dx.doi.org/10.1145/3383583.3398541
(cit. on p. 8).

[27] Say Hong Lye and Phoey Lee Teh. «Customer Intent Prediction using Sen-
timent Analysis Techniques». In: 2021 11th IEEE International Conference
on Intelligent Data Acquisition and Advanced Computing Systems: Technol-
ogy and Applications (IDAACS). Vol. 1. 2021, pp. 185–190. doi: 10.1109/
IDAACS53288.2021.9660391 (cit. on p. 8).

86

https://doi.org/10.1109/ASONAM.2012.164
https://doi.org/10.1109/ASONAM.2012.164
https://doi.org/10.14569/IJACSA.2021.0121074
https://doi.org/10.14569/IJACSA.2021.0121074
http://dx.doi.org/10.14569/IJACSA.2021.0121074
http://dx.doi.org/10.14569/IJACSA.2021.0121074
https://doi.org/10.1109/FTC.2016.7821783
https://doi.org/10.1109/TCSS.2020.3033302
https://ejmcm.com/article__fc9dd6d90bfe72a036f8a9ea0ede617e6773.pdf
https://ejmcm.com/article__fc9dd6d90bfe72a036f8a9ea0ede617e6773.pdf
https://ejmcm.com/article_6773.html
https://doi.org/10.1145/3383583.3398541
https://doi.org/10.1145/3383583.3398541
http://dx.doi.org/10.1145/3383583.3398541
https://doi.org/10.1109/IDAACS53288.2021.9660391
https://doi.org/10.1109/IDAACS53288.2021.9660391

BIBLIOGRAPHY

[28] Cohan Sujay Carlos and Madhulika Yalamanchi. «Intention Analysis for Sales,
Marketing and Customer Service». In: Proceedings of COLING 2012: Demon-
stration Papers. Mumbai, India: The COLING 2012 Organizing Committee,
Dec. 2012, pp. 33–40. url: https://aclanthology.org/C12-3005 (cit. on
p. 8).

[29] C.J. Hutto and Eric Gilbert. «VADER: A Parsimonious Rule-based Model
for Sentiment Analysis of Social Media Text». In: Jan. 2015 (cit. on p. 9).

[30] Edward Loper and Steven Bird. NLTK: The Natural Language Toolkit. 2002.
arXiv: cs/0205028 [cs.CL] (cit. on pp. 10, 30).

[31] Vikramkumar, B Vijaykumar, and Trilochan. «Bayes and Naive Bayes Classi-
fier». In: ArXiv abs/1404.0933 (2014) (cit. on p. 12).

[32] Moo Chung. Introduction to logistic regression. Aug. 2020 (cit. on p. 12).
[33] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. «A Training

Algorithm for Optimal Margin Classifiers». In: Proceedings of the Fifth An-
nual Workshop on Computational Learning Theory. COLT ’92. Pittsburgh,
Pennsylvania, USA: Association for Computing Machinery, 1992, pp. 144–152.
isbn: 089791497X. doi: 10.1145/130385.130401. url: https://doi.org/
10.1145/130385.130401 (cit. on p. 12).

[34] Gwanghoon Yoo and Jeesun Nam. «A Hybrid Approach to Sentiment Analysis
Enhanced by Sentiment Lexicons and Polarity Shifting Devices». In: The 13th
Workshop on Asian Language Resources. Ed. by Kiyoaki Shirai. The 13th
Workshop on Asian Language Resources. Kiyoaki Shirai. Miyazaki, Japan,
May 2018, pp. 21–28. url: https://hal.archives-ouvertes.fr/hal-
01795217 (cit. on p. 23).

[35] Massimo La Rosa, Antonino Fiannaca, Riccardo Rizzo, and Alfonso Urso.
«Probabilistic topic modeling for the analysis and classification of genomic
sequences». In: BMC Bioinformatics 16 (Apr. 2015), S2. doi: 10.1186/1471-
2105-16-S6-S2 (cit. on p. 24).

[36] Lin Liu, Lin Tang, Wen Dong, Shaowen Yao, and Wei Zhou. «An overview of
topic modeling and its current applications in bioinformatics». In: SpringerPlus
5 (Sept. 2016). doi: 10.1186/s40064-016-3252-8 (cit. on p. 24).

[37] Maarten Grootendorst. Concept. Nov. 2021. url: https://towardsdatasc
ience.com/topic-modeling-on-images-why-not-aad331d03246 (cit. on
p. 24).

[38] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. «Latent dirichlet
allocation». In: J. Mach. Learn. Res. 3 (2003), pp. 993–1022. issn: 1532-
4435. doi: http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993. url:
http://portal.acm.org/citation.cfm?id=944937 (cit. on p. 24).

87

https://aclanthology.org/C12-3005
https://arxiv.org/abs/cs/0205028
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://doi.org/10.1145/130385.130401
https://hal.archives-ouvertes.fr/hal-01795217
https://hal.archives-ouvertes.fr/hal-01795217
https://doi.org/10.1186/1471-2105-16-S6-S2
https://doi.org/10.1186/1471-2105-16-S6-S2
https://doi.org/10.1186/s40064-016-3252-8
https://towardsdatascience.com/topic-modeling-on-images-why-not-aad331d03246
https://towardsdatascience.com/topic-modeling-on-images-why-not-aad331d03246
https://doi.org/http://dx.doi.org/10.1162/jmlr.2003.3.4-5.993
http://portal.acm.org/citation.cfm?id=944937

BIBLIOGRAPHY

[39] Alexis Conneau et al. «Unsupervised Cross-lingual Representation Learning
at Scale». In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational Linguistics,
July 2020, pp. 8440–8451. doi: 10.18653/v1/2020.acl-main.747. url:
https://aclanthology.org/2020.acl-main.747 (cit. on p. 29).

[40] Fabian Pedregosa et al. «Scikit-learn: Machine Learning in Python». In:
Journal of Machine Learning Research 12 (Jan. 2012) (cit. on p. 32).

[41] Peter Willett. «The Porter stemming algorithm: Then and now». In: Program
electronic library and information systems 40 (July 2006). doi: 10.1108/
00330330610681295 (cit. on p. 33).

[42] Martin F. Porter. Snowball: A language for stemming algorithms. Published
online. Accessed 11.03.2008, 15.00h. Oct. 2001. url: http://snowball.
tartarus.org/texts/introduction.html (cit. on p. 33).

[43] Chris D. Paice. «Another Stemmer.» In: SIGIR Forum 24.3 (1990), pp. 56–61.
url: http://dblp.uni-trier.de/db/journals/sigir/sigir24.html#
Paice90 (cit. on p. 33).

[44] A. Cognolato G. Attanasio. L3 Python Wrapper. https://github.com/
g8a9/l3wrapper. 2020 (cit. on p. 34).

[45] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. «Understanding bag-of-words model:
A statistical framework». In: International Journal of Machine Learning and
Cybernetics 1 (Dec. 2010), pp. 43–52. doi: 10.1007/s13042-010-0001-0
(cit. on p. 34).

[46] Radim Rehurek and Petr Sojka. «Gensim–python framework for vector space
modelling». In: NLP Centre, Faculty of Informatics, Masaryk University,
Brno, Czech Republic 3.2 (2011) (cit. on p. 37).

[47] Matthew Hoffman, Francis Bach, and David Blei. «Online Learning for Latent
Dirichlet Allocation». In: Advances in Neural Information Processing Systems.
Ed. by J. Lafferty, C. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta.
Vol. 23. Curran Associates, Inc., 2010. url: https://proceedings.neurips.
cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
(cit. on p. 38).

[48] Michael Röder, Andreas Both, and Alexander Hinneburg. «Exploring the
Space of Topic Coherence Measures». In: Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining. WSDM ’15. Shang-
hai, China: Association for Computing Machinery, 2015, pp. 399–408. isbn:
9781450333177. doi: 10.1145/2684822.2685324. url: https://doi.org/
10.1145/2684822.2685324 (cit. on p. 39).

88

https://doi.org/10.18653/v1/2020.acl-main.747
https://aclanthology.org/2020.acl-main.747
https://doi.org/10.1108/00330330610681295
https://doi.org/10.1108/00330330610681295
http://snowball.tartarus.org/texts/introduction.html
http://snowball.tartarus.org/texts/introduction.html
http://dblp.uni-trier.de/db/journals/sigir/sigir24.html#Paice90
http://dblp.uni-trier.de/db/journals/sigir/sigir24.html#Paice90
https://github.com/g8a9/l3wrapper
https://github.com/g8a9/l3wrapper
https://doi.org/10.1007/s13042-010-0001-0
https://proceedings.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://proceedings.neurips.cc/paper/2010/file/71f6278d140af599e06ad9bf1ba03cb0-Paper.pdf
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324

BIBLIOGRAPHY

[49] Carson Sievert and Kenneth Shirley. «LDAvis: A method for visualizing and
interpreting topics». In: June 2014. doi: 10.13140/2.1.1394.3043 (cit. on
p. 39).

[50] Ekaba Bisong. «Google Colaboratory». In: Building Machine Learning and
Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for
Beginners. Berkeley, CA: Apress, 2019, pp. 59–64. isbn: 978-1-4842-4470-8.
doi: 10.1007/978-1-4842-4470-8_7. url: https://doi.org/10.1007/
978-1-4842-4470-8_7 (cit. on p. 45).

[51] Liangjie Hong and Brian D. Davison. «Empirical Study of Topic Modeling in
Twitter». In: Proceedings of the First Workshop on Social Media Analytics.
SOMA ’10. Washington D.C., District of Columbia: Association for Computing
Machinery, 2010, pp. 80–88. isbn: 9781450302173. doi: 10.1145/1964858.
1964870. url: https://doi.org/10.1145/1964858.1964870 (cit. on p. 45).

[52] Benjamin Bengfort and Rebecca Bilbro. «Yellowbrick: Visualizing the Scikit-
Learn Model Selection Process». In: Journal of Open Source Software 4.35
(2019), p. 1075. doi: 10.21105/joss.01075. url: https://doi.org/10.
21105/joss.01075 (cit. on p. 46).

[53] Shahzad Qaiser and Ramsha Ali. «Text Mining: Use of TF-IDF to Examine
the Relevance of Words to Documents». In: International Journal of Computer
Applications 181 (July 2018). doi: 10.5120/ijca2018917395 (cit. on p. 47).

[54] «TF–IDF». In: Encyclopedia of Machine Learning. Ed. by Claude Sammut
and Geoffrey I. Webb. Boston, MA: Springer US, 2010, pp. 986–987. isbn:
978-0-387-30164-8. doi: 10.1007/978-0-387-30164-8_832. url: https:
//doi.org/10.1007/978-0-387-30164-8_832 (cit. on p. 47).

[55] Michael Maschler, Eilon Solan, and Shmuel Zamir. «The Shapley value». In:
Game Theory. Cambridge University Press, 2013, pp. 748–781. doi: 10.1017/
CBO9780511794216.019 (cit. on p. 72).

[56] Scott M Lundberg and Su-In Lee. «A Unified Approach to Interpreting
Model Predictions». In: Advances in Neural Information Processing Systems
30. Ed. by I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett. Curran Associates, Inc., 2017, pp. 4765–4774.
url: http://papers.nips.cc/paper/7062-a-unified-approach-to-
interpreting-model-predictions.pdf (cit. on p. 72).

[57] Shap: A game theoretix approach to explain the output of any machine learning
model. 2018. url: https://github.com/slundberg/shap (cit. on pp. 72,
75).

[58] Scott M. Lundberg et al. Explainable AI for Trees: From Local Explanations
to Global Understanding. 2019. doi: 10.48550/ARXIV.1905.04610. url:
https://arxiv.org/abs/1905.04610 (cit. on pp. 72, 73).

89

https://doi.org/10.13140/2.1.1394.3043
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1145/1964858.1964870
https://doi.org/10.1145/1964858.1964870
https://doi.org/10.1145/1964858.1964870
https://doi.org/10.21105/joss.01075
https://doi.org/10.21105/joss.01075
https://doi.org/10.21105/joss.01075
https://doi.org/10.5120/ijca2018917395
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1007/978-0-387-30164-8_832
https://doi.org/10.1017/CBO9780511794216.019
https://doi.org/10.1017/CBO9780511794216.019
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
https://github.com/slundberg/shap
https://doi.org/10.48550/ARXIV.1905.04610
https://arxiv.org/abs/1905.04610

BIBLIOGRAPHY

[59] Towards Data Science. Explain Any Models with the SHAP Values. url:
https://towardsdatascience.com/explain- any- models- with- the-
shap-values-use-the-kernelexplainer-79de9464897a (cit. on p. 74).

[60] Scott M Lundberg and Su-In Lee. «A Unified Approach to Interpreting Model
Predictions». In: Advances in Neural Information Processing Systems. Ed. by
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett. Vol. 30. Curran Associates, Inc., 2017. url: https://
proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd
28b67767-Paper.pdf (cit. on p. 75).

[61] Towards Data Science. Explain your Models with the SHAP Values. url:
https://towardsdatascience.com/explain- your- model- with- the-
shap-values-bc36aac4de3d (cit. on p. 76).

[62] Henrik Gudmundsson, Ralph P. Hall, Greg Marsden, and Josias Zietsman.
«Sustainable Transportation - Indicators, Frameworks, and Performance Man-
agement». English. In: Springer Texts in Business and Economics. Springer,
2015. isbn: 978-3-662-46923-1. doi: 10.1007/978-3-662-46924-8 (cit. on
p. 81).

[63] Todd Litman and David G. Burwell. «Issues in sustainable transportation».
In: International Journal of Global Environmental Issues 6 (2006), pp. 331–
347 (cit. on p. 81).

[64] Zhikui Chen, Shan Jin, Runze Liu, and Jianing Zhang. «A Deep Non-negative
Matrix Factorization Model for Big Data Representation Learning». In: Fron-
tiers in Neurorobotics 15 (2021). issn: 1662-5218. doi: 10.3389/fnbot.2021.
701194. url: https://www.frontiersin.org/article/10.3389/fnbot.
2021.701194 (cit. on p. 83).

90

https://towardsdatascience.com/explain-any-models-with-the-shap-values-use-the-kernelexplainer-79de9464897a
https://towardsdatascience.com/explain-any-models-with-the-shap-values-use-the-kernelexplainer-79de9464897a
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
https://towardsdatascience.com/explain-your-model-with-the-shap-values-bc36aac4de3d
https://doi.org/10.1007/978-3-662-46924-8
https://doi.org/10.3389/fnbot.2021.701194
https://doi.org/10.3389/fnbot.2021.701194
https://www.frontiersin.org/article/10.3389/fnbot.2021.701194
https://www.frontiersin.org/article/10.3389/fnbot.2021.701194

	List of Figures
	Acronyms
	Introduction
	Theoretical background
	Text Mining
	Sentiment Analysis
	Types of Sentiment Analysis
	Sentiment Analysis algorithms
	Rule-based or lexicon-based approach
	Machine Learning approach

	Topic Modeling
	Latent Dirichlet Allocation (LDA))

	Methodology
	Dataset used
	Pre-processing phase
	L3 and L3 wrapper usage
	Baselines
	Baseline 1: N most frequent words
	SVM baselines
	Vader

	The application of Topic Modelling
	Parameter search
	Generation of methods

	The 5 methods with features obtained through topic modelling
	Method 1
	Method 2A
	Method 2B
	Method 2C
	Method 3

	Practical results
	Preliminary statistics on frequency
	Baseline results
	Baseline 1: N most frequent words
	N most frequent words + SVM
	Method 1 + SVM
	Method 2B + SVM
	Method 3 + SVM
	Vader

	Results of the 5 methods used for Sentiment Analysis
	Method 1
	Method 2A
	Method 2B
	Method 2C
	Method 3

	Interpretability
	Graphical representations and L3 Human readable
	Further study: an alternative and complementary representation with SHAP

	Conclusion
	Future work

	Bibliography

