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Abstract

A Graphical Processing Unit (GPU) is a computer chip that renders graphics and im-

ages by performing rapid mathematical calculations. In recent years, GPUs are exploited

for reasons beyond graphics processing as General Purpose GPUs (GPGPUs); they work

as hardware accelerators for high-performance computing in many different fields, includ-

ing safety-critical applications. In these domains, Convolutional Neural Networks (CNNs)

represent a widely used computing approach, which is well supported by GPU, since they

leverage data and thread-level parallelism. Considering this information, the reliability

evaluation of GPUs is needed to meet desired requirements. To achieve this objective,

it is necessary to study the GPU behavior in presence of hardware faults. In this thesis

project, in particular, the presence of permanent faults affecting GPU functionalities has

been analyzed. A permanent fault persists indefinitely after its occurrence: it manifests

as stuck-at bits in the architecture that is, lines that always carry the logical signal “0”

or “1”. Those faults can be mimicked by injecting via software errors in the code run-

ning on the GPU; this could be obtained masking at assembly level one or more bit of

a selected register before or after the corresponding instruction is executed. Therefore,

in this work, it has been developed a framework, based on a binary instrumentation tool

(NVBitFI), designed to properly perform permanent fault injection campaigns. Some

injection techniques were elaborated to target distinct elements inside a GPU Streaming

Multiprocessor: the Register Files and the Functional Units (Floating Point, Integer and

Special Function Units). The presented environment has been used to test an NVIDIA

GPU with a specific CNN target application, i.e., the LeNet model available in Darknet

environment. To support the framework, many fault simulations were performed, and the

obtained results were analyzed and compared.
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CHAPTER 1

Introduction

1.1 Motivations and Thesis Contribution

Currently, Deep Learning and especially Convolutional Neural Networks (CNNs)

have become a fundamental computational approach applied in a wide range of domains,

including some safety-critical applications (e.g., automotive, robotics, and healthcare

equipment). In these domains GPUs are used as hardware accelerators. Therefore, the

reliability evaluation of those computational systems is mandatory.

Reliability is a property of a system, and it is defined as the probability that it will

perform its intended function adequately for a specified period of time, or will operate in a

defined environment without failure. A failure is generated, as effect of error propagation

up to the output of the system. Meaning that the results generated are in someway wrong.

The internal errors are activated by faults, depending on various conditions.

A Fault is, instead, a defect in the electronic system. The faults can be divided

in two categories: permanent and transient. Permanent faults are stable defects in the

system’s components, such as wires tied to fixed logic values (stuck-at 0 or 1). Their

permanence could affect all the system computations. Transient faults are temporary,

meaning that after a certain period of time, during which they could affect the system

behavior, they could disappear.

The main goal of this project is to evaluate the reliability of Graphical Processing

Units (GPUs), executing high computational demanding applications, as Convolutional

Neural Networks (CNNs). In many previous works, CNNs were tested on GPUs mostly

for the presence of transient faults through the use of instrumentation tools, as SASSIFI

or NVBitFI, able to soft inject fault in specific location imitating the presence of hardware

random misbehavior due to radiations. Permanent faults testing is, instead, more com-

plex; it requires that the effect generated by the error injection is kept for a longer time

1



Chapter 1 – Introduction 2

with respect to transient faults. For this research work, it has been chosen to focus on

permanent fault injections in NVIDIA GPUs. The presence of a hard fault is simulated

by a tool, able to dynamically perform the hard errors injection at assembly instruction

level. Starting from the NVBitFI basic functionality to perform single instruction perma-

nent fault injections, a complete environment was developed in order to support accurate

injections campaigns. The framework functionalities are based on the usage of a profile

function to collect meaningful information about the application behavior on the target

GPU, and an inject function able to perform fault injections targeting register files and

functional units. The tool is automated by means of custom scripts, able to generate a

proper fault list, gather information about injection results and perform a fault classi-

fication. A specific target application was chosen to perform the tests. The LeNet [1]

Convolutional Neural Network (CNN) model available in the Darknet environment [2] is

tested, using the MNIST dataset for training and inference [3].

A brief description of the content of each chapter of this work follows.

In Chapter 1 - Introduction, the main objectives and motivations of the thesis work

are described.

In Chapter 2 - Backgrounds, the needed information for understanding the concepts

in this research is explained in details, with particular emphasis on NVIDIA GPU archi-

tectures elements description and functioning, general-purpose computing on GPU based

on CNNs, a bibliographic overview about CNN reliability evaluation and NVBitFI tool

description.

In Chapter 3 - Permanent Fault Injection Framework, the developed tool is described

justifying the taken choices for the implementation and all its functionalities.

In Chapter 4 - Experimental Results, some faults simulations results in several cases

are shown and analyzed.

In Chapter 5 - Conclusions, the conclusions of the thesis are presented, showing

what could be highlighted from the overall results.



CHAPTER 2

Backgrounds

In this chapter, some information required to understand the concepts, illustrated

in next sections, are explained in details. The chapter proposes a description of NVIDIA

GPU functioning and Convolutional Neural Networks, a bibliographic overview about

CNN reliability evaluation on hardware accelerators and NVBitFI tool description.

2.1 GPU: Architectures and Functioning

In recent years, in many different applications, as safety-critical ones, the computa-

tional power demand is significantly increased and the traditional single-core architectures

are not able to meet the required performance. As a result, the trend of last years is to

exploit parallel processing in those fields. A program able to run in a parallel way, using

several hardware units, is able to be much more faster than a single sequential based

one; parallelism means trying to execute the same instruction, hence the same operation,

independently on separate computational units. This solution provides systems with a

significant increase in processing speed, however there are many issues to be faced with

this strategy. In particular, these are: the code partitioning into sections to be distributed

or issued in parallel, scheduling the sections and allowing intra-sections communication.

From this idea, it is necessary to establish how to generate a parallel enabled code. The

smallest sequence of programmed instructions, that can be managed independently, and

so in parallel, by a scheduler is a thread of execution. A thread is the fundamental building

block of a parallel program; it is like a process, in that it has state and current program

counter; but typically, threads of the same process, share the address space, allowing a

thread to easily access data of other threads within the same process. Multithreading is

a technique whereby multiple threads share a processor without requiring an intervening

process switch. The ability to rapidly switch between threads is what enables multi-

threading to be used to hide pipeline and memory latency issues, usually affecting CPUs

3
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[4].

While single, double or quad core CPUs are optimized for applications with a limited

number of threads, executing several type of different possible operations, and character-

ized by an high percentage of conditional branches; Graphical Processing Units (GPUs)

are instead suited for applications with multiple threads that are dominated by longer

sequences of computational instructions. As illustrated in Figure 2.1, a GPU consists of

many functional units with only a few support elements, allowing an high level of parallel

processing [5]. These characteristics of modern GPUs are used for intensive computations

applications.

Figure 2.1: CPU and GPU general architectures, taken from [6]

The parallel programming model adopted for NVIDIA GPUs consists in writing

special functions, executing parallel operations, named Kernels. A kernel is just a name

for a function that executes on the GPU.

Each Kernel is issued by the Host (CPU) on a Device (GPU). It is launched as a

grid of elements, that is simply a 2D set of blocks. Each block is composed of a defined

number of threads [7]. In this way threads are packed together and GPU is responsible

to assign them to internal cores (Figure 2.2).
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Figure 2.2: Blocks distribution, taken from [6]

NVIDIA GPUs are, in fact, used as GPGPU adopting the idea of Single-Instruction

Multiple-Threads (SIMT), introduced by NVIDIA itself, consisting in applying one in-

struction to multiple independent threads in parallel, not just multiple data lanes as

enabled by Single-Instruction Multiple-Data (SIMD) approach. SIMT is basically an ex-

ecution model used in parallel computing where single instruction, multiple data (SIMD)

is combined with multithreading [4]. Each SIMT instruction controls the execution and

branching behavior of one thread while in SIMD design, it is applied one instruction to a

vector of multiple data lanes together [8].

To program a GPU it is necessary to write in OpenCL or CUDA language the ker-

nels to be executed. The compiler first transforms the code into PTX form. Successively,

a code generator and translator maps PTX to specific target machines’ assembly lan-

guage. SASS is the low-level assembly language that compiles to binary microcode, which

executes natively on NVIDIA GPU hardware. The Parallel Thread Execution (PTX)

programming model is explicitly parallel: a PTX program specifies the execution of a

given thread of a parallel thread array (CTA, or Cooperative Thread Array). PTX pro-

vides a stable ISA (Instruction Set Architecture) that spans multiple GPU generations,

meaning that it is machine-independent and scalable [9]. This intermediate step is crucial

to guarantee the portability of the code among different GPU’s micro-architectures. The



Chapter 2 – Backgrounds 6

Figure 2.3: General CUDA GPU architecture and SM detail

language mostly adopted in NVIDIA GPU programming is Compute Unified Device Ar-

chitecture (CUDA) which is an extension to the C language used to invoke a kernel and

set up device-specific operations. The CUDA software stack consists of CUDA hardware

driver, mathematical libraries and CUDA API [10].

A basic NVIDIA GPU consists of an array of computing unit blocks known as

Streaming Multiprocessors (SMs), which are able to execute multiple threads on separate

execution units independently; having their own context, with its own instruction address

and register state. The main parts composing a GPU are shown in the Figure 2.3. It is

possible to observe the presence of the Block Scheduler used to assign block of threads to

different SMs and the SMs consisting of independent Warp Schedulers, Dispatch Units,

Shared Memory, Register File and a set of functional units (Streaming Processors or

CUDA cores) able to execute integer, floating-point, load-store and transcendental func-

tion operations [8] [11].

The Block scheduler is in charge of distributing, on the available SMs, blocks of
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threads to be executed in parallel following the maximum occupancy of the GPU. This

allows to maximize the parallelization of tasks. Each block of threads is divided in groups

of 32 threads called Warps. Many Warps are then assigned to execute concurrently on a

single GPU SM in a bench of execution called cooperative thread array (CTA). The Warp

Scheduler, internal to the SM, issues successive instructions to the Warp’s active threads.

Consequently, the SM maps the Warp’s threads to the internal cores, and each

thread executes independently on a selected core.

Since each SM is divided in four sub-blocks each containing several cores, the al-

location is done by mapping the Warp identifier to the range (0-3); whereas the Lane

identifier is used to define the used core, in dependence on the type of instruction.

The SIMT strategy works with full efficiency when all 32 threads of a warp take

the same execution path. Some individual threads can be inactive due to independent

branching or predication. If threads of a Warp diverge via a data dependent conditional

branch, the Warp executes each branch taken path serially, disabling execution of threads

that are not on that path; and when all paths complete, the threads ”reconverge” to the

original execution path. Branch divergence can only occurs within a Warp and differ-

ent Warps execute independently regardless of whether they are executing common or

separated code paths.

In Figure 4.3a and 4.3b, it is possible to observe two different NVIDIA SMs’ micro-

architecture. The SMs differ for the number and the type of Functional-Units available.

These characteristics, with the number of present SMs in the GPU defines the Com-

pute Capability of the GPU. The compute capability is the ”feature set” (both hardware

and software features) of the device. NVIDIA GPU architecture names are related to

that parameter: ”Maxwell”, ”Tesla”, ”Fermi”, ”Kepler” or ”Ampere”. Each of those

architectures have features that previous versions might not have. For example Ampere

architecture based GPU compute capability is 8.x while Maxwell architecture based GPU

compute capability is 5.x [12] [13].

The Figure 2.4 shows that each SM is divided in four equal sub-blocks. Each of

them contains a set of cores; in particular Maxwell SM provides 32 Integer-Floating Point

(FP) cores and 8 SFUs (Special Function Units) while Ampere SM contains 32 Floating

Point (FP), 16 Integer (INT) cores and 4 SFUs. Ampere and other recent architectures as

Tesla, also include Tensor cores to perform matrix multiplications very quickly. Ampere

architecture GPUs consists in many SMs getting them an higher compute capability

with respected to Maxwell. This reflects in higher performances thanks to the greater

parallelization of tasks. As an example, while Maxwell architecture GPU contains one

SM, recent GeForce 30 series GPUs based on Ampere architectures, provide tens of SMs

working in parallel, hence executing much more blocks of threads simultaneously.
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(a) Maxwell Architecture SM. (b) Ampere Architecture SM.

Figure 2.4: NVIDIA Streaming Multiprocessor (SM), taken from [12] and [13]
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2.2 General-purpose computing on GPU: Convolu-

tional Neural Networks

In this section the basic idea behind CNN algorithms are described, then it is pro-

vided a view on the CNN adopted for the developed environment, namely LeNet.

An Artificial Neural Network is an algorithm model widely adopted for machine

learning. The field of machine learning is concerned with the question of how to construct

computer programs that automatically improve with experience [14]. Deep learning is

machine learning with deep artificial neural networks, that are neural networks composed

of at least two or three ’layers’. Each layer of a ANN is composed of set of simple elements

called neurons. In Figure 2.5 it is possible to observe a simple neural network composed of

three layers (one input layer, one output layer and one hidden layer between the previous

two) and the neuron 3 of layer 2.

Figure 2.5: Three Layers Neural Network, taken from [15]

The neurons of the input layer can accept one input value(xi), whereas neurons of

other layers have more than one input corresponding to previous layer output. Referring

to the equation 2.1, each Neuron gets the input which is the sum of the products of the

inputs from the previous layer and respective weight (wij). To this sum a value called

bias (bj) is added and the final value passes through an activation function σ, that can

be linear or non-linear.

yij = σ

" 
nX

i=0

wij ∗ xi

!
+ bj

#
(2.1)

The weight regulates how much of the initial value will be forwarded to a given
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neuron, while the bias is a modifiable value. One of the purposes of deep learning is to

perform image prediction. The weights and biases play a crucial role to make correct

predictions: the whole point of a neural network is to find a good set of weights and

biases, and this is done through ’training’ via backpropagation, which is the reverse of a

forward pass. The idea is to measure the error the network makes when classifying and

then modify the weights so that this error becomes very small [16].

With respect to ANN, a Convolutional Neural Network (CNN) consists in a neural

network in which hidden layers perform convolutional operations. A CNN is composed

at least of three types of layer:

Layer: it performs convolution operations as illustrated in Equation 2.1; each neuron

performs the same operation on the complete set of input data;Max-Pooling Layer:

it performs an arithmetic operation on the previous layer output to reduce the data

size. It takes the output of each convolution kernel and reduces it by a defined

algorithm, which can be to return the maximum value, the average value, or others;

Fully Connected Layer: it generates the output of the network; each neuron in that

layer is connected to all the outputs of the previous layer.

2D image prediction takes the use of CNNs, since they perfectly fit to pattern

recognition and image classification. A 2D image can be modeled as a matrix representing

pixels values; so the value for each pixel ranges between 0 (black) and 255 (white) for one

channel image and 0-255 for each colour in RGB scale for three channels (coloured image),

meaning that a 2D convolution, between weights kernel and input matrix local receptive

field, is performed. Referring to Figure 2.6, a convolutional layer is usually followed

by a max-pooling layer used to get a smaller image but denser of information. This

obtained compacting input matrix resorting to near-elements (pixel values) information.

It is possible that multiple convolutional layers and max-pooling layers alternate. Then, it

is present a flattening layer, used to get a 1D vector representation of the output matrix;

and fully connected layer used to get final result trough a single neuron.
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Figure 2.6: A convolutional neural network with convolutional, max-pooling, flattening

and fully connected layers with one neuron, taken from [15]

Notable CNN models are AlexNet [17], GoogLeNet [18] and LeNet [1]. AlexNet is

composed of many stacked convolutional layers; its peculiarities are: the use of Recti-

fied Linear Units (ReLU), with respect to the non linear tanh activation function, allows

to reduce the training time; and elements overlapping pooling allows achieving an error

reduction at the cost of an increase of total number of parameters needed to execute

the network. GoogLeNet architecture solved most of the problems that large networks

faced, mainly through the Inception module’s utilization. The Inception module is a

neural network architecture that leverages feature detection at different scales through

convolutions with different filters and reduced the computational cost of training an ex-

tensive network through dimensional reduction [17]. The GoogLeNet architecture consists

of 27 layers, and part of these layers are a total of 9 inception modules. The expensive

Fully-connected layers at the end of the model of common CNN is substituted with a

simple global average-pooling layer, which averages out the given layer input values of

each feature map. This change has dramatically reduced the number of parameters used

in the model, which made it a faster in the training phase, lighter in size, and higher in

performance, compared to other architectures.

In this thesis the LeNet CNN model available in the Darknet [2] environment was

used. In addition, MNIST dataset [3] for training and inference is adopted.

LeNet (Figure 2.7) is one of the most famous CNN architecture able to infer 32x32

pixels gray-scale images. LeNet CNN architecture is made up of 7 layers. The layer

composition consists of 3 convolutional layers, 2 subsampling (or max-pool) layers and 2

fully connected layers.

The input layer should take image in 32x32 form, and these are the dimensions of

images that are passed into the next layer. If an input image has smaller dimensions,

as in MNIST dataset [3], to meet the requirements of the input layer, the 28x28 images
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are padded, meaning that some zero are added in the edges, not changing image content

[1][15].

Figure 2.7: LeNet CNN, taken from [1]

The implementation of this CNN model, in the Darknet environment, on a Maxwell

architecture GPU, resorts to eight different kernels executed in the various layers. In the

Table 2.1 for each type of layer present in the CNN the belonging kernels are listed and

the tasks of each layer are reported. It is worthy to highlight that to perform matrix

multiplication cuBLAS library is employed; therefore, during the compilation stage of

convolutional layers the most suitable kernel is implemented. This is done according to

the GPU micro-architecture in order to use efficiently the device.

Layer types Kernels Task

Convolutional and

Fully Connected

sgemm NN, sgemm NT vec,

im2col gpu kernel,

fill kernel,

add bias kernel,

activate array kernel

Operation to matrix multiplica-

tion operation and add biases

to the necessary parameters after

the matrix multiplication. Apply

non linearity to the feature maps

to reduce the input linearity for

the next layer

Max Pooling forward maxpool layer kernel To reduce the spatial dimension

of the input volume for next lay-

ers

Softmax softmax kernel To calculating the probabilities of

each class

Table 2.1: LeNet kernels

As previously anticipated the environment developed take the use of the MNIST

dataset. The MNIST database, which stands for Modified National Institute of Stan-
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dards and Technology database, is a large dataset of handwritten digits. It contains

60,000 training images and 10,000 testing images. As shown in Figure 2.8, each image is

a scan of a handwritten digit from 0 to 9, and the differences between different images

are a result of the differences in the handwriting of different individuals [3]. Each image

consists in 28x28 pixels, and each pixel value takes on a value from 0 to 255 (greyscale).

The labels associated with the images correspond to the ten digit values.

Figure 2.8: Some handwritten digits in the MNIST dataset, taken from [3]

2.3 Previous Work

The main purposes of Graphical Processing Unit, until a few years ago, were re-

lated to video encoding and graphics rendering; in which possible faults do not generate

catastrophic behaviors. Nowadays GPUs are used to accelerate CNNs models in many

safety-critical applications, in which it is crucial to guarantee a certain level of reliability.

One of the major sources of unreliability in GPUs is soft errors, typically caused by high

energy particles striking electronic devices and causing them misclassification (e.g., flip

a single bit). As mentioned, these errors can impact the behaviors of the GPU dramat-

ically. Therefore, in safety-critical applications, it is important to ensure that potential

data corruption is avoided and failure rates must be reduced to the minimum and should

not exceed, for example, 10 Failures in Time (FITs), which equals to a single error in 109

hours of operations.

Reliability evaluation of CNN has been treated in previous works in different fields.

Many works take use of compiler-based instrumentation tools to perform transient fault

injections campaigns.
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The CNN AlexNet model has been studied in healthcare field for image classification

in disease detection [19] and for autonomous drive accident prevention [20]. In the first

case, the AlexNet model was trained and evaluated with a Cholec80 dataset for surgical

tool detection. In the two papers soft injections campaigns were performed on NVIDIA

GPUs using the compiler-based fault injector SASSIFI [21], able to perform transient fault

injection campaigns, targeting instruction output value (IOV), instruction output address

(IOA) or randomly selected register (RF), at low level. The tool functions were used to

evaluate the Program Vulnerability Factor (PVF) in terms of Kernel Vulnerability Factor

(KVF). This is achieved by dividing the fault simulation in different phases; one for each

individual kernel type. Therefore, injections are performed for separate instructions of the

same kernel, belonging to two categories depending on the type of operation performed:

GPR (use of general purpose registers) or LOAD/STORE. The study was dealt estab-

lishing a number threshold of critical faults; and some Soft hardening techniques were

proposed, by identifying the most vulnerable kernels to misbehavior for the CNN. In [20]

it is proposed an alternative strategy for GPU design; consisting in properly select just

the instructions with higher Instruction Vulnerability Factor (IVF) replicating them to

reduce the presence of critical errors; reducing even more the overhead.

Similar works report the reliability evaluation of VGG-16 [22], GoogLeNet [23] and

ResNet [24] CNN models on NVIDIA GPUs, resorting to SASSIFI fault injector, again

for transient fault injection campaigns. In those papers Layer Vulnerability Analysis is

carried out and complete layers of kernels were instrumented to perform error evaluation.

The results show that the early convolutional layers are more susceptible to faults than

later layers, while fully-connected layers do not generate data corruption errors.

Another remarkable investigation, consisting in comparing soft fault injection ex-

periment of a CNN running on a GPU accelerator with a particle beam radiation-induced

errors campaign affecting elements in GPUs, is reported [25]. This study confirms the

possibility to consider software fault injection approaches as a valid emulation of the pres-

ence of hardware fault in GPUs’ internal locations; since the outcomes obtained with the

two techniques result to be similar.

In the light of this information, this research work is motivated by the demand of

exploring the idea of performing permanent fault injection campaigns, not yet investi-

gated, in hardware accelerators for CNNs execution. This last fault model is challenging

to implement at architectural level on a GPU, since the effect of this kind of fault must

be kept stable propagated for the complete duration of application execution.
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2.4 NVBit binary instrumentation tools

Binary instrumentation is a technique of hardware injection through program trans-

formation that allows transformation of application binary code for a variety of purposes,

including application profiling, error checking, and fault injection. It is used to develop

custom tools used to apply specific transformations to a code.

Many instrumentation tools, as SASSIFI [21], are compiler-based, meaning that

they are tied to a specific compiler version. Furthermore, they need the source code

recompilation, since they cannot target the code generated by the GPU driver via PTX

translation. In addition, they are not compatible with common used machine learning

libraries as cuBLAS. This issue is avoided by NVBit tools; which are able to dynamically

perform code instrumentation, allowing to instrument unknown libraries during the build

time.

The NVBit core is composed of a single static library (libnvbit.a) and header file

(nvbit.h) that provides all the APIs required to implement an NVBit tool. An NVBit

tool is created by:

••• developing a .cu file, implementing a GPU device function which is injected in an

application’s GPU kernels according to user defined injection points. This pro-

cess make use of NVBit APIs: Callback, Inspection, Instrumentation, Control, and

Device [26];

• compiling it with NVIDIA NVCC (Nvidia CUDA compiler);

• linking it with the static library libnvbit.a.

This process generates a shared library (.so extension); which is than injected into ap-

plications using the CUDA driver. This mechanism is based on the usage of standard

Linux LD PRELOAD environment variable, that contains paths to shared libraries, to

be loaded before any other library. The Figure 2.9 illustrates the flow for NVBit tool

compilation and run-time preloading; as described above.
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Figure 2.9: NVBit core overview, taken from [27]

The Callback APIs are triggered by the NVBit core when a particular event in the

target application is encountered. These events are application start or termination, and

entry/exit of any CUDA driver API call. The mechanism behind the instrumentation of

single instructions is illustrated in Figure 2.10. At the exit of the CUDA driver callback,

if instrumentation was applied through instrumentation API, a Code Generation starts.

The original code is first inspected to find the position in which perform the instru-

mentation, through an Instrumentation Function. In the Figure 2.10 the instrumentation

is performed before the highlighted instruction. An instrumented code is saved in system

memory; note that the selected instruction is substituted to a new instruction (JMP) used

for subroutine call. A new piece of code named Trampoline is saved in GPU memory.

The Trampoline function saves the state of the thread, before the instrumentation execu-

tion, pass the argument needed for instrumentation, call an instrumentation function (in

the Figure 2.10 JMP ”foo”), restore the state and finally execute the original instruction

previously substituted before jump back to the original code execution [27].
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Figure 2.10: Instrumented code generation process, taken from [27]

With the approach described, in a previous work, a tool called NVBitFI was de-

veloped [28]. The key advantages of NVBitFI with respect to compiler-based tools, are

due to dynamic instrumentation of program binaries and the use of a generalized GPU

architecture abstraction. It doesn’t require any pre-compiled source code; this makes it

portable across NVIDIA GPUs because even if instruction set architecture (ISA) is the

same their encoding can change across generations; and can inject errors into dynamically

selected kernels.

The tool mainly support the transient fault model that occurs in the GPU compute

pipeline or memory read subsystem [29]. NVBitFI mostly consists in a profiler and a

transient fault injector. The tool is able to perform injections, specifying the type of

instructions that should be injected and the bit-flip model indicating the type of bit-

level corruption. The injections are performed in a specified kernel instance, applying to

selected instruction destination registers a mask randomly selected or user-specified.

The tool supports, also permanent fault injection to a limited extent; it is possible

in fact to perform injections in all threads that execute in the target SM and lane, for

a single instruction Opcode type, modifying the target destination register, with a XOR

bit mask.

The framework illustrated in this report was built using the NVIDIA NVBitFI tool.

This tool was adapted and customized, extending its capabilities to support the permanent

fault injection and propagation of hard errors that mimic the presence of permanent faults

in the hardware component of the GPU: Register File and Functional Units.
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Performed Activities: Permanent Fault

Injection Framework

3.1 Injection Campaign Environment

In this thesis work it is proposed an environment based on NVBitFI instrumentation

tool adapted to perform permanent fault injection campaigns in NVIDIA GPU executing,

in the Darknet framework [2], the LeNet CNN model described in the previous chapter, us-

ing the Training & Inference MNIST dataset [3]. To run the injection campaign it is used

a set of images not used during the training phase. In particular, 100 images were selected

as input data to be inferred concurrently. In the Figure 3.1 it is illustrated the complete

environment; consisting in Profile and Injection Blocks (written in CUDA resorting the

NVBitFI’s Application Programming Interface (API)), Permanent Fault List Generator

and Classifier; all included in a global Controller. This element was made in Python is

composed by four main scripts run profiler.py, Neural list.py, Neural classifier.py, Neu-

ral parser.py.

The Controller manages the whole environment; it is responsible of performing sev-

eral tasks:

• Profile the target application to collect information, like the number of used SMs,

threads in each kernel, registers used by each thread in kernels and also the opcode

types used by the target application;

• Perform an initial fault-free simulation to obtain a reference scenario, used to per-

form output data comparison;

• Generate a fault list resorting to the information gathered during the profile phase,

according to the permanent fault injection defined target; this process can also be

18



Chapter 3 – Performed Activities: Permanent Fault Injection Framework 19

Figure 3.1: Permanent Fault Injection Environment

skipped if a previously generated fault list is adopted;

• Perform the permanent fault injections campaign by injecting one fault at a time,

propagated through all the executing kernels, up the application process conclusion;

• Collect the results, and compare them with the golden reference model, to classify

the injected error.

A permanent fault is defined as an error that persists indefinitely (or at least until repair)

after its occurrence [30]. The presence of the permanent fault generates different possible

effects on the CNN behavior. The output generated by the CNN for a single image is

in the form illustrated in the table 3.1. Each inference class representing a decimal digit

from 0 to 9, it is associated to a percentage indicative of the prediction probability. The

highest percentage is associated to the first prediction class. Therefore, the classification

process consists in comparing for each inference class the prediction percentages of faulty

and fault-free scenarios, according to the expected order.
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Image 0 Five.png

Percentage Inference Class

77.40% Five

19.95% Three

2.45% Two

0.15% Seven

0.05% Zero

0.00% Eight

0.00% One

0.00% Six

0.00% Nine

0.00% Four

Table 3.1: Darknet Output Format example

A fault can generate a Silent Data Corruption (SDC) when the error’s propagation

produces a different inference result, for at least one image of the tested set of images, with

respect to fault-free case; or it is possible that the fault generates a Detected Unrecoverable

Error (DUE) causing the CNN not to be able to produce the inference result at all. For

each image the fault can have a specific impact on the final classification; in particular,

for each of them a permanent fault can be classified in four possible categories:

• SDC-Critical: the fault propagates to the CNN output, modifying the probabilities

vector during the inference calculation producing a wrong classification result.

• SDC-Safe: the fault propagates to the CNN output, modifying the probabilities

vector during the inference calculation, but the classification output is still correct,

meaning that the inference percentage is different with respect to golden model.

• DUE: the fault produces a crash or stuck. This error interrupts the execution of

the CNN at any time. The causes of this behavior can be memory access violation,

memory misalignment violation, or timeout (the error blocks the CNN model in an

infinite loop).

• Masked: the fault does not have any impact on the output, meaning that, the

output is the same as the fault-free scenario.

The error injection is performed by the instrumentation mechanism by NVBitFI.

The tool is able to instrument the kernels of the target application, injecting an error

at Source and Assembly (SASS) instruction level. Each executing instruction is checked,
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than eventually instrumented. The instructions are examined in order to detect mean-

ingful information as the instruction opcode, the destination and source registers. If the

instruction characteristics correspond to the injection specification, it is instrumented

according to the injection model adopted. The instrumentation consists in applying a

bit-flips or a single bit stuck-at mask to an identified register. After that, the kernels exe-

cution continue, repeating this process for each instruction of each kernel. The developed

environment is able to perform permanent fault injections campaigns targeting different

GPU internal modules. These are: the Register File (RF) and the Functional Unit (FU).

As described in Section 2.1 when a group of Threads is issued, they are assigned to a

specific group of GPU units; and depending on the fault injection target these units need

to be in someway identified. In the following the various scenarios taken into account are

described. For each of them a specific permanent fault injector is designed.

3.2 Permanent Fault injection in the Register Files

Fault injections are performed at assembly code level; for this reason, it necessary

to illustrate SASS instructions’ composition. The NVIDIA GPU architectures have the

following instruction set format:

(instruction opcode)(destination)(source1), (source2), (source3) (3.1)

Valid destination and source locations include: RX for registers, SRX for special

system-controlled registers, PX for condition registers, c[X][Y] for constant memory [31].

During the execution of a kernel each thread has access to a private set of registers (RX),

used to perform the needed operations. The Figure 3.2 illustrates that each warp resident

in a SM (in Maxwell Architecture the max number of resident warps is 64) is composed of

32 threads issued together, each thread of a warp access privately to a set of registers in

the SMs’ Register File, used to execute the instructions. Since each GPU has a maximum

number of threads running in parallel; to target a single thread is necessary to select a

Warp and the position of thread in the Warp (Lane identifier). Therefore, in order to

perform a fault injection in a target register is necessary to select a register number, a

warp identifier and a lane identifier. This is mandatory to guarantee the error injected

is present permanently during all the application’s kernels execution. In addition, it is

worthy to highlight that, if the number of threads is large enough to require several blocks

to be executed on the same SM, the permanent fault on one particular register affects

more than one thread.



Chapter 3 – Performed Activities: Permanent Fault Injection Framework 22

Figure 3.2: Threads-Registers assignment

Therefore, each fault is defined by the quintuple <SMID, threadID, Register, Mask,

stuck-at> where SMID represents the SM where the injection should be performed out of

the many possibly available; threadID is the resident thread selected in which to perform

the injection; Register is the target destination register to be injected; Mask is the single

bitmask to be applied to the target register value; stuck-at can be 1 or 0 depending on the

value to be forced in the defined bit. In Figure 3.3 they are illustrated the phase of the

injection campaign. First on the host side the pf injector go through all the instructions

to be executed in each kernel, checking for each of them if the destination register (see

instruction format 3.1) corresponds to the fault’s target register; if the two match the

injection function (inject funcs) is launched on device side. The injection propagates

thorough all the kernels composing the program. Each kernel is inspected in this way.

Figure 3.3: Permanent Fault Injector

To perform the real injection on GPU side, three conditions must be satisfied:

1. The Straming Multiprocessor where the injection is performed corresponds to the

fault target one;
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2. The Warp of the injected thread is the same of the target one; it is calculated as the

ThreadID divided for Warp size equal to 32 in each of the NVIDIA architectures;

3. The Lane of the injected thread is the same as the target one; it is obtained per-

forming modulus operation between the ThreadID and the Warp size (32).

In Figure 3.4 it is depicted the injection process at assembly code level. In the Figure the

faulty register is R0 and the a specific bit is stuck-at 0 or 1. Therefore, after the execution

of an instruction using R0 as destination register the faulty bit is masked. The masking

is implemented by applying a bitwise AND, in case of stuck-at 0, and a bitwise OR, in

case of stuck-at 1.

Figure 3.4: Injection Process RF: fault in R0
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3.3 Permanent Fault injection in the Functional Units

The fault injection in Functional Unit (FU) differs from RF injections, since for

each FU many different instructions opcodes execute on the same core. For this reason

it is crucial, to guarantee the permanence of the error, to instrument all the matching

instructions executing on the same core. In Figure 3.5 it is possible to observe a simplified

view of a SM organization and the interior of a Streaming Processor (SP). It is worth

noting the presence of three types of blocks addressed by the developed injector: Integer

Unit, Floating Point Unit inside a SP and Special Function Unit (SFU) which executes

transcendental functions. For this reason, the three corresponding opcode categories are

taken into account.

Figure 3.5: Streaming Processor view

In the Table 3.2 a set of opcodes of the three selected categories is reported. The

table reports the instructions, belonging to the three categories, present in the LeNet

target application, in the Darknet environment, executed on a Maxwell architecture GPU.
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Instruction Opcodes

Opcode Type Description

FADD FP FP32 Addition

FCMP FP FP32 Compare

FFMA FP FP32 Fused Multiply Addition

FMUL FP FP32 Multiply

FMUL32I FP FP32 Multiply Immediate

FSET FP FP32 Compare And Set

MUFU SFU FP32 Multi Function Operation

RRO SFU Range Reduction Operator FP

BFE INT Bit Field Extract

IADD INT Integer Addition

IADD3 INT 3-input Integer Addition

IADD32I INT Integer Addition Immediate

ICMP INT Integer Compare and Select

IMNMX INT Integer Minimum/Maximum

ISCADD INT Scaled Integer Addition

ISCADD32I INT Scaled Integer Addition Immediate

LOP INT Logic Operation

LOP3 INT Logic Operation 3-operands

LOP32I INT Logic Operation Immediate

SHL INT Shift Left

SHR INT Shift Right

XMAD INT Integer Short Multiply Addition

Table 3.2: Opcodes list

In Figure 3.6 it is possible to observe the input and output interconnections of a

generic Functional Unit (FU).

For each instruction execution, the input interconnections are fed with values coming

from the source registers in the Register File, used by the instruction itself, as operands.

For the selected application the maximum number of input operands resident in gen-

eral purpose register is three. The destination register, instead, is fed by the Output

interconnections.
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Figure 3.6: Functional Unit Interconnections

Hence, to mimic the presence of a hardware permanent fault in FU, we need the

instrumentation of destination or source registers of a specific instruction opcode type.

Since each instruction can use up to three source registers (as operands), and mandatorily

one destination register, the permanent fault injection is obtained by masking for each

selected instruction one register, destination or source. This is implemented targeting a

single opcode type, so that all matching instructions are instrumented.

As a consequence, it is needed to define, for each fault, seven parameters <SMID,

SubSM, Core, Opcode, Mask, Register Position, Stuck-at>. SMID and Stuck-at param-

eters follow the same explanation given in the previous section. SubSM represents the

subpart of the SM where the injection should be performed; Core is the internal unit num-

ber selected in which to perform the injection; Opcode is the target instruction opcode

type to be injected; Register Position, representing the correspondent interconnection, is

the target register out of the possible four for each instruction to be injected. If the se-

lected register is the destination one, the fault injection is performed after the instruction

execution, meaning that the output interconnections is affected (Figure 3.7). If, instead,

the register selected for the fault injection is a source, the injection is performed before

instruction execution (Figure 3.8).
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Figure 3.7: Integer Unit Fault Injection: XMAD instruction

Figure 3.8: Integer Unit Fault Injection: XMAD instruction

In that case, all the instructions opcode are checked by the pf injector on CPU side;

if they match with the opcode pointed by the fault the injection is performed if three

conditions are fulfilled:

1. The Streaming Multiprocessor where the injection is performed corresponds to the

fault target one;

2. The SubSM of the injected thread corresponds to fault objective; it is computed by

retrieving the thread Warp and applying modulus four operation;

3. The target core of the fault injection is the same of core in which the thread is

executing computed as the Lane modulus the number of Functional Units of the
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opcode type, present in the sub-part of the SM.

Finally, the injection is performed masking the selected bit location.

An alternative approach, supported by the developed framework, consists of per-

forming single bit-flip masking through the usage of a XOR instruction. That fault model,

already proposed by NVBitFI, has been integrated in a dedicated injector. This model is

intended to mime the presence of an hard fault inside the GPU FUs; however, this model

is considered less realistic, with respect to the stuck-at model, of hardware faults.

The Functional Unit targeting is performed resorting to some allocation parameters.

In fact, the fault injector function is adaptable to different micro-architectures, depending

on the number of available internal cores for each type (INT, FP, SFU). The injector is

informed about the compute capability of the GPU and according to the injected opcode

category, the core number is selected out of the available ones, for the architecture family.

The environment contemplates the possibility of injecting one or two instruction

opcodes (belonging to the same category) for each fault; in both cases, only the opcodes

present in the application code instructions are used for the fault list generation and

injections. This strategy reduces the presence of Masked faults, since not present opcode

types would not be injected at all.



CHAPTER 4

Experimental Results

The developed fault simulator tool is evaluated using a LeNet pretrained model

available in the Darknet environment. The Darknet functions were adapted in order to

support the possibility to predict 100 images concurrently. The test classifier function

of Darknet was used for that purpose. The trained LeNet model can classify images of

handwritten digits (0 to 9). For the experiments, we used the MNIST dataset described

in Chapter 2.

The CNN was evaluated using the embedded platform Jetson Nano, which has an

NVIDIA Maxwell architecture and Compute Capability 5.3. For the experiments, the

LeNet model was evaluated by performing fault injections on the register file and the

functional units on one Streaming Multiprocessor.

4.1 Register File permanent fault simulations

The RF fault injections campaign was divided in two phases. In the first phase, an

exhaustive fault injection was performed; meaning that for a single thread, each register

is tested for all possible stuck at fault. The thread simulated is thread 0 executing on

the only SM. Using 152 registers, the total amount of fault tested was 9,792 and the

simulation took 28 hours. The results are shown in the Table 4.1; from there, it is

possible to observe the predominance of SDC faults. This result justifies the possibility of

performing permanent fault simulation at register level, guarantying a substantial fault

coverage.

29
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Fault Classification

SDC-Critical SDC-Safe Masked DUE

7.96% 39.43% 21.10% 31.51%

Table 4.1: Register Files Exhaustive Fault Simulation results (thread 0, SM 0), Fault

Classification

Faults propagated to the Output Classification

SDC-Critical SDC-Safe Masked

11.62% 57.57% 30.82%

Table 4.2: Register Files Exhaustive Fault Simulation results Only faults propagated to

the Output (thread 0, SM 0), Fault Classification

In the Figure 4.1 the simulation outcome for the complete set of registers used

by the application is shown. The fault classification has been performed considering as

reference model the golden model, meaning that, if in the fault free scenario, a certain

image is classified wrongly, it is still considered the correct outcome. In addition, if a

fault generates a critical result for at least one image, out of the 100 inferred, the fault is

labeled as critical. From that image, it is possible to confirm that the first ten registers

are affected by a lot of critical failures and DUEs. In Figure 4.2 it is reported the accuracy

degradation with respect to the reference accuracy, equal to 92%. This values basically

means that on 100 images, 92 are correctly inferred. In Figure 4.2a the accuracy of faulty

scenarios is calculated considering only faults which doesn’t generate unrecoverable errors

(DUE); in other words, the faults considered are the ones propagating until the CNN

output. Instead, in the Figure 4.2b all the faults are included, for the average accuracy

calculation. The Images highlight that the first set of registers (R0-R9) are the most

critical; since faults would affect dramatically the CNN accuracy, with a large degradation

from the fault free model.
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Figure 4.1: Register Files Exhaustive Fault Simulation, Fault Classification (thread 0, SM

0)

(a) Faults propagated to the Output (b) All Faults

Figure 4.2: Register Files Exhaustive Fault Simulation, CNN Average Accuracy (thread

0, SM 0)

During the second phase, the strategy adopted to perform RF injections campaigns,

was to select just a set of registers to target. The first phase of exhaustive faults sim-

ulations suggested that some registers are more critical than others, because they are

used more deeply in the code. Using profile techniques, from the source code, it was ex-

tracted the registers’ utilization parameter, representing the amount of time each register

is present in the code, as source operand or destination for a single thread of execution.

The Figure 4.3 demonstrates that the register in the range R0-R9 are the most used by
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the application, as confirmed by the CNN accuracy degradation. On the other hand,

some registers are used rarely; for example, registers in the range R30-R60 are present

less than 20 times.

(a) Full view. (b) Zoom.

Figure 4.3: Register Usage extracted with application profiling

For these motivations, registers R0-R9 were chosen to perform error injection cam-

paigns with a random approach; meaning that for each fault the thread and faulty bit of

specific register were randomly selected. A total of 8,000 faults were injected during the

simulation, with a total duration of 18 hours. The fault simulations results are reported

in the Figure 4.4 and they are synthesized in the Tables 4.5. For each of the registers it

has been experienced a lot of crashes responsible for DUE. The most problematic Reg-

isters are number 5 since it is characterized by the 100% of DUE faults and 9 which is

associated with the largest amount of critical faults equal to 40% of the injected faults.

In addition, R2, R7 and R8 experience, in almost the 30% of the cases, critical failures.

The Tables 4.4 and 4.6 confirm that many faults generate critical results; removing the

faults crushing the application, for R7, R8 and R9 the portion of critical faults exceed

90% of the total injected ones propagating to the CNN output. The Figure 4.5 depicts

the accuracy degradation of the CNN associated to this campaign. The two figures show

that register 7 and 8 bring to the largest breakdown. The reason, behind these values,

is that registers do not experience any SDC-Safe faults, but only critical. R5 is instead

characterized by the largest accuracy reduction, considering all the faults type.
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Fault Classification

SDC-Critical SDC-Safe Masked DUE

14.44% 10.38% 7.59% 67.60%

Table 4.3: Register Files Fault Simulation results, Fault Classification

Faults propagated to the Output Classification

SDC-Critical SDC-Safe Masked

44.56% 32.02% 7.59%

Table 4.4: Register Files Fault Simulation results only faults propagated to the Output,

Fault Classification

Figure 4.4: Fault Classification of faults in the Register Files
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(a) Faults propagated to the Output (b) All Faults

Figure 4.5: Register Files Fault Simulation, CNN average Accuracy

Fault Classification

Register SDC-Critical SDC-Safe Masked DUE

0 4.25% 33.25% 0.0% 62.5%

1 0.375% 9.5% 75.625% 14.5%

2 33.875% 7.375% 0.0% 58.75%

3 3.0% 33.375% 0.25% 63.375%

4 8.5% 15.25% 0.0% 76.25%

5 0.0% 0.0% 0.0% 100.0%

6 1.375% 0.875% 0.0% 97.75%

7 26.5% 1.0% 0.0% 72.5%

8 26.5% 0.0% 0.0% 73.5%

9 40.0% 3.125% 0.0% 56.875%

Table 4.5: Register Files Fault Simulation results, Fault Classification

In Figure 4.6 it is reported the CNN accuracy degradation, associated to each bit

averaged for the complete set of registers targeted. Some bits appear to be more critical

than others. For stuck-at 1 faults the figure depicts that the first half-word is more

critical than the last, as the accuracy appears to be nearby the fault free. Whereas, in

the first half-word more minimum peaks are present; above all, bit 0 and 11 affect the

CNN accuracy with more than a 40% degradation. For what concerns stuck-at 0 faults,

a more diversified trend is visible; in that circumstance the most critical bits are 26 and

27 reaching the minimum accuracy value of approximately 35%. Considering instead the

accuracy, calculated including application crushing faults, stuck-at 1 faults appear to be
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Faults propagated to the Output Classification

Register SDC-Critical SDC-Safe Masked

0 11.33% 88.67% 0.0%

1 0.44% 11.11% 88.45%

2 82.12% 17.88% 0.0%

3 8.19% 91.12% 0.69%

4 35.79% 64.21% 0.0%

5 0.0% 0.0% 0.0%

6 61.11% 38.89% 0.0%

7 96.36% 3.64% 0.0%

8 100.0% 0.0% 0.0%

9 92.75% 7.25% 0.0%

Table 4.6: Register Files Fault Simulation results only faults propagated to the Output,

Fault Classification

more critical than stuck-at 0, with almost a steady trend near 10%.

(a) Faults propagated to the Output (b) All Faults

Figure 4.6: Register Files Fault Simulation results, per bit CNN average Accuracy

4.2 Functional Units permanent fault simulations

The FU permanent fault simulation was divided in two steps. During the first phase

the stuck-at fault model is used to test Functional Units, injecting errors in at input and

output interconnections level. In the second part, instead, the bit-flip fault model is

adopted to perform the injections campaign; with this model, the attempt done is to
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mimic misbehavior internal to the selected FU.

4.2.1 Stuck-at Model

As for the RF case, using the stuck-at fault model, a first exhaustive fault simulation

was performed targeting for each present opcode, a single sub-SM and a single core in

the same SM. The simulation of the 6,656 faults took 21 hours. In the Table 4.7, it is

possible to observe the fault classification results; in that case the results are cumulative

of all the FUs’ interconnections (input and output). The Figure 4.7b reports, instead the

fault classification for each injected opcode instruction.

Fault Classification

SDC-Critical SDC-Safe Masked DUE

14.09% 15.57% 33.70% 36.64%

Table 4.7: Functional Units Exhaustive Fault Simulation results, Fault Classification

(a) Fault Classification (b) Instruction Fault Classification

Figure 4.7: Functional Units Exhaustive Fault Simulation results, Fault Classification

The Figure 4.8 depicts the accuracy degradation of the CNN. This exhaustive simu-

lation shows that, even in that case, the CNN exhibits a consistent accuracy reduction; in

particular, the functional units output injections lead to the largest breakdown. Consider-

ing, all the faults, the degradation, is from 92% of the reference scenario to 54%, whereas

taking into account only faults propagating to the output, a 8% reduction is obtained.

Successively, a random fault simulation is performed injecting separately the three

functional unit types; randomly choosing for each fault the opcode, a sub-SM and a single
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(a) Faults propagated to the Output (b) All Faults

Figure 4.8: Functional Units Exhaustive Fault Simulation, CNN average Accuracy

core in the same SM. A total of 10,500 faults were injected and the simulation time was

equal to 31 hours.

The Floating Point units fault simulation results are presented in the Figure 4.9

and 4.10. Floating Point units do not experience so many DUE faults as in Integer units.

With respect to integer case, there are many more faults classified as Masked and SDC-

Safe, as expected in all the FU’s interconnections. The CNN accuracy does not degrade

so much; in all the cases it is near the golden accuracy, for the faults do not crush the

application’s execution. To understand this result it is needed to study the Figure 4.9b

and 4.11. These images prove that, among all the instruction set, the floating point

instructions do not lead to many critical failures. This behavior is directly correlated to

the running application type. For a CNN, FP operations are meanly used to perform

2D convolutions; meaning that, usually, the faults injection in those FUs lead to image

misclassification (SDC-Critical), or variations in inference percentages (SDC-Safe). As

it is possible to observe from the Figure 4.11, Stuck-at 0 faults do not generate a real

degradation. In addition, it is sometimes experienced that the CNN accuracy increases

above the fault free reference value. On the other hand, stuck-at 1 faults generate almost

all critical faults, for the instructions affected. The maximum accuracy breakdown is

obtained, for faults propagated to the Output case, for FADD and FCMP case, with a

10% reduction; whereas in the other case, FMUL lead to a 20% degradation. It is worth

noting that, FSET instruction is affected only by masked faults; whereas the instruction

FFMA is not present in the figures since it was impossible to obtain a meaningful result

in the time assigned for the fault injection, using NVBit on the board used. Finally, the

Figure 4.12 confirms that stuck-at 1 Faults are more critical than 0 and, as it is illustrated

Most Significant Bits (MSBs) appear to be more critical; with the lowers peak assumed
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for bit 30 in both Figures 4.12a and 4.12b.

(a) Fault Classification (b) Instruction Fault Classification

Figure 4.9: Floating Point Units Fault Simulation results

(a) Faults propagated to the Output (b) All Faults

Figure 4.10: Floating Point Units Fault Simulation, CNN average Accuracy
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(a) Faults propagated to the Output (b) All Faults

Figure 4.11: Floating Point Units Fault Simulation, per instruction CNN average Accu-

racy

(a) Faults propagated to the Output (b) All Faults

Figure 4.12: Floating Point Units Fault Simulation, per bit CNN average Accuracy

The SFU fault simulation results are reported in the Figure 4.13 and 4.14. In that

case, since the instruction executed take use of only one source operand, it is clear that,

interconnections two and three are not subject to fault injections, as it is confirmed by

CNN accuracy degradation. The accuracy degrades for both the output interconnections

and first input interconnection of 10%, in DUE-free case, and 25 % for the case in which

DUE are included. The Tables 4.8 and 4.9 illustrate that, the only two instructions tested,

have a very different behavior, when an error is injected. The MUFU instruction is much

more critical than the RRO instruction. This is due to the fact that it is deeply used in

matrix multiplication kernels and fully connected kernels; whereas the RRO instruction is

present in max-pooling layer’s kernels. In that case Figure 4.15 shows that the trend for



Chapter 4 – Experimental Results 40

accuracy degradation per faulty bit injected is variable, with a major impact associated

to most significant bits.

Figure 4.13: Special Function Units Fault Simulation results, Fault Classification

Fault Classification

Instruction SDC-Critical SDC-Safe Masked DUE

MUFU 30.2% 13.2% 29.4% 27.2%

RRO 2.6% 10.4% 87.0% 0.00%

Table 4.8: Special Functions Units Fault Simulation results, per instruction Fault Classi-

fication

(a) Faults propagated to the Output (b) All Faults

Figure 4.14: Special Function Units Fault Simulation, CNN average Accuracy
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CNN Accuracy: stuck-at 0, stuck-at 1

Instruction Faults Propagated to the Output All faults

MUFU 86.82%, 77.83% 79.63%, 61.44%

RRO 92.00%, 91.95% 92.00%, 91.95%

Table 4.9: Special Functions Units Fault Simulation results: per instruction CNN Accu-

racy

(a) Faults propagated to the Output (b) All Faults

Figure 4.15: Special Function Units Fault Simulation, per bit CNN average Accuracy

The results of the fault simulations campaign, in Integer units, are shown in the

Figure 4.16 and 4.17. As it is illustrated, injections in FU’s input and output intercon-

nections generate similar behaviors. With respect to FP and SFU injections, in that

scenario, many more faults are classified as DUE. This is confirmed by Figure 4.17, where

it is possible to observe that in presence of this kind of fault the impact on the CNN

accuracy is dramatic. In general, for faults effect propagating for all application exe-

cution, the degradation is higher for the first input of the integer FU, responsible for

almost 10% of accuracy reduction. The Figure 4.18 depicts the performance of the CNN

accuracy particularized for each instruction opcode tested. Among all, the instruction

IADD3, ICMP, ISCADD and XMAD are the most critical if we consider only scenarios

in which the fault effect is completely propagated, with the minimum accuracy of 30%

reached by the last opcode. Considering all the faults for the accuracy calculation, the

impact of unrecoverable faults is huge. For many opcodes, the accuracy is less than 30%,

for the stuck-at 1 faults, which are, therefore more critical than stuck-at 0. Integer FU

are used to perform operations related to memory access, and the presence of application

crush is often connected to memory access violations. This justifies the presence of so
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many DUEs. Figure 4.19, reporting the accuracy degradation averaged per bit, informs

that stuck-at 1 faults generates unrecoverable errors, affecting the accuracy degradation

in the right sub-figure, while stuck-at 0 faults reduce the accuracy in all the other case,

as depicted in sub-figure on the left.

(a) Fault Classification (b) Instruction Fault Classification

Figure 4.16: Integer Units Fault Simulation results

(a) Faults propagated to the Output (b) All Faults

Figure 4.17: Integer Units Fault Simulation, CNN average Accuracy
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(a) Faults propagated to the Output (b) All Faults

Figure 4.18: Integer Units Fault Simulation, per instruction CNN average Accuracy

(a) Faults propagated to the Output (b) All Faults

Figure 4.19: Integer Units Fault Simulation, per bit CNN average Accuracy

Lastly, the overall results are illustrated in Figure 4.20, 4.21 and synthesized in

the Table 4.10. It is evident that, Floating Point Unit is the less critical among the

three functional units; as mentioned, injections in FP units, still allow the CNN code to

conclude and generate an inference result, eventually with a different inference percentage.

In addition, it is possible to affirm that stuck-at 1 faults generate frequently critical results

or application crush, whereas stuck-at 0 impact is present to a lesser extent.
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Figure 4.20: Functional Units Fault Classification, Stuck-at model

(a) Faults propagated to the Output (b) All Faults

Figure 4.21: Functional Units CNN Average Accuracy Degradation, Stuck-at model

Fault Classification

Functional Unit SDC-Critical SDC-Safe Masked DUE

FP 11.64% 32.98% 52.52% 2.90%

SFU 17.46% 11.90% 55.95% 14.68%

INT 14.90% 7.18% 30.08% 47.85%

Table 4.10: Functional Units Global Fault Classification, Stuck-at model
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4.2.2 Bit-flip Model

The Bit-flip fault model, as anticipated in the previous chapter, is not considered re-

alistic of an hardware fault. The model is tested resorting to the same figure of merit used

previously. In that case, a total of 4,200 faults were injected using a random approach,

injecting one instruction opcode type at a time, and randomly selecting the sub-part of

SM and Core where to perform the injection. For each fault a single bit-flip is applied.

The Figure 4.22 and Table 4.11 show the fault classification related to the three functional

units tested: Floating Point (FP), Special Function Unit (SFU) and Integer (INT).

Figure 4.22: Functional Units Fault Classification, Bit-flip model

Figure 4.23: Functional Units Fault Classification per instruction, Bit-flip model
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(a) Faults propagated to the Output (b) All Faults

Figure 4.24: Functional Units CNN average Accuracy, Bit-flip model

From there, it is possible to observe that the integer unit is subjected to many

more DUE faults than SFU and FP, while floating point units are less sensible to DUE.

Floating Point Unit is, instead, more prone to experience SDC-Safe and masked faults.

For the FP and SFU units the masked faults are more than in the integer unit case.

This characteristic of floating point instructions, can be related to the fact that they are

really responsible for many CNN operations, in the convolutional kernels. On the other

hand, Integer unit faults generate, often DUE failures since they are related to manage

memory access and data distribution among threads. The results obtained highlight that

this model doesn’t allow to test deeply the Integer and SF units, since a lot of DUE are

present. Instead, the results associated to the FP units are pretty similar for the two fault

models.

Fault Classification

Functional

Unit

SDC-Critical SDC-Safe Masked DUE

FP 13.98% 34.64% 45.39% 5.99%

SFU 12.50% 8.00% 46.00% 33.50%

INT 8.27% 1.93% 7.79% 82.01%

Table 4.11: Functional Units Global Fault Classification, Bit-flip model
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Conclusions

In this thesis work, the impact of permanent faults in a GPGPU (General Purpose

Graphics Processing Unit) is evaluated. This project represents something new in the

academic world, since the other researches mostly focused on transient faults. A Perma-

nent Fault simulator framework was setup to perform the fault injection campaigns. The

Framework, based on NVBitFI functionalities, was developed to support errors injections

in two different locations inside the GPU. These are the Register File and the Functional

Units. The fault simulator is tied to a global controller, able to automate the process of

application profiling, generation of the faults list, fault injection and classification. The

framework is used to assess the reliability of the LeNet CNN model, available in the

Darknet environment. The test classifier function of Darknet was modified in order to

enable the inference of 100 images concurrently. The simulations were divided in two main

steps. The Register File was tested first for evaluating the impact of single bit stuck-at

faults, starting from an exhaustive simulation and then concentrating the random injec-

tions in the first ten registers (R0-R9), which are the most used by the application. A not

negligible percentage of faults produced Silent Data Corruption (SDC), demonstrating

the impact of hard faults on the GPU computations; these errors are responsible for a

substantial accuracy degradation of the CNN.

Subsequently, the Functional Units were tested, adopting again the single bit stuck-

at fault model. That approach is considered more realistic compared to the bit-flip model

proposed by NVBitFI. With the stuck-at model, it has been proven that faults effect-

ing Special Function and Integer units generate CNN misclassifications (Critical SDC).

Whereas, faults injected in Floating Point units allow the CNN to produce the correct

prediction results with percentage of inference different from the one obtained in the fault-

free case (Safe SDC). The overall results rely on the specific application running on the

GPU. Floating Point operations are less critical than the others; in that case, injection

and error propagation still allow the CNN application to conclude the execution pro-

47
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ducing a prediction result, eventually with a different inference percentage. In that case

too, stuck-at 1 faults generated more frequently unrecoverable failures than stuck-at 0.

Adopting then the bit-flip model, functional units were tested again. In that case, many

fault injections crushed the application’s execution, specifically this happened with errors’

insertion in Integer and Special Function units, confirming that the stuck-at model allows

a clearer observation of internal misbehavior. On the contrary, for Floating Point units

injections the results obtained were similar to those retrieved with the stuck-at model.

Future activities aim to extend the set of locations where to inject permanent faults.

In addition, it could be possible to evaluate more CNN architecture models. To improve

the reliability of this type of computational system, hardening techniques could be pro-

posed to counteract the vulnerabilities caused by permanent faults in CNN architectures.

Finally, future works could be focused on the development of design strategy to improve

GPU resilience to errors.
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