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Summary

Weather Regimes are large-scale, quasi-stationary and recurrent meteorological
configurations. Their dynamics largely impact the main weather (temperature,
precipitation, wind speed) and energy-related (power demand, hydro/wind/solar
generation) variables. In the context of the forecasts, weather regimes are generally
more predictable than usual 15-day forecasts of singular weather quantities. Hence,
quantifying the consequences these conformations have on energy variables entails
an opportunity to detect trends with larger anticipation, and it can be a valuable
information for the energy trading sector. In our study, we thus give an overview
of the physical nature of such regimes, presenting a set of advanced statistical
methodologies in the Unsupervised Learning setting, in order to recognize and
discern them, proving to outperform previous studies in literature. We leverage on
such results to perform a fine-grained quantification on energy variables, envisioning
pervasive applications in the trading of energy commodities. Finally, we provide
a forecasting method projecting the results collected in the previous steps into a
sub-seasonal window (until 6 weeks in advance), which we apply on the Winter
2021-2022.
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Summary

Les régimes de temps sont des configurations météorologiques à grandes échelles,
quasi-stationnaires et récurrentes. Les variables météos usuelles (température,
précipitation et vitesse de vent) et leurs équivalents dans le domaine énergétique
(demande électrique, production hydraulique/solaire/éolienne) sont fortement cor-
rélées avec ces régimes. De plus, les météorologues s’intéressent beaucoup à ces
configurations car les erreurs de prévisions sont généralement plus petites lorsqu’on
s’intéresse à des structures de grandes échelles. Ainsi, quantifier précisément les
impacts de ces régimes sur les variables énergétiques donne l’opportunité de dé-
tecter des tendances météorologiques avec un bon degré d’anticipation, ce qui peut
apporter des informations essentielles aux traders de l’énergie. Dans notre étude,
nous caractérisons la structure physique des régimes de temps et nous décrivons
également des méthodes statistiques avancées dans le domaine de Unsupervised
Learning pour détecter ces structures. En appliquant ces méthodes à un jeu de
données historiques des conditions climatiques, nous avons été capables de quantifier
les impacts des régimes de temps sur plusieurs variables énergétiques pour ensuite
les appliquer au trading de l’énergie. Finalement, une méthode de prévision des
tendances a été développée à un horizon temporel de 6 semaines et appliquée pour
le début de l’hiver 2021-2022.
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Chapter 1

Introduction

1.1 Introduction to the study
Modeling weather dynamics requires a thorough understanding of the field and
its underlying physical processes. The chaotic nature of these systems entails the
main obstacle to accurately map the evolution of meteorological configurations,
especially when considering small-scale events.
Looking instead at large-scale patterns allows to enlarge the forecasting window
beyond some few days, and it could be also useful to track phenomena at the
finer-grained level. In this context, weather regimes still represent a partially
explored branch of meteorology, while being some of the main drivers and source
of variability in the climatic conditions.
Despite their recurrent and quasi-stationary nature, the innermost difficulty is to
properly recognize them, and, consequently, quantifying the impact of each of these
physical configurations.
Application domains beyond meteorology are pervasive in daily life scenarios, among
which the energy sector stands out, with a particular emphasis on energy trading
activities. To render the idea, some of the main influenced factors are:

• production: this is especially true when dealing with renewable energy systems,
like solar, wind power and hydro-electric productions

• transport: many goods are still transported over rivers, such as LNG (Liquid
Natural Gas). The monitoring of water-levels is thus central, being highly
correlated with meteorological phenomena like precipitations, snow melting,
temperatures etc.

and, more generally

• the demand and consumptions of end-customers, influencing the base and
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Introduction

peak loads, and thus the necessity for an energy producer/seller/provider to
intervene on the market

Hence, the possibility to accurately predict (up to a certain extent) meteorological
patterns represents a possibility to build weather-driven financial strategies with
some anticipation.
In this context, systems of physical equations, while central in tracking the short-
term dynamics, are of limited effectiveness, being strongly sensitive to the initializa-
tion conditions. Therefore, we recur to the means of statistical learning techniques,
as a trade-off offering cheaper computation, better performances, while preserving
an overall higher interpretability of the dynamics. Also, we extend our focus on the
medium-term range (sub-seasonal), possibly entailing a “window of opportunity”
for energy trading applications we aim to encompass. Thereby, we are interested in
giving a proper quantification of energy variables, strictly dependent on the regimes
recognition task. Finally, we leverage on this knowledge to perform sub-seasonal
forecasts, trying to catch signal up to 40 days with anticipation.
Our study is mostly focused on the North-Atlantic European region, during the
winter period. However, the pipeline we develop is highly portable, and easily
adaptable to different input data typologies, as well as to different geographic zones
and seasons.
The dissertation is organized as follows: in Section 1.2 an introduction to energy
markets is presented, together with the main financial instruments adopted in the
setting; Section 1.3 outlines the most relevant energy variables employed in the
project, and firstly introduces the concept of weather regimes. Chapter 2 gives an
overview of the main datasets used across the study, as well as presenting the data
pre-processing techniques conceived for the project (Section 2.2). Subsequently,
Chapter 3 covers an extensive dissertation on the Machine Learning algorithms used
to cluster weather regimes, as well as presenting the experimental campaign from
Section 3.3 on. Finally Chapters 4 and 5 integrate the two final steps of the pipeline,
respectively discussing the statistical assessment and forecasting procedures we
have performed in the energy domain.

1.2 Energy Markets
Energy products are located inside the more general category of commodities, i.e.
any sort of goods that have an effective physical and tangible realization, outside
the logics of the market. Trading on commodities could then happen either in a
physical or speculative way, whether or not the delivery of the underlying good has
its effective realization.
The nature of the commodities’ market makes it singular, involving long-term
planning and many factors at the support of the decision-making process. As
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a consequence, the main financial instruments are often tailored to this context,
including:

• futures contracts: a well-established financial artifact, representing an obli-
gation of the subscriber to obtain an agreed quantity of a commodity at a
certain delivery date, for a price reflecting the financial state of the good at
the stipulation date. There exist several variants of these contracts, at this
point covering any major commodity, in any market and for periods up to
tens of years forward in the future.
Of course, given that these contracts are mostly closed before their expira-
tion (i.e. the physical delivery of the good), they often represent a dynamic
instrument for speculation

• forwards contracts: fundamentally relying on the same concept as for the
futures, but instead of being traded on an Exchange, they are traded over-the-
counter (OTC). Hence, the broker acts outside a regulated market, allowing
for more customizable contracts

• options: they are conceptually similar to futures, but the subscriber here pays
a possibility to buy/sell a commodity at a certain date, and at a certain price
(still, reflecting the present situation). Again, they are a further speculative
strategy, often used for hedging purposes (i.e. to reduce the risk associated to
other concurrent open trades)

Energy markets typically relies on regulated entities, called exchanges. By definition
1, an Exchange is an economic system inside which goods and services are produced,
distributed, and exchanged by the forces of price, supply, and demand. At a
worldwide level, the major exchanges for traded volumes are represented by:

• EEX (European Energy Exchange): the European reference market, located
in Germany and interconnecting the markets of energy and linked prod-
ucts. It represents a very liquid market, born as a response to the previous
well-established framework in Europe, composed of several monopolies, char-
acterizing the member countries.
The main commodities are represented by Natural Gas (NG) and Power.
Inside this exchange each country has its own reference price (Figure 1.1),
however the TTF price is typically adopted as the main reference, with the
other prices often expressed as a function of it (i.e., TTF ± ∆)

• ICE (Intercontinental Exchange): an American system, whose main products
are futures, energy commodities and OTC derivatives

1https://sociologydictionary.org/market-exchange
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• CME (Chicago Market Exchange): again, a USA-based system, offering a
wide variety of futures

Figure 1.1: Snapshot of all the reference prices for LNG (Liquefied Natural Gas)
energy market in Europe. The TTF (Netherlands) is the reference price, both for
international and internal (whether the other prices are expressed in they form
TTF + ∆ trades

In case of power markets, electricity prices are based on a supply-demand
equilibrium. Power plants are dispatched according to the merit order, from the
lowest to the highest short-run costs, until reaching the level of the demand.
The last unit dispatched in the merit order is called the marginal unit. Players in
the market adopt an economic behavior:

• Generators produce electricity if the compensation is higher than the produc-
tion costs

• Generating companies build new plants if they are profitable (i.e. if price
signals are high enough)

• Consumers buy at the lowest possible price

In other words, the market is based on a supply-demand equilibrium, whose each
point corresponds to a market price (Figure 1.2). An equilibrium point is reached
at each period of time. We define then as Short-Run Marginal Cost (SRMC) the
average of the variable costs of the marginal dispatched units, over the year. When
capacity is sufficient, the calendar power price should be equal to it. Price cannot
be neither higher (otherwise the extra-margins from selling at higher prices could
be challenged by competitors willing to settle for less), nor lower (in this case,
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Figure 1.2: Illustration of the establishment of the electricity price, based on the
actual supply/demand and the productive expectation of the power plants.
Power plants are dispatched according to the merit order, based on the related
short-run costs
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producers would record losses if selling below it).
In case of capacity shortage, a scarcity rent appears during some hours, i.e. a
mark-up over the SRMC compensating for the additional investments and fixed
costs of a new marginal unit. Depending on the market structure, this mark-up
may either be reflected implicitly in the energy market price, or as an explicit
capacity price.
In this situation, we can have then two types of movements of the merit order:

• horizontal movements, due to technical outages and/or unavailabilities and/or
scarce renewable energy production

• vertical movement, due to commodity price fluctuations

For our study, we are especially interested in the first typology of movements,
especially when quantifying how a particular weather configuration can affect
fluctuations in this sense, both on the production (e.g. higher than average wind
generation compensating for the demand) or on the power demand (for example,
higher temperatures leading to lower power demand).

1.3 Outline on weather variables

1.3.1 Geopotential Height
The primary part of our study focuses on the establishment of the so-called weather
regimes: meteorological configurations at a regional/sub-continental level, defining
a proper atmospheric state, and highly influencing climate phenomena such as
precipitations, winds, water levels, temperatures etc.

(a) Observation of geo-
potential height at 500hPa
(Z500)

(b) 30-years “flat" normal
of geo-potential height at
500hPa (Z500).

(c) Anomaly of geo-
potential height at 500hPa
(Z500)

Figure 1.3: Geo-potential maps of daily observation, normal and anomaly
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They are usually addressed considering the geopotential height (gpH) or Sea
Level Pressure (SLP) variable: the altitude at which a constant atmospheric
pressure level is measured (i.e. the altitude of an iso-pressure atmospheric level
curve). Normally, the reference pressure value is Z500, corresponding to 500 hPa
(hecto-Pascal), and taking into account those physical phenomena occurring in
the mid/low Stratosphere, thus majorly driving climate events at the surface level.
However, across the studies other pressure levels have shown to be suitable to
accomplish the task (Hertig et al. 2014; Vautard 1990; Meteo-France n.d.; Vrac
et al. 2007).
Instead of considering the raw gpH observation, the so-called anomaly (Figure 1.3c)
is examined. It is a physical quantity addressing the variation with respect to the
normal behavior (Figure 1.3b).
We define the normal as corresponding to an average involving (typically) the last
30 years of observations of the considered period of the year, thus resembling the
mean expected behavior. It is a position-wise quantity, that, in the case of the
geopotential height, shows a clear trend: it increases around the tropics (typically
characterized by higher-pressure regimes), and decreases moving towards extreme
latitudes.
Evaluating it often requires some processing, in order to eliminate any sort of
seasonality that could be present when considering periods spanning across different
seasons. Further, it has proved to highly influence the sensitivity of algorithms in
the modeling pipeline, especially when leading to large anomaly values. For this
reason, in our project we consider two types of normal: a “flat” normal, independent
of the time, and a more “dynamic” normal, varying at different temporal granularity
levels (month, week, and day).

Pressure zones are generally divided between low and high pressure zones,
consequently corresponding to low and high values of geopotential height. In a 3D
coordinate systems, they can be mathematically conceived as local minima/maxima
on the isobaric plane. Under a meteorological point of view, low pressure zones are
usually drivers of precipitations and unstable climatic conditions. Conversely, high
pressure areas tend to be drier and with more stable setups. The geographical zone
between an high pressure and a low pressure clusters experiences instead a general
windy climate, the more accentuated, the closer the two clusters are. Finally,
according to the relative positions of the two pressure masses, wind currents take
either clockwise or anti-clockwise directions.
Thereby, weather regimes are recurrent, and quasi-persistent spatial distributions
of these pressure masses, presenting a well-defined relative location of positive and
negative pressure zones. They vary across geographical areas (Robertson et al.
1999; Bruyère et al. 2016), and between different seasons, being more prominent
during winter and summer (Cassou et al. 2005).

Our project is mainly centered on the North-Atlantic and European zone during
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Figure 1.4: Visualization of the four weather regimes (Weather et al. n.d.) in
the North-Atlantic and European zone. From left to right, up to down: NAO+,
presenting high pressure in the mid-latitude level, and low pressure over the
sub-arctic zone; Scandinavian Blocking (SB), characterized by high pressure over
the Scandinavian peninsula; Atlantic Ridge (AR) configuration presenting higher
pressure over the Atlantic Ocean region; NAO-, reporting general low pressure over
Europe and high pressure in the sub-arctic region
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the winter season. In such context, the four theoretical regimes (Figure 1.4) (Straus
et al. 2007; Grams et al. 2017; Falkena et al. 2020; Cassou et al. 2005; Cassou et al.
2011; van der Wiel et al. 2019a) are:

• NAO positive and NAO negative (NAO+ and NAO-, respectively). North At-
lantic Oscillations represent the two main weather configurations, respectively
localizing high pressure (low pressure for NAO-) systems in the Mediterranean
Europe/mid-Atlantic region, and low pressure (respectively, high pressure) in
the northern Europe/Greenland.
Under NAO+, winters are generally warmer over all Europe, with some pre-
cipitations localizing in the north-western zone of the continent. The Atlantic
is instead more likely interested by storms.
NAO- is characterized by colder winters in north-western Europe, and a wetter
season in south-eastern Europe. Overall, there is less probability of winter
storms.

• Scandinavian Blocking (SB). As the name recalls, the high pressure interests
the Scandinavian peninsula and the northern Europe, while low pressure is
mostly present over the Greenland and northern Atlantic America.
Under SB, winters are typically dry and cold in the wester and central zones
of Europe.

• Atlantic Ridge (AR). Again, as the name suggests, high pressure is over the
entire Atlantic Ocean region, while low pressure is concentrated over the
Scandinavia and, more limitedly, on the Europe.
Under AR, temperatures are slightly below normal over Europe, and typically
dry in the western part.

NAOs tend to be the pre-dominant regimes during winter, accounting for most
of the variability. Due to this, we often resort to a custom indicator called NAO
Index (Climate Prediction Center n.d.), whose positive values are associated to
NAO+ persistances, while negative scores are more resembling NAO-. Further, its
amplitude is often used to track extreme events, whether magnitudes are extreme.
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Chapter 2

Data

2.1 Meteorological Data
Meteorological data are divided in raw and synthetic data. Raw meteorological
data often comes in a temporal-spaced grid-based format. The density of the grid
is a discriminatory feature, reflecting into the precision of mapping phenomena at
a local-regional level.
Every cell in the grid (vertex of a cell) derives from a data assimilation process,
which, starting from a set of initial weather conditions as measured by ground
stations, satellites, planes, boats etc., allows to project them in a regular format,
at a particular point in time, leveraging on systems of physical equations.
Meteorological forecasts by means of physical models fall into this category, and
are divided in:

• Short-term or 15-days forecasts

• Medium-term or sub-seasonal forecasts: quite a recent concept, they analyze
periods covering up to 6 weeks forward in the future

• Long-term or seasonal forecasts: adopted to get an overview over the next
season

Dealing with chaotic systems, short-term forecasts are reliable just for few days
after the forecasting date. This problem is typically addressed as “butterfly effect”,
where a minor change in the aforementioned initial conditions leads to potentially
divergent forecasts in longer time horizons.
Synthetic data relies instead on the use of statistical models, typically inferring
quantities from raw meteorological measures. For instance, this is the case for
most of the forecasts of energy variables (e.g. wind/solar power generation derived
respectively from wind speed/solar irradiance measures).
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Further, synthetic data is often useful for data augmentation purposes, allowing to
project data far in the past, where either raw measurements are missing or there
was not the possibility to obtain them (e.g., a standard example is represented by
renewable power generation when no renewable plant was still existing).
A further necessary differentiation refers to the two types of forecast models:
operational and ensemble models. The former is a singular fine-tuned instance,
usually representing the best estimation of the forecast. It is a deterministic model,
leveraging on the best knowledge we have of the initial conditions, by combining
and comparing several different measurement sources. It usually exploits the best
resolution, both vertically and spatially, as well as the best physical parametrization
of the underlying model. However, initial conditions are likely to differ from the
ground truth. For this reason, ensemble models are introduced. A set of initial
conditions is obtained by perturbing them with noise, thus allowing to explore
the space of errors. Each of these “members” (i.e., a singular configuration of the
ensemble) is plug into a model, typically on a lower resolution, due to computational
constraints. Sometimes the model can be perturbed too, to increase the robustness.
As a consequence, an ensemble of forecasts is obtained, which are typically used
to get some insights into longer-term trends and patterns. Figure 2.1 reports an
illustration of the difference between the two categories.

Figure 2.1: Operational and Ensemble models in a 15-days forecast scenario. In
black operational model, in red the mean of the ensemble. It is worth to notice the
increasing volatility of the members of the ensemble for further forecasted dates

In terms of data availability, forecasts are mostly proprietary measurements,
coming in quite expensive solutions. For the scopes of this project, we only rely to
open data, whether they are historical or raw re-analyzed collections.

2.1.1 Historical Data: ERA5 and Energy Variables
Our main data source of reference is Climate Data Store (Store n.d.[a]), a web plat-
form exposing proper APIs and allowing to customize the data requests according
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to the needs. It is a database containing re-analyzed raw data, offering a vast pool
of well-noted meteorological models.
For the first part of the project, we use the standard ERA5 dataset on single
pressure-levels (Hersbach et al. 2020; Store n.d.[b]), collecting daily observations
from 1979, up to the present.
The reference period we choose to examine is the winter-time, restricted to the
December-January-February (DJF) months. In this way, we ensure to have similar
conditions, avoiding any possible effect of seasonality.
Under the geographic point of view, we consider the North-Atlantic/European
region (Cassou et al. 2011; Falkena et al. 2020; Grams et al. 2017; van der Wiel
et al. 2019a), corresponding to an area of over 40 million km2 (latitude in [20◦, 80◦],
longitude in [−90◦, 30◦]) and ensuring to capture the entire regional envelope of the
weather regimes. The regular grid of the dataset is composed of 115Í921 points, for
a density of 0.25 lat-lon degrees (about 30 km). We place high importance on the
high density characterizing the dataset, since it allows us to adopt more complex
techniques than what the literature exposes.
For the quantification part of the dissertation, we take advantage of secondary
weather variables coming from ERA-5, such as Temperature, Solar Irradiance, Sea
Level Pressure, Wind Speed, as well as raw and synthetic energy data directly
obtained from TSO (Transmission System Operator), a network of European oper-
ators providing the measurements on their grid (some examples are RTE in France,
Terna in Italy). Table 2.1 reports the set of variables we take into account.

Energy Variables
Wind Offshore Obs (GW)* Wind Onshore Obs (GW) Wind Capacity (GW) Wind Load Factor
Solar Photo Obs (GW) Solar Thermal Obs (GW)* Solar Capacity (GW) Solar Load Factor

Hydro Run of River Obs (GW)* Hydro Reservoir Obs (GW)* Hydro Capacity (GW) Hydro Load Factor
Load

Weather Variables
Temperature (◦C) Precipitation (mm) Solar Irradiance (W/m2)
Wind Speed - Sea Level (m/s) Wind Speed - 100m (m/s)

Table 2.1: Set of energy variables coming from ERA-5 dataset and TSO
*variables not available for all the considered countries

2.1.2 Weather Regimes - Météo-France
In modeling weather regimes, a definition of ground truth does not properly exist.
This is evident across the numerous studies, where results tend to be slightly
misaligned.
Weather regimes are phenomena which have been only recently adopted for high-
level applications of side sectors, therefore freely available datasets tend to be
scarce.
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Météo-France (Meteo-France n.d.) is a national weather agency, which offers us the
access to their historical collection of daily weather regimes from 1991 up to the
present, as predicted by their ensemble centroid-based model. For our scopes, we
decide to plug them into our a-posteriori validation framework, after we empirically
validate their reliability.
As it is discussed in the next sections, we include in our results a probabilistic
characterization of the ensemble results, although we specify how this is only
determined by a pure frequentist assumption.
Figure 2.2 reports the centroids of the four weather regimes Météo-France predicts.

Figure 2.2: Visualization of the four regimes in the North-Atlantic/European zone,
as predicted by Météo-France (Meteo-France n.d.). It is possible to identify: AR
(top left); NAO+ (top right); NAO- (bottom left); SB (bottom right)

2.1.3 Sub-seasonal Forecasts
Sub-seasonal forecasts entail a new perspective in data-driven energy markets.
Since large-scale configurations tend to be much more predictable and recurrent,
medium-term forecasts represent an opportunity in several application domains,
thus having recently led to a major development of sub-seasonal models.
Under a meteorological point of view, the stationarity (and thus the predictability)
of a regime happens due to events occurring in the Stratosphere, and partially
blocking the regime circulation. In our study, we aim at detecting some trends in
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energy variables by correlating the forecasted weather regimes, with the historical
quantification we perform on them.
Data for sub-seasonal forecasts are retrieved by the ECMWF (European Centre
for Medium-Range Weather Forecasts) (Ferranti et al. 2011), releasing ensemble
models’ predictions twice a week. Again, in processing this collection we adopt a
frequentist perspective to enable a probabilistic modeling on the problem.
In their modeling, they adopt a 5-clusters model (four standard clusters, and an
additional “Unknown” cluster), which we easily reconduct to a canonical 4-clusters
assumption, due to reasons which will be clear later on.
Figure 2.3 offers a snapshot on how sub-seasonal forecast looks like.

Figure 2.3: Visualization of the 45-days sub-seasonal forecast provided by ECMWF
(Ferranti et al. 2011)

2.2 Data Pre-processing
The main issue of applying optimization techniques on geographical data refers to
the high data dimensionality, especially whether vectorial and matrix computations
are involved.
In the Machine Learning domain, this is often addressed as curse of dimensionality,
i.e. the impossibility of efficiently learning the space where data samples are
distributed, which becomes exponentially sparse as the dimensions of the feature
space increase. For this reason, here comes the necessity to introduce some
pre-processing techniques, able to create a suitable low-dimensional encoding,
both minimizing the loss of information, and maximizing the performance of the
optimization process.
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2.2.1 Empirical Orthogonal Function (EOF) Analysis
Empirical Orthogonal Functions (EOFs) (Hannachi 2004) represents a standard
reduction technique in geo-science-related experiments. Firstly adopted to reduce
the feature space to few relevant variables (sharing a common concept with PCA,
Section 2.2.2), it is mainly used to extract individual modes of variability (i.e. pre-
dominant patterns, often sharing common structures with the main regimes). There
exist several variants of the algorithm, according if a spatial-time cross-correlation
is kept into account; in this section, we refer to the standard algorithm, where the
components are considered to be totally de-correlated (orthogonal). Although we
know that the real physical components share some dependencies, we believe this
is a suitable trade-off leading to a minor computational complexity.
Given the time-indexed geo-dataset, we can indicate it as:

Xt,y,x, t = 1, . . . , N

i.e., indexed by time t, latitude y, longitude x, respectively.
The EOF procedure requires a 2D-flattened version of this dataset, where the
spatial indexes are converted from a grid to a vectorial format, leading to:

Xt,p, t = 1, . . . , N, p = (yi, xi), i = 1, . . . , P

Since data is provided in a regular grid format, there could be the necessity to
introduce a weighting scheme prior to analyse data and fed it to EOF analysis.
Indeed, the density given by the un-weighted grid, would be major poleward, than
along the latitude. This attempt requires then the following mathematical passage:

Xw = XDθ, Dθ = diag[cos θ1, . . . , cos θP ]
Finally, the Empirical Orthogonal Functions are computed solving the Singular
Value Decomposition (SVD):

X = UΣVT

factorizing the dataset in:
• U ∈ Rn×n, whose columns are called left singular vectors, representing the

eignevectors of the matrix XXT , as well as the EOFs along the spatial dimen-
sion

• Σ ∈ Rn×p: the matrix of the singular values

• V ∈ Rp×p, whose columns are called right singular vectors, representing the
eignevectors of the matrix XTX, as well as the Principal Components (PCs)
along the time dimension

By construction, EOFs are stationary (i.e. they do not evolve over time), only
changing in the sign and value of their amplitude, thus resembling the state of the
atmosphere.
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Figure 2.4: Visualization of the four main EOFs (Empirical Orthogonal Functions)
in the North-Atlantic/European zone. It is possible to identify: a NAO+ resembling
component (top left); an anti-Scandinavian Block SB- (top right); an anti-Atlantic
Ridge AR- component (bottom left)
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Figure 2.5: Bar Visualization (left) of the main Principal Component (PC-1) of
the Time Series, in the North-Atlantic/European zone, grouped by the January-
February-December months of the same solar year. PC is here standardized to
have zero mean and unit variance. When the values are out of the range ±1, they
are generally associated to more extreme meteorological events. Associated to it,
the NAO Index (Climate Prediction Center n.d.) evolution during winter months:
it is evident the high correlation with PC-1. On the right, a density visualization
of the first two PCs
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2.2.2 Principal Component Analysis (PCA)
PCA represents a standard pre-processing technique for dimensionality reduction
in Machine Learning problems. As for EOF analysis, the intent is to find a low-
dimensional (latent) representation Z of data, through a projection matrix W,
such that:

Z = XW

by maximizing the variance (and thus, the explainability) of it. It is an optimization
problem, described by the objective:

argmax
w: ëwë<1

ëXwë2
2

where we introduce a constraint on the projection weights w, in order to bound
the problem and regularize the magnitude of them.
As a result, it translates into a closed-form analytical solution, coinciding with
the eigen-decomposition problem. The projection matrix W is thus the matrix of
eigen-vectors of X. By picking the top-n eigenvectors, associated to the largest-
magnituded eigenvalues, we can control the quantity of explained variance associated
to the latent variables z.

2.2.3 Variational Autoencoder (VAE)
As clearly proved, the PCA approach performs a linear transformation of data into
an encoded space. This feature represents both the strength and weakness of the
method, able to computationally scale with large datasets, but often inferring a
trivial mapping.
For this reason, we also provide a more advanced dimensionality reduction tech-
nique, leveraging the approximation power of neural networks.
Autoencoders (AEs) are a Deep Learning architecture, composed of two stages (Fig-
ure 2.6): an encoder, mapping original data into a low-dimensional representation,
called bottleneck (in this case, we deal with undercomplete AEs); a decoder, learning
to reconstruct the input samples from the latent space. The simplest architecture
we can think of, is a 3-layers network. In the absence of non-linear activation
functions, this architecture should converge to the PCA, being the bottleneck
obtained through a matrix-to-matrix multiplication with the input.
In our study, we decide to tackle the problem in a more sophisticated way, directly
inferring a mapping on the anomaly maps (Saenz et al. 2018), thus employing
techniques from the computer vision domain (Prasad et al. 2020).
We switch to a probabilistic approach, employing a Variational Autoencoder (VAE)
architecture. By definition, a VAE is an Autoencoder where the latent space sum-
marizes a multi-variate distribution, learning its mean and covariance parameters
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Figure 2.6: Visualization of an Autoencoder architecture(Elbattah et al. 2021)

Figure 2.7: Visualization of a Variational Autoencoder (VAE) architec-
ture(LearnOpenCV n.d.)
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(Figure 2.7). The “variational” addressing is referred to the statistical approxima-
tion performed by the two networks, optimizing the so-called variational objective.
Indeed, under a mathematical point of view, a VAE tries to find the distribution
p(z|x) which best explains data x starting from its low-dimensional representation
z. Recalling the Bayes’ rule we can fragment this conditional posterior by means
of a likelihood p(x|z) on the reconstructed data, a prior p(z) on the latent space,
and a marginal likelihood (often addressed as model evidence) p(x). Therefore,
according to the Bayes’ theorem it follows that:

p(z|x) = p(x|z)p(z)
p(x)

Under a more practical point of view and with a slight change of notation, the
decoder, parametrized by θ parameters, approximates the likelihood distribution
pφ(x|z), while the encoder (φ-parametrized) is in charge of approximating the
posterior pφ(z|x). Finally, the prior on the latent space is typically chosen to be as
more general as possible, with a standard multivariate Gaussian representing the
usual choice.
The framework presents an innermost issue, though. The marginal likelihood term
p(x) is indeed tough to be estimated analytically, leading to an intractable analytical
solution. Hence, we resort to variational inference, introducing an approximating
distribution q(z), which we optimize to be as closer as possible to the true posterior
distribution.
The objective statement then aims at reducing the gap between these two distribu-
tions, by minimizing their Kullback-Leibler (KL-)Divergence:

argmin
z, φ, θ

KL(qφ(z)ëpφ(z|x))

By definition, we can write the KL-term as:

argmin
z, φ, θ

KL(qφ(z)ëpφ(z|x)) =

= argmin
z, φ, θ

Ú
qφ(z) log qφ(z)

pφ(z|x) = argmin
z, φ, θ

Eqφ(z)

 log qφ(z)
pφ(z|x)


Then, exploiting the logarithm properties:

argmin
z, φ, θ

Eqφ(z)[log qφ(z)] − Eqφ(z)[log pφ(z|x)]ü ûú ý
probabilistic term

Focusing on the probabilistic term, we can apply the Bayes’ rule to simplify a bit
the notation:

Eqφ(z)[log pφ(z|x)] =
Ú

qφ(z) log
pθ(x|z)p(z)

p(x)
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= Eqφ(z) log pθ(x|z) + Eqφ(z)p(z) − Eqφ(z)p(x)
Recalling the initial objective, where we intentionally omit the argmin notation for
sake of brevity:

KL(qφ(z)ëpφ(z|x)) = Eqφ(z)[log qφ(z)] − (Eqφ(z) log pθ(x|z) +Eqφ(z)p(z) −Eqφ(z)p(x))

With a bit of re-arrangement, we can define the variational objective, also known
as Evidence Lower Bound (ELBO):

p(x) − KL(qφ(z)ëpφ(z|x)) = Eqφ(z) log pθ(x|z) − (Eqφ(z)[log qφ(z)] − Eqφ(z)p(z))ü ûú ý
=KL(qφ(z)ëp(z))

Given the change of sign, this new objective is maximized, and it is equivalent to
the maximization of the marginal likelihood metric, representing a lower bound
on it. Indeed, by minimizing the KL-divergence between the approximating and
true posteriors, we try to make the lower bound tighter. At the same time, the
log-likelihood on the reconstructed data is maximized. The last term represents
a regularization term, which explains the intended evolution of the optimization
process: at the beginning the approximating distribution qφ(z) is thought to be
very close to the uninformative prior of the latent space p(z). The scope is then to
gradually shift the approximating distribution towards the more complex posterior.
Under a more practical point of view, it is often hard to find the correct balance
to reach the desired performances. Indeed, the risk is that over-parameterized
model could lead to an excessive weight of the last term, often resulting in trivial or
weakly-distinguished encodings. For this reason, over the years several variants of
VAEs have been proposed, with the scope of introducing more dynamic objectives,
with twofold purposes:

• leading to better reconstructions

• obtaining the so-called disentangled representations (Locatello et al. 2018;
Locatello et al. 2019a; Locatello et al. 2019b; Locatello et al. 2020; Träuble
et al. 2021; Dittadi et al. 2020; Mita et al. 2021)

While the former is often more related to image-reconstruction problems, where
standard VAEs tend to produce blurry reconstructions, the latter has been at
the center of many studies. We define disentagled representations as a suitably
small set of latent features, uncorrelated between each other, and thought of
being sufficiently informative for the generation process. As a standard example,
characteristics like the geometry, shape, size, colour, orientation of an object in an
image could be tought as disentangled features. Being able to retrieve them means
finding a very compressed feature mapping, enhancing the overall data and model
interpretabilities.
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A drawback of this approach is that it often requires supervised information for at
least few data samples, turning the problem into a supervised/weakly-supervised
learning problem. In our study, this represents a big obstacle since we do not have
at disposal any labeling. Also, there could not be the possibility to artificially
re-create a pseudo-labeling, since each anomaly map could fall into multiple classes
with different probabilities, making an hard-classification impossible.
However, we are able to find a trade-off, employing two well-noted VAE variants:

• β-VAE (Higgins et al. 2017): this variant introduces the hyper-parameter β
in the variational objective, weighting the KL-term. It results then in:

argmin
z, φ, θ

log pθ(x|z) − β · KL(qφ(z)ëp(z))

The adoption of a β > 1 should leverage the learning of disentangled represen-
tation, by forcing the latent variables in a more constrained/regularized space.
As a trade-off we lose in reconstruction capabilities.
In our experiments, although we encounter this effect of better decoupled
latent features, the adoption of the β-VAE results in decreased performances
of the subsequent clustering task in the pipeline. Indeed, the strong imposed
regularization projects the points in a much more restricted region of the
space, having as a side effect a distortion of the clustering validation measures
based on the points dispersion

• σ-VAE (Rybkin et al. 2020), an architecture introducing the variance term of
the likelihood as a trainable parameter to calibrate (in statistical sense) the
decoder distribution. The variational objective is thus modified as follows:

D log σ + 1
σ2 log pθ(x|z) − KL(qφ(z)ëp(z))

where D is the input-data dimensionality.
Conceptually, the decoder distribution (typically either a multivariate Gaussian
or a Multinoulli) is set as:

pθ(x|z) = Dist(µθ(z), σ2
θ(z))

even though, in practice, imposing a common shared diagonal covariance
Σ = σ2I works better.
Furthermore, it allows to resort to the β-VAE objective, by setting the variance-
term σ2 constant and equal to β

2 . In this way, there is no need to manually
tune β.

We reach a noticeable improvement with respect to the PCA reduction, managing to
encode the anomaly maps in a 5-dimensional space, ensuring major interpretability
and cheaper computations in the subsequent modeling task.
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To assess the improvement on the encoded space we rely on a twofold proof.
First, the results we obtain for modeling weather regimes (Section 3.3) with the
VAE algorithm are satisfactory and well in line with the literature, despite a much
denser feature space. Thus, it suggests that the VAE algorithm is more efficient
to separate the points belonging to different clusters. Secondly, we employ the
t-SNE (t-distributed Stochastic Neighbor Embedding) algorithm to find a 2D rep-
resentation of the high-dimensional manifold of the reduced space, visually proving
the enhancements we reach with the VAE (Figure 2.8). Each point in the chart
corresponds to a different anomaly map in our historical dataset, associated to
a strong signal of a regime (i.e. where an hard-assignment to a singular regime
would be a faithful approximation). The representation is clearly less sparse in
terms of intra-cluster variance for the VAE reduction scheme than under the PCA
projection. Further, we highlight also how in both the two projections the points
associated to AR are typically mixed within the other regimes (more on this in the
subsequent Sections).

Figure 2.8: t-SNE applied on the PCA-reduced (top row) and VAE-reduced (bottom
row) spaces at different levels of perplxities: the VAE-encoded features leads to
a better separability of the clusters, as further proved by the better minimized
KL-divergence objective
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In order to guarantee a truthfulness of these considerations, such visualization
is computed at different levels of perplexity, representing a parameter of the t-SNE
algorithm determining the number of neighboring points used to estimate the
projection of the manifold in the bi-dimensional space. To do so, the algorithm
minimizes a KL-Divergence objective, whose value we use to further assess the
better projection entailed by the VAE reduction.
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Models

We adopt a totally-unsupervised approach to the problem, given its particular
nature. We initially inspect the standard K-Means algorithm (Section 3.1), in
order to align with the previous studies on the topic (Grams et al. 2017; Falkena
et al. 2020; Cassou et al. 2005; Cassou et al. 2011; van der Wiel et al. 2019a; van
der Wiel et al. 2019b; Bloomfield et al. 2016). In literature the experiments only
focus on a frequentist approach to the clustering of the regimes, intended to give
an high level overview of the most prominent configurations. However, we think
that a daily-level hard-assignment to a particular regime represents an excessively
simplistic assumption, although driven by ease of implementation.
Further, we see that across the studies (Grams et al. 2017; Falkena et al. 2020;
Cassou et al. 2011; van der Wiel et al. 2019a) a discrepancy exists about the correct
number of clusters to be considered, despite the four, well-established, theoretical
configurations are often enough to accurately track the atmospheric dynamics.
This drawback could also be addressed to a wrong choice of the algorithm, that
necessarily has to take into account higher numbers of clusters, to track intermediate
evolutions of the regimes, thus performing a more faithful assignment. For this
reason, after some experiments on the framework, we decide to switch to a fully-
Bayesian approach, adopting Mixture Models (Section 3.2) (Vrac et al. 2007; Smyth
et al. 1999; Stan et al. 2017).
The major complexity we introduce is justified by the following advantages:

1. Major statistical interpretability of the system and its dynamics

2. A direct choice of the number of the clusters: we can indeed either opt for the
standard solution of 4 clusters, where the intermediate transitions between
mixed regimes are caught by the assignments of more uniform probabilities to
multiple clusters, or we can rely on ad-hoc validation measures taken directly
from the probabilistic setting
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3. A real descriptive probabilistic weighting scheme to the occurrence of the
regimes, not based on a simple frequency

4. Linked to the previous point, we can infer a more truthful and calibrated
quantification of the subsequent tasks in the pipeline, considering the effects
deriving from multiple configurations, weighted by the related probabilities

3.1 K-Means
K-Means is a standard clustering algorithm, exploiting a distance metric to cluster
points in K pre-defined clusters. Its ease of implementation makes it a standard
choice for most of the clustering tasks, and the inference only requires to store the
positions of the centroids, i.e. the clusters’ centers as obtained after the training.
The iterative algorithm (Expectation-Maximization (EM) algorithm) can be sum-
marized as follows:

Algorithm 1 K-Means
Initialize centroids µk, k = 1, . . . , K
loop

loop over each point xn, n = 1, . . . , N
Evaluate cluster assignment as: ó E-step

znk = argmin
k

(xn − µk)T (xn − µk)

Recompute centroids: ó M-step

µk =
qN
n=1 znkxnqN
n=1 znk

, k = 1, . . . , K

until convergence

As most of the clustering algorithms, initialization and convergence criteria
are two critical factors in determining the overall performances. While the latter
is typically bypassed by setting an appropriate number of iterations, the former
requires several different runs of the algorithm, possibly converging to as many
different solutions.
Some other limitations are then referred to:

• the adoption of the Euclidean distance metric, treating all the dimensions of
the feature space evenly. The relative representativeness and importance of a
feature is completely lost
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• non-linear separable clusters, even though clearly recognizable, are often
wrongly recognized

3.2 Mixture Models
Mixture models are generative models focusing on how data could have created.
Each point xn is supposed to be generated from one of the K distributions, that
can be easily sampled to generate new points.
Given the set of the datapoints X, we define as ∆ the set of all the parameters of
the distributions. The model is a reverse-engineering process, aiming to learn ∆,
and thus the originating distribution associated to each point.
The objective is to maximize the mixture model likelihood. Let the k-th distribution
have probability density function:

p(xn|znk = 1, ∆k)

The marginal likelihood associated to data X is p(X|∆).
We leverage the i.i.d. (independent and identically distributed) assumption over
the data-points xn ∈ X, n = 1, . . . N , therefore factorizing:

p(X|∆) =
NÙ
n=1

p(xn|∆)

Then, we un-marginalize k:

p(X|∆) =
NÙ
n=1

KØ
k=1

p(xn, znk = 1|∆) =
NÙ
n=1

KØ
k=1

p(xn|znk = 1, ∆k)p(znk = 1|∆)

Hence, since we want to find ∆ maximizing it:

argmax
∆

NÙ
n=1

KØ
k=1

p(xn|znk = 1, ∆k)p(znk = 1|∆)

We switch to log-probabilities to simplify the optimization:

argmax
∆

NØ
n=1

log
KØ
k=1

p(xn|znk = 1, ∆k)p(znk = 1|∆)

However, applying a logarithm of a sum could be tricky to be optimized, then we
resort to the Jensen’s Inequality:

logEp(x)[f(x)] ≥ Ep(x)[log f(x)]
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So, given our likelihood L = qN
n=1 log qK

k=1 p(xn|znk = 1, ∆k)p(znk = 1|∆), we add
a (arbitrary looking) distribution q(znk = 1), subject to q

k q(znk = 1) = 1:

L =
NØ
n=1

log
KØ
k=1

q(znk = 1)
q(znk = 1)p(xn|znk = 1, ∆k)p(znk = 1|∆)

We now have an expectation:

L =
NØ
n=1

logEq(znk=1)

 1
q(znk = 1)p(xn|znk = 1, ∆k)p(znk = 1|∆)


telling us how on average the parameters of q(znk) are able to model the likelihood
of data, i.e. how on average the produced assignments explain the data disposition
in the space. If we look at q(znk) as a posterior distribution (i.e. q(znk|xn)), the
equation could be interpreted as:

Eposterior

5 likelihood · prior
posterior

6
= Eposterior[marginal likelihood]

So, applying the Jensen’s Inequality:

L ≥
NØ
n=1

Eq(znk=1)

 log 1
q(znk = 1)p(xn|znk = 1, ∆k)p(znk = 1|∆)



=
NØ
n=1

KØ
k=1

q(znk = 1) log
 1

q(znk = 1)p(xn|znk = 1, ∆k)p(znk = 1|∆)


=
NØ
n=1

KØ
k=1

q(znk = 1) log p(znk = 1|∆)+

NØ
n=1

KØ
k=1

q(znk = 1) log p(xn|znk = 1, ∆k)−

NØ
n=1

KØ
k=1

q(znk = 1) log q(znk = 1)

We then define qnk = q(znk = 1), πk = p(znk = 1|∆) (both just scalar quantities):

L ≥
NØ
n=1

KØ
k=1

qnk log πk +
NØ
n=1

KØ
k=1

qnk log p(xn|znk = 1, ∆k) −
NØ
n=1

KØ
k=1

qnk log qnk

and we differentiate this lower bound with respect to qnk, πk, ∆k, setting it to zero
and obtaining an iterative update.
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The updates for ∆k, πk will depend on qnk, therefore the latter will be firstly
updated.
This is another form of the Expectation-Maximization algorithm, derived in a
different way. Again, the algorithm is very sensitive to initialization, however it is
guaranteed to converge to a local maximum of the lower bound.
The overall algorithm can be summarized as:

Algorithm 2 Mixture Model
Guess µk, σ2

k, πk k = 1, . . . , K
loop

Compute qnk, n = 1, . . . , N, k = 1, . . . , K
Update µk, σ2

k, k = 1, . . . , K

until convergence

The clustering assignment step is governed by the probabilities qnk of a point
xn coming from the distribution k:

qnk = p(znk = 1|xn, X)

Each point will be then characterized by a set of K probabilities.

3.2.1 Gaussian Mixture Model (GMM)
We assume the component distributions are Gaussians with diagonal covariance,
p(xn|znk = 1, µk, σ2

k) = N (µ, σ2I).
When updating πk we are subjected to the constraint q

k πk = 1, so we need to add
a Lagrangian to the update term:Ø

n,k

qnk log(πk) − λ
3 Ø

k

πk − 1
4

Differentiating it and setting it to zero:
∂

∂πk
= 1

πk

Ø
n

qnk − λ = 0 −→
Ø
n

qnk = λπk

Summing both sides over k, we find

λ =
Ø
n,k

qnk

Therefore, substituting:

πk =
q
n qnkq
n,j qnj

= 1
N

Ø
n

qnk
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Update for qnk: now the whole bound is relevant. Adding the Lagrange term
−λ

3 q
k qnk − 1

4
and differentiating:

∂

∂qnk
= log πk + log p(xn|znk = 1, ∆k) − (log qnk + 1) − λ

Re-arranging (λÍ = f(λ)):

πkp(xn|znk = 1, ∆k) = λÍqnk

Summing over k to find λÍ and re-arranging:

qnk = πkp(xn|znk = 1, ∆k)qK
j=1 πjp(xn|znj = 1, ∆j)

where evaluating p(xn|znk = 1, ∆k) requires to plug xn inside a multi-variate
Gaussian parametrized by µk, σ2

k.
Updates for µk, σ2

k: these are easier (they are not subjected to any constraint).
Differentiating the following and setting to zero:

Ø
n,k

qnk log
 1

(2πσ2
k)D/2

exp
 − 1

2σ2
k

(xn − µk)T (xn − µk)


µk =
q
n qnkxnq
n qnk

, σ2
k =

q
n qnk(xn − µk)T (xn − µk)

D
q
n qnk

3.2.2 Dirichlet Process Mixture Model (DPMM)
Dirichlet Process Mixture Models (DPMM) (Blei et al. 2006) is another probabilistic
model, leveraging the framework up to an infinite number of mixtures. It is a
non-parametric model, meaning that the number of parameters can grow with
higher amounts of data. This is especially useful when the number of clusters is
not fixed, or there is the necessity to extrapolate it from data. The algorithm is
Bayesian, setting a probabilistic distribution over the number of clusters.
To introduce it, we firstly define a Dirichlet Process DP(α, G), as a distribution
over distributions, where:

• α is the concentration parameter: the smaller it is, the fewer points result
with high probabilities

• G is the base distribution we want to shape through the process itself
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Under a practical point of view, we can refer to a DP as a black-box having as
input the distribution G, and as output a distribution GÍ, whose similarity to G is
determined by α.

G → DPα → GÍ

Instead, formally, the underlying statistical process estimates the break-sticking
weights Ck as a recursive sampling from a Beta distribution:

πk = Vk
k−1Ù
j=1

(1 − Vk), where V1, V2, · · · ∼iid Beta(1, α)

Given these weights, we can therefore approximate the original distribution G by
drawing some elements from it:

µ1, µ2, · · · ∼iid G

and merging them into a complete distribution:

G =
Ø
k∈N

πkδµk

where δµk is a Dirac’s delta (i.e. an indicator function) associating each drawn
element µk with its corresponding weight πk.
Some important properties associated to a Dirichlet Process are then:

• Invariance of the expected value of the distribution G:

EDP(α,G)[x] = EG[x]

• Convergence at the original distribution G at the bounds, i.e. as α →
∞, DP(α, G) = G

• Composition of DPs:
H ∼ DP(α, G)

J ∼ DP(α, H)

Finally, we can define DPs as Mixture Models. We consider a Gaussian as a base
distribution G, and we draw some elements, that will become the cluster centers.
Since we can draw an unbounded number of elements, the number of clusters is
possibly unbounded. The model will be then in charge to weigh each of the infinite
clusters, eventually excluding the majority of them and adapting to the data X.
To explain how inference works, we resort to a typical metaphor called the “The
Chinese Restaurant”. According to this, given a certain number of tables, to
generate an observation we need to sit at a table, with a probability proportional
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to the number of people sitting at that table. Each table will be then identified by
a value (i.e. a statistical moment, which is the cluster center/mean vector in our
case).
As we can easily see, this concept is funded on a Maximum Likelihood approach.
However, in order to stick with a Bayesian approach, the framework introduces the
concept a posterior (itself, a Dirichlet Process) by specifiying a prior of the same
nature, allowing to reach the conjugacy.
A new observation will be then assigned to a new cluster proportionally to α,
however being firstly balanced against the probability of an observation given a
cluster. To do this, we typically consider the data-points as Normally distributed
and belonging to K different clusters. At the beginning we assume there is no
leakage of information about the separability of the clusters, and that we have
unknown prior probabilities πk of a particular data point belonging to the cluster k.
Instead of imagining that each data point is firstly assigned a cluster and then drawn
from the distribution associated to that cluster, we now think of each observation
being associated with parameter µk drawn from some discrete distribution G. That
is, we are now treating the µk as being drawn from the random distribution G,
and our prior information is incorporated into the model by the distribution over
distributions G. Extending this reasoning to an infinite number of clusters means
selecting a random prior distribution:

G(µk) =
Ø
k∈N

πkδµk

More practically, we take a random guess initially, providing a mean for each of
the K clusters. We incrementally change all of our assignments, unassigning and
“questioning” each observation (in what is known as Gibbs Sampling mechanism).
We do so by computing the following probability:

p(zi|z1, . . . , zi−1, zi+1, zN , X, α, G) = p(zi|{zj}j=1,...,N∩j /=i, X, α)

representing the probability of a clustering assignment zi of a point xi, given all
the clustering assignments of the neighbouring points, and the parameters of the
DPMM. We keep doing this for each data point, and it is proved to converge to
the true posterior distribution.
Developing a bit the math, and defining as µk the means of the generating distri-
butions, we can write the former probability (by means of the chain rule) as:

p(zi = k|{zj}j=1,...,N∩j /=i, X, {µq}q=1,...,K , , α)

= p(zi = k|{zj}j=1,...,N∩j /=i, xi, {xj}j=1,...,N∩j /=i, µk, α)

= p(zi = k|{zj}j=1,...,N∩j /=i, α)p(xi|µk, {xj}j=1,...,N∩j /=i)
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=


3

Nk
N+α

4 s
µ p(xi|µ)p(µ|G, X) existing clusters

α
s
µ p(xi|µ)p(µ|G) new cluster

where:

• we assume that all the distributions in the integral operator are Normal-like

• we see that the assignment weights
3

Nk
N+α

4
is explicitly proportional to the

number Nk of data points inside a particular cluster, over the total number of
points N

It turns out that everything can be simplified up to:

=


3

Nk
N+α

4
N

3
x, N

N+1X, Σ
4

existing clusters
αN (x, 0, I) new cluster

when assuming zero-normal distribution with identity covariance matrix.
The Gibbs Sampling mechanism thus represents an approximation for the estimation
of the infinite-dimensional posterior distribution p(π, µ|X) (i.e., sticking with an
infinite number of clusters, we would need to associate to each data point an
infinite-dimensional set of prior probabilities, and cluster means as well).
Another solution is to resort to Variational Inference, as we do in the case of GMMs.
The underlying mathematical process is the same: an approximating distribution q
for the posterior is introduced, and a lower bound on the marginal likelihood is
optimized.
Despite the performant nature of the Gibbs Samplings, in our study we adopt
this second approach, being less sensitive to initialization and typically faster to
converge.

3.3 Results
For the training session of the models, we resort to a standard 5-Fold Cross-
Validation process, performing hyper-parameter tuning through a grid search
mechanism. This procedure is particularly beneficial to infer the correct number
of clusters that best approximates the data distribution. Indeed, the sole maxi-
mization of certain metrics would often result in the trivial solution of adopting as
many clusters as possible, thus overfitting data.
We guarantee the consistency of each tested combination by performing five (in
the case of probabilistic models) to ten re-initializations of the initial configuration,
given the relevant importance assumed by the starting phase.
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We collect a set of different metrics to evaluate the quality of the clustering. Unfor-
tunately, since we act in a completely unsupervised context, where adopting any
sort of ground truth would be biased by the underlying modeling assumption. For
this reason, the Météo-France datasets is adopted as a monitor of the performances
of the clustering algorithms, however without being involved in the model selection
process. Hence, we can only recur to the so-called internal clustering scores (in
contrast to external metrics, leveraging some knowledge on some labelled data).
These measures embed concepts of intra and inter-cluster dispersions, in order to
evaluate the goodness of the assignment of each sample.

• Inertia or Sum of Squared Errors (SSE): it is the typical measure when
evaluating the clustering configurations. The measure indicates a sum of all
the squared residuals between each point, and the cluster’s centroid to which
the point is assigned:

I =
KØ
k=1

NØ
n=1: znk=1

(xn − x̄k)2

• Silhouette Score: a measure ranging in the interval [−1, 1], evaluating the
position of each sample with respect to the cluster which is assigned to, and
the closest cluster. For each point it is evaluated:

– Mean dissimilarity between a point xi and the nearest cluster Ck:

b(xi) = min
k /=i

Ø
j∈Ck

d(i, j)

– Mean intra-cluster distance between a point xi and all the other points
belonging to its cluster:

a(xi) = 1
|Ci| − 1

Ø
j /=i

d(i, j)

The silhouette score for a point xi is then:

s(xi) =
0 if |Ci| = 1

b(xi)−a(xi)
max{a(xi),b(xi)} otherwise

The overall silhouette score is then:

Silhouette = max
k

s̄k

i.e., the maximum between the mean scores per cluster
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• Calinski-Harabasz (CH) Index : a measure keeping into account the intra and
inter-clusters variations

CH(k) = B(k)
W (k) · n − k

k − 1
where:

– B(k) is the between-cluster variation, having k − 1 degrees of freedom
– W (k) is the within-cluster variation, having n − k degrees of freedom

• Bayesian Information Criterion (BIC) (Falkena et al. 2020): defined under
the maximum likelihood estimation framework, it is evaluated as:

BIC = k log N − 2 log L̂, L̂ = p(x|θ̂MLE)

• Evidence Lower Bound (ELBO): equivalent to the pre-defined variational
objective

Table 3.1 summarizes the different metrics.

Model Inertia
↓

Silhouette
score

↑

Calinski
Harabasz

Index
↑

Bayesian
Information

Criterion
↑

ELBO
↑

K-Means X X X X
GMM X X X X X
DPMM X X X X X

Table 3.1: Evaluation Metrics for each model. ↑/↓ indicates that the score has to
be maximized/minimized

3.3.1 Theoretical Results
The process of Cross-Validation allows to select the best performing models. Table
3.2 reports the results for each algorithm, under each dimensionality reduction
technique, including which score resulted the optimized objective.
At this point, we encounter the first critical points of this modeling step:

• The two dimensionality reduction techniques cannot be compared just looking
at the absolute values of the score. Being dependent by concept of dispersion
in the space, it is clear that a reduced space mapped on a less sparse region
would result in higher scores. Due to a minor dimensionality of the feature
space, the VAE-reduced space is more dense than the PCA hyper-space, thus
leading to lower absolute scores
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• The scores are a good metric to select the best model across several configu-
rations of the same algorithm. However, as proven consequently, they fail in
objectively determining which model, among the different assumptions, should
be adopted as the reference candidate. While the two Mixture models are
a closer assumption, the same does not happen when comparing K-Means
with the probabilistic frameworks. With the exception of the ELBO, these
metrics require a “deterministic” setting, like an hard thresholding of the
assignments, thereby partially mitigating the generalization power of the
probabilistic models

Model Objective Inertia
↓

Silhouette
Score

↑

Calinski
Harabasz
Index

↑

Bayesian
Information
Criterion

↑
K-Means CH 5.27 × 1011 0.113 93.4 −1.2 × 10−5

GMM Silhouette 5.71 × 1011 0.076 67.4 −1.2 × 10−5PCA
DPMM BIC 5.77 × 1011 0.060 62.8 −1.2 × 10−5

K-Means CH 4.66 × 107 0.268 233.6 −2.46 × 10−4

GMM CH 5.24 × 107 0.199 180.8 −2.49 × 10−4VAE
DPMM Silhouette 5.25 × 107 0.199 180 −2.49 × 10−4

Table 3.2: Best performing models, under the two dimensionality reductions. ↑/↓
indicates that the score has to be maximized/minimized. The column “Objective"
indicates which score was optimized to in the Cross-Validation process of the model

In Table 3.2 are reported only 4-clusters models, as we believe they are the correct
trade-off to describe the regimes’ dynamics, while not losing in generalization power.
However, some 7-clusters configurations (Figure 3.2) under the K-Means choice
are obtained from the model selection experiments, supporting the results of some
previous studies (Grams et al. 2017). Figures 3.1 report the centroids configurations
obtained with K-Means with the PCA (Figure 3.1a) and VAE (3.1b) reduction
schemes. The inferred clusters’ centers are very close to the theoretical ones, on the
one hand confirming how globally K-Means could be adequate in describing the
average dynamics. However, as Table 3.3 reports, a disagreement exists between
the computed frequencies of the regimes in literature (Cassou et al. 2011; van der
Wiel et al. 2019a; Luo et al. 2012; Meteo-France n.d.) and our experiments on
K-Means. In particular, the major differences are highlighted into the configuration
modeling on the VAE mapping.

Focusing instead on the predicted centroids of the Mixture Models (Figure
3.3) we immediately recognize some differences, with respect to K-Means, in the
minor configurations, namely: AR and SB. This is a critical point we encounter,
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(a) Visualization of the centroids after
clustering with K-Means on PCA-reduced
dataset

(b) Visualization of the centroids after
clustering with K-Means on VAE-reduced
dataset

Figure 3.1: K-Means with 4 clusters. AR (top left), NAO+ (top right), NAO-
(bottom left), SB (bottom right)

Model AR NAO+ NAO- SB
PCA K-Means 20.6% 33.2% 19.9% 26.3%
VAE K-Means 17.5% 47.4% 13.9% 21.2%

(Cassou et al. 2011) 23.3% 29.9% 22.4% 24.5%
(van der Wiel et al. 2019a) 20% 33% 20% 28%

(Luo et al. 2012) 21.8% 31.9% 18.1% 28.2%
(Meteo-France n.d.) 20.4% 31.8% 18.4% 29.4%

Table 3.3: Frequencies of the regimes as predicted by (Cassou et al. 2011; van der
Wiel et al. 2019a; Luo et al. 2012; Meteo-France n.d.) vs. Frequencies as predicted
by K-Means under PCA and VAE reduction schemes. We notice how K-Means is
highly sensitive to the inferred mapping of VAE
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(a) Visualization of the centroids after
clustering with K-Means on PCA-reduced
dataset. The fine-tuning in this case emitted
7 clusters as the best configuration. Other
than the four main standard configurations,
it is possible to identify: SB- (top right),
AR - (second row, on the right). The AR
configuration can instead be conceived as
average case between the top-left and third
row, on the left plots

(b) Visualization of the centroids after
clustering with K-Means on VAE-reduced
dataset. The fine-tuning in this case emitted
7 clusters as the best configuration. Other
than the four main standard configurations,
it is possible to identify: SB- (top right),
AR - (second row, on the right). The AR
configuration can instead be conceived as
average case between the top-left and third
row, on the left plots

Figure 3.2: K-Means with 7 clusters
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which is still more highlighted in the next section, when compared to Météo-France
predictions, suggesting a small bias of these modeling choices.

(a) Visualization of the centroids after clus-
tering with GMM on PCA-reduced dataset

(b) Visualization of the centroids after clus-
tering with GMM on VAE-reduced dataset

(c) Visualization of the centroids after clus-
tering with DPMM on PCA-reduced dataset

(d) Visualization of the centroids after clus-
tering with DPMM on VAE-reduced dataset

Figure 3.3: Mixture Models with 4 clusters. AR (top left), NAO+ (top right),
NAO- (bottom left), SB (bottom right)

Again, we recur to an a-posteriori validation with the expected frequencies, as
reported by the literature. Table 3.4 confirms that Mixture Models tend to benefit
more from the robust reduction obtained through the σ-VAE, also driven by the
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major ease of fitting multi-variate distributions on a minor dimensionality of the
space.

Model AR NAO+ NAO- SB
GMM 27.9% 38.5% 15.5% 18.1%PCA DPMM 27.1% 39.9% 14.8% 18.3%
GMM 17.7% 31.6% 26.9% 23.8%VAE DPMM 24.9% 32.3% 18.1% 24.8%

(Cassou et al. 2011) 23.3% 29.9% 22.4% 24.5%
(van der Wiel et al. 2019a) 20% 33% 20% 28%

(Luo et al. 2012) 21.8% 31.9% 18.1% 28.2%
(Meteo-France n.d.) 20.4% 31.8% 18.4% 29.4%

Table 3.4: Frequencies of the regimes as predicted by (Cassou et al. 2011; van der
Wiel et al. 2019a; Luo et al. 2012; Meteo-France n.d.) vs. Frequencies as predicted
by Mixture Models under PCA and VAE reduction schemes. We notice how under
PCA statistics tend to be more misaligned

The soft-assignments allow us to infer the intermediate transitions, thus excluding
the necessity of adopting models with higher numbers of clusters (Cassou et al.
2011; Grams et al. 2017). Table 3.5 reports the frequency where two regimes are
mixed together with similar probabilities (i.e. when they account for at least 70%
of the total assigned probabilities). The results are quite realistic, since, empirically,
positive NAO and SB are likely to merge as it will be also more deeply outlined in
Sections 3.3.4 and 3.3.3.

AR NAO+ NAO- SB
AR - 2.4% 2.4% 2.6%

NAO+ 2.4% - 3% 6.3%
NAO- 2.4% 3% - 3.3%
SB 2.6% 6.3% 3.3% -

Table 3.5: Frequencies (%) of the intermediate transitions between pairs of regimes,
as predicted by our Mixture Models.

Finally, as for K-Means, some configurations of Dirichlet Process Mixture Model
allocate mass on 7-clusters scenarios (Figure 3.4), resulting a sub-optimal solution
under the illustrated scores. Differently than K-Means though, the 7 regimes results
to be only partially descriptive of the 7 theorized regimes of (Grams et al. 2017),
clearly representing noisy intermediate transitions. While this experiment is not
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further studied, we believe it could be of future interest analyzing these 7 clusters,
possibly explaining at a finer-grained level some perspectives on weather regimes.

Figure 3.4: Variational Dirichlet Process Mixture Model with 7 clusters

3.3.2 Comparison with Météo-France
During our empirical validation of random sampled predictions we notice some
discrepancies referred to K-Means predictions. However such analysis would not
be feasible when enlarged to the entire dataset. Hence, we resort to a thorough
comparison with Météo-France historical predictions, allowing us to circumscribe
our modeling choices for the successive tasks. The models we select are K-Means
under PCA reduction, and the Mixture Models under the VAE pre-processing. As
Figure 3.5 reports, K-Means shows consistent performances, since it is aligned with
the same modeling assumption of Météo-France. Mixture Models tend to be inline
with the provider’s data, however evidencing some insights:

• North Atlantic Oscillations (NAOs) configurations present an higher True
Positive Rate (TPR). This is coherent if we think that they typically correspond
to the major source of variability (i.e., both EOF-1 in Figure 2.4, and the first
principal component would be enough to distinguish the two regimes) and
they are the most geographically widespread clusters

• Atlantic Ridge (AR) confirms to be a “class” which is difficult to be completely
decoupled from the other regimes. Again, the geographical configuration, and
the visual results provided in Figure 2.8 support this idea
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Figure 3.5: Confusion matrices between our 4 cluster models and Metéo-France
historical predictions. The Mixture Models are inline with the agency’s predictions.
K-Means algorithm produces better scores, since it is aligned with the modeling
choice of Meteo-France. From this illustration, it is evidenced how each model
mostly strives with the Atlantic Ridge (AR) and Scandinavian Blocking (SB)
configurations

Figure 3.6: ROC curves of the three models: K-Means with PCA reduction (left),
DPMM (center) and GMM (right) with VAE reduction
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Further, we build the Receiver Operating Characteristic (ROC) curves of the three
models. Figure 3.6 highlights the reduced performances of K-Means, compared to
the probabilistic counterpart.
Since the Gaussian mixtures reach slighlty higher performances, the results obtained
in the subsequent sections will be based on this modeling assumption.
Finally, zooming out to an historical overview of the incidence of regimes by winter
(Figure 3.7), Météo-France and GMM share some similarities across the years,
suggesting that our framework is coherent.
Again, we want to emphasize how our procedure tends to be superior under a
computational efficiency point of view. We overcome the constraint of using
ensemble models to track the chaotic nature of the regimes, simply focusing on a
more complex and calibrated mathematical assumption.

(a) Metéo-France

(b) GMM

Figure 3.7: Historical counts of winter-days by regime

3.3.3 From Statistical To Physical Properties
The advantage of adopting probabilistic models is that clusters represent tractable
distributions (Figure 3.8), which can be analyzed by means of analytically available
statistics. We compute the Kullback-Leibler (KL) divergence between centroid
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distributions of the different clusters, from which we are able to derive some
interesting physical considerations.

Figure 3.8: Visualization of the distributions of the clusters of the two mixture
models along the two main modes of variability

Roughly speaking, the KL-divergence KL(pëq) of a distribution p from a distri-
bution q can be interpreted as the distance of an empirical distribution, obtained
from independent samples drawn from q, to the distribution p. In other words, it
maps how much samples from the target distribution q can be identified under the
different probabilistic space of distribution p. It is then easy to understand that
the opposite undergoes to a different relationship, and thus why the KL-divergence
is not symmetric (i.e. KL(pëq) /= KL(qëp)).

KL(pëq) AR NAO+ NAO- SB
AR 0 16 5.7 5.9

NAO+ 3.7 0 3.9 2.5
NAO- 5.7 16 0 16
SB 5.3 10 2.5 0

KL(pëq) AR NAO+ NAO- SB
AR 0 15 5 8.5

NAO+ 3.7 0 4.1 2.5
NAO- 6.2 15 0 21
SB 4.9 9.8 2.5 0

Table 3.6: KL-divergences of the regimes’ distributions in GMM (left) and DPMM
(right)

In the context of weather regimes, we firstly notice how the two Mixture models
are quite in agreement, with minor differences only related to the magnitude of the
divergences. Further, we identify that AR is difficult to be completely isolated, since
its configurations result quite identifiable under all the other clusters. Indeed, the
column of the AR regime presents considerable low scores under the other regimes’
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distributions spaces. On the contrary, NAO+ patterns are well-separated from the
other distributions since high scores are found for AR and NAO- configurations
especially. This result is in line with physical considerations since SB, NAO- and
AR are all known as “blocked” configurations (Scandinavian Blocking, Greenland
Blocking and Atlantic Blocking), while NAO+ is a cyclonically dominated regime
favouring the usual westerly flow over the European/Atlantic domain. We also
want to highlight that KL(NAO+ëSB) = 2.5 in both GMM and DPMM models,
meaning that it is difficult to separate SB from NAO+. This situation reflects
realistic physical scenarios. Indeed, several days with high probabilities for both
SB and NAO+ are found.

3.3.4 Transitions
Ultimately, we are able to reconstruct an overview of the overall dynamics. We
collect the historical transitions of the last 40 winters, as predicted by our models.
To make the scenario more realistic, we consider a transition as valid only when
a regime persists for at least 3 days, eventually disregarding single-day shifts
interrupting the persistance of a regime. Again, the two models provide transition
matrices in agreement, highlighting the aforementioned biases toward AR and
NAO+ configurations. As expected, the tendency of these configurations is to
persist in their state, thus justifying the higher values along the diagonal, and
higher probabilities for larger-scale patterns like North Atlantic Oscillations, in
accordance to (Büeler et al. 2021).
Empirically, the most usual transitions refer to the passages from NAO+ to SB,
and from SB to NAO- (in agreement with (Vautard 1990)), as well as between
AR and NAO+ in both the two directions. At the same time, the least frequent
passages include the evolution from NAO+ to NAO- (Ferranti et al. 2018), and
from NAO- to AR: all these aspects are clearly evident in our models.

PPPPPPPPPFrom
To AR NAO+ NAO- SB

AR 77% 9% 8% 7%
NAO+ 4% 88% 3% 5%
NAO- 3% 6% 86% 5%
SB 5% 7% 7% 80%

PPPPPPPPPFrom
To AR NAO+ NAO- SB

AR 83% 6% 5% 6%
NAO+ 4% 89% 2% 6%
NAO- 4% 7% 84% 5%
SB 7% 8% 4% 81%

Table 3.7: Transition Probabilities as predicted by GMM (left) and DPMM (right)
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Chapter 4

Quantitative Analysis in the
Energy domain

4.1 Energy-related variables
In the second part of our study, we employ our historical database of daily weather
regimes to support a more refined quantification of correlated energy variables
(Grams et al. 2017; van der Wiel et al. 2019a; van der Wiel et al. 2019b; Bloomfield
et al. 2016).
Our focus is primarily on the EU-7 countries (France, Germany, United Kingdom,
Italy, Spain, Belgium, Netherlands), mostly concerning Power demand, Wind/Solar
production, and Hydro generation in the North pool (Scandinavia). Together, they
account for almost the entirety of the power-trading operations in Europe, and our
intent is to model more robustly the energy-related variables at the base of their
strategies. To do so, as mentioned in Section 2.1.1, we need to plug in additional
weather variables, which we know they tend to present very informative correlations
with the energy counterparts. As an example, Figure 4.1 presents two very definite
trends relating Temperature and Power Demand, and Wind Generation and Price,
respectively. There is some evidence that weather regimes could potentially explain
much of the underlying variability affecting energy markets. Especially for NAOs
(De Felice et al. 2018; Jerez et al. 2013), which tend to be the predominant regimes
during winter, a lot of the volatility of energy variables could be better addressed
and quantified. Hence, in our second part we seek to answer the following questions:

• Inter-regimes quantification: how different regimes lead to different energetic
configurations?

• Intra-regimes quantification: which effects mostly characterize a particular
regime?
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Quantitative Analysis in the Energy domain

(a) Example of hockey-stick correlation
between an additional weather variable
(Temperature) and an energy-related vari-
able (Power Demand). The correlation is
strongly negative: at low temperatures heat-
ing systems drives most of the Power Load;
at high temperatures, cooling systems are
advocated for the increase in the correlation

(b) Example of relationship between the
Total Wind Generation (GW) and Price
(€/Mwh). It is interesting to notice an over-
all negative correlation, due to the produc-
tion satisfying the market demand. Further,
when the production overwhelms it (over-
production) it could happen that the price
goes negative (energy providers are asked
to buy the produced energy, and stock it)

Figure 4.1: Examples of relationships across weather and energy-related variables
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Quantitative Analysis in the Energy domain

• Inter-counties quantification: how the effects of a persistence of a regime vary
with geographical position?

• Intra-countries quantification: how each country is subject to internal vari-
ability?

• Extreme events: which regimes most likely drive extreme events? How do they
differ from one country to the other?

4.2 Quantifications
Energy variables like wind and solar production are known to be largely affected
by meteorological configurations, with more unstable conditions favouring the
former, while solar typically benefitting from dry environments. Besides, power
demand correlates with temperature-related factors, again driven by these large
scale systems. Hence, we first focus on the average configurations led by regimes in
the different European countries.

Figure 4.2: Wind Load Factor Deviation (%) (left), Solar Load Factor Deviation
(%) (center), Power Demand (GW) during business days (right) under the different
regimes for EU-7 countries

The results we obtain are reported by Figures 4.2, 4.3, and show very distinct
behaviors that can be summarized as:

• Southern European countries (Italy and Spain) generally undergo to different
setups, having milder conditions than Northern and Central countries

• Wind: the generally unstable conditions of NAO+ lead to much above normal
productions of wind power plants, while Scandinavian Blocking (an usual
dry regime) negatively affects how wind power plants can satisfy the power
demand of a country. Further, Germany (GE) benefits from a regime like
AR, generally leading to around normal winds. NAO-, instead, is a regime
leading to cold temperatures and relatively dry meteorological setups. It is
thus justified to have evidence of below normal productions
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Quantitative Analysis in the Energy domain

(a) Wind Load Factor Deviation (%) under the different regimes for EU-7 countries: a
geographic visualization

(b) Power Demand Deviation (%) under the different regimes for EU-7 countries: a
geographic visualization

Figure 4.3: Geographic visualization of the regimes and countries relationships of
the Wind Load Factor and Power Demand variables
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• Solar: being almost mutually exclusive with wind, data reflects an opposite
situation. Here, SB is in average the regime under which production is boosted,
whereas instead NAO+ ranks as the worst configuration. However, it is worth
to notice that the magnitude of the deviations is much lower, clearly denoting
the minor variability of this energy source

• Load: we analyze power demand on business days, since the effects of the
industrial sectors can be taken into account. The statistics explicit an empirical
trend widely discussed in meteorology: the presence of high wind and unstable
conditions is usually associated with warmer temperatures. Indeed, NAO+
clearly reduces the overall power demand of a country, whose only sources of
variability during weekdays are the private energy consumptions (in winter,
heating systems). AR, NAO- and SB are instead similarly cold during winter,
with the exception of southern countries under NAO- benefitting from more
temperate climates

Collecting this fine-grained information is of uttermost importance, since it implic-
itly hides financial strategies in the energy markets. Recalling Figure 1.2, electricity
prices are largely affected by how much demand can be satisfied by low-cost energy
sources. Hence, we could expect that, under NAO+, extremely positive wind
productions would likely lower the overall price, eventually allowing to keep gas
and coal plants off. Instead, SB, although being favourable for Solar, should lead
to higher price values due to the lack of wind.

Figure 4.4: Example of historical distributions of the Wind and Solar Load Factor
energy variables, isolated to an individual country (Germany)

50



Quantitative Analysis in the Energy domain

As a next step, we recreate the distributions of many energy variables in the
context of individual countries, to understand their statistical properties, and to
assess a more faithful quantification. We are able to do this, considering the afore-
mentioned historical series of measurements on the grid by the respective national
operators. As an example, Figure 4.4 shows some insight into the distribution of
the utilization of windy and solar power plants in Germany. Again, we are able
to establish a bound on the maximum expected production from the two energy
sources, by just considering what kind of events happened in history, and what was
their intensity. For example, NAO+ and AR in Germany are comparable in their
distribution, while NAO-, while largely variable, is generally less productive; SB
is instead limited even in those days presenting an outlier behavior, suggesting a
bearish trend in wind production. For the Solar counterpart, as outlined previously,
variability is much more contained for most of the regimes, while clearly evidencing
the benefits brought by the Blocking regime.

Figure 4.5: Example of monthly historical distributions of the Wind and Solar
Load Factor energy variables, isolated to an individual country (Germany)

Diving deeper at a monthly level (Figure 4.5), we notice how January has a
negative impact on the wind production under the NAOs and AR regimes. The
explanation to this event can be found in an atmospheric phenomenon, usually
happening at the beginning of the month: the Polar Vortex disruption. Its frequency
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is not yearly, but when it occurs, wind events are typically milder than usual, and
NAO- becomes the prominent regime for longer-than-average periods.
The only noticeable effect of Solar is instead the progressive increasing of the
utilization factor as moving out from the winter season.
Finally, we perform a thorough analysis of extreme meteorological events in relation
to weather regimes. We define an event as “extreme” in all those cases it falls
beyond the 98th percentile of the distribution. Knowing which regimes are more
likely to create disruptions is of paramount importance in that it allows to predict
huge volatilities in energy markets. The results we collect are reported in Figure
4.6.

Figure 4.6: Occurrence (%) of extreme events in EU-7 countries in the four different
regimes for Wind (left) and Power Demand (right)
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Chapter 5

Sub-seasonal Forecasts

The final step of the pipeline consists in transposing the quantification step into a
medium-term outlook. This is achieved by injecting the knowledge derived from
the product presented in Section 2.1.3, thereby calibrating it by means of our
predicted distributions. As previously mentioned, one limitation of such forecasts
are in the clustering assumption they rely on. Indeed, ECMWF (Ferranti et al.
2011) adopts a 5-clusters ensemble model, not encompassing the entirety of the
variability of weather regimes, and thus needing the presence of an unknown cluster
to take into account noisier assignments. Since our application strictly requires
a 4-clusters scenario, we approximate the fifth missing distribution by assigning
probability mass to the other distributions, proportionally to the assigned weight
each regime has. Of course, whether the “Unknown” cluster is predicted with a
100% probability, we keep it uninformative assigning uniform probabilities to all
the clusters’ distributions.
The calibration step is thus obtained by computing a weighted sum of the four
distributions. Although for some energy variables the distributions referred to the
regimes are really close, we observe that minimum shifts in the mean and standard
deviation often translate into typically different outlooks for the predicted window
of 45 days.
In our analysis, we are also able to take into account known biases of these forecasts.
Figure 5.1 reports the tendency of these statistical models to favour Zonal flow in
the long-term, while striving with the NAO- signals. Indeed, as a general pattern,
the average probabilities assigned to the regimes should gradually converge to an
uninformative fashion, as the forecasted step is farther in time. However, the NAO+
regime’s presence (conceptually equivalent to Zonal flow) increases in importance.
Unfortunately, given the novelty of the product, the chart is only referred to the
last winter predictions, thus being biased on the events which charactrized it. We
clearly see in the initial steps the overall high probabilities assigned to NAO-,
reflecting correctly the tendency of the regimes during that season. The peak in
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Scandinavian Blocking is instead difficult to be justified, given that its occurrence
in Winter 2020 resulted to be below normal.

Figure 5.1: Average weights of the sub-seasonal forecasts of ECMWF by regime

We adopt this analysis as a prior belief, mainly to establish some high-level
criteria to identify whether some signals could be considered enough strong, and
thus potentially accurate with some weeks of anticipation.

5.1 Case Study: when the forecast is accurate
As a first case study, we consider the forecast released on 14th January 2021 (Figure
5.2a). The sub-seasonal model is able to detect the main trends, if compared to the
a-posteriori probabilities deriving from our GMM Model (Figure 5.2b). The initial
period is characterized by a very strong AR signal, replaced one week later by a
long period of NAO- persistence. The forecast is also able to identify an emerging
signal of Scandinavian Blocking, which effectively occurred at the end of the period.

The end-product we are able to present is illustrated in Figure 5.3. The chart is
referred to the anomaly in the Wind production of power in Germany along the
forecasted period. As the Quantification step highlights, the initial presence of AR
is particularly favourable for above-normal Wind generation. However, the scope
of this tool is to effectively address the trend beyond the first few days, where
short-term forecasts would surely be more accurate, especially when referred to the
expected magnitude. The presence of NAO- and the subsequent transition to SB
are two main drivers for below normal anomalies, which are clearly evidenced by the
chart, and correspondingly benchmarked by actual data: in the window between the
end of January and the first half of February the production in Germany revelead
to be 4GW below normal; during the Blocking persistence was instead 3GW under
the average scenario.
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Sub-seasonal Forecasts

(a) Sub-seasonal Forecast weights of 14th January 2021

(b) Clustering Probabilities of the GMM Model

Rather than exactly quantifying the shift from the average case, we intend to
identify the trend a particular energy variable has in this window of opportunity.
For this reason, even when the forecast proves to be performant, it is rarely close
to the true observed value.

5.2 Case Study: when the forecast is inaccurate
The strict dependency on the underlying forecasts exposes the main point of
weakness of this final step. A totally incorrect forecast, albeit typically rare, is a
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Figure 5.3: Quantification of the Sub-seasonal forecast on the Wind Load Factor
Anomaly in Germany

56



Sub-seasonal Forecasts

driver of an as much innacurate quantification. We thus propose a scenario where
we identify this occurrence, corresponding to 2nd December 2020. Comparing
the results between our model’s prediction and the product of ECMWF (Figures
5.4a and 5.4b), the sub-seasonal model is not aligned with the regimes effectively
occurred over that period, whereas they are more closely matched by the clustering
results evaluated posteriorly.

(a) Sub-seasonal Forecast weights of 2nd December 2020

(b) Clustering Probabilities of the GMM Model

The calibration and quantification steps in the 45 days window systematically
reflect this error. The snapshot is referred to the wind generation occurring in
Spain. The below normal generation interesting the vast majority of the forecast
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turned out to be in reality much above normal, as expected by the NAO- persistence
proving to set adequate conditions for extreme wind events in Spain.

Figure 5.5: Quantification of the Sub-seasonal forecast on the Wind Load Factor
Anomaly in Spain
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Chapter 6

Conclusions

The study has thoroughly analyzed the dynamics of weather regimes during the
winter season in the North Atlantic-European zone. Starting from raw meteorologi-
cal data, we built an historical dataset of daily weather regimes, based on a more
sophisticated modeling assumption. Consequently, it has allowed us to perform
a finer quantification both in the meteorological and energy domain, evidencing
some neat trends under the different regimes’ distributions. Such knowledge entails
an instrument to better address and interpret weather impact in the context of
energy markets, clearly representing one of the “fundamentals” used in the trading
strategies.

As a last step, we have leveraged a new product in the weather community,
possibly opening new future scenarios in the forecasting domain. The span of
medium-term forecasts, combined with the predictability of the regimes configura-
tions, clearly play a pivotal role in determining a window of opportunity, where
some trends can be spotted up to 4-5 weeks with anticipation. Of course, the
current limitation of the product, both in terms of accuracy and recent availability,
are two key limiting factors for a continuous deployment and assessment of the
performances, therefore of any possibility to remove some innermost biases of the
underlying forecasting model.

In terms of contributions of our study, we have proved that different modeling
assumptions can be pursued. If the aim is to simply resort to the centroid configu-
rations, the standard techniques (PCA and K-Means) presented in literature are
enough for it. However, if the task is extended to a fine-grained quantification, it is
essential to switch the modeling paradigm to a probabilistic one. The overall global
results remain inline with some references in literature, however it is interesting
to derive some secondary knowledge such as the evolution of the patterns, and
the statistical properties of the distributions matching some expected physical
assumptions. Resorting to the approximation power of neural networks have given
us more flexibility, drastically reducing the dimensionality of the feature space,
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while improving the separation of data points. The overall interpretability is en-
hanced too, given the optimization process leading to disentangled representations
of the attributes. Thereby, the adoption of Mixture Models has led to a major
robustness of the framework, as well as to an improved consistency of the clustering
assignments.

Along this line, future works should then focus on some experimental and
critical points we have encountered during the process. Firstly, the adoption of
VAEs for the dimensionality reduction step could be helpful to consider several
snapshots of different atmospheric levels. Indeed, differently than PCA, Variational
AutoEncoders can receive as input multiple-channels images, over which to perform
the encoding step. In this context, instead of feeding a single anomaly map of the
Geopotential at 500hPa (van der Wiel et al. 2019a; Cassou et al. 2011; Grams
et al. 2017; Vrac et al. 2007), we could think to aggregate multiple pressure levels
such as 700/850 hPa (Vautard 1990; Hertig et al. 2014; Vrac et al. 2007), or sea
level pressure (Meteo-France n.d.; Vrac et al. 2007), thus better characterizing the
datapoints and overcoming any strict choice in terms of which weather variable to
consider.
Further, as the results on the probabilistic models show, a slight difference was
spotted on the expected frequencies for AR and NAO- regimes. Whether this is a
bias of the models, or an evidence of more faithful results has to be investigated.
Then, other probabilistic modeling choices could be pursued (Stan et al. 2017),
possibly leading to major performances.
On the quantification side, on the hand the limited data availability on the true
measurements, on the other hand the sometimes misaligned nature of the synthetic
data, represent two key limiting factors. In our experiments, we resort to techniques
like quantile-quantile (QQ) mapping to “re-align” the synthetic data distribution
to the true observation, however with poor results. Some efforts on this side could
then be productive for a still more faithful analysis.
Finally, the forecasting tool we develop, as we mention in Chapter 5, is largely
dependent on the precision of the underlying product from ECMWF. Surely, this
represents the step with possibilities of larger improvement. Having access to raw
forecasts of geopotential maps would represent the best possible scenario, ensuring
the consistency with all the methods developed inside the pipeline. Further, it
would allow to test several clusters conformation, differing by the number of regimes
adopted, not mandatorily sticking with the theoretical ones. Alternatively, spotting
some innermost biases the ECMWF model has, would translate into accentuating
some longer-term signals, esepcially when they are uniformly mixed between each
other. To accomplish this, however, several years of data should be necessary, thus
not representing a feasible short-term solution.
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