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Abstract

One of the most recent emerging technique for Surface Tension caluclation is called
Pendant Drop Tensiometry which is a Axisymmetric Drop Shape Analysis. Machine
Learning and Neural Networks are another fields which are emerging and could be
commonly used for any kind of topic. Although Pendant Drop Tensiometry and
Machine Learning are inevitably improving fields separately, there are not many
works previously in which both fields are merged to solve a problem. We have
followed to main works and first main work [1] helped this thesis to extract and
understand the usage of differential equations of Pendant Drop Tensiometry. Other
recent work [2] could be interpreted as the only recent work which could be useful
to create the hypothesis of this master thesis since it combined a Machine Learning
approach with Pendant Drop Tensiometry. This Machine Learning approach
consist of a Neural Network approach to predict indirectly Surface Tension via
measuring non-dimensional gravitational control parameter and non-dimensional
apex pressure. These two non-dimensional parameters are the key parameters
and predicted parameters by the Neural Network which leads to the computation
of Surface Tension. This was an indirect approach that is also the approach in
this thesis too. Before applying a Machine Learning approach to Pendant Drop
Tensiometry, Young-Laplace equation was written in terms of differential equations
and then, they are solved iteratively together with image analysis techniques using
digital images captured from a camera.

This thesis builds a bridge between Pendant Drop Tensiometry and Machine
Learning once but the aim is to present an innovative and much simpler solution
since the previous Machine Learning approach was quite complex and computation-
ally demanding. The main objective of this thesis is to provide a Machine Learning
approach in Pendant Drop Tensiometry using Image Moments in order to predict
Surface Tension of pendant drops. This Machine Learning approach based on a
Neural Network architecture to predict non-dimensional parameters according to
regions which are defined according to validity of non-dimensional parameters. This
validity of non-dimensional parameters are considered according to shape factor of a
pendant drop since very most likely pendant drop shapes have a shape factor equal
to 2 or 3. These valid regions are defined with calculated curves in a graph. After
extracting non-dimensional parameter values from valid regions, these values are
used to create synthetic pendant drop shapes. Image Moments takes the role after
this point and image moments of synthetically generated drop images are calculated
to feed Neural Network architecture. Image Moments are the innovation because
they are scale, translation and rotation invariant to create a robust networks to
make the algorithm work for also rotated, scaled and translated pendant drop



image versions. Non-dimensional parameters are calculated individually in separate
Neural Networks and corresponding Mean Square errors were approximately 0.021.
Previous Machine Learning approach [2] was trained for 3 weeks but this thesis
only took hours for measuring Surface Tension which is the proof that, the aim,
which is to create simpler model using Image Moments, was achieved consequently.

Keywords: Pendant Drop Tensiometry, Surface Tension, Machine Learn-
ing, Neural Networks, Image Moments, Non-Dimensional Apex Pressure, Non-
Dimensional Gravitational Parameter, Synthetic Dataset
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Summary

Several techniques were proposed by scientists to calculate interfacial tension of a
liquid. Most of the techniques require a physical human effort also after installing
the setup to measure the interfacial tension and related metrics and variables
dependent to interfacial tension. Pendant Drop Tensiometry is an experimental
method to further improve these techniques in terms of measuring interfacial tension
and related metrics. This thesis work is dedicated to measure Surface Tension of
Pendant Drops with using Machine Learning techniques by observing different types
of Pendant Drop forms. This is called Axisymmetric Drop Shape Analysis. Various
forms of Pendant Drops are constructed synthetically, and Machine Learning Model
is applied first to Synthetic Images in order to predict some metrics which is needed
for calculating the Surface Tension of a Pendant Drop. Then, algorithm is verified
by using real data instead of just testing synthetic image data. Image Moments of
the created Pendant Drop images are used as the key features to predict Surface
Tension. There is no need of physical instruments or a complicated setup for that
calculation. Everything that is needed to apply an automatized algorithms to
a captured image of a drop. The improvement in GPU providers dramatically
increased the use of Machine Learning Models for image analysis and big data
analysis. This thesis work is used to present how the improvements in Machine
Learning are combined with the improvements in Pendant Drop Tensiometry to
calculate the Surface Tension and related metrics.
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Chapter 1

Introduction

This master thesis work is intended to implement a automatized system to determine
the surface tension of a pendant drop, which is about to detach under the capillary
tube of a needle, using Machine Learning algorithm and Image Moments. Main
objective of this thesis work is to predict non-dimensional apex pressure and non-
dimensional gravitational control parameter of a pendant drop from a synthetic
image by using Neural Network and Image Moments which is directly computed
from synthetically generated images of different variants of Pendant Drops. Most
challenging part is to predict these non-dimensional parameters with high precision
because non-dimensional parameter values are very close numerical values which
requires a precise prediction success. This thesis is planned to provide an innovative
implementation to predict surface tension of a pendant drop in a more simple way
than it has done before in several experiments. Innovative part of the thesis is
using Image Moments of a pendant drop image and the simpler part is creating a
simpler Neural Network architecture when it is compared to previous works. Main
previous work that is considered in this thesis work is a scientific paper which was
published on June 2020 by Felix S. Kratz [2] who is also provided the only work
using Neural Networks to predict surface tension.

Main motivation on this thesis topic is that, I was always thrilled by physics
and Machine Learning applications so this thesis provided the perfect opportunity
by using an innovative idea such as Image Moments which made me more thrilled
due to feeling like I am somehow inventing something new using my ambitions.

This chapter is formed by 3 different parts: Interfacial Tension(Surface Tension),
Problem Description and Chapter Explanations. First part is to introduce the
theory behind the Surface Tension algorithms to have a better insight during
reading the rest of this master thesis. Problem description stands for the answer to
questions: “Why is this thesis work done?”, “What is the hypothesis of this master
thesis and how is the hypothesis investigated?”. Chapter Explanation part explains
how this thesis is organized.
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Introduction

1.1 Interfacial Tension(Surface Tension)
Term Surface Tension is the main target in this project because all of the algorithm
is designed to obtain the surface tension of a bubble liquid which is hanging from a
capillary tube. Surface Tension should be observed under the title of Interfacial
Tension because it is a more specific term. Interfacial Tension is the scientific term
that is a relational property between any two substances. This relation could be
liquid-liquid, liquid-gas, liquid-solid and solid-gas. On the other hand, surface
tension is the specific relational property between liquid and gas [3]. Interfacial
tension or surface tension is represented by the gamma symbol and the SI unit
of interfacial tension is millinewton per meter(mN/m) which is a representation
of force per unit length. It is also defined as a measure of how much energy is
required to make a unit area of interface between two immiscible liquids which
corresponds to units of Joules per square meter [1].

Figure 1.2 illustrates that, Interfacial Tension is the key point to keep two
substances independent and prevent spreading of a liquid over a solid.

Figure 1.1: Cohesion and Ad-
hesion Forces Applied to Water
Drops on a Leaf

Figure 1.2: Surface Tension
that Keeps a Water Droplet Tight
[4]

In order to have a better understanding of these two tension terms, adhesion
and cohesion terms should be presented too. Adhesion stands for the interaction
between two different molecules which are immiscible, but Cohesion stands for the
attraction between the molecules which are likely [3]. It creates cohesive forces
between likely molecules, so these molecules stay connected or ‘resists’ to separate
from each other. Water has strong cohesive forces and cohesion is the dominant
property in Figures 1.2 and 1.1, but still adhesive forces exist. Figure 1.3 also a
great example to realize the cohesive force between water molecules. The cohesive
force diagram in Figure 1.3 shows how the water molecules are attached and ‘resists’
towards detachment[3].

2



Introduction

Figure 1.3: Cohesive Forces in a Liquid [4]

When you relate these concepts to this thesis work cohesive forces becomes
dominant again. Cohesive forces create a tight molecular connection between
molecules before the detachment of a bubble from a capillary tube. Before this
detachment, Pendant Drop Tensiometry method is applied when the drop reaches
to its highest volume which is only possible with cohesive forces between molecules
for that specific used liquid in the experiment. Surface Tension could also be
defined as the property of fluids related to cohesive forces that is responsible for:
shape of droplets, formation of bubbles and thin films, and wetting of surfaces
(hydrophobic, hydrophilic).

Additionally, surface tension has an industrial importance too. It is a widely deep
measure for chemistry and physics related companies and products of companies.
There are many examples such as food and beverage production, paints and polymer
coatings, inks and printing, emulsions, flooding, quality testing of hydrophobic
liquids, injection molding and finally commercial products like shampoo etc. As it
can be seen from the various number of examples, this surface tension measuring
is a very popular and a trending problem for the significant part of the industry.
For instance, interfacial tension is beneficial in terms of observing emulsifiability
and the tendency for the phases to separate [5]. It is also a critical measure in
medicine for doctors to investigate surface tension of blood serum, spinal fluid
and gastro juice[John Moore Andreas] but in this theses the solutions is more
concentrated for the purposes of Brau- und Getränketechnologie (BGT) Department
in Technical University of Munich (TUM) which are not mainly based on medicine.
As a consequence, Surface Tension is measured using pendant drop tensiometry

3



Introduction

technique as a final step in this thesis work.

1.1.1 Pendant Drop Tensiometry
Tensiometry is a scientific method to obtain the interfacial or surface tension
which is first proposed more than a century ago by Worthington [6] and tables are
prepared by Bashfort [7] which contains approximate solutions to the axisymmetric
Young-Laplace equation. Bashfort tried to extract precise and accurate tables
which could be helpful for extracting the interfacial tension parameter from a shape
analysis of a pendant drop. This Young-Laplace equations now located in the
hearth of this pendant drop method. More detailed explanation and theoretical
background could be found in the section Background and Preparation to New
Methodology about the Young-Laplace equation.

Figure 1.4: Artificial
Example of a Pendant
Drop Profile [8]

Figure 1.5: Experimental Pendant Drop
Example in Real Scenario

The procedure followed in pendant drop, to calculate boundary tension of a
liquid, is a fast method which leads to high precision. Before the application of
Machine Learning to Pendant Drop method, images are analyzed directly without
using any Machine Learning algorithms. In Figure 1.4 an artificial example of a

4



Introduction

pendant drop is shown which is an instant just before the detachment of a liquid
from a capillary tube. Meanwhile, a real example of a pendant drop is shown in
Figure. The capillary tube and the drop can be obviously seen from the Figure 1.5
too. During image capturing process in pendant drop method image is captured
together with capillary but one problem about this technique is that capillary
should be further removed because image analysis to determine interfacial tension
of a drop must be applied only on the drop shape. Finally the Young-Laplace
Equation is applied iteratively for the image analysis of the captured axisymmetric
pendant drop image. Fitting the Young-Laplace equation is a complicated and
demanding computational process.

Figure 1.6: Experimental Setup of Pendant Drop Tensiometry Application [9]

Figure 1.6 illustrates the experimental setup that is needed for pendant drop
tensiometry method. It is actually a simple setup which includes a camera, a light
source and a needle to form the pendant drop. The problems that can occur will
be explained in Chapter 3.

Furthermore, as it is explained in the beginning of this chapter one of the
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most critical part which is needed to understand well is adhesive and cohesive
forces part. Cohesive forces subject to strong mutual attractions which leads to
uniformly balanced drop in each direction and creates an internal pressure. These
attractions could be kind of a synonym of contraction on the surface of a liquid
in which the internal end external contractions create the surface tension of a
pendant drop[JohnMooreAndreas]. The reason behind drop remains attached with
the capillary tube is that the adhesive forces are bigger than the gravitational force.
Consequently, adhesive and cohesive forces are important due to playing an active
role for determining the surface tension using pendant drop method.

Figure 1.7: Different Techniques to Measure Interfacial Tension. Reprinted from
[1], with the permission of Elsevier Publishing.

Many methods are proposed to measure surface tension as you can see from
Figure 1.7. Pendant drop method is agreed as the most rapid and robust technique
to obtain the interfacial tension. All these methods has an old history and some of
them are old-fashioned solutions. This Figure is taken by the scientific paper by
Berry [1] and all methods to determine interfacial tension are explained quickly
regarding to Figure 1.7 as following:

• Wilhelmy Plate: In this method, a vertical thin plate is placed between
a liquid-liquid interface. This wettable plate is lifted with a force and the
interfacial tension is calculated directly using that force and the perimeter of
the plate [10].

6
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• Maximum Bubble Pressure: A thin-edged tube is placed to a liquid in
order to create the maximum pressure with the help of edges. This pressure
causes the formation of a gas bubble inside the liquid at the bottom of the
thin-edged tube. Surface tension is a measure which could be considered as
that pressure that us created by the thin-edged tube.

• Spinning Drop: Two liquids are injected to a vertical cylinder. One liquid is
the drop which is in the middle of the vertical cylinder and the other liquid is
the surrounding liquid. This method is based on the gravitational acceleration
and the density difference between drop liquid and the surrounding liquid.
Using density difference between liquids and using gravitational acceleration,
which is the result of the spinning move of the vertical cylinder, interfacial
tension is measured directly [5].

• Du Nouy Ring: This method is also a microbalance measurement method
for measuring interfacial tension at fluid-fluid interfaces [10] and the method is
based on a force acting on a wettable ring. Horizontal ring is moved upwards
direction to a certain height as it is done in the Wilhelmy plate method and
the interfacial tension is calculated using force applied and the perimeter of
the horizontal ring [10].

• Capillary Rise: The main objective in this method is to create three interfaces
by placing a vertical tube into a liquid. This liquid could be also formed
by two different liquids or a liquid and a gas form substance. The capillary
placed inside the liquid provides the equilibrium state between three boundary
tensions. For this method, specific value of an angle of contact with the wall and
balanced pressure at any point in the liquid surface is needed for equilibrium
state[andreas]. This method is just applicable to pure and non-viscous liquids
which is a limitation of this method too[andreas].

All these methods are explained very detailed in the Drelich’s work [10] and not
explained detailed in this thesis because main concentration in this thesis is pendant
drop method due to being more efficient and a modern technique. Some commercial
solutions also exist, which presumably all rely upon classic shape analysis, but
pendant drop tensiometry is an axisymmetric drop shape analysis technique that is
needed by TUM because BGT Department in TUM has the pendant drop device.
This device is used originally for bottle cleaning duty. In a beverage bottling plant,
bottles are washed. During this washing procedure if some soap remains in the
bottle, it can be detected by the pendant drop device. The second reason BGT
has it, is to study some beer Ingredients which affect foam stability.

7
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1.2 Problem Description

The main objective of this thesis work is to build a machine learning approach for
pendant drop tensiometry method using image moments in order to be able to
predict surface tension γ. Although this is the major objective of this project, there
are minor objectives to create an innovative and simpler solution to this problem
too. Previous works are not simple and computationally demanding. Other solution
methods to this problem are explained in the previous section in order to explain
how this thesis work overcome these previous methods. The main scientific paper
that is followed in this thesis is the paper by Kratz [2] which is published in June
2020. It is a very current work so the problem for determining surface tension
of a pendant drop is an emerging issue. Kratz is the only and last person used
Machine Learning integrated with Axisymmetrical Drop Shape Analysis, so it is
also aimed to prepare an alternative, progressive and innovative machine learning
model to fill the gap in this area. For all previous works, it is aimed to have a
rapid solution and the current technological world is always demanding more rapid
solution. That’s why this thesis work is done. Goal was to develop a new drop
shape analysis algorithm using Machine Learning and image moments and the
hypothesis was: Image Moments are helpful and enough to predict Surface Tension
using Deep Learning. Image moments are never used for predicting surface tension.
Image moments are another key to reach success. Deep learning is decided to be
used as the machine learning approach and dataset is formed synthetically using
synthetic drop shapes.

Figure 1.8: Real Scenario Image taken from the Berry’s Experiment [11]

8
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Figure 1.9: Synthetically Generated Gray-scale Pendant Drop Example

In Figure 1.9 a real scenario image is presented and the Figure 1.8 represents
one example of drop shape that is created synthetically serving Image Moment
calculation purpose to prepare dataset. Problem in this point is to validate the
model using synthetic dataset. In other words, the training is done just using
synthetic images but the testing phase includes parameters from both real scenario
and synthetic images. If the validation on real scenario images reaches to success,
it can be reported as using image moments and synthetic dataset is the completely
correct methodology to determine surface tension. Followed steps to prepare a
synthetic dataset and a Deep Learning algorithm are detailed described in Section
3.

1.3 Chapter Explanations
This thesis is organized as the following:

• Background of Theory and Preparation to New Methodology: This
part explains all the details behind the theory of pendant drop tensiometry
and related machine learning background which could be useful to have a
better connection what is done for the actual implementation. In this section,
it is also explained that which sources and methods affected this thesis work
and what kind of a path was followed through it. It has been discussed how
the similar methods that were used before, and it is discussed that what kind
of problems this thesis is inspired by.
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• Proposed Methodology: Here are the connections between the approaches
in Machine Learning and approaches in Pendant Drop Tensiometry are ex-
plained as a project in which the way of connections has never addressed
before in any other project. The reason behind the usage of this method is
explained and the implementation steps are described step by step. methods
affected this thesis work and what kind of a path was followed through it.
It has been discussed how the similar methods that were used before were
improved by the methodology provided by this thesis and how methods were
adjusted in order to make methods usable for our purpose.

• Experimental Results and Discussion: In this chapter, results of the
machine learning algorithm are discussed, and inferences are discussed in
terms of the success of the methodology. Performance of the methodology is
observed with different statistical parameters that can be used for determining
success of the thesis work. Hypothesis is tested and supported by results.

• Conclusion and Future Works: This chapter is to sum up the whole
project and give the main idea to the reader one more time by supporting
with obtained result in a very short way. Additionally, this chapter is a critical
part which stores hints to move on with new methodologies over this thesis
work. It is described that this thesis could still have parts to be improved and
several ways are proposed for this purpose to help people who are working on
this area.

10



Chapter 2

Background of Theory and
Preparation to Methodology

This chapter begins with Machine Learning basics and various themes related with
Machine Learning. Machine Learning concept is presented detailed because it
should be understood well why it is used in this technique and what other kinds
of Machine Learning algorithms could be considered to apply. After this deep
introduction to Machine Learning themes, problems, physics behind the theory
of pendant drop will be explained to show how it is adjusted and prepared to
the new methodology that is provided in this thesis work. Image Moments and
their applications will be presented to give a hint about the proposed methodology.
Finally, all the critical concepts and parameters used in proposed methodology are
explained and a brief description of previous pendant drop tensiometry method
without a machine learning approach will be presented to be able to make a better
comparison between this innovative thesis work. Chapter begins with Machine
Learning and Deep Learning concepts to express what is the theory background
thesis’ algorithm.

2.1 Machine Learning
Artificial Intelligence (AI) is a trending and rapidly developing popular theme in
the world. AI makes possible for computers to imitate human decisions. Therefore,
Machine Learning could be classified as the subtopic of AI. Machine Learning
is more statistical and probabilistic based method set. Machine Learning makes
possible the detection of patterns in data in an automatized way. Then, the detected
pattern is used to predict the future possible pattern or used to make inference
about the new data. Data is always the key for the Machine Learning methods,
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so the probability and statistics are the underlying mathematical methodology.
Training set and test set are named for these purposes. During the training
process pattern is recognized and it is tested on the test set to verify that the
algorithm could detect the pattern successfully or not. As the data is the key for
the success, Machine Learning problems are split into two: Supervised Learning
and Unsupervised Learning.

2.1.1 Supervised Learning
Supervised Learning has a goal of learning the pattern from an input data x to
mapping it to an output data y where x and y are the pairs of a training set. Input
data x can be named as features and the output data y can be named as labels.
Features that belong to a particular labeled data has an unknown relation such as
y = f(x) and an estimate f is determined to find an estimate y with the help of a
Machine Learning algorithm. Supervised Learning is helpful to solve three different
types of problems:

• binary classification can be ‘Yes’ or ‘No’ question, label y could be ‘0’ or
‘1’, so there are 2 possible classes.

• multi-class classification can result in more than 2 class predictions such
as predicting different type of animals from images, so label y could be any
class according to the defined label types in the dataset.

• regression can be an estimation of label y where y is a Real number.

In this thesis, regression based supervised learning is used as a Machine Learning
approach. Since some numerical values are predicted instead of categorical classes
as an output of the Neural Network.

2.1.2 Unsupervised Learning
Unsupervised Learning does not have a role to classify or categorize sample data
according to its defined labels. There is only input data x but there is no existence
of output y. Unsupervised learning investigates the similarities between sample
data and reflects the similarities and similarity levels to the user according to used
Machine learning technique. This is more similar to human learning. Unsupervised
learning is helpful to solve some Machine Learning methods which are:

• Clustering: is a method to find groups of sample data such that sample
data in that group will be similar. The sample data that are grouped should
be consistent in terms of similarity with other data points in that particular
group too. Patterns in groups should be similar, so the groups should be
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easily distinguishable among each other according to their similarities. Image
segmentation could be a great example of clustering in which the images is
broke up into meaningful similar regions. For instance, sky, sea and territory
regions could be segmented with the help of clustering.

• Principal Component Analysis (PCA) is a technique which is used very
often for people who are dealing with large dataset. The main goal in this
technique is to apply dimensionality reduction to dataset without losing useful
information about the whole dataset.

2.2 Deep Learning
Deep Learning is also have almost the same goal with Machine Learning methods
which is to catch deterministic patterns to be able to predict the future data. Deep
Learning could also be interpreted as a family member of Machine Learning. The
main Deep Learning architecture is Neural Networks which is also includes the
main work in this thesis. Neural Networks is a very useful tool and improved
the state-of-the-art in various problems such as speech recognition, object pattern
recognition and statistical machine translation. It is called “Deep” Learning due
to having many layers in its architecture to learn representations of data. Deep
Learning is a trending concept as the Figure 2.1 taken by Google Trends [12]
illustrates the searches in Google since 2004. After 2014, the curve dramatically
increased and Deep Learning papers hit the top level in the scientific paper topics.

Figure 2.1: Interest Over Time to Deep Learning Title on Google Searches [12]

Another factor that makes Neural Networks trending is the computing power.
Deep Learning architectures requires high computing power. During the develop-
ment of computing power, algorithms and models started to improve too. When
all these developments are considered, it is inevitable to not use Deep Learning

13



Background of Theory and Preparation to Methodology

algorithms for experimental works. With the improvement in models and com-
puting power, dealing with big data become easier and more realistic, so Deep
Learning started to overcome standard Machine Learning algorithms like Nearest
Neighbor, SVM, Decision Trees and Naïve Bayes. On the other hand, deeper net-
works still means that, it is computationally demanding due to increasing number
of parameters in the deeper networks.

2.2.1 Neural Networks
Neural Networks has various forms for different purposes. Feedforward Neural
Networks (FNN) can be used for regression or classification problems which cannot
be solved linearly. There are no loops in this type of networks and they can become
deep by adding many hidden layers. Convolutional Neural Networks (CNN) is
a type of FNNs that share weights over layers. CNNs are used widely in visual
learning and CNNs perform well for classifying images. For Recurrent Neural
Networks (RNN), loops are allowed, so it is a dynamical system which makes it
more difficult to train. RNNs are trained for speech recognition tasks.

Main Principles

In Figure 2.2, the basic element of Neural Network is introduced. It is called
“Perceptron”. It weights different inputs coming from input or previous layers to
make a decision.

Figure 2.2: Perceptron

output =
0, if q

j wjxj ≤ threshold.

1, if q
j wjxj > threshold.

(2.1)

14



Background of Theory and Preparation to Methodology

In the Eq. 2.1, it explains how the decision is made in the most basic unit of
Neural Networks where wj is the weight for corresponding connection and xj is the
input parameter to a neuron.

Figure 2.3: Basic Neural Network Architecture

Figure 2.3 shows a basic form of a complete Neural Network architecture. Each
node is named as neuron, each set of vertical neurons named as layers. Where you
feed the network with the features is called input layer and where you make the
final decision is called output layer. The layers between input and output layers
are called as hidden layers. Each node has its own activation function f(x) where
x is the input as it is described in Figure 2.2 and nodes output could be input
to another node which is in the next layer. Weighted sum of inputs affects the
output decision as it is described in Eq. 2.1 This operation is iteratively done until
reaching to the final decision at the output layer. Small change in the weights will
result in a small change in the output layer too. The output layer could be formed
by just one node or more than one node. If the problem is a binary classification
problem or if a value tried to be regressed, the output layer will be formed by
one neuron. If it is a multiclass classification, the output layer will be formed by
more than one neuron. In this condition, the output is named as ‘One Hot Vector ’
because the node which provides the biggest probability in the output layer is
chosen as the decision.

Activation Functions

Standard Machine Learning techniques generally have some limitations in terms of
linear classifiers. Linear classifier provides a prediction based on linear combination
of features xj but Neural Networks is the key for switching to more flexible
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framework to eliminate the limitations of linear classifiers. Activation Functions
are non-linear functions which are built inside nodes. There are many examples of
activation functions but most common ones are explained in the Table 2.1.

ReLU f(x) =
0 for x ≤ 0

x for x > 0

Softmax fi(x⃗) = exiqJ
j=1 exj

i = 1, ..., J

Sigmoid f(x) = 1
1 + e−x)

tanh f(x) = tanh(x) = (ex − e−x)
(ex + e−x)

Table 2.1: Examples of Activation Functions

These activation functions are embedded to the smallest element of Neural
Networks which is a node. Each node set in a layer has its own activation function.
Rectified Liner Unit (ReLU) is the most common activation function because it has
several advantages like being unbounded and monotonically increasing function.
Even though ReLU works great with larger weights, the learning stops entirely
with weights smaller than zero. To eliminate this problem, LeakyReLU activation
function is introduced. Learning never stops with LeakyReLU even if it has smaller
weights.

2.3 Image Moments
For image analysis task, Image Moments are a beneficial tool for extracting image
features from a binary image. Image Moments are weighted average of pixel
intensities that are extracted from an image [13], [14]. Image Moments are useful
to extract a specific property of the image in which the user obtain a meaningful
result [15].

The 2D continuous function in Eq. 2.2 is the definition of an Image Moments in
which p and q are the orders of image moments.

Mpq =
ÚÚ ∞

−∞
xpyqf(x, y)dxdy (2.2)

Since it is the weighted average of pixel intensities, moments could also be
adapted to scalar as it is done in Eqn. 2.3. I(x,y) are the pixel intensities adapted
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to a binary image. After this point, only the discrete equations will be presented
due to working on digital images:

Mij =
Ø

x

Ø
y

xiyjI(x, y) (2.3)

For simplicity, it can be interpreted as the sum of pixel intensities with considering
the location of the pixels in the image. Location information sometimes removed
from the equation. Since it can be applicable to binary images, another simple
definition can be made: Sum of the number of white pixels in a grey-scale image or
the area of the white region in a greyscale image. M00 is considered as the area of
the object in a binary image and centroids are computed as in Eqn. 2.4.

{x̄, ȳ} =
;

M10

M00
,
M01

M00

<
(2.4)

Centroids are used to calculate the central moments of the image which is shown
in Eq. 2.5

µij =
Ø

x

Ø
y

(x − x̄)i(y − ȳ)jI(x, y) (2.5)

Central moments are calculated up to the third central moment because Hu
Moments will be calculated with using these central moments up to its third
moment:

µ00 = M00

µ01 = 0
µ10 = 0
µ11 = M11 − x̄M01 = M11 + ȳM10

µ20 = M20 − x̄M10

µ02 = M02 − ȳM01

µ21 = M21 − 2x̄M11 − ȳM20 + 2x̄2M01

µ12 = M12 − 2ȳM11 − x̄M02 + 2ȳ2M10

µ30 = M30 − 3x̄M10 + 2x̄2M10

µ03 = M03 − 3ȳM01 + 2ȳ2M01

(2.6)

With introducing the central moments in Eqs. 2.6, first important feature of
central moments can be defined as translational invariant [13]. Translation invariant
means that the moments are invariant to geometric shifts of the object in terms of
shifting the coordinates of the origin of the object in the image [13]. In other words,
the coordinates of the investigated object do not matter during the calculation of
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Image Moments. The term ’invariant’ is the key feature of Image Moments which
will be explained detailed later in this section.

ηij = µij

µ00(i+j)/2+1 (2.7)

Invariance to translation is not enough property to extract information from
images so a new property, scaling invariance, is introduced with normalized central
moments in 2.7. Scaling is done by dividing the central moments by the first
central moment. By means of it, usage of first central moment is preferred because
low-order moments are more stable to noise and easier to calculate [13]. Image
moments become both scaling and translational invariant.

I1 = η20 + η02

I2 = (η20 − η02)2 + 4η11
2

I3 = (η30 − 3η12)2 + (3η21 − η03)2

I4 = (η30 + η12)2 + (η21 + η03)2

I5 = (η30 − 3η12)(η30 + η12)
è
(η30 − η12)2 + 3(η21 + η03)2

é
+ (3η21 − 3η03)(η21 + η03)

è
3(η30 + η12)2 − (η21 + η03)2

é
I6 = (η20 + η02)

è
(η30 + η12)2 − (η21 + η03)2

é
+ 4η11(η30 + η12)(η21 + η03)

I7 = (3η21 − η03)(η30 + η12)
è
(η30 + η12)2 − 3(η21 + η03)2

é
− (η30 − 3η12)(η21 + η03)

è
3(η30 + η12)2 − (η21 + η03)2

é

(2.8)

Eqs. 2.8 has an importance to introduce the final invariance property. These
famous 7 equations also called Hu moments which were first introduced by Hu [14].
First 6 moments become translation, scale and rotation invariant as a result of all
these operations [14].
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Figure 2.4: Several Image Moment Calculation of Grey-Scale Images [16]

For example, Image Moments of letter K and S are calculated for different cases
in Figure. There are differences between images with id K0 and S0, however, there
almost no changes between images with ids S0 to S4. The only obvious change in
Image Moments value is the H[6] value between image S3 and S4 because the last Hu
Moment’s sign changes when image reflection happens as it happened for H[6] value
of the last image in the Figure 2.4. This is a great proof of how Hu Moments are
translation, scale and rotation invariant because examples of rotated, translated and
scaled images with same Hu Moment values exist in the Figure 2.4. Most important
and most common usage of Image moments is to extract information from images
which are invariant to scaling, rotation and translation. These all invariances
are geometric transformations but there is also a non-geometric transformation
called blur invariance. It is firstly introduced by Flusser and Suk[Flusser and Suk]
in which how blur invariants are extracted from moment invariants. Since it is
independent from blur, Flusser and Suk [17] proved the success of blur invariance
on out-of-focus images and blurred face recognition images.

Meanwhile, Image Moments are local and global invariant too. For local invari-
ance, a certain neighborhood around the object boundaries is considered but whole
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image is considered for the global invariance feature of Image Moments [13]. Last
but not least, fast computation of Image Moments is ensured with the improved
GPU power and fast computation algorithms in recent years [18].

Furthermore, Image Moments are mainly introduced for pattern recognition
by Hu [14] but it is widely used for different purposes. Pattern recognition is
possible with feature extraction and it is deeply tested by Barczak [19] to find
a pattern for Handwritten Digits. Although it provides a significant successful
result, Handwritten digits still have some ambiguity. Main advantage of using
Image Moments is that it is a fast and easy to apply. Another similar application
is performed by Fernando and Wijayanayake [20] for Real Time Sign Language
Communication using visual data. The only limitation for that application is
for similar hand shapes with different rotations/positions. Since Hu Moments
are translation and rotation variant, values of Hu Moments with similar shape
will be same in the case of rotation of hand demonstration for different letter
representations. In order to solve this problem, a new easy feature is applied by
[20] again which is height to width ratio. This intelligent feature eliminated the
problem for problematic cases. Another interesting work is done by Rocha[Rocha]
for object tracking and predicting the next move of an object. Obviously, pattern
recognition tasks are located at the center of Image Moments. Image Moments

are applicable with all types of Neural Networks defined in Section 2.2.1. Khan
[15] used RNN for recognize situation using visual data coming from surveillance
cameras. Image Moments are used in the work of Zhao [21] with a Feedforward
Neural Network to predict the rotational angle of a camera frame with respect to the
desired position of camera. Besides, CNN is the most used Neural Network type for
image analysis, so it is not surprising that Image moments are also used with CNNs.
Limitations of CNN tried to be eliminated in the work of AbuRass [22]. Beyond the
translational, rotational and scale invariance features of Image Moments, CNNs are
also translational invariant due to the fact that, CNN uses all the pixels of images
by convolving all over the image to be able to extract the image’s features [22].
Eventually, Image Moments helped to optimize CNN architecture by providing
scale and rotation invariance features too. Image Moments(Hu Moments) are used

as inputs of the Feedforward Neural Network to predict Non-Dimensional Apex
Pressure and Non-Dimensional Gravitational Control Parameter in this project.
These non-dimensional parameters are needed to calculate the Surface Tension of a
Pendant Drop. These parameters and equations belong to these parameters will be
explained in the next section.
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2.4 Physics of Pendant Drop

2.4.1 Mathematical Equations

Main goal of the pendant drop tensiometry method is to measure interfacial tension
of a drop. The physics behind pendant drop tensiometry and the mathematical
equations are used and inspired by the work of Berry [1] and Kratz [2]. These
mathematical equations expressed detailed because they are fundamental to create
pendant drop images synthetically for this thesis work. These equations are also
theoretical importance in order to better understand how and where they are used
in previous pendant drop tensiometry techniques.

Bond Number

Bond number is based on the Young-Laplace equation and first termed by Bashfort
and Adams [7] as β which is

β = ∆ρgR0
2

γ
(2.9)

where ∆ρ is the density difference, g is the gravitational acceleration, R0 is
the drop dimension and γ is the interfacial tension. The parameter β was later
named as Bond number by Merrington and Richardson [23] to honor Wilfred
Bond due to finding the relation between terminal velocity and drops [24]. Bond
number is calculated in to serve the main goal of this thesis because Bond number
leads to the direct calculation of interfacial tension γ. Direct calculation is possible
because density difference, gravitational acceleration and drop dimension are known
quantities.

To start with, Young-Laplace equation is the relation between the curvature of
the drop, interfacial tension and Laplace pressure as it is shown in Eq. 2.10:

γ
3 1

R1
+ 1

R2

4
= ∆P = ∆P0 − ∆ρgz (2.10)

where R1 and R2 are the principal radii of curvature; ∆P is the Laplace pressure
and ∆ρ = ρd − ρ is the density difference of the environment where drop belongs to.
ρd is the drop phase density and ρ is the continuous phase density which are shown
in Figure with other parameters of a pendant drop. Density difference can also be
represented by other parameters such as reference pressure ∆P0 and hydrostatic
pressure ∆ρgz.
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Figure 2.5: Pendant Drop Parameters According to Berry. Reprinted from [1],
with the permission of Elsevier Publishing.

Since the pendant drop tensiometry method is defined as Axisymmetric Drop
Shape Analysis (ADSA), Eq. 2.10 can also be represented by cylindrical coordinates
[1] r, z and the tangent angle φ (see Figure 2.5). This transformation helps to
write the Young-Laplace Equation with other dimensionless parameters to form
new dimensionless differential equations [1] shown in Eq. 2.11:

dφ

ds̄
= 2 − Bo z̄ − sin φ

r̄
(2.11)

dr̄

ds̄
= cos φ (2.12)

dz̄

ds̄
= sin φ (2.13)

where the dimensionless parameters are expressed with using a bar above them.
Berry [1] created dimensionless parameters scaling them by R0 which is the radius
of curvature at the drop apex.

r̄ = r/R0, z̄ = z/R0, s̄ = s/R0 (2.14)
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All the parameters can be obviously in Figure 2.5. Differential equations with
dimensionless parameters are introduced because Young-Laplace equation can be
only solved for sphere droplet shapes which is the trivial case. By means of it, this
leads to an irrational solution for pendant drop tensiometry because it tends to
γ → ∞ [1].

In Eq. 2.11, Bo represents the Bond number which is same with Eq. 2.9:

Bo = ∆ρgR0
2

γ
(2.15)

Eq. 2.15 is valid for boundary conditions presented as:

r̄ = 0, z̄ = 0, φ = 0 at s̄ = 0. (2.16)

If R0 and Bond number can be extracted from the captured image of a pendant
drop, γ can be directly calculated since ∆ρ and g are already known. This is
exactly the fundamental behind the pendant drop tensiometry technique to obtain
the interfacial tension γ.

Non-Dimensional Apex Pressure and Non-Dimensional Gravitational
Control Parameter

After evaluating the perspective of Berry [1] in previous section Kratz presented
a new perspective by introducing non-dimensional parameters. Again differential
equations are presented but Kratz uses Ψ, the angle of the drop normal with the
z-axis which is illustrated in Figure and means that cylindrical coordinates are
used by Kratz again [2].

dr

ds
= cos Ψ (2.17)

dz

ds
= sin Ψ (2.18)

All the equations presented in previous section are valid also for this section too
but there is an additional boundary condition presented by Kratz [2]:

r = a/2 at s = L (2.19)

where L stands for the total length of arc. This additional boundary condition
is for presenting the attachment to the capillary [2]. Another new parameter
are principal curvatures which are circumferential curvature Kϕ and meridional
curvature KS. This parametrization is illustrated together with other parameters
detailed in Figure. Before Berry obtained the dimensionless parameters scaling
them by R0 but Kratz scaled them by a which is the capillary diameter.
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Figure 2.6: Pendant Drop Parameters According to Kratz. Reprinted from [2],
with the permission of AIP Publishing.

år = r/a, åz = z/a, ås = s/a, æKS,ϕ = KS,ϕ ∗ a (2.20)

After some derivations, Kratz [2] presented the Young-Laplace equation as
following:

pL − ∆ρgz = γ(Kϕ + KS) (2.21)

Kϕ = KS condition at the apex is derived by using the advantage of axisymmetry
and the apex Laplace pressure pL is related with the radius of curvature R0 in the
apex as following:

pL = 2γ/R0 (2.22)

The apex Laplace pressure pL is the same parameter which is introduced in the
previous section as ∆P0 in the Eq. 2.10. After this point, the parameter will be
considered as pL and will be called as "apex pressure".
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Kratz [2] inserted KS and Kϕ into Eq. 2.21 and derived another form of Eq.
2.10 using together with Eq. 2.22:

dΨ
ds

= pL

γ
− δρgz

γ
− sin Ψ

r
(2.23)

Eq. 2.23 will be further useful for the Python code for synthetic drop image
generation and will be explained detailed how it is used to generate drop shapes.

Finally, creating non-dimensional parameters are the most critical part of pre-
senting these equations which will be further explained in the Chapter 3. Using Eq.
2.20 Kratz [2] created non-dimensional Young-Laplace equation, non-dimensional
apex pressure åpL and non-dimensional gravitation control parameter which are
presented as following:

åpL − ∆åρåz = çKϕ + çKS (2.24)

åpL = pLa

γ
and ∆åρ = pLa

γ
(2.25)

The main objective of Kratz [2] is predicting åpL and ∆åρ parameters with using
Neural Networks algorithm. These two parameters are the parameters which are
predicted by Neural Networks in this thesis work too but, they are predicted using
a completely different way and different architecture. One last thing about Bond
number is introduced by Kratz [2]. Previously Berry [1] proved that if R0 and Bond
number can be obtained, interfacial tension γ can be obtained directly too. For
this purpose, a relation is found between apex pressure pL, gravitational control
parameter ∆ρ and Bond number Bo. Combining Eq. 2.22 and Eq. 2.15 Bond
number becomes:

Bo = ∆ρgγ

pL
2 (2.26)

Since calculating Bo and R0 was enough to calculate interfacial tension γ,
calculating pL and ∆ρ can be also another tool for calculating interfacial tension
so as their non-dimensional versions. These are all derivations that is done by
previous works, however, further derivations also done in this thesis work which
will be explained in Chapter 3. This section aimed to explain the principle behind
extracting the non-dimensional parameters which will be the output of the Neural
Network of this project.

Non-dimensional gravitational control parameter is more critical parameter
than non-dimensional apex pressure. When apex pressure åpL cannot be obtained
in any experiment, interfacial tension γ must be extracted from ∆åρ [2]. This is
possible because density difference between environment and drop ∆ρ, and capillary
diameter a are known parameters.
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2.4.2 Shape Factor(Number of Events)

Pendant drops have different profiles under non-dimensional parameters but, non-
dimensional parameters are not always enough to determine drop characteristics.
‘Number of events’ term is presented in order to help inferring situational analysis
of drop shapes. Drop profiles have several maxima (bulges) and several minima
(necks) values even if the solution of the Young-Laplace equation leads to the same
solution [2]. This means that a drop can have different profiles for the same åpL and
∆åρ value. Different profiles of drops for same solution will be further explained and
exampled in Section 3.2. Number of events parameter is named as “shape factor”
by Kratz [2] and represented as:

Ω = 1 + #necks + #bulges (2.27)

In this thesis, 3 conditions are observed in which Ω = 1, Ω = 2 and Ω = 3.
Drop shapes which have Ω > 3 are not considered due to the fact that, these
conditions are unstable, unstable and very rare to occur [2]. Figure 2.7 represents
three examples of drop shapes that are more likely to occur. Blue drop profile has
Ω = 1, orange drop profile has Ω = 2 and green drop profile has Ω = 3. Figure 2.8
represents a synthetically generated drop shape with Ω = 3 and bifurication lines.

Figure 2.7: Different Drop Profiles According to Number of Events (Ω = 1, Ω = 2,
Ω = 3)
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Figure 2.8: Example of Drop Profile with Bifurication Lines

Vertical lines-Bifurication Lines- are to show the capillary width and how many
times the contour of drop crossed the bifurication lines should be observed to
determine the number of events. In other words, Ω = 3 is a non-convex condition
and sum of number of necks and number of bulges are equal to 2 where there is
only 1 bulge and 1 neck. The neck is at the capillary and the neck also crosses the
capillary boundary(see Eq. 2.19) [2]. This is the trivial logic behind the number of
events.

Solution for Ω = 2, results in convex shapes and has exactly one bulge without
a neck. Bulge is wider than capillary and if you image vertical lines of capillary,
drop contour crosses 2 times. Final solution for Ω = 1, results in simple convex
shape as it is the most left case in Figure 2.7.

To sum up, cut off points in bifurication lines, necks and bulges are important to
determine the drop profile. This metric is very useful while creating the synthetic
image of a pendant drop which will be explained in Chapter 3.

2.4.3 Previous Pendant Drop Approaches
In this section some of the pendant drop techniques will be introduced. After
observing all previous works, it can be obviously seen that there is a gap in this
area and this thesis work is implemented to full this gap. There is only a single
approach that is related with Machine Learning which is done by Kratz [2].

First of all, Berry provided a fitting of Young-Laplace equation to an experimental
image which demands a high-level computational routine [1] in 2015. Method is
divided into two steps. First step is to extract the experimental image from a
camera. Then, Young-Laplace equation is iteratively solved to find optimized
parameters which are expressed in Section 3.2. During the process, image analysis
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techniques are used such as Canny edge detector to determine the drop profile
with its optimal physical parameters such as surface tension γ. An initial drop
profile is presented and then, iterative application of Young-Laplace equation with
edge detection algorithms applied in order to make the initial guess converge to
the true drop profile. Fitting the profile to the true profile is done by minimizing
the some of squared residuals like Euclidian distance between guess and true drop
contour. Berry reached to an standard error approximately 1%. Cabrerizo-Vilchez
[25] provided a new solution method integrated with pendant drop tensiometry
in 2019. Most of the work follows the equations and physical parameters such
as Young-Laplace equation introduced in section 2.4.1. Sessile drops and captive
bubbles are observed beyond pendant drop and pendant bubble by adding a new
mathematical point of view to pendant drop approach. Well-known Newton method
applied to Young-Laplace equation to fix the volume of a drop as well as its position
in the capillary [25]. Experimental bubbles are used together with MATLAB codes
to determine surface tension. After validating experimental results with theoretical
values, less than 1% relative error is obtained. Busoni and Carlà [26] provided
one of the fastest algorithm in the literature for determining the surface tension
using the ASDA measurement. On the other hand, the algorithm is implemented
only for sessile drops so, they are not valid for pendant drop profiles. It has still
not implemented using a Machine Learning approach but it could be evaluated as
successful in terms of speed. Charged Coupled Device (CCD) solid state camera is
used and the experimental apparatus is much complicated than other works that
are observed in this thesis work. Algorithm is tested with images has frame size
1024x1024 by applying some blurring to images. Then the results are compared
according to different noise levels and less than 1% error is obtained. Ferrera [27]
provided a comparison between two techniques which are pendant drop tensiometry
and liquid bridges. Comparison was made in terms of sensitivity and Ferrera
proved that pendant drop method was not much sensitive to very small changes in
drop shape profiles. This thesis work also tried to eliminate this insensitivity to
very small changes. Insensitivity was observed over the Bond number parameter
and using synthetic images which also one of the common points between this
thesis and Ferrera’s work. Greyscale images are analyzed and 1024x1024 pixel
images were obtained through CCD cameras. Even if liquid bridges were proved
to be more sensitive than pendant drop technique, pendant drop technique still
recommended due to having a simpler setup [27]. Less than 1% relative absolute
error was obtained for pendant drops which had very small volume approximately
10mm3. Consequently, the only work which includes a Machine Learning approach
was presented by Kratz [2]. Kratz presented all the equations that are presented in
Section 2.4.1 and introduced non-dimensional apex pressure åpL and non-dimensional
gravitational control parameter ∆åρ. Pendant drops were created synthetically but
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there are not any records about the resolution. Kratz mentioned some imperfections
could arise because of limited camera resolution [2]. A Neural Network architecture
was built to predict åpL and ∆åρ using cylindrical coordinates r̄ and z̄ to calculate
interfacial tension γ. Additionally, Conventional Shape Fitting (CSF) algorithm
also applied to compare its results with the Machine Learning approach. A graph for
valid pendant drop shapes was provided and validity is in terms of number of events.
This graph has a very important role in this thesis work which will be explained in
Section 3.2 about how it is used in thesis work. The training took approximately 3
weeks because model was trained for 90, 000 epochs and each epoch contains 0.5
million drop shapes. Test set was formed by 0.9 million drop shapes and MSE was
found as 2.10−7. Performance of the Deep Neural Network was recorded better
than CSF algorithm and both algorithms are more successful while predicting åpL.
CSF generally were good at predicting well-conditioned drop profiles, however,
Machine Learning approach were good at both ill-conditioned and well-conditioned
drop shapes [2]. This thesis brings an innovative and simpler solution to Kratz’s
work by introducing Image moments and simpler Neural Network architecture.
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Chapter 3

Proposed Methodology

This approach is based on a step-by-step algorithm and a sequential work is followed
during the implementation of thesis:

1. Mathematical Model Derivation: So many mathematical equations are
presented in Section 2342 and these are used to derive a final Young-Laplace
equation to generate synthetic drop shapes. Main equations are based on
Bond number. Thanks to Kratz’s [2] derivations, Young-Laplace equation
and Young-Laplace related differential equations can be also based on non-
dimensional parameters åpL and ∆åρ. New Young-Laplace equation is provided
in this thesis work to artificially generate pendant drop shapes in order to
prepare a dataset.

2. Dataset Preparation: After setting all the equations for generating drop
shapes, Many åpL and ∆åρ values are gathered from a graph which is intro-
duced valid according to number of events by Kratz [2]. From gathered
non-dimensional parameters, synthetic pendant drop images are generated.
Then, Image Moments are calculated from drop images which are recorded as
features to make them ready for feeding the Neural Networks.

3. A Machine Learning Approach (Neural Networks): As it is mentioned
before, surface tension parameter γ is the parameter that is predicted indirectly
by the Machine Learning algorithm. Deep Learning model is built to predict
non-dimensional apex pressure åpL and non-dimensional gravitational control
parameter ∆åρ. Deep Neural Network is fed with a dataset which is created
synthetically. Features of the Neural Networks are Image Moments computed
from synthetically generated different pendant drop shapes with the help of
OpenCV [16] library of Python. Labels which are going to be regressed by
the Neural Network are the non-dimensional parameters åpL and ∆åρ.
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3.1 Mathematical Model Derivation
Young-Laplace equation stands in the heart of determining surface tension of a
pendant drop. It was first presented as it is presented in Eq. 2.10 and further
detailed with differential equations using Bond number in Eq. 2.11. Kratz [2]
derived differential equations with pL and ∆ρ expressed as in Eq. 2.17, 2.18 and
2.23. At the final stage of Kratz’s work non-dimensional versions of pL and ∆ρ
expressed as åpL and ∆åρ but there aren’t any differential equation derivations
with using non-dimensional parameters åpL and ∆åρ. Since åpL and ∆åρ are used
to generate synthetic drop shapes, a differential equation which includes these
parameters should be derived. This thesis brings an innovation at this point and
derived a new differential equation Eq. 3.1:

dΨ
dås = åpL − ∆åρ åz − sin Ψår (3.1)

All these derivations are done for a purpose: to calculate surface tension γ via
Bond number. For this purpose, a relation should be found between Bond number
and non-dimensional parameters åpL and ∆åρ. This relation is also extracted from
equations that are presented by Kratz [2]. The derivation process starts with
inserting Eq. 2.22 to Eq. 2.15 and continues with inserting Eq. 2.25 to obtain:

Bo = 4∆åρåpL

(3.2)

3.2 As it is described in Section 2.4.1, surface tension can be calculated using
Bond number Bo and apex radius R0. Since åpL and ∆åρ are predicted in this thesis,
Eq. 3.2 is derived to achieve surface tension. Next step is to calculate apex radius
R0 which is derived combining 2.22 and 2.25:

R0 = 2aåpL

(3.3)

Berry [1] was using R0 to pass dimensionless space but Kratz [2] was using
capillary diameter a to pass dimensionless space. These equations makes possible
to work with all parameters. Now, all the equations and parameters, that will be
used to generate synthetic images, are presented. It is time to pass how images are
created and how the dataset is prepared.

3.2 Dataset Preparation
This section is observed under three subsections: Gathering Non-Dimensional
Parameters, Binary Image Generation, Image Moments Calculation. The process
followed to generate dataset will be explained.
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3.2.1 Gathering Non-Dimensional Parameters
After finishing the derivation process of all the equations, non-dimensional apex
pressure åpL and non-dimensional gravitational control parameter ∆åρ are used to
generate synthetic pendant drop images. These parameters are extracted from
a graph which is published in the Kratz’s work [2]. As it is also explained in
Section 2.4.2, there are likely and unlikely pendant drop profiles that can occur.
According to åpL and ∆åρ values drop profiles differ and a graph is constructed with
regions to Show this differentiation by Kratz [2]. This graph is divided into regions
and regions for pendant drop profiles, which are likely to occur, named as “Valid
Regions” in this project. åpL and ∆åρ values are extracted from Valid Regions to
use them to generate favorable drop shapes. The Figure 3.1 taken by Kratz’s work
and we marked valid regions with green and unused regions are marked as red in
Figure 3.2 to show the separation clearly.

Figure 3.1: Graph of Valid Regions According to Number Shape Factor Ω.
Reprinted from [2], with the permission of AIP Publishing.

In the Section 2.4.2, shape factor Ω = 2,3 conditions are considered so green
marks are placed according to that condition. We also marked the curves which
encloses and separates the valid regions. By marking curves with red in Figure 3.2,
we tried to digitize this graph to extract the points on curves to draw these curves
in Python. This digitization was done by using a web plot digitizer tool [28]. After
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extracting the points to a csv file, interpolation functions are applied on Python to
plot these curves digitally. This digitization is one of the key factors in this thesis
to generate synthetic dataset. Digitized form of graph is illustrated in Figure 3.2.

Figure 3.2: Digitized Valid Regions on Python According to Number Shape
Factor Ω

Valid Regions are marked with green again to show the separation clearly. Points
are generated by sampling and Valid Regions are also divided into two. There are
two different valid regions according to pendant drop profiles which have different
number of events.
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Figure 3.3: Digitized Valid Left Regions on Python According to Number Shape
Factor

Figure 3.3 shows Valid Left Region which includes drop profiles for two different
number of event values (Ω = 2 and Ω = 3). Valid Left Region has 863 samples but
Left Region data is used twice for different number of events(Ω = 2 and Ω = 3) so,
size of the Valid Left Region could be considered as 1726 samples.
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Figure 3.4: Digitized Valid Right Regions on Python According to Number Shape
Factor Ω

Figure 3.4 shows the Right Valid Region which includes drop profiles for only
Ω = 3 and Right Valid Region has 1630 samples. Total Data that is used for Neural
Network becomes 3356.

3.2.2 Binary Image Generation
When the extraction process of åpL and ∆åρ values are finished, these values are
used to create binary synthetic pendant drop images. Mathematical derivations
also helped to generate these images because differential equations 2.17, 2.18 and
3.1 are solved using Ordinary Differential Equations (ODE) Solver called “Runge-
Kutta (RK45)” Method. This is provided by scikit-learn library [29] in Python.
RK45 is a method of order 5, have a ‘small’ principal truncation term in the fifth
order [30] and provides a rapid and accurate solution [2]. Derived differential
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equations are solved according to initial conditions which are determined according
to boundary conditions in equations 2.14 and 2.19. ODE solver iteratively solves
these differential equations according to number of event values. For instance, if
Ω = 2, differential equations are solved two times by the ODE solver.

As a result of the solution, a symmetric half of the pendant drop is generated.
Full pendant drop shape is generated by flipping the symmetric half. The advantage
of being an axisymmetric drop shape analysis is used in this case.

Figure 3.5: Synthetic Pendant Drop Shape Example from Left Valid Region(Ω =
2)

Figure 3.6: Synthetic Pendant
Drop Shape Example from Left
Valid Region(Ω = 3)

Figure 3.7: Synthetic Pendant
Drop Shape Example from Right
Valid Region(Ω = 3)

In the previous section it is explained that, two different drop profiles are
generated according to different number of event values. Figure 3.5 and 3.6 are the
example of different shapes for same Bo, åpL and ∆åρ values. Even if two pendant
drops have the same Bo, åpL, ∆åρ and surface tension γ, they can have different
profiles. That’s why the Left Valid Region data is used twice.

Finally, Figure 3.7 is an example from Right Valid Region whose Bo ≈ 0.53,
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åpL ≈ 4.73, ∆åρ ≈ 2.97 and Ω = 3. The next step is to calculate image moments
from these gray-scale images in order to finalize the dataset.

One limitation arises at this point in terms of image resolution because all the
images are generated with 500x500 image size. Eventually, training process includes
only images which has only 500x500 size. Image Moments are stabilized after an
approximate image resolution of 150x150 which is proved by Huang and Leng [31].
According to Huang’s work [31], image resolution will not be a problem for images
whose resolutions are more than 150x150 but still this could a limitation to be
tested.

Another problem arises in the shapes of synthetic pendant drops. Although
images are almost same to the real images, there are very small gaps at the most
top of the images. White pixels should cover more place at the very top in order
to be equal to the capillary diameter of the tube. After some rows the width of the
drop becomes equal to capillary diameter however, it should be equal directly at
the first row. This problem is caused by polygon function in python due to create
more "pixeled" shapes at the edges. A more precise model is introduced by Mizotin
[32] which eliminates the difference between synthetic images and real images by
reducing the error while creating synthetic drop shapes.

3.2.3 Image Moments Calculation

After generating synthetic drop images, Image Moments-Hu Moments- are calcu-
lated. There are 7 moments but the last one is not included in the dataset which
represents the reflection symmetry. Since pendant drop tensiometry is ASDA, there
is no need to use last Hu Moment property. Image Moments are very helpful in
terms of creating a robust system because they are translation, scaling and rotation
invariant. By using these properties the system becomes robust for rotated drop
shapes, scaled drop shapes and translated drop shapes. These variety of conditions
could differ according to the experimental setup that is created in a project.

One of the most critical application during calculating Hu Moments is the log
scaling. Without using log scaling Hu Moment values are approximately between
to 10−7 and 10−20 scales.
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Figure 3.8: Hu Moments According to åpL and ∆åρ for Right Valid Region(Ω = 3)
With Log Operator

Figure 3.9: Hu Moments According to åpL and ∆åρ for Right Valid Region(Ω = 3)
Without Log Operator

In Figure 3.9, changes of Hu Moments with respect to åpL and ∆åρ without
applying a log scaling. All the five moments except first are same and varies in
very low scale. All the moments except first and second seems like disappeared in
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Figure 3.9 because they are almost same and 3D graph cannot illustrate all points.
It can be interpreted as it is constant. On the other hand, Figure 3.8 shows the
Hu Moment values using a log scaling and changes can be seen clearly so the Eq.
3.4 [16]

Hi = −sign(hi) log10(hi) (3.4)

is applied where hi is the calculated Hu Moments. After extracting(digitizing)
the åpL and ∆åρ values from graph and calculating Hu Moments, the dataset is ready.
A csv file is generated using these parameters to feed the Neural Network.

3.3 A Machine Learning Approach (Neural Net-
works)

A simple Neural Network architecture is built to predict each non-dimensional
parameter separately. In other words, we predict each parameter in separate Neural
Networks, however, architecture of both Neural Networks is the same as for both
predicting åpL and ∆åρ. The architecture is shown in Figure 3.10 and the summary
of the model is shown in Figure 3.11.

Figure 3.10: Neural Network Architecture

Model is decided according to some tests. Layer numbers are increased pro-
gressively to obtain the most successful architecture. For each validation of layer
number, number of neurons progressively increased too. When the accuracy started
not to improve, number of layers and neurons are recorded to finalize the validation
phase to build most accurate Neural Network architecture.

There are 6 features(6 Hu Moments) to feed the Neural Network and the Network
is constructed from 6 layers. Network has 1 input, 4 hidden and 1 output layer.
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Since we have 6 features, input layer has 6 neurons and since we predict just
one non-dimensional parameter for training. These non-dimensional parameters
could be predicted in separate training phases because Kratz [2] proved that these
non-dimensional parameters are independent. Training phase is done separately in
parallel while running the algorithm. Model summary in Figure 3.11 represents
how many layers are used with corresponding number of parameters.

Figure 3.11: Model Summary

A sequential model of Tensorflow Keras is used to train the Neural Network.
Tensorflow is an open-source library by Google and tensor is a multidimensional
array. Dataset is converted to tensor form before training and test process. 20%
the dataset is used as Test set which corresponds to 672 data so the training is done
using 2684 data. Before training and test each dataset is shuffled. This sequential
model is compiled with using Adam Optimizer and loss metric is decided as Mean
Square Error. Activation Function is decided as RELU and the decision process
will be explained by results in the Chapter 4.
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Chapter 4

Experimental Results

In this chapter, experimental results of the thesis will be analyzed with using
numerical results. These results are obtained using different datasets which have
different sizes. Results are tested for different activation functions, epochs and
cross validation techniques. Moreover, results are supported and further explained
with different statistical measures to reflect how the hyphothesis is verified or not.
During evaluating the results, it is also investigated that, for which parts this
thesis work brings an improvement and innovative solutions compare to previous
solutions.

Figure 4.1: Predictions vs True
Values of åpL

Figure 4.2: Predictions vs True
Values of ∆åρ

We have validated the results using different statistical measures and graphs.
Firstly, a scatter plot is used to verify the predictions. The expectation was to
obtain x = y graph since the predictions should be same with the true values of
what we are trying to predict. Figure 4.1 and 4.2 is the first prove that our model
is working successfully for the dataset because we almost obtain the x = y graph.
Figure 4.1 shows the predictions vs true values of åpL and Figure 4.2 shows the
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predictions vs true values of ∆åρ.

Figure 4.3: Mean Square Error
of åpL vs Epochs

Figure 4.4: Mean Square Error
of ∆åρ vs Epochs

For the loss metric of the Neural Network, Mean Square Error (MSE) is con-
sidered to observe the decreasing error. The idea behind observing the MSE is
to where to stop the training process and to see whether the Network saturates
for a reasonable low error or not. Training process is done for 2684 data with
10000 epochs for each prediction process. Each training took approximately 2
hours in separate since we predict the non-dimensional parameters in different
networks. The main objective of this thesis is provide an alternative(more simple
and innovative) solution for pendant drop tensiometry using a Machine Learning
approach together with Image Moments. Since we seek a more simple solutions
we need to provide a less complex and rapid Machine Learning algorithm. As it is
mentioned before, the only work using a Machine Learning approach is Kratz [2]
and their training took approximately 3 weeks on a standard hardware(i3-CPU
with a GTX 970 GPU). Meanwhile, training is done using standard Google Colab
version in this thesis work and training took total 4 hours. In terms of being less
complex, this thesis succeed in for this part of the hypothesis. This could be even
decreased by applying an early stopping. Even if the error decreased a little after
epoch 8000, there is no significant error decrease so the training could be stopped
around epoch 8000 if a less precise result is enough.

In addition to this, there is no overfitting problem in the network model which
could be obviously observed from Figure 4.3 and 4.4. Overfitting can happen when
the test accuracy is low and the training accuracy is high. Orange curves in Figures
4.3 and 4.4 represents the training MSE loss and the blue curves represents the test
MSE loss. Test MSE loss is little higher than training MSE loss as it is expected.
Since both of the curves are very close to zero and converging to zero, there is no
overfitting in the model.
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Figure 4.5: MSE Loss Graph
with Applying Log Scale to åpL

Predictions

Figure 4.6: MSE Loss Graph
with Applying Log Scale to ∆åρ
Predictions

In order to better show the convergence of the MSE loss of the model, log scaling
is applied to MSE graphs. Log Scaling helped to observe the graphs more in detail.
Figure 4.5 and 4.6 represents the log scaled version of the loss and the convergence
of the error can be seen obviously. Although there are kind of variations in peaks
in the graph, these could be negligible because this representation is in log scale.
By means of it, log scale shows the error in a very low scale approximately 10−2
which means that the curves can be considered as decreasing(converging) lines.
Red Curve represents the training loss and the green curve that follows the red
curve represents the test loss. Log scale also showed clearly that, test loss is almost
as good as training loss with a little higher value. This again confirms that, there
is no overfitting and a logical error graph is obtained.

Figure 4.7: Merged Graph of Valid Regions
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Figure 4.7 shows the artificially generated åpL and ∆åρ values from valid regions.
As it is explained in Section 3.2, synthetic pendant drop shapes are generated
according to these artificially generated non-dimensional values. In Figure 4.7 is an
illustration for the merged Valid Regions. Left and Right Valid regions are merged
to show the whole Valid Region together.

Figure 4.8: Colored Graph according
to Prediction Performance of åpL

Figure 4.9: Colored Graph according
to Prediction Performance of ∆åρ

Figures 4.8 and 4.9 represents the predictions that are made by Neural Network
model. The objective is to obtain a representation that is very similar to Figure 4.7.
Color bar in Figure 4.8 and 4.9 shows the success in the predictions. In Figure 4.8
if the Mean Absolute Relative Error (MARE) is above 0.16 the predicted åpL point
is represented by yellow and if the MARE is less than 0.02 the predicted åpL point
is represented by dark blue. These boundary values for prediction performance
is 0.2 and 0.05 for Figure 4.9 which represents the predictio performance in ∆åρ
prediction. There is only one yellow point for both of the non-dimensional value
predictions but almost every prediciton is dark blue. This shows the success of the
Neural Network model.

Most erroneous predictions are close to the boundaries of the Valid Region. While
drawing the curves of boundaries in Python and digitizing the graph using plot
digitizer tool [28] there could be erroneous points for drawing the boundary curves
of the Valid Region. This could be the reason of predicting the non-dimensional
values worse in these parts of the region.
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Figure 4.10: Histogram of Absolute
Error for åpL Predictions

Figure 4.11: Histogram of Absolute
Error for ∆åρ Predictions

Figure 4.10 and 4.11 shows the histogram of predictions according to their
Absolute Error. Histogram blocks are divided into intervals with 0.05. If the
Absolute Error between prediction and true value less than 0.05, it will be placed
to the first block and so on. Both Figures 4.10 and 4.11 are another proof of the
success of the model since most of the predictions located in the first two blocks
which means that the Absolute Error is less than 0.1.

Absolute Error is a kind of metric for visualizing the digit matching issue between
predictions and true values. If the absolute error is less than 0.1, then almost the
first 3 digits of prediction values are matching with the first 3 digits of true values.
If the absolute error is less than 0.2, then almost the first 2 digits of prediction
values are matching with the first 2 digits of true values. This is another kind of
point of view to an error interpretation.

Figure 4.12: Histogram of Relative
Error for åpL Predictions

Figure 4.13: Histogram of Relative
Error for ∆åρ Predictions

Figure 4.12 and 4.13 shows the histogram of predictions according to their
Relative Error. Histogram blocks are divided again into intervals with 0.05. Both
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Figures 4.12 and 4.13 are another proof of the success of the model since most of
the predictions located in the first two blocks which means that the Relative Error
is less than 0.1.

When these histograms are compared with the previous histograms, it is expected
that the number of errors belong to first two blocks should be higher. For example,
there are 483 predictions in first three block of Figure 4.11 but there are 531
predicitons in first three blocks of Figure 4.13. This scenario is much vivid for
4.10 and 4.12. This difference for 4.12 and 4.13 between åpL and ∆åρ predictions
caused by the difference in the magnitudes of true values of åpL and ∆åρ which are
predicted. Range of åpL is [1,6] but range of ∆åρ is [0,5]. Generated åpL values are
bigger than generated ∆åρ values. That’s why the number of samples which has
lower relative error is more in Figure 4.12.

MSE / L2 Loss / Quadratic Loss
qN

i=1 (yi − ŷi)2

N
Absolute Error |ŷi − yi|

Absolute Relative Error |ŷi − yi|
yi

Regression Score Function R2 = 1 − RSS

TSS

Table 4.1: Table for Used Error Metrics for Performance Evaluation

Error metrics used for graph representations are illustrated in Table 4.1. MSE
is the main metric which is also used for the loss calculation. For the other error
metrics, mean is not calculated because giving the feeling of digit matching was
vital at this point which is mentioned previously in this section. Absolute operator
is applied because the predictions could be also lower than the true values which
coould cause negative errors. Using absolute, this problem is eliminated.

Approximately 0.017 MSE loss is achieved for åpL prediction and apprximately
0.04 MSE loss is achieved for ∆åρ prediction which are quite low values and as
successful as previous works in terms of error. Additionally, R2 value is calculated to
measure the performance of predictions. Since non-dimensional values are regressed,
using a regression score function is logical to evaluate the results. This metric has a
range of [0,1] and if the R2 value is close to 0, predictions are bad vice versa. This
thesis work achieved to approximately 0.98 and 0.97 for åpL and ∆åρ predictions
respectively. R2 values are almost 1 which shows that regressions are successful.
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Figure 4.14: Feature Importances for Regression using 6 Features

Figure 4.14 shows the Feature Importance graph for the Neural Network Model
and the first feature is the most important one which is the first Hu Moment and
the second important one is feature 2(Third Hu Moment). Moments follows the
increasing order and the feature 5 corresponds to the sixth Hu Moment.

After observing the feature importance, the relation between features are also
investigated. While making a literature review, Flusser [33] made a research
about the dependence/independence of Hu Moments which states that some of
the moments are dependent. Then, covariance matrix of the features are printed
to investigate the dependence of Hu Moments in the Neural Network model.
Covariance Matrix is shown in Figure 4.15 in which the fourth, fifth and sixth
moments are correlated. These correlation levels are depicted with colors in the
colorbar. Correlation could be maximum 1 which is represented by yellow color.
When the color is darker correlation between features are decreased and get closer
to zero. Combining this information with feature importances, fourth and fifth Hu
Moments are dropped because these moments has the lowest importance and has
correlation. After removing these two moments new covariance matrix is plotted
as in Figure 4.16 and model is trained for 4 Image Moments.
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Figure 4.15: Covariance Matrix
of Features(6 Hu Moments)

Figure 4.16: Covariance Matrix of
Features(4 Hu Moments)

All the error metrics are computed again for the model with 4 Image Moments
and no significant changes are observed and still model regresses the non-dimensional
values successfully. Eventually, even simpler model is obtained than it is expected.

Figure 4.17: Colored Graph according to Prediction Performance of åpL with 4
Hu Moments

To better show the results, performances are depicted via again using the colored
scatter plots for regressions of non-dimensional parameters. These graphs are shown
in Figure 4.8 and 4.17. Performance is almost same for the model which has 4
features(4 models) and the training duration decreased too.
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Figure 4.18: Feature Importance for Regression using 7 Features

Another testing is done by increasing the number of features by adding Number
of Events parameter to the model. This parameter is explained in Section 2.4.2 and
changes according to Valid Region. Adding this features does not help to improve
the performance. On the contrary, regression performance decreased significantly
because number of events feature dominated the model. Figure 4.18 shows the
feature importance for regression and feature 6 stands for the number of events
parameter. It highly dominates the model since it could be only two values which
are ’2’ and ’3’. MSE, absolute error are increased and regression score function
becomes more close to 0 which are the proofs of the performance decrease.

Table 4.2: 5 Randomly Chosen Prediction of åpL

åpL True åpL Predictions
3.22 3.319
1.66 1.696
3.73 3.727
2.97 2.871
5.55 5.463

Table 4.3: 5 Randomly Chosen Prediction of ∆åρ
∆åρ True ∆åρ Predictions

0.848 0.908
0.121 0.185
0.818 0.808
0.606 0.610
3.39 3.291
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Tables 4.2 and 4.3 shows 5 randomly chosen prediction results. These tables
are to better understand what are the values of non-dimensional predictions and
how they are regressed. Tables show one more time that, predictions are successful
even if the regressed true values are so close to eachother. In other words, model is
sensitive to small changes too. Each true value is the correspondent value for each
other. For example, drop shape’s åpL value is 3.22 and ∆åρ value is 0.848. Their
regression results are 3.319 and 0.908 respectively.

Figure 4.19: MSE Loss Graph
with Applying K-Fold Cross Vali-
dation to åpL Predictions

Figure 4.20: MSE Loss Graph
with Applying K-Fold Cross Vali-
dation to ∆åρ Predictions

Last but not least, K-Fold Cross Validation is also applied in order to prove that
the obtained successful results are not obtained by chance. K-Fold Cross Validation
is done when limited amount of data is available. Dataset is divided into K subsets.
Training is done for K − 1 subsets and the last subset is used as test set. This
process is done for K times when all the subsets are used as test sets. Avarage
error is calculated over the K iterations to obtain a logical test error. Figure 4.19
and 4.20 are the MSE graphs for all cross validation phases. There are 5 peaks so
5-Fold Cross Validation is applied and MSE is calculated in 5 different iteration.
Avarage MSE on test set through 5 iterations for åpL regression is 0.038 and avarage
MSE for ∆åρ regression is 0.045. These MSE losses are slightly high from our base
model’s erorrs but they are still very low and successful results. Consequently, the
model is validated by using another metric again.
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Chapter 5

Conclusion and Future
Works

The proposed solution in this thesis work aimed to solve a problem for measuring
Surface Tension of a pendant drop. While aiming measuring the Surface Tension
of a pendant drop, a gap in this are is filled with bringing an innovative and
simpler Machine Learning approach to this field. Since there are very rare works
with Machine Learning approach in Pendant Drop Tensiometry method, this work
has a special place in this area. A model is implemented for any user who aims
to measure surface tension of a pendant drop so it can be widely used. Surface
Tension of a pendant drop can be regressed by using Image Moments together with
a Neural Network architecture was the hypothesis in the beginning. Chapter 4
verified the hypothesis and successfull results are obtained. The main aim during
regressing the Surface Tension is to bring innovative and simpler model in which
the ’innovation’ is using Image Moments together with a Neural Networks model
and ’simpler’ part is a less complex and less computationally demanding solution.
Both aims was achieved by this model and similar error rates compare to previous
successful works were achieved in this thesis.

Different improvements also applied during the implementation process. First,
thesis started with 7 Image Moments, it is decreased to 6, then covariance matrix
analysis makes removing 2 more moments possible for a simler solution. During
verifying the model’s success different verification methods and error metrics are
used such as K-Fold Cross Validation, Scatter Plots, Colored Graphs, Regression
Score Function and MSE. After observing all the results, error rates brought
successful results.

For future works, the first development could be increasing the number of
samples in the dataset. To obtain a better result for this purpose, K-Fold Cross
Validation is used. Another improvement could be switching to Real Images instead
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of Synthetic Images or a dataset could be generated by mixing both Real and
Synthetic Images. In this way the results in this thesis could be further validated.
There aren’t much Real Image to use for this purpose in this project so all the
images used in this project are Synthetic Images. When capturing Real pendant
drop images some problematic issues could be occur in terms of camera and light
source. Optical aberrations should be eliminated in that case to prepare a proper
pendant drop image. While adding real images to training and test set image
resolution limitation could also be tested by generating images which have different
resolutions and whose size is more than 150x150.

To conclude, one last improvement could be using a different Neural Network
type such as CNN. CNN is widely used for image related problems and solves image
related problems with high performance. CNN could be applied with or without
Image Moments to regress the Surface Tension of e pendant drop from an image.
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