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Abstract
Among the diverse techniques developed for in-circuit impedance measuring some

of the most studied ones nowadays are those which are non-intrusive, that is, they
are not electrically connected to the current of the circuit under test. In particular,
one of the most popular methods is the so-called two-probes set-up measurement
method which has been notably used in a number of applications. The aim of this
work is to compare, in terms of robustness against measurement errors, this well-
established method to one that has been developed recently and which uses only
one probe: the single-probe method.

To carry out this comparison two types of analysis have been conducted: a
Montecarlo analysis, which consists in performing a high number of simulations
slightly randomly changing the parameter values of the test set-up that are used for
impedance estimation; and a sensitivity analysis, whose goal is to quantify which
parameters have a larger impact in the final estimate. By performing these analyse
it can be seen which method has a larger robustness against an error in each one of
the parameters as well as the frequencies which turn out to be most critical.

Also, as the single-probe method is a relatively new one, several simulations
using diverse softwares have been conducted to test its performance, placing two
different scenarios: one in which the device under test is a passive ideal circuit (only
the impedance to be measured) and another one fed by a DC voltage and in which
the losses in wire have been considered.

The final outcome of this work is that the single probe method turns out to
exhibit a larger parameter sensitivity effect in a frequency range close to a resonant
behaviour of the impedance under test. However, it offers a viable yet simpler alter-
native which can be effectively used in practical applications. Also, the mentioned
larger sensitivity can be overcome by a more precise characterization of the critical
parameters.
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Chapter 1

Introduction

Impedance measurement has a lot of practical applications in both technical and
research fields. The cases in which this practice is used include electromagnetic
properties measurement of materials, sensor reading, semiconductor characteriza-
tion, electrical devices health monitoring and even medical or biological applications
[3].In the last decades the circuit impedance measurement techniques have been be-
ing developed to be performed in already working electrical systems with the aim
of getting data of the current state of the system or device. As an example, online
measuring the impedance of a lithium battery allows to know its state of charge,
state of health and internal temperature [5]. Also important applications of these
techniques can be found when working with switched-mode power supplies (SMPS)
and designing electromagnetic interference filters (EMI) [12].

Techniques for impedance measuring are diverse and they can be classified at-
tending the way connections with the circuit are made:

� Intrusive methods: they imply an electrical connection to the current of the
device under test (DUT) as, for example, a capacitive coupling.

� Non-intrusive methods: they are attached without an electrical direct con-
nection to the current of the DUT, using for it devices like inductive probes.

All of this work is focused on these last kind of methods, however, the first ones
will also be briefly reviewed.

Among all non-intrusive methods it can be remarked the two-probe set-up method,
whose importance has been growing in the last years and has been used in several
articles [4]. This technique consist in clamping two inductive probes to the DUT
and connect them to a two-port VNA. For each port a frequency swept is performed
and the S-parameters of the whole system are obtained [16]. Then with this values
and the correspondent S-parameters of both of the probes (that have been previ-
ously characterized), the value of the impedance is computed following the method
explained in section 3.3.
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However, this well-established method have shown certain weaknesses as for ex-
ample an undesirable inductive coupling among the probes [15]. Therefore, another
method using only one probe has been developed recently, which not only address
this probe-to-probe coupling problem, but also can be performed with time-domain-
based instrumentation, which is useful for impedance monitoring.

When performed with frequency-domain-based instrumentation such as an impedance
analyser, this technique is carried out by taking four different impedance measure-
ments at the probe input, each one with a different loads: one with the actual load
whose unknown impedance value is the target to be computed, and three already
known impedances. With these four measurements and the values of the known
impedance used, the target impedance value is computed by applying the formulas
explained in sections 3.1 and 3.2. This single-probe set-up method with frequency-
domain-based instrumentation is the case on which this work has focused.

1.1 Motivations

The single-probe method has been developed to address some of the weaknesses
that the two-probes method has shown, as for example the probe characterization
error propagation or the previously mentioned inductive coupling among the probes
[16]. Even although a calibration error has been developed for the two-probes set-
up these errors persist [18], therefore, the single-probe approach could gain impor-
tance. Consequently, compare the advantage and disadvantages of this relatively
new method against the already established one can be really useful for the field
and practices in which the in-circuit impedance measurement is required, and this
is the motivation of this work.

1.2 Goals

The goals of this work are essentially two:

� To assess the single-probe method performance through simulations using sev-
eral diverse software and scenarios, with the aim to verify its correct working
and the accuracy of the outcome through diverse representations.

� To compare this new method to the two-probes set-up technique in terms
of theoretical robustness against measurement errors, conducting to this pur-
pose two different analysis, called Montecarlo analysis and sensitivity analysis.
These analysis are explained in detail in section 4.5 and are useful to see how
much the outcomes of the two techniques vary when the parameters of the
methods are modified.

12



Chapter 2
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Generalities and State of the Art

2.1 Background theory

Through this section the basic mathematical tools used in this work are ex-
plained. Those are the frequency-domain analysis and the two-port networks theory.

2.1.1 AC analysis

In this work all the simulation, analysis and graphics are conceived in the scope
of the frequency domain, that is, the components and circuits are analysed by do-
ing a swept in the values of the frequency. This is useful to analyse the response
of components and circuits that work under alternating current (AC), that is, a
sinusoidal signal. When the circuits considered have only a single frequency, the
phasorial notation can be used, for example a sinusoidal voltage with amplitude V
(V), frequency ω (rad/s) and phase ψ (rad) would be represented as:

V cos(ωt+ ψ) = Re(V cos(ωt+ ψ) + jV cos(ωt+ ψ)) =

= Re(V ej(ωt+ψ)) = Re(V ejωtejψ) = Re(ejωtV )

where t is the time in seconds and j the imaginary unit. As the factor ejωt is
the same for all the electrical variables when considering a single frequency in the
system, the voltage can be fully represented by V which is call phasor and have
several notations:

V = V ejψ := V ψ

When using this representation the mathematical operations that are used in
direct current can be used in AC considering the complex algebra. Therefore, the
complex impedance is defined as:

Z =
V

I
=
V

I
ψV − ψI

where V and I are the magnitudes of voltage and current and ψV and ψI the phases
respectively.

13
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As stated previously, by doing a frequency swept in a certain range of values the
behaviour of components and circuits can be studied. Usually the data obtained
from this type of analysis is presented through graphics like the Bode plot. This
sort of graphics shows the frequency response of a system, that is the gain (defined
as the ratio between the output and the input of the variable considered) against
frequency, for both magnitude and phase and uses logarithmic scales. An example
of these kind of graphics can be found in figure 2.1.

Figure 2.1: Bode plot example extracted from [2]

2.1.2 Two-port network theory

When the system analysed has a certain grade of complexity it is convenient
to considerate it as different encapsulated networks and compute the voltages and
currents in their connections. This terminal connections of each network are called
ports and can be several for each network depending on the topology of the system
but through this subsection only the ones with two ports are explained, as they are
the only ones used in this work. Also for this whole subsection the circuits that
constitute the networks are supposed to be lineal.

Figure 2.2: Schematic of a two-port network with sign criteria, extracted from [1]

14
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In figure 2.2 the schematic of a two-port network can be seen. The relation
between V1, I1, V2 and I2 can be determined by the parameters of the network, that
are obviously dependent from the network inner configuration. There are a lot of
ways to define this parameters, the most used are explained next.

Z-parameters

They are also called impedance parameters because they are defined by the
ratios among the ports voltages and currents respectively. The parameters and
their correspondent matrix Z are the defined as it follows:(

V1
V2

)
=

(
z11 z12
z21 z22

)(
I1
I2

)
= Z

(
I1
I2

)
where

z11 =
V1
I1

∣∣∣∣
I2=0

z12 =
V1
I2

∣∣∣∣
I1=0

z21 =
V2
I1

∣∣∣∣
I2=0

z22 =
V2
I2

∣∣∣∣
I1=0

When matrix Z is symmetric the network is called reciprocal and when z11 = z22
is called symmetrical. Z-parameters also have a direct conversion formula into a
T-network, as shown in figure 2.4.

Figure 2.3: Relation between T-network impedances and Z-parameters, extracted
from [1]

15
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Y-parameters

Also known as admittance parameters because, contrary to the Z-parameters, the
ports currents are defined linearly in terms of the ports voltages. The parameters
and their correspondent matrix Y are the defined as it follows:(

I1
I2

)
=

(
y11 y12
y21 y22

)(
V1
V2

)
= Y

(
V1
V2

)
where

y11 =
I1
V1

∣∣∣∣
V2=0

y12 =
I1
V2

∣∣∣∣
V1=0

y21 =
I2
V1

∣∣∣∣
V2=0

y22 =
I2
V2

∣∣∣∣
V1=0

When matrix Y is symmetric the network is called reciprocal and when y11 = y22
is called symmetrical. Z-parameters also have a direct conversion formula into a Π-
network, as shown in figure 2.4.

Figure 2.4: Relation between Π-network admittances and Y-parameters, extracted
from [1]
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H-parameters

They are also called hybrid parameters and they are obtained when current
at port 1 and voltage at port 2 are considered the independent variables. The
parameters and their correspondent matrix H are the defined as it follows:(

V1
I2

)
=

(
h11 h12
h21 h22

)(
I1
V2

)
= H

(
I1
V2

)
where

h11 =
V1
I1

∣∣∣∣
V2=0

h12 =
V1
V2

∣∣∣∣
I1=0

h21 =
I2
I1

∣∣∣∣
V2=0

h22 =
I2
V2

∣∣∣∣
I1=0

When h12 = −h21 the network is said to be reciprocal and when det(H) = 1 it
is called symmetrical.

G-parameters

Also known as hybrid inverse parameters as they are the dual form of the H-
parameters. The parameters and their correspondent matrix G are the defined as
it follows: (

I1
V2

)
=

(
g11 g12
g21 g22

)(
V1
I2

)
= G

(
V1
I2

)
where

g11 =
I1
V1

∣∣∣∣
I2=0

g12 =
I1
I2

∣∣∣∣
V1=0

g21 =
V2
V1

∣∣∣∣
I2=0

g22 =
V2
I2

∣∣∣∣
V1=0

When g12 = −g21 the network is said to be reciprocal and when det(G) = 1 it is
called symmetrical.
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ABCD-parameters

Also called T-parameters or transmission parameters, obtained when voltage and
current of the first port are expressed linearly in terms of the voltage and current of
the second port. The parameters and their correspondent matrix T are the defined
as it follows: (

V1
I1

)
=

(
A B
C D

)(
V2
−I2

)
= T

(
V2
−I2

)
where

A =
V1
V2

∣∣∣∣
I2=0

B =
V1
−I2

∣∣∣∣
V2=0

C =
I1
V2

∣∣∣∣
I2=0

D =
I1
−I2

∣∣∣∣
V2=0

When det(T) = 1 the network is said to be reciprocal and when A = D it is
called symmetrical. Also their correspondent dual parameters exist and are knowns
as inverse transmission parameters, obtained when voltage and current of the first
port are considered as the independent variables instead of ones of the second port.

S-parameters

They are also called scattering parameters and their definition differs from the
others explained previously. They are defined using the incident and absorbed waves
as variables and are linked to an arbitrary value of impedance in the ports called
reference impedance, which is used instead of the short-circuit or open-circuit used
to compute the other parameters explained. The S-parameters matrix and equations
are the following: (

b1
b2

)
=

(
s11 s12
s21 s22

)(
a1
a2

)
= S

(
a1
a2

)

where a1 and a2 are the incident waves and b1 and b2 the reflected waves of ports 1
and 2 of the network, respectively.

18
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Parameters used in this work

All of the parameters previously mentioned have a reason to be defined: each
one of them are more suitable depending on the topology of the network connec-
tions (except for the scattering parameters, whose reasons are that they are more
appropriate for high-frequency measurements and full-wave analysis [6]). In figures
2.5 and 2.6 it can be seen which parameters best fit each configuration.

Figure 2.5: Top to bottom and left to right: 1) Series connection implies Z-
parameters matrices addition, 2) Series-parallel connection implies H-parameters
matrices addition, 3) Parallel-series connection implies G-parameters matrices ad-
dition, 4) Parallel connection implies Y-parameters matrices addition. Image ex-
tracted from [1]
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Figure 2.6: Cascade connection implies transmission parameters or inverse trans-
mission parameters matrices multiplication, extracted from [1]

In this work the circuits considered have a cascade topology, therefore ABCD-
parameters are used. It has to be mentioned that in this work these parameters
are also used in cases in which the network contains independent sources. This
implies a modification of the equations mentioned previously: adding and extra
term which is a function of the independent source but not of the variables [8].Then,
the ABCD-parameter equations would be the following(

V1
I1

)
=

(
A B
C D

)(
V2
−I2

)
+

(
V01
I01

)
where

V01 = V1

∣∣∣∣∣∣ V2 = 0
I2 = 0

I01 = I1

∣∣∣∣∣∣ V2 = 0
I2 = 0

Also the scattering parameters are used, but only for format purposes in the
simulations (Qucs software only admits this representation). The conversion from
Z-parameters to S-parameters is directly given by the expression

S = (Z− Zr)(Z+ Zr)
−1

being Zr the diagonal matrix with the reference impedances [6]. As in this work the
network representation is made through ABCD-parameters, the previous conversion
to Z-parameters must be done through the expression

Z =
1

C

(
A det(T)
1 D

)
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2.2 Impedance measurement techniques

There are several ways to classify the diverse impedance measurement techniques
that exists nowadays. Attending to the instrumentation used to implement the
measure and the way it registers the magnitudes they can be distinguished:

� Time-domain measurement techniques: usually performed with TDT/TDR
(Time Domain Transmission/Time Domain Reflection) devices. They allows
to measure characteristic impedance directly and to locate physical aberra-
tions. OM the other hand their interpretation is more difficult than in the
frequency domain and the SNR (Signal-Noise Ratio) obtained are lower [11].

� Frequency-domain measurement techniques: most commonly used de-
vices are VNA (Vector Network Analyser) or impedance analysers. They are
not able to locate physical aberrations nor to directly measure characteristic
impedance but they are easy to interpret and have better SNR [11].

In this work the only type of technique considered for the simulations and analy-
sis is the frequency-domain-based one using an impedance analyser as measurement
tool. Also, attending to different criteria the diverse existing impedance measure-
ment methods can be classified as it follows [11]:

� Direct or indirect techniques: depending on what is being measured, the
impedance targeted itself (direct) or some effect the impedance causes on other
magnitudes (indirect). The second type is used normally as a corroboration
or when the function measured is more accessible than the impedance.

� In-circuit or test fixture techniques: a test fixture is a device designed
to host the DUT and and test it with controlled signals, while in in-circuit
methods measurements are taken in-situ under the DUT normal working con-
ditions. Each one has its advantages and disadvantages but usually it is more
accurate to use in-circuit methods due to the possible influence that the test
fixture may have on the DUT [11].

� Intrusive or non-intrusive techniques: the firsts have an electrical direct
connection to the current of the DUT while the seconds not. Non-invasive are
usually preferred because they are less likely to interact with and/or distort
the DUT electrical signals.

According to these criteria the methods used in these work are classified as
indirect, in-circuit, non-intrusive techniques. In the following subsection techniques
from both intrusive and non-intrusive are explained.
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2.2.1 Intrusive methods

As stated previously, the use of these techniques implies a direct electrical con-
nection to the current of the circuit being tested. Within these category two ap-
proaches can be remarked: the I-V method and the capacitive coupling method.
Another examples of invasive techniques are shown and briefly explained in figure
2.7.

Figure 2.7: Top to bottom and left to right: 1) Bridge method: when current
through D is null the unknown impedance can be computed by Zx = Z1

Z2
Z3. 2)

Resonant method: being the circuit previously set in resonance by tuning, Lx and
Rx are obtained from C, Q and frequency. 3) Network analysis method: incident
and reflected waves are measured in order to compute the reflection coefficient, which
has a direct relation with the unknown impedance. 4) Auto-balancing bridge
method: by creating a virtual ground with the operational amplifier and applying
1st Kirchoff Law unknown impedance is obtained Zx = Rr

Vx
Vr
. All extracted from

[13].
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2.2.1.1 I-V approach

This method consists in measure somehow the voltage and current flowing trough
the unknown load and compute the impedance value by complex division of the two
magnitudes respectively. When the DUT is just a passive load without supply the
method implies only taking the measures mentioned before, as seen in figure 2.8,
and then applying the formula:

V1
R + Zx

=
V2
R

→ Zx = R(
V1
V2

− 1)

Figure 2.8: Schematic of the I-V method, extracted from [13].

In high frequency scenarios, the set-up is changed to minimize electromagnetic
leakage and a coaxial cable is used [13]. Depending on the unknown impedance
the measurement circuit configuration differs, as shown in figure 2.9. When the
impedance is low it is obtained through:

Zx =
V

I
=

2V1
V2
R

− V1
R

=
2R

V2
V1

− 1

while in case of high impedance:

Zx =
V

I
=
V1 − V2
2V2
R

=
R

2
(
V1
V2

− 1)

Figure 2.9: Schematic of the I-V method for high frequencies. On the left the low
impedance configuration and on the right the correspondent for high impedance.
Extracted from [13].
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When the DUT is energized (that is, have DC or AC supply) and the load
is accessible the procedure shown in figure 2.10 can be followed. In it, the signals
obtained from voltage and current are registered in a digital signal processing device
to be transformed to the frequency domain and later divided to obtain the complex
impedance value.

Figure 2.10: Schematic of the I-V method with and energized DUT. In this case the
method is being performed with an excitation signal of a known frequency provided
by the injection probe, but it can be carried out without it by only measuring voltage
and current of a certain frequency. Extracted from [16].

2.2.1.2 Capacitive coupling approach

In this approach the electrical connections with the DUT are implemented through
coupling capacitors in parallel connection. This way the high frequency signals used
for measure purposes are able to travel through the DUT and this capacitors while
the low frequency signals stay in the DUT working normally. In figure 2.11 an ex-
ample of an energized DUT is shown. The measurement equipment is connected
through capacitors C1 and C2, first one is used for injecting an excitation signal and
the other for receiving the response. As the signals used for excitation are of high
frequencies, two series inductors L1 and L2 are needed to avoid the excitation signal
propagation to the supply circuit. This way the measurement signal is directed to
the targeted impedance [16].

Figure 2.11: Schematic of the capacitive coupling method with and energized DUT.
ZL is the impedance aimed. Extracted from [16].
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The value measured at the impedance analyser Zm is the combination of the
impedance from the capacitors, inductors, the source Zs and the load ZL. Consid-
ering the frequency ω is high then it is obtained:

Zm =
1

jωC1

+
1

jωC2

+
(jωL1 + jωL2 + Zs)ZL
jωL1 + jωL2 + Zs + ZL

≈ (jωL1 + jωL2)ZL
jωL1 + jωL2

= ZL

The capacitive coupling approach can also be used as a non-intrusive method
in impedance spectroscopy activities, particularly when the material targeted has
a thin insulating layer at which the electrodes used for measuring are attached
[17]. In figure 2.12 the case described is illustrated alongside its equivalent circuit.
Similarly to the case in figure 2.11, an excitation signal would be injected through
one capacitor and the response would be received through the other to be measured.

Figure 2.12: Capacitive coupling approach for impedance spectroscopy and equiva-
lent circuit. Extracted from [17].

2.2.2 Non-intrusive methods

As stated previously, non-invasive methods lack in direct electrical contact with
the DUT. This implies advantages like a less complex implementation and a lowest
electrical hazard for the operating personal and also for the system integrity [15].
Additionally, in cases involving high power feeding the DUT , the devices connecting
the measurement equipment to the DUT in intrusive methods like voltage sensors
(I-V approach) or coupling capacitors (capacitive coupling approach) can suffer a
high dielectric and thermal stresses which may imply their faster degradation and
the consequent increase of the maintenance costs, as well as undesirable DUT work-
ing stops for replacing [16]. Therefore, non-invasive techniques are usually preferred.

The most common approach is the inductive coupling approach, which uses in-
ductive probes to inject and receive the electrical signals used for the measurements.
Typically the number of probes used is two but there exist some applications in which
a multi-probe set-up is more suitable, like simultaneous impedances measurement
in systems with several branches [16]. The two probes (which are of the clamp-
of type) are attached to the wires between the supply system and the load, then
using a VNA the S-parameters of the circuit are obtained. Afterwards, with the
ABCD-parameters of the probes (previously characterized) along with the ABCD-
parameters of the system (obtained from the VNA measurements) the impedance
value can be computed. The mathematical model and tools used are explained in
section 3.3.
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However, it has been recently developed a method using only one probe to achieve
the impedance measurement, which has been conceived to avoid the probe-to-probe
coupling problems that the two-probe method inevitably suffers [15]. This single-
probe method is explained in sections 3.1 and 3.2 and the main goal of this work is
to compare it to the two-probe method.

2.2.3 Inductive probes

Inductive probes are widely used in the field of electromagnetic compatibility,
for example as a current measurement device to detect sources of radiation or as
a signal injector to reproduce coupling effects on wires [10]. They are made of a
ferro-magnetic core with a copper wire looped on it (the number of loops depends
on the purpose of the probe and the manufacturer). The extremes of this wire are
connected to coaxial cable so that it can work as both an input or an output [16].
They are usually designed to be clamped onto the cables, therefore, in this kind of
probes the core is split in two. This way, the probe is clamped directly onto the
wires of the DUT and interact with it through the magnetic core. In figure 2.13
photographies of an inductive probe are shown.

Figure 2.13: Inductive probe example photography and X-ray image (model FCC
F-140). Extracted from [9].
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Chapter 3

Methodology

Through this chapter the nomenclature and methodology used in this work are
explained. The resources and figures as well as the mathematical method itself are
all taken from the sections 2.3, 3.1 and 3.2 from [16], except for section 4.5 which is
self-developed.

As said in previous chapters, the aim of this work is to try and validate the
theoretical robustness and performance of the single-probe impedance measurement
method described in [16] against the standard approach, which is the two-probes
method. The considered set-up is the one shown in figure 3.1: an active circuit
(DUT) with the inductive probe clamped to it and also connected to an impedance
analyser device. The DUT has a passive part (the load) whose impedance value has
to be estimated (ZL).

Figure 3.1: Set-up of the single-probe method explained in [16]

Three planes can be defined as shown in the figure 3.1: the m-m’ plane between
the probe input and the impedance measurement device, the c-c’ plane between the
DUT and the probe output and the l-l’ plane between the the load and the rest of
the DUT, that is, the wire and supply. This way this schematic can be rearranged
using the two-port circuits theory as shown in figure 3.2, being A1, B1, C1 and D1

the ABCD parameters representation of the inductive probe and A2, B2, C2 and
D2.
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Figure 3.2: Set-up of the single-probe method explained in [16]

To complete the nomenclature explanation, Vk, Ik and Zk are respectively the
voltage, current and impedance seen in the plane k so that k ∈ {m, c, l}.

3.1 Passive ideal DUT

In this section the methodology for impedance extraction is addressed when the
DUT consists in only the load (neither supply nor losses in wire are considered)
or when the load cannot be decoupled from the active part of the circuit and the
losses. The aim is then to compute Zc. Considering the circuit in figure 3.2, it can
be written that:

Zm =
Vm
Im

=
A1Vc +B1Ic
C1Vc +D1Ic

=
A1Zc +B1

C1Zc +D1

and then

Zc =
−D1

C1
Zm + B1

C1

Zm + −A1

C1

=
k1Zm + k2
Zm + k3

(3.1)

This implies that Zc can be computed from the measure of Zm and the ABCD
parameters representation of the inductive probe. Even without knowing the values
of these parameters, the computation can be carried by previously making three
characterization measurements with the inductive probe and three different known
impedances Z1, Z2 and Z3. The measurements are taken in the way it is shown in
figure 3.3 and Zm1, Zm2 and Zm3 are obtained respectively.

Figure 3.3: Set-up of characterization measurements, taken from [16]
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Considering equation (3.1), Z1, Z2 and Z3 can be expressed in terms of k1, k2 and
k3 and the correspondent measure. Therefore, the three equations can be rearranged
into a system with k1, k2 and k3 as variables:

Z1 =
k1Zm1 + k2
Zm1 + k3

Z2 =
k1Zm2 + k2
Zm2 + k3

Z3 =
k1Zm3 + k2
Zm3 + k3


k1Zm1 + k2 − Z1k3 = Z1Zm1

k1Zm2 + k2 − Z2k3 = Z2Zm2

k1Zm3 + k2 − Z3k3 = Z3Zm3

 ⇒

 Zm1 1 −Z1

Zm2 1 −Z2

Zm3 1 −Z3

 k1
k2
k3

 =

 Z1Zm1

Z2Zm2

Z3Zm3


and writing it in vectorial notation

Λ
−→
k =

−→
λ

Taking into account that Z1 ̸= Z2 ̸= Z3 and assuming (Zm1, Zm2, Zm3)
t is not

proportional to (Z1, Z2, Z3)
t then Λ has maximum rank and the system is deter-

mined. It can be solved by the Cramer’s rule getting:

k1 =

∣∣∣∣∣∣
Z1Zm1 1 −Z1

Z2Zm2 1 −Z2

Z3Zm3 1 −Z3

∣∣∣∣∣∣
det(Λ)

=
det(Λ1)

det(Λ)

k2 =

∣∣∣∣∣∣
Zm1 Z1Zm1 −Z1

Zm2 Z2Zm2 −Z2

Zm3 Z3Zm3 −Z3

∣∣∣∣∣∣
det(Λ)

=
det(Λ2)

det(Λ)

k3 =

∣∣∣∣∣∣
Zm1 1 Z1Zm1

Zm2 1 Z2Zm2

Zm3 1 Z3Zm3

∣∣∣∣∣∣
det(Λ)

=
det(Λ3)

det(Λ)

and substituting this solution in equation (3.1) it is finally obtained the expres-
sion for computing Zc from the measurement Zm, and the three characterization
measurements and values:

Zc =
det(Λ2) + det(Λ1)Zm
det(Λ3) + det(Λ)Zm

=
a+ bZm
c+ dZm

(3.2)

where

a = Z1Z2(Zm2 − Zm1)Zm3 + Z1Z3(Zm1 − Zm3)Zm2 + Z2Z3(Zm3 − Zm2)Zm1

b = −Z1Z2(Zm2 − Zm1)− Z1Z3(Zm1 − Zm3)− Z2Z3(Zm3 − Zm2)
c = Z1(Zm2 − Zm3)Zm1 + Z2(Zm3 − Zm1)Zm2 + Z3(Zm1 − Zm2)Zm3

d = −Z1(Zm2 − Zm3)− Z2(Zm3 − Zm1)− Z3(Zm1 − Zm2)
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3.2 DUT with supply and losses in wire

When the load can be decoupled from the rest of the circuit, then following the
figure 3.2 and the two-port circuit theory both representations of the inductive probe
and the cable and supply can be combined by multiplying their parameter matrices:

T =

(
A1 B1

C1 D1

)(
A2 B2

C2 D2

)
=

(
t11 t12
t21 t22

)
and therefore, as developed in the previous section:

Zm =
Vm
Im

=
t11Vc + t12Ic
t21Vc + t22Ic

=
t11ZL + t12
t21ZL + t22

ZL =
−t22
t21

Zm + t12
t21

Zm + −t11
t21

=
h1Zm + h2
Zm + h3

(3.3)

The expression (3.3) allows to compute ZL from the measure Zm and the ABCD
parameters representation of the inductive probe and the cable and supply. But
as in the previous section, this can be achieved without knowing these parameters
by taking three pre-characterization measurements and with three different known
impedances Z1, Z2 and Z3 in the way it is illustrated in figure 3.4.

Figure 3.4: Set-up of characterization measurements, taken from [16]

and so again, a system with h1, h2 and h3 as variables can be written:

Z1 =
h1Zm1 + h2
Zm1 + h3

Z2 =
h1Zm2 + h2
Zm2 + h3

Z3 =
h1Zm3 + h2
Zm3 + h3


 Zm1 1 −Z1

Zm2 1 −Z2

Zm3 1 −Z3

 h1
h2
h3

 =

 Z1Zm1

Z2Zm2

Z3Zm3


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Λ
−→
h =

−→
λ

and making the the same assumptions of the previous section, Cramer’s rule can be
applied

h1 =
det(Λ1)

det(Λ)

h2 =
det(Λ2)

det(Λ)

h3 =
det(Λ3)

det(Λ)

that combined with equation (3.3) gives

ZL =
det(Λ2) + det(Λ1)Zm
det(Λ3) + det(Λ)Zm

=
a+ bZm
c+ dZm

(3.4)

where

a = Z1Z2(Zm2 − Zm1)Zm3 + Z1Z3(Zm1 − Zm3)Zm2 + Z2Z3(Zm3 − Zm2)Zm1

b = −Z1Z2(Zm2 − Zm1)− Z1Z3(Zm1 − Zm3)− Z2Z3(Zm3 − Zm2)
c = Z1(Zm2 − Zm3)Zm1 + Z2(Zm3 − Zm1)Zm2 + Z3(Zm1 − Zm2)Zm3

d = −Z1(Zm2 − Zm3)− Z2(Zm3 − Zm1)− Z3(Zm1 − Zm2)

3.3 Two-probes set-up

The two-probes method has been developed before the single-probe method and
it has been used in several articles in the last years [4]. To compare the theoretical
robustness and performance of both methods, a Montecarlo and sensitivity analysis
have been performed in this work. The schematic and model considered for the
two-probes method are the ones used in [16] and shown in the figures 3.5 and 3.6.

Figure 3.5: Two-probe set-up schematic, taken from [16]
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Figure 3.6: Two-probe set-up model, taken from [16]

To address the problem of impedance extraction, a two-port network model
approach is adopted. The parameters used are, as in the previous model sections,
the ABCD parameters. The blocks N1 and N2 represent the ABCD parameters
from the inductive probes while NSUT is the representation of the system under
test, which has the the following form(

vc
ic

)
=

(
1 Zx
0 1

)(
vc′
ic′

)
+

(
v0c
i0c

)

being vc, ic, vc′ and vc′ the voltage and currents in sections c and c′, respectively, Zx
all the impedances combined from the DUT and v0c and i0c:

v0c = vc

∣∣∣∣∣∣ vc′ = 0
ic′ = 0

i0c = ic

∣∣∣∣∣∣ vc′ = 0
ic′ = 0

as explained in section 2.1.2. When there is no independent source in the DUT the
term containing v0c and i0c becomes null and therefore it can be written:

NSY S = N1 ∗NSUT ∗N2(
Asys Bsys

Csys Dsys

)
=

(
A1 B1

C1 D1

)(
1 Zx
0 1

)(
A2 B2

C2 D2

)

Assuming the matrices N1 and N2 are not singular, the system equations from
above can be solved by pre-multiplying and post-multiplying NSY S by N−1

1 and N−1
2 ,

respectively.

(
1 Zx
0 1

)
=

1

det(N1)det(N1)

(
D1 −B1

−C1 A1

)(
Asys Bsys

Csys Dsys

)(
D2 −B2

−C2 A2

)

Zx =
A2(D1Bsys −B1Dsys)−B2(D1Asys −B1Csys)

(A1D1 −B1C1)(A2D2 −B2C2)
(3.5)
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Then, if losses in wire are taken into consideration and the load ZL can be
decoupled from the system, the impedance value of the load can be extracted by
taking another measure Zx′ with a known impedance Zk and subtracting from Zx
the the difference between Zx′ and Zk.

ZL = Zx − (Zx′ − Zk)

3.4 LTSpice implementation of the test set-up

The single-probe method explained previously in the last sections allows, in prac-
tice, to extract the impedance value of the load in the DUT by taking only three
pre-characterization measures, one measure proper measure with the DUT and then
only with this data compute the desired value. Therefore, in simulations the method
can be tested using other representations for the inductive probes rather than the
ABCD-parameters. Taking this into account, some other models have been consid-
ered for the simulations conducted in this work.

The first representation that was used was a pair of coupled coils between the
voltage generator and the load, as it can be seen in figure 3.7. The model and values
where taken from pages 8-10 of [14] adapted to only one probe instead of two.

Figure 3.7: Schematic in LTspice of the coupled coils representing the inductive
probe
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In order to work similarly as with the other representations, the ABCD param-
eters are computed.

(
v1
v2

)
=

(
L M
M L

)(
i1
−i2

)
ωj ;

(
v1
i1

)
=

(
A B
C D

)(
v2
i2

)

A =

(
v1
v2

)
i2=0

=
L

M
= 1

B =

(
v1
i2

)
v2=0

= (
L2

M
−M) = 0

C =

(
i1
v2

)
i2=0

=
1

Mωj
= 1

D =

(
i1
i2

)
v2=0

=
L

M
= 1

where L =M = 100 pH. Currents and voltage references are in figure 3.7.

Also, an ideal transformer representation was used for the inductive probe. The
model schematic is shown in figure 3.8. It is ideal in the sense that there are not
losses in both the core and the coils, and there is no leakage flux, so all the energy is
transmitted and voltages and currents from both sides of the transformer are related
through the turns ratio k in the following way:

v1 = kv2

i2 = ki1

Figure 3.8: Schematic of the ideal transformer representing the inductive probe
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Chapter 4

Development of the Work

The work developed in this thesis has focused in simulations of the single probe
method using several software and scenarios. Also, a Montecarlo and a sensitivity
analysis have been carried out with the aim of assessing its theoretical robustness
against measurement errors and to compare it to the double probe method.

4.1 Parameters and data

The first task conducted was to define the values and configuration of the re-
sistances, inductances and capacitances of a RLC circuit used as a load in the
simulations such as its behaviour is similar to one of the loads used in the grafics
of page 40 of [16]. A parameters swept was performed with self-developed Matlab
scripts and the following values and configuration were selected:

R = 0.4Ω
L = 2.6µH
C = 0.2nF

being R and L in series and both parallel to C.

Figure 4.1: Load used in the LTspice models
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Additionally, the values for the ABCD parameters of the inductive probe were
also defined based on the graphics of page 14 of [16]. A digitization software (Graph
Grabber) was used to extract some values of these graphics that would be interpo-
lated later via Matlab (function interp1 using ’pchip’) for their use. The obtained
data is shown in comparative to the original graphic data in figure 4.2.

Figure 4.2: Comparative of the original graphic data (left) extracted from [16] and
the digitized one (right)
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4.2 Matlab simulations

Although in this work the Matlab scripts of this section are being called simu-
lations, they are essentially closer to a mathematical validation test of the method
from [16]. The functions used for computation in this section are the ones explained
in 4.5.

4.2.1 Ideal passive DUT circuit

The simulation consists in using the equations of 3.1 to compute the impedance
value of the RLC load (ZL) given the values Zm, Zm1, Zm2 and Zm3, those are, the
impedance values at the input of the inductive probe (represented by the ABCD
parameters extracted from [16]) when the loads are ZL and three already known
impedances, Z1, Z2 and Z3, respectively (see figure 3.3). In this simulations this
known impedances have been chosen to have the following values: Z1 = 0 Ω, Z2 =
50 Ω and Z3 = 1 MΩ. With Zm, Zm1, Zm2 and Zm3 the value Zc is computed and
compared to the actual impedance value of the load, ZL. Outcome values are shown
in figure 4.3.

Figure 4.3: Computed values of the simulation
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4.2.2 DUT with losses in wire and DC supply

The simulation is essentially the same as the one in the previous subsection but
this time the DUT is fed by a 3.7 V battery and losses in the wire are represented by
a series impedance Zw = 3Ω (see figure 4.4). The corresponding ABCD parameters
of these new components are computed in the way described in section 4.5 and then
the same method as the previous subsection is applied to compute Zc. Also same
values are used for ZL, Z1, Z2 and Z3.

Figure 4.4: Schematic of the simulation

Figure 4.5: Computed values of the simulation
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4.3 LTspice and Matlab simulations

In this sections simulations involving the software LTspice are presented. To test
the method from [16] 4 simulations have been carried out in AC analysis mode from
150 kHz to 30 MHz. The netlists of these simulations are all like the one in figure
4.6 varying only the load used: one is conducted with the unknown load ZL (figure
4.1) and the other three with the impedances Z1 = 0 Ω, Z2 = 50 Ω and Z3 = 1 MΩ.

While using this software an important change in the probe representation took
place: the ABCD parameters values from [16] could not be loaded so an ideal trans-
former model was adopted, shown in the figure 3.8. The transmission parameter of
this transformer is K = 0.98. After the four simulations are done, the outcome data
is processed in Matlab following the equations from section 3.1 and Zc is computed.

Figure 4.6: Netlist of the LTspice simulation with the RLC load from figure 4.1.

Figure 4.7: Computed values of the simulation
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4.4 Qucs and Matlab simulations

In order to use realistic representation of the inductive probe using the ABCD
parameters measured from an actual device [16], the software Qucs has been used
(further information on [7]). This allowed to load the values of these parameters
(which are different for each frequency) in the model and simulate both cases: ideal
passive DUT and DUT with battery supply and wire losses.

It must be mentioned that the data of the probe is first prearranged in Matlab in
order to create a Touchstone file with the equivalent scattering parameters, which
is the only way this software allows to load data from external files. After the
simulation the data file generated is read with a Matlab script and the output is
processed following the equations of [16].

4.4.1 Ideal passive DUT

In these simulations the only elements that are present are an ideal voltage
source, the inductive probe (represented by its scattering parameters) and the DUT,
which consists only in the load in this case (see figure 4.8). As in the sections before,
four simulations are conducted in AC analysis from 150 kHz to 30 MHz, changing
in each one only the load used, which are ZL (figure 4.1), Z1 = 0 Ω, Z2 = 50 Ω and
Z3 = 1 MΩ. Then the data is exported to Matlab and plotted in the figure 4.9.
Again, ZL is the actual impedance value of the load, Zm is the impedance at the
input of the probe when the DUT is ZL and Zc is the impedance computed with
the algorithm of section 3.1.

Figure 4.8: View of the Qucs schematics for the simulation with ZL
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Figure 4.9: Computed values of the simulation

4.4.2 DUT with losses in wire and DC supply

The simulation is performed following the schematic shown in figure 4.10 which
is exactly the same as the one in the previous subsection but adding a DC ideal
source of 3.7 V in series with an impedance representing the losses in the wire with
a value of Zw = 3Ω. Again, four AC simulations are carried out alternating the
load among ZL (figure 4.1), Z1 (0 Ω), Z2 (50 Ω) and Z3 (1 MΩ), measuring Zm,
Zm1, Zm2 and Zm3, respectively. Then the data is processed applying the equations
explained in 3.2 via Matlab and the out-coming Zc (computed value of the load) is
plotted against ZL (actual value of the load) and Zm (measured value at the probe
input) in figure 4.11.
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Figure 4.10: View of the Qucs schematics for the simulation with ZL

Figure 4.11: Computed values of the simulation
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4.5 Montecarlo and sensitivity analysis

4.5.1 Notation

To clarify the notation used in these analysis, the equations of sections 3.1, 3.2
and 3.3 have been rearranged and the functions Γ and ∆ are defined. The first one
would give the final impedance value Zc given the parameters of the circuit and the
loads ZL, Zm1, Zm2 and Zm3. Instead, the second one would give the impedance
measured at the input of the probe Zmi given the circuit parameters and a load Zi.

Depending on the circuit configuration these functions will have different number
of arguments, so it is convenient to add a sub-index to address this matter: 1 is for
a passive DUT circuit and 2 is for DUT with DC supply and losses in wire. Then,
for the first case functions are defined as it follows:

Zmi = ∆1(A1, B1, C1, D1, Zi) =
A1 +

B1

Zi

C1 +
D1

Zi

Zc = Γ1(A1, B1, C1, D1, Z1, Z2, Z3, Zm)

being A1, B1, C1 and D1 the ABCD parameters of the probe, i ∈ {1, 2, 3, L}, Z1,
Z2 and Z3 the pre-characterization impedances and Zm = ∆1(A1, B1, C1, D1, ZL),
with ZL being the load impedance. The explicit expression of Γ1 is the equation
(3.2).

When considering DC supply and losses in the wire (second case) new arguments
have to be added to the functions. The ABCD parameters representation of these
new elements is the one following(

vc
ic

)
=

(
A2 B2

C2 D2

)(
v2
i2

)
+

(
v0c
i0c

)
where index c is referring to the output of the probe and index 2, as usually, to the
load. A2, B2, C2 and D2 are the ABCD parameters of the losses in wire and v0c and
i0c are a consequence of the independent source voltage defined as:

v0c = vc

∣∣∣∣∣∣ v2 = 0
i2 = 0

i0c = ic

∣∣∣∣∣∣ v2 = 0
i2 = 0

Consequently, the equations of the whole circuit (that is the voltage source, the
probe, the battery, the wire impedance and the load Zi) can be written as:(

v1
i1

)
=

(
A1 B1

C1 D1

)[(
A2 B2

C2 D2

)(
v2
i2

)
+

(
v0c
i0c

)]
that defining

T1 =

(
A1 B1

C1 D1

)
, T2 =

(
A2 B2

C2 D2

)
, T = T1T2 =

(
t11 t12
t21 t22

)
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and (
v∗1
i∗1

)
=

(
v1
i1

)
− T1

(
v0c
i0c

)
can be rearranged as (

v∗1
i∗1

)
= T

(
v2
i2

)
Now that his equations are similar to the ideal passive DUT case it can be defined

Z∗
m = v∗1/i

∗
1 = ∆1(t11, t12, t21, t22, Zi) and then, applying the definition of v∗1 and i∗1,

the function ∆2 is obtained:

Zmi = ∆2(A1, B1, C1, D1, A2, B2, C2, D2, v1, v0c, i0c, Zi) =

=
v1∆1(t11, t12, t21, t22, Zi)

v1 − A1v0c −B1i0c + (C1v0c +D1i0c)∆1(t11, t12, t21, t22, Zi)

where Zi can be either Z1, Z2, Z3 or ZL. As for the Γ2 expression, the explicit
formula is the equation (3.4).

Zc = Γ2(A1, B1, C1, D1, A2, B2, C2, D2, v1, v0c, i0c, Z1, Z2, Z3, Zm)

Apart from these functions, it can be defined Γ3 for the two-probe set-up case,
whose explicit expression is the equation (3.5).

Zc = Γ3(A1, B1, C1, D1, A2, B2, C2, D2, Asys, Bsys, Csys, Dsys)
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4.5.2 Montecarlo analysis

The analysis consists in performing a high number of simulations nmont slightly
randomly changing the arguments values of the functions ∆ and Γ. This variations
are quantified with a parameter that represents the maximum percentage of the
nominal values of the variables in which they could be modified. This parameter is
called terror.

4.5.2.1 Ideal passive DUT

This analysis is useful to assess the mathematical robustness of the method
against measurement errors in practice. The next example have been carried out
under the hypothesis of the passive ideal DUT scenario within and a frequency
range of 150k-30M Hz. Parameters of the analysis are nmont = 1000, terror = 5%,
except for Z2, whose terror is 10%, and Z1 and Z3, which are defined to be in the
ranges 10 − 100 mΩ (short-circuit) and 1 − 10 MΩ (open-circuit), respectively. The
simulations data is shown in the figure 4.12 and the nominal values used are:

� A1, B1, C1 and D1 are taken from [16].

� Z1 = 55 mΩ, Z2 = 50 Ω and Z3 = 5.5 MΩ.

� ZL is the one in figure 4.1.

� Zm = ∆1(A1, B1, C1, D1, ZL)

Figure 4.12: Analysis outcome (nmont = 1000, terror = 5%)
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4.5.2.2 DUT with wire losses and DC supply

Another Montecarlo analysis has been conducted exactly like the one above
adding to the circuit a battery supply with a DC voltage of U = 3.7 V and wire
resistance of Zw = 3Ω. The outcome is shown in figure 4.13 he new nominal values
are:

� A1, B1, C1 and D1 are taken from [16].

� A2 = 1, B2 = Zw, C2 = 0 and D2 = 1.

� v1 = 1 V.

� v0c = U and i0c = 0.

� Z1 = 55 mΩ, Z2 = 50 Ω and Z3 = 5.5 MΩ.

� ZL is the one in figure 4.1.

� Zm = ∆1(A1, B1, C1, D1, ZL)

Figure 4.13: Analysis outcome (nmont = 1000, terror = 5%)
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4.5.2.3 Two-probes set-up

Following the same procedure as with the single-probe method, it has been per-
formed a Montecarlo analysis for the two-probes method too, within a frequency
range of 150k-30M Hz and setting nmont = 1000 and terror = 5%. The outcome is
shown in figure 4.14 and the nominal values used for the analysis are:

� A1, B1, C1 and D1 are taken from [16].

� A2, B2, C2 and D2 are are chosen to be exactly the same as the other probe.

� ZL is the one in figure 4.1.

� Asys, Bsys, Csys and Dsys are computed by multiplying the matrices N1, NSUT

and N2, in that order (see section 3.3).

Figure 4.14: Analysis outcome (nmont = 1000, terror = 5%)
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4.5.3 Sensitivity analysis

The analysis consists in differentiate the function Γ with respect all its arguments
an then normalize with the aim of finding which ones have the most significant
impact in the final outcome when they are slightly modified and which ones have
less impact in this case. That is, compute the analytical expression of the elasticity
of the function Γ:

sx =

∂Γ

∂x

∣∣∣∣
x̂

Γ̂

x̂

, ∀x ∈ X

being X = {A1, B1, C1, D1, Z1, Z2, Z3, Zm} in case the analysis is for Γ1 or X =
{A1, B1, C1, D1, A2, B2, C2, D2, v1, v0c, i0c, Z1, Z2, Z3, Zm} in case is for Γ2. The sym-
bol ˆ denotes nominal values.

A discrete approach of this concept has been considered in this work due to the
complex nature of the analytical expressions of Γ1 and Γ2. The main interest is to
find what is the impact of a little variation ϵ in the nominal value of the argument
x ∈ X in the variation δ of the Γ function image γ:

x = x̂(1 + ϵ) = x̂+∆x
⇓

γ = γ̂(1 + δ) = γ̂ +∆γ

and applying the discrete definition for the elasticity the wanted ratio is obtained.

sx =

∆γ

γ̂
∆x

x̂

=
∆γx̂

∆xγ̂
=
δ

ϵ

As an example let the function f be defined as f(x1, x2) = x1x2, x1, x2 ∈ R and
the nominal values x̂1 = 1 and x̂2 = 1. The correspondent elasticity functions sx1
and sx2 are the ones in figure 4.15. As expected, both are the same because of the
equality of the partial derivatives and the interpretation would be that if x̂1 or x̂2
are modified in, for example, 1% (ϵ = 0.01) then the value of the function f gets
modified in 1% (δ = sx1ϵ = 0.01) too.

Figure 4.15: Elasticity functions of x and y
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4.5.3.1 Ideal passive DUT

For the ideal passive DUT case, that is Γ1, the correspondent expressions have
been found and plotted in figure 4.16 for a frequency range of 150k-30M Hz. The
nominal values used are

� A1, B1, C1 and D1 are taken from [16].

� Z1 = 1 pΩ, Z2 = 50 Ω and Z3 = 1 MΩ.

� ZL is the one in figure 4.1.

� Zm = ∆1(A1, B1, C1, D1, ZL)
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Figure 4.16: Sensitivity analysis outcome
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4.5.3.2 DUT with losses in wire and DC supply

For the case of a DUT with a DC battery and losses in wire, that is Γ2, the
correspondent expressions have been found and plotted in figures 4.17, 4.18 and
4.19 for a frequency range of 150k-30M Hz. In this figure the plots of sC1 and Si0c
have been excluded due to the fact that their nominal values are null. The other
nominal values that have been used are:

� A1, B1, C1 and D1 are taken from [16].

� A2 = 1, B2 = Zw, C2 = 0 and D2 = 1.

� v1 = 1 V.

� v0c = U and i0c = 0.

� Z1 = 1 pΩ, Z2 = 50 Ω and Z3 = 1 MΩ.

� ZL is the one in figure 4.1.

� Zm = ∆1(A1, B1, C1, D1, ZL)

Figure 4.17: Sensitivity analysis outcome
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Figure 4.18: Sensitivity analysis outcome
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Figure 4.19: Sensitivity analysis outcome
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4.5.3.3 Two-probes set-up

For the function Γ3, that is, the double-probe method, the analysis has been
conducted in the same way as the previous and again, in a frequency range of 150k-
30M Hz. The outcome can be seen in figures 4.20 and 4.21 and the nominal values
used are

� A1, B1, C1 and D1 are taken from [16].

� A2, B2, C2 and D2 are are chosen to be exactly the same as the other probe.

� ZL is the one in figure 4.1.

� Asys, Bsys, Csys and Dsys are computed by multiplying the matrices N1, NSUT

and N2, in that order (see section 3.3).

Figure 4.20: Sensitivity analysis outcome
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Figure 4.21: Sensitivity analysis outcome
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Chapter 5

Remarks and conclusions

5.1 Outcome discussion

5.1.1 Simulations results

As expected, the implementation of the method in the diverse software used has
been successful and the target impedance values have been computed correctly un-
der all the representations used.

The LTspice simulation, in which the inductive probe is represented by an ideal
transformer model, shows the same accuracy as the Matlab tests with the ABCD-
parameters. Also the Qucs simulations, that use S-parameters representation, have
the same outcome as the ideal tests performed in Matlab. These results make
sense because the single-probe method, in practice, needs only the values of the
pre-characterization impedance and the four measurements required for computing
the load impedance value, being independent of the representations adopted for the
probe or the power system.

5.1.2 Montecarlo analysis results

From the graphics it can be observed that the width of the band obtained is
thinner in the case of the two-probes set-up than in the others, for both magnitude
and phase and specially in the frequencies near the resonance. This implies that,
theoretically, if only the features of the models explained in 3.1, 3.2 and 3.3 are taken
into consideration the two-probes set-up seems to be more robust against error in
the parameters.

It has to be remarked that the parameters being used for the analysis of the
single probe method are more than the ones used in practice (all the parameters
related with the representation of the probe, cable and supply for the simulations
are not used in practice), therefore it is convenient to know which parameters are
causing the largest deviations by inspecting the sensitivity analysis outcome.
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5.1.3 Sensitivity analysis results

In accordance with the Montecarlo analysis, the sensitivity analysis shows that
the most significant deviations occur in the frequencies near the resonance peak in
the case of the single probe method. These sensitivity peaks show up in the param-
eters A1, C1 and Zm, and their values are 27.8%, 33.94% and 34.22% for the ideal
passive DUT case and 11.82%, 11.14% and 11.03% for the DUT with DC supply
and losses in wire case, respectively.

Alternatively, the results of the analysis for the two-probes set-up method are
much more homogeneous, always under the value of 2% and without any special
response in the resonance. However, in this method all the parameters are measured
in practice, whereas in the single probe method the only parameters required in
practice are Z1, Z2, Z3 and Zm. Considering that the sensitivity of the three first
parameters is almost null, it can be inferred that the only weak point of the single
probe method with respect to the double probe method is when the parameter Zm
is measured incorrectly in the frequencies near the resonance of the load.

5.2 Conclusions

The conclusions of this work are presented referring the goals proposed in section
1.2:

� The single probe method has been proven to work correctly in several scenarios
and using diverse representations and models for the simulations, as well as
its accuracy has been the same in every case.

� The Montecarlo and sensitivity analysis are coherent in the outcome and
the most significant deviations of the values computed with the single probe
method occur in the frequencies near the electrical resonance of the load,
specifically when the parameters A1, C1 and Zm are modified. On the con-
trary, the deviations are smaller and more homogeneous in frequency for the
double probe method. However, it has to be remarked that A1 and C1 are only
used in simulations to define a model that represents the reality, therefore in
practice the only weaker point of the single probe method with respect to the
double probe method is the sensitivity of the parameter Zm and only in the
frequencies mentioned. It must also be considered that these conclusions are
valid for the models considered in this work, in which other negative effects
for the two-probe set up have not been contemplated, like the probe-to-probe
coupling.
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5.3 Future works

Finally, a list of suggested future works related to this one is presented:

� Experimental validation of the conclusions of this work.

� Simulations and analysis like the ones performed with other loads and DUTs
with different topologies.

� Simulations and analysis like the ones performed as well as experimental vali-
dation of the single probe method using time-domain-based instrumentation.

� Comparison of both methods considering other effects present in practical
implementations, as for example the probe-to-probe coupling in the double
probe method.
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