
POLITECNICO DI TORINO
Master’s Degree in Data Science and Engineering

Master’s Degree Thesis

Offline Reinforcement Learning for
Smart HVAC Optimal Control

Supervisors

Prof. Francesco VACCARINO

Candidate

Filippo CORTESE

Academic year 2021-2022

Summary

Deep Reinforcement Learning provides a mathematical formalism for learning-based
control. It presents an agent that, by a trial and error approach, learns how to
behave optimally in an environment. Deep Reinforcement Learning has in this
online learning paradigm one of the biggest obstacle to its widespread adoption.
In many settings the interaction between the agent and the environment is either
impractical or too dangerous, for example in the healthcare or autonomous driving
domain. Offline Reinforcement Learning tries to overcome this issue by proposing
a new paradigm, where the learning happens from a fixed batch of previously
collected data. Removing the online interaction makes this data-driven approach
scalable and practical but introduces also some issues for the learning process.
The first is that learning rely completely on the static dataset composition, if this
does not cover enough high reward regions, it may be impossible for the agent
to learn how to behave optimally. The second is the out of distribution actions
overestimation. Actions that are never seen in the data are keen to be overestimated
by the agent, that without the reward feedback, can’t correct its wrong estimates.
This thesis aims at studying in depth the Offline RL approaches with a focus on
algorithms that do minimal changes to state-of-the-art deep RL algorithms. Then
it will focus on evaluating this approach on a real-case scenario like the smart
HVAC control, where the data available is either limited in size or in exploration.
To pursuit these objectives we started from a state of the art continuous-action
offline RL algorithm, called TD3-BC, and derived a discrete-action algorithm
that we call TD4-BC. We compared the two algorithms on a dual action nature
environment called LunarLander and tested TD4-BC on the smart HVAC control
task. Finally, an additional online fine-tuning approach to TD4-BC is tested on
the HVAC environment. The obtained results show comparable performance for
TD4-BC with respect to TD3-BC on LunarLander and promising results on the
HVAC task, especially with the addition of online fine-tuning. Overall, Offline
RL proved to be a powerful paradigm to tackle both a well known benchmark
environment and an industry related case, with many open spaces for possible
future improvements.

ii

Acknowledgements

I would like to thank my supervisor Prof. Francesco Vaccarino for giving me the
opportunity to do this thesis and for the knowledge and support offered during its
writing.

Then I would like to thank my company supervisor Luca Sorrentino for his
valuable advice, support and patience during this experience; his help was crucial
for me and the development of this thesis. I would also like to express my gratitude
to Rosalia Tatano, for all the work and precious help she has given to me during
the last phases of this work and to AddFor Industriale S.r.l. for giving me the
opportunity to work with them and for letting me access to their infrastructures
and knowledge.

A special thanks goes to my family for all the support they gave me in the past
years and for always letting me do what I felt was right for me. Finally I would like
to to express my deepest gratitude to Lara, for everything she has done for me in
the last four years and for always being supportive even when I didn’t deserve it.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xiv

1 Introduction 1

2 Reinforcement Learning 3
2.1 The Agent-Environment Interface 3
2.2 Solving Reinforcement Learning Problem:

Prediction vs Control . 5
2.2.1 Prediction Problem . 6
2.2.2 Control Problem . 6

2.3 Taxonomy of Reinforcement Learning Algorithms 9
2.3.1 TD Prediction . 9
2.3.2 Q-Learning . 10
2.3.3 Fitted Q-Iteration . 10

2.4 Exploration vs Exploitation . 12

3 Deep Reinforcement Learning 13
3.1 Introduction to Deep Learning . 13

3.1.1 Supervised Learning Setting 14
3.1.2 Multilayer Perceptron . 15
3.1.3 Neural Networks Optimization 17

3.2 Deep Reinforcement Learning Introduction 19
3.3 DQN and DDQN Algorithms . 20

3.3.1 DQN . 20
3.3.2 DDQN . 20

3.4 TD3 Algorithm . 22

v

4 Offline Reinforcement Learning 25
4.1 Behavioral Cloning . 26
4.2 Offline Reinforcement Learning . 27
4.3 Minimalist approach to Offline RL: TD3-BC 29
4.4 Proposed discrete-action control algorithm: TD4-BC 32

4.4.1 Online Fine-Tuning . 35

5 Testing Environments 36
5.1 Lunar Lander . 36

5.1.1 Observation Space and Reward Function 37
5.1.2 Action Spaces . 38
5.1.3 Dataset Collection and Generation 39

5.2 HVAC Control Retrofitting . 41
5.2.1 Observation Space and Reward Function 41
5.2.2 Action Space . 43
5.2.3 Dataset Collection and Generation 44

6 Experiments Results 47
6.1 Lunar Lander . 47

6.1.1 TD3-BC on LunarLanderContinuous-v2 47
6.1.2 TD4-BC on LunarLander-v2 49
6.1.3 TD3-BC and TD4-BC Comparison 65

6.2 HVAC Control Retrofitting . 66
6.2.1 FQI Data Experiment . 66
6.2.2 PI-CONST Data . 73

7 Conclusions 81

Bibliography 83

vi

List of Tables

5.1 LunarLander-v2 Observation space Description 37
5.2 LunarLander-v2 continuous action space description 38
5.3 LunarLander-v2 discrete action space description 39
5.4 LunarLanderContinuous-v2 Datasets composition 40
5.5 LunarLander-v2 Datasets composition 40
5.6 HVAC State space . 42
5.7 HVAC Action space . 43

6.1 Average D4RL scores over the final 10 evaluations and 5 seeds of
TD4-BC on the three quality datasets. ± captures the standard
deviation over seeds. 58

6.2 Average D4RL scores over the final 10 evaluations and 5 seeds of
TD4-BC with α = 5.0 on the three quality datasets and with different
learning rates (lr) and policy update frequencies (p-freq). ± captures
the standard deviation over seeds. 64

6.3 Average D4RL scores over the final 10 evaluations and 5 seeds of
TD3-BC and TD4-BC. ± captures the standard deviation over seeds. 65

6.4 Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard
deviation across seeds . 68

6.5 Average Return over 5 seeds, for each climate zone, over the total
test period (12m) and its last six months (6m), ± captures the
standard deviation across seeds. TD4-BC is the starting point for
the fine-tuning experiments . 72

6.6 Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard
deviation across seeds . 75

6.7 Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard
deviation across seeds . 79

vii

List of Figures

2.1 Agent-Environment Interaction scheme. (Image taken from [1]) . . 4
2.2 General Policy Iteration scheme. (Image taken from section 4.6 of [1] 8
2.3 General Policy Iteration convergence scheme. (Image taken from

section 4.6 of [1] . 8

3.1 Bias vs Variance trade-off graphical representation, image taken
from [5] . 15

3.2 Perceptron graphical representation, image taken from [6] 16
3.3 Example of Neural Network, image taken from [7] 17

4.1 Graphical representation of classic online RL, classic off-policy RL
and Offline-RL, image taken from [12] 25

4.2 Distributional shift graphical example, image taken [13] 27
4.3 SAC performance on HalfCheeta-v2 in offline setting, showing return

as a function of gradient steps (left) and average learned Q-values
on a log scale (right), for different numbers of training points(n).
Image taken from [12] . 29

4.4 Total training time comparison of training each Offline-RL algorithm.
Image taken from [16] . 32

5.1 LunarLander-v2 frame example. Image taken from [22] 36
5.2 Heatmap of the number of times an action has been selected during

the winter (left) and summer (right) training period over each time
step in a generic Episode by the FQI policy on climate zone E . . . 44

5.3 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time
step in a generic Episode by the FQI policy on climate zone B . . . 45

5.4 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time
step in a generic Episode by the PI-CONST policy on climate zone
E simulation . 46

viii

5.5 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time
step in a generic Episode by the PI-CONST policy on climate zone
B simulation . 46

6.1 Learning Curves for TD3-BC trained on expert (top) and medium
(bottom) quality datasets. Curves are averaged over 5 seeds, with
shaded area representing the standard deviation across seeds. Base-
line is the D4RL score associated with the policy that collected the
dataset . 48

6.2 Learning Curves for TD3-BC trained on random quality dataset.
Curves are averaged over 5 seeds, with shaded area representing
the standard deviation across seeds. Baseline is the D4RL score
associated with the policy that collected the dataset 49

6.3 TD4-BC trained on expert quality dataset and learning rate equal
to 3 × 10−4. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 51

6.4 TD4-BC trained on expert quality dataset and learning rate equal
to 3 × 10−5. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 52

6.5 TD4-BC trained on expert quality dataset and learning rate equal
to 3 × 10−6. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 53

6.6 TD4-BC trained on medium quality dataset and learning rate equal
to 3 × 10−4. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 55

6.7 TD4-BC trained on medium quality dataset and learning rate equal
to 3 × 10−5. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 56

6.8 TD4-BC trained on medium quality dataset and learning rate equal
to 3 × 10−6. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 57

6.9 TD4-BC trained on random quality dataset and learning rate equal
to 3 × 10−4. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 59

6.10 TD4-BC trained on random quality dataset and learning rate equal
to 3 × 10−5. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 60

6.11 TD4-BC trained on random quality dataset and learning rate equal
to 3 × 10−6. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. 61

ix

6.12 Learning Curves for TD4-BC trained on expert quality dataset and
α = 5 for each learning rate and policy update frequency tested.
Curves are averaged over 5 seeds, with shaded area representing
the standard deviation across seeds. Baseline is the D4RL score
associated with the policy that collected the dataset. 62

6.13 Learning Curves for TD4-BC trained on medium quality dataset
and α = 5 for each learning rate and policy update frequency tested.
Curves are averaged over 5 seeds, with shaded area representing
the standard deviation across seeds. Baseline is the D4RL score
associated with the policy that collected the dataset. 63

6.14 Learning Curves for TD4-BC trained on random quality dataset and
α = 5 for each learning rate and policy update frequency tested.
Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds. 64

6.15 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone E, for policies trained with different number
of training steps. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 67

6.16 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number
of training steps. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 68

6.17 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each
time step in a generic Episode by the TD4-BC, trained for 50× 103

steps policy, on climate zone E. 69
6.18 Heatmap of the number of times an action has been selected during

the winter test period(left) and summer test period (right) over each
time step in a generic Episode by the TD4-BC, trained for 50× 103

steps policy, on climate zone B. 69
6.19 Curves of Return deltas with respect to behavioral baseline, over

testing episodes on zone E, for TD4-BC trained for 50× 103 steps,
fine-tuned with different approaches. Curves are averaged over 5
seeds, with shaded area representing the standard deviation across
seeds. 70

6.20 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for TD4-BC trained for 50× 103 steps,
fine-tuned with different approaches. Curves are averaged over 5
seeds, with shaded area representing the standard deviation across
seeds. 71

x

6.21 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over
each time step in a generic Episode by the TD4-BC-FTC, with
eps-start=0.02, on climate zone E. 72

6.22 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over
each time step in a generic Episode by the TD4-BC-FTC, with
eps-start=0.02, on climate zone B. 72

6.23 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over
each time step in a generic Episode by the TD4-BC-FT, with eps-
start=0.2, on climate zone E. 73

6.24 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over
each time step in a generic Episode by the TD4-BC-FT, with eps-
start=0.2, on climate zone B. 73

6.25 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number
of training steps. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 74

6.26 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number
of training steps. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 75

6.27 Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each
time step in a generic Episode by the TD4-BC ,trained for 50× 103

steps policy, on climate zone E. 76
6.28 Heatmap of the number of times an action has been selected during

the winter test period(left) and summer test period (right) over each
time step in a generic Episode by the TD4-BC ,trained for 50× 103

steps policy, on climate zone B. 76
6.29 Curves of Return deltas with respect to behavioral baseline, over

testing episodes on zone E, for policies trained with different fine-
tuning approaches. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 77

6.30 Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different fine-
tuning approaches. Curves are averaged over 5 seeds, with shaded
area representing the standard deviation across seeds. 78

xi

6.31 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test periods over each time step
in a generic Episode by the TD4-BC-FTC, with eps-start = 0.02,
policy, on climate zone E. 79

6.32 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step
in a generic Episode by the TD4-BC-FTC, with eps-start = 0.02,
policy, on climate zone B. 79

6.33 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step
in a generic Episode by the TD4-BC-FT, with eps-start = 0.2, policy,
on climate zone E. 80

6.34 Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step
in a generic Episode by the TD4-BC-FT, with eps-start = 0.2, policy,
on climate zone B. 80

xii

Acronyms

AI
Artificial Intelligence

RL
Reinforcement Learning

ML
Machine Learning

DL
Deep Learning

Deep RL
Deep Reinforcement Learning

Offline-RL
Offline Reinforcement Learning

HVAC
Humidity, Ventilation, and Air Conditioning

MDP
Markov Decision Process

FOMDP
Fully Observable Markov Decsion Process

POMDP
Partially Observable Markov Decsion Process

xiv

GPI
Generalized Policy Iteration

TD
Temporal Difference

FQI
Fitted Q-Iteration

NN
Neural Network

BC
Behavioral Cloning

DQN
Deep Q-network

DDQN
Double Deep Q-network

TD3
Twin Delayed Deep Deterministic Policy Gradient

TD4-BC
TD3-BC Discrete

OOD
Out of Distribution

SGD
Stochastic Gradient Descent

MLP
Multilayer Perceptron

xv

Chapter 1

Introduction

Reinforcement Learning (RL) it’s a computational approach to the process of
learning from interaction. Its core idea consists of a learner, usually called agent,
that by interacting with the environment, learns how to behave optimally with
respect to an objective. The agent is not told which actions to take, but must
discover by itself which actions are good and which are not, by exploiting the
reward, a feedback signal that it receives after each action is taken.

With the growing field of Deep Learning in the last years, many algorithms that
tried to combine DL (DL) with RL were proposed. This approach, called Deep
Reinforcement Learning, has obtained near-human performances on many Atari
games, has beaten the world best player of one of the most complex board game,
Go, and has reached optimal performances on many other real and simulated tasks.
Besides being responsible for these successes, the online nature that characterizes
RL is what stopped its adoption in many other applications. In many industrial or
healthcare tasks, the possibility of making very coarse mistakes, that the online
interaction can bring, is not accepted, either because too costly or impractical, or
because potentially unsafe for humans.

To solve this issue, recently a new paradigm called Offline Reinforcement
Learning was formalized. In this approach, the agent learns how to behave entirely
from a fixed dataset of interactions previously collected. This has many practical
advantages, starting from the possibility to exploit big amounts of data that are
already collected and available, as well as reducing significantly the computational
cost for training, since it removes completely the time used for the interaction
with the environment. The goal of this thesis is to derive a discrete-action control
version of the state-of-the-art Offline-RL algorithm TD3-BC, that we will call
TD4-BC, and test its behavior on a practical case of smart HVAC optimal control.
Heating,Ventilation and Air Conditioning (HVAC) systems are used to control the
temperature and quality of the air in an enclosed space. Smart HVAC optimal
control aims at reducing the primary energy consumption of these systems while

1

Introduction

maintaining the same level of thermal comfort guaranteed.
Unfortunately, Offline RL paradigm brings some intrinsic issues with it. The

first and more obvious is that it is completely dependent on the dataset on which
it is trained. If the dataset is not well collected or it is not enough representative
of optimal behaviours, the whole learning process is affected. In this work, we
evaluate our algorithm TD4-BC with datasets with poor coverage of actions and
state to assess their role on the offline agent performance.

The second core issue is the fact that the whole point of Offline-RL is to
outperform the policy, or policies, that collected the dataset, thus in its learning
process an offline agent has to deviate from them. In doing this, naive Offline-RL
algorithms suffer of overestimation of out of distributions actions, that brings to
a degradation of the final performance. In this thesis we study one algorithm
TD3-BC that tries to address this issue and we derive a discrete-action version
from it. We then analyze the smart HVAC optimal control task, where we want to
obtain a scalable and practical method to optimize the HVAC control, without the
need of heavy customization. The derived algorithm, named TD4-BC, is tested and
evaluated on this particular task with datasets, derived from already implemented
control algorithms, that are scarce in action representation or have limited state
coverage. The experiments carried out in this thesis were done in collaboration
with AddFor Industriale S.r.l.

This thesis is organized as follows. Chapter 2 presents the Reinforcement
Learning main concepts and introduces to its mathematical framework. Chapter 3
introduces to the concept of deep learning and how is used in RL to obtain Deep
Reinforcement Learning algorithms. Some of the main Deep RL algorithms are
presented. Chapter 4 presents the Offline Reinforcement Learning, its advantages
and its issues, as well as one state-of-the-art algorithm called TD3-BC. It then
focus on the derivation of a discrete-action version of TD3-BC, that we call TD4-
BC and proposes some paired online fine-tuning approaches. Chapter 5 focus on
the environments used for our experiments, LunarLander and HVAC, and on the
generation of the datasets used for our offline training. Chapter 6 firstly compare
TD4-BC performance on LunarLander with respect to TD3-BC; then it focus on
evaluating TD4-BC on the HVAC control task. It also evaluate TD4-BC with
a slightly different training paradigm consisting of Offline training plus Online
fine-tuning. Chapter 7 discusses the results of the experiments as well as possible
future improvements.

2

Chapter 2

Reinforcement Learning

Reinforcement learning is a computational approach to learning from interaction.
Its main goal is to solve sequential decision making problems through a trial and
error approach. In this chapter we will show the theory and formalism behind
Reinforcement Learning and the main types of algorithms that try to solve the RL
problem. Further references can be found in chapter 3,4,5,6 of [1].

2.1 The Agent-Environment Interface
The Reinforcement learning (RL) approach is based on the interaction between
two entities, the agent and the environment. The agent is both the learner and
the decision maker. The environment, instead, represent the world where the agent
takes its actions. A Markov Decision Process (MDP) is a classical formalization
of such sequential decision making process and can describe almost all RL problems.
The interaction between agent and environment happens at discrete time step
t = 1,2,3... . In each of these time step the agent can take an action at from a
set of possible actions A, called Action Space end the environment can assume
a state st from a set of possible states S, called State Space. The fundamental
aspect of a MDP is that the evolution of the environment between states respects
the Markov property: “The future is independent of the past given the present”.
This property can be expressed through conditional probabilities in this way:

P[st+1|st, at] = P[st+1|s1, s2, ..., st, at] (2.1)

This means that the probability for the environment to transition from state st to
a generic state st+1, given the complete knowledge about its states history, is the
same if the knowledge is restricted to just the previous state st. To gain insight
on this property we can think of it as the fact that each state must contains all
the information that is relevant for the evolution of the environment. This key

3

Reinforcement Learning

assumption in RL it’s not easy to make in actual applications and is often addressed
through a good engineering of the state. For example by ensembling also past
information in the state we can still work with a MDP.

From Eq.(2.1) we can see how the transition between states is also influenced
by the action at that the agent takes. From the agent perspective, the interaction
evolves in this way: at each time step t the agent receives some representation of the
environment state st which is usually called observation ot, and select which action
at to take from a set of possible actions A. When the observations ot and state st

coincide, the MDP is called Fully Observable Markov Decision Process (FOMDP) ,
otherwise is called Partially Observable Markov Decision Process (POMDP). In
this work from now on we will assume to treat FOMDPs, then we will simply refer
to it as MDPs for simplicity.

What determines how the agent choose which action to perform is the policy
function π. The policy is basically a mapping function from states st ∈ S to
probabilities of selecting one action at from the action space A. We can then
interpret it also as the conditional probability of taking action at given that the
agent is in the environment state st:

π(s, a) = P[at|st] (2.2)

Having performed the action determined by the policy π, at the next time step,
the agent will receive from the environment a scalar value rt, called Reward. The
reward can be thought as a feedback signal telling the agent how good was the
action it just took and we can formally define it as a mapping function, called
Reward Function, from tuples of state, actions and next state to scalar values:
R(st, at, st+1) → R. Each step of this interaction process can be thought as
tuple called Transition: st, at, rt, st+1. The interaction process can be graphically
summarized in Fig.2.1.

Figure 2.1: Agent-Environment Interaction scheme. (Image taken from [1])

Usually the MDP presents some desired states that, once reached, determine
its end. Then the list of all transitions happened from the initial state to the goal
state is called Episode. A particular class of MDP, called Infinite MDP, does

4

Reinforcement Learning

not have a final state but accept an infinite evolution over time, but will not be
specifically treated in this work.

We can then introduce the concept of cumulative reward from time step t to
final step T :

Gt = Rt + Rt+1 + Rt+2 + ... + RT (2.3)
Usually in RL another parameter γ ∈ [0,1] , called discount factor, is introduced
in addition to the MDP. Its purpose is to favour the immediate reward with respect
to the future reward. Then the cumulative discounted reward can now be defined
as:

Gt = Rt + γRt+1 + γ2Rt+2 + ... =
TØ

k=t

= γkRk (2.4)

There are many different motives for this, firstly it makes mathematically tractable
the Infinite MDP, but more importantly it express some uncertainty about the
future and about future estimates: the more we go into the future the less we care
about it. Uncertainty about future estimate will be often the case for many of the
algorithms we will see lather in the chapter.

RL itself is based on the Reward Hypothesis: All goals can be described by
the maximization of the expected Cumulative Reward. In fact the purpose of a RL
agent, assuming a parametric policy function with parameters θ(πθ), is to find the
parameters that maximizes the expected cumulative discounted reward:

π∗
θ = arg max

θ
Eτ∼πθ

C
TØ

k=t

γkR(st, at)
D

(2.5)

with τ , the trajectory, being the complete sequence of states and action of a
general episode: s1, a1, s2, a2, ..., aT −1, sT .

To summarize we can then describe a MDP by five main entities:
• a finite set of states S called State Space

• a finite set of action A called Action Space

• a Transition Probability Function P (s, a, sÍ) = P[sÍ = st+1|s = st, a = at]

• a Reward function R(st, at, st+1) ∈ R

• a discount factor γ ∈ [0,1]

2.2 Solving Reinforcement Learning Problem:
Prediction vs Control

In this section we will present the two principal problems that MDP presents, the
prediction and control problem. The prediction problem basically consists in how

5

Reinforcement Learning

to evaluate a policy and it is needed to solve also the control problem, that is,
instead, to find the optimal policy for a MDP.

2.2.1 Prediction Problem
This problem consists of evaluating a policy function in an unknown MDP. To do
this we need to introduce a metric function useful to evaluate each state, called
Value Function. The Value Function estimates how good for an agent is to be in
a certain state following a certain policy π, it is like a proxy for what the agent
will encounter in its future transitions following the policy of interest π. It does
this in terms of expected future discounted reward and can be defined as:

Vπ : S → R
Vπ(s) = Eπ[Gt|st = s] (2.6)

Starting from this definition and exploiting Eq.(2.4) it’s possible to derive an
iterative formulation:

Vπ(s) = Eπ[Gt|st = s]
Vπ(s) = Eπ[Rt + γGt+1|st = s]
Vπ(s) = q

a π(a|s) q
sÍ P (s, a, sÍ)

è
R(s, a, sÍ) + γEπ[Gt+1|st+1 = sÍ]

é (2.7)

To get in the end:

Vπ(s) =
Ø

a

π(a|s)
Ø
sÍ

P (s, a, sÍ)
è
R(s, a, sÍ) + γVπ(sÍ)

é
(2.8)

The Eq.(2.8) is the Bellman Expectation Equation for the Value Function and
it shows how value function can be decomposed in two parts, an immediate reward
and the discounted value from the next state onward. If the transition probability
function P (s, a, sÍ) is known, this equation can be solved directly but this is not
always computationally feasible since its cost is dependent on the number of states
in the state space S. We will present one alternative solution later in this work.

2.2.2 Control Problem
The control problem instead consists in finding the policy π∗ that has maximum
expected cumulative reward or in other words that is linked to the maximum
Value Function V ∗

π (s). Actually we need first to introduce another function the
Action-value function, also called Q-Value Function, defined as:

Qπ : S × A→ R
Qπ(s, a) = Eπ[Gt|st = s, at = a] (2.9)

6

Reinforcement Learning

This means that the Q-value is equal to the expected cumulative reward the agent
could get since it has taken action a in state s and following policy π for the rest
of its episode. In other words the Q-value can be interpreted as a metric of how
good is taking a specific action a being in a state s. We can apply same reasoning
previously used for the Value Function to obtain the Bellman Expectation Equation
for Q-value function:

Qπ(s, a) = Eπ

è
Rt + γGt+1|st = s, at = a

é
Qπ(s, a) = q

sÍ∈S P (s, a, sÍ)
5
Rt + γ

q
aÍ∈A π(sÍ, aÍ)

è
Eπ[Gt+1|st+1 = sÍ, at+1 = aÍ]

é6
Qπ(s, a) = q

sÍ∈S P (s, a, sÍ)
5
Rt + γ

q
aÍ∈A π(sÍ, aÍ)

è
Qπ(sÍ, aÍ)

é6
(2.10)

As we said in control problem we need to find the optimal policy for a MDP, that
means that if we find the optimal Q-value function Q∗

π(s, a) then we get also the
optimal policy π∗ for free, because in every state we know the best action to take.
We can write the optimal action-value function as:

Q∗
π(s, a) = max

π
Qπ(s, a) (2.11)

To obtain this optimal Q-value function we need to derive theBellman Optimality
Equation, to do this we start from the optimal value function:

V ∗
π (s) = max

a
Q∗

π(s, a) (2.12)

expressed in terms of Q-values and the optimal Q-value function expressed in
terms of Value Function:

Q∗
π =

Ø
sÍ∈S

P (s, a, sÍ)
è
R(s, a, sÍ) + γV ∗

π (sÍ)
é

(2.13)

. Putting this together we get the Bellman Optimality Equation:

Q∗
π(s, a) = q

sÍ∈S P (s, a, sÍ)
è
R(s, a, sÍ) + γ max

aÍ
Q∗

π(sÍ, aÍ)
é

(2.14)

This equation is non-linear because of the max operator and generally it does not
present a closed form solution.

Now we will present one simple iterative algorithm that, assuming to know
the Transition Probability Function P (s, a, sÍ), can solve the Bellman Optimality
Equation. It’s called Generalized Policy Iteration (GPI) and it consists of two
interactive parts. The first is called Policy Evaluation and it’s basically the same
process described in subsection 2.2.1, but here the objective is to to evaluate a
Q-value Function given a policy π over a MDP. The second part is called Policy

7

Reinforcement Learning

Improvement and its consists of improving the policy π with respect to the just
computed Q-value Function:

πÍ = arg max
a∈A

Qπ(s, a) (2.15)

The algorithm continues to iterate over these two process obtaining a new Q-value
function improvement for each step until the convergence to the optimal Q-value
function Q∗ and policy π∗.

Figure 2.2: General Policy Iteration scheme. (Image taken from section 4.6 of [1]

Figure 2.3: General Policy Iteration convergence scheme. (Image taken from
section 4.6 of [1]

8

Reinforcement Learning

2.3 Taxonomy of Reinforcement Learning Algo-
rithms

In this section we will presents the main categories of RL algorithms that tries to
solve the MDP control problem when the Transition Probability Function P (s, a, sÍ)
is not known and we will describe in particular some specific algorithms. We will
restrict our focus on Temporal Difference Methods (TD) generally referred as TD
Learning algorithms. TD methods can learn directly from raw experience without a
model of the environment dynamics, (no Transition Probability Function) without
having to wait to complete episodes of experience to improve their Value estimates.
In fact they update their estimates of the Value Functions by exploiting both real
experience and the estimate itself, in a process called Bootstrapping.

2.3.1 TD Prediction
The simplest TD method is for evaluating a policy in terms of Value or Q-value
and is based on this bootstrapped update. Starting from an initial Value function
estimate Vπ(s, a) we let the agent collect real experience from the environment
and construct the TD Target as the sum of the reward just sampled and the
discounted current Value estimate for the next state: Rt + γVπ(st+1). The TD
target is simply a slightly better estimate of the value function and the algorithm
moves its estimate towards this value. To do this the estimate is actually moved
towards the TD Error that is the difference between the TD target and current
old Value Function estimate:

Rt + γVπ(st+1)− Vπ(st) (2.16)

The amount of the update is regulated by a hyperparameter α called learning rate.
Putting all together we obtain the TD prediction update:

Vπ(st)← Vπ(st) + α
è
Rt + γVπ(st+1)− Vπ(st)

é
(2.17)

Same structure for the Q-value function:

Qπ(st, at)← Qπ(st, at) + α
è
Rt + γQπ(st+1, at+1)−Qπ(st, at)

é
(2.18)

This method is still considered as Tabular Method since it assume to have finite
state space S and action space A, and that the Value Function estimate can be
stored in a simple table. Most of the TD control methods are based on the TD
update, we will now show the main categories of these methods and describe some
practical algorithms. There are three main type of algorithms:

• Value Based: algorithm that exploits Value Function or Q-value function
without the mean of an explicit policy

9

Reinforcement Learning

• Policy Based: algorithm that has no explicit Value Function and tries to
optimize the policy by directly searching in the policy parameters space

• Actor Critic: algorithm that put together the previous methods, presenting
both a Value Function and a Policy Function. Usually composed by two phase
similar to GPI, a Value Function estimate and a subsequent Policy Update
phase that exploits the freshly evaluated Value Function.

2.3.2 Q-Learning
We will now describe Q-learning, a simple TD control algorithm that exploits the
TD Update, for further information refer to the author’s paper [2]. Q-learning
assumes to let an agent act in the environment following any arbitrary policy πβ,
called Behavioral Policy, and collect transitions τ = (s, a, sÍ, r) that are used to
update its Q-function estimate. Its objective is to keep improving its Q-value
estimates until the optimal ones Q∗(s, a) are reached. Then it can also obtain for
free an optimal policy π∗, by simply selecting for each state the action that has
maximal Q-value:

π∗ = arg max
a∈A

Q∗(s, a) (2.19)

This kind of algorithms where the policy learned is not necessarily the same used
to collect experience are defined as Off-Policy algorithms. The only assump-
tion needed for the convergence of this algorithm in the tabular case is that all
state,action pairs are continued to be updated. To address this requirement usually
as Behavioral Policy is used an Ô−Greedy policy. Ô−Greedy policy behave greedily
with respect to the Q-values most of the time, but with probability Ô instead select
randomly an action from the Action space A. Q-learning starts from the already
seen in Eq.(2.14) Bellman Optimality Equation, but modifies it substituting the
Expectation with a single trajectory sample:

Q(s, a) = R(s, a, sÍ) + γ max
aÍ∈A

Q(sÍ, aÍ) (2.20)

Then it uses this Q-value target in a classic TD Prediction update like the one seen
in Eq.(2.17):

Q(s, a)← Q(s, a) + α
1
R(s, a, sÍ) + γ max

aÍ∈A
Q(sÍ, aÍ)−Q(s, a)

2
(2.21)

2.3.3 Fitted Q-Iteration
We will now describe another Off-Policy Value Based algorithm, that is strictly
related to Q-learning: Fitted Q-value Iteration (FQI). More information and

10

Reinforcement Learning

Algorithm 1 Q-learning: off-policy TD control algorithm to find optimal Q-value
function Q∗

π(s, a)
Initialize Q(s, a) randomly for all s ∈ S, a ∈ A, except for Q(s, ∗) where s is
terminal state
for each episode do

Initialize s
while episode not ended do:

Choose a ∈ A with Ô− greedyπβ

Take action a and observe consequent reward Rt and next state sÍ

Update Q-value estimate:
Q(s, a)← Q(s, a) + α

è
Rt + γ max

aÍ∈A
Q(sÍ, aÍ)−Q(s, a)

é
end while

end for

demonstration can be found in [3]. FQI is a modified version of Fitted Value
Iteration (info in [4]) for working with the Q-value function. FQI makes the same
assumption as Q-learning but works in what is called batch-mode and is then not
an Online algorithm. Differently from Q-learning FQI is not a tabular method but
actually present a function Q̂(s, a)→ R that maps state,action pairs to a scalar
value, as the Q-value estimator. FQI assumes to have a dataset of transitions
τ = (s, a, sÍ, r) that exploits to calculate target Q-values with the same equation of
Q-learning:

Q(s, a) = R(s, a, sÍ) + γ max
aÍ∈A

Q(sÍ, aÍ) (2.22)

Then it use these Q-values estimate obtained from the dataset as target values for
a regression problem to update its Q-value function. Usually FQI needs to add
some on-policy transition to the dataset to reach convergence to good performance.

Algorithm 2 FQI: off policy batch TD control algorithm to find optimal Q-value
function Q∗

π(s, a)
Given data set D of transitions τ = (s, a, sÍ, r)
Start with Q̂(s, a) = 0∀s, a ∈ SxA ó Initial Q-value function equal to 0 for all
states and actions
while stopping condition not reached do:

Q(s, a) = R(s, a, sÍ) + γ max
aÍ∈A

Q(sÍ, aÍ),∀(s, a, sÍ, r) ∈ D ó Calculate Q-value
targets for all trajectories τ in the data set D

Feed to the regression algorithm the targets to fit a new Q̂(s, a)
end while

11

Reinforcement Learning

2.4 Exploration vs Exploitation
In the Q-learning algorithm seen in section 2.3.2 the key assumption for convergence
to optimal Q-values was that all state and action pairs were to keep updated during
the learning process. To better understand this requirement we need to deepen
on one of the main dilemma in RL: the Exploration versus Exploitation trade-
off. Exploration is the process of favour an unexplored choice to gather more
information, but potentially lose some reward, instead Exploitation is to simply
make the best decision that the agent can do given its actual belief. This exploration
issues arise since the RL agent learns online. In this setting, the action, that the
agent chooses, affects which states the latter will see and which data will collect.
In this like trial and error process, sometimes for the agent is worth to take new or
different actions, to get new data and sometimes it’s better if it simply exploits
its experience with the environment, without loosing to much reward. There are
two main spaces where the agent can explore: State-Action space S × A and the
parameter space when the agent uses some policy or value parametric function. In
this works we will address the first kind of exploration. One simple and very naive
solution that often works well in practice to this issue is the Random Exploration
approach. Like the name suggest this simply consists in to add some random
exploration to the learning algorithms. For example the Ô-greedy policy approach
that we have seen in the Q-learning algorithm 1, simply add the possibility of
taking a random action with probability equal to Ô. In continuous-action domain,
instead, one solution, is to add Gaussian noise to the action that the agent chooses.
We will see an example of this technique in the TD3 algorithm that we will present
in chapter 3.

12

Chapter 3

Deep Reinforcement
Learning

In this chapter we will firstly give a brief introduction on what are Deep Learning
and Neural Networks and then present their use in Reinforcement Learning. We
will then describe some of the principal Deep RL algorithms.

3.1 Introduction to Deep Learning
In the book Deep Learning [5], the authors describe machine learning as the
capability of algorithms to acquire their own knowledge, by extracting patterns
from raw data, without the need for humans to formally specify it. Usually ML
algorithms are used to learn how to solve tasks that are too difficult for humans or
that are intuitive for humans but that classic hard-coded algorithms fails to solve.
There are various types of problems that can be solved with machine learning:
classification,regression, anomaly detection, clustering and many more. The types
of tasks that can be solved is strictly related to the type of data that the algorithms
can see.

• Supervised Learning: when data comes with labels (for ex. classification
task) or target values (for ex. regression task)

• Unsupervised Learning: when data does not come with label or target
values, usually the case of tasks in which the algorithm look autonomously for
trends or patterns in data (for ex. clustering).

• Reinforcement Learning: as seen before where the algorithm is in charge
of collecting its own data trough interaction with its environment

13

Deep Reinforcement Learning

In this thesis we will only use ML algorithms for Supervised Learning problems
and for Reinforcement Learning, thus we will focus on these kind of approaches.

3.1.1 Supervised Learning Setting
The two main type of task that falls in the Supervised Learning categories are:

• Classification: the objective is to predict a discrete class label from the observed
features. Then the algorithm tries to train a function approximator to mimic
a function that maps the features of each data point x ∈ Rn to a specific class
y from the K classes available: f̂ : Rn → {1, ..., K}.

• Regression: the objective is to predict a continuous real value from features
that characterize the data point. Then the algorithm tries to train a function
approximator to mimic a function that maps the features for each data point
x ∈ Rn to a real value: f̂ : Rn → R.

A generic Supervised Learning ML approach will present three main components:

• The model (function approximator) that is in charge of extracting useful
knowledge and to perform the desired task

• The Metric that measure the performance of the algorithm on the desired task.
Is usually the quantity that is maximized or minimized in the training process

• The Dataset that contains all data samples that can be seen by the algorithm
and the labels or target data associated. Usually is divided in three set:
Training, Validation and Test, to evaluate the model on unseen data both
during and after the training phase.

The dataset separation in these sets are a crucial component of a machine learning
procedure. This because of the Overfitting phenomenon, one of the main problem
in this field. In the book Machine Learning [6], the author Tom Mitchell propose a
definition for overfitting: “Given an hypothesis space H, a hypothesis h ∈ H is said
to overfit the training data if there exists some alternative hypothesis hÍ ∈ H, such
that h has smaller error than hÍ over the training examples, but hÍ has a smaller
error than h over the entire distribution of instances". Where the hypothesis space
H represent the function approximator class and the hypothesis h, hÍ are different
instances of that class. Often the overfitting issue is referred to as the Bias and
Variance trade-off, where high variance means a model that overfits the training
data and fails to understand the real underlying data distribution. High bias, on
the other hands, means that the bias inherited with the model error is prevalent and
then fails to learn anything from the data (underfitting). The goal in machine
learning is to find a good balance between the two, we can see a graphical example

14

Deep Reinforcement Learning

Figure 3.1: Bias vs Variance trade-off graphical representation, image taken from
[5]

of this in Fig.3.1. Then is easy to understand why in such setting the dataset place
a key role in the success of machine learning, when not enough representative data
is provided the learning process might easily overfit. Indeed we can define Machine
Learning as a data driven approach, where the more quality data is available the
better. When the function approximator class used for machine learning is the
Neural Network (NN) model, then we can call this approach Deep Learning. We
will now describe Neural Networks and their main training techniques, based on
the book Deep Learning [5].

3.1.2 Multilayer Perceptron
The artificial Neural Networks are based on a core unit called perceptron or neuron,
of which we can see a representation in Fig.3.2. Given a set of inputs features
x1, x2, ..xn ∈ Rn and a set of weights θ1, θ2, ..., θn ∈ Rn, the neuron mathematical
function is a weighted sums of the inputs as:

net = θ1x1 + θ2x2 + ... + θnxn + b =
i=nØ
i=0

(θixi) + b (3.1)

or expressed in a matrix formulation:

net = θx + b, (3.2)

where θ is the vector containing all the weights of the neuron [θ1, θ2, ...θn], x is the
vector containing all the inputs [x1, x2, ...xn]T and b ∈ R is an optional additional

15

Deep Reinforcement Learning

Figure 3.2: Perceptron graphical representation, image taken from [6]

bias to augment its representational power. Up to now this is just a simple linear
function approximator, then to add non-linearity to the model, the perceptron
present an additional cell called Activation Function, that is in charge of adding
non linearity. In the early perceptrons this was usually a sigmoid function, indicated
with σ, that computes its output o as:

o = σ(net) = 1
1 + e−net

(3.3)

The sigmoid function maps the input to an output in the range [0,1]. The last
development in deep learning has made become very popular a different activation
function, the Rectified Linear Unit, referred to as ReLu. ReLu computes the
output as:

ReLu(net) = max{0, net} (3.4)
This has many positive attributes, one is the ability to contrast the phenomenon
of vanishing gradient that is crucial in the training procedure that we will see in
the next section. Just one perceptron is still a very similar approximation to a
linear function, that can’t represent very complex functions. Then, inspired by
biological studies that showed how our brain is composed of neurons connected to
each other, the Multilayer Perceptron MLP was proposed. In the MLP we have
multiple neurons connected together with a hierarchical structure, each neuron
receives as input the output of its predecessor and pass its output to its successors.
Usually neurons are grouped in layers to make the visualization easier, layers are
just a group of neurons not connected with each other but, in the MLP, connected
to the same neurons in input and output. MLPs are the quintessential of Neural
Networks and can be thought as a sequential set of layers, with the layer in charge
of receiving the input called input layer, the one in charge of output the prediction
output layer and all the intermediate layers called hidden layers. This hierarchical
structure gives us the opportunity to think to layers, as units that start building

16

Deep Reinforcement Learning

simple concepts at the beginning of the network, that end up, being built on top of
each other through the network, as a being much more complex. More practically
the connections between neurons create a way to put together many different simple
non-linear function approximators to reach a high representational power. Another
very useful aspect of neural networks lies in the end to end training approach. They
are fed with raw data, without the need of hand engineered features and are able
to extract automatically from them what they need to perform the task, resulting
in a potentially unlimited types of application. We can see a graphical example of
Multilayer perceptron in Fig.3.3

Figure 3.3: Example of Neural Network, image taken from [7]

3.1.3 Neural Networks Optimization
Neural networks are trained with the backpropagation method combined with
stochastic gradient descent. To address stochastic gradient descent (SGD)
we need to first introduce gradient descent. Gradient descent is an optimization
technique, that aims to minimize a function f(x) usually called the objective
function or, as usually done in deep learning, the loss function by altering x.
Referring to neural networks we can think of f(x) as the loss of our network, so
a measure of how bad the model is performing and x as the set of weights that
characterize all the neurons in the net. The derivative f Í(x) of f(x) w.r.t. x gives
the slope of f(x) at the point x. Then the main idea is that if we are able to
calculate the gradient of the loss with respect to the parameters we then know the
direction towards we need to move them to minimize it. We can then by moving

17

Deep Reinforcement Learning

x of a small step Ô, usually referred as learning rate, in the opposite direction of
the gradient, reduce f(x). Optimization with gradient descent in deep learning
is very difficult for two main reason. The first is that usually the function we
try to minimize may present lots of local minima or saddle points surrounded by
very flat regions where gradient descent becomes useless. The second is the high
computational cost of this approach. Usually in deep learning we define the loss
function as per-example loss function:

J(θ) = 1
m

mØ
i=1

L(xi, yi, θ) (3.5)

with L(x, y, θ) being the per data point loss, m being the number of samples (x, y)
in our training dataset and θ the weights of our neural network. For these additive
cost function, gradient descent requires computing the gradient for each example
with a cost of O(m):

∇θJ(θ) = 1
m

mØ
i=1
∇θL(xi, yi, θ) (3.6)

This as m grows becomes prohibitively long and in deep learning we require to have
big dataset in order to reach the desired generalization property. This is where
SGD comes in help. Since the gradient itself is an expectation we can estimate it
with a set of samples called mini-batch. On each step of the training algorithm
we sample uniformly from the dataset a mini-batch of mÍ data, evaluate the loss
function on it and apply a gradient descent step on this estimate:

g = 1
mÍ∇θ

mÍØ
i=1

L(xi, yi, θ) (3.7)

SGD has also an additional very good quality, the fact that since its based on
estimate it can sometimes avoid to fall in local minima that otherwise, moving
towards the true gradient, would not be avoidable. To apply SGD to neural network
we exploit the backpropagation algorithm. Backpropagation is composed of two
phase, a forward pass and a backward pass. In the forward pass a mini-batch
is passed through the network to obtain predictions, then these predictions are
evaluated with a specific loss function with respect to the true data. Then the loss
gradient estimate with respect to the weights of the output layer is computed and
is then backpropagated through all the layers weights following the chain rule:

dy

dx

= dy

dz

dz

dx

(3.8)

Once the gradient with respect to each weight is calculated the gradient descent
step is performed:

θ ← θ − Ôg (3.9)

18

Deep Reinforcement Learning

3.2 Deep Reinforcement Learning Introduction

In the previous chapter we have just seen RL algorithms applied to tabular cases
where we could store Q-values for state,action pairs simply in a lookup table. Now
we will extend the methods presented in chapter 2 to be applied with arbitrarily
large state and action spaces. In many real world case where we would like to use
RL, the state space is enormous. For example assuming to use images as state,
the number of possible camera images is much larger than the number of atoms
in the universe. It is necessary to say that in such cases we cannot expect to find
optimal policy or value function but we will be limited to find good approximate
solutions. The other main problem of dealing with large state space, beside the
memory needed for large storage tables, is the time and cost to gather enough
data to estimate them correctly. As we already seen previously, in RL there
is the need of enough exploration and as the state and action space grows this
become harder and harder. To address this we need to be able to generalize from
observed state and actions to the one that we can think are similar but that we
will never see in our experience, this kind of generalization is often called function
approximation. Luckily this problem has already been extensively studied and many
type of function approximation solutions are available, in this work we will focus
on the use of Deep learning (DL) and Neural Networks (NNs) as big non linear
parametric function approximators. Then RL provides a framework for decision
making and NNs should provide their ability to handle unstructured data and to
generalize from seen to unseen states or actions. Unfortunately bringing Deep RL
brings also some issues that need to be addressed in order to get Neural Networks
trained. The main problem is about the training procedure of neural networks
combined with the interactive learning paradigm. In supervised learning with NNs
we make the assumption of having independent and identically distributed data
(i.i.d) on the training set, so that each mini batch sampled from it is statistically
representative of the whole dataset. This in Reinforcement Learning is never the
case, the data the agent collects is in major part the consequence of its own action,
its own belief change the data that will see in the future. Furthermore after each
step of update of the Value or Policy function, in theory the agent could change
drastically its behaviour, causing a significative shift of the distribution of states
that are explored. In deep learning instead, we make the assumption that the
underlying data distribution we are trying to learn is always the same. We will
now present some of the approaches that try to overcome this issues and try to put
together RL and DL.

19

Deep Reinforcement Learning

3.3 DQN and DDQN Algorithms
In section 2.3.2 we described the Q-learning algorithm in tabular case, we will now
describe two derived algorithms called DQN [8] and DDQN [9], that introduce a
neural network, called Q-network Qθ, with θ being its set of weights,as the Q-value
function approximator. The Q-network receives states s ∈ S as input and output
values for all possible actions a ∈ A. This choice limits the use of this algorithms
without additional modification to discrete-action settings where A is a finite space.
These two algorithms reached human-level performance over the majority of games
in the Atari 2600 framework for RL algorithms evaluation. For further details and
information refer to the original papers.

3.3.1 DQN
As stated before, the are two main cause for training instabilities of RL with non
linear function approximator, the correlation in the sequence of states the agent
visit and the fact that small updates to Q may significantly change the policy and
therefore change the data distribution and the correlation between the Q-values
and target Q-values. To address the first issue, an Experience Replay Buffer is
introduced. This works like a big memory where at each time step t a transition
τ = (s, a, sÍ, r) is stored, then when a gradient step has to be executed to update
the Q-network beliefs, a random mini-batch of transitions are sampled from it,
with the aim to decorrelate the selected transitions . The second issue is addressed
by introducing a target Q-network Q̂θÍ , that is basically a twin Q-network that
is only periodically updated during the training process. This should reduce the
correlation that was present between the target Q-values and the Q-values that
were updated:

Q(s, a)← r + max
aÍ∈A

Q̂θÍ(sÍ, aÍ) (3.10)

3.3.2 DDQN
One issue that wasn’t still addressed with DQN is the one of overestimation of the
Q-values. In some of the Atari games DQN suffers from substantial overestimation.
In the DDQN paper [9] the authors demonstrate how this issue is due to the still
present correlation between the target value and the Q-value in its update.

y = r + γ max
aÍ∈A

Q̂θÍ

1
sÍ, aÍ)

2
(3.11)

As we can see in this equation the maximization over the actions to select the best
one is done on the same target Q-network that is also used to estimate its value.
This means that we are sampling the same error twice. To try to decouple this

20

Deep Reinforcement Learning

Algorithm 3 DQN algorithm
Initialize replay memory buffer D to capacity N
Initialize Q-network Q with random weights θ
Initialize target Q-network Q̂ with random weights θÍ = θ
for episode=1 to M do

Initialise environment E and get initial state s
for t=1 to T do

With probability Ô select a random action at ∈ A
Otherwise select at = max

a∈A
Qθ(st, a)

Execute action at in environment and observe reward Rt and state St+1
Store transition τ = (st, at, st+1, rt+1) in D
Sample random mini-batch of transitions (sj, aj, sj+1, rj)s from D
if episode terminate in sj+1 then

Set yj = rj

else
Set yj = rj + γ max

aj+1∈A
Q̂θÍ

1
sj+1, aj+1)

2
end if
Perform a gradient descent step on (yj −Q(sj, aj))2 w.r.t parameters θ
Every C steps update target networks weight θ− ← θ

end for
end for

21

Deep Reinforcement Learning

Algorithm 4 DDQN algorithm
Initialize replay memory buffer D to capacity N
Initialize Q-network Q with random weights θ
Initialize target Q-network Q̂ with random weights θÍ = θ
for episode=1 to M do

Initialise environment E and get initial state s
for t=1 to T do

With probability Ô select a random action at ∈ A
Otherwise select at = max

a∈A
Qθ(st, a)

Execute action at in environment and observe reward rt and state st+1
Store transition τ = (st, at, st+1, rt+1) in D
Sample random mini-batch of transitions (sj, aj, sj+1, rj) from D
if episode terminate in sj+1 then

Set yj = rj

else
Set yj = rj + γQ̂θÍ

1
sj, arg max

aj+1∈A
Qθ(sj+1, aj+1)

2
end if
Perform a gradient descent step on (yj −Q(sj, aj))2 w.r.t parameters θ
Every C steps update target networks weight θ− ← θ

end for
end for

noise, the solution proposed is to, without introducing a new network, use again
the target network but this time selecting the action with the standard Q-network:

y = r + γQ̂θÍ

1
s, arg max

aÍ∈A
Qθ(sÍ, aÍ)

2
(3.12)

3.4 TD3 Algorithm
Now we will present an actor-critic method named TD3 [10], that builds on top of
DDQN but add the use of an explicit policy network. Actor-critic algorithms employ
both a parameterized policy and a parameterized value function, and use the value
function as a better and more stable estimate of the expected reward for policy
gradient calculation. This is a key addition since it also allows this algorithm to be
used for agents with continuous-action spaces, removing the direct maximization
over Q-values that was only feasible with a finite action space. TD3 updates its
policy by the deterministic policy gradient [11] and exploits a very similar Q-value
function update to the one of DDQN. The one of TD3 is called Clipped Double

22

Deep Reinforcement Learning

Q-Learning. DDQN update exploits an additional target Q-network ˆQ(s, a), to
disentangle the target from the estimates to be updated. In TD3, since we have an
explicit policy that is found to be slow-changing, using just the target Q-network
is not enough since it ends up being still too similar to the current Q-network. To
address this two new Q-network are introduced, with one that still plays the role
of target network and the other the role of the current network. Then the update
for both Q1 and Q2 current networks will be formalized like this:

y1 = r + γ min
i=1,2

Qθ
Í
i
(sÍ, πφ(sÍ)) (3.13)

where we use the policy to estimate the action but we select the more pessimistic
estimate between the two target Q-values. This target will be the same for both
Q-networks. Furthermore the authors expressed the need to reduce even more the
variance in the value estimates, since they are then used to calculate the gradient
for the policy update and thus can cause reduced performance and slow learning
speed. Then TD3 introduces the use of a target policy, and the delayed policy
updates paired with the slow update of all the target networks. This is done to
make the Q-values estimate as stable as possible when used by the policy update.
In practice what the algorithm does is to update the policy every d steps of Critic
Evaluation, where d is an hyperparameter of the algorithm, that we will call p-freq
and at the same time update of a small quantity τ the parameters of the target
networks:

θÍ ← τθ + (1− τ)θ
φÍ ← τφ + (1− τ)φ (3.14)

The last issue addressed by TD3 is the target policy smoothing regularization.
Since we have a deterministic policy that can overfit to narrow peaks in the value
estimate and since we can reasonably assume that similar actions should have
similar values, TD3 in addition to what already the function approximator does
automatically, explicitly put a regularization term in the Q-value update:

y = r + γQθÍ(sÍ, πφÍ(sÍ) + Ô)
Ô ∼ clipN (0, σ),−c, c) (3.15)

This is basically a little random noise added to the target policy in the Q-values
target calculation that should smooth the Q-values estimate over a small area
around the target action.

23

Deep Reinforcement Learning

Algorithm 5 TD3 algorithm.
Initialize critic Q-networks Qθ1 , Qθ2 with random parameters θ1, θ2
Initialize actor network πφ with random parameters φ
Initialize target networks θÍ

1 ← θ1, θÍ
2 ← θ2, φÍ ← φ

Initialize replay memory buffer B
for t=1 to T do

Select action with exploration noise a ∼ πφ(s) + Ô,
Ô ∼ N (0, σ) and observe reward r and new state sÍ

Store transition tuple (s, a, sÍ, r) in B
Sample random mini-batch of N transitions (s, a, sÍ, r)s from B
ã← πφÍ(sÍ) + Ô, Ô ∼ clip(N (0, σ̃),−c, c)
y ← r + γ min

i∈{1,2}
QθÍ

i
(sÍ, ã)

Update critics θi ← arg min
θi

N−1 q(y −Qθi(s, a))2

if t mod d then
Update φ by deterministic policy gradient:
∇φJ(φ) = N−1 q∇aQθ1(s, a)|a=πφ(s)∇φπφ(s)
Update target networks:
θÍ

i ← τθi + (1− τ)θÍ
i

φÍ ← τφ + (1− τ)φÍ

end if
end for

24

Chapter 4

Offline Reinforcement
Learning

In the last years we have seen the success of deep learning methods on a various
range of tasks and practical problems, where in general the more data was available
the better the algorithms ended up being. In the previous chapter we have also
seen how Reinforcement Learning and Deep Learning together, try to solve the
sequential decision making problem and often obtain very good results in many
different settings. However the online trial and error approach that characterize
Reinforcement Learning is also the major obstacle to its widespread diffusion. In
many settings the interactions with the environment are costly or dangerous. For
example in autonomous driving or healthcare we can’t simply let our agent to try
potentially unsafe actions for possible future reward. To address this issue we will
now describe a new paradigm for RL, called Offline-Reinforcement Learning
(Offline-RL) where we aim to train our agents completely from already collected
data, without the need of online interaction, resulting in a data-driven reinforcement
learning approach. We can see a graphical example of this paradigm in Fig.4.1 In

Figure 4.1: Graphical representation of classic online RL, classic off-policy RL
and Offline-RL, image taken from [12]

25

Offline Reinforcement Learning

this chapter we will at first explore one of the simplest data-driven formulation to
solve the sequential decision making problem, called Behavioral Cloning, then we
will formally introduce the Offline Reinforcement Learning approach, its positive
aspects and its main issues, following the paper [12]. Finally we will present a state
of the art actor-critic Offline-RL algorithm, TD3-BC and the proposed variation
for discrete-action control TD4-BC.

4.1 Behavioral Cloning
The first and more naive solution that comes to mind if we are to put together data
driven approach and Reinforcement Learning is the one defined as Behavioral
Cloning (BC). As behavioral cloning we mean to cast a RL problem as a simple
Supervised learning problem. Given a data-set of state-action tuples D := {(s, a)}
we want to derive a policy πφ, in our case a Neural Network parameterized by φ,
that tries to imitate the behavioral policy πβ that collected the data. We can then
write the optimization objective as:

φ∗ = arg max
φ

NÙ
i=0

πφ(ai|si) (4.1)

We can imagine to apply this kind of solution when we have already data of a
good performing policy or for example data collected by humans. Then the derived
policy, trying to imitate a near optimal policy, should work well when deployed in
the real environment. However this is also the first limitation of this approach, BC
can’t improve w.r.t to the behavioral policy, thus resulting in a high limitation of
application when no good data is available. Furthermore such a naive approach
has another major issue, the distributional shift from the training data when the
model is deployed. Learning algorithms make mistakes, even if they are very well
trained they usually make some errors when deployed in real world, because real
data brings inherently noise and uncertainty in it. What happens is that after
some interactions in the real environment our learned policy is queried with states
that, even if slightly different from the one seen during training, bring our policy
to make error. This in theory should be addressed by the generalization that we
aim to obtain with neural networks, but in practice a degradation in performance
is often observed. What actually happens is that after the policy is queried with a
slightly different state than the one on which was trained, it makes a little mistake
and it might ends up in a even more different state, and then might do an even
bigger error. This summation of errors starts a divergence process that ends up
with the agent following trajectories very different from the ones seen in training,
thus resulting in poor quality behavior. Then Behavioral Cloning suffers also from
the loss of potential information that not exploiting a Reward Function like RL

26

Offline Reinforcement Learning

Figure 4.2: Distributional shift graphical example, image taken [13]

cause. This limits a lot what the agent can learns from the data both in terms of
the environment dynamics and optimal actions selection.

4.2 Offline Reinforcement Learning
As previously stated, Offline Reinforcement Learning problem can be defined as a
data-driven formulation of the reinforcement learning problem. The end goal is still
to optimize the expected cumulative discounted reward like written in Eq.(2.5), but
now the algorithm is provided with a fixed dataset of transitions D = (si

t, ai
t, si

t+1, ri
t)

and its objective is to find the best policy it can, only using this data. We can
then intuitively think that Offline Reinforcement Learning requires the learning
algorithms to derive a sufficient understanding of the dynamics of the underlying
MDP from a fixed dataset D, and to then extract the best possible policy π̂∗

φ.
The first issue with Offline Reinforcement Learning is that, since the algorithm
must rely only on a static dataset D, there is no possibility of augmenting the
exploration, that as underlined in section 2.4 is a key assumption for RL algorithms
to work. Indeed if the regions of the state-action space that yield high reward are
completely unexplored in the dataset, then our algorithms would probably never
discover them. This is a underlying defect of an offline approach and we can’t
address this in anyway, then when presenting Offline-RL algorithms we will assume
that D covers adequately the state-action space SxA. We will later see in chapter
6 how this assumption is not always realistic when we tries to use this approach

27

Offline Reinforcement Learning

to tackle real problems where it’s even not easy to have already collected data.
In theory any of the off-policy algorithm that we presented before, like DDQN in
section [9], should work as an offline RL algorithm, simply by fixing a priori the
Replay Buffer with the dataset of transitions D and removing the collection of new
online transitions. In practice in many settings these algorithms do not work very
well. The reason for this is to be searched in the distribution shift, similarly as what
we have seen before happening in BC. Here the need for the learned policy to differ
from the behavioral policy that collected the data is even more exacerbated since
in Offline-RL we want our learned policy to outperform the collection policy. Even
more the distributional shift in Offline-RL, does not just lie in the unseen states
the learned policy visits at deployment time, but also in the maximization of the
expected return in the training process, that is a key step of many RL algorithms.
If we look at the Bellman Expectation Equation for Q-values, Eq.(2.8), the target
values requires evaluating Qπ(st+1, at+1) where at+1 ∼ π(st+1). So the accuracy
of the target Q-values depends on the estimate of the Q-values for actions that
potentially are out of the distribution w.r.t to the actions that the Q-value was
ever trained on. The issue of out of distributions (OOD) actions is aggravated by
the fact that the policy π(s, a) is explicitly optimized to maximize the expected
Q-value for state-action pairs:

Ea∼π(s,a)[Qπ(s, a)] (4.2)

This is true even when no explicit policy π(s, a) is defined and the maximization of
Q-values is done greedily like in Q-learning:

Qtarget
π (s, a) = r + arg max

aÍ∈A
Qπ(sÍ, aÍ) (4.3)

This means that if the model thinks erroneously that an action is very good and
has consequently an high Q-value, it maximizes its policy toward it, but without
the online interaction,can never correct its wrong assumptions, thus maximizing
the error. This results in an accumulation of error at each training iteration and
degradation of the performance. In the paper [14] the authors tested with SAC
[15], a state of the art off-policy actor-critic Deep RL algorithm, the existence of
this unlearning effect. We can see the results in Fig.4.3. The learning curve have a
behaviour that might at a first sight resemble the classical overfitting that we can
usually encounter in Supervised Learning, as seen in section 3.1. However it can
also be seen how this effect is invariant to the number of data points used to train
the algorithms, suggesting that it’s actually a different phenomenon. To sum up
what we have seen, to effectively deploy and train offline reinforcement learning
algorithms we first need to address this OOD actions overestimation issue. We will
now see one approach to this problem called TD3-BC.

28

Offline Reinforcement Learning

Figure 4.3: SAC performance on HalfCheeta-v2 in offline setting, showing return
as a function of gradient steps (left) and average learned Q-values on a log scale
(right), for different numbers of training points(n). Image taken from [12]

4.3 Minimalist approach to Offline RL: TD3-BC
TD3-BC [16] is an offline reinforcement learning algorithm for continuous control,
derived from the TD3 algorithm, seen in section 3.4, that tries to address the
extrapolation error on OOD actions. Many of the proposed algorithm to address
this issue are usually very complex and even when considered simple, they usually
make a significant amount adjustments to the underlying implementation. Those
additions make difficult to disentangle the cause of possible performance gain
between the algorithmic and implementation changes. TD3-BC, instead, tries to
adapt one deep reinforcement learning algorithm with minimal algorithmic changes
and reaches state of the art performance on the D4RL evaluation framework [17].
The algorithm simple make one addition to the policy update step of TD3:

π = arg max
π

E(s)∼D[Q(s, π(s))] (4.4)

The addition is a behavioral cloning term with the objective to regularize the policy:

π = arg max
π

E(s,a)∼D

è
λQ(s, π(s))− (π(s)− a)2

é
(4.5)

This BC-term has the goal of pushing the policy toward favoring actions that are
close to the ones seen in the dataset D. This approach of policy regularization deeply
relies on the optimistic idea that the neural networks should be able to generalize
so that they still end up in discovering policy that are better than the behavioral

29

Offline Reinforcement Learning

one, even if regularized. To balance between the RL component, expressed as the
maximization of the Q-values and the imitation component, expressed through the
BC term, a single hyperparameter λ is introduced. Actually since this balance is
highly susceptible to the scale of the Q-values λ is defined by adding a normalization
term based on the absolute Q-values:

λ = α
1
N

q
(si,ai) |Q(si, ai)|

(4.6)

In practice this term is usually estimated over mini-batches that are sampled during
the training process rather than on the entire dataset, to limit the additional
computational cost. The fact that this approach add just one single hyperparam-
eter should not be underestimated. Indeed in the offline setting the tuning of
hyperparameters, that in other settings would be trivial, becomes an issue, since
any real-world interaction is costly or dangerous. Is then clear that just having this
one λ hyperparameter is one of the positive aspects of this minimalist approach.
The second and last algorithmic change that TD3-BC makes is a simple state
features normalization over the entire dataset:

si = si − ui

σi + Ô
(4.7)

with ui dataset mean, σi standard deviation mean and Ô being a small normalization
constant(10−3). This normalization is a standard procedure in many Deep RL
algorithms, that the authors found to have a good effect on the performance in
many tasks. Furthermore is an especially very well suited procedure for Offline-
RL where the dataset remains fixed. One last positive aspect of this algorithm
with respect to other state of the art offline RL approaches is that the minimal
implementation change adds basically no computational overhead on the training
process, resulting as we can see in Fig.4.4 in much faster training with respect
to CQL[18] and Fisher-BRC[19], two other state of the art Offline-RL algorithms.
This is a key quality for a data-driven algorithm, since it allows to train on big
and high representative datasets more easily. The authors of this method in the
main paper [16], expose also the issue of the instability of the trained policy.
This means that analyzing the final trained policies of offline algorithms, their
average performance can be reasonable but has usually very high variance. This
reflects on some evaluation episodes with very poor performance. In online-rl this
can be easily addressed by keeping training or revert to a previous version of the
policy that during training was more stable, but this is not possible in this setting.
This trait of Offline-RL algorithms is found to be consistent across all Offline-RL
algorithms that they evaluated. Furthermore the fact that even a very simple
approach as TD3-BC presents this issue, fall in favour to the hypothesis of this
being a inherently shared offline reinforcement learning issue.

30

Offline Reinforcement Learning

Algorithm 6 TD3-BC algorithm. Optimal values from the authors are α = 2.5,
Ô = 10−3

Initialize critic Q-networks Qθ1 , Qθ2 with random parameters θ1, θ2
Initialize actor network πφ with random parameters φ
Initialize target networks θÍ

1 ← θ1, θÍ
2 ← θ2, φÍ ← φ

Store dataset D in replay buffer B
Normalize states over the dataset D: si = si−ui

σi+Ô

for t=1 to T do
Sample random mini-batch of N transitions (s, a, sÍ, r)s from B
ã← πφÍ(sÍ) + Ô, Ô ∼ clip(N (0, σ̃),−c, c)
y ← r + γ min

i∈{1,2}
QθÍ

i
(sÍ, ã)

Update critics θi ← arg min
θi

N−1 q(y −Qθi(s, a))2

if t mod d then
Update φ by deterministic policy gradient:
Calculate hyperparameter λ: λ = α

1
N

q
(si,ai)

|Q(si,ai)|

∇φJ(φ) = N−1 q∇φπφ(s)
è
λQθ1(s, π(s))− (π(s)− a)2

é
Update target networks:
θÍ

i ← τθi + (1− τ)θÍ
i

φÍ ← τφ + (1− τ)φÍ

end if
end for

31

Offline Reinforcement Learning

Figure 4.4: Total training time comparison of training each Offline-RL algorithm.
Image taken from [16]

4.4 Proposed discrete-action control algorithm:
TD4-BC

We will now present the algorithm that we propose in this thesis: TD4-BC(Discrete
TD3-BC). This is an adaptation for the discrete-action control setting of the TD3-
BC algorithm. As seen in the previous section [16] TD3-BC reaches state of the art
performance with one single modification to a Deep RL algorithm. We then can ask
if we can translate the minimal approach of this algorithm to the discrete-action
setting, in order to have a valid offline reinforcement learning algorithm for any real
case scenario. The first issue to address is the Behavioral Cloning term calculation.
In TD3-BC this is obtained as the squared difference between dataset action and
policy action (π(s)− a)2. Here we have a fixed number of discrete possible actions
and we define our policy as a neural network that outputs unnormalized scores for
each of the possible actions. Then inspired by supervised learning, we think at
actions seen in the dataset D as true labels and we use one of the most common
classification loss, the Cross Entropy Loss, to penalize policy for assigning low
probabilities to actions seen in D.

BC = −log
exp(xn)qC

c=1 exp(xn)
× tn (4.8)

where xn are the unnormalized scores that our policy output for state sn, tn the
one-hot true action vector for an, given (sn, an) ∼ D, and C the number of available
actions. Then we need also to update the policy update step with respect to the
Q-values maximization part. To do this we decided to maximize the expected

32

Offline Reinforcement Learning

Q-values under the policy’s categorical probability distribution, resulting in :

π = arg max
π

E(s,a)∼D

è
λπ(s)Q(s, ∗)

é
(4.9)

Putting the two together we obtain:

π = arg max
π

E(s,a)∼D

è
λπ(s)Q(s, ∗)−BC

é
(4.10)

This update follow a similar approach to what can be found in [20]. As it can
be seen, we still normalize the Q-values in the policy update step through an
additional normalization factor inserted in λ. This is now composed by dividing
expected Q-values as the mean absolute expected Q-value.

λ = α
1
N

q
(si) |π(si)Q(si, ∗)|

(4.11)

There are other minor discrete algorithmic changes that differs from the continuous
one, for example we are not adding anymore clipped noise to the action selection for
the Q-values update but we try to still incorporate some randomness by sampling
the action according to the normalized probabilities from the policy:

P(ai) = exp(xi)qC
j=1 exp(xj)

(4.12)

Furthermore in TD4-BC we still normalize the states features over the entire
dataset:

si = si − ui

σi + Ô
(4.13)

33

Offline Reinforcement Learning

Algorithm 7 TD4-BC algorithm.
Initialize critic Q-networks Qθ1 , Qθ2 with random parameters θ1, θ2
Initialize actor network πφ with random parameters φ
Initialize target networks θÍ

1 ← θ1, θÍ
2 ← θ2, φÍ ← φ

Store dataset D in replay buffer B
Normalize states over the dataset D: si = si−ui

σi+Ô
.

for t=1 to T do
Sample random mini-batch of N transitions (s, a, sÍ, r)s from B
Sample one action from the learned policy categorical distribution:
ã← πφÍ(sÍ)
y ← r + γ min

i∈{1,2}
QθÍ

i
(sÍ, ã)

Update critics θi ← arg min
θi

N−1 q(y −Qθi(s, a))2

if t mod d then
Calculate discrete BC term:
BC=CrossEntropyLoss(a, π(s))
Update φ by regularized categorical policy update:
∇φJ(φ) = N−1 q∇φπφ(s)

è
λπφ(s)Qθ1(s, ∗)−BC

é
Update target networks:
θÍ

i ← τθi + (1− τ)θÍ
i

φÍ ← τφ + (1− τ)φÍ

end if
end for

34

Offline Reinforcement Learning

4.4.1 Online Fine-Tuning
Offline-RL can train agents that outperform the behavior policy that collected the
offline dataset. However as stated in [21]: “thusly trained agents may in the end
be suboptimal in the environment where they are deployed for (a) the dataset they
were trained on may be suboptimal; and (b) environment in which they are deployed
may be different from the environment in which the dataset was generated”. (a) can
happen when the dataset doesn’t cover enough high reward regions of the state
action space or even more when it has not enough action or state space coverage.
(b) can be interpreted as the general shift between training and testing distributions,
usually found in machine learning. This is not just limited to the deployment on
a completely different environment but can also manifest when the training-data
environment presents extemporaneous anomalous events or it continuously mutates
over time. We will explore these issues later in chapter 5 when we will present the
HVAC related datasets and their limitations. We will now show our two minimal
approaches to make our algorithm TD4-BC able to be fine-tuned through online
interaction. The first approach, that we will call Naive Fine-Tuning (TD4-BC-FT),
consists of adopting an Ô-greedy strategy during action selection, with Ô decayed
over time; the online transition sampled in this way are added to the same memory
buffer containing offline data; and at each new trajectory sampled a training update
step is carried out by the agent. In the policy update of TD4-BC-FT the BC term
and the hyperparameter α are completely removed resulting in this formulation:

π = arg max
π

E(s,a)∼D

è
λπ(s)Q(s, ∗)

é
(4.14)

where λ is:
λ = 1

1
N

q
(si) |π(si)Q(si, ∗)|

(4.15)

The second approach, that we will call Conservative Fine-Tuning (TD4-BC-FTC),
still consists of adopting an eps− greedy strategy during action selection, with Ô
decayed over time and to add the online transitions to the memory buffer. In this
approach however we keep the regularized policy update in the training exactly as
it is in TD4-BC. This is done with two objectives in mind. The first is to still keep
the regularization on OOD actions for the offline data. The second is that, since
the online data could be seen as OOD from the agent point of view, the policy
regularization of TD4-BC could be useful to limit the Q-values overestimation also
on this kind data. We expect this approach to provide a slower fine-tuning with
respect to the Naive one, but with less chances of diverging estimates.

35

Chapter 5

Testing Environments

In this chapter we introduce the two environments on which we tested our approach
to discrete-action control. We describe their main characteristics and objectives,
explaining also how the datasets used for training our offline algorithm were
obtained.

5.1 Lunar Lander
LunarLander-v2 is an open source benchmark environment for optimal control [22].
For each episode a lander is positioned in a random position on the x-axis and at
the top of y-axis, then the objective is to pilot it on a pad positioned always at
coordinates (0,0), without crashing it. We selected this environment, between many
other standard environment for RL algorithms evaluation, because of its duality.

Figure 5.1: LunarLander-v2 frame example. Image taken from [22]

36

Testing Environments

It presents indeed both a discrete-action control and continuous-action control
version. This was extremely useful for our work since it allowed us to test the
TD3-BC algorithm on its standard continuous domain and then to test our proposed
discrete variation TD4-BC on the discrete domain.

5.1.1 Observation Space and Reward Function
The observations in LunarLander-v2 environment are composed by the eight features
detailed in table 5.1.

Feature Name Feature meaning Feature Domain
x X-axis coordinate (-1,1)
y Y-axis coordinate [0,1]
vx Horizontal speed R
vy Vertical speed R
θ Angle [-180,180]
vθ Angular speed R
c1 First leg contact to the ground {0,1}
c2 Second leg contact to the ground {0,1}

Table 5.1: LunarLander-v2 Observation space Description

The reward functions is defined as

Rt =
(rxy

t − rxy
t−1) + (rv

t − rv
t−1) + (rθ

t − rθ
t−1) + rp

t if environment not done
(+100× l− 100× c) if environment done

(5.1)
where the four main components are

rθ
t = −100× | θt

2 | +10 ∗ c1 + 10 ∗ c2s, (5.2)
rxy

t = −100×
ñ

(xt
2 + yt

2), (5.3)

rv
t = −100×

ñ
(vxt2 + vyt2), (5.4)

rp
t = −0.3× em

t − 0.03× es
t , (5.5)

where em
t and es

t are two boolean variables related to the the main engine and
side engine respectively, that take value equal to 1 if the engine is fired at time-step
t. l is another boolean variable indicating if the ship has correctly landed on the pad
and c a boolean that indicates instead if the ship has crashed. The first component
rθ

t is encouraging the ship to stay as vertical as possible during its landing process,

37

Testing Environments

the second rxy
t is penalizing any types of action that moves the lander away from

the landing pad. Then the third component ensures that the agent tries to reach
the coordinates (0,0) with null velocity in order to avoid damages and the forth
component is a sort of fuel cost, basically a penalty for any main engine firing or
lateral engine firing. This reward design choice is also crucial to don’t let the agent
to just learn how to fly for an infinite amount of time. Lastly it’s important to note
that when the episode is ended the reward can only takes two mutually exclusive
values, a bonus of +100 points, if the lander has correctly landed, and a malus of
-100 points, if it has crashed with the ground. On average the reward for moving
from the top of the frame to the landing pad and zero speed is from 100 to 140
points. The environment is considered to be solved if the agent is able to reach an
average total cumulative reward over the last 100 episodes superior or equal to 200
points.

5.1.2 Action Spaces
As showed in table 5.2, in the continuous environment, the lander is controlled by
a bi-dimensional vector. Its first dimension controls the firing of the main engine
and how much throttle to use. Its second dimension controls the lateral engines,
selecting which one to activate.

Action Dimension Value Ranges Meaning

1
[-1,0) Main engine off

[0,1]
Fire Main engine with throttle
varying from 50% to 100%

2
[-1,-0.5) Fire right engine
(0.5,1] Fire left engine
[-0.5,0.5] Both lateral engines off

Table 5.2: LunarLander-v2 continuous action space description

38

Testing Environments

Instead in the discrete-action environment, as we can see in table 5.3, the lander
can be controlled with four different discrete actions: do nothing, fire left orientation
engine, fire right orientation engine, fire main engine. According to Pontryagin’s
maximum principle, this formulation where you can just decide fire engines with
full throttle, still allows the agent to reach an optimal performance.

Action Encoding Action meaning
0 Do nothing
1 Fire left engine
2 Fire right engine
3 Fire main engine

Table 5.3: LunarLander-v2 discrete action space description

5.1.3 Dataset Collection and Generation
Following the approach suggested by the authors of D4RL dataset [17], a standard
dataset for Offline-RL algorithms evaluation, we collect three different datasets
of different qualities: random, medium, and expert. Additionally we can also
introduce reference values for each dataset to normalize scores roughly to the range
between 0 and 100, by computing the D4RL score:

D4RL score = 100× score− random score

expert score− random score
(5.6)

In table 5.4 are shown, for each one of the dataset derived for the continuous-
action environment, its quality, D4RL score and a brief description on how it was
obtained. Table 5.5 does the same but for the datasets derived for the discrete-action
environment.

39

Testing Environments

Dataset
Quality

Dataset
Code

D4RL
score Collection Policy

Random R 0 Let an agent behave randomly and
collect 106 transitions

Medium M 70.83

Train a TD3 agent until it reaches an
average reward over last 10 episodes

major or equal than 100 points
("medium" performance), then stop its
training and collect 106 transitions

Expert E 100

Train a TD3 agent until it reaches an
average reward over last 10 episodes
major or equal than 200 ("expert"
performance), then stop its training

and collect 106 transitions

Table 5.4: LunarLanderContinuous-v2 Datasets composition

Dataset
Quality

Dataset
Code

D4RL
score Collection Policy

Random R 0 Let an agent behave randomly and
collect 106 transitions

Medium M 72.20

Train a DDQN agent until it reaches
an average reward over last 10 episodes

major or equal than 100 points
("medium" performance), then stop its
training and collect 106 transitions

Expert E 100

Train a DDQN agent until it reaches
an average reward over last 10 episodes

major or equal than 200 ("expert"
performance), then stop its training

and collect 106 transitions

Table 5.5: LunarLander-v2 Datasets composition

40

Testing Environments

5.2 HVAC Control Retrofitting
Heating, Ventilation, Air Conditioning, HVAC, systems are in charge of maintaining
thermal comfort and good air quality in enclosed spaces. In this thesis we start
from the work Reinforcement Learning Control Algorithm for HVAC Retrofitting:
Application to a Supermarket Building Model by Dynamic Simulation [23]. The
main goal of this research was to test, through a dynamic simulation of an HVAC
system deployed in a supermarket, if an online RL approach could bring a reduction
in its energy consumption, while satisfying some comfort constraints. Our objective
is to proceed further and test if with an Offline-RL approach we can match or
even improve the performances of the online RL, avoiding its costly and potentially
unfeasible online training phase, by exploiting already available data. We will
now discuss some further details regarding this simulation environment, for further
information refer to [23]. The framework used for this thesis, can support up to
two years of simulations, from 01/01/2016 to 31/12/2017. Each episode of the
environment consists of one opening day of the supermarket. The episodes start
30 minutes before the opening hour of the supermarket, they are divided in 15
minutes long time-steps and end when the supermarket closes. The framework
allows simulation on two different climate zones in Italy, zone E and zone B. The
simulations for zone E are obtained exploiting meteorological data from the city of
Bergamo and for zone B, from the city of Catania. The agent can control just the
HVAC of the sales area of the supermarket, while all the other zones are controlled
automatically by the environment.

5.2.1 Observation Space and Reward Function
The observations that the agent will receive are composed, as it can be seen in
table 5.6, by 17 features, with Tin being the temperature of the room considered
and Tsend being temperature of the air sent to the room. In addition it’s important
to note that some of these signals are coming from 4 previous time-steps and some
from 4 time-steps ahead. The External air Temperature at t+4 is obtained through
real weather forecasting for the specific day and city considered.

The objective of the RL algorithm is to save energy while satisfying comfort
constraints. The translation of this objective into a reward function in this envi-
ronment is done with a trade-off between two reward components tuned by an
hyperparameter λ. The reward at each time-step rt is then defined as the sum

rt = rE + rC (5.7)

with rE being the energy-related component and rC the comfort component. The
formulation of these two components, naming the temperature of the zone controlled

41

Testing Environments

Feature meaning Feature Domain Feature
Time-step

Season {Winter, Summer} t

Weekday {1,2,3,4,5,6,7} t

Time-step of the day 1,,50 t

Electric Cost R t, t− 4

Solar Radiance R t, t− 4

Gas Cost R t, t− 4

External air temperature R t, t + 4
Tin Bakery, Tin Deli,

Tin Dry Storage, Tin Office,
Tin Produce, Tin Produce

R t, t− 4

Humidity Sales R t, t− 4

Tsend Sales R t, t− 4

Table 5.6: HVAC State space

as Tin and the range of acceptable temperatures as [Tb, Tb], is given by

rE = −λc

rC =
0 if Tin ∈ [Tb, Tb]
−exp(p) otherwise

(5.8)

where c is the sum of the electric and thermal energy costs at time-step t and
p = max(Tb − Tin,0) + max(Tin − Tb,0) is the comfort constraint component.
Following the stochastic constraint tuning done by the HVAC paper authors we fix
λ = 2 as the best value for the RL-agent performance.

42

Testing Environments

5.2.2 Action Space
Differently from the LunarLander-v2 environment, not all the actions are always
accepted by the environment. More specifically the actions that the agent can take
are listed in table 5.7, where it’s also specified the specific condition for which some
actions are made available by the environment.

Action Index Action Meaning Action Feasibility Period

0 Set point=15.0◦C Winter

1 Set point=15.5◦C Winter

2 Set point=16.0◦C Winter

3 Set point=16.5◦C Winter

4 Set point=17.0◦C Winter

5 Set point=17.5◦C Winter

6 Set point=18.0◦C Winter

7 Only-Ventilation winter Always

8 Set point=24.0◦C Summer

9 Set point=24.5◦C Summer

10 Set point=25.0◦C Summer

11 Set point=25.5◦C Summer

12 Set point=26.0◦C Summer

13 Only-Ventilation summer Always

14 Turn Off
30 minutes windows before
the opening and closing

hours

Table 5.7: HVAC Action space

43

Testing Environments

5.2.3 Dataset Collection and Generation
Approaching this Industry-related problem we switched focus from the D4RL
standard dataset composition to a more task-oriented approach. Since we had
already two different type of agents, a classic rule-based control method and a
Fitted-Q-Iteration (FQI) Algorithm implemented and tested on this environment
we derived from them, for each available climate zone, two different type of datasets.

FQI Dataset

This dataset was obtained by online training the FQI agent on the 2016 year
simulation, following the approach proposed in [23], and simultaneously collecting
its transition with the environment. The datasets result in 18092 transitions
(s, a, sÍ, r), that we can expect to cover enough high reward regions of the state-
action space. We can grasp an idea of how the data is distributed in terms of
actions with respect to the time step of the episode looking at Figures 5.2, 5.3.

For the winter related data in both climate zones we have good coverage of almost
all actions, while for the summer data, the action choices look more concentrated
at a few actions, especially for zone E. One issue that is inherent of this kind
of state space and thus of this data, is that climate data as well as energy costs
data, that compose our states, can be highly variable from year to year and can
also present some anomalous events that in the end could drastically change the
states distribution. Then, limit our data to just one year of experience is for sure a
limitation, but at the same time a good benchmark of a real case scenario for our

Figure 5.2: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time step in a generic
Episode by the FQI policy on climate zone E

44

Testing Environments

Figure 5.3: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time step in a generic
Episode by the FQI policy on climate zone B

algorithm.

PI-CONST Dataset

This dataset was obtained by letting the Rule-Based agent (PI-CONST) act in
the environment in the 2016 year and collecting its transitions. The number of
transitions sampled is the same of the FQI Data and it also presents the same issue
of reduced state space coverage. What is very interesting of this dataset is that only
three actions are selected by the agent and thus are represented in the dataset, as
we can see in Figures 5.4, 5.5. This condition makes the data almost pathological
for Offline-RL algorithms. One of the key assumption seen in Chapter 4 for those
algorithms, was indeed to be trained on a dataset with enough exploration of
high reward regions in the state-action space. Nevertheless we will evaluate our
algorithm on this data because it represents the most simple and cheaper data to
be collected from an industry point of view, since the Rule-based control method
represent an industry standard according to [23].

45

Testing Environments

Figure 5.4: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time step in a generic
Episode by the PI-CONST policy on climate zone E simulation

Figure 5.5: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) training period over each time step in a generic
Episode by the PI-CONST policy on climate zone B simulation

46

Chapter 6

Experiments Results

In this chapter we show the results obtained by our proposed algorithm TD4-BC
on the two environments presented in chapter 5. In particular, at first, we focus on
validating our algorithm on the standard framework Lunar Lander with respect to
its continuous-action parent algorithm TD3-BC, and then we show the results on
the industry-related task of HVAC control.

6.1 Lunar Lander

Since the LunarLander-v2 framework presents a continuous-action control version
(LunarLanderContinuous-v2) with the same goals and the same Reward function
formulation, we now test the state of the art algorithm TD3-BC on this task to
gather baseline performance for our derived discrete approach TD4-BC.

6.1.1 TD3-BC on LunarLanderContinuous-v2

The algorithm is trained for 1 million steps on each of the presented datasets and
evaluated every 5000 steps. Each evaluation consists of letting the trained agent
act in the environment for ten episodes.

All the hyperparameters were set following the original TD3-BC paper [16], even
the main hyperparameter to control the balance between RL and BC as α = 2.5.
Each experiment was repeated over five different random seeds.

We now briefly present the learning curves of the algorithm for each of the
dataset it was trained on and later, in subsection 6.1.3, we show its performance
after the completion of the training process.

47

Experiments Results

Figure 6.1: Learning Curves for TD3-BC trained on expert (top) and medium
(bottom) quality datasets. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds. Baseline is the D4RL score
associated with the policy that collected the dataset

48

Experiments Results

Figure 6.2: Learning Curves for TD3-BC trained on random quality dataset.
Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds. Baseline is the D4RL score associated with the policy that
collected the dataset

As we can see in Fig.6.1, for the medium and expert dataset, after few thousand
iterations, TD3 is consistently outperforming the performance of the behavioral
policy. Instead for random dataset, as it can be seen in Fig.6.2, the process is
slower, taking approximately 105 training steps to reach a stable performance that
outperforms the random baseline.

6.1.2 TD4-BC on LunarLander-v2
Now we focus on the proposed algorithm TD4-BC on the LunarLander-v2 envi-
ronment for the three quality datasets. Since as we presented in section 4.4, the
objective for the policy update is changed with respect to TD3-BC, we decided
to, at first, tune our algorithm with respect to two main hyperparameters that
have influence on that update: the learning rate lr and alpha α that controls the
balance between RL and BC. We evaluate our algorithm over the product of these

49

Experiments Results

two hyperparameter set: {3 × 10−4, 3 × 10−5, 3 × 10−6} × {2.5, 5, 7.5}, all other
hyperparameters are set following the TD3-BC paper settings. The same training
and evaluation procedure, used for the TD3-BC experiments before, are used here
with each experiment repeated over five different random seeds.

We now show the TD4-BC learning curves as well as the progression over training
step of the expected Q-value estimate used in the policy update Eq.(4.10):

π(s)Q(s, ∗) (6.1)

and of the critic loss:
è
r + γ min

i=1,2
Qθ

Í
i

1
sÍ, πφÍ(sÍ)

2é
−Qθi(s, a) (6.2)

Expert Dataset

From Fig. 6.3a we can see how, as we could expect from an high reward regions
dataset, the alpha hyperparameter is not determinant on the learned policy perfor-
mance. The algorithm is indeed able to reach the baseline for all the tested alphas
and even outperforms it during different parts of the training process.

Looking at Fig. 6.3b, instead, we can note how bigger alpha cause an initial
overestimation of the Q-value. This can also be seen in Fig. 6.3a in the temporary
drop in performance in the initial evaluations for both α = 5 and α = 7.5. However
the algorithm is able to recover from the overestimation and still perform well on
the task.

Reducing the learning rate to 3 × 105 we still obtain a policy that reaches
on average the baseline without a critical reduction in convergence speed. From
Fig.6.4b we can note an interesting phenomenon, for α = 7.5 the algorithm starts
to overestimate the expected Q-values, without any consecutive significant loss in
performance. We think that this shows how even if an overestimation happens, in
high reward dataset like this, it can affects the majority of actions and not just
OOD ones. This permits to avoid the collapse of the learning procedure usually
associated with overestimation in Offline-RL.

Lastly, with learning rate equal to 3× 10−6 we actually observe a slower curve
to convergence in Fig.6.5a. The algorithm still reach the baseline and partially
outperforms it for the two bigger alphas around 2× 105 training steps. Again with
a reduce learning rate we can observe from Fig.6.5b that the algorithm starts, after
500× 103 training steps, to overestimate the expected Q-value, again without an
observable reduction in performance. We think that this phenomenon can still be
explained with the same reasoning that we presented before.

50

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.3: TD4-BC trained on expert quality dataset and learning rate equal
to 3× 10−4. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

51

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.4: TD4-BC trained on expert quality dataset and learning rate equal
to 3× 10−5. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

52

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.5: TD4-BC trained on expert quality dataset and learning rate equal
to 3× 10−6. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

53

Experiments Results

Medium Dataset

Contrary to what could be naively expected, the performance for the algorithm
with α = 7.5 not only does not outperforms the baseline but it is significantly worst.
This can be explained with the overestimation of OOD actions that characterize
Offline-RL and that can be noted also in Fig.6.6b, where the expected Q-value
estimate as well as the critic loss increase exponentially over training steps. For
smaller alpha this does not happen and the algorithm reaches and overcomes the
baseline for the majority of the training steps.

Reducing the learning rate to 3× 10−5, makes the learning curves present an
interesting behaviour. In Fig. 6.7a, we can observe how after a few thousand
training steps all algorithms reach near-optimal performance, but then progressively
return to a near baseline performance level. More specifically for α = 7.5, the
decrease continue until it reaches sub-baseline performance level. This last drop in
D4RL score can be again explained through the overestimation phenomenon, as it
can be observed in Fig. 6.7b as well.

The experiments with the smaller learning rate as expected present a slower
learning curve, that reaches again near-optimal performance. Unfortunately even
with a smaller learning rate the curves start decreasing after reaching their maximum.
This behavior resemble the one found for learning rate equal to 3× 10−5, and is
not related to OOD actions overestimation, especially for α = 2.5 and α = 5 as
we can see in 6.8b. We think that this phenomenon resembles more the classical
statistic overfitting, where the agents became too well suited for the data seen in
training and start to perform worse on the evaluations as the training steps increase,
especially since the algorithm present a Behavioral Cloning loss component.

54

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.6: TD4-BC trained on medium quality dataset and learning rate equal
to 3× 10−4. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

55

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.7: TD4-BC trained on medium quality dataset and learning rate equal
to 3× 10−5. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

56

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.8: TD4-BC trained on medium quality dataset and learning rate equal
to 3× 10−6. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

57

Experiments Results

Random Dataset

The random dataset is the one in which our algorithm performs better, reaching
a peak of more than 50 points in D4RL score with respect to its baseline, as we
can see in Fig.6.10a. From both Fig.6.9a and Fig.6.10a we can see a significant
improvement with respect to the baseline and a direct dependency with respect to
the hyperparameter α. Bigger alphas correspond to average better performance.
More specifically the algorithm trained with learning rate equal to 3 ∗ 10−5 and
α = 7.5 reaches a convergence of increase in performance with respect to the
baseline of around 40 points in D4RL score.

For the last set of experiment with learning rate equal to 3× 10−6 the algorithm
struggle a little more in the training, with slower curves and to less performing
policies. Furthermore the algorithms trained with α = 7.5 and α = 5.0 are even
prone to OOD actions overestimation. Indeed we can see in Fig.6.11a and Fig.6.11b
how after around 7× 105 training steps the expected Q-values estimates start an
increasing trend and the performances a steep decreasing one.

Table 6.1 presents the D4RL scores of the algorithm on the last ten evaluation
episodes to determine the learning rate and alpha pair that guarantees overall best
performance level. We found that the best values of hyperparameters that bring
to a better and stabler algorithm on average across the three quality datasets are
α = 5 and learning rate equal to 3× 10−4.

Expert Medium Random Total

α = 2.5
lr=3e-4 99.08 ± 4.38 73.55 ± 3.07 21.88 ± 7.28 194.51 ± 14.73
lr=3e-5 99.31 ± 2.47 76.42 ± 3.46 10.09 ± 9.6 185.82± 15.53
lr=3e-6 101.21 ± 3.36 80.32 ± 4.96 23.92 ± 1.66 205.45 ± 9.98

α = 5.0
lr=3e-4 101.51 ± 2.71 75.36 ± 3.91 29.38 ± 2.79 206.25 ± 9.41
lr=3e-5 101.46 ± 1.97 72.64 ± 5.41 23.85 ± 8.95 197.95 ± 16.33
lr=3e-6 102.55 ± 2.52 80.82 ± 5.97 7.36 ± 6.95 190.73 ± 15.44

α = 7.5
lr=3e-4 103.82 ± 4.58 66.59 ± 2.27 35.58 ± 3.69 205.79 ± 10.54
lr=3e-5 99.01 ± 9.97 63.26 ± 3.53 36.66 ± 2.66 198.93 ± 16.16
lr=3e-6 102.02 ± 2.22 81.52 ± 4.58 -1.41 ± 5.59 182.13 ± 12.39

Table 6.1: Average D4RL scores over the final 10 evaluations and 5 seeds of
TD4-BC on the three quality datasets. ± captures the standard deviation over
seeds.

58

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.9: TD4-BC trained on random quality dataset and learning rate equal
to 3× 10−4. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

59

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.10: TD4-BC trained on random quality dataset and learning rate equal
to 3× 10−5. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

60

Experiments Results

(a) Learning Curves for TD4-BC.

(b) Expected Q-values evolution(left) and Critic loss evolution(right) for TD4-BC.

Figure 6.11: TD4-BC trained on random quality dataset and learning rate equal
to 3× 10−6. Curves are averaged over 5 seeds, with shaded area representing the
standard deviation across seeds.

61

Experiments Results

Policy Update Frequency

In Offline-RL we need to try to limit the overestimation errors as much as we can.
To this end, we also want to test if augmenting the policy update frequency (p-freq)
of TD4BC, with respect to the standard value used for TD3-BC in its paper, would
make the agent benefits of more stable and less variance policy updates. We then
evaluate TD4-BC varying the policy update frequency from 2 to 3 and with the
three different learning rates used before. In these experiments we use α = 5 as
the default value for this hyperparameter, following the previous findings.

Figure 6.12: Learning Curves for TD4-BC trained on expert quality dataset
and α = 5 for each learning rate and policy update frequency tested. Curves are
averaged over 5 seeds, with shaded area representing the standard deviation across
seeds. Baseline is the D4RL score associated with the policy that collected the
dataset.

In Figures 6.12, 6.13, 6.14, we can see how on average the agent trained with
p-freq=3 reaches higher D4RL score on basically all the datasets and with all the
learning rates tested. This advantage is significant but it has to be underlined
how changing this hyperparameter doesn’t change the overall shape of the learning
curves, that suffer from the same issues found before. For example in Fig. 6.13
we can see how the slow performance degradation phenomenon is present for both
policy update frequencies. Looking at final results in table 6.2, we identify the

62

Experiments Results

top two performing configurations in p-freq=3 and learning rate equal to 3× 10−4

and 3× 10−5, we then decided to stick, for the rest of the experiments, with the
lr = 3× 10−4 as the best hyperparameters configuration since while being just two
points of D4RL score behind the other, it cuts in half the standard deviation across
seeds, significantly improving the algorithm stability.

Figure 6.13: Learning Curves for TD4-BC trained on medium quality dataset
and α = 5 for each learning rate and policy update frequency tested. Curves are
averaged over 5 seeds, with shaded area representing the standard deviation across
seeds. Baseline is the D4RL score associated with the policy that collected the
dataset.

63

Experiments Results

Expert Medium Random Total

p-freq=3
lr=3× 10−4 102.26 ± 2.96 76.82 ± 3.00 34.72 ± 1.33 213.80 ± 7.29
lr=3× 10−5 103.20 ± 2.35 75.57 ± 5.30 36.73 ± 7.68 215.50 ± 15.33
lr=3× 10−6 101.80 ± 2.11 86.03 ± 6.07 15.29 ± 7.36 203.12 ± 15.54

p-freq=2
lr=3× 10−4 101.51 ± 2.71 75.36 ± 3.91 29.38 ± 2.79 206.25 ± 9.41
lr=3× 10−5 101.46 ± 1.97 72.64 ± 5.41 23.85 ± 8.95 197.95 ± 16.33
lr=3× 10−6 102.55 ± 2.59 80.82 ± 5.97 7.36± 6.95 190.73 ± 15.44

Table 6.2: Average D4RL scores over the final 10 evaluations and 5 seeds of
TD4-BC with α = 5.0 on the three quality datasets and with different learning
rates (lr) and policy update frequencies (p-freq). ± captures the standard deviation
over seeds.

Figure 6.14: Learning Curves for TD4-BC trained on random quality dataset
and α = 5 for each learning rate and policy update frequency tested. Curves are
averaged over 5 seeds, with shaded area representing the standard deviation across
seeds.

64

Experiments Results

6.1.3 TD3-BC and TD4-BC Comparison

TD3-BC TD4-BC
Random 26.48 ± 2.62 34.72 ± 1.33
Medium 87.13 ± 2.63 76.82 ± 3.00
Expert 102.36 ± 0.25 102.26 ± 2.96
Total 215.97 ± 5.5 213.80 ± 7.29

Table 6.3: Average D4RL scores over the final 10 evaluations and 5 seeds of
TD3-BC and TD4-BC. ± captures the standard deviation over seeds.

Finally, from table 6.3 we can state that TD4-BC has overall a similar level of
performance with respect to its continuous-action parent TD3-BC. It outperforms
it in the random setting while falling behind with the medium quality dataset.

Looking at the graphs summarizing the training process presented before we can
also point out how the D4RL score variation between evaluations across different
point in the learning curve is much higher with respect to TD3-BC. This can
be explained by the fact that the available actions in the discrete Lunar Lander
environment are drastically different one from the other, while the continuous
environment accepts small variations in the actions selected. This means that the
discrete policy updates have inherently more drastic consequences in the agent
behaviour, thus causing more variance over the evaluations scores at different
training process points.

65

Experiments Results

6.2 HVAC Control Retrofitting
In this section, we switch the focus on the industry related task of smart HVAC
optimal control. As seen in chapter 5, the datasets that we use in these experiments
are limited in state, action space coverage, especially the PI-CONST dataset that
presents samples of just three actions over the fifteen actions available. Keeping
this in mind, we still want to investigate the behavior of TD4-BC in such case
where the fundamental assumption, that we discussed in chapter 4, of high reward
regions represented in the data, cannot be guaranteed.

For both the datasets presented in chapter 5, the number of transitions collected
(18092) is much lower than the one million transitions of the Lunar Lander datasets.
Since in the previous section 6.1, we observed a progressive performance degradation
across almost all datasets at the increase of training steps, for these experiments
we evaluate our algorithm at different points in the training procedure with a
maximum number of training updates fixed to 150× 103.

Then, we also test the two different Online Fine-Tuning approaches presented
in chapter 4. The metrics that we use are the mean return over the whole test year
and over the last six months of testing. We also show the evolution over testing
episodes of the difference in return between the agents trained with TD4-BC and
the behavior agent that collected that the data.

At first, we focus on the results for the FQI-Data and then we switch on the
PI-CONST Data. Each analysis is performed on both climate zones simulation,
zones E and B, and repeated over five different random seeds.

6.2.1 FQI Data Experiment
For this set of experiment we use the FQI agent used to collect the data as the
baseline performance. This agent is let to act and simultaneously train during the
testing episodes.

Looking at Fig. 6.15, we can determine how the learned policy has similar
performance to the baseline except for two particular areas in the testing episodes
that show significantly difference between baseline and TD4-BC policies. The first
region shows high variability in terms of return gains with respect to the baseline
while we have a strong and stable return gain in the second region.

Looking at the different training lengths we can derive that too many training
steps like 150× 103 do not help the agent, even more they make it performs slightly
worse. At the same time if we look at the agent trained for only 10 × 103 steps
we also see a slight performance reduction in the zone around the 300th episode,
suggesting the existence of a sweet spot between 25× 103 and 75× 103 training
steps.

Switching the focus to climate zone B, we plot the return deltas evolution in Fig.

66

Experiments Results

Figure 6.15: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone E, for policies trained with different number of training
steps. Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

6.16, where we can still observe a similar behavior of our agent with respect to the
other climate zone, both in terms of return and of dependency on training steps.

We summarize these results into table 6.4, from which we can derive the best
number of training iterations.

From this table, we can confront also the average performance of our agent
with respect to the baseline. The best performing agent on the two zones is the
one trained for 50× 103 steps and if compared to the baseline has overall similar
performance. As already seen in Figures 6.15 and 6.16, the agent struggle at the
beginning while being much more efficient on the last six months. It’s important
to note that with respect to the FQI agent our TD4-BC agents are not trained
simultaneously during testing, thus it’s even more significant that our best agent,
without any online training interaction is able to reach such level of performance.
Furthermore we can also state that these learned policies are not just copy of their
behavioral policies. Indeed if we look at Figures 6.17, 6.18 with respect to the

67

Experiments Results

Figure 6.16: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number of training
steps. Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

Zone E (12m) Zone E (6m) Zone B (12m) Zone B (6m)
FQI-baseline -317.26 ± 2.91 -201.41 ± 1.63 -104.95 ± 0.37 -117.98 ± 0.43

TD4-BC

tr-steps=10× 103 -319.08 ± 0.99 -197.77± 1.40 -110.91± 1.36 -117.71 ± 1.88
tr-steps=25× 103 -318.14± 0.76 -196.11± 0.91 -108.01± 0.42 -115.94 ± 0.69
tr-steps=50× 103 -317.98± 0.92 -196.08 ± 1.10 -107.99± 0.76 -116.28 ± 1.03
tr-steps=75× 103 -318.86 ± 1.89 -197.24 ± 2.88 -106.71 ± 0.55 -114.58 ± 0.78
tr-steps=150× 103 -320.52± 4.31 -196.40± 2.21 -108.09± 1.08 -116.04 ± 1.18

Table 6.4: Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard deviation
across seeds

heatmaps of their respective behavioral policies in Figures 5.2, 5.3, it’s evident how
the TD4-BC agent is not simply imitating the behavioral policies.

68

Experiments Results

Figure 6.17: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC, trained for 50× 103 steps policy, on climate zone
E.

We then investigate the two online fine-tuning approaches proposed in chapter 4,
namely TD4-BC-FT and TD4-BC-FTC, on our best performing agent. As stated,
we implement an Ô-greedy strategy at action selection, with Ô decayed linearly until
it reaches a final epsilon (Ô = 0.02) that is kept constant for the rest of the test
episodes. We test two different starting epsilon (eps-start=0.2, eps-start=0.02) for
each approach.

Figure 6.18: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC, trained for 50× 103 steps policy, on climate zone
B.

69

Experiments Results

Figure 6.19: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone E, for TD4-BC trained for 50 × 103 steps, fine-tuned
with different approaches. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds.

70

Experiments Results

Figure 6.20: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for TD4-BC trained for 50 × 103 steps, fine-tuned
with different approaches. Curves are averaged over 5 seeds, with shaded area
representing the standard deviation across seeds.

The curves of Figures 6.19 and 6.20 are not so much different than the ones of
the agent trained without it. This is even clearer in table 6.5, where there is no
significant worsening or improvements of the learned policies and no fine-tuning
approach comes out as better with respect to the other. The lack of improvement on
the first six months, that we hoped would be solved with this additional fine-tuning,
can be explained by the fact that both approaches randomly sample from the
replay buffer transitions. Then the adaptation to the new data is very slow thus
making difficult to our agents to adapt fast in the first six months. We can still
get an idea of the action distribution over the time steps of the generic episodes,
through Figures 6.21 , where we can see the results of the two different fine-tuning
approaches. It’s interesting to see how the Naive fine-tuning is making the policy
move more with respect to the Conservative one ,as we could expect, from the one
trained offline.

71

Experiments Results

Zone E (12m) Zone E (6m) Zone B (12m) Zone B (6m)
FQI-baseline eps-start=0.02 -317.26 ± 2.91 -201.41 ± 1.63 -104.95 ± 0.37 -117.98 ± 0.43
TD4-BC eps-start=0 -317.98± 0.92 -196.08 ± 1.10 -107.99± 0.76 -116.28 ± 1.03

TD4-BC-FTC eps-start=0.2 -320.90 ± 2.13 -201.89± 3.84 -107.48± 0.36 -115.35 ± 0.65
eps-start=0.02 -324.14± 1.35 -208.22± 1.88 -107.61± 0.40 -115.82± 0.54

TD4-BC-FT eps-start=0.2 -319.36± 1.79 -197.60 ± 2.64 -108.72± 0.90 -116.86 ± 1.21
eps-start=0.02 -319.60± 0.95 -198.94 ± 1.69 -108.98± 1.49 -117.85 ± 1.94

Table 6.5: Average Return over 5 seeds, for each climate zone, over the total
test period (12m) and its last six months (6m), ± captures the standard deviation
across seeds. TD4-BC is the starting point for the fine-tuning experiments

Figure 6.21: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC-FTC, with eps-start=0.02, on climate zone E.

Figure 6.22: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC-FTC, with eps-start=0.02, on climate zone B.

72

Experiments Results

Figure 6.23: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC-FT, with eps-start=0.2, on climate zone E.

Figure 6.24: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC-FT, with eps-start=0.2, on climate zone B.

6.2.2 PI-CONST Data
For this set of experiments we refer to the PI-CONST agent used to collect the
data that is let to act during the testing episodes, as the baseline performance.
We also compare the results obtained with this setting with a TD3 discrete-action
implementation trained online starting from the beginning of the test year, called

73

Experiments Results

TD4. From table 6.6 and from Figures 6.25 and 6.26 we can see that TD4-BC
learning process with PI-CONST data does not work very well. This was expected,
as pointed out in chapters 4 and 5. In fact, this kind of data is pathological for
Offline-RL algorithms and indeed OOD actions overestimation has played for sure
a role in these results. We still want to investigate if there is a relation between
training steps and performance. Unfortunately looking at table 6.6, the resulting
average returns estimates have to much variance to derive any conclusion from
them.

We can check by looking at the heatmaps of Figures 6.27 and 6.28, how the
derived policy diverge completely with respect to the behavioral one for the TD4-
BC trained for 50× 103 step, favoring heavily one single action, like in the climate
zone E, that was never seen in the data during training.

Figure 6.25: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number of training
steps. Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

74

Experiments Results

Figure 6.26: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different number of training
steps. Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

Zone E (12m) Zone E (6m) Zone B (12m) Zone B (6m)
PI-CONST-baseline -328.63 ± 0.42 -200.05 ± 0.089 -118.44 ± 0.18 -133.37± 0.40

TD4-BC

tr-steps=10× 103 -409.01 ± 99.82 -336.80 ± 177.66 -162.71± 40.28 -207.15 ± 76.10
tr-steps=25× 103 -363.48± 18.21 -254.18± 26.32 -163.83± 40.68 -209.64 ± 74.28
tr-steps=50× 103 -379.88± 22.16 -275.25 ± 43.04 -171.58± 41.17 -226.23 ± 76.23
tr-steps=75× 103 -363.87 ± 23.93 -250.97 ± 31.08 -159.64 ± 37.01 -203.25± 68.00
tr-steps=150× 103 -365.63± 16.25 -247.21± 24.04 -161.18± 32.36 -205.61 ± 59.72

Table 6.6: Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard deviation
across seeds

75

Experiments Results

Figure 6.27: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC ,trained for 50× 103 steps policy, on climate zone
E.

Figure 6.28: Heatmap of the number of times an action has been selected during
the winter test period(left) and summer test period (right) over each time step in a
generic Episode by the TD4-BC ,trained for 50× 103 steps policy, on climate zone
B.

At this point we want to then test if our fine-tuning approaches, combined with
the offline training can be a viable solution to exploit such challenging data for
smart HVAC control. The Return Deltas curves of Figures 6.29 and 6.30 shows
the gains of the Conservative fine-tuning, with respect to the Naive one, on both

76

Experiments Results

climate zones. This again was expected in such particular scenario. With limited
action exploration in the dataset keeping the policy BC regularization term should
have helped to avoid overestimation and consequent degradation of the policy
quality. Instead the Naive fine-tuning, does not help our agent, for almost all
episodes up to the 300th on climate zone E and for the region between episodes
200th and 300th on climate zone B, it actually reduce our agent quality. The shaded
area in those curves, representing the standard deviation across seeds, suggests
that when such quality degradation happens, the policies are very unstable cause
probably based on unstable value estimates. This behavior could be due to the
combined role of an ill learned policy and online samples that are seen as OOD by
the agent, as anticipated in chapter 4.

The averaged results of the fine-tuning can be seen in table 6.7. Here it is
clear to see how Conservative Fine-tuning paired with TD4-BC, regardless of the
starting exploration parameter, allowing us to train on very limited data and to
still beat the baseline on the second half of the testing period for both climate
zones. Furthermore, in zone B, the fine-tuned agents overperform on average the
baseline on the whole testing period.

Figure 6.29: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone E, for policies trained with different fine-tuning approaches.
Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

77

Experiments Results

Figure 6.30: Curves of Return deltas with respect to behavioral baseline, over
testing episodes on zone B, for policies trained with different fine-tuning approaches.
Curves are averaged over 5 seeds, with shaded area representing the standard
deviation across seeds.

Then to validate the role of the offline training plus online Conservative fine-
tuning approach, we implemented an online discrete TD3 algorithm that is let to
train on the testing period. The results, in table 6.7, show how the gain obtained
by TD4-BC-FTC is not brought by the online training of its base algorithm TD3.
These results also suggest how the offline training can be a viable alternative to
smart HVAC optimal control, with respect to a simple implementation of an online
RL agent, even in such challenging settings.

Finally, we can look at the evolution of TD4-BC-FTC policies through the
heatmaps in Figures 6.31 and 6.32. These are very similar to the heatmaps of
the behavior policy (Figures 5.4, 5.5), with just few different actions selection in
some particular time step. Instead the policies shown in Figures 6.33 and 6.34 for
TD4-BC-FT without the action regularization end up being completely different
from the behavior policy, probably victim of high OOD actions overestimation.

78

Experiments Results

Zone E (12m) Zone E (6m) Zone B (12m) Zone B (6m)
PI-CONST-baseline -328.63 ± 0.42 -200.05 ± 0.089 -118.44 ± 0.18 -133.37± 0.40

TD4 Online eps-start=1.0 -344.63 ± 16.97 -219.74 ± 26.98 -134.49 ± 12.40 -160.57 ± 22.09

TD4-BC-FTC eps-start=0.2 -339.62 ± 6.40 -198.76± 2.94 -115.83 ± 0.74 -123.90 ± 1.27
eps-start=0.02 -336.75± 4.63 -196.16± 4.16 -115.79 ± 0.59 -123.92 ± 1.24

TD4-BC-FT eps-start=0.2 -369.38± 26.24 -227.53 ± 10.64 -150.18± 36.59 -185.83 ± 68.15
eps-start=0.02 -387.18± 13.37 -217.48 ± 13.73 -124.72± 6.10 -135.91 ±9.61

Table 6.7: Average Return over 5 seeds for each climate zone over the total test
period (12m) and its last six months (6m), ± captures the standard deviation
across seeds

Figure 6.31: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test periods over each time step in a generic
Episode by the TD4-BC-FTC, with eps-start = 0.02, policy, on climate zone E.

Figure 6.32: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step in a generic
Episode by the TD4-BC-FTC, with eps-start = 0.02, policy, on climate zone B.

79

Experiments Results

Figure 6.33: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step in a generic
Episode by the TD4-BC-FT, with eps-start = 0.2, policy, on climate zone E.

Figure 6.34: Heatmap of the number of times an action has been selected during
the winter (left) and summer (right) test period over each time step in a generic
Episode by the TD4-BC-FT, with eps-start = 0.2, policy, on climate zone B.

80

Chapter 7

Conclusions

This thesis aimed at testing the Offline Reinforcement Learning algorithm TD4-BC
on the smart HVAC optimal control task, as well as testing if such minimalist
approach could be successfully translated to a discrete-action domain.

At first, a set of tests was carried out on the LunarLander environment to
establish if TD4-BC was competitive with its close relative TD3-BC. TD3-BC was
deployed with three different datasets, each with a specific level of performance of
the associated collection policy and with the best hyperparameters found by its
authors. TD4-BC was tested with comparable datasets, but at the same time, nine
different sets of hyperparameters were tried, with the objective of finding the set
that yielded better performance across all three datasets. Furthermore, we tested
and found that delaying policy updates, bring stabler updates and better quality
agents. In the end, we found the two approaches to be comparable and we found
TD4-BC to even outperforms TD3-BC with a dataset-specific hyperparameter
selection.

During these experiments, we also observed some of the issues that TD4-BC
presents. The first is the slow performance degradation, after the reach of its peak, at
the growing of training steps. The second is the high variability between evaluation
runs: this was inherited by the TD3-BC algorithm but became exacerbated in
TD4-BC. We propose one motivation to this phenomenon, that is strictly related
to the discrete-action nature of the algorithm. A discrete policy is just wrong or
correct in a specific state, in general its action can’t be just a little bit far from the
optimal one. In addition, in an environment like LunarLander discrete, where the
four available actions are completely different one from the other.

We then switched focus on the main objective of the thesis, the HVAC con-
trol. At first, we evaluated our approach, with the previously found best set of
hyperparameter α, learning rate and policy frequency updates, on the FQI dataset.
Building on the findings on the LunarLander task, we investigated the role of
the numbers of training steps with respect to the average return, finding that too

81

Conclusions

many training steps deteriorate our policy performance. Then we picked the best
agent, and we compared it with respect to the reference behavioral FQI policy.
We obtained comparable results, finding TD4-BC to be a good option for HVAC
retrofitting, since it reaches similar performance, without the cost of both money
and time of one year of online training that the behavioral policy required.

Furthermore, we tested two approaches to online fine-tuning for TD4-BC, a
complete Naive online Fine-Tuning, where the regularization of the policy is
removed, and a Conservative Fine-Tuning with the policy regularization still active.
These techniques didn’t make significant improvements or worsening to the TD4-BC
policy trained offline.

Then, we moved to the PI-CONST dataset. This dataset contains almost no
action exploration, resulting in a poor state-action space coverage. We evaluated
TD4-BC on it, obtaining a worsening of the policy with respect to the behavioral one
and observing indeed an high OOD actions overestimation. To help the algorithm
in such challenging environment the two online fine-tuning were again tested. The
naive approach, especially with higher starting exploration, worsen even more the
offline agent, almost on all the periods and climate zones considered, probably
victim of OOD samples overestimation coming from both offline and online data.
Instead, Conservative Fine-Tuning proved to be useful for the offline agent trained
on PI-CONST Data, making it beat the reference policy for the last six months
of the testing period for climate zone E and making it overcome the baseline
over the whole testing year for climate zone B. These results suggest that Offline
Reinforcement Learning can be a useful approach to smart HVAC optimal control,
especially when some requirements in terms of dataset composition are respected.

Overall, the minimalist offline approach considered in this thesis, that enables
the possibility of online fine-tuning with no additional cost, revealed to be an
interesting approach for the smart HVAC optimal control. Since the impact that
number of training steps had on our experiments, we think that future works should
focus on techniques of early stopping for offline training and in general of offline-
evaluation. Moreover, the integration between offline training and online tuning
should be further explored, specially for industrial tasks like HVAC control, where
is not always easy to have big amount of various and representative data available
and ready to be exploited. Approaches that explicitly take in to consideration
the balance between offline and online data to control the trade-off between blind
maximization and regularization, for example, could be tested in this task.

82

Bibliography

[1] R. S. Sutton and A. G. Barto. «Reinforcement Learning An Introduction».
In: Cambridge, MA: The MIT Press, 2018. Chap. 1 (cit. on pp. 3, 4, 8).

[2] C. J.C.H. Watkins and P. Dayan. «Q-Learning». In: Machine Learning. Vol. 8.
Boston, MA: Kluwer Academic Publishers, 1992, pp. 279–292 (cit. on p. 10).

[3] D. Ernst, P. Geurts, and L. Wehenkel. «Tree-Based Batch Mode Reinforcement
Learning». In: Journal of Machine Learning Research. Apr. 2005 (cit. on
p. 11).

[4] G. J. Gordon. «Approximate Solutions to Markov Decision Processes». PhD
thesis. Pittsburgh, PA, June 1999 (cit. on p. 11).

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 13, 15).

[6] T. M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997 (cit. on
pp. 14, 16).

[7] M. A. Nielsen. Neural Networks and Deep Learning. misc. 2018. url: http:
//neuralnetworksanddeeplearning.com/ (cit. on p. 17).

[8] V. Mnih et al. «Human-level control through deep reinforcement learning».
In: Nature 518 (Feb. 2015), pp. 529–533 (cit. on p. 20).

[9] Hado van Hasselt, Arthur Guez, and David Silver. «Deep Reinforcement
Learning with Double Q-Learning». In: Proceedings of the AAAI Conference
on Artificial Intelligence 30.1 (Mar. 2016) (cit. on pp. 20, 28).

[10] Scott Fujimoto, Herke van Hoof, and David Meger. «Addressing Function
Approximation Error in Actor-Critic Methods». In: Proceedings of the 35th
International Conference on Machine Learning. Vol. 80. PMLR, Oct. 2018,
pp. 1587–1596 (cit. on p. 22).

[11] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller.
«Deterministic Policy Gradient Algorithms». In: International Conference on
Machine Learning. 2014, pp. 387–395 (cit. on p. 22).

83

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/

BIBLIOGRAPHY

[12] S. Levine, A.l Kumar, G. Tucker, and J. Fu. «Offline Reinforcement Learning:
Tutorial, Review and Perspectives on Open Problems». In: arXiv pre-print
(Nov. 2020). arXiv: 005.01643 (cit. on pp. 25, 26, 29).

[13] Berkeley University of California. Deep Reinforcement Learning Course CS285.
url: https://rail.eecs.berkeley.edu/deeprlcourse/ (cit. on p. 27).

[14] Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine.
«Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction». In:
Advances in Neural Information Processing Systems. Vol. 32. 2019 (cit. on
p. 28).

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. «Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning
with a Stochastic Actor». In: Proceedings of the 35th International Conference
on Machine Learning. Vol. 80. PMLR, Oct. 2018, pp. 1861–1870 (cit. on
p. 28).

[16] S. Fujimoto and S. S. Gu. «A Minimalist Approach to Offline Reinforcement
Learning». In: Advances in Neural Information Processing Systems. Vol. 34.
2021 (cit. on pp. 29, 30, 32, 47).

[17] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. «D4RL: Datasets for
Deep Data-Driven Reinforcement Learning». In: arXiv pre-print (Feb. 2021).
arXiv: 2004.07219 (cit. on pp. 29, 39).

[18] A. Kumar, A. Zhou, G. Tucker, and S. Levine. «Conservative Q-Learning
for Offline Reinforcement Learning». In: arXiv pre-print (Aug. 2020). arXiv:
2006.04779 (cit. on p. 30).

[19] I. Kostrikov, J. Tompson, R. Fergus, and O. Nachum. «Offline Reinforcement
Learning with Fisher Divergence Critic Regularization». In: arXiv pre-print
(June 2021). arXiv: 2103.08050 (cit. on p. 30).

[20] Petros Christodoulou. «Soft Actor-Critic for Discrete Action Settings». In:
arXiv pre-print (2019). arXiv: 1910.07207 (cit. on p. 33).

[21] Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin.
«Offline-to-Online Reinforcement Learning via Balanced Replay and Pes-
simistic Q-Ensemble». In: 5th Annual Conference on Robot Learning. 2021
(cit. on p. 35).

[22] OpenAI. A toolkit for developing and comparing reinforcement learning al-
gorithms. url: https://gym.openai.com/envs/LunarLander-v2/ (cit. on
p. 36).

84

https://arxiv.org/abs/005.01643
https://rail.eecs.berkeley.edu/deeprlcourse/
https://arxiv.org/abs/2004.07219
https://arxiv.org/abs/2006.04779
https://arxiv.org/abs/2103.08050
https://arxiv.org/abs/1910.07207
https://gym.openai.com/envs/LunarLander-v2/

BIBLIOGRAPHY

[23] A. Mastropietro, F. Castiglione, S. Ballesio, and E. Fabrizio. «Reinforce-
ment Learning Control Algorithm for HVAC Retrofitting: Application to
a Supermarket Building Model by Dynamic Simulation». In: 16th IBPSA
International Conference and Exhibition. Rome, Italy, Sept. 2019 (cit. on
pp. 41, 44, 45).

85

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Reinforcement Learning
	The Agent-Environment Interface
	Solving Reinforcement Learning Problem: Prediction vs Control
	Prediction Problem
	Control Problem

	Taxonomy of Reinforcement Learning Algorithms
	TD Prediction
	Q-Learning
	Fitted Q-Iteration

	Exploration vs Exploitation

	Deep Reinforcement Learning
	Introduction to Deep Learning
	Supervised Learning Setting
	Multilayer Perceptron
	Neural Networks Optimization

	Deep Reinforcement Learning Introduction
	DQN and DDQN Algorithms
	DQN
	DDQN

	TD3 Algorithm

	Offline Reinforcement Learning
	Behavioral Cloning
	Offline Reinforcement Learning
	Minimalist approach to Offline RL: TD3-BC
	Proposed discrete-action control algorithm: TD4-BC
	Online Fine-Tuning

	Testing Environments
	Lunar Lander
	Observation Space and Reward Function
	Action Spaces
	Dataset Collection and Generation

	HVAC Control Retrofitting
	Observation Space and Reward Function
	Action Space
	Dataset Collection and Generation

	Experiments Results
	Lunar Lander
	TD3-BC on LunarLanderContinuous-v2
	TD4-BC on LunarLander-v2
	TD3-BC and TD4-BC Comparison

	HVAC Control Retrofitting
	FQI Data Experiment
	PI-CONST Data

	Conclusions
	Bibliography

