
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Cloud IoT platform for Access Control

Supervisors

Prof. Giovanni MALNATI

Candidate

Erminio Giuseppe MARINIELLO

March 2022

Abstract

Today’s technology has made fields of application that until a few years ago were
complex and expensive more and less accessible. Broadband connectivity with a
widespread diffusion on the one hand, and refined production processes on the
other hand, have exponentially increased the demand for cheaper, more powerful
and versatile IoT devices that can be used in many different contexts.

The Internet of Things and Smart Objects have the undeniable advantage to
renew and unlock new opportunities from activities that are part of a company’s
everyday life. A concrete example is the one analysed in this thesis project: the
digitalization of a governance process was an opportunity to increase the robustness
of the business as well as the driving element of a system that can become the
basis of a modern smart-city.

The project involved the development of all the software components of a
complete ecosystem: the management cloud platform, the edge software residing on
the gateways, a mobile application for field personnel. The strengths of the solution
are the expandable and always-connected gateway, the management of multiple
sensors and its nationwide presence. These devices are able to collect, process
and transmit data to the cloud. Once transmitted the data feeds a database of
information that is the real treasure in a world where the data are the real value.

The platform must implement and make the two distinct souls of the project
coexist:

• to guarantee protection against unauthorised access to business-sensitive areas,
thanks to the implementation of an electromechanical lock and specific sensors

• create a cohesive system between hardware and software that will allow the
addition of new sensors for environmental monitoring in the future: all software
components and architectural design choices have been made with scalability
and high availability in mind.

The main task was to govern a specific business process, in this case the control
of access to equipment, cabinets or sensitive company areas: particular attention
was therefore paid to implementing specific logics, such as the identification of
alarm situations and tampering.

This without precluding the possibility - in the near future - of extending the
functionality of these connected objects and make them an active part of a network
of probes collecting environmental parameters such as noise or electromagnetic
pollution. Nowadays those information have an increasing interests in the context
of so-called smart cities.

The project was followed in all its phases: from the realisation of the first
prototypes, to the definition of the system specifications in agreement with the
client, and the concrete development of the functional components described: the
cloud platform, the gateway agent, the mobile application. JavaScript was the
common language between all components, from the back-end to the edge software:
it therefore represents a proven versatile, effective and powerful technology.

The entire system handles a considerable amount of events on a daily basis
without any problems, thanks to its architectural design based on micro-services.
Thousands of users operate daily on the more than 30,000 gateways already installed,
which will triple by the end of 2022.

ii

ii

Acknowledgements

ACKNOWLEDGMENTS

First of all, I would like to thank Debora, my companion and patient and
inexhaustible source of motivation and support. A thought to my family, father,

mother and sisters Marialucia and Giovanna for their constant presence.
I would also like to thank my company Ennova, for the many opportunities for

professional growth that it continues to offer me.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Thesis Goals . 3

2 Analysis and Design of the solution 4
2.1 Functional Requirements . 4
2.2 System actors . 5
2.3 Platform Architecture . 5
2.4 The software stack: Javascript as full-stack language 6
2.5 Technologies and Frameworks of choice 8

2.5.1 NodeJS as main-runtime . 8
2.5.2 VueJS . 9
2.5.3 Apache Cordova . 9
2.5.4 PostgreSQL . 10
2.5.5 Redis . 10
2.5.6 MQTT . 11
2.5.7 Docker and Docker Swarm 12

3 Cloud Back-end Module 13
3.1 Monolithic vs Microservices architectures 14
3.2 Main Functional Services . 16
3.3 The API Gateway . 16
3.4 Persistence and ORM . 18

4 IoT Gateway and Edge Software Agent 19
4.1 The Gateway . 19

v

4.2 The Agent Software Component . 20
4.3 Interfacing electro-mechanical lock and sensors 20
4.4 Implementing Bluetooth Low Energy (BLE) peripheral 23
4.5 Securing BLE Connection and Data Exchanges 27
4.6 Connection with Cloud: MQTT Client 27
4.7 Managing Authorized Users . 29
4.8 Auto-updating feature . 30

5 Mobile Application 32
5.1 Anatomy of Application . 33
5.2 Access to nearby cabinets . 34
5.3 Initialization of new gateways . 36
5.4 Creating OTA Updates . 38

6 Optimizing time series DB with PostgreSQL 40
6.1 Data types and Indexes consideration 40
6.2 Table partitioning as solution . 42
6.3 PostgreSQL partitioning methods 42

7 Adoption of DevOps practices 46
7.1 The Agile Development . 46
7.2 Continuous Integration and Deployment 47
7.3 Continuous Delivery and Deployment 47
7.4 Benefits of CI/CD . 48
7.5 The selected tools . 48
7.6 Brief Comparison of CI/CD tools 49
7.7 Defining a pipeline . 50

7.7.1 Structure of a pipeline . 50
7.7.2 Running Services . 52
7.7.3 Executing Deployment . 52
7.7.4 Sending Notification . 53

8 Conclusions 54
8.1 Future works and improvements . 55

Bibliography 56

vi

List of Tables

vii

List of Figures

2.1 Platform Architecture . 6

3.1 The CleanArchitecture [15] . 13
3.2 BFF Pattern [17] . 17

4.1 Communication scheme . 21
4.2 Accessing GPIO . 22
4.3 Generic Attribute Profile (GATT) Profile 24
4.4 MQTT Authentication Flow . 28
4.5 Whitelist Management Flow . 30
4.6 OTA Update Archive Signature . 31
4.7 OTA Update Archive Verification 31

5.1 Scan and connection to nearby Gateway 34
5.2 Open door and close message . 35
5.3 Gateway initialization Wizard . 36
5.4 Gateway self-diagnostic tests . 37
5.5 Gateway maintenance features . 38
5.6 Appcenter CodePush . 39

7.1 CI/CD cycle . 47
7.2 Drone.io task execution view . 50

viii

Acronyms

ACL
Access Control List

LDAL
Lightweight Directory Access Protocol

IoT
Internet of Things

MERN
MongoDB, Express, React, Node

MEAN
MongoDB, Express, Angular, Node

OTA
Over-the-Air

MIT
Massachusetts Institute of Technology

MVVM
Model-View-Viewmodel

LoRA
Long Range

BLE
Bluetooth Low Energy

x

GPIO
General-purpose input/output

GUI
Graphical user interface

xi

Chapter 1

Introduction

The Internet of Things (IoT) is a neologism used in the telecommunications sector,
a term born out of the need to give a name to real objects connected to the
Internet. The term IoT was first used by Kevin Ashton in 1999, a researcher
at MIT (Massachusetts Institute of Technology) and is now used to identify any
system of physical devices that automatically transfer and receive data over wireless
networks.[1]. In fact, we can strictly talk about the Internet of Things when these
smart devices are connected in a network: all these sensors became capable to talk
each other and exchange information about themselves and their surrounding.

Over the last twenty years, the Internet of Things sector has experienced
continuous and unstoppable growth. Broadband connectivity with a widespread
diffusion on one hand, and refined production processes on the other hand, has
exponentially increased the demand for cheaper, more powerful and versatile IoT
devices that can be used in many different contexts: smart home, smart building,
smart metering, smart factory, smart city and smart car, as well as the use of
complex systems in logistics, agriculture and health, for example.

All these fields of application have in common the (satisfied) need to be able to
collect more and more information to make processes monitorable and analysable,
so as to make them efficient and sustainable, both economically and environmen-
tally. Internet and smart objects represent the tools capable of connecting business
and physical objects, in order to obtain the maximum potential they have to offer.

A smart object can provide us with information about itself such as:

• its operating status: if there are problems, they can be detected and mainte-
nance can be scheduled

• its location: to contextualise the information collected and transmitted in
space

1

Introduction

They can also tell us something about their surroundings, thanks to their ability
to interact with the outside world:

• sensing (e.g. to measure state variables such as temperature, pressure, the
presence of fumes or hazardous substances)

• metering (for flow variables such as electricity, water, gas consumption).

An important feature is the ability to process data locally, e.g. to select which
information to transmit among those collected or which to use to decide how to
actively interact with the surrounding environment, by performing actions. For
example, closing a valve or unlocking access to a passageway.

The IoT bridges the gap between physical and digital and allows us to innovate
services and create value from the massive amount of data that can be collected
and analysed.

Enterprise-wide IoT solutions enable companies to improve their existing busi-
ness models, but also to create new ones, thanks to access to a pool of accurate,
reliable and up-to-date information.

The development of the SmartLock project aimed to combine these two different
needs: to support a business process by improving its governance characteristics
and, at the same time, to create a widespread network of equipment capable of
collecting data of interest for territorial control.

In this specific case, designing a smart device to control access to the client’s
sensitive infrastructures has a doubly strategic value: on one hand, it strengthens
the ability to control assets that are fundamental to a sector such as telecommuni-
cations or energy and, on the other, it makes it possible to set up an expandable
and widely used network that is ready to be expanded in its functionalities beyond
the original one.

In recent years, general attention to issues such as air, magnetic or noise pollution
has definitely increased. Particularly in urban areas, it is becoming increasingly
common to exceed the legal limits for maximum concentrations of fine dust (like
PM2.5 and PM10) in the air, for example.

Exposure to electromagnetic fields is also the subject of much debate. Radio
frequency transmissions are an integral part of our daily lives: we all have a
smartphone connected to a 4G or 5G data network, home routers, repeaters of all
kinds.

Although completely undetectable, electromagnetic pollution is increasing year
after year. Having a large number of sensors monitoring the intensity of the fields,
to which all citizens are subjected, would make it possible to carry out extensive

2

Introduction

and continuous monitoring over time. At present, this is a prerogative of a few
local initiatives.

Being able to make this information available to organisations and institutions
therefore has an extremely high intrinsic value for the whole community.

1.1 Thesis Goals
In this project we tried to combine the need to govern a specific business process,
in this case the access control to equipment, cabinets or sensitive business areas,
with the possibility to extend the functionality of these connected objects, to
make them an active part of a network of devices, for collecting environmental
parameters such as acoustic or electromagnetic pollution: the solution is based
on an electromechanical lock and an intelligent gateway with integrated sensors,
to which a virtually unlimited number of additional sensors can be connected to
evolve its functionality.

Given the premises of the previous paragraph, the thesis project developed along
two parallel paths. The platform must implement and make the two distinct souls
of the project coexist:

• to guarantee protection against unauthorised access to business-sensitive areas,
thanks to the implementation of an electromechanical lock and specific sensors

• create a cohesive system between hardware and software that will allow the
addition of new sensors for environmental monitoring in the future.

Future expandability is therefore the real differentiating value: all software
components and architectural design choices have been made with scalability and
high availability in mind.

3

Chapter 2

Analysis and Design of the
solution

2.1 Functional Requirements
As mentioned in the main paragraph, the business requirements of the project
involve the development of access control functionality and can be summarised as
follows:

• Management of access permissions: an ACL (access control list) must
be managed for each restricted area to be protected; these lists are based on
geographical and time criteria.

• Historization: each access attempt (both granted and denied) must be
tracked and historicised on a cloud storage component.

• Identification of break-in attempts and irregular openings: the gate-
way is equipped with a series of sensors that enable it to identify break-in
attempts and unauthorised openings. The occurrence of such conditions must
generate an alarm that must be transmitted for timely management.

• Mains power failure detection: a prolonged mains power failure may
represent a potential service disruption condition, therefore it must be detected
and communicated to the management and monitoring centre with a specific
alarm.

• Collection of environmental data: the gateway is equipped with various
interfaces that allow its expandability for the collection of environmental data
such as air, noise or electromagnetic pollution. The widespread distribution
of these objects can represent a strategic value.

4

Analysis and Design of the solution

2.2 System actors
The users of the system are different, and will interface with it differently. Depending
on the role, each actor will have to access the information they are responsible for.
The main actors are:

• field operators users who need to access the reserved areas and must therefore
authenticate themselves before access. They interact with the system via a
dedicated mobile application

• installer operators: users who install the gateways and mechanical compo-
nents. They interact with the system via a dedicated mobile application with
dedicated functionality

• monitoring team: users in the operations centre who monitor the system
and take charge of any alarms. They interact with the system via a web
application

• administrators: high privilege users with full visibility among system sections
and data

2.3 Platform Architecture
The project is a complete IoT platform, and involves the implementation of the
different components that make up such a system.

An IoT platform is the tool needed to manage an entire IoT system. It con-
sists of four primary components: the hardware, the software, the user interfaces
and the network. An IoT platform is what connects the four components into
a cohesive, manageable, and interpretable system. It helps make data ingestion,
communication, device management, and application operations a smooth, unified
process.

The diagram shows the main functional blocks of the whole system, which can
be grouped as follows:

• Cloud Platform: forms the framework on which the whole system is based.
It is home to the business logic and data, and ensures consistency of operations.
It must be able to grow with the number of devices, so it must guarantee
scalability. It provides a front-end with which to access its facilities. All the
software is deployed in a Docker Swarm cluster.

• Embedded Edge Software: This is the piece of software that runs on the
gateways and ensures that they are connected and secure, keeps them up to

5

Analysis and Design of the solution

Figure 2.1: Platform Architecture

date and allows them to collect and send data, as well as guaranteeing that
all the routines are carried out.

• Mobile Application: this is the simplified tool designed for field operators
who interface with the system. It communicates with both the gateway and
the cloud platform.

2.4 The software stack: Javascript as full-stack
language

As we have seen, the platform consists of components that differ in function and
composition. There were many different implementation choices, but the need to
keep the development phases fast, robust and efficient was strong.

Being initially bound to front end engineering and conceived to be executed
within a browser, Javascript has recently made its entrance into the world of
runtime environments, revolutionising the way the client and server aspects of an
application are built: finally it is possible to use a single widespread programming
language to create complex, high-performance applications.

In a very short time, software stacks such as MEAN and MERN have become
very popular, gathering support in the developer community. Many variants were
born, also thanks to the spread of front-end frameworks like React and VueJS.

6

Analysis and Design of the solution

According to the popular Stack Overflow portal, Javascript is firmly in the lead as
the language with the highest number of active developers in the world: over 12.4
million.

The success is not limited to independent developers or start-ups. Even big
names in the world of technology have started using Javascript in their products
and services. These include Netflix, PayPal, Airbnb, Medium and many others.

But what are the reasons behind this success?

• A common language, better development efficiency with fewer re-
sources
If all parts of the application are written in Javascript, they can be better
understood by all team members: the knowledge gap between back-end and
front-end developers, for example, disappears. Team members become cross-
functional, allowing a reduction in costs due to better allocation of resources
in the project.

• Performance and Speed
Speed of development is matched by high performance. An example is the
event-driven, non-blocking IO model used by Node.js that makes it lightweight
and fast as compared to other commonly used back-end technologies like
Java. Better performance also means fewer resources used, which benefits cost
reduction.

• Extensive code reuse
Working with a single language makes it much easier to follow the principle of
’don’t repeat yourself’ (DRY). Development effort can be reduced by sharing
libraries, components and implementation of common logic, for example
between front-end and mobile apps. It also improves the general knowledge of
the code base.

• Vibrant community and availability of libraries and toolsets
Thanks to the active contribution of giants like Google, Facebook and Microsoft,
the community of Javascript developers is probably the largest in the world.
Active repositories on Github exceed half a million, and packages available on
npm exceed 1.5 million. There are therefore a large number of libraries that
can be integrated without licence fees.

Of course, Javascript, like all technologies, is not perfect. In spite of the enor-
mous advantages it can offer, there are drawbacks to pay attention to.
The single process/single thread nature of NodeJS makes it unsuitable for com-
putationally demanding loads, which would keep the event loop busy for too long
and prevent it from processing new requests. Fortunately, as the technology has

7

Analysis and Design of the solution

matured, a solution has been found to overcome this limitation by increasing the
parallelism of computational tasks.

Javascript, like all technologies, is not perfect. In spite of the enormous advan-
tages it can offer, there are drawbacks to pay attention to. The single process/single
thread nature of NodeJS makes it unsuitable for computationally demanding loads,
which would keep the event loop busy for too long and prevent it from processing
new requests. Fortunately, maturing technology has found a solution to over-
come this limitation: by dividing our software into independent functional blocks
that communicate with each other, it is possible to increase the parallelism of
computationally intensive tasks without affecting overall performance.

2.5 Technologies and Frameworks of choice

2.5.1 NodeJS as main-runtime

NodeJS is a JavaScript runtime [2], based on the V8 engine developed by Google
for its Chrome browser[3].

NodeJS is based on a non-blocking IO event-driven model, which makes it
extremely lightweight and efficient. Despite its single process/single thread nature,
it manages to serve multiple requests simultaneously, without necessarily having to
wait for the previous one to finish its IO operations, such as accessing a file or a
database query.

All this is possible because at the base of NodeJS we find the libuv library,
which allows the asynchronous execution of JavaScript code (entrusted to V8) but,
above all, the asynchronous management of the events of the main I/O operations
of the kernel, such as TCP and UDP sockets, DNS resolution, file system and file
operations, and file system events[4].

NodeJS comes with Node Packager Manager (npm), the world’s largest software
registry [5]. Using the official npm client (or Yarn as alternative [6]), is possible to
download (and distribute) libraries and dependencies to be included is fast and
efficient way.

In addition to being able to use a single language for all project components,
NodeJS is the ideal choice for real-time and scalable systems: scalability is baked
into the core of Node.js. It can handle huge number of concurrent connections,
and adding more nodes it can scale with the traffic to be managed. This makes
it possible to scale the production environment linearly as the number of devices
installed in the field grows.

8

Analysis and Design of the solution

2.5.2 VueJS
VueJS is a progressive open source JavaScript framework designed for the devel-
opment of simple user interfaces up to sophisticated Single Page Applications
(SPA) using the MVVM (model-view-viewmodel) paradigm. [] Created by Evan
You, former Google employee and AngularJS collaborator, it is one of the most
used frameworks at the moment together with Facebook’s React, as well as the
most "starred" on Github. The main library is focused only on the visualization
layer. The implementation of advanced features is delegated to a set of official
libraries designed to manage routing, state or rendering at the server level. A set of
compilation tools, a CLI and Devtools for the main browsers complete the package.

The architecture of an application based on VueJS is based on declarative
rendering and on the composition of components, isolated units of code with their
own reusable business logic. They therefore represent a fundamental abstraction
element for building large-scale applications.

A component is essentially an instance of VueJS, directly linking data and DOM
(data binding), making both responsive to changes. In VueJS we also find the
concept of Virtual DOM, which provides that the DOM of the page is not directly
updated following a change in the data model, but is mediated through the Virtual
DOM. [7]

Compared to its direct competitor React, VueJS can benefit from a high
learning curve, thanks to a leaner, more elegant syntax and a well-organised
structure. There is no need to use JSX for the templating part, and the lightness
and general performance have made it the framework of choice for the front-end.

2.5.3 Apache Cordova
Apache Cordova (formerly Phonegap) is a framework for developing cross-platform
mobile applications totally based on HTML, CSS and JavaScript. [8] This framework
actually encapsulates a web application within a container built in native technology
(Android and iOS). We will therefore speak of hybrid mobile applications, where the
rendering of the GUI is entrusted to a webview, but can rely on a bridge capable of
executing native code, interfacing directly with the underlying operating system[9].

This approach is certainly slower in terms of performance than an application
made entirely with native technologies (Java/Kotlin for Android or Objective
C/Swift for iOS), but the continuous progress made by Google and Apple in the
development of their operating systems, and the related WebViews that are an
integral part, have made the performance gap less and less obvious and therefore
penalizing, especially if we look at the important benefits in terms of versatility
and speed of development that this platform provides.

9

Analysis and Design of the solution

As mentioned above, the GUI of an application built with Apache Cordova
resides within a webview, but it is possible to use a web framework, such as VueJS,
without difficulty. In this way it was possible to share components and part of the
business logic between the web front-end and the mobile application, with direct
benefits on development time.

2.5.4 PostgreSQL
Postgres is a relational database management system fully compliant with SQL
rules and ACID properties. This DBMS is a very versatile solution, as it includes
all the tools needed to create modern applications.

In addition to the characteristics of a relational database, Postgres also includes
support for JSON-type data - which makes it very similar to a document-based
database - together with support for GiST, GIN and B TREE indexes.[10]

The presence of asynchronous notifications makes it possible, if desired, to use
Postgres as a messaging system to manage a queue, for example. The NOTIFY
and LISTEN commands allow the DBMS to operate as a true pub/sub server,
eliminating the need for polling information[11].

Another important aspect is the scalability of the solution: thanks to sharding,
it is possible to scale our DBMS horizontally, but the simple partitioning of the
tables will already give a big hand in ensuring the best possible performance even
in single-node setups.

PostgreSQL has proved to be the right compromise between the rigour of a
relational DBMS and the flexibility of a document-based DBMS, thanks to its
support for non-relational data formats (Json, XML, Hstore, etc.). It allows complex
queries to be executed quickly: PostgreSQL offers performance optimizations
including parallelization of read queries, table partitioning, and just-in-time (JIT)
compilation of expressions.

2.5.5 Redis
Redis is an open source in-memory data structure store, used as a database, cache,
and message broker. It guarantees very high performance as it works with an
in-memory dataset. It supports a variety of data types (strings, lists, sets, transac-
tions, Pub/Sub, key TTL) and can be configured in a cluster, ensuring reliability
and scalability [12].

Redis is a uniquely versatile tool that has been used both to communicate
between the various services of the platform as a message broker and to help
manage workloads using multiple queues. As being an associative memory, it

10

Analysis and Design of the solution

has been a useful tool in improving performance as a caching tool for frequently
accessed data.

2.5.6 MQTT
The MQTT protocol (acronym of Message Queuing Telemetry Transport) is a
transport protocol running over TCP allowing a bi-drectional connections between
devices thus maintaining a small networking footprint and low consumption, making
it ideal for IoT appliances where bandwidth is limited. [13] Unencrypted connec-
tions are used by default, however it is possible to protect the communication
channel by using TLS, thus achieving confidentiality of the exchanged data.

This protocol has two main entities, the client and the server - also known as
broker - that receives all messages coming from the former and forwards them
to the appropriate destination according to defined routing rules. The messages
published by the clients are matched to a topic, a string that allows to catalogue
in a hierarchical way the information, filter it and forward it to all the clients that
have subscribed to the same topic.

The messages published by the clients are matched to a topic, a string that
allows to catalogue in a hierarchical way the information, filter it and forward it to
all the clients that have subscribed to the same topic.

MQTT provides for three levels of Quality of Service:

• QoS 0: message delivered at most once

• QoS 1: message delivered at least once with acknowledgement

• QoS 2: message delivered exactly once

Higher QoS corresponds to a higher overhead in terms of networking, so it is
necessary to adequately weight this parameter according to the type of information
to be transmitted to avoid saturating transmissions.

All nodes interested in a particular piece of information can subscribe to the
corresponding topics. When a new piece of data is published, all subscribed clients
will receive the message containing the data according to the defined QoS.

As mentioned above, topics can be used to define a hierarchy in information.
Each topic consists of one or more levels, each separated by a forward slash (topic
level separator).

11

Analysis and Design of the solution

A client interested in receiving messages may subscribe to an exact topic or may
subscribe to multiple topics using wildcards. There are two types of wildcards:
single-level or multi-level.

As the name suggests, single-level wildcards identified by the plus (+) symbol
can be used to replace a single level in a topic. Multi-level wildcards, on the other
hand, are identified by the hash mark (#) and allow all topics to be subscribed to
from a specific level in the hierarchy.

The broker implementation of choice was EMQX, an Open-Source, Cloud-Native,
Distributed MQTT Broker for IoT. [14] The choice was motivated by EMQX’s
ability to support up to one million connections on a single node: although the
expected number of devices is lower, it gave the right guarantees of durability
without extension work. It also supports MQTT v3 and v5, authentication with
X509 certificates and the possibility of cluster configurations.

2.5.7 Docker and Docker Swarm
Docker is a containerisation technology that enables the creation and use of Linux
containers. Docker uses the Linux kernel and its functionality to isolate processes so
that they can run independently. The main objective of containers is precisely the
ability to run multiple processes and applications separately to make the most of
existing infrastructure while retaining the level of security that would be provided
by separate systems.

Applications can be enclosed in an image along with all their dependencies to be
distributed between different environments. The images can be versioned, making
it possible to work with a specific version of our application. Multiple services can
be combined, giving developers the ability to recreate an entire infrastructure that
mirrors the characteristics of the production environment. Docker also helps to
reduce the time needed for deployment: in the past, configuring new hardware took
time and investment. Docker containers can be installed in seconds.

When it comes to containerisation, Docker is the de-facto choice. Docker swarm
is the official orchestration tool that allows you to manage multiple containers
distributed on multiple host machines, raising the level of availability of the entire
platform.

The most famous competitor is certainly Google’s Kubernetes. Extremely
popular on the production systems of the most important systems, it requires greater
effort for both creating and maintaining the cluster. Docker Swarm is therefore the
preferred solution if you want fast deployment and ease of configuration.

12

Chapter 3

Cloud Back-end Module

The cloud module is the real heart of the solution and therefore the most critical
one. Every element of the project depends on this component, so special emphasis
and attention has been given to it.

In order to ensure code scalability, maintainability and testability of code,
the principles of Clean Architecture have been embraced. It is a software design
philosophy that advocates for the separation of layers of code. Each layer is
encapsulated by a higher level layer and the only way to communicate between the
layers is with The Dependency Rule [15].

Figure 3.1: The CleanArchitecture [15]

13

Cloud Back-end Module

Going from the outermost ring to the inner ring there is is the Server layer
which will call and execute Controllers - that can be found in the next layer. The
Controllers layer, which will receive the users’ data and execute the relevant use
cases and return the appropriate response. The Use Cases layer is is where the
business logic resides and where it is possible to interact with the Entities Layer.
The Dependency Rule states that source code dependencies can only point inwards,
meaning each layer can be dependant on the layer beneath it, but never the other
way around.

These principles have been reflected in the definition of the following logical
components:

• Controllers will receive network requests and returns responses from services;

• Services will process requests, including validations and third-party reporting,
and will save or read data using the repository layer as a source of truth;

• Repositories will function as the application’s source of truth, will include
the DB and external services queries.

3.1 Monolithic vs Microservices architectures
The monolithic architecture can be considered as the classical way to realise
applications: we find a large single codebase implementing all functionalities in
a software with a low level of modularity. This approach is certainly the most
convenients:

• development is relatively easier and does not require any special skills;

• logging and debugging are faster and require less efforts;

• deployment can be carried out in a single operation.

However, there are also some negative aspects, which, as we shall see below,
have found a solution with microservices

• it is more difficult to manage due the highly tight coupling code;

• as the application grows, start-up times will be longer;

• even a small change requires a deployment of the entire application;

• scalability: it is not possible to scale individual functionalities independently

• resilience: an unhandled exception can make the entire application unreach-
able

14

Cloud Back-end Module

• apply a new technology is extremely hard to because the entire appli-
cation has to be rewritten with higher impacts and costs.

While a monolithic application is a single coupled unit, micro-services ar-
chitecture breaks it down into a set of smaller independent units, where
all services have their own logic, their own database and runs into a separate process.

According to Sam Newman, “Microservices are the small services that work
together.” [16].

In fact each component of our application can be understood as an independently
deployable unit, which communicates with the others by means of APIs exposed
via a lightweight protocol such as HTTP.

This approach to development has undeniable advantages:

• each micro-service has a single responsibility and provide a single function-
ality;

• due to single functionality, they are smaller and easier to understand;

• when a micro-service gets updated, it is sufficient to deploy only that micro-
service and not the whole application;

• scalability: if a micro-service is more used than others, it can be scaled
horizontally independently of the others;

• resilience: if a bug affects one micro-service, it will not affect the other micro-
services, so the application will continue to provide the other functionalities
to users

• each service can can use the most appropriate technology based on
business requirements, such as the kind of database used (SQL vs NoSQL);

On the other hand, there are disadvantages which can be summarised as follows:

• complexity: micro-services applications are distributed systems, so connections
between modules are needed to ensure inter-communications; externalized
configuration, logging, metrics, health checks needed;

• hard to debug because the flow will span between several service on multiple
nodes, so extra effort on monitoring/log collector is required

• each micro-service has its independent deployment

• micro-service are costly in terms of network usage and this can lead into into
network latency.

15

Cloud Back-end Module

The choice between monolithic application or micro-services does not have an
absolute correct answer: the choice must be weighed against one’s own needs and
the capabilities of one’s team, but the latter is certainly the ideal choice for a
future-proof project.

3.2 Main Functional Services
These listed are the main services implemented by the platform. Each of these
runs in a dedicated context, with a dimensioning proportional to the volume of
traffic to be managed.

• Auth Service: this service is dedicated to the verification and management
of authorisation credentials: it queries third-party Active Directory/LDAP
services, manages roles and profiles with their respective capabilities;

• Lockers Service: implements all business logic related to locker management,
from their initialisation to routine activities;

• Lockers Events: processes, validates and historizes all events that are entered
from the queue by the consumer hooked up to the MQTT broker;

• Assets Service: keeps inventories up to date with installations and mainte-
nance carried out over time.

• MQTT Auth: implements the MQTT client authentication flow described
in section [4.6];

• MQTT Consumer: instance of an MQTT client that receives messages
published by gateways and places them in a queue towards the Lockers Events
service;

• Event Queues: this service implements reactive logics when certain events
occur, or manages activities scheduled at regular intervals;

• Push Notifications: manages outgoing communications to mobile devices,
browsers and third-party services.

3.3 The API Gateway
Once the micro-services constituting our application have been identified and
developed, it becomes necessary to expose their functionalities to the various clients
requesting them. For example, how can the web front-end or mobile application
access one or more microservices?

16

Cloud Back-end Module

The API gateway pattern is recommended when the microservices-based
application has multiple client applications. It acts as distributed system reverse
proxy and it is located between clients and underlying micro-services exposing a
single entry point to the APIs.

It is possible to have a single API Gateway to which all clients connect. When
the number of clients increases and business complexity also increases, this pattern
can be dangerous and even become a single point of failure of our system.
API Gateway it should be segregated based on business boundaries of the client
applications and not be a single aggregator for all the internal microservices.

Figure 3.2: BFF Pattern [17]

Backend for Frontend (BFF) design pattern is a variant of the API Gateway
pattern: instead of a single point of entry, it introduces multiple gateways, one
per each client type. Because of that, we can have a tailored API that targets
the needs of each client (mobile, web, 3rd parties services, etc..) removing all the
bloats caused by keeping it all in one place [18].

API Gateways also fulfil other side functions:

• TLS termination

• Authentication and authorization

• Response caching

• Retry policies and circuit breaker

• Load balancing

17

Cloud Back-end Module

• Rate limiting and throttling

• Logging and tracing

As seen in figure 2.1, this is the pattern implemented. There are 4 API gateways
identified, for Backend, mobile devices, IoT gateway and MQTT broker respectively.
The implementation was done using Express,the unopinionated, minimalist web
framework for Node.js.

The Moleculer.JS framwork was used for service intercommunication. It support
out-of-the-box all the features needed, such as:

• support for async/await

• request-reply concept

• support event driven architecture with balancing

• built-in service registry and dynamic service discovery

• requests load balancing

• many fault tolerance features

• built-in caching solution

• support for Redis Transporter

• JSON and Msgpack serializers

3.4 Persistence and ORM
To simplify access to the database, it was decided to use the Sequelize library,
one of the most well-known and widely used ORMs in the NodeJS ecosystem,
which supports Postgres, MySQL, MariaDB, SQLite and Microsoft SQL Server. It
features solid transaction support, relations, eager and lazy loading, read replication
and more. Once the structure of our models and the various relationships have
been defined, Sequelize will take care of generating the queries for the DBMS in
use.

In accordance with the principles of Clean Architecture, services never call up
the database directly. Every model in encapsulated by a Repository.

The Repository Pattern has two purposes: first it is an abstraction of the
data layer and second it is a way of centralising the handling of the domain objects.
The generic repository implements all the CRUD methods (Create, Read, Update
and Delete), while the individual implementation defines the exact access criteria.

18

Chapter 4

IoT Gateway and Edge
Software Agent

In the design of an IoT solution, a fundamental role is played by the so-called IoT
gateways. They are essentially physical devices that interconnect sensors and other
devices to the Internet, but their role is much more complex.

As mentioned above, the gateway is directly connected to the sensors. These can
be of different types, using different technologies and protocols (GPIO, Bluetooth,
LoRA, ZigBee, etc.) and therefore require a standardisation of information and
interfaces.

The data collected also needs to be pre-processed, filtered and aggregated for
the implementation of application logics, as well as possibly stored and safely
transmitted to the cloud.

The gateway is also responsible for managing Internet connectivity (via SIM) or
Ethernet/Wi-Fi adapter, as well as system user interface, configuration management,
security and diagnostics. It is clear that this is an essential element of an IoT
system. Also in this scenario, NodeJS provided all the necessary tools to implement
what was needed.

4.1 The Gateway
This project necessitated the design of customised hardware components. A partner
provided an ARM board based on the Freescale i.MX6 SoC and equipped with
integrated mobile connectivity, battery backup, Bluetooth interfaces, GPIO, I2,
SPI and serial interfaces capable of connecting multiple sensors.

The operating system used is the Yocto Linux Project: the computational
resources are not very high, so only the bare essentials have been included. In

19

IoT Gateway and Edge Software Agent

addition to the drivers and utilities essential in a Linux system, the software solution
developed required only the installation of the NodeJS runtime and Redis Server.

4.2 The Agent Software Component
A NodeJS-based application was developed to implement the business logic at the
Edge level. Thanks to its event-driven nature and the general optimization of
possible resources, it was possible to create a versatile and expandable solution in
a very short time.

The application had to meet the following functional requirements:

• Interface with sensors and electromechanical lock.

• Manage the connection with the management server via MQTT to send the
collected data and receive commands from the internet network

• Manage through BLE connection the interaction with the mobile application

• Keep in memory the authorization lists and the events not transmitted due to
lack of internet connection

• Self updating feature

These four requirements have been implemented in four separate functional
modules, executed in independent processes and communicated through the local
Redis server. This implementation choice was justified, in addition to the isolation
of functionality, by the need to make the individual modules interfaceable by other
forthcoming software components.

4.3 Interfacing electro-mechanical lock and sen-
sors

As mentioned in the previous paragraph, the i.MX6 platform on which the gateway
is based provides a GPIO interface that allows interfacing with external devices
through a series of PINs used as input or output.

The GPIO interface allows the use of signals with two logical levels (high/low).
The currents conveyed by the circuitry are very low and therefore the manageable
loads are contained, however, by connecting solid-state relays it is possible to
control even high power devices such as lights, motors or solenoids. In the same

20

IoT Gateway and Edge Software Agent

Figure 4.1: Communication scheme

way relays or opto-isolators are used to translate otherwise incompatible signals
(like high voltage signals) to the logic signals accepted by GPIO.

To access GPIO there is a framework inside the Linux kernel called gpiolib. This
framework provides an API to both device drivers running in kernel space and user
space applications [19] . The sysfs interface allows to access GPIO lines and control
them reading or writing over specific file description in the /sys/class/gpio path.

To set-up and control a GPIO pin, is necessary:

1. Export the GPIO writing its number to /sys/class/gpio/export.

2. Configure the GPIO line writing "out" for output, "in" for input to /sys/-
class/gpio/gpioX/direction.

3. Read value from /sys/class/gpio/gpioX/value to get current value, or write
1/0 to control PIN value.

NodeJS - like all modern languages - allows access to the file system in an agile
and convenient way thanks to the built-in fs module. Unfortunately gpiolib and

21

IoT Gateway and Edge Software Agent

Figure 4.2: Accessing GPIO

the sysfs interface have the big limitation of not having automatic interrupts in
case of changes in the input status, so it is necessary to periodically check the
descriptor file for changes.

Thanks to a simple function, a PIN status watch function has been implemented,
as well as debounce: variations below a threshold level are ignored, eliminating any
glitches on the electrical signal or meaningless variations.

1 const checkIfChanged = (key , fd , cb) => {
2 const va lue = this . _readInputAsBoolean (fd) ; // convert to boolean
3 const prev = s ta tu s . get () [key] ;
4 const handler = this . hand le r s [key] ;
5

6 i f (va lue === prev) {
7 // PIN state back to its original value
8 // If a delayed handler is registered , just cancel it
9

10 i f (handler && handler . nextValue !== value) {

22

IoT Gateway and Edge Software Agent

11 c learTimeout (handler . s e t t e r) ;
12 d e l e t e this . hand le r s [key] ;
13 }
14 return ;
15 }
16

17 // a delayed handler already exists , nothing to do
18 i f (handler && handler . nextValue === value)
19 return ;
20

21 // registering a new delayed handler
22 this . hand le r s [key] = {
23 nextValue : value ,
24 s e t t e r : setTimeout (() => {
25 cb (value , s t a tu s . s e t (key , va lue)) ;
26 } , WATCH_INTERVAL + WATCH_INTERVAL / 2) ,
27 } ;
28 }

4.4 Implementing Bluetooth Low Energy (BLE)
peripheral

BLE is an alteration of the original Bluetooth technology, designed for low range
wireless communications, specifically optimized for low energy connections. It
became widespread upon the arrival of so-called wearable devices, such as watches,
fitness tracks, blood pressure sensors, all devices that need to preserve battery life
to the maximum.

BLE networks must respect a specific topology: each device can operate as
central or peripheral respectively.

• Central: these are devices such as smartphones or computers with high
computational capabilities able to run the software needed to interact with
peripheral devices

• Peripheral: these are the devices able to collect data and send it to the
central device for processing.

A peripheral can only be connected to one central device (such as a mobile
phone) at a time, but the central device can be connected to multiple peripherals.

All BLE devices use the Generic Attribute Profile (GATT), which defines
the way in which data exchanges with each other and intends the concepts of
Profiles, Services and Characteristics.

GATT defines the relationship between the Central and the peripheral, assimi-
lating it to the client/server relationship.

23

IoT Gateway and Edge Software Agent

Figure 4.3: Generic Attribute Profile (GATT) Profile

The peripheral is also called a GATT Server, since it retains the definitions of
profiles, services and features. The central device (the smartphone for example) is
instead the GATT Client that sends requests to the server.

Whenever the two devices need to exchange data, a GATT Transaction is
created, initiated by the primary device (the GATT Client) which receives responses
from the secondary device, the GATT Server.[20]

A Profile is basically a pre-defined collection of Services depending on the kind
of the device itself, like a Heart Rate Monitor. Services are used to group individual
data - represented by characteristics - into logical entities. Both services and
features are identified by a 16-bit (for officially adopted BLE services) or 128-bit
(for custom services) UUID.

Characteristics are the point of interaction with the BLE peripheral: each char-
acteristic is associated with a type of information and defines its access mode: read,
write, notifications to receive an update every time the value of a characteristic
changes.

The library chosen for this part is bleno, which offers a developer-friendly
interface to Bluetooth HCI sockets.

Defining a Service is quite simple:

1 /*** service.js ***/
2 const bleno = r e q u i r e ('bleno') ;
3 const { Pr imaryService } = bleno ;
4

24

IoT Gateway and Edge Software Agent

5 const c h a r a c t e r i s t i c = r e q u i r e ('./characteristic.js') ;
6

7 const s e r v i c e = new PrimaryService ({
8 uuid : 'fffffffffffffffffffffffffffffff0' , // or 'fff0' for 16-bit
9 c h a r a c t e r i s t i c s : [

10 c h a r a c t e r i s t i c
11]
12 }) ;
13 module . export s = s e r v i c e ;

The Characteristic will implement handlers for the 3 properties used:

• read to get current status payload

• write to send commands to the device

• notify to register a callback used to send device updated data as soon as they
are available. In order to prevent flooding the device with no updated values,
the last sent packet is kept in memory to compare it with the next iteration.

1 /*** characteristic.js ***/
2 const bleno = r e q u i r e ("@abandonware/bleno") ;
3 const c o n f i g = r e q u i r e ("../../config") ;
4 const l o g g e r = r e q u i r e ("../../helpers/logger") ;
5

6 const { C h a r a c t e r i s t i c } = bleno ;
7

8 const s t a tu s = r e q u i r e ("../status") ;
9 const commandParser = r e q u i r e ("./commands") ;

10

11 const data = {
12 payload : null
13 } ;
14

15 module . export s = new C h a r a c t e r i s t i c ({
16 uuid : "fffffffffffffffffffffffffffffff1" ,
17 p r o p e r t i e s : ["read" , "write" , "notify"] ,
18 s e cure : ["read" , "write" , "notify"] ,
19 value : null ,
20

21 onReadRequest : async function (o f f s e t , c a l l b a c k) {
22 l o g g e r . i n f o ("Read status Request") ;
23

24 c a l l b a c k (
25 this .RESULT_SUCCESS,
26 Buf f e r . from (Buf f e r . from (s t a tu s . getPayload ()))
27) ;

25

IoT Gateway and Edge Software Agent

28 } ,
29

30 onWriteRequest : async (data , o f f s e t , withoutResponse , c a l l b a c k) =>
{

31 t ry {
32 // parsing command
33 const re sponse = await commandParser . parse (data . t oS t r i ng ("utf-8

")) ;
34

35 // sending ack
36 c a l l b a c k (C h a r a c t e r i s t i c .RESULT_SUCCESS) ;
37

38 i f (this . sendDataCallBack && response) {
39 this . sendDataCallBack (Buf f e r . from (` iR${ response }$ `)) ;
40 }
41 } catch (e r r) {
42 conso l e . warn ("Error in onWriteRequest" , e r r . message) ;
43 c a l l b a c k (C h a r a c t e r i s t i c .RESULT_UNLIKELY_ERROR) ;
44 }
45 } ,
46 onSubscr ibe : (maxValueSize , c a l l b a c k) => {
47 l o g g e r . i n f o ("New Subscription to BLE") ;
48

49 // saving callback for further usage
50 this . sendDataCallBack = c a l l b a c k ;
51

52 data . payload = null ;
53

54 this . s e n s o r s N o t i f i c a t i o n = s e t I n t e r v a l (async () => {
55 // retrieve current status payload
56 const payload = s ta tu s . getPayload () ;
57

58 // send payload to device if updated
59 i f (data . payload !== payload) {
60 data . payload = payload ;
61 c a l l b a c k (Buf f e r . from (payload)) ;
62 }
63 } , 1 ∗ 500) ;
64 } ,
65 onUnsubscribe : () => {
66 l o g g e r . i n f o ("Device unsubscribed") ;
67

68 // clearing callback and interval
69 this . sendDataCallBack = null ;
70 c l e a r I n t e r v a l (this . s e n s o r s N o t i f i c a t i o n) ;
71 } ,
72 }) ;

26

IoT Gateway and Edge Software Agent

4.5 Securing BLE Connection and Data Exchanges
As you can see in the previous code block, Bleno allows you to specify the secure
attribute for one or all of the Characteristic properties.

When a BLE connection is established, the Pairing process happens in two
to three phases: in the first phase devices exchange basic information about their
capabilities and what they can do. This exchange is not encrypted. In the next
step, each device generates and exchanges the necessary keys to prevent tampering
with the connection. The third (and optional) phase is called Bonding: each
device stores the authentication data they exchanged during pairing in order to
use them for future connections. [21]

As we can guess, the second phase is the most vulnerable and critical phase of
the process. To avoid security problems, there are two types of BLE connections
that can be established: Legacy and Secure.

Legacy connections can be implemented for BLE versions 4.0, 4.1 and 4.2. During
the process, devices exchange a value called a Temporary Key (TK) and use it to
generate a Short Term Key (STK), which is then used to authorize the connection.
Legacy BLE connections are insecure by default. Secure connections were introduced
with BLE 4.2 and are not backward compatible with BLE versions lower than 4.2.
Connections implement the Elliptic-curve Diffie-Hellman (ECDH) algorithm for key
generation and introduce a more complex key authentication process. Connections
can benefit from default protection from passive eavesdropping.[22]

Although the communication channel can be considered secure, it was deemed
appropriate to add an additional layer of protection at the application level. Every
time the gateway connects to the cloud management system, it generates a new
16-byte key and an initialization vector of the same length.

All data exchanged between gateway and smartphone will be encrypted using
AES-128-CBC algorithm. Like the gateway, also mobile devices will obtain - after
proper authentication and authorization - the same keys, thus enabling the clear
reading of exchanged data. At the end of each connection, the gateway will request
a new key from the server, which will invalidate the previous one.

4.6 Connection with Cloud: MQTT Client
To enable a two-way connection with the cloud server, the software integrates an
MQTT client based on the Mqtt.js library, fully written in Javascript.

After the initial configuration and all subsequent connections, the gateway calls
the auth webservice that returns an identifier and a JWT token. This information
will be used to authenticate the gateway to the MQTT broker.

27

IoT Gateway and Edge Software Agent

Figure 4.4: MQTT Authentication Flow

The MQTT Client library of choice in the Javascript ecosystem is MQTT.js.
This provided all the necessary things: support with MQTT 5 protocol, automatic
reconnection management, customizable keep alive timeouts, support for TLS and
client certificates.

In order to manage in a centralized way the connection with the cloud server, a
special class has been implemented that implements the entire flow and remains
accessible from any point of the application using the Singleton pattern. The
competencies of this class can be summarized as follows:

• Authenticate the gateway on the cloud system

• Manage the connection to the MQTT broker

• Manage the commands that may come from it, sending the results of the
query

• Maintain in a buffer eventual packets not sent due to absence of connectivity

For this last point, the NeDB file-based database was used. Again, the main

28

IoT Gateway and Edge Software Agent

requirement was lightness and NeDB provided the right balance between function-
ality and memory requirements. When a software module wants to send data to
the broker, if the gateway is off-line the method will write a row to the internal
database. As soon as the connection is restored, all the database contents are
emptied and sent to the server.

In order to maximize the consumption of data traffic, the payload of the data
exchanged on the broker has been serialized using not the classic JSON, but the
MessagePack binary format, the same used in popular open-source projects like
Redis or Fluentd, in its pure Javascript implementation msgpack5. [23]

Converting from JSON to MessagePack and vice versa is quite simple, using the
proper methods provided by the library. Even with small objects the improvement
is appreciable, as you can see from the example.

The difference between the object serialized with JSON.stringify and Mes-
sagePack is almost 30%: 54 bytes in the first case, 39 in the second one.

1 const { encode , decode } = r e q u i r e ('msgpack5') () ;
2

3 const myJsonPayload = {
4 data : 'foo' ,
5 value : 'bar' ,
6 timestamp : Date . now ()
7 } ;
8

9 const s t r i n g i f y = JSON. s t r i n g i f y (myJsonPayload) ;
10 const encoded = encode (myJsonPayload) ;
11

12 // prints "Object as String length = 54"
13 conso l e . l og ('Object as String length = ' + s t r i n g i f y . l ength)
14

15 // prints "Encoded Payload Length = 39"
16 conso l e . l og ('Encoded Payload Length = ' + encoded . l ength) ;

The encode function returns a Buffer that can be directly published to the
broker using the publish method of the MQTT client instance.

4.7 Managing Authorized Users
The functionality around which the whole system revolves is that of access control.
The gateway is connected to an electromechanical lock placed inside cabinets which
only authorized users can access. The opening requests are sent through the mobile
application with which all interested parties are equipped.

However, not all users are authorized to open any cabinet at any time of the day.
In fact, there are regularly updated authorization lists which are then distributed

29

IoT Gateway and Edge Software Agent

by the management system to the gateways which receive the list and save it
internally so that this list is always available even if the gateway is off-line.

Figure 4.5: Whitelist Management Flow

As soon as the gateway successfully establishes a connection to the management
server through the MQTT protocol it sends the timestamp of the last received
whitelist. If a more updated revision is available on the server, it will be sent to
the gateway which will store it.

The maintenance of the user list is the responsibility of an external system
integrated with the platform through APIs. When changes are applied, the
management server recalculates the new lists for each impacted gateway. If there
are changes, the new whitelist is sent to the gateways through a message published
on the topic associated with the gateway.

Once received, internally the whitelist is saved within a collection of the in-
tegrated NeDB database and held in persistence as well as in memory for quick
access to the information.

4.8 Auto-updating feature
Connected gateways are expandable by nature, and so has to be the software. Since
NodeJS is an interpreted language, updating the agent is as simple as updating
the files in the directory. At each software startup - at regular intervals - the agent

30

IoT Gateway and Edge Software Agent

makes a call to a web-service that checks for new available versions, along with
the URL to download it from and its signed digest to ensure that only authentic
packages get installed on the gateway.

At each release, a script automatically creates a .tar.gz archive containing the
delta of files updated since the previous release. Then the SHA-256 digest of the
same file is calculated and signed using RSA encryption with a private key.

Figure 4.6: OTA Update Archive Signature

When the gateway queries the server to check for new updates, the URL of the
package and its digital signature are returned. The file is downloaded, the bash
recalculated, and the signature verified through the reverse process of public key
decryption. If the two hashes differ, the update is discarded and deleted.

Figure 4.7: OTA Update Archive Verification

31

Chapter 5

Mobile Application

The largest group of users of the platform is made up of operators who move
around the area and go to the various cabinets located throughout the territory for
periodic maintenance activities.

The tool considered most functional for them is certainly a mobile application
that makes it feasible to exploit the versatility and convenience of the smartphone
that everyone has.

The emphasis was mainly on the usability and ease of use of the application,
especially considering the audience not too expert in computerized tools.

There are three main functionalities that the application must satisfy:

• connection to the gateway for opening the lock

• initialization of new gateways to be installed or replaced

• receiving notifications and alerts

Obviously, in order to access the application it is necessary to have appropriate
login credentials and access to the different features will depend on the role
associated with the user.

For this project it was decided to opt for a hybrid app based on the Apache
Cordova framework. The main drivers of this choice can be summarized in these
points:

• significantly shorter development time: since all the GUI is done in HTML
and Javascript, this part can be totally shared between the Android and iOS
app. The use of VueJS combined with Vuetify has made the experience
satisfying and fluid, as well as perfectly aligned with Google’s Material Design
specifications.

32

Mobile Application

It is also possible to reuse and share libraries originally written for the Agent
or the front-end and vice versa.

• use of native features: thanks to the plugins offered by the community,
the integration of features such as Bluetooth, locations and maps, fingerprint
reader and bar-code required limited adoption efforts

• Over-The-Air updates: native code and static JS assets can be updated
independently. Leveraging the Codepush service in Microsoft’s Appcenter
suite, it was possible to distribute updates out of the store, allowing small
changes or fixes to be distributed almost in real time across the entire user
base.

5.1 Anatomy of Application
As mentioned earlier, this module basically started from a VueJS project. The
core of the application is in fact developed in JavaScript, and once compiled will
produce a set of static assets that will be encapsulated within our native app.

A wide ecosystem has been created around VueJS, with many community
contributions that have extended functionality by drawing on other popular projects,
such as in our case Apache Cordova. Thanks to the vue-cli-plugin-cordova
plugin, in fact, it was possible to integrate the functionalities of the previously
mentioned framework and at the same time to apply the necessary changes to
guarantee its correct functioning, such as configuring the router and the paths
where to place the files.

Below are the main plugins used in the implementation of the native application:

• cordova-plugin-ble-central: this plugin enables communication between a
phone and our Bluetooth Low Energy (BLE) peripheral implemented through
the gateway agent

• cordova-plugin-fcm-with-dependecy-updated: this plugin simply inte-
grate the Firebase Cloud Messaging features in order to allow app to receive
push notifications

• cordova-plugin-code-push: this plugin coming from Microsoft brings the
dynamic client update capability through OTA

• cordova-plugin-secure-storage: sensitive data as tokens are stored in en-
crypted way on the device. This plugin was combined with vuex-persiststate
in order to avoid saving in local storage

33

Mobile Application

• phonegap-plugin-barcodescanner: as the name suggests, with this plugin
you can capture barcodes or QR codes using your smartphone camera

• cordova-plugin-nativegeocoder: with this plugin it is possible to convert
a location into a full address and vice versa.

5.2 Access to nearby cabinets
The main user of this system in terms of numbers is definitely the field operator who
goes to the cabinets for routine activities. Operators can open only the cabinets in
their immediate vicinity so all interaction will take place using the BLE connection.

Figure 5.1: Scan and connection to nearby Gateway

The screenshots above illustrate the main flow from the welcome screen to the
details tab of a gateway. The scan shows all detected devices that are exposing a
specific service and that comply with the naming convention. Whenever a gateway
is recognized, human-readable information is downloaded from the server to enrich
the list with useful information.

34

Mobile Application

The operator can quickly consult some information related to the functioning of
the gateway:

• internal temperature

• presence of power supply

• battery level (if no power supply is detected)

• type (2G, 3G, LTE) and strength of the mobile network signal

• connection to the data network and cloud server

Once connected, opening the door is as simple as pressing the Unlock button. The
application will generate an opening request containing information about the user
and the current timestamp, it will be encrypted with AES and sent to the gateway.
If the packet is valid and the user is found to be valid and authorized, then the
gateway will send the unlock signal to the lock. If the lock is not opened within 10
seconds, the operation will be cancelled and the lock will be locked again.

Figure 5.2: Open door and close message

35

Mobile Application

To prevent locks from being inadvertently left open, the platform implements
an alert mechanism: if an unlock request is made but the user wanders out of BLE
coverage range, the gateway will send a message to the cloud management server,
which then sends a push notification to the device and informs of the forgetfulness.

5.3 Initialization of new gateways
In order to operate properly, each gateway must be surveyed at a specific location
and pass a testing procedure that attests to the proper assembly of components. A
wizard has been implemented directly in the mobile application.

Figure 5.3: Gateway initialization Wizard

The first part of the process involves acquiring the current location: along with
latitude and longitude, the full address is also read through the internal Geocoder
built into Android. The QR-Code of the installation site and the barcodes (EAN13
encoded) of the SKUs of the installed parts, on the other hand, can be read through
the barcode reader integrated in the application.

The following part, on the other hand, foresees the acquisition of preliminary
information (such as the reading of the SIM serial as well as a check of the mobile

36

Mobile Application

Figure 5.4: Gateway self-diagnostic tests

network signal quality and the version of the agent running on the gateway) and
the testing of the functionality of the main components: LEDs, lock release and
lock, verification of door and power sensors.

Each test is interactive, requiring the installer to provide confirmation that the
output is as expected. Only when all tests have given a positive feedback, it is
possible to proceed to the actual initialization phase. The captured data is sent to
the management server to generate the provisioning data. It will be the mobile
application that will send them via BLE to the gateway. Once the data exchange is
finished, the gateway is restarted and the procedure can be considered completed.

A very similar procedure is designed to allow the replacement of one or more
previously installed components. In addition to the latter it is possible to launch a
total reboot of the gateway or a reset to factory settings.

The similarity between the installation and replacement processes made it
possible to reuse many of the components made for the former in the latter as well.
The versatility of VueJS was thus able to express itself completely.

37

Mobile Application

Figure 5.5: Gateway maintenance features

5.4 Creating OTA Updates

Generally, when you need to distribute an update to an application, you need to
compile the source code, generate an .apk file (in the case of Android) or an .ipa
file (in the case of iOS), sign it with developer certificates and upload it to the
platform’s app store.

Apart from the technical time required to produce the updated file, once
submitted it can take several hours (or in some cases days) before it is validated
and officially published. Only at this point the users of our application will be able
to download the updated version on their device. So what if you need to distribute
an urgent patch or a hotfix to the whole installed base? Services like AppCenter
CodePush by Microsoft [24] are born to solve this specific need.

Each time you launch the app, you can query Code Push to see if there are
any new updates that you can install. If available, it is downloaded and installed,
regardless of the updates available on the Store.

38

Mobile Application

Figure 5.6: Appcenter CodePush

However, this approach has limitations: an OTA update can only concern the
GUI part (the one made in Javascript) and not the native part. If you need to
update a library or add a new plugin, you must go through a submission to the
store. Each update package is therefore tied to the version of the binary for which
it was compiled. It is possible in any case to intervene on the target binary version,
thus having more control over which updates each binary can receive without
having compatibility problems.

If desired to test a new feature on only a portion of your user base, CodePush
allows you to specify a roll-out percentage, or conversely mark an update as
mandatory for everyone.

39

Chapter 6

Optimizing time series DB
with PostgreSQL

A typical IoT solution scenario involves data from devices being historicized and
accessed using time as the primary criteria. Depending on how many devices are
on the system and how often they are updated, the size of these databases can
grow significantly in a short period of time.

These types of databases have unique characteristics. Firstly, the tables look a
lot like a log file to which new rows are appended. New rows can be inserted but
never updated, except when such rows must be deleted because they are too old
for the business. Moreover, the new rows are always inserted in their natural order
(from least to most recent) except for some rare exceptions, for example when the
gateways are off-line. In these cases the data will be retransmitted in bulk, but
still in chronological order.

6.1 Data types and Indexes consideration
The table in which the information from the gateways is stored has been deliberately
kept very simple. The columns present information on:

• timestamp

• gateway identifier

• identifier of the user who generated it (optional)

• event type

• JSON payload

40

Optimizing time series DB with PostgreSQL

To speed up data entry operations, no foreign keys to keys in other tables have
been added. Since the data types are very small, a 2-byte integer is largely sufficient.
Since the data can have a heterogeneous structure, a Jsonb field was used to save
the payload.

CREATE TABLE "public"."gateways_data" (
"logged_at" timestamp NOT NULL DEFAULT now(),
"gateway_id" uuid NOT NULL,
"user_id" uuid,
"type" int2,
"payload" jsonb,
PRIMARY KEY ("logged_at","gateway_id")

);

To allow fast access to the rows of the table, it is necessary to prepare the
right indexes. The default index used by PostgreSQL is a BTree index. This type
of index is fine for different types of data, but as the data grows it tends to be
intensive to maintain and grow in size. BTree indexes are particularly good when
you want to derive a single tuple from the table. For time series data, however,
the most common scenario involves querying over a range of time. In this specific
case it is much more useful to use a BRIN (Block Range Index): instead of keeping
track of every single time value, a BRIN index keeps track of the minimum and
maximum value over a range of pages in the table. Since in the time series database
there is a direct correlation between time value and physical page on the disk, this
type of index is particularly efficient. [10]

CREATE INDEX gateways_data_logged_at
ON gateways_data

USING BRIN (logged_at)
WITH (pages_per_range = 64)

The higher the pages per range, the lower the selectivity of our index, so the
value of pages_per_range must be weighted according to the queries that are
typically made. Since the gateway_id column uses UUID, an index of type BTREE
has been chosen because it is the one that works best with this type of data.

CREATE INDEX gateways_data_gateway_id
ON gateways_data

USING BTREE (gateway_id, logged_at DESC)

No matter how well you optimize indexes and data types, there will come a
time when performance will begin to degrade because the overhead introduced by
indexes is no longer negligible. The natural solution is to keep datasets and their
respective indexes small.

41

Optimizing time series DB with PostgreSQL

6.2 Table partitioning as solution
For databases with extremely large tables, partitioning is the ideal solution to keep
performance consistent over time and make maintenance much easier. Partitioning
splits a table into multiple tables, and generally applications accessing the table
don’t notice any difference, other than being faster to access the data that it needs.
Splitting the table into multiple tables allows execution of the queries over much
smaller tables and indexes to find the data needed. Even without any particular
optimization, scanning a 10GB table will definitely be faster than scanning a
100GB table. The advantages are also present in the management of indexes: each
table will have a smaller dataset and consequently smaller indexes that are easier
to update. If data needs to be periodically deleted, purging also becomes faster:
delete statements will create dead rows that need to be vacuumed. With table
partitioning a multiple delete becomes a simpler and faster table drop.

6.3 PostgreSQL partitioning methods
Postgres provides three built-in partitioning methods:

• List Partitioning: partition a table by a list of known values, like categories or
countries

• Hash Partitioning: partition a table by applying a hash function on the
partition key. This method is useful when there is no list of predefined values
on which to perform a logical division of the data, such as product ID codes.

• Range Partitioning: partition a table by a range of values. The table containing
data can be divided by year, month or week. This naturally fits the needs of
time series databases.

The choice of partitioning criteria is a crucial aspect that can positively or
negatively affect performance. The choice must respect the nature of the data but
also how they are accessed.

In our specific case the data is read on a weekly basis and in chronological order.
Using range partitioning a split of the tables by date has been applied, creating a
partition for each week of the year.

We are going to recreate a new table, specifying partitions by range of the field
“loggedat.

CREATE TABLE "gateways_data" (
"logged_at" timestamp NOT NULL DEFAULT now(),
"gateway_id" uuid NOT NULL,

42

Optimizing time series DB with PostgreSQL

"user_id" uuid,
"type" int2,
"payload" jsonb,
PRIMARY KEY ("logged_at", "gateway_id")
)
PARTITION BY RANGE ("logged_at");

Now we have to create tables for each weeks we want to keep on our database:

CREATE TABLE "gateways_data_2021w13" PARTITION OF "gateways_data"
FOR VALUES FROM ('2021-03-29') TO ('2021-04-04');

CREATE TABLE "gateways_data_2021w14" PARTITION OF "gateways_data"
FOR VALUES FROM ('2021-04-05') TO ('2021-04-11');

Inserting data will not require any particular addition to our query. Let’s create
some rows with the following query:

INSERT INTO "gateways_data"
("logged_at", "gateway_id", "user_id", "type", "payload")
VALUES
('2021-04-03 9:00:01', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-04 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-05 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-06 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-07 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-08 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-09 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-10 9:00:00', '...', null, 1, '{ "foo": "bar"}'),
('2021-04-11 9:00:00', '...', null, 1, '{ "foo": "bar"}');

If we do a SELECT query over the main table, it will returns all rows as
expected:

SELECT
"logged_at", "type", "payload"
FROM "gateways_data";

logged_at	type	payload
2021-04-03 09:00:01	1	{"foo": "bar"}
2021-04-04 09:00:00	1	{"foo": "bar"}

43

Optimizing time series DB with PostgreSQL

2021-04-05 09:00:00	1	{"foo": "bar"}
2021-04-06 09:00:00	1	{"foo": "bar"}
2021-04-07 09:00:00	1	{"foo": "bar"}
2021-04-08 09:00:00	1	{"foo": "bar"}
2021-04-09 09:00:00	1	{"foo": "bar"}
2021-04-10 09:00:00	1	{"foo": "bar"}
2021-04-11 09:00:00	1	{"foo": "bar"}

Exploring the newly created partitioned tables instead, we can see that 2 of
the 9 rows inserted have been created in the first table, while the remaining 7 in
the second one. The DBMS took care of everything by making the partitioning
operation transparent to the user.

SELECT
"logged_at", "type", "payload"
FROM
"gateways_data_p2021w13";

logged_at	type	payload
2021-04-03 09:00:01	1	{"foo": "bar"}
2021-04-04 09:00:00	1	{"foo": "bar"}

SELECT
"logged_at", "type", "payload"
FROM
"gateways_data_p2021w14";

logged_at	type	payload
2021-04-05 09:00:00	1	{"foo": "bar"}
2021-04-06 09:00:00	1	{"foo": "bar"}
2021-04-07 09:00:00	1	{"foo": "bar"}
2021-04-08 09:00:00	1	{"foo": "bar"}
2021-04-09 09:00:00	1	{"foo": "bar"}
2021-04-10 09:00:00	1	{"foo": "bar"}
2021-04-11 09:00:00	1	{"foo": "bar"}

Despite the simplicity of the commands, creating individual table partitions is
a tedious and repetitive process. We could manage this at the application level,
however the pg_partman extension allows us to manage this in an automated

44

Optimizing time series DB with PostgreSQL

manner [25].

This is simple as running this query:

CREATE EXTENSION pg_partman;
SELECT
partman.create_parent ('public.gateways_data',
'logged_at',
'native',
'weekly');

With this query pg_partman will periodically create new partition table on
weekly base and if need will prune tables containing old data, keeping the whole
system efficient during time.

UPDATE
partman.part_config
SET
retention_keep_table = FALSE,
retention = '3 month'
WHERE
parent_table = 'public.gateways_data';

45

Chapter 7

Adoption of DevOps
practices

Software development cycles have become much tighter in recent years. With the
rise of Agile methodologies, developers are trying to make new features available
as quickly as possible: releases that used to be monthly can now be daily or even
hourly. To achieve this, different developers can work in parallel on different features
or modules of the same application and individually commit their changes to a
shared repository. Therefore, a system that facilitates all testing and integration
operations is vital. It is in this scenario that DevOps practices have spread and
are becoming the de facto standard of recent years.

7.1 The Agile Development
The Agile model, as opposed to the Waterfall model or other traditional software
processes, it proposes an approach less structured and focalized on the objective to
deliver to the customer, quickly and frequently, working and quality software.

In the Waterfall model the phases of Analysis, Design, Implementation and
Testing follow each other in a chronological and well-defined sequence: a new phase
starts when the previous one ends. A change of requirements, or the integration of
new functional specifications lead to the need to rework some components of the
software, causing inefficiency and waste of time.

The Agile model requires these phases to be repeated regularly, as the devel-
opment process is divided into individual units that are analyzed, implemented
and tested independently. A crucial aspect in the Agile model is the acquisition of
feedback: the sooner errors in realization or specification are identified, the sooner
they can be corrected, decreasing the related costs.

Such a work organization also allows for high parallelization, as each individual

46

Adoption of DevOps practices

unit can be worked on by a different team at the same time. The high efficiency
that can be achieved, however, must also be supported by tools that facilitate
all routine activities such as testing, distribution and production. This is where
the concept of DevOps comes from, focusing on the concepts of automation and
timeliness.

Figure 7.1: CI/CD cycle

7.2 Continuous Integration and Deployment
Continuous Integration is about automating the build phases through pipelines:
developers regularly add changes to code in a centralized repository, with builds
and tests performed automatically in order to find and fix bugs earlier, improve
software quality, and reduce the time required to validate and publish new updates.
When developers commit changes to their code (using Git for example), the build
management system automatically creates a build and tests it. If the test fails, the
system notifies the team to fix the code. This practice helps software teams and
maintains code in a deployable state.

7.3 Continuous Delivery and Deployment
Every time the pipeline builds and tests the code changes, the Continuous
Delivery automatically prepares new artifacts to be deployed. Continuous
Delivery is the natural consequence of Continuous Integration, as it allows all code
changes to be distributed to the testing and/or production environment after the

47

Adoption of DevOps practices

build phase, allowing developers to automate testing and verify the application
of updates before making them available to customers. These tests can include
interface testing, load testing, integration testing, API reliability testing, and more.

Continuous Deployment completes Continuous Delivery: new artifacts
are automatically released to various environments without explicit approval or
manual steps. The new deployment is monitored with health-checks: in case of
problems rollback to the previous version can be done.

7.4 Benefits of CI/CD
The benefits of adopting a CI/CD system are obvious:

• Automated software release (across multiple environments): continuous
deployment allows developers to prepare builds and test code changes for
production release more efficiently and quickly.

• Increased developers productivity: Freeing developers from manual and
time-consuming tasks improves productivity, as well as incentivizing the
adoption of practices that reduce the number of errors and bugs in software
(testing).

• Faster detection and resolution of bugs: more comprehensive and fre-
quent testing allows bugs to be detected before they become serious problems.

• Faster updates: new versions are released faster and more frequently because
builds are always available, tested, and ready for deployment.

7.5 The selected tools
Declining Devops principles requires architecting a CI/CD pipeline that relies on a
set of tools that may also be open-source that works together with each other.

• Source Code repository: Git
is an archive in which the various modifications of the source code are saved
and versioned. It allows you to keep track of all the changes made over
time, but most importantly it allows multiple developers to work on the same
codebase at the same time. Git was born in 2005 from the hands of Linus
Torvalds and has become the most popular and used system in the world. It
is the basis of popular services such as Github, BitBucket, GitLab.

• Artifacts Format and Registry: Docker Docker Registry
Each new commit corresponds to an artifact build. In our case, a new Docker
image is produced and saved to a local registry.

48

Adoption of DevOps practices

• Orchestration: Docker Swarm
Docker swarm is a container orchestration tool that allows managing multiple
containers deployed across multiple host machines. One of the key benefits
associated with the operation of a docker swarm is the high level of availability
offered for applications.

• CI/CD pipeline: Drone.io
Drone is a Continuous Delivery system built on container technology. It allows
defining and executing Pipelines inside Docker containers writing them using
a simple YAML configuration file.

7.6 Brief Comparison of CI/CD tools
Although there are several CI/CD solutions on the market, the choice has been
restricted to all those solutions that were open-source and installable on-promise.
The simplicity of installation and configuration are a decisive plus for the choice.

• Jenkins: is perhaps the most mature and well-known project. It is an
open-source Java-based automation server and has a solid community and
has 1400+ plugins for every need. It’s a highly versatile and powerful tool,
however this is reflected in higher effort given the complexity of configurations
and maintenance. It does not support Docker natively, but only through
plugins. Scaling is possible by installing multiple runners on multiple hosts.

• GitLab CI: This tool allows you to host on your servers all the tools needed
for the entire software lifecycle without the need of plugins: code repository,
Docker repository, pipeline management. Unfortunately, these features have
proven to be redundant with the existing infrastructure.

• Drone.io: despite being the youngest project, it started as a container-native
and is written in Go. It integrates with the versioning solution of your choice
(Github, Bitbucket, etc...) through webhooks and thanks to the use of Docker
can be installed virtually anywhere.
Docker is widely used in pipeline execution too: each step is executed in a
dedicated container that can be customized according to your needs. It is
therefore possible to take advantage of knowledge already gained without
learning a new scripting language. Official plugins extend the functionality,
and allow you to compose complex workflows with a block logic: clone, build,
test, deploy.

49

Adoption of DevOps practices

Figure 7.2: Drone.io task execution view

7.7 Defining a pipeline
Pipelines help to automate steps in your software delivery process, such as initiating
code builds, running automated tests, and deploying to a staging or production
environment. Unlike other solutions, where the definition of a pipeline can be a
long and complex operation, Drone provides that the pipeline is defined in a YAML
file saved within the Git repository.

7.7.1 Structure of a pipeline

Listing 7.1: Drone.io Pipeline structure
1 kind : p i p e l i n e
2 name : Bui ld ing Backend
3

4 s t ep s :
5 # installing required node dependencies
6 − name : I n s t a l l Dependencies
7 image : node

50

Adoption of DevOps practices

8 commands :
9 − yarn i n s t a l l

10 # building sources
11 − name : Bui ld ing Sources
12 image : node
13 commands :
14 − yarn bu i ld
15 # running migrations and seed file
16 − name : Bui ld ing Sources
17 image : node
18 commands :
19 − yarn migrate
20 − yarn seed
21 # running unit tests
22 − name : Running Tests
23 image : node
24 commands :
25 − yarn t e s t
26 # creating new docker image and save to registry
27 − name : Creat ing Image
28 image : p lug in s / docker
29 s e t t i n g s :
30 username : foo
31 password : bar
32 repo : p r o j e c t /module
33 tags : l a t e s t

As we can see, each step of the pipeline is defined by a set of attributes (name,
image and commands) and will be executed if the previous one has been completed
successfully. The Docker image used can be an official image (available on Docker
HUB) or a custom image made for the purpose.

The pipeline will be executed on each commit made to the repository. Drone
gives you the possibility to set triggers, such as a push to a specific branch (Listing
7.2), or following a pull request (Listing 7.3).

Listing 7.2: Pipeline example n.1
1 kind : p i p e l i n e
2 name : Bui ld ing Backend
3

4 s t ep s :
5 −
6 t r i g g e r :
7 branch :
8 − master
9 − f e a t u r e /*

51

Adoption of DevOps practices

Listing 7.3: Pipeline example n.2
1 kind : p i p e l i n e
2 name : Bui ld ing Backend
3

4 s t ep s :
5 −
6 t r i g g e r :
7 branch :
8 − master
9 event :

10 i n c lude :
11 − push
12 − pu l l_reques t

7.7.2 Running Services
In order to perform integration tests, it may be necessary to have services available
such as a DBMS or shared storage such as Redis. (Listing 7.4) These containers will
be initiated and made available to the other steps in the pipeline. This operation
allows you to replicate for each feature you are developing a faithful reproduction of
an environment that is fully corresponding to the production one. Tests executed
will be representative of the situation that could occur in production, allowing to
easily intercept problems and verify the resolution thanks to the repeatability of
tests at any time.

Listing 7.4: Pipeline Services
1 kind : p i p e l i n e
2 type : docker
3 name : d e f a u l t
4

5 s e r v i c e s :
6 − name : r ed i s −s e r v e r
7 image : r e d i s
8 − name : postgres −db
9 image : po s tg r e s :12.2 − a l p i n e

10 s t ep s :
11 −

7.7.3 Executing Deployment
As soon as an artifact has been generated and passed all quality tests, it can
be deployed on a development or production server. This phase is the so-called
continuous deployment. In the Drone ecosystem we find plugins that can take
care of releasing the new code on known cloud environments such as Amazon AWS,

52

Adoption of DevOps practices

Google Cloud or Kubernetes. If these plugins are not suitable, it is possible to run
commands directly on remote machines using SSH. It is not the most fashionable
solution but it allows you to shape the deployment process according to your needs.

Listing 7.5: Pipeline Deployment
1 kind : p i p e l i n e
2 type : docker
3 name : d e f a u l t
4

5 s e r v i c e s :
6 − name : r ed i s −s e r v e r
7 image : r e d i s
8 − name : postgres −db
9 image : po s tg r e s :12.2 − a l p i n e

10 s t ep s :
11 −
12

13 − name : ssh commands
14 image : appleboy /drone−ssh
15 s e t t i n g s :
16 host : 1 . 2 . 3 . 4
17 username :
18 f rom_secret : ssh_username
19 key :
20 f rom_secret : ssh_key
21 s c r i p t :
22 − echo h e l l o
23 − echo world

7.7.4 Sending Notification
Once the pipeline has completed its course, or errors have occurred, all that remains
is to notify the appropriate team. Notifications can be sent via email, Telegram, or
even on a Slack channel. Like everything seen so far, notifications consist of a step
executed by a Docker image.

53

Chapter 8

Conclusions

The development of this thesis was an opportunity for a multidisciplinary study
focusing on the world of the Internet of Things. The project was followed in all its
phases: from the realisation of the first prototypes, to the definition of the system
specifications in agreement with the client, and the concrete development of the
functional components described in the previous chapters.

Although JavaScript was the fundamental language used, there were several
design challenges to which a solution had to be found.

The backend cloud component is the largest and also the most critical, as it
represents the core element of the platform. It was essential to structure it in such
a way as to make everything maintainable and above all evolutionary.

Software design principles such as the Separation of Responsibilities (and all
the 5 SOLID principles that follow from it) combined with the main patterns, have
made the code base organised, reusable and above all comprehensible even to those
approaching the project for the first time.

In order to make the platform scalable according to the volume of traffic to
be managed, it was made decentralised with a microservices architecture. One
benefit of this is improved failure tolerance, thanks to the elimination of single
points of failure. However, such an architecture requires effective communication.
The ideal solution in this scenario is the use of queues and the old-school Producer
and Consumer pattern.

NodeJS and its asynchronous nature performed exceptionally well, but tools
such as Redis, MQTT and Docker were key allies in achieving this result. The use
of Docker in particular has facilitated all phases of the implementation process:
with just a few steps, it is possible to configure a development environment that is
completely similar to the production environment and consistent across all team
members. The same configurations are then used within the CI/CD pipeline for
testing the artifacts produced and their automatic deployment to the staging and
production machines.

54

Conclusions

The software on the gateway, on the other hand, imposed totally different needs.
Computational and memory resources are significantly lower than those of any
server, so everything must be used carefully to avoid memory leaks that could
lead to deadlocks. The software must also take into account the possible lack
of connectivity and take mitigating action to ensure that the system will still
operate correctly. For interfacing with sensors and actuators, no high-level libraries
were available, so everything was implemented by reading and writing from file
descriptors or worse, serial interfaces. Readings have to be normalised and cleaned
of glitches using debouncing before being saved or transmitted.

The bridge between the gateway and mobile app was instead the BLE protocol,
in which the former operates as a peripheral and the latter as the central. This
required structuring the information schematically and concisely for transmission
without requiring everything to be split into smaller fragments that remain within
the 20-byte payload size limits. Last but not least, optimising the database is a
guarantee that performance remains constant over time.

Despite the fact that only one programming language was used, the solutions
to the design problems were all different and allowed transversal skills to be
developed and strengthened, thus consolidating the professional profile of the
full-stack developer.

8.1 Future works and improvements
One of the explicit requirements of the project is its expandability. The availability
of environmental data can be important in the creation of a smart city, and gateways
installed throughout the territory can be probes capable of collecting information
on the surrounding environment. Future developments will undoubtedly involve
the integration of new sensors to extend the potential of the platform.

The platform is currently set up to collect information from sensors of various
kinds, such as those for particulate matter and electromagnetic fields. If activated
on a large scale, it is easy to assume a huge amount of data to be analysed, so a Big
Data Analysis engine becomes a fundamental aid to the correlation and analysis of
data, fluctuations in time and variations on a geographical basis. Two of the most
famous tools are Apache Hadoop and Apache Spark, to name just a few.

From an architectural point of view, porting to Kubernetes orchestration tech-
nology could be of strategic value, making it possible to benefit from the managed
services of major cloud service providers such as Google or AWS.

55

Bibliography

[1] Internet of things. en. Page Version ID: 1041593457. Aug. 2021. url: https:
//en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=
1041593457 (cit. on p. 1).

[2] Node.js. Node.js. en. url: https://nodejs.org/en/ (cit. on p. 8).
[3] V8 JavaScript engine. url: https://v8.dev/ (cit. on p. 8).
[4] Design overview — libuv documentation. url: http://docs.libuv.org/en/

v1.x/design.html (cit. on p. 8).
[5] About npm | npm Docs. url: https://docs.npmjs.com/about-npm (cit. on

p. 8).
[6] Yarn. en. url: https://yarnpkg.com/en/ (cit. on p. 8).
[7] Dhruv Patel. Demystifying Vue.js internals. en. May 2018. url: https :

//medium.com/js-imaginea/the-vue-js-internals-7b76f76813e3 (cit.
on p. 9).

[8] Apache Cordova. url: https://cordova.apache.org/ (cit. on p. 9).
[9] Architectural overview of Cordova platform - Apache Cordova. url: https:

//cordova.apache.org/docs/en/latest/guide/overview/index.html
(cit. on p. 9).

[10] CREATE INDEX. en. Aug. 2021. url: https://www.postgresql.org/
docs/12/sql-createindex.html (cit. on pp. 10, 41).

[11] NOTIFY. en. Aug. 2021. url: https://www.postgresql.org/docs/12/sql-
notify.html (cit. on p. 10).

[12] Redis. url: https://redis.io/ (cit. on p. 10).
[13] MQTT - The Standard for IoT Messaging. url: https://mqtt.org/ (cit. on

p. 11).
[14] An Open-Source, Cloud-Native, Distributed MQTT Broker | EMQ X. url:

https://www.emqx.io/ (cit. on p. 12).

56

https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1041593457
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1041593457
https://en.wikipedia.org/w/index.php?title=Internet_of_things&oldid=1041593457
https://nodejs.org/en/
https://v8.dev/
http://docs.libuv.org/en/v1.x/design.html
http://docs.libuv.org/en/v1.x/design.html
https://docs.npmjs.com/about-npm
https://yarnpkg.com/en/
https://medium.com/js-imaginea/the-vue-js-internals-7b76f76813e3
https://medium.com/js-imaginea/the-vue-js-internals-7b76f76813e3
https://cordova.apache.org/
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://cordova.apache.org/docs/en/latest/guide/overview/index.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-createindex.html
https://www.postgresql.org/docs/12/sql-notify.html
https://www.postgresql.org/docs/12/sql-notify.html
https://redis.io/
https://mqtt.org/
https://www.emqx.io/

BIBLIOGRAPHY

[15] Clean Coder Blog. url: https://blog.cleancoder.com/uncle-bob/2012/
08/13/the-clean-architecture.html (visited on 03/14/2022) (cit. on
p. 13).

[16] Sam Newman. Building microservices: designing fine-grained systems. First
Edition. OCLC: ocn881657228. Beijing Sebastopol, CA: O’Reilly Media, 2015.
isbn: 978-1-4919-5035-7 (cit. on p. 15).

[17] Michael Szczepanik. Backend for frontend (BFF) pattern— why do you need to
know it? en. Nov. 2021. url: https://medium.com/mobilepeople/backend-
for - frontend - pattern - why - you - need - to - know - it - 46f94ce420b0
(visited on 03/14/2022) (cit. on p. 17).

[18] Sam Newman - Backends For Frontends. url: https://samnewman.io/
patterns/architectural/bff/ (visited on 03/14/2022) (cit. on p. 17).

[19] Sergio Prado. Linux kernel GPIO user space interface. en. url: https :
//embeddedbits.org/new-linux-kernel-gpio-user-space-interface/
(cit. on p. 21).

[20] GATT (Services and Characteristics) - Getting Started with Bluetooth Low
Energy [Book]. en. ISBN: 9781491949511. url: https://www.oreilly.com/
library/view/getting-started-with/9781491900550/ch04.html (cit.
on p. 24).

[21] Alexis Duque. Deep Dive into Bluetooth LE Security. en. Mar. 2018. url:
https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-
le-security-d2301d640bfc (cit. on p. 27).

[22] Understanding Bluetooth Security. en. url: https://duo.com/decipher/
understanding-bluetooth-security (cit. on p. 27).

[23] MessagePack: It’s like JSON. but fast and small. url: https://msgpack.
org/ (cit. on p. 29).

[24] Visual Studio App Center | iOS, Android, Xamarin & React Native. url:
https://appcenter.ms/ (cit. on p. 38).

[25] PG Partition Manager. original-date: 2012-09-05T05:04:46Z. Aug. 2021. url:
https://github.com/pgpartman/pg_partman (cit. on p. 45).

57

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://medium.com/mobilepeople/backend-for-frontend-pattern-why-you-need-to-know-it-46f94ce420b0
https://medium.com/mobilepeople/backend-for-frontend-pattern-why-you-need-to-know-it-46f94ce420b0
https://samnewman.io/patterns/architectural/bff/
https://samnewman.io/patterns/architectural/bff/
https://embeddedbits.org/new-linux-kernel-gpio-user-space-interface/
https://embeddedbits.org/new-linux-kernel-gpio-user-space-interface/
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://www.oreilly.com/library/view/getting-started-with/9781491900550/ch04.html
https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-security-d2301d640bfc
https://medium.com/rtone-iot-security/deep-dive-into-bluetooth-le-security-d2301d640bfc
https://duo.com/decipher/understanding-bluetooth-security
https://duo.com/decipher/understanding-bluetooth-security
https://msgpack.org/
https://msgpack.org/
https://appcenter.ms/
https://github.com/pgpartman/pg_partman

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis Goals

	Analysis and Design of the solution
	Functional Requirements
	System actors
	Platform Architecture
	The software stack: Javascript as full-stack language
	Technologies and Frameworks of choice
	NodeJS as main-runtime
	VueJS
	Apache Cordova
	PostgreSQL
	Redis
	MQTT
	Docker and Docker Swarm

	Cloud Back-end Module
	Monolithic vs Microservices architectures
	Main Functional Services
	The API Gateway
	Persistence and ORM

	IoT Gateway and Edge Software Agent
	The Gateway
	The Agent Software Component
	Interfacing electro-mechanical lock and sensors
	Implementing Bluetooth Low Energy (BLE) peripheral
	Securing BLE Connection and Data Exchanges
	Connection with Cloud: MQTT Client
	Managing Authorized Users
	Auto-updating feature

	Mobile Application
	Anatomy of Application
	Access to nearby cabinets
	Initialization of new gateways
	Creating OTA Updates

	Optimizing time series DB with PostgreSQL
	Data types and Indexes consideration
	Table partitioning as solution
	PostgreSQL partitioning methods

	Adoption of DevOps practices
	The Agile Development
	Continuous Integration and Deployment
	Continuous Delivery and Deployment
	Benefits of CI/CD
	The selected tools
	Brief Comparison of CI/CD tools
	Defining a pipeline
	Structure of a pipeline
	Running Services
	Executing Deployment
	Sending Notification

	Conclusions
	Future works and improvements

	Bibliography

