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Summary

Deep learning, as one of the most currently remarkable machine learning techniques,
has achieved great success in many fields such as speech recognition, image analysis,
and autonomous driving. However, the neural network requires billions of multiply-
and-accumulated operations, which makes the single-frame runtime enormous and
energy-hungry. To optimize these imperfections, researchers from the University of
Zurich and ETH Zurich developed a hardware accelerator named NullHop [1], which
is a flexible and efficient hardware accelerator architecture aiming at exploiting the
sparsity of neuron activations. NullHop uses a novel sparse matrix compression
algorithm to encode the input data into two elements: a Sparsity Map (SM) and a
Non-Zero Value List (NZVL). This scheme could enhance the overall computation
time and energy consumption owing to two main features: 1) its ability to skip over
zero-value pixels in the input layers without any wasted clock cycles and redundant
MACs. 2) The compression scheme reduces the requirements of external memory
and also the huge consumption brought with every memory access. This thesis
work mainly targets implementing a hardware accelerator based on NullHop in
Hardware Description Language (VHDL). The simulation results from ModelSim
show that the accelerator could accomplish one input layer computation with
dimension 6x6, 16 input channels, sparsity 84.375%, kernel size 3x3, 16 output
channels, ReLU enabled, 2x2 max pooling enabled in 2029 clock cycles. If the input
is 8x8x16, sparsity 81.05%, kernel size 3xx, ReLU and 2x2 max pooling enabled,
16 output channels the total time consumption is 4828 clock cycles. If the input
layer is 64x64x16, sparsity 16.39%, kernel size 3x3, 16 output channels, the total
time consumption is 738,834 cycles. The accelerator not only achieves a latency
reduction thanks to the sparsity of input data but also reduces the workload of
MACs since no zero-value pixel is forwarded to the computation unit(except for
very few special purpose pixels). Meanwhile, the ReLU and max pooling are done
on the fly during computation which could bring more enhancement. Furthermore,
different output channels of the CNNs are calculated simultaneously, which gives
the possibility to extend the accelerator’s range of application but with negligible
latency increment.
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Chapter 1

Introduction

Artificial Intelligence (AI) was first coined in the 1950s, and now it has become an
essential ridgepole of many scientific systems and industries. AI works by collecting
a massive number of data and analyzing with intelligent algorithms to allow the
whole network to learn from data characteristics automatically.

Nowadays, AI is a broad field of study with several primary concepts, including
Machine learning (ML), Neural Networks (NN), and Deep Learning (DL) as
shown in Figure 1.1. Among these, the study of Deep Learning has far-reaching
significance. The specific characteristic of Deep learning is that it trains the machine
to solve the problem on its own decision. Deep Learning explores the hierarchical
characterization of the model rather than the formulation and specification to
learn data features. Meanwhile, DL empowers the system to learn from historical
performance results to optimize its internal logic.

Figure 1.1: Artificial Intelligence Overview

Convolutional Neural Network (CNN/ConvNet) is a representative class
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Introduction

of Deep Learning models. CNN is a specialized type of neural network model
designed for image recognition. Its essential operation is “convolution”. The analysis
procedure of CNN requires tons of multiply-and-accumulate (MAC) operations.
The vast number of calculations makes the CNN model extremely energy-hungry
and has enormous latency. Moreover, at least two numbers are fetched from memory
for each MAC, which makes the energy and time consumption worse. Even if the
CNN is performed with modern hardware platforms such as graphical processing
units (GPUs), the performance is still unsatisfactory. For example, a 640x360 color
input frame requires about 2 billion MAC operations. The NVIDIA Tegra X1 GPU
does 60 billion operations per second (GOp/s) with a power consumption of about
10W, which means the GPU could process the input frame at a rate of 15Hz. The
result shows that this GPU’s power efficiency is about 6Gop/W, only about 6% of
its theoretical maximum performance. [1]

Due to the tremendous calculation pressure and the efficiency limitation of
commercial CPU/GPU, a hardware accelerator is one of the prime solutions to the
current dilemma. The hardware accelerator implemented by this thesis is based
on “NullHop” [1], which mainly focused on reducing the workload of Processing
Elements (PE) by exploring the sparsity of neuron activations. The input feature
maps are encoded with a particular algorithm to filter the zero pixels to let PEs
process only non-zero pixels. Meanwhile, since the number of data forwarded to
PEs is reduced, the impact due to every memory access is likewise less heavy.

The thesis is organized systematically in different chapters as follows:

• Chapter 2 reviewed the background of ML,NN and DL. The applied filed
of CNNs, the architectures of CNNs, and their corresponding mathematic
expressions are clarified in the following. Several techniques implemented by
this accelerator to reduce hardware costs and maintain a reasonable accuracy
are also explained.

• Chapter 3 interprets the architecture of this accelerator. Each hardware unit
is be discussed from the architecture level. The Data Path and control units
with Finite-state machines (FSM) are also explained.

• Chapter 4 presents the achieved results, and Chapter 5 is reserved for the
conclusion.

2



Chapter 2

CNN Background

2.1 Machine Learning overview
Machine Learning has become a pillar industry in the development of modern
society. This concept was first developed by Arthur Samuel, a computer scientist
at IBM and a pioneer in AI. Samuel designed a computer program to play checkers.
The program was unique in that the more it ran, the more it learned from experience,
the more accurate predictions it could make.

There are five main steps of machine learning:

1. Identify relevant data set and prepare these data as input for further analysis.

2. Choose an appropriate type of Machine Learning algorithm

3. Build an analytical model based on the chosen algorithm in step 2.

4. Train the model with the data set chosen in step 1, revising it as needed.

5. Run the model to generate classification results, predictions, or other findings.
See Figure 2.1.

Classical Machine Learning is often categorized by how its algorithm learns to
predict more accurate or perform more reasonable. There are four basic approaches:

• Supervised Machine Learning: also known as supervised learning. It is defined
since it uses labeled input data to train the analytical model to classify data
or predict outputs accurately.

• Unsupervised Machine Learning: also known as unsupervised learning. It
discovers hidden inference and data characteristics without any human inter-
vention. This type of Machine Learning relies on unlabeled data to discover
similarities and differences in information.

3



CNN Background

Figure 2.1: Machine Learning Steps

• Semi-supervised Machine Learning: This approach mixes the two preceding
types. The model is trained with a smaller amount of labeled data and a
large amount of unlabeled data for feature extraction, which makes it suitable
for solving problems with insufficient labeled data or problems with heavy
data pressure(because unlabeled data is less expensive and takes less effort to
acquire).

• Reinforcement Machine Learning: This approach is similar to the supervised
learning method but without sample data for training. It is trained through
trial and error to take the best action by establishing a reward system. The
reinforcement method is typically applied when training models to play games
or training autonomous vehicles to drive.

Nowadays, Machine Learning is successfully employed in a broad field of human
society and scientific area since it can analyze problems at a high speed and on
a large scale. The applied field concludes classification, regression, clustering, or
dimensionality reduction tasks of large sets of especially high-dimensional input

4
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data. Vast parts of our daily life, for example, image and speech recognition, web
searches, fraud detection, email/spam filtering, credit scores, and many more, are
powered by Machine Learning algorithms [2].

2.2 Neural Network Overview
Neural networks, also known as Artificial Neural Networks(ANNs) or simulated
neural networks(SNNs), are a subset of Machine Learning and also the essential
part of Deep Learning. Neural networks mimic the human brain, composed of four
main parameters: inputs, weights, a bias or threshold, and an output, as shown in
Figure 2.3. The algebraic formula is as Equ 2.1:

Output =
NØ

i=1
wixi + bias (2.1)

The architecture of NNs are comprised of an input layer, one or more hidden
layers, and an output layer. The input layer receives input data, the output layer
makes a classification or prediction about the input data, and the hidden layers
are considered as the networks’ core engine to do the analysis. What differentiates
a deep neural network and a basic neural network is the number of hidden layers.
Usually, a deep neural network has more than three hidden layers, while a basic
neural network has at most two or three hidden layers, as shown in Figure 2.2 [3].

Figure 2.2: Comparison between normal neural network and Deep Neural Net-
work [3]

There are three main categories of neural networks:

• Feedforward neural networks: also known as multi-layer perceptrons(MLPs).
Feedforward refers to the analysis direction flows from the input layer to
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the output layer. There are also various activation functions applied to
determine the output of MLPs. These activation functions will be explained
later in Section 2.4.1. Meanwhile, neural networks can be trained through
backpropagation, which means moving in the opposite direction from output
to input. This methodology is able to calculate and attribute the error of each
neuron, allowing further adjustments and result improvements.

• Convolutional Neural Networks: They are similar to feedforward networks.
This concept will be later explained in Section 2.4.

• Recurrent neural networks(RNNs): They employ sequential or time-series
data and feed the output from the previous step as input to the current stage.
Due to the particular input feature, RNNs are primarily leveraged in predicting
future outcomes, such as stock market predictions or sales forecasting.

Figure 2.3: Model of an artificial neuron

2.3 Deep Learning Overview
Figure 1.1 shows that Deep Learning is indeed a sub-field of Neural Network and
Machine Learning. Deep Learning is defined as a neural network that is composed of
multiple hidden layers, and these layers are specialized to represent data abstractions.
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Meanwhile, DL inherits the ability to imitate patterns that human brains does for
making decisions. Nevertheless, Deep Learning model is highly time-consuming in
analyzing and training process, it still remains superior in analysis and prediction
performance compared to other Machine Learning algorithms [4][5], as shown in
Figure 2.4 [6].

Figure 2.4: Comparison between performance of Deep Learning against other
Machine Learning algorithms. Results prove that Deep Learning benefits from
large amounts of data, whereas the performance increase of other machine learning
models plateaus. [6]

2.4 CNN Overview
Aforementioned, Convolution Neural Network is a popular discriminative Deep
Learning architecture with a deep feed-forward architecture and an astonishing
ability to generalize efficiently compared to networks with fully connected layers.
The superiority of CNN relies on the concept of weight sharing, which reduces the
number of parameters used during training. Due to lesser parameters, CNNs can
be trained smoothly and does not suffer overfitting [7]. CNNs are widely applied
in various fields, such as:

• Image classification: The researchers from University of Toronto trained a
large deep convolutional neural network to classify 1.2 million high-resolution
images from the ImageNet LSVRC-2010 contest into 1000 different categories.
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On the test data, the CNN model achieved top-1 and top-5 error rates of
37.5% and 17.0%, which is better than the previous state-of-art at that time.
[8]

• Vehicle Recognition: The researchers from University of Electronic Science
and Technology of China proposed a nine-layer neural network focusing on
computer vision for vehicle recognition. By employing Caffe framework, the
top-1 accuracy about the nine-layer network reached 92.25%, and the top-5
accuracy reached 97.51%. [9]

• Speech recognition: The researchers from IBM showed a tremendous improve-
ment on the order of 10-30% in acoustic modeling for speech recognition with
neural networks. This research also confirmed experimentally, with CNNs
showing improvements in word error rate between 4-12% relative compared to
other DNNs across different LVCSR tasks. [10]

• Medical imaging and diagnostics: The research from University of Liverpool
trained a convolutional neural network using a high-end graphics processor
unit on the Kaggle dataset to diagnose diabetic retinopathy from digital fundus
images and accurately classify its severity. On the data set of 80,000 images
used, the CNN model achieved a sensitivity of 95% and an accuracy of 75%
on 5,000 validation images. [11]

• Facial expression recognition: The researchers from Universiti Brunei Darus-
salam used a CNN model to perform automatic facial expression recognition
(AFER) on the Aff-Wild2 dataset and achieved an accuracy of 50.77% and an
F1 score of 29.16% on the validation set. [12]

CNNs extract high-level characteristics from input images with three main
common network layers: Convolutional Layer, Pooling Layer, and Fully Connected
Layer. The Convolutional Layer and Pooling Layer perform feature extractions.
The Fully Connected Layer maps the extracted features into final output. The
internal connections between stages are shown in Figure 2.5 [13].

2.4.1 Convolutional Layer
The Convolutional Layer is the essential stage of a Convolution Network that does
most computations. The CNNs analyze the input images as one or more matrices of
pixels, depending on the input channel depth. For a gray-scale image, the channel
number is one. A typical RGB image comprises three input feature map channels:
red, green, and blue color channels, as shown in Figure 2.6. This input is treated
as three matrices of size 3x3.

The general formula to calculate output feature map’s is as Equ 2.2 [14]:
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Figure 2.5: Full construction of CNN model [13]

Figure 2.6: RGB image

Ofm[co, ho, wo] =
Ci−1Ø
ci=0

Hk−1Ø
hk=0

Wk−1Ø
wk=0

×

(W[ci, co, hk, wk])Ifm[ci, Sho + hk, Swo + wk] + b[co])

0 ≤ co < Co, 0 ≤ ho < Ho,

0 ≤ wo < Wo, 0 ≤ hk < Hk, 0 ≤ wk < Wk

(2.2)
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It describes an input feature map Ifm with Ci channels; each channel is a feature
map of size [Hi ×Wi], interacting with kernel weights W of size [Ci ×Co ×Hk ×Wk],
and a bias term b of size [Co]. The distance between adjacent receptive fields is
defined by a stride parameter S. The filter’s output Ofm is the convolution output,
which is also a 3D matrix of size [Co × Ho × Wo]. Figure 2.7 presents the pseudo
code of a Convolutional Layer.

Figure 2.7: Pseudocode of Conv Layer

If the input feature map is a 6x6 RGB image for example, the input is treated as
a 3D array with three matrices from the mathematical point of view, each matrix
is of size 6x6. Imagine the filter is of size 3x3, since the input is three-channel type,
therefore each filter set is composed of three matrices, each matrix is of size 3x3. If
there exists in the filter bank four sets of filters, the output feature map will be a
four-channel feature map, each channel is a 4x4 matrix as shown in Figure 2.8 [1].

The CNNs are simple cascades of linear algebra operations without a non-linear
activation function. To solve the complex non-linear problems, an optional non-
linear activation function could be applied to the result of the Conv layer. Some of
the most popular functions are:

1. Rectified Linear Unit(ReLU) is a typical and simple activation function that
forces the activations to be greater or equal to zero. See Equ 2.3.

y =
I

0 x < 0
x otherwise (2.3)

2. Sigmoid function normalizes the output into range (0,1). It’s more computa-
tionally expensive compared to ReLU. See Equ 2.4.

y = 1
1 + e−x

(2.4)
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3. Hyperbolic Tangent function is the extended version of Sigmoid function, with
the activations in the range of (-1,1), as shown in Equ 2.5.

y = ex − e−x

ex + e−x
(2.5)

Figure 2.8: CNN main processing stages [1]

2.4.2 Pooling Layer
Pooling Layers, also known as down-sampling, conducts dimensionality reduction
to reduce feature map redundancy and network computation complexity. There
are two main types of pooling:

• Max pooling: An additional filter moves across output feature maps to select
the pixel with the maximum value. An example of a 2x2 non-overlapping
pooling stage is shown in Figure 2.9, which reduces the feature maps from 4x4
into 2x2.

• Average pooling: instead of obtaining the maximum value, the average pooling
calculates the average value within a particular range inside the current feature
map. See Figure 2.9.

2.4.3 Fully Connected Layer
The Fully Connected Layer(FC) is generally placed at the end of CNNs to convert
the two-dimensional feature map into a one-dimensional output feature map. This
layer combines all the features learned by the previous layers across the image
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Figure 2.9: Pooling layer

to identify the larger patterns. Equ 2.6 [14] explains the calculations performed
during FC layer, where Ci and Co are the number of neurons of two consecutive
layers. It also shows that an FC layer is a vector-matrix multiplication with the
weights arranged in a Ci × Co matrix(see Figure 2.10).

O[co] =
Ci−1Ø
ci=0

W[co, ci]I[ci] + b[co] 0 ≤ co < Co 0 ≤ ci < Ci (2.6)

2.5 CNN Variants

2.5.1 VGGNet
VGGNet is a Convolutional Neural Network architecture introduced by Karen
Simonyan and Andrew Zisserman in 2014. It is a pioneer in exploring how the depth
of the network influences the performance of a CNN. The researches demonstrate
that the representation depth is beneficial for the classification accuracy. [15]

VGG16 is comprised of 13 convolutional layers and 3 Fully Connected layers.
The input to VGG16 is a 224x224 RGB image; the kernel size is 3x3. Further
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Figure 2.10: Example of an FC layer and its transformation with vector-matrix
multiplication

details are shown in Figure 2.11 [16]. VGG19 extends the network to 19 layers in
total, which is also the winner of ILSVRC-2014. According to the reported results
from their research, by increasing the layer depth from 11 to 19, the error rate
drops from 29.6% to 25.5% regarding top-1 val.error on the ILSVRC dataset in
ILSVRC2014. [15]

Figure 2.11: VGG16 Architecture [16]
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2.5.2 GoogLeNet

GoogLeNet is a deep Convolutional Neural Network proposed by researchers from
Google in the ILSVRC2014. The network is 22 layers deep when counting only
layers with parameters. The overall number of layers employed is about 100. Its
architecture is shown in Figure 2.12 [17]. The network uses an average pooling
layer before the classifier, instead of fully connected layers. This modification
improves the top-1 accuracy by about 0.6%. GoogLeNet ranked the first among
other participants with a top-5 error of 6.67% on both the validation and testing
data during the ILSVRC2014. [18]

Figure 2.12: GoogLeNet Architecture [17]

2.5.3 ResNet

ResNet is proposed to overcome the degradation problem of CNNs when its depth
reaches limit. The CNN’s performance saturates or even starts degrading when
the layer number is too high, as shown in Figure 2.13 [19]. Because the gradient is
back-propagated to earlier layers, repeated analysis may cause the gradient to get
smaller. The novel ResNet is, in theory, capable of being extended to an infinite
depth without losing accuracy. According to the result from [19], the 152-layer
ResNet reaches a single-model top-5 validation error of 4.49%. Remarkably, the
50/101/152-layer ResNets are more accurate than the 34-layer one. No degradation
problem has been observed, and significant accuracy gains from the increased depth.
One version of ResNet is shown in Figure 2.14 [20].
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Figure 2.13: Increasing network depth leads to worse its performance [19]

Figure 2.14: ResNet-152 Architecture [20]

2.6 Preprocessing for CNN on accelerator

2.6.1 Temporal hardware accelerator platform

Temporal architectures are usually employed on general-purpose platforms, such as
CPUs and GPUs.

CPUs have multiple Arithmetic Logic Units(ALUs) that work synchronously
and perform an instruction on a vector of data. However, they are still the least used
for CNN inference or training due to the disappointing FLOPS and FLOPS/WATT
performance compared to other hardware platforms. [14]

GPUs are manycore architectures that are specifically designed for parallel
computation. Each core processes individual data that belongs to multiple threads
running simultaneously. GPUs are more efficient in DNNs training.

The performance of commercial CPUs and GPUs have kept improving in these
decades. Nevertheless, general-purpose platforms are not very prone to use sparsity
as an advantage. Thus, many FPGA and ASIC architectures leverage sparse
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matrices to accelerate the inference stage thanks to custom hardware. By exploiting
a suitable coding algorithm, the accelerator performance could be even further
advanced. This is the starting point of this thesis – to design a configurable,
independent hardware accelerator architecture, working with Sparse Matrix coding
algorithm, accelerating the CNNs training process using the sparsity of input data.

2.6.2 Reduced precision CNN
To solve the enormous energy consumption brought with every convolution opera-
tion, the precisions of activations and weights are limited. Meanwhile, the reduced
data precision also benefits the possible sparsity. However, the reduced precision
should also be sufficient to maintain a satisfying accuracy of the network. From the
researches [1][21][22], a custom branch of Caffe called ADaPTION is developed to
train networks from scratch and fine-tune existing 32-bit floating-point networks to
any customized precision for the parameters adopted during convolution using the
power2quant algorithm. This methodology achieved VGG16 67.5% Top-1 accuracy
after quantizing the weights and activations from 32-bit to 16-bit, with only 0.8%
compromised accuracy. Another surprising benefit is the increased sparsity brought
by the reduced precision. The average sparsity among all layers is increased from
57% with 32-bit precision to an extraordinary 82% with 16-bit reduced precision.
Maximum activation sparsity growth reaches nearly 50% per layer, as shown in Fig-
ure 2.15 [1]. To balance the trade-off between accuracy and hardware complexity,
a 16-bit fixed-point precision is adopted for the entire accelerator design.

2.6.3 Sparse Matrix Compression Algorithm
The CNN hardware accelerator implemented in this thesis uses a novel sparse matrix
compression scheme. In Machine Learning, sparsity refers to the percentage of zero
values among all values inside input data. The research on sparsity is beneficial
since zero value will not significantly impact a calculation. The Sparse Matrix
Compression Algorithm codes the input feature maps into two elements: a Sparsity
Map(SM) and a Non-Zero Value List(NZVL). The SM is a 3D matrix with the
same number of elements as the input feature maps. The only difference is that
the values inside SM are only 0s and 1s. The SM could be considered as replacing
every non-zero value inside the input feature maps with 1 but maintaining the
pixel’s original spatial coordinates. Equ 2.7 shows the mathematical relationship
between the original input data and SM.

SM(x, y, z) =
I

1 input(x, y, z) /= 0
0 otherwise (2.7)

For the simplicity of explanation, in the following part of the thesis, the pixel’s
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Figure 2.15: Sparsity before (orange) and after (blue) activations are quantized
to 16-bit fixed-point for VGG16 layers. Average over 1000 ImageNet images. [1]

spatial coordinates are represented as in Figure 2.6: x is the row number of the
pixel, y is the column number, and z is the input channel index.

The SM is applied to indicate the spatial coordinates of every non-zero pixel.
And the NZVL stores the pixel’s original value. The advantage of this coding
scenario is the enormous data size reduction. For the example in Figure 2.16, the
original input feature map is of size 4x4, if the pixel value is in 16-bit representation,
this input data size is 256 bits. However, with the SM & NZVL compression scheme,
the input map comprises a 16-bit SM and three pixel values. The total input data
size is only 64 bits if pixel values are in 16-bit representation, which is only a
quarter compared to the original data size.

The SMs and NZVLs are streamed into the accelerator as shown in Figure 2.17.
To reduce the complexity during the decode phase, the SM 3D array is split into
16-bit segments, the same size as the pixel value representation. The very first
16-bit data sent by the input data bus is always a SM segment. If this SM segment
has sixteen 0s, the second 16-bit data of the bus will be another SM. Otherwise,
the following N ∗ 16 bit data will be non-zero pixel values in binary codes, N is
the number of 1s inside this SM. Figure 2.17 presents conditions that SMs have all
0s and SMs have actual pixels.
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Figure 2.16: Example of Sparse Matrix Compression Algorithm

CIS = Pall × (1 + Nbit × (1 − Sp)) (2.8)

Equ 2.8 shows how the compressed image size is influenced. CIS stands for the
compressed input image size in bits. Pall is the total number of pixels in inputs.
Sp stands for the sparsity of input images ranging from 0 to 1. Nbit is the adopted
input precision in bits. Whether the data size could be compressed mainly depends
on the sparsity of the feature maps. The data size compression could be ensured
when condition 2.9 is satisfied:

Sp > thp = 1
Nbit

(2.9)

where thp refers to the threshold sparsity.
In the current implementation, the 16-bit data precision is used to balance the

accuracy and hardware costs. The threshold sparsity to guarantee compression
under 16-bit is 0.0625. This threshold is low enough for most CNNs to reach.
The other threshold sparsities with different bit precisions are presented in Table
2.1. This SM & NZVL compression algorithm achieves better results than the
run-length(RL) compression algorithm proposed by [23], as demonstrated for the
VGG19 example in Figure 2.18 [1] and Figure 2.19 [1].
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Figure 2.17: SM and pixel value distribution inside data bus

Bit Precision Threshold Sparsity
8 0.1250
12 0.0833
16 0.0625
24 0.0416
32 0.0312

Table 2.1: Minimum sparsity for compression
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Figure 2.18: Comparison of compression methods over different sparsity amounts.
Results from 10,000 images. [1]

Figure 2.19: Comparison on 1000 runs of VGG19 [1]
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Chapter 3

Accelerator Architecture

3.1 Architecture Overview
The high-level schematic of the accelerator is presented in Figure 3.1. The input
feature maps are transmitted into the accelerator with a 32-bit data bus. Moreover,
an input configuration interface is implemented, which can be used by a host
microcontroller for configuring the system. The enable, reset, clock, and bus
handshake signals are also working as part of the control signals of the whole
accelerator. The accelerator processes the convolutional stages one at a time in a
sequential mode. The ReLU stage, max pooling stage, and a customized encoding
stage could be concatenated after the convolutional stage. The input feature
maps and the kernel values for the current convolutional layer are stored in two
independent SRAM blocks. The output feature maps of the current convolutional
layer are streamed off-chip to the external memory. Every feature map is always
stored in the SM & NZVL compressed mode and never decompressed during the
whole computation phase to reduce the workload of memory and PEs. Valuable
data will be decoded by Input Data Processor(IDP) and be forwarded to Compute
Core Module(CCM). The Pooling, ReLU and Encoding Unit(PRE) does further
processing and compression of the convolution results.

The following subsections explain the functions of every hardware unit within
the accelerator with the compression scheme employed. The high-level overview of
the workflow is as follows:

1. The Input Decoding Processor receives the input feature maps sent from the
input bus. The input data is be decoded since the data is compressed into
SMs and NZVLs. Only a small portion of pixels are decoded at one time.
Along with the non-zero pixel value, the pixels’ positions are also forwarded
to the Compute Core Module.
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Figure 3.1: High-level schematic of the accelerator

2. The Pixel Allocator(PA) inside CCM distributes the received pixels to the
MAC controller. The controller generates necessary kernel weight addresses
inside the Kernel Memory. The MACs use the pixel values streamed from
the MAC controller and the kernel values sent from kernel memory to do
the convolutions. Each MAC is in charge of computing one output channel.
Different MACs receive the same pixel value but potentially different kernel
values fetched from their individual Kernel Memories.

3. The results from CCM are forwarded into PRE unit which composes a ReLU
unit, a max pooling unit, and an encoding unit. ReLU, max pooling and
encoding are done sequentially. The encoded output feature maps are then
sent off-chip.

3.2 Input Data Processor

3.2.1 Input Data Format
The input data streamed into the CNN accelerator is first received by the IDP unit.
These 16-bit length SM segments and non-zero pixel values are interleaved in the
Bus Data. The low 16-bit data of the first 32-bit Bus Data sent by the input bus
will always be a SM segment. As shown before in Figure 2.17, the number of 1s
indicates the number of pixel values behind the SM segment. Starting with this
information, all the following data could be decoded. In the IDP Manager, the
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position of 1s will also be used to calculate the non-zero pixel’s spatial coordinates.
The compressed input feature maps are streamed row by row into the accelerator
starting from the top row. If the kernel size is 3x3, the pixels are streamed into
the accelerator as follows : p(0,0,0), p(0,0,1), p(0,0,2),. . . , p(0,0,Ni), p(1,0,0),. . . ,
p(1,0,Ni), p(2,0,0),. . . , p(2,0,Ni), p(3,0,0),. . . , p(3,0,Ni). The coordinate represen-
tation is as shown in Figure 2.6, and Ni stands for the input channel number. For
the simplicity of explanation, the pixels with the same x and y will be referred
to as a “bar” in the following chapters. Therefore, one bar is composed of 16
pixels if the input channel depth is 16. The input data bus first streams bar(0,0),
then bar(1,0), bar(2,0), bar(3,0) as shown in Figure 3.2. Then the input data bus
switches to send bar(0,1), bar(1,1), bar(2,1) and bar(3,1) as shown in Figure 3.3.

Figure 3.2: Input data stream scheme

Under the condition of a 3x3 kernel, four pixels with the same input channel
depth are decoded at one clock cycle by four FSMs as shown in Figure 3.2. The
pixels within these four rows, referred to as a "Pixel Patch", are the necessary
pixels to calculate two rows of output feature maps with a vertical convolution
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Figure 3.3: Input data stripe switch scheme

stride of 1 as shown in Figure 3.4.

Figure 3.4: Relation from Pixel Patch to final output

3.2.2 Input Data Bus and Pixel Memory
The input data bus is in charge of reading data from External Memory and sending
it into the Pixel Memory. The data storage scenario follows Little-Endian. The low
16-bit is the data to be analyzed first. The Pixel Memory stores the input feature
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maps to be processed and sends data to the IDP Manager for decoding and the
CCM for convolution. During simulations, the input feature maps are generated
with a C file and stored into a TXT file which imitates as an external memory.
And the Pixel Memory is designed with 16-bit per cell.

3.2.3 Hamming Weight Unit
The Hamming Weight Unit keeps monitoring the input data to calculate the number
of 1s inside each 16-bit word. Its output port hamming1 refers to the number of 1s
of low 16-bit of Bus Data, and output port hamming2 refers to the number of 1s
of high 16-bit of Bus Data. Hamming1 and hamming2 are forwarded to the Input
Tracker for the further bar’s SM segment address calculation.

3.2.4 Input Tracker
To simplify the decode phase, it’s necessary to know the address of each bar’s
SM segment inside the Pixel Memory. The Input Tracker accomplishes this task
with an FSM and a memory. The Input Tracker memory stores the pixel memory
address of every bar’s SM segment and sends this information to the IDP Manager,
depending on the read request and address also transmitted from the IDP Manager.
This data interaction will be later explained in Section 3.2.5.

Due to the equality of input channel number(16) and the SM segment length(16),
the current SM segment and the next SM segment always represent two adjacent
bars. The Input Tracker FSM is built based on this regularity. The Input Tacker
FSM(IT-FSM) comprises six states, and its internal state transfer logic is shown
in Figure 3.5. State row1 is in charge of calculating the SM segment address
of bar(1,0), bar(1,1),... or bar(5,0).... as shown in Figure 3.3. State row2 is in
charge of the SM segment address of bar(2,0),bar(2,1),...or bar(6,0).... IT-FSM
returns to state reset_state if the reset signal is set. For cleanness, all the returns
to reset_state are not shown in Figure 3.5. The arrows mainly show the two
conditions during state transfer: if the next SM segment is an all-zero SM segment,
the state transfer follows the green arrow; if the next SM segment contains 1, the
state transfer follows the red arrow.

To be specific, IT-FSM first enters state row1 since bar(0,0) SM segment is
always the low 16-bit of Bus Data0. State row1 calculates the bar(1,0) SM segment
address using the hamming weight of the low 16-bit of Bus Data0. If this hamming
weight is 0, IT-FSM will enter state row3 since the second SM segment is definitely
the high 16-bit data of Bus Data0. If this hamming weight is x(x /= 0), IT-FSM
counts x words starting from the high 16-bit data of the current 32-bit Bus Data.
Figure 3.6 shows a concrete example.

It’s worth noting that state row1new is set separately aside state row1 due to
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Figure 3.5: Input Tracker FSM

Figure 3.6: Input Tracker decodes Bus Data

the irregularity when the Input Tracker just begins to analyze the input data bus.
As stated before, the very first 16-bit word sent by the input data bus is always a
SM segment. This mechanism makes state row1 different from the other states
since it doesn’t require any inspections to enter. Once the data begins to transfer,
the FSM will first enter into state row1. And this state won’t be accessed anymore
unless the accelerator is reset. However, all the other states, including the state
row1new must use the outputs generated from the previous states to verify if it’s
the correct time to have the state transfer.

3.2.5 IDP Manager
The IDP Manager is the headquarter of the whole IDP unit. It’s composed of a
set of FSMs(M-FSM). The number of M-FSMs is equal to the current kernel size
plus 1. This additional M-FSM allows the accelerator to calculate two rows of
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output feature maps simultaneously, as shown in Figure 3.4. During processing,
each M-FSM is in charge of one bar’s decoding process, as shown in Figure 3.2.
Figure 3.7 explains the interactions between the IDP Manager, Input Tracker, and
Pixel Memory. The decode workflow of one M-FSM is as follows:

1. The M-FSM sends a read address to Input Tracker memory. This memory
sends back the location of the bar’s segment inside the Pixel Memory. Then
M-FSM stores this address into its SM segment address register(SMAddReg).

2. The M-FSM uses the address stored in SMAddReg as a read address to the
Pixel memory. The Pixel Memory returns the read content, which is the SM
segment of the bar being decoded. Afterwards, this SM segment is stored into
the SM register(SMReg) and used as a map for the pixel value coordinates
calculation. During the state new_start, M-FSM stores the address sent from
Input Tracker Memory. During the state prepare_sm, M-FSM stores the SM
segment fetched from Pixel Memory into SMReg.

3. When the SM segment is ready, depending on the content of that SM segment,
the M-FSM enters either state value_true if that bit is 1 or state value_false
if that bit is 0. Every time one bit is analyzed, coordinate z is increased by
1. Meanwhile, during state value_true, M-FSM increases the address stored
inside SMAddReg by 1 and sends this increased address as a read address to
the Pixel Memory. The Pixel memory sends the read content to the CCM
unit.
Moreover, the M-FSM also sends out a signal “sm_or_not” to indicate if the
content sent out of the read port of Pixel Memory is a non-zero pixel or a zero
pixel or a SM segment.

4. After all 16 bits are decoded, the M-FSM enters state update. The state
update and state new_start are responsible for fetching new SM segments and
recounting the coordinates when one pixel patch is finished as shown in Figure
3.4.

5. When the reset signal is set, the M-FSM returns to the state reset. The
convolution process inside the CCM unit consists of several multiplications
and accumulations. Therefore the M-FSM could be stopped by signal stop_fsm
from CCM when the CCM unit is busy. When the stop_fsm signal is set, the
M-FSM enters the state halt until the signal is unset. For cleanness, the state
transfers to state reset and state halt are not shown, while the other state
transfers are presented in Figure 3.8.

As shown in Figure 3.4, the pixel patch used to generate row0 and row1 of
output feature maps and the pixel patch used to generate row2 and row3 are
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Figure 3.7: Interaction between IDP Manger, Input Tracker and Pixel Memory

Figure 3.8: IDP Manager FSM

overlapped. The M-FSMs reuse the bar’s segment addresses stored inside Input
Tracker Memory to adapt this pixel repetition. This re-usage scheme is triggered
only when one pixel patch is finished. For example, as shown in Figure 3.9. Pixel
Patch 0 is first handled by four M-FSMs, each M-FSM takes one row inside the
pixel patch. Initially, M-FSMs take the content of cell0,cell1,cell2, and cell3 inside
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Input Tracker Memory. The contents are the bar’s segment addresses inside Pixel
Memory, as shown in Figure 3.7. After all these four bars are fully decoded, the
M-FSMs switch to take the contents of cell4,cell5,cell6, and cell7 inside Input
Tracker Memory. This process repeats until the last column of this pixel patch is
done. Afterwards, Pixel Patch 1 is fetched to calculate another two rows of output.
The M-FSMs take cell2,cell3,cell32, and cell33 inside Input Tracker Memory and
repeat the previous scheme. Due to the reuse of several intermediate rows, the pixel
coordinates after decode are out-of-range. For example, for an input with size 8x8,
as in Figure 3.9, row2, row3, row4 and row5 are reused, so the final coordinates
after decode are from x = 0 to x = 11, while the original pixel coordinates are from
x = 0 to x = 7.

Figure 3.9: The Reuse Scheme of Bar’s segment address

Another aspect to note is that:

1. the pixels in row0, depth0 of each pixel patch, referred to as Column-
detecting Pixels.

2. the Triggering Pixels.

are marked as non-zero pixels, even if the actual pixel values are 0s. These pixels
are referred to as "Special Purpose Pixels", as shown in Figure 3.10. The
"column-detecting pixels" in the first case is to handle the condition that input
feature maps have consecutive all zero pixel stripes. Since the output feature maps
are calculated step by step, the temporary outputs are stored into a buffer which
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will be later explained in Section 3.3.3. Once the buffer is full, the leftmost column
of the buffer will be shifted out. These "special purpose pixels" will force the shift
operation to be one column at a time, even though several stripes are all zeros.
The definition of "triggering pixels", and its function will be explained in Section
3.3.3.

Figure 3.10: Special Purpose Pixels during decoding phase

3.3 Compute Core Module
The Compute Core Module (CCM) is the arithmetic unit of the accelerator. It
is composed of a Pixel Allocator, a MAC block containing M MACs, a Kernel
Memory with M banks, and a controller. M refers to the output channel numbers.
The CCM unit uses the pixel values and coordinates sent from the IDP unit to
calculate the convolution result. The results are temporarily stored in the buffers
connected to every MAC. Along with the calculation, the results are shifted step
by step to the PRE unit. The overall structure of CCM is shown in Figure 3.11.

3.3.1 Pixel Allocator
The Pixel Allocator is composed of an FSM and several registers. Its main
functionalities are:

1. Stop and restart the FSMs depending on the CCM workload.

2. Store the valid pixel values and their spatial coordinates.
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Figure 3.11: Overall structure of CCM

3. Stream out new pixel values and coordinates when MACs are free.

With kernel size 3x3, 4 FSMs are working inside the IDP Manager. These FSMs
can produce up to 4 non-zero pixels per cycle. The Pixel Allocator is designed to
contain 16 pixel values and their spatial coordinates. Once the Pixel Allocator is
full, all the FSMs inside IDP Manager are stopped. Then Pixel Allocator streams
out a valid pixel and maintains its value until MAC finishes all the calculations
with this pixel. The IDP-FSMs are back to work when all the pixels inside Pixel
Allocator registers have finished their calculations.

A Pixel Allocator FSM(PA-FSM) supervises the whole working mechanism of
this hardware block. Its internal structure is as shown in Figure 3.12.

The state stripe1, stripe2, stripe3 and stripe4 store the pixels and coordinates
streamed out of IDP. The state name starting with “two_state” means two valid
pixels exist in that stripe. The number after indicates which FSM sends out a
valid pixel. Therefore, as an example, state two_state_01 means that FSM0 and
FSM1 are sending out valid pixels. This rule applies to all the other states. The
signal sm_or_not sent from IDP-FSM indicates the pixel’s validity. When the
PA-FSM is in state prepare, it uses this signal to decide the next state. The state
locator_stripe_switch is used to switch to another pixel stripe for the next round
of streaming. When all the data inside the registers of PA has finished calculation,
the PA-FSM enters state start to store another three new pixel stripes.
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Figure 3.12: Pixel Allocator FSM

3.3.2 MAC Controller and Kernel Memory
The accelerator configuration is to realize same number of MAC units and output
channel depth. At the start of a layer computation, the weights are loaded into
the Kernel Memory. Each kernel is stored in a different Kernel Memory Bank and
assigned to a MAC. And each MAC is in charge of computing one output channel.
The MAC Controller’s duty is to generate the corresponding weights’ locations
depending on the pixel coordinates.

The necessary kernel weights for each pixel are shown in Figure 3.13. For
example, pixel (1,1) inside the pixel patch must multiply with kernel weights inside
the kernel matrix with coordinates (0,0),(0,1),(1,0) and (1,1) when the complete
convolution is done. If the input feature map size is 6x6, the pixel stripes with y=2
and y=3 have the same kernel weights correspondence as shown in the same figure.
This pattern works for each pixel patch.

The FSM inside MAC Controller(MAC-Control-FSM) is built based on this
regularity. This FSM detects the incoming pixel coordinates and generates necessary
kernel weights’ addresses inside the kernel memory. These addresses are sent to the
kernel memory as reading addresses. The kernel memory returns the corresponding
kernel weights to MACs. Meanwhile, the MAC Controller passes the current pixel
value and its coordinates to MACs. The workflow is presented in Figure 3.14.

State one_state_XX is a cluster of states that generates one kernel memory
address depending on the pixel’s location. There are four pixels that need only one
kernel weight inside a pixel patch. The XX in the state name distinguishes the four
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Figure 3.13: Correspondence between Input and Kernel

Figure 3.14: MAC-Control-FSM state representation

different cases as shown in Figure 3.13. Similarly, state two_state_XX is a cluster
of states that generates two kernel memory addresses for one pixel.
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3.3.3 Multiply-Accumulate Unit
Under the preparations done by the previous stages, the MACs now have correct
pixel values and kernel weights as inputs. Figure 3.15, Figure 3.16, Figure 3.17 and
Figure 3.18 illustrate four different cases that how pixels with different coordinates
contribute to the final output feature map.

Figure 3.15: Example 1 Convolution process from one pixel to final output

Figure 3.16: Example 2 Convolution process from one pixel to final output

For one pixel inside a pixel patch, it’s not necessary to multiply it with all
weights of the kernel matrix. As shown in Figure 3.17, pixel C is at (1,1) of that
pixel pitch, it only needs to multiply weights in position (0,0),(0,1),(1,0),(1,1). And
the four results contribute to the four red blocks inside MAC Buffer. More detailed
contribution connections are shown in Figure 3.19. The detailed correspondence
between pixels and kernel weights are summarized in Figure 3.13.

The same rule applies to pixel D in Figure 3.18. It does multiplications with
kernel weights in position (0,0),(0,1),(0,2),(1,0),(1,1) and (1,2). The contributions
to the final output are presented in Figure 3.20.

The contribution connections to output feature maps and kernel weights corre-
spondence are regular. These regularities are implemented and controlled by an
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Figure 3.17: Example 3 Convolution process from one pixel to final output

Figure 3.18: Example 4 Convolution process from one pixel to final output

FSM(MAC-FSM). The state representation of MAC-FSM is shown in Figure
3.21.

As before, the state transfers to state reset are omitted for simplicity. The
Calculation cluster is composed of several states to do convolution depending on
the incoming pixel’s coordinates. Each state is in charge of one convolution case as
shown in Figure 3.13.

Figure 3.18 presents the case when a pixel lies in a different column than the
previous one. In this example, the MAC-FSM detects the increment of column
index. Then MAC-FSM first enters state buffer_shift. The current stripe won’t
contribute to the two results stored in the leftmost entries of the MAC Buffer.
So these two results are shifted out to the PRE unit during state buffer_shift.
Meanwhile, the middle and rightmost entries inside the MAC Buffer are shifted
left by one column to reserve two blank entries for the following accumulations.

This process will repeat until the triggering pixels with coordinates (3,P ,Q),
(7,P ,Q),... of the input feature map finish calculations, where P stands for the
input image horizontal size minus 1, Q stands for the input image channel depth.
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Figure 3.19: Example 1 Contribution of pixel to output feature maps

Figure 3.20: Example 2 Contribution of pixel to output feature maps

For example, if the input image is of size 6x6, with 16 input channels. The first
triggering pixel coordinate is (3,5,16). And due to the reuse mechanism done in the
IDP Manager, the second triggering pixel coordinate is (7,5,16). This out-of-range
condition is explained in Section 3.2.5. In this case, the MAC-FSM enters state
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Figure 3.21: MAC-FSM state representation

stripe shift to stream out all the results inside the MAC Buffers.
Afterward, MAC-FSM enters state halt to wait for another valid pixel number

and its corresponding kernel weights.

3.4 Pooling, ReLU and Encoding Unit
The Pooling, ReLU and Encoding Unit (PRE) is responsible for the last processing
stage of the accelerator. It stores the convolution results streamed out of the MACs
into the PRE Buffer. The PRE Buffer’s size is 2*M , where M stands for the
number of MACs, also the number of output channel channels, and 2 is the pooling
dimension. The significant benefit of this PRE unit is its capability to perform
ReLU, max pooling and encoding on the fly. The overall structure of PRE is shown
in Figure 3.22.

3.4.1 ReLU and Max pooling
The working mechanism of PRE is controlled by an FSM(PRE-FSM) composed
of 9 states, as shown in Figure 3.23. The ReLU stage is designed with a higher
priority than the max pooling stage to simplify the internal logic. The detailed
explanations of these two stages are as follows:

1. If both ReLU and max pooling are disabled, the PRE-FSM enters state none
when the MACs raise the signal shift_out. In this case, all the values shifted
from MACs inside CCM are stored into the PRE Buffer. Then PRE-FSM
enters state done for encoding and state print for printing into a TXT file. The
workflows of encoding performed during state done and state done_pooling
are explained in Section 3.4.2.
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Figure 3.22: Overall structure of PRE

Figure 3.23: PRE-FSM state representation

2. If ReLU is enabled and max pooling is disabled, the PRE-FSM enters state
relu_state when the MACs raise the signal shift_out. The negative values from
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MACs are forced to be 0s while entering the PRE Buffer. Then PRE-FSM
enters state done and state print for encoding and printing into a TXT file.

3. If max pooling is enabled and ReLU is disabled, the PRE-FSM enters state
max_pooling_state_1. During this state, the pixel pair shifted from one MAC
does intercomparison. The bigger one is stored in row0 of the PRE Buffer.
The PRE-FSM enters state max_pooling_state_2 when the second pixel pair
comes. Afterward, these three values do intercomparison again and store the
biggest value into row0 of the PRE Buffer.
For example in Figure 3.24, Within Pixel Pair 0, A is bigger than B. So A is
temporarily stored in row0 of PRE Buffer. The Pixel Pair 1 is composed of
C and D. After comparison, the biggest value among A, C and D is stored
into the PRE Buffer as one result of max pooling. After that, the PRE-FSM
enters state done_pooling to encode the results of the max pooling stage.

4. If both the max pooling and ReLU are enabled, the PRE-FSM first enters
state relu_state to convert the negative values. This could omit a ReLU stage
of the second pixel pair since the minimum value stored into the PRE Buffer
during the first pixel pair is 0. Even if the second pixel pair is all-negative,
the final result is 0 after the comparison.

Figure 3.24: Max pooling stage inside PRE unit.
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3.4.2 Encoding
The values stored inside the PRE Buffer are encoded according to the scheme
described in Section 2.6.3 during state done and state done_pooling.

If the max pooling is off, all the values inside PRE Buffer are encoded and
shifted out. The row0 of PRE Buffer is indeed one bar of the output feature map
and row1 is the bar below it, as shown in Figure 3.25. If the max pooling is enabled,
only the values of row0 are part of the output feature map.

Figure 3.25: Encoding stage inside PRE unit with no max pooling
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Results

With the clock period of 20 ns, the simulation results from ModelSim show that:

1. If the input feature map is of size 6x6x16, composed of 126 data segments.
Among these data, 36 segments are SM segments, the rest 90 segments are
pixel values. The sparsity is 84.375%. The kernel is of 3x3x16x16. The output
feature map is of size 4x4x16 with stride 1, no zero padding, ReLU on, and
2x2 max pooling off. If the 2x2 max pooling is on, the output feature maps
are of size 2x2x16.
The IDP begins to work at 40 ns and ends at 40230 ns, which are 2010 clock
cycles. The CCM starts to work at 70 ns and ends at 40520 ns, which are
2023 clock cycles. The PRE unit begins to work at 70 ns and ends at 40610
ns, which are 2027 clock cycles. The total time consuming is 2029 clock cycles.
See Figure 4.1 to Figure 4.7. The latency increment brought with max pooling
stage is negligible in total time consuming.

2. The input feature map is of size 8x8x16, composed of 258 data segments.
Among these data, 64 segments are SM segments, the rest 194 segments are
pixel values. The sparsity is 81.05%. If the 2x2 max pooling is on, the output
feature maps are of size 3x3x16.
The IDP begins to work at 40 ns and ends at 96210 ns, which are 4809 clock
cycles. The CCM starts to work at 70 ns and ends at 96490 ns, which are
4821 clock cycles. The PRE unit begins to work at 8010 ns and ends at 96590
ns, which are 4429 clock cycles. The total time consuming is 4828 clock cycles.
See Figure 4.8 to Figure 4.14.

3. If the input feature map is of size 64x64x16 composed of 58886 data segments.
Among these data, 4096 segments are SM segments, the rest 54790 segments
are pixel values. The sparsity is 16.39%. The kernel is of 3x3x16x16. The
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output feature map is of size 62x62x16 with stride 1, no zero padding, ReLU
on, and 2x2 max pooling off. The output feature maps are of size 31x31x16 if
the 2x2 max pooling is on.
The IDP begins to work at 40 ns and ends at 14,776,370 ns, which are 738,817
clock cycles. The CCM starts to work at 70 ns and ends at 14,776,610 ns,
which are 738,827 clock cycles. The PRE unit begins to work at 70 ns and ends
at 14,776,710 ns, which are 738,832 clock cycles. The total time consuming is
738,834 clock cycles. See Figure 4.15 to Figure 4.21.

The summary of the simulation results is as shown in Table 4.1.

Input Size 6x6x16 8x8x16 64x64x16
SM Segment Number 36 64 4096

Non-zero Pixel Number 90 194 54790
Sparsity 84.375% 81.05% 16.39%

Coded Data Size(bytes) 252 516 117,772
Data Size Ratio 21.875% 25.195% 89.85%
Workload Ratio 15.625% 18.94% 83.60%

Total Time-consuming(clock cycles) 2029 4828 738,834

Table 4.1: Simulation Results Summary. Data Size Ratio is the ratio between
after SM & NZVL compression and the original data size. Workload Ratio is the
ratio between non-zero pixel numbers and total pixel numbers.

From the statistical point of view, during the simulation of 8x8x16 input feature
maps, the simulation result shows that the MACs in CCM processed only 194
pixels during the whole procedure. However, there are 1024 pixels that need
to be processed without applying the hardware accelerator. The workload is
approximately 18.94% compared to the original CNN implementation after applying
the accelerator. In the case of 6x6x16 as input feature maps, only 90 pixels are
really calculated by the MACs instead of 576 pixels. The workload is reduced
to 15.625%. In the case of 64x64x16, 54790 pixels are really calculated by the
MACs instead of 65536 pixels. The workload is reduced to 83.6% comparing to
the non-accelerated version. These results prove that the implemented accelerator
does bring an enormous enhancement in the CNN processing.

Meanwhile, thanks to the Sparse Matrix Compression Algorithm, the size of
input feature map is reduced to 21.875%, 25.195% and 89.85% in the tested three
cases compared to their original data sizes.
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Figure 4.1: Input size 6x6: Input Bus begins to stream input data

Figure 4.2: Input size 6x6: Input Bus finishes streaming

Figure 4.3: Input size 6x6: Input Data Processor streams out the last pixel in
the input feature map
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Figure 4.4: Input size 6x6: Compute Core Module begins to process decoded
input feature maps

Figure 4.5: Input size 6x6: Compute Core Module finishes the convolution
calculation of the last pixel in the input feature maps
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Figure 4.6: Input size 6x6: Pooling-ReLU-Encoding receives the first patch of
convolution results

Figure 4.7: Input size 6x6: Pooling-ReLU-Encoding outputs the last result into
the TXT file
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Figure 4.8: Input size 8x8: Input Bus begins to stream input data

Figure 4.9: Input size 8x8: Input Bus finishes streaming

Figure 4.10: Input size 8x8: Input Data Processor streams out the last pixel in
the input feature map
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Figure 4.11: Input size 8x8: Compute Core Module begins to process decoded
input feature maps

Figure 4.12: Input size 8x8: Compute Core Module finishes the convolution
calculation of the last pixel in the input feature maps

Figure 4.13: Input size 8x8: Pooling-ReLU-Encoding receives the first patch of
convolution results
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Figure 4.14: Input size 8x8: Pooling-ReLU-Encoding outputs the last result into
the TXT file

Figure 4.15: Input size 64x64: Input Bus begins to stream input data

Figure 4.16: Input size 64x64: Input Bus finishes streaming
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Figure 4.17: Input size 64x64: Input Data Processor streams out the last pixel in
the input feature map

Figure 4.18: Input size 64x64: Compute Core Module begins to process decoded
input feature maps

Figure 4.19: Input size 64x64: Compute Core Module finishes the convolution
calculation of the last pixel in the input feature maps
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Figure 4.20: Input size 64x64: Pooling-ReLU-Encoding receives the first patch of
convolution results

Figure 4.21: Input size 64x64: Pooling-ReLU-Encoding outputs the last result
into the TXT file
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Chapter 5

Conclusion and Future
Works

5.1 Thesis Conclusion
This thesis aimed to implement a hardware accelerator for CNNs in VHDL based
on the sparse representations of feature maps. The benefits of this accelerator come
from four aspects:

1. The input feature maps are always compressed. This could reduce enormously
the required memory size.

2. Zero pixels are not forwarded into the accelerator(except for very few special
purpose pixels). This mechanism brings a vast energy pavement and an
enormous reduction of computation cycles.

3. The ReLU, max pooling and Encoding stages are done on the fly. The PRE
unit begins to work as soon as the results shifted out from the CCM unit.
And the encoding stage compresses the output feature map again for further
convolutional layers.

4. The output channel depth of the accelerator could be easily extended by
duplicating more MACs. Meanwhile, the latency in the IDP and CCM unit
won’t increase.

5.2 Future Work
The accelerator implemented in this thesis could be further optimized in two
aspects:
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1. The accelerator is fully functional with input channel depth 16. In the case of
an actual RGB image, an off-chip C/Python program is needed to extend the
input channel depth from 3 to 16 by zero-padding another 13 input channels.

2. The accelerator is designed to let one MAC calculate one output channel. In
future work, the MAC Controller could be upgraded to enable simultaneous
multiple pixels calculation. The accelerator could split the computation of the
current output channel over several clusters of MACs. One cluster is in charge
of computing one output channel. And each cluster has the same number of
MACs—every MAC stores the partial convolution results in their individual
MAC Buffer. Afterward, when the MAC Buffers are shifting out the results,
there needs an additional stage to merge the results from the MAC Buffers to
produce the output feature map.
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Appendix A

Input Data

The following data is used as input during simulation. Code line 1 to Code line
126 is the testing input for 6x6x16 simulation, with sparsity 84.375%. Code line 1
to Code line 258 is the testing input for 8x8x16 simulation, with sparsity 81.05%.

1 0000000000000001
2 0000000000000011
3 0000000000000010
4 0000000000000100
5 0000000000000011
6 0000000000000101
7 0000000000000110
8 0000000000000100
9 0000000000000110

10 0000000000000101
11 0000000000000111
12 0000000000001000
13 0000000000000110
14 0000000000001000
15 0000000000001001
16 0000000000000111
17 0000000000001001
18 0000000000001010
19 0000000000001011
20 0000000000001000
21 0000000000001010
22 0000000000001001
23 0000000000001011
24 0000000000001100
25 0000000000001010
26 0000000000001100
27 0000000000001101
28 0000000000001011
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29 0000000000001101
30 0000000000001110
31 0000000000001111
32 0000000000001100
33 0000000000001110
34 0000000000001111
35 0000000000001101
36 0000000000001111
37 0000000000010000
38 0000000000010001
39 0000000000001110
40 0000000000010000
41 0000000000010001
42 0000000000010010
43 0000000000001111
44 0000000000010001
45 0000000000010010
46 0000000000010011
47 0000000000010100
48 0000000000010000
49 0000000000010010
50 0000000000010001
51 0000000000010011
52 0000000000010100
53 0000000000010010
54 0000000000010100
55 0000000000010101
56 0000000000010011
57 0000000000010101
58 0000000000010110
59 0000000000010111
60 0000000000010100
61 0000000000010110
62 0000000000010111
63 0000000000010101
64 0000000000010111
65 0000000000011000
66 0000000000011001
67 0000000000010110
68 0000000000011000
69 0000000000011001
70 0000000000011010
71 0000000000010111
72 0000000000011001
73 0000000000011010
74 0000000000011011
75 0000000000011100
76 0000000000011000
77 0000000000011010
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78 0000000000011011
79 0000000000011001
80 0000000000011011
81 0000000000011100
82 0000000000011101
83 0000000000011010
84 0000000000011100
85 0000000000011101
86 0000000000011110
87 0000000000011011
88 0000000000011101
89 0000000000011110
90 0000000000011111
91 0000000000100000
92 0000000000011100
93 0000000000011110
94 0000000000011111
95 0000000000100000
96 0000000000011101
97 0000000000011111
98 0000000000100000
99 0000000000100001

100 0000000000100010
101 0000000000011110
102 0000000000100000
103 0000000000100001
104 0000000000100010
105 0000000000100011
106 0000000000011111
107 0000000000100001
108 0000000000100010
109 0000000000100011
110 0000000000100100
111 0000000000100101
112 0000000000100000
113 0000000000100010
114 0000000000100001
115 0000000000100011
116 0000000000100100
117 0000000000100010
118 0000000000100100
119 0000000000100101
120 0000000000100011
121 0000000000100101
122 0000000000100110
123 0000000000100111
124 0000000000100100
125 0000000000100110
126 0000000000100111

55



Input Data

127 0000000000100101
128 0000000000100111
129 0000000000101000
130 0000000000101001
131 0000000000100110
132 0000000000101000
133 0000000000101001
134 0000000000101010
135 0000000000100111
136 0000000000101001
137 0000000000101010
138 0000000000101011
139 0000000000101100
140 0000000000101000
141 0000000000101010
142 0000000000101011
143 0000000000101001
144 0000000000101011
145 0000000000101100
146 0000000000101101
147 0000000000101010
148 0000000000101100
149 0000000000101101
150 0000000000101110
151 0000000000101011
152 0000000000101101
153 0000000000101110
154 0000000000101111
155 0000000000110000
156 0000000000101100
157 0000000000101110
158 0000000000101111
159 0000000000110000
160 0000000000101101
161 0000000000101111
162 0000000000110000
163 0000000000110001
164 0000000000110010
165 0000000000101110
166 0000000000110000
167 0000000000110001
168 0000000000110010
169 0000000000110011
170 0000000000101111
171 0000000000110001
172 0000000000110010
173 0000000000110011
174 0000000000110100
175 0000000000110101
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176 0000000000110000
177 0000000000110010
178 0000000000110011
179 0000000000110001
180 0000000000110011
181 0000000000110100
182 0000000000110101
183 0000000000110010
184 0000000000110100
185 0000000000110101
186 0000000000110110
187 0000000000110011
188 0000000000110101
189 0000000000110110
190 0000000000110111
191 0000000000111000
192 0000000000110100
193 0000000000110110
194 0000000000110111
195 0000000000111000
196 0000000000110101
197 0000000000110111
198 0000000000111000
199 0000000000111001
200 0000000000111010
201 0000000000110110
202 0000000000111000
203 0000000000111001
204 0000000000111010
205 0000000000111011
206 0000000000110111
207 0000000000111001
208 0000000000111010
209 0000000000111011
210 0000000000111100
211 0000000000111101
212 0000000000111000
213 0000000000111010
214 0000000000111011
215 0000000000111100
216 0000000000111001
217 0000000000111011
218 0000000000111100
219 0000000000111101
220 0000000000111110
221 0000000000111010
222 0000000000111100
223 0000000000111101
224 0000000000111110
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225 0000000000111111
226 0000000000111011
227 0000000000111101
228 0000000000111110
229 0000000000111111
230 0000000001000000
231 0000000001000001
232 0000000000111100
233 0000000000111110
234 0000000000111111
235 0000000001000000
236 0000000001000001
237 0000000000111101
238 0000000000111111
239 0000000001000000
240 0000000001000001
241 0000000001000010
242 0000000001000011
243 0000000000111110
244 0000000001000000
245 0000000001000001
246 0000000001000010
247 0000000001000011
248 0000000001000100
249 0000000000111111
250 0000000001000001
251 0000000001000010
252 0000000001000011
253 0000000001000100
254 0000000001000101
255 0000000001000110
256 0000000001000000
257 0000000001000010
258 0000000000000000
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