

Politecnico Di Torino

Master of Science in Electronic Engineering

A Project Report on

Design of electromagnetic
sensors for civil applications

Supervisors:
Prof. Luciano Scaltrito

Prof. Sergio Ferrero

Candidate:
Kartik Upadhyay

264248

ACADEMIC YEAR 2021-2022

2

3

ACKNOWLEDGMENT

Firstly, I would like to express my deepest gratitude to both of my project guide, Prof. Luciano

Scaltrito and Prof. Sergio Ferrero for their persistent support, guidance, and encouragement

during the whole process of my project work.

Secondly, I would like to express my special gratitude to Mr. Giorgio Damosso, Mr.

Massimiliano Messere, Mr. Gianluca Melis, Mr. Matteo Manachino, Mr. Andrea Porceddu,

and Mr. Francesco Perrucci of Microla Optoelectronics srl for providing opportunity,

guidance and support.

Ultimately, I would like to especially thank my parents Mr. Tarun Upadhyay & Dr. Namrata

Upadhyay and my brother Dr. Nirved Upadhyay.

4

ABSTRACT

The aim of project "Design of electromagnetic sensors for civil applications" is to create a
prototype device which makes increase the traceability of transportation of materials supplied at
the construction sites. I have created two versions of prototype device:

1. Base Version,

2. Premium Version.

Base version is consist of two hardware boards, whereas, Premium version consist of three
hardware boards. In both versions, we have TAG - PROVINO board and RECEIVER
ESTERNO board but, in premium version we have additional board called CASSAFORMA
board.

TAG -PROVINO board is placed inside the material box which needs to be traced. It's job is to
collect all the data and store it and transfer it at appropriate time. It consist of microcontroller,
memory, temperature sensor, shock sensor, light sensor(Photodiode), wake up system,
communication block and non-rechargeable battery.

RECEIVER ESTERNO board is used collect all the data wirelessly from TAG - PROVINO
board and supply it to our mobile device whenever required. It consist of microcontroller, wake
up generator system, communication block, rechargeable battery and Bluetooth.

CASSAFORMA board is part of premium version because it has GPS module which increases
cost of complete project. It consist of microcontroller, GPS module, communication block and
rechargeable battery.

Keywords: IoT, Digitization, Sensor, PCB, Civil application.

5

CONTENT

Acknowledgment 3
Abstract 4
List of Figures 7
List of Tables 10
List of Abbreviations 11
Chapters
1. Introduction 12
2. Electrical Design

15

2.1 Wake up generator 15
2.2 Wake up receiver 20
2.3 Prototype testing 22
2.4 PCB design of Wake up generator and receiver 24
2.5 PCB Prototype testing 28
2.6 Choice of Microcontroller 30
2.7 Internal Temperature sensor 36
2.8 Shock Sensor 37
2.9 Photodiode 38
2.10 GPS Module 39
2.11 Designing of boards 39

3. Software Design 52
 3.1 STMicroelectronics 52
 3.2 Code for Deep-sleep mode and measuring current 55
 3.3 Current measurement at different frequency 56
 3.4 Internal temp sensor process and comparison with

normal temperature
57

 3.5 GPS Module 58
 3.6 Bluetooth Communication 60
4. Conclusion

64

6

Appendix 66
References 76

7

LIST OF FIGURES

No. Caption Page
Figure 1.1 Base Version 12
Figure 1.2 Premium Version 13
Figure 2.1 Colpitt's Oscillator 17
Figure 2.2 Transmitter Circuit Simulation 18
Figure 2.3 Transmitter Simulation Output 19
Figure 2.4 Transmitter Prototype Circuit 19
Figure 2.5 Output Wave 20
Figure 2.6 Wake up receiver circuit 21
Figure 2.7 Receiver Circuit Simulation 21
Figure 2.8 Receiver Circuit Simulation Output 22
Figure 2.9 Transmitter and receiver Prototype

Circuit
22

Figure 2.10 TAG and OUTSIDER without brick 23
Figure 2.11 TAG and OUTSIDER with brick 24
Figure 2.12 Colpitt's Oscillator 25
Figure 2.13 LC circuit 25
Figure 2.14 Power Supply of wake up generator

circuit
26

Figure 2.15 Top layer of wake up generator

circuit
26

Figure 2.16 Bottom layer of wake up generator

circuit
27

Figure 2.17 Complete Layout of wake up

generator circuit
27

Figure 2.18 Piccolo, Grande 28
Figure 2.19 Grande and Piccolo communication 29
Figure 2.20 Grande and Piccolo communication

with Dry Brick in-between
29

Figure 2.21 Grande and Piccolo communication

with Wet Brick in-between
30

Figure 2.22 STM32WB55 Nucleo Board 31
Figure 2.23 Port A of custom board 32

8

Figure 2.24 Port B of custom board 32
Figure 2.25 Port C, D and E of custom board 33
Figure 2.26 Power and Ground Pins of custom

board
33

Figure 2.27 Power Supply and Battery Holder of

custom board
34

Figure 2.28 TOP Layer of custom board 34
Figure 2.29 Bottom layer of custom board 35
Figure 2.30 Complete Layout of custom board 35
Figure 2.31 Bottom side, Top side, PCB with

mounted components
36

Figure 2.32 Internal TS connected with ADC 36
Figure 2.33 Vibration Sensor 37
Figure 2.34 Configuration for Vibration sensor 37
Figure 2.35 Photodiode 38
Figure 2.36 Configuration for Photodiode 38
Figure 2.37 GPS Module 39
Figure 2.38 Wake-up receiver and RF antenna of

TAG board
39

Figure 2.39 STM32WB55CGU6 40
Figure 2.40 Vibration sensor and Photodiode 40
Figure 2.41 TOP Layer of TAG board 41
Figure 2.42 Bottom layer of TAG board 41
Figure 2.43 Complete Layout of TAG board 42
Figure 2.44 TOP side of TAG board 42
Figure 2.45 Bottom side of TAG board 43
Figure 2.46 Power Supply of RECEIVER

EXTERNO board
43

Figure 2.47 STM32WB55CGU6 44
Figure 2.48 Wake-up generator and RF of

RECEIVER EXTERNO board
44

Figure 2.49 TOP Layer of RECEIVER

EXTERNO board
45

Figure 2.50 Bottom layer of RECEIVER

EXTERNO board
45

9

Figure 2.51 Complete Layout with Drill Table of

RECEIVER EXTERNO board
46

Figure 2.52 TOP side of RECEIVER EXTERNO

board
46

Figure 2.53 Bottom side of RECEIVER

EXTERNO board
47

Figure 2.54 GPS module and RF of

CASAFORMA board
48

Figure 2.55 STM32WB55CGU6 48
Figure 2.56 Power Supply of CASAFORMA

board
49

Figure 2.57 TOP Layer of CASAFORMA board 50
Figure 2.58 Bottom layer of CASAFORMA

board
50

Figure 2.59 TOP side of CASAFORMA board 51
Figure 2.60 Bottom side of CASAFORMA board 51
Figure 3.1 Graphical software configuration tool 52
Figure 3.2 Function Description 53
Figure 3.3 Function Description 54
Figure 3.4 MODER Register 55
Figure 3.5 Frame Structure 59
Figure 3.6 Longitude & Latitude position in

frame
60

Figure 3.7 BLE application and wireless

firmware architecture
61

Figure 3.8 BLE communication process 62
Figure 3.9 Client to Server Communication 63
Figure 3.10 Data received by APP 63
Figure 4.1 TAG-Privono board 64
Figure 4.2 Receiver Esterno board 65
Figure 4.3 Cassaforma board 65

10

LIST OF TABLES

Table No. Caption Page

Table 2.1 Voltage received at TAG at

different distance between TAG

and OUTSIDER

23

Table 2.2 Voltage received at TAG at

different distance between TAG

and OUTSIDER directly and

using cement brick

24

Table 2.3 Maximum distance between
Communication of varies
configuration of Grande and
Piccolo

28

Table 3.1 Current consumption at different

modes

56

Table 3.2 Current consumption at different

frequency at normal mode using

MSI clock

56

Table 3.3 Calibration Address 57

Table 3.4 Temperature using internal sensor

Vs External device

58

11

LIST OF ABBREVIATIONS

List of Symbols Terms

IoT Internet of Things

GPS Global Position System

EEPROM Electrically Erasable Programmable Read-

Only Memory

PCB Printed Circuit Board

BJT Bipolar Junction Transistor

R Resister

L Inductance

C Capacitor

AC Alternative Current

AM Amplitude Modulation

EM Electro-Magnetic

Tx Transmit

Rx Receive

ADC Analog to Digital Convertor

GNSS Global Navigation Satellite System

IDE Integrated Development Environment

GPIO General Port Input Output

API Application Programming Interface

HAL Hardware Abstraction Layer

LL Low Level

SRAM Static Random Access Memory

12

Chapter 1

Introduction

The influence of technologies is growing day by day. Nowadays, we can find smart-devices
anywhere and everywhere like vehicles, streets, and farms etc. These devices help us in
increasing accountability, improve decision making and reduce resource wastage. My Thesis
project has same goals. To develop a system through which we can trace and also certify the
quality of material supply at construction sites by digitizing whole process. A system which will
help make robust supply chains by increasing their reliability and making whole process
traceable and more secure.

We need to build a module which can be fitted inside the box of materials supplied, which keep
trace of location of the box, which can send us an alert if box is being opened or if it is being
tempered with its material. Our system needs to be working on ultra-low power because battery
will be the sole source of power inside the box with no rechargeable option. Our module needs to
store all of its data inside itself till the time we can collect it. Our system must also include a
receiver device, through which we can collect all the data. Our system needs to have
communication ability internally as well as externally. Our external receiver needs a sub-block of
wake-up generator to generate a unique signal to wake up the device inside the material box.

Based on the project requirement, we have created two version of our system:

1. Base Version: It consists of two devices, shown in Figure 1.1. Device which will be placed
inside the material box is called TAG - PROVINO board and another device which we use to
collect the data gathered by TAG-PROVINO device called RECEIVER ESTERNO board.

Figure 1.1: Base Version

13

2. Premium Version: Premium version consists of three devices, shown in Figure 1.2. In addition
of two devices which are available in base version, we also have another device called
CASSAFORMA, which consist of GPS module.

Figure 1.2: Premium Version

We created two version of our system based on the customer requirements. First, Base version is
a low cost solution. It gathers data only from temperature sensor, Shock sensor(Vibration sensor)
and Photodiode(Light Sensor). Second, Premium version is more expensive solution. It consist
of all the features on base version. In addition, It has separate board for GPS module, which is
the most expensive component of the whole project.

In the TAG- PROVINO board, Wake up system represents a module dedicated to wake up
microcontroller from the deep sleep mode. Temperature Sensor is module to collect the value of
temperature inside the material box. Shock sensor represents a module dedicated to identify if
material box is tempered. Photodiode(Light sensor) represents a module to notify if material box
is being opened. EEPROM represents the memory to all the data. Microcontroller is the brain
which performs all the function. Transceiver/Receiver radio represents a module dedicated for
the communication process. A non-rechargeable battery is required to power all the modules.

In the RECEIVER ESTERNO board, Microcontroller is the brain which performs all the
function. Transceiver/Receiver radio represents a module dedicated for the communication

14

process. A rechargeable battery module is required to charge the battery. Wake up generator
represents a module dedicated to send EM waves to wake up microcontroller present in TAG-
PROVINO board from the deep sleep mode. Bluetooth represents a module dedicated for the
communication from the board to the external world.

In the CASSAFORMA board, Microcontroller is the brain which performs all the function. GPS
module is used to detect the location of the material box. Transceiver/Receiver radio represents a
module dedicated for the communication process. A rechargeable battery module is required to
charge the battery.

Further details about the Hardware configuration and software configuration of all three boards
will be described in Chapter 2 and Chapter 3 respectively.

15

Chapter 2

Electrical Design

In this chapter, we will focus on the hardware part of the project. It consist of several parts like
designing wake up generator and wake up receiver modules. The choice of microcontroller in the
project and interfacing it with various sensors like temperature sensor, vibration sensor,
photodiode and GPS module.

In section 2.1, Wake up generator is described and characteristics are Colpitts oscillator, software
simulation and bread board prototype circuit.

In section 2.2, Wake up receiver is described and characteristics are LC circuit, receiver circuit
software simulation and bread board prototype circuit.

In section 2.3, various experiments performed between bread board prototype of Wake up
generator and Wake up receiver are described with their results.

In section 2.4, process of PCB designing of Wake up generator and Wake up receiver are
described.

In section 2.5, various experiments performed between PCB prototype of Wake up generator and
Wake up receiver are described with their results.

In section 2.6, choice of microcontroller is described along with the process of PCB designing of
custom microcontroller board.

In section 2.7, Based on choice of microcontroller, structure of internal temperature sensor is
described.

In section 2.8, Shock sensor with its interfacing with microcontroller is described.

In section 2.9, Light sensor with its interfacing with microcontroller is described.

In section 2.10, GPS module with its interfacing with microcontroller is described.

In section 2.11, process of PCB designing of all three boards: TAG - PROVINO board,
RECEIVER EXTERNO board and CASSAFORMA board are described.

2.1 Wake up generator:

Low power consumption is the key constrain in our project as the TAG board will be
placed inside the material box. That is why, it is decided that TAG board will be operating in
deep-sleep mode when not performing some tasks, which is majority of its lifetime. To collect

16

the data from the TAG board, we will need to wake up TAG from deep sleep mode using
external interrupt signal from outside the material box.

For this particular purpose, To wake up TAG board from deep sleep mode "wake up receiver"
sub-module is added, which is similar to passive antenna. When it receives an external wireless
signal antenna generates an interrupt on the wake up pin of microcontroller which wakes up the
whole TAG board from deep sleep and enable it to perform required task.

In order to generate a signal to wake up TAG board from outside the material box, sub-module
"Wake up generator" is added in RECEIVER EXTERNO board. Wake up generator operates in
such a way that, when a particular designated switch is pressed in RECEIVER EXTERNO board
it generates wire-less EM signal above 1 MHz of frequency with enough power to activate
antenna in wake up receiver to generate interrupt at wake up pin in the TAG board.

To design wake up generator which produces wireless EM sinusoidal signal which oscillates
at/of the frequency of approximate 1 MHz, there are several possible options of oscillator like
RC phase shift oscillator, Hartley oscillator, Colpitts oscillator and many more. Out of all the
oscillator, we decided to use Colpitts oscillator because of following reasons:
1. It generates sinusoidal signals of very high frequencies.
2. Stability of frequency is higher at both high and low temperatures.
3. Frequency can be varied by using both the variable capacitors.
4. Less number of components are sufficient, hence it is cost efficient.
5. The amplitude of the output remains constant over a fixed frequency range.
6. It consist of two capacitor and one inductance, out of which one inductance can be used as
antenna to not only to generate but transmit our signal.

The circuit diagram of Colpitt’s oscillator using BJT is shown in Figure 2.1. It consists of an R-C
coupled amplifier using an n-p-n transistor in common emitter configuration. R1 and R2 are two
resistors which form a voltage divider bias to the transistor. The Colpitts LC tank circuit consists
of a single inductor and two capacitors. A resistor R3 is connected in the circuit which stabilizes
the circuit against temperature variations. The coupling capacitor C5 blocks dc and provides an
ac path from the collector to the tank circuit.

17

Figure 2.1: Colpitt's Oscillator

The feedback network (tank circuit) consists of two capacitors C2 and C3 (in series)
which placed across a common inductor L1. The centre of the two capacitors is tapped
and connected across collector. The feedback network (C2, C3 and L1) determines the
frequency of oscillation of the oscillator. The two series capacitors C2, and C3 form the
potential divider led for providing the feedback voltage.

Whenever power supply is switched on, the capacitors C2 and C3 start charging and after
the capacitors get fully charged, the capacitors starts discharging through the inductor L1
in the circuit causing damped harmonic oscillations in the tank circuit. Thus, an AC
voltage is produced across C1 & C2 by the oscillatory current in the tank circuit. While
these capacitors get fully discharged, the electrostatic energy stored in the capacitors get
transferred in the form of magnetic flux to the inductor and thus inductor gets charged.

Similarly, when the inductor starts discharging, the capacitors start charging again and
this process of energy charging and discharging capacitors and inductor continues
causing the generation of oscillations and the frequency of these oscillations can be
determined by using the resonant frequency of the tank circuit consisting of inductor and
capacitors. This tank circuit is considered as the energy reservoir or energy storage. This
is because of frequent energy charging and discharging of the inductor, capacitors that is
a part of LC network forming the tank circuit.

The resonant frequency is given by:

ƒ0=1/(2П√(L1*C))

C=(C2*C3)/((C2+C3))

18

Where ƒ0 is the resonant frequency

L1 represents the self inductance of the coil.

C is the equivalent capacitance of series combination of C2 and C3 of the tank circuit

First, we simulated the colpitts circuit and measure its output which can be seen in figure
2.2 and figure 2.3 respectively.

Figure 2.2: Transmitter Circuit Simulation

19

Figure 2.3: Transmitter Simulation Output

Simulation provided us with the output as sinusoidal wave with the frequencies of 1.2 MHz

After the simulation, we made bread board prototype of same circuit which can be seen in figure
2.4 and its output in figure 2.5.

Figure 2.4: Transmitter Prototype Circuit

20

Figure 2.5: Output Wave

bread board prototype provided us with the output as sinusoidal wave with the frequencies of 1.2
MHz with 9 volts peak to peak.

2.2 wake up receiver:

To wake up TAG board from deep sleep mode "wake up receiver" sub-module is added,
which is similar to passive antenna. When it receives an external wireless signal antenna
generates an interrupt on the wake up pin of microcontroller which wakes up the whole TAG
board from deep sleep and enables it to perform the required task.
In the wake up receiver circuit, we have used simple LC circuit to receive external signal and
generate interrupt at the wake up pin of the microcontroller.

LC circuit can be seen in figure 2.6:

21

Figure 2.6: Wake up receiver circuit

After matching LC, below circuit act as an AM envelope detector. Zener diode limits the voltage
flows in the circuit.
Simulation in figure 2.7 and output in figure 2.8.

Figure 2.7: Receiver Circuit Simulation

In below figure, we can see voltage across R1:

22

Figure 2.8: Receiver Circuit Simulation Output

2.3 Prototype testing:

2.3.1 Experiment 1 :

To verify our prototype, we have generated EM signal of 1.24 MHz using Colpitts
oscillator and noted voltage at wake up receiver circuit by varying distance between transmitter
and receiver shown in Figure 2.9.

Figure 2.9: Transmitter and receiver Prototype Circuit

23

Results are shown in Table 1:

Table 2.1 Voltage received at TAG at different distance between TAG and OUTSIDER
S. N. Distance(cm) Voltage(Vpk-pk)

1 2.2 9.2

2 3 8.8

3 4 8.2

4 5 6.9

5 7 4.8

6 8.5 3.2

7 10 2.4

8 12 1.4

9 15 0.98

10 17 0.65

11 19 0.49

12 21 0.32

13 23 0.32

14 25 0.24

15 28 0.16

16 30 0.16

2.3.2 Experiment 2 :

To check the attenuation of signal at receiving end by using cement brick as medium in
between transmitter and receiver, we have generated EM signal of 1.24 MHz using Colpitts
oscillator and noted voltage at wake up receiver circuit by varying distance between transmitter
and receiver without and with placing brick shown in Figure 2.10 and in Figure 2.10
respectively.

 Figure 2.10: TAG and OUTSIDER without brick

24

Figure 2.11: TAG and OUTSIDER with brick

Table 2.2 Voltage received at TAG at different distance between TAG and OUTSIDER directly and using
cement brick

S.N. Distance(cm) Voltage(direct)(Vpk-pk) Voltage(Brick)(Vpk-pk)

1 10.5 2.2 2.2

2 15.5 0.78 0.78

3 13 1.3 1.3

2.3.2 Outcome of experiments

After performing wireless voltage transfer experiments at varying distance and obtaining
above result, we can confirm that cement brick does not produce any attenuation at resonant
frequency of 1.2 MHz.

2.4 PCB design of Wake up generator and receiver:

After being satisfied by the results of the above experiments, we decided to build
Prototype PCB of wake up generator and wake up receiver.

PCB was designed by using OrCAD's PCB Editor software. Schematic was designed by using
OrCAD's Allegro software.

Schematics are following:

25

1. Schematic of Wake up generator aka Colpitts oscillator shown in Figure 2.12:

Figure 2.12: Colpitt's Oscillator

2. Schematic of Wake up receiver aka LC circuit shown in Figure 2.13:

Figure 2.13: LC circuit

3. Schematic of power supply for Wake up generator and Wake up receiver shown in Figure
2.14:

26

 Figure 2.14: Power Supply of wake up generator circuit

To save the cost, prototype PCB was designed in such a way that wake up generator was on one
side of PCB and wake up receiver was on the another side. We ordered several PCBs so that one
PCB can be used as wake up generator and another as wake up receiver.
PCB design can be seen in following Figures 2.15, 2.16 and 2.17:

Figure 2.15: Top layer of wake up generator circuit

27

 Figure 2.16: Bottom layer of wake up generator circuit

 Figure 2.17: Complete Layout of wake up generator circuit

For extensive testing purpose, we have made two version of same PCB:

The PCB with bigger inductance, whose inductance dimensions are 45x40mm called Grande and
another one whose inductance dimensions are 33x28mm called Piccolo shown in Figure 2.18:

28

Figure 2.18: (a) Piccolo, (b) Grande

In the grande to grande communication, we found resonance at 39nF in series with 10nF and
maximum distance of between Tx and Rx is 10cm shown in Table 3.

 In grande to piccolo communication, we found resonance at 10nF(~9) in parallel with 2.2nF(~2)
& 470pF, which is equivalent of 12.6nF(~11.4) and maximum distance of between Tx and Rx is
7.5cm.

Table 2.3 Maximum distance between Communication of varies configuration of Grande and Piccolo
S. No. TX RX Max Distance(cm)

1 P P 7

2 P G 5

3 G P 7.5

4 G G 10

2.5 PCB Prototype testing:

we performed following experiments:

2.5.1. Direct EM transfer

 we have performed TX to RX communication shown in Figure 2.19 and checked what is
maximum distance possible between grande and piccolo, which is 7.5 cm.

29

Figure 2.19: Grande and Piccolo communication

2.5.2. Dry Brick

 we have performed the same experiment as above but this time placing dry brick between
TX and RX to check if there is any attenuation shown in Figure 2.20:

Figure 2.20: Grande and Piccolo communication with Dry Brick in-between

30

 Outcome: No attenuation

 2.5.3. Wet Brick

 we have performed the same experiment as above but this time placing wet brick between
TX and RX to check if there is any attenuation shown in Figure 2.21:

Figure 2.21: Grande and Piccolo communication with Wet Brick in-between

 Outcome: No attenuation

2.5.4. Outcome of experiments

Outcome of our experiments is that we did not get any attenuation between TX and RX
by either dry or wet brick. at given distance and frequency above.

2.6 Choice of Microcontroller:

For the reliability of any project, choice of component is critically important.
Microcontroller is brain of the project. It is responsible for correctly executing all the task
required. Out of several choices, we initially chose STM32WB55RGv6 because of several
reasons:

1. It is dual-core processor, one core for regular task and another core specifically
designed for communication purpose.

31

2. It is possible to put it in ultra low power mode which consume power in the range of
nano-Amps.
3. It supports several communication protocols like Bluetooth LE 5.0, zigbee as well as
IEEE 802.15.4.
4. It has internal analog temperature sensor, due to which we don't have to put external
temperature sensor which save area as well as cost.
5. ST microelectronics provide rich development environment and community support.
6. Nucleo board which consist of same microcontroller, which helps in testing with
interfacing with all other modules.

Nucleo board can be seen below in Figure 2.22:

Figure 2.22: STM32WB55 Nucleo Board

32

Schematic of custom STM32WB55RGv6 board are shown in Figure 2.23, 2.24, 2.25, 2.26 and
2.27:

Figure 2.23: Port A of custom board

Figure 2.24: Port B of custom board

33

Figure 2.25: Port C, D and E of custom board

Figure 2.26: Power and Ground Pins of custom board

34

Figure 2.27: Power Supply and Battery Holder of custom board

PCB design can be seen below shown in Figure 2.28, 2.29 and 2.30:

Figure 2.28: TOP Layer of custom board

35

Figure 2.29: BOTTOM Layer of custom board

Figure 2.30: Complete view with Drill Table of custom board

36

Our custom PBC is shown in Figure 2.31.

Figure 2.31: (a) Bottom side, (b) Top side, (c) PCB with mounted components

2.7 Internal Temperature sensor:

STM32WB55RGV6 Nucleo board contains several a successive approximation ADCs,
which has up to 16 external channels and three internal channels: internal reference voltages and
temperature sensor.
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The
offset of this line varies from chip to chip due to process variation. The temperature sensor is
internally connected to the ADC1_IN17 input channel is shown in Figure 2.32, which is used to
convert the sensor output voltage into a digital value. It support the temperature range –40 to 125
°C.

Figure 2.32: Internal TS connected with ADC

37

2.8 Shock Sensor

The spring loaded vibration switches are non-directional vibration trigger switches with
low sensitivity. Inside the sensor is a stiff spring wound around a long metal pin. The switch is
moved when the spring touches the center pole to establish a connection. When there is
movement, the two pins act as a closed switch. Switch stays open when everything is still.

Figure 2.33: Vibration Sensor

One pin of Shock or Vibration sensor will be connected to one of the wake up pin of our
processor, which is further connected to ground(To avoid floating of pin). Another pin is
connected to VDD.

Figure 2.34: Configuration for Vibration sensor

38

2.9 Photodiode

OSRAM SFH2440 High-Speed PIN Photodiode is a high linearity photodiode with
9.4nA / lx spectral sensitivity and excellent IR suppression. This diode comes in a dual in-line
plastic (DIL) package and operates in a temperature range of -40ºC to 100ºC. The SFH2440
photodiode has a low temperature coefficient of spectral sensitivity, and the spectral sensitivity is
made to order to human eye sensitivity. This photodiode is apt for high speed applications like
mobile phone, regulation of air conditioning, and bio-monitoring.

Figure 2.35: Photodiode

Photodiodes or light sensors, work by creating a pair of electron holes when a photon of
sufficient energy hits the diode. This mecha nism is also called as inner photoelectric effect. If
the absorption arises in the depletion region junction, then the carriers are removed from the
junction by the inbuilt electric field of the depletion region.
One pin of Photodiode or light sensor will be connected to one of the wake up pin of our
processor, which is further connected to ground(To avoid floating of pin). Another pin is
connected to VDD.

Figure 2.36: Configuration for Photodiode

39

2.10 GPS module

The u-blox concurrent SAM-M8Q GNSS patch antenna module is shown in Figure 2.37,
which benefits from the exceptional performance of the u-blox M8 multi-GNSS engine. The
SAM-M8Q module provides high sensitivity and minimal acquisition times in an ultra-compact
form factor.

Figure 2.37: GPS Module

2.11 Designing of boards

Schematics of TAG board are shown in Figure 2.38, Figure 2.39 and Figure 2.40:

Figure 2.38: Wake-up receiver and RF antenna of TAG board

40

Figure 2.39: STM32WB55CGU6

Figure 2.40: Vibration sensor and Photodiode

41

PCB design of TAG board are shown in Figure 2.41, Figure 2.42 and Figure 2.43:

Figure 2.41: TOP Layer of TAG board

Figure 2.42: BOTTOM Layer of TAG board

42

 Figure 2.43: Complete view with Drill Table of TAG board

Final PCB of TAG board is shown in Figure 2.44 and Figure 2.45:

Figure 2.44: Top side of TAG board

43

Figure 2.45: Bottom side of TAG board

Schematic of RECEIVER EXTERNO board are shown in Figure 2.46, Figure 2.47 and Figure
2.48:

Figure 2.46: Power Supply of RECEIVER EXTERNO board

44

Figure 2.47: STM32WB55CGU6

Figure 2.48: Wake-up generator and RF of RECEIVER EXTERNO board

45

PCB design of RECEIVER EXTERNO board are shown in Figure 2.49, Figure 2.50 and Figure
2.51:

Figure 2.49: TOP Layer of RECEIVER EXTERNO board

Figure 2.50: BOTTOM Layer of RECEIVER EXTERNO board

46

Figure 2.51: Complete view with Drill Table of RECEIVER EXTERNO board

PCB of RECEIVER EXTERNO board are shown in Figure 2.52 and Figure 2.53:

Figure 2.52: Top side of RECEIVER EXTERNO board

47

Figure 2.53: Bottom side of RECEIVER EXTERNO board

48

Schematic of CASAFORMA board are shown in Figure 2.54, Figure 2.55 and Figure 2.56:

Figure 2.54: GPS module and RF of CASAFORMA board

49

Figure 2.55: STM32WB55CGU6

Figure 2.56: Power Supply of CASAFORMA board

50

PCB design of CASAFORMA board are shown in Figure 2.57 and Figure 2.58:

Figure 2.57: TOP Layer of CASAFORMA board

Figure 2.58: BOTTOM Layer of CASAFORMA board

51

PCB of CASAFORMA board are shown in Figure 2.59 and Figure 2.60:

Figure 2.59: Top side of CASAFORMA board

Figure 2.60: Bottom side of CASAFORMA board

52

Chapter 3

Software Design

3.1 STMicroelectronics

STMicroelectronics idea to drastically improvise developer efficiency and productivity
by reducing amount to time, cost and effort by introducing several software chain tools like
STM32CubeMX, STM32CubeIDE, STM21CubeMonitorRF etc. To maximize the utilization of
resources available given like graphical software configuration tool, Hardware Abstraction
Layer(HAL), Low Layer APIs(LL) to bare board knowledge of each resource of microcontroller.

3.1.1 Graphical software tool:

While using its IDE, To initialize we used graphical software configuration tool that
allows to set varies parameters like GPIO, clock frequency setting etc, which generates C
initialization code using graphical wizards, as reported in Figure 3.1.

Figure 3.1: Graphical software configuration tool

53

3.1.2 Hardware Abstraction Layer(HAL)

The STM32Cube Hardware Abstraction Layer, STM32 abstraction layer embedded
software making sure to increase portability of code across the STM32 family. Hardware
Abstraction Layer APIs are accessible for all the common peripheral features as well as
extension in case of specific peripheral features.

The HAL drivers are made to offer a large set of drivers and to easily interact with the upper
layers of the application. Each driver consists of a set of functions covering the most common
peripheral features. Each driver is designed using a common API that standardizes driver
structure, functions, and parameter names.

HAL GPIO Examples:
HAL_GPIO_ReadPin()
HAL_GPIO_WritePin()
HAL_GPIO_TogglePin()
HAL_GPIO_LockPin()

HAL Detailed Function Description, as reported in Figure 3.2.
HAL_GPIO_WritePin() :

Figure 3.2: Function Description

Using STM32 HAL device drivers can be beneficial in many conditions and it assist in reduce
development time. Especially for "Proof of Concept" projects. It is inefficient to spend a lot of
time making a entire software stack for a specific target, then it proves that the main idea
requires improvement or the target itself is not working well enough. In some cases, the
moderately high-level API offered by HAL may have more options available than needed.
Therefore, it may use more memory space and due to the overhead of the built-in library, it may
execute some tasks slightly slower.

54

3.1.3 Low Layer APIs(LL)

The low-layer APIs (LL) offering a fast light-weight expert-oriented layer which is closer
to the hardware than the HAL. The low-layer (LL) drivers are only available for a set of
peripherals.

The low-layer drivers provide hardware services based on the available features of the STM32
peripheral functions. These services accurately reflect the capabilities of the hardware and
provide one-time operations that must be invoked according to the programming model
described in the microcontroller line reference manual. As a consequence, LL driver don't
perform any processing and don't need any extra memory resources to store their states, counters
or data pointers: all operations are performed by changing the contents of the associated
peripheral registers.

There are low-level hardware drivers for almost all the hardware peripherals in the STM32
microcontrollers. Including Timers, ADC, USART, I2C, USB, DAC, Comparators, etc.

LL drivers can be used and optimized more at the register level to improve memory usage or
execution speed. However, the final application will not be easy to port across multiple targets.

LL GPIO Examples:
LL_GPIO_SetPinMode()
LL_GPIO_GetPinMode()
LL_GPIO_SetPinOutputType()
LL_GPIO_SetPinSpeed()

LL Detailed Function Description, as reported in Figure 3.3.
LL_GPIO_SetPinMode()

Figure 3.3: Function Description

55

3.1.4 Bare Board

Bare board programming requires in depth knowledge of each register and each of its bit.
It is most optimized form of programming but it has no portability of code across the STM32
family. It is very particular hardware specific. It is much closer than HAL and LL APIs.

It requires bit level manipulation of each register.
Example of Bare board instructions:
GPIOx_MODER
GPIOx_OTYPER
GPIOx_OSPEEDR
GPIOx_ODR

Bare board Detailed Function Description, as reported in Figure 3.4.
GPIOx_MODER Register

Figure 3.4: MODER Register

3.2 Code for Deep-sleep mode and measuring current

Micro-controller STM32WB55RGV6 has several power modes. Like, run & low-power
run modes, sleep & low-power sleep modes, stop0, stop1 & stop2 modes, standby mode and
shutdown mode.
When we put our micro-controller in low power mode, we prefer to put it in Standby mode due
to following reason: It has lowest current consumption in which we can retain our data in
SRAM2a. In shutdown mode, it has even less current consumption than standby mode but we
cannot retain memory(SRAM1, SRAM2). Other modes like stop modes or sleep mode have
higher current consumption.
Putting in standby mode using HAL command:
HAL_PWR_EnterSTANDBYMode();

Current consumption: 0.59 mA
Putting in standby mode using register level coding:
 SCB->SCR= 0x4;

56

 PWR-> CR3 |= 0x200;
 PWR->CR1=0x00004433;
 PWR->C2CR1=0x33;

Current consumption: 0.1 uA

We have put our microcontroller at different modes and check its current consumption, as
reported in Table 3.1:
Voltage = 3.3V Operation frequency = 16 MHz

Table 3.1: Current consumption at different modes
S. No. Operating Mode I

1 Normal Mode 1.31 mA
2 Stop 2 Mode 0.71 mA
3 Stop 1 Mode 0.60 mA
4 Stop 0 Mode 0.25 mA
5 Standby Mode 0.1 uA
6 Shutdown Mode *BOR

*BOR= Below Operating Range of Ammeter used
In Shutdown Mode, current consumption was in the range of neno-Amps, which was out of
range of ammeter used.
Complete code is given at Appendix A

3.3 Current measurement at different frequency

STM32WB55RGV6 Nucleo board contains several clock like MSI(Multi-Speed
Internal), HSI(High Speed Internal), HSE(High Speed External) etc. We have checked current
consumption of microcontroller and current consumption of whole Nucleo board at several
different frequency and by using different clocks and results are reported in Table 3.2:

Table 3.2: Current consumption at different frequency at normal mode using MSI clock

S. No. Frequency MCU 1(mA) BOARD(mA)
1 48MHz 1.16 8.90
2 32M 1.30 7.15
3 24M 1.20 5.85
4 16M 1.1 4.6
5 8M 1.08 3.4
6 4M 1.08 2.8
7 2M 1.08 2.54
8 1M 0.90 2.30
9 800K 1.05 2.27
10 400K 1.00 2.10

57

11 200K 0.95 2.23
12 100K 0.85 1.89

Current consumption while using HSI clock
13 16M 1.216 4.6

Current consumption while using HSE clock
14 32M 1.22 6.84

3.4 . Internal temp sensor process and comparison with normal temperature

STM32WB55RGV6 Nucleo board contains several a successive approximation ADCs,
which has up to 16 external channels and three internal channels: internal reference voltages and
temperature sensor.

The temperature sensor is internally connected to the ADC1_IN17 input channel, which is used
to convert the sensor output voltage into a digital value.
Formula to convert value obtained from ADC to oC is following:

Where:

TS_CAL2 is the temperature sensor calibration value acquired at TS_CAL2_TEMP.
TS_CAL1 is the temperature sensor calibration value acquired at TS_CAL1_TEMP.
TS_DATA is the actual temperature sensor output value converted by ADC.
Refer to the device datasheet for more information about TS_CAL1 and
TS_CAL2 calibration points.

To improve the accuracy of the temperature sensor measurement, each device is individually
factory-calibrated by ST. The temperature sensor factory calibration data are stored in the system
memory area, accessible in read-only mode, as reported in Table 3.3.

Table 3.3: Calibration Address

The value of TS_CAL1 is 1034 and value of TS_CAL2 is 1384, in our case given in system
memory address given above.

58

The experiment to measure Temperature measurement by using internal temperature sensor and
comparing it with external device is reported in Table 3.4:

Table 3.4: Temperature using internal sensor Vs External device
S. No. Temperature(Internal Sensor) oC Temperature(By External device) oC

1 13.34 13.6
2 14.24 14.1
3 16.4 14.9
4 17.16 15.1
5 18.3 16.3
6 19.0 16.6
7 19.62 17.2
8 20.34 19.4
9 21.5 20.2
10 23.22 21.3
11 24.5 22.1
12 25.28 23.8
13 25.91 24.0
14 26.54 25.4
15 27.85 25.6

Ultimately, they were stabilize at 27.85 and 25.6 respectively, which indicates that there is
difference of 1 to 3 oC. This is because of our microcontroller is performing some task and it is
an active component due to which there will be some variation of temperature. It can be
compensated by varying the given formula.

Complete code is given at Appendix B

3.5 GPS module

When we interface microcontroller with the GPS module in UART configuration. Large
number of data is being received by the microcontroller. Frame after frame is received. Structure
of frame is reported in Figure 3.5:

59

Figure 3.5: Frame Structure

Some example of frames that we obtain are following:
$xxRMC,time,status,lat,NS,lon,EW,spd,cog,date,mv,mvEW,posMode,navStatus*cs<CR><LF>
$GPRMC,083559.00,A,4717.11437,N,00833.91522,E,0.004,77.52,091202,,,A,V*57
$xxGLL,lat,NS,lon,EW,time,status,posMode*cs<CR><LF>
$GPGLL,4717.11634,N,00833.91297,E,124923.00,A,A*6E

60

Figure 3.6: Longitude & Latitude position in frame

Hence, we need to make a filter of header and class and obtain the correct value of longitude and
latitude from large chunk of data based on Figure 3.6.

Complete code is given at Appendix C.

3.6 Bluetooth communication

The RF subsystem is composed of an RF analog front end, BLE and 802.15.4 digital
MAC blocks as well as of a dedicated Arm® Cortex®-M0+ microcontroller (called CPU2), plus
proprietary peripherals. The RF subsystem performs all of the BLE and 802.15.4 low layer stack,
reducing the interaction with the CPU1 to high level exchanges.

STM32WB is a ultra low power Bluetooth low energy (BLE) single-mode network processor
that complies with Bluetooth specification v5.2 and supporting master or slave roles.

Bluetooth Low Energy (BLE) wireless technology was developed by the Bluetooth Special
Interest Group (SIG) to achieve a very low energy standard operating with a coin cell battery for
numerous years. Classic Bluetooth technology has been developed as the standard for wireless
communication to replace cables for connecting portable and / or fixed electronics, but it cannot
provide the ultimate in battery life due to the relatively complex connection-based behavior and
relatively complex procedures for connection. Low-power Bluetooth devices consume only part

61

of the power of standard Bluetooth products, allowing to connect coin-operated devices to
wireless Bluetooth enabled devices.

To be precise, low-power Bluetooth technology is designed to transmit very small packets of
data simultaneously, consuming significantly less power than mainstream / enhanced data / high-
speed (BR / EDR / HS) devices.

The Bluetooth low energy stack consists of two components:

[1] Controller [2] Host

The Controller includes the physical layer and the link layer. The Host includes the logical link
control and adaptation protocol (L2CAP), the security manager (SM), the attribute protocol
(ATT), generic attribute profile (GATT) and the generic access profile (GAP). The interface
between the two components is called host controller interface (HCI), as reported in Figure 3.7.

Figure 3.7: BLE application and wireless firmware architecture

Setting up a Bluetooth devices involves first “pairing” the two devices and establishing a

connection. The Bluetooth Client component sends the connection request and the Bluetooth
Server component accepts the request.

Client/server protocol, as reported in Figure 3.8, forms the basis of data exchange in BLE
applications. Server (BLE peripheral) provides data upon request from a client (central device).
Server data stored in so-called Attribute Table, which contains a series of record (attributes) of
various types.

62

GATT comes into play when a connection is established. It defines data exchange between two
BLE devices. It adds a data model and hierarchy on top of the ATT (by means of concepts called
services and characteristics)

A service is a container for logically related data items (e.g. Device Information Service –
various information about the device). It characteristics are logically related data items within
one service (e.g. Serial Number String and Manufacturer Name String from the Device
Information Service). A characteristic consists of a type, a value, some properties, permissions
and optionally descriptors. Descriptors either provides additional details or allows configuration
of behavior related to the characteristic (e.g. turn on notifications)

Figure 3.8: BLE communication process
Our project requires performing full duplex communication between client and server.
RECEIVER EXTERNO board act as an client, which ask for data whenever we require. Where,
on the other hand, TAG - PROVINO board act as a server. It stores all the data inside
microcontroller. It periodically advertise and whenever contacted by the client, it executes
required task of sending particular data or reset timer etc.

We have performed both ways communication:

1. Sending data from client to sever: We have use STBle app in our mobile phone, which act as a
client and have established communication with Nucleo board, which behaves as a server.
Through app we have controlled the LED on the Nucleo board, as reported in Figure 3.9.

63

Figure 3.9: Client to Server Communication
2. Sending data from sever to client: In this mode, same as above mobile app act as a client and
Nucleo board behaves as a server and we receive temperature value from Nucleo board on
mobile app, as reported in Figure 3.10.

Figure 3.10: Data received by APP

64

Chapter 4

Conclusion

We have final Prototype of all three device: TAG-Provino board, Receiver Esterno board, and
Cassaforma board.

First device, TAG-Provino board is collecting data from temperature sensor and saving it inside
microcontroller. The microcontroller consist of two cores: Arm® Cortex®-M4 core and Arm
Cortex®-M0+ core, where Arm® Cortex®-M4 is primarily responsible for performing the
function and Arm Cortex®-M0+ is dedicated for real time radio layer. When not performing any
task, the microcontroller goes into standby mode which consumes less than 2 uA of power.
Wake up receiver helps system to wake up from standby mode into run mode. Microcontroller
also saves data with timestamp of event of opening of material box or tempering of its material
detected by the Shock sensor and the Photodiode. The size of TAG-Provino board is only 5 x 2.4
mm.

Figure 4.1: TAG-Privono board

Second device, CASSAFORMA board consist of same microcontroller as TAG-Provino board.
So, it brings same ultra low power consumption ability in this board as well. GPS module
requires special attention while designing board as no other component except three capacitors
should be placed near it. Also, large number of Vias are needed to be placed right beneath it and
no other component should be present below the GPS module. Location data is periodically
collected from the GPS module and stored in the microcontroller. Further, Location data is
transmitted to the TAG-Provino board.

65

Figure 4.2: Receiver Esterno board

Third device, RECEIVER ESTERNO board has similar function of that of a Gateway. It act as a
bridge between whole system and external world. It consist of the wake up generator, which
generates electro-magnetic signal of more than 1 MHz to wake up TAG-Provino board from the
deep sleep mode. The communication among the devices and calibration of the time is
responsibility of this board. Not only communication among the boards but communication with
external device is done through this board that is why it has dual functionality.

Figure 4.3: Cassaforma board

66

APPENDIX

Appendix A

Current consumption measurement

#include "main.h"
void SystemClock_Config(void);
static void MX_GPIO_Init(void);

int main(void)
{

 HAL_Init();

 SystemClock_Config();

 MX_GPIO_Init();

 HAL_Delay(2000);

 while (1)
 {
 }
}

void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

 /** Macro to configure the PLL multiplication factor */
 __HAL_RCC_PLL_PLLM_CONFIG(RCC_PLLM_DIV4);
 /** Macro to configure the PLL clock source */
 __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_MSI);
 /** Configure LSE Drive Capability */
 HAL_PWR_EnableBkUpAccess();
 __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 /** Configure the main internal regulator output voltage */
 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
 /** Initializes the RCC Oscillators according to the specified parameters
 * in the RCC_OscInitTypeDef structure. */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 |RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI;
 RCC_OscInitStruct.HSEState = RCC_HSE_ON;
 RCC_OscInitStruct.LSEState = RCC_LSE_ON;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.MSIState = RCC_MSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_11;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

67

 {
 Error_Handler();
 }
 /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
 |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV2;
 RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
 {
 Error_Handler();
 }
 /** Initializes the peripherals clocks */
 PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS|RCC_PERIPHCLK_USART1
 |RCC_PERIPHCLK_USB;
 PeriphClkInitStruct.PLLSAI1.PLLN = 8;
 PeriphClkInitStruct.PLLSAI1.PLLP = RCC_PLLP_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLQ = RCC_PLLQ_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLR = RCC_PLLR_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_USBCLK;
 PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
 PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
 PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSI;
 PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE0;
 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /** Enable MSI Auto calibration */
 HAL_RCCEx_EnableMSIPLLMode();
}

static void MX_GPIO_Init(void)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};

 /* GPIO Ports Clock Enable */
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOD_CLK_ENABLE();

 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOB, LD2_Pin|LD3_Pin|LD1_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pin : B1_Pin */
 GPIO_InitStruct.Pin = B1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

68

 /*Configure GPIO pins : LD2_Pin LD3_Pin LD1_Pin */
 GPIO_InitStruct.Pin = LD2_Pin|LD3_Pin|LD1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

 /*Configure GPIO pins : B2_Pin B3_Pin */
 GPIO_InitStruct.Pin = B2_Pin|B3_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

}

Appendix B

Temperature measurement

#include "main.h"
#include <stdio.h>

#define TEMP130_CAL_VALUE ((uint16_t*)((uint32_t)0x1FFF75CA))
#define TEMP30_CAL_VALUE ((uint16_t*)((uint32_t)0x1FFF75A8))
#define TEMP130 130.0f
#define TEMP30 30.0f
float CALIBRATION_REFERENCE_VOLTAGE = 3.3F;
float REFERENCE_VOLTAGE = 3.0F;

float temperature;
float sensorValue;
float div; // REFERENCE_VOLTAGE/CALIBRATION_REFERENCE_VOLTAGE;

void SystemClock_Config(void);
static void MX_GPIO_Init(void);

int main(void)
{
 HAL_Init();

 /* Configure the system clock */
 SystemClock_Config();

 while (1)
 {
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, 1);
 HAL_Delay(1000);
 HAL_GPIO_WritePin(GPIOB, GPIO_PIN_0, 0);
 HAL_Delay(1000);
 HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED);
 HAL_ADC_Start_IT(&hadc1);
 HAL_Delay(100);

69

 }
}

void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

 /** Macro to configure the PLL multiplication factor */
 __HAL_RCC_PLL_PLLM_CONFIG(RCC_PLLM_DIV1);
 /** Macro to configure the PLL clock source */
 __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_MSI);
 /** Configure LSE Drive Capability */
 HAL_PWR_EnableBkUpAccess();
 __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 /** Configure the main internal regulator output voltage */
 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
 /** Initializes the RCC Oscillators according to the specified parameters
 * in the RCC_OscInitTypeDef structure. */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 |RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI;
 RCC_OscInitStruct.HSEState = RCC_HSE_ON;
 RCC_OscInitStruct.LSEState = RCC_LSE_ON;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.MSIState = RCC_MSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_8;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
 |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
 {
 Error_Handler();
 }
 /** Initializes the peripherals clocks */
 PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS|RCC_PERIPHCLK_USART1
 |RCC_PERIPHCLK_USB|RCC_PERIPHCLK_ADC;
 PeriphClkInitStruct.PLLSAI1.PLLN = 6;
 PeriphClkInitStruct.PLLSAI1.PLLP = RCC_PLLP_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLQ = RCC_PLLQ_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLR = RCC_PLLR_DIV2;

70

 PeriphClkInitStruct.PLLSAI1.PLLSAI1ClockOut =
RCC_PLLSAI1_USBCLK|RCC_PLLSAI1_ADCCLK;
 PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
 PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
 PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
 PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSI;
 PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE0;
 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
 {
 Error_Handler();
 }

 /** Enable MSI Auto calibration
 */
 HAL_RCCEx_EnableMSIPLLMode();
}

static void MX_GPIO_Init(void)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};

 /* GPIO Ports Clock Enable */
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOD_CLK_ENABLE();

 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOB, LD2_Pin|LD3_Pin|LD1_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pin : PC4 */
 GPIO_InitStruct.Pin = GPIO_PIN_4;
 GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

 /*Configure GPIO pins : LD2_Pin LD3_Pin LD1_Pin */
 GPIO_InitStruct.Pin = LD2_Pin|LD3_Pin|LD1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

 /*Configure GPIO pins : B2_Pin B3_Pin */
 GPIO_InitStruct.Pin = B2_Pin|B3_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

 /* EXTI interrupt init*/
 HAL_NVIC_SetPriority(EXTI4_IRQn, 0, 0);
 HAL_NVIC_EnableIRQ(EXTI4_IRQn);

}

/* USER CODE BEGIN 4 */
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)

71

{
 if(HAL_ADC_PollForConversion(&hadc1, 100) == HAL_OK)
 {
 div= CALIBRATION_REFERENCE_VOLTAGE/REFERENCE_VOLTAGE;
 adcCalTemp30C = (float)(*TEMP30_CAL_VALUE);
 adcCalTemp130C = (float)(*TEMP130_CAL_VALUE);

 sensorValue = (float)HAL_ADC_GetValue(&hadc1);
 HAL_ADC_Stop(&hadc1);

 temperature = (float)((sensorValue * div) - adcCalTemp30C)/(adcCalTemp130C
- adcCalTemp30C) * (130.0F - 30.0F) + 30.0F ;

 }
 else
 {
 temperature = -273;
 }

}

Appendix C

GPS coordinate measurement

#include "main.h"
#include "string.h"

void SystemClock_Config(void);
static void MX_GPIO_Init(void);

static void MX_USART1_UART_Init(void);

uint8_t Rx_data[70];
uint64_t Sdata[70];
uint8_t LL[20];

int main(void)
{

 /* MCU Configuration--*/

 /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
 HAL_Init();

 /* Configure the system clock */
 SystemClock_Config();

 /* Initialize all configured peripherals */
 MX_GPIO_Init();
 MX_USART1_UART_Init();

 HAL_UART_Receive_IT(&huart1, Rx_data, 70);
 HAL_Delay(800);

72

 while (1)
 {

 HAL_UART_Receive_IT(&huart1, Rx_data, 70);
 HAL_Delay(500);

 }

}

void SystemClock_Config(void)
{
 RCC_OscInitTypeDef RCC_OscInitStruct = {0};
 RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
 RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

 /** Macro to configure the PLL multiplication factor */
 __HAL_RCC_PLL_PLLM_CONFIG(RCC_PLLM_DIV1);
 /** Macro to configure the PLL clock source */
 __HAL_RCC_PLL_PLLSOURCE_CONFIG(RCC_PLLSOURCE_MSI);
 /** Configure LSE Drive Capability */
 HAL_PWR_EnableBkUpAccess();
 __HAL_RCC_LSEDRIVE_CONFIG(RCC_LSEDRIVE_LOW);
 /** Configure the main internal regulator output voltage */
 __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
 /** Initializes the RCC Oscillators according to the specified parameters
 * in the RCC_OscInitTypeDef structure. */
 RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE
 |RCC_OSCILLATORTYPE_LSE|RCC_OSCILLATORTYPE_MSI;
 RCC_OscInitStruct.HSEState = RCC_HSE_ON;
 RCC_OscInitStruct.LSEState = RCC_LSE_ON;
 RCC_OscInitStruct.HSIState = RCC_HSI_ON;
 RCC_OscInitStruct.MSIState = RCC_MSI_ON;
 RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
 RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_6;
 RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
 if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /** Configure the SYSCLKSource, HCLK, PCLK1 and PCLK2 clocks dividers */
 RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK4|RCC_CLOCKTYPE_HCLK2
 |RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
 |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
 RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
 RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
 RCC_ClkInitStruct.AHBCLK2Divider = RCC_SYSCLK_DIV1;
 RCC_ClkInitStruct.AHBCLK4Divider = RCC_SYSCLK_DIV1;

 if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
 {
 Error_Handler();
 }

73

 /** Initializes the peripherals clocks */
 PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_SMPS|RCC_PERIPHCLK_USART1
 |RCC_PERIPHCLK_USB;
 PeriphClkInitStruct.PLLSAI1.PLLN = 24;
 PeriphClkInitStruct.PLLSAI1.PLLP = RCC_PLLP_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLQ = RCC_PLLQ_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLR = RCC_PLLR_DIV2;
 PeriphClkInitStruct.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_USBCLK;
 PeriphClkInitStruct.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
 PeriphClkInitStruct.UsbClockSelection = RCC_USBCLKSOURCE_PLLSAI1;
 PeriphClkInitStruct.SmpsClockSelection = RCC_SMPSCLKSOURCE_HSI;
 PeriphClkInitStruct.SmpsDivSelection = RCC_SMPSCLKDIV_RANGE0;
 if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
 {
 Error_Handler();
 }
 /* USER CODE BEGIN Smps */

 /* USER CODE END Smps */
 /** Enable MSI Auto calibration */
 HAL_RCCEx_EnableMSIPLLMode();
}

static void MX_USART1_UART_Init(void)
{
 huart1.Instance = USART1;
 huart1.Init.BaudRate = 9600;
 huart1.Init.WordLength = UART_WORDLENGTH_7B;
 huart1.Init.StopBits = UART_STOPBITS_1;
 huart1.Init.Parity = UART_PARITY_NONE;
 huart1.Init.Mode = UART_MODE_TX_RX;
 huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
 huart1.Init.OverSampling = UART_OVERSAMPLING_16;
 huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
 huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
 huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
 if (HAL_UART_Init(&huart1) != HAL_OK)
 {
 Error_Handler();
 }
 if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
 {
 Error_Handler();
 }
 if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
 {
 Error_Handler();
 }
 if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
 {
 Error_Handler();
 }

}
static void MX_GPIO_Init(void)
{
 GPIO_InitTypeDef GPIO_InitStruct = {0};

74

 /* GPIO Ports Clock Enable */
 __HAL_RCC_GPIOC_CLK_ENABLE();
 __HAL_RCC_GPIOB_CLK_ENABLE();
 __HAL_RCC_GPIOA_CLK_ENABLE();
 __HAL_RCC_GPIOD_CLK_ENABLE();

 /*Configure GPIO pin Output Level */
 HAL_GPIO_WritePin(GPIOB, LD2_Pin|LD3_Pin|LD1_Pin, GPIO_PIN_RESET);

 /*Configure GPIO pin : B1_Pin */
 GPIO_InitStruct.Pin = B1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

 /*Configure GPIO pins : LD2_Pin LD3_Pin LD1_Pin */
 GPIO_InitStruct.Pin = LD2_Pin|LD3_Pin|LD1_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
 HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

 /*Configure GPIO pins : B2_Pin B3_Pin */
 GPIO_InitStruct.Pin = B2_Pin|B3_Pin;
 GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
 GPIO_InitStruct.Pull = GPIO_NOPULL;
 HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */
const unsigned char GLL_HEADER[2] = { 0xF0, 0x01 };
const unsigned char BLL_HEADER[7] = { 36,71,78,82,77,67,44 };
unsigned char comp[7], pos[7];
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart){

 __NOP();
 int a=0,b=0,c=0,j=0, k=0;

 for(a; a<70;a++){

 if(BLL_HEADER[b]==Rx_data[a])
 {
 comp[c]=BLL_HEADER[b];
 pos[c]=a;
 c++;
 b++;
 if(c==7){
 k= a;
 }
 }

}
 k=k+8;//+9
 for (j=0; j<20; j++){
 LL[j] = Rx_data[k];

75

 k++;
 }

}

76

REFERENCES

[1] RM0434 Reference manual link:
https://www.st.com/resource/en/reference_manual/dm00318631-multiprotocol-wireless-32bit-
mcu-armbased-cortexm4-with-fpu-bluetooth-lowenergy-and-802154-radio-solution-
stmicroelectronics.pdf

[2] UM2435 User manual link: https://www.st.com/resource/en/user_manual/dm00517423-
bluetooth-low-energy-and-802154-nucleo-pack-based-on-stm32wb-series-microcontrollers-
stmicroelectronics.pdf

[3] STM32CubeIDE software link: https://www.st.com/en/development-tools/stm32cubeide.html

[4] Electronic – Reading internal temperature sensor STM32 link:
https://itectec.com/electrical/electronic-reading-internal-temperature-sensor-stm32/

[5] Youtube video link: https://www.youtube.com/watch?v=CpBZjWBAtpw&pp=sAQA

[6] Calibration link: https://stackoverflow.com/questions/56493262/how-to-measure-know-
precisely-the-adc-reference-voltage-on-stm32l052k6t6

[7] VREF formula link: https://community.st.com/s/question/0D50X00009XkYIWSA3/stm32-
how-to-use-vref-to-calculate-the-actual-vdda-value

[8] Controllerstech link: https://controllerstech.com/low-power-modes-in-stm32/

[9] Youtube link: https://www.youtube.com/watch?v=UtkszckecV8&pp=sAQA

[10] Colpitts link: https://www.elprocus.com/colpitts-oscillator-circuit-working-and-
applications/

[11] Circuit link: https://learnabout-electronics.org/Oscillators/osc24.php

[12] Colpitt's oscillator calculator link: https://www.calctown.com/calculators/colpitt-oscillator

[13] Inductor calculator link: https://www.allaboutcircuits.com/tools/coil-inductance-calculator/

[14] Online Simulator link: https://www.multisim.com/

[15] Receiver Circuit link: https://electronics.stackexchange.com/questions/216681/build-
remote-wireless-wake-up-with-attiny85

