
Politecnico Di Torino
Master Degree in Physics of Complex Systems

Image Reconstruction via Expectation
Propagation with auxiliary informative variables

Supervisor:

Prof. Alfredo Braunstein

Anna Paola Muntoni

Author:

Francesco Udine

Academic year 2021/2022

1



Abstract

Tomography is an imaging technique that allows one to reconstruct object
sections by analyzing particular penetrating waves; this method finds appli-
cations in different areas of science. The mathematical procedure used to re-
construct images is generally called tomographic reconstruction; when X-rays
are exploited, the overall procedure is called Computed Tomography scan (CT
scan). Historically, this technique was first idealized by Johann Radon in 1917,
when he introduced the so-called Radon transform: he showed that a cross-
section of an image can be reconstructed in a single step through an infinite set
of its projections. The first practical application in CT scan dates back to 1971,
more than fifty years later. Nowadays, image reconstruction algorithms use,
conversely, a finite number of projections, and iterative reconstruction meth-
ods. However, the original problem is mapped into an ill-posed linear problem,
so one has to add more information, such as image regularizations, to find a
feasible solution. In recent years, it has been possible to formulate the problem
of image reconstruction in a Bayesian context, that is, in a probabilistic frame-
work. Here, one has to find the pixel assignment that maximizes a posterior
probability distribution. The huge advantage carried by this framework is that
of encompassing the ability to introduce non-convex priors which reflect the typ-
ical characteristics of the images. However, this makes the problem intractable
for general optimization methods, i.e. linear programming. Thanks to the Ex-
pectation Propagation method, it is possible to deal with these posteriors using
approximations. Moreover, the ability to deal with non-convex functions allows
us to introduce designed priors according to the empirical behavior of some
pixel functions. This can be done for the so-called pixel-difference variables or
for some other auxiliary variables obtained through a linear operator. There-
fore, the idea behind the present work is to create a dataset of images somewhat
similar to the tomographic ones and to apply a linear transform on the pixel
variables: by studying the empirical behavior of the auxiliary variables, we try
to deduce the functional form of the priors describing these auxiliary variables.
In this thesis, we apply the Haar transform to the images of the dataset and we
study the behavior of these auxiliary variables to define priors describing the
Haar coefficients. Then, we compare the performances obtained by some im-
plementations of the EP algorithm (differing in the priors used) in several mea-
surement regimes. The results shown in the simulations confirm the validity of
using auxiliary variables in the EP algorithm, in particular the pixel-difference
variables.
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1 Introduction
Tomography is a medical imaging procedure used to reconstruct the cross section
of an object from a set of measurements (X-ray attenuations or other penetrating
waves) at different angles.

The mathematical algorithms for tomographic reconstructions are based on
the interaction between the radiation and the material of which the object is
composed, producing projection data.

Such interactions can be formally described with line integrals of some char-
acteristic of the object: for many applications these curved paths can be modeled
by straight lines but in general the beam of photons can be absorbed by atoms
or can be scattered away, deviating from this linear behavior. For many im-
portant practical applications, approximation of these curved paths by straight
lines is acceptable. [1]

In CT scan, the X-rays pass through the object and the attenuation of the
intensity of the radiation exiting the object is measured. The intensity of the
measured beam is proportional to Nin, the number of photons entering the
object; this reduces due to absorption as:

Nout = Nine
−
´
ray

w(x,y)ds (1)

where Nout is the number of photons exiting the object and w(x, y) is the
attenuation coefficient of the object and depends on two spatial coordinates
x, y: this is a strong assumption because in general this coefficient is a function
of photon energy. If the X-ray beam is monochromatic, the monoenergetic
photons have all the same energy: so we can assume the spatial dependence of
the attenuation coefficient mentioned above.

A different approach for tomographic imaging is the algebraic one, where we
assume that the cross section is an array of unknowns, a discretized grid. This
approach seems more suitable in the presence of diffracting sources, as refraction
or diffraction. [2]

If the object is homogeneous, the intensity I0 of the monochromatic beam
is reduced due to absorption as:

I = I0e
−wT (2)

where w is the attenuation coefficient of the object and T is the distance
traveled by the beam inside the object.

In a more realistic scenario the object is inhomogeneous, so the decay of the
intensity of the beam must take into account the different possible tissues of the
object:

I = I0e
−w1T1e−w2T2 ...e−wNTN (3)

where the image to be reconstructed is discretized in a set of N pixels.
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Taking the logarithms and considering M measurements, the problem of
reconstructing the image is mapped to a linear estimation problem, with M
equations in N unknown; each equation will be of the type:

ym = log
I0
I

=

N∑
i=1

wiTmi (4)

where ym is the log-ratio between the intensities of the incoming and out-
going beams, and this single ray-sum equation is an approximation of the line
integral of X-ray attenuation. [3]

So using the attenuation coefficient wi of the tissue it is possible to infer
diagnostic medical information, namely the discretized cross-section of the ob-
ject. In the next chapter we will denote this discretized grid of N pixels with
x = (x1, ..., xN )T ∈ RN and define a general setup for linear estimation problem.

The perfect (and ideal) reconstruction would be possible with an infinite
number of rays from any possible angle. Clearly this ideal scenario is not possible
due to the dangerous radiation dose, so in image reconstruction it is important to
reduce the number of measurements and to design accurate image reconstruction
techniques.

1.1 State of the art
There are two main categories of reconstruction algorithms, analytical recon-
struction and iterative reconstruction (IR) : iterative methods iteratively opti-
mize an objective function, while analytical procedures directly reconstruct the
images in one step. The first ones are more efficient but they are also computa-
tionally more expensive with respect to the analytical procedures.

The most used analytical technique is the back-filtered-projection (BFP) ,
where the density’s image is recovered by using the inverse Radon transform.
Let us define the tomographic image as a function f(x, y) defined on the plane;
we need to exploit the information obtained through the sinogram, a set of
projected data under different angles. From the mathematical point of view,
the inverse Radon transform in 2D corresponds to the integral transform of a
function Rf , defined on the space of straight lines (the output scan of each ray)
into a function f(x, y) on a plane, the tomographic image.

So the inverse Radon transform can be used in image reconstruction with
BFP: we can obtain directly the reconstructed image in one single iteration step.
In this case the tomographic image is defined as a continuous function on the
plane; iterative reconstructions instead use an algebraic approach, where the
image we want to reconstruct is discretized in a grid of discrete variables, the
pixel intensities.

The ART (algebraic-reconstruction techniques) algorithm was introduced
in image reconstruction in [4] and it is based on this algebraic approach. The
main improvement over filtered-back projection is the possibility to include more
easily a prior knowledge in the image reconstruction process.
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In this algorithm at each iteration there is a linear estimation problem, where
we know some observations and a linear operator generating them and we solve
a set of linear equations.

In a general context, standard linear estimation consists of solving this sys-
tem:

Ax+ η = p (5)

where p = (p1, ..., pM )T ∈ RM is the vector of measurements affected by the
possible presence of noise η ∈ RM , A ∈ RMxN is a known linear operator and
x ∈ RN is an unknown vector collecting the pixel intensities.

ART algorithm is an iterative solver of the system of linear equations without
noise:

Ax = p (6)

In this framework x = (x1, ..., xN )T ∈ RN is the reconstructed image and p =
(p1, ..., pM )T ∈ RM is the measurements vector of projected data, while the linear
operator A = (fij) ∈ RMxNis the projection-matrix (each entry of the matrix A
represents the intensity of the intersection between the i-th projection ray and
the j-th pixel). In other words each row of the projection-matrix represents the
intersections of a given ray with all pixels. At each iteration ART algorithms
minimizes the l2 error defined as: x∗ = argminx||Ax− p||2 .

Another algebraic approach is that of the simultaneous iterations reconstruc-
tion technique (SIRT) algorithms [5]: the difference is that ART algorithms
sequentially solve one single ray-sum equation after another, while one itera-
tion of SIRT algorithms simultaneously consider all equations of the system to
be solved (SIRT is iterative in the sense that we can consider the same set of
equations at each iteration).

SIRT algorithms do not take into account the order of the equations to be
solved, therefore the concept of "ray in a specific direction" is absent. The
idea behind this work [2] is therefore to improve the performances of the ART
algorithms by considering simultaneously a subset of equations corresponding to
a given projection direction. The SART (simultaneous algebraic reconstruction
technique) algorithm tries to obtain the advantages of the algebraic methods
described so far.

Whatever algebraic algorithm, the system of linear equations of our interest
is in the limited data regime, because the number of measurements is smaller
than the number of variables M < N (also called underdetermined system of
linear equations) : without noise this underdetermined system has an infinite
number of solutions, so we need to add further information, like some regulariza-
tion term to reduce the solution space. Notice that in a noisy system there is no
solution because the presence of noise brings to an inconsistent set of equations.

Tomographic images are not sparse, they are, instead, quite constant in
extended spaces (as within an organ) and they have rapid changes only at their
boundaries. As a consequence, neighboring pixels are more likely to assume the
same values: the discrete gradient of a tomographic image could be quite sparse,
even if the original image is not.
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It therefore seems reasonable inserting also the l1 norm of the discrete gra-
dient image in the objective function to be minimized :

x∗ = argminx||Ax− p||2 + λ||∇imgx||1 (7)

where we define (∇imgx)i =
(
xix − xi, xiy − xi

)
with ixand iyare the neigh-

boring pixels to the right and below i, respectively, and λ is a parameter to
weight the contribute of the image gradient regularization.

An iterative image reconstruction algorithm based on the minimization of
the image total variation (TV) is presented here [6].

1.2 Aim of the thesis
This thesis is organized as follows: after this introductory chapter about Com-
puted X-ray tomography and the general image reconstruction methods, in
Chapter 2.1 we will discuss the Bayesian approach to this problem, that is
maximizing the posterior distribution considering the likelihood and priors. As
we will see, in this framework it is important to retrieve any possible informa-
tion in priors, and this can generate distributions that are difficult to treat from
an analytic point of view.

Expectation Propagation allows us to handle with these distributions thanks
to its approximation scheme. We will explain a basic version of EP in Chapter
2.2.

To make the most of the potential of EP we will introduce an other set of
variables (the auxiliary ones, e.g difference variables), obtained through some
linear transformation of the pixel variables. The EP algorithm with the intro-
duction of this kind of variables is explained in section 2.3.

In chapter 3 we explain how it is possible to infer the functional form and
parameters of the functions that describe the statistics of auxiliary variables
obtained through a linear transformation of the pixels: in this way we obtain
the so called “empirical priors”. Then we show the Haar transform case and
one possible application in data compression of the auxiliary variables obtained
with this linear transform.

The results on the image reconstructions are shown in chapter 3.4: we have
compared some methods that differ in the auxiliary variables implemented in
the EP algorithm. The best two implementations were compared with the TV
method and the SART one.

7



2 Methods

2.1 Bayesian Inference approach

Statistical inference is the process of using data to deduce properties of the
distribution that generated the data. Among the different techniques of statisti-
cal inference in this work we will use Bayesian Inference, that takes advantage of
Bayes’ theorem to investigate the problem in a probabilistic framework. Thanks
to this theorem we can design a posterior probability distribution for the vari-
ables x given a set of measurements p.

According to Bayes’ theorem, the posterior probability P (x|p) is computed
considering the probability of a hypothesis before observing the data (prior term
P0 (x)) and the probability of the observed data conditioned to the pixel values,
the likelihood term P (p|x):

P (x|p) = P (p|x)P0 (x)

P (p)
(8)

The problem of image reconstruction can be formulated through a Bayesan
Inference approach, in which the reconstructed image is the maximum a poste-
riori (MAP) estimation:

x∗ = argmaxxP (x|p) (9)

where P (x|p) is the posterior distribution of images x given the vector of
measurements p.

In many cases the MAP estimate may be not accurate, in particular when the
posterior distribution is not concentrated: this problem arises because MAP is
a point estimate, whereas Bayesian techniques use distributions to summarize
data. Another approach in Bayesian inference is the minimum mean square
error (MMSE), that corresponds to compute the mean value of the variables
with respect to the posterior distribution (one can prove that minimizing the
mean square error between the true value and the reconstructed one is the
same as computing the expectation value with respect to the marginal of the
posterior distribution, x∗i =< xi >P(xi|p)). whereas Bayesian techniques use
distributions to summarize data

The likelihood term P (p|x) enforces the linear constraints of the set of
equations: for the noiseless case it will be P (p|x) = δ (Ax− p), but we can
also add Gaussian noise, leading to this likelihood term: P (p|x) ∝ e−

β
2 (Ax−p)2 ,

where β is the inverse variance of the noise.
The prior term P0 (x) is the crucial one: to find a solution of the under-

determined system, we need other information that may express beliefs about
these quantities before some evidence is considered. This information can con-
cern each single pixel, as a l1or l2 regularization, P

(single)
0 (x) ∝ e−λ||x||1or
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P
(single)
0 (x) ∝ e−λ||x||2 respectively. Here we want to include also an a priori

knowledge on some function of pixels, in order to exploit the intrinsic correlated
structure of images, as smoothness between neighboring pixels.

So let us consider this form for the prior term:

P0 (x) ∝ P
(single)
0 (x)P

(pair)
0 (x) (10)

where all priors with a probability distribution factorized over pairs of vari-
ables are included in the pair term P

(pair)
0 . A standard choice for this term

is:

P0
(pair) (x) ∝ e−

J
2 xTLx ∝ e−

J
2

∑N
i=1

∑
j∈∂i(xi−xj)

2

(11)

where L is the Laplacian matrix of the nearest-pixels adjacency graph, J is
a weight parameter and the sum j ∈ ∂i is over all the neighbors of pixel i.

The posterior distribution can be treated analytically with standard convex
optimization techniques if we insert a l1or l2 regularization.

However, an analysis of computed tomography scans shows that difference
variables between neighboring pixels have non-convex empirical distributions,
with a peak in zero, as shown in figure (1) in [7] . Intuitively, in fact, if we
take all the pairs of neighboring pixels, the difference variables will often take
on values around zero because it is reasonable to think that very often they will
have similar values (except for example in the case of the boundary between
two different organs).

So a bimodal distribution seems more suitable to describe this non-convex
behavior; we will see possible functional forms (e.g. the Bernoulli-Gaussian)
in the chapter about EP with auxiliary variables. In this case, both MAP or
MMSE estimation lead to a non-convex optimization problem.

These problems are NP-hard because it is possible to find a local minimum
in polynomial-time algorithms but the proof of optimality is not (it requires an
exponential-time algorithm).

So the main drawback of Bayesian Inference with non-convex prior is the
massive computational cost, but thanks to recent applications of statistical me-
chanics there are algorithms that make these non convex optimization problems
computationally feasible through approximations. Examples of these techniques
are Belief Propagation algorithms [8], that uses a message-passing procedure re-
formulating the problem in a graphical way.

These algorithms are kind of ancestors of those based on Expectation Prop-
agation (EP). We will explain more precisely the general case of EP in the next
section.

In this work [7] an inference model has been introduced to consider the
information obtained through the empirical distributions of the pixel difference
variables, and in particular their non convex shape.
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Figure 1: Computed tomography scans (left panels) and relative empirical dis-
tributions (right) of two different viewpoints of the abdomen (in (a) and (b)
panels) or of a knee, as in (c) and (d). From the histogram it can be seen that
by increasing the resolution of the image, from 64x64 to 512x512 pixels, the
distribution has an increasingly narrow shape. Indeed, the statistics do not de-
pend much on which organ is analyzed but on the coarse-graining of the image.
Image taken from [7].
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Rewriting the likelihood term P (p|x) ∝ e−
β
2 (Ax−p)2 in the standard form

of a multivariate Gaussian, the posterior distribution reads:

P (x|p) ∝ 1

Z
e−

1
2 (x−µ)TΣ−1(x−µ)

∏
i∈X∪Y

ψi (zi) (12)

with precision matrix Σ−1 = βATA and mean µ = ΣβATp. All priors
ψi (zi) are both for the variables belonging to the set of pixel intensity variables
xi ∈ Xand the difference ones yi ∈ Y . If we deal withN pixel intensity variables,
if i < N the variables belong to the set of pixel intensity variables X, while if
i > N we are considering the set Y of difference variables.

The results of this work allows us to reduce the number of measurements
to few projections and to increase the accuracy of the reconstructions: they
also demonstrate the possibility of introducing empirical priors into the EP
algorithm, opening up a new scenario. [9]

In fact the same reasoning could be used for other auxiliary variables, in
some way connected with the intensity variables of the pixels through some
linear transformation (we will see the Haar Transform case); so we can study
the empirical behavior of these variables from a training set and impose prior
with inferred parameters.

The difference we want to emphasize with respect to the case of difference
variables is the way these priors are designated: in [9], all priors of all pairs
of neighboring pixels have the same functional form and the same parameters,
while in this work we will deal with specific priors for each auxiliary variable.
We create a training dataset in order to infer the functional forms and the
parameters associated with each prior.

We will discuss in detail how to proceed with empirical priors in Chapter 3.

2.2 EP method
The problem of reconstructing images belongs to the larger family of linear
estimation problems: as already explained above (5), in these problems we have
to solve a set of M linear equations in N unknowns, where M is the length of
the vector of measurements.

We have seen that reformulating a linear estimation problem with a Bayesian
approach certainly brings advantages; the drawback of Bayesian Inference is its
excessive computational cost, especially in non-convex optimization problems.

A particularly powerful and flexible method inspired by statistical physics
able to incorporate non convex prior information is Expectation Propagation
(EP), developed for Bayesian inference problems in [10, 11, 12, 13].

Expectation Propagation is an iterative approach that approximates in-
tractable posterior probability distributions. This efficient technique finds ap-
plications not only in image reconstruction, but in various linear estimation
problems, as in this work [14], where EP was used to approximate the feasible
space of cellular metabolic fluxes.

Let us briefly explain how EP generally works.
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The “true” posterior distribution that we want to approximate is a multi-
variate Gaussian times the product of all uni-variate priors:

P (x|p) = 1

Z
e−

1
2 (x−µ)TΣ−1(x−µ)

∏
j

ψj (xj) (13)

where the only difference with respect to (12) is that we now only consider
pixel intensity variables, just for the sake of simplicity.

Notice that in the multivariate Gaussian we can collect different terms, like
the likelihood or a pair prior. There are different choices for the uni-variate prior
terms ψj (xj), as for example the interval prior, the sparse prior or the binary
one. These priors on the single pixel intensity value have to impose independent
local constraints.

With the interval prior we assume an uniform measure on a given support[
xmin
i , xmax

i

]
:

P
(single)
0,int (xi) =

I
[
xmin
i ≤ xi ≤ xmax

i

]
xmax
i − xmin

i

(14)

where I is the indicator function which takes value 1 when xi belongs to the
interval

[
xmin
i , xmax

i

]
and value 0 otherwise.

An alternative to this prior is the sparse prior, useful for reconstruct images
with monochromatic backgrounds:

P
(single)
0,sparse (xi) =

[
sδ (xi) + (1− s)

I
[
xmin
i ≤ xi ≤ xmax

i

]
xmax
i − xmin

i

]
(15)

where the δ-function δ (xi) is weighted by the sparseness parameter s ∈ (0, 1).
This s is equal to the average fraction of background pixels in the image.

A third choice for the single variable prior is the binary prior, when only
black and white colors are available (as in binary tomography) :

P
(single)
0,binary (xi) = [sδ (xi) + (1− s)δ (xi − 1)] (16)

Moreover, this approach can also be used when the image to be reconstructed
contains three or more gray scales, as for example in this work [15].

For now let us consider generic single prior variable ψj (xj).
In EP we will consider the approximated posterior obtained replacing each

single prior by a Gaussian distribution ϕj (xj) :

Q (x|p) = 1

ZQ
e−

1
2 (x−µ)TΣ−1(x−µ)

∏
j

ϕj (xj) (17)

where ϕj (xj) = 1√
2πbj

e
−

(xj−aj)
2

2bj and a = (a1, ..., aN ) and b = (b1, ..., bN ) are

the mean and variance vectors of the uni-variate Gaussians of the approximated
posterior.

12



Comparing this distribution with the “true” posterior in (13) we can see that
Q (x|p) is a Gaussian multivariate and therefore calculating the moments or the
single variable marginals presents no particular problems, conversely to P (x|p)
that is analytically more difficult to deal with.

Now let us introduce the tilted-distribution for the i-th variable:

Q(i) (x|p) = 1

ZQ(i)

e−
1
2 (x−µ)TΣ−1(x−µ)ψi(xi)

∏
j ̸=i

ϕj (xj) (18)

The distribution with all Gaussian priors and the tilted one can be written
in a similar form, where the only difference is in the i-th variable, because in the
tilted distribution there is the exact prior ψi(xi), while in the fully approximated
one there is the Gaussian prior ϕi (xi):

Q(i) (x|p) ∝

e− 1
2 (x−µ)TΣ−1(x−µ)

∏
j ̸=i

ϕj (xj)

ψi (xi) (19)

Q (x|p) ∝

e− 1
2 (x−µ)TΣ−1(x−µ)

∏
j ̸=i

ϕj (xj)

ϕi (xi) (20)

In both formulas we can merge in a multivariate Gaussian all the priors
except for the i-th variable, obtaining the so called “cavity Gaussian” Q\i :

Q\i (x|p) ∝ e−
1
2 (x−µ)TΣ−1(x−µ)

∏
j ̸=i

ϕj (xj) ∝ e
− 1

2 (x−µ(i))TΣ−1
(i)

(x−µ(i)) (21)

where Σ−1
(i) is the precision matrix and µ(i) is the vector of means.

Both quantities clearly depend on the i-th variable we are updating:

Σ−1
(i) = βATA+B(i) (22)

µ(i) = Σ(i)

(
βATp+B(i)a

)
(23)

where B(i)is a diagonal matrix whose elements are Bnn = 1
bn

for n ̸= i and
Bii = 0 (this zero entry is the “cavity”).

We want to approximate ψi(xi) with the closest uni-variate Gaussian, so we
need the values of ai and bi that best reproduce P (x|p).

One possible approach would be minimizing the Kullback-Leibler distance
between the exact prior ψi and the uni-variate Gaussian ϕi but this approach
does not give in general good performances [14]; instead of approximating the
prior itself, the EP algorithm approximates the effect of the prior on the full
distribution.

To do this we minimize the Kullback-Leibler distance between two distribu-
tions that differ only in the i-th term: the approximated distribution Q (x|p)
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with all uni-variate Gaussian priors (17) and the tilted one Q(i) (x|p), with only
one non-Gaussian prior (18) .

ai, bi = argmin(ai,bi)DKL

[
Q(i) (x|p) ||Q (x|p)

]
(24)

The equivalence between the minimization of the KL divergence and the
following moment matching condition is explained in the appendix A:

< xi >Q(i)(x)=< xi >Q(x) (25)

< x2i >Q(i)(x)=< x2i >Q(x) (26)

where < ... >Q(i)(x) is the expectation value with respect to the tilted dis-
tribution and < ... >Q(x) with respect to the Gaussian approximation.

The distributions (19) and (20), in the case of an interval prior (14) ,ψi(xi) =
I[xmin

i ≤xi≤xmax
i ]

xmax
i −xmin

i
, would be respectively:

Q (x|p) = 1

ZQ
e
− 1

2 (x−µ(i))TΣ−1
(i)

(x−µ(i)) e
− (xi−ai)

2

2bi

√
2πbi

(27)

Q(i) (x|p) = 1

ZQ(i)

e
− 1

2 (x−µ(i))TΣ−1
(i)

(x−µ(i)) I
[
xmin
i ≤ xi ≤ xmax

i

]
xmax
i − xmin

i

(28)

The average with respect to the tilted distribution depends on the choice
of the exact priors, while we can compute easily mean and variance of the full
Gaussian distribution:

< xi > Q(x) =

(
1

Σ
(i)
ii

+
1

bi

)−1(
µi

Σ
(i)
ii

+
ai
bi

)
(29)

< x2i > Q(x)− < xi >
2
Q(x) =

(
1

Σ
(i)
ii

+
1

bi

)−1

(30)

So if we apply the moment matching condition we will obtain the updating
values of mean and variance of the Gaussian ϕi that approximates the exact
prior ψi :

ai = bi

[
< xi > Q(i)

(
1

bi
+

1

Σii

)
− µi

Σii

]
(31)

bi =

(
1

< x2i >Q(i) − < xi >2
Q(i)

− 1

Σii

)−1

(32)

Starting with initial values of ai and bi for each variable, these two equations
are iterated until convergence, numerically reached when the error ε is smaller
than a fixed threshold.
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We define ε as the maximum of the sum of the differences between the first
two moments:

ε = max
i

| < xi >
t+1
Q(i) − < xi >

t
Q(i) |+ | < x2i >

t+1
Q(i) − < x2i >

t
Q(i) |. (33)

This error ε tells us how the approximated distribution change in two con-
secutive iterations t+ 1 and t.

The general update expressions (31) and (32) are independent of the prior,
which only affects the expectation values with respect to the tilted distribution
< ... >Q(i)(x) . Therefore the EP procedure presented so far is quite generic; we
want to see now an example of how the update equations develop in the case of
a specific prior.

Considering the distribution (28), with an interval prior for the pixel inten-
sities, mean and variance will be:

< xi >Q(i)= µi +

N

(
xm
i −µi√
Σ

(i)
ii

)
−N

(
xM
i −µi√
Σ

(i)
ii

)

Φ

(
xM
i −µi√
Σ

(i)
ii

)
− Φ

(
xm
i −µi√
Σ

(i)
ii

) Σ
(i)
ii (34)

< x2i > Q(i)− < xi >
2
Q(i) = Σ

(i)
ii

1 +

xm
i −µi

Σ
(i)
ii

N

(
xm
i −µi√
Σ

(i)
ii

)
− xM

i −µi

Σ
(i)
ii

N

(
xM
i −µi√
Σ

(i)
ii

)

Φ

(
xM
i −µi√
Σ

(i)
ii

)
− Φ

(
xm
i −µi√
Σ

(i)
ii

)

−


N

(
xm
i −µi√
Σ

(i)
ii

)
−N

(
xM
i −µi√
Σ

(i)
ii

)

Φ

(
xM
i −µi√
Σ

(i)
ii

)
− Φ

(
xm
i −µi√
Σ

(i)
ii

)


2


(35)

where N (x) = 1√
2π
e−

x2

2 and Φ(x) is the cumulative function Φ(t;µ, σ2) =

1√
2πσ2

´ t
−∞ dxe−

1
2

(x−µ)2

σ2 .
We will see explicitly how these update equations become with other possible

choices for the prior.
In the computation of the moments or the partition function of the tilted

distribution it is useful to use the following simplification, regardless of the prior
you choose.

Looking at (27) and (20) we can rewrite the tilted distribution as:

Q(i) (x|p) ∝ Q (x|p)ψi (xi)ϕ
−1
i (xi) (36)
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in this way whenever we should perform integrals over the tilted distribution,
we can exploit multivariate Gaussian properties for marginal distribution.

In fact in these integrals there is a multivariate Gaussian times a function of
the i-th variable, so we can easily first integrate over all other variables except
the i-th:

Z =

ˆ
dxi

ˆ
dx/iQ (x|p)ψi (xi)ϕ

−1
i (xi)

=

ˆ
dxiψi (xi)ϕ

−1
i (xi)

ˆ
dx/iQ (x|p) (37)

The integral over all variables except the i-th is its marginal distribution.
We will denote with µ̄ie Σii the mean and variance of the i-th variable on

which we are calculating the marginal according to the full Gaussian approxi-
mation. The normalization constant Z will be proportional to:

Z ∝
ˆ
dxiψi(xi)e

(xi−ai)
2

2bi e
− 1

2

(xi−µ̄i)
2

Σii (38)

We can merge the exponential terms, obtaining:

Z ∝
ˆ
dxiψi (xi) e

− 1
2

(xi−µi)
2

Σii (39)

where the entries of the covariance matrix and the mean are:

Σii =

(
1

Σii

− 1

bi

)−1

(40)

µi =

(
1

Σii

− 1

bi

)−1(
µi

Σii

− ai
bi

)
(41)

we have greatly simplified the expression for the Z in (39) , as we now have

only one Gaussian e−
1
2

(xi−µi)
2

Σii (the cavity) times the exact prior ψi (xi).
This procedure that we have carried out for the Z can also be used in the

computation of moments.

2.2.1 Computational cost of EP

The moment matching condition is present in every EP implementation. At
each iteration step and for each pixel this condition requires inverting Σ−1

(i) ,
defined in (22). Indeed, as it can be seen from the update equations of the i-th
element of vectors a and b in (31) and (32), there is a direct dependence on the
i-th element of the matrix Σ.

Inverting a matrix N × N requires a number of operations that scale as
O(N3). In EP algorithm we invert a matrix for each pixel, so the computational
time scales as O(N4) per iteration step. One can reduce this cost to a single
matrix inversion per iteration step using Eqs. (41) and (40), for the parameters
of the cavity distributions.
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2.3 EP with auxiliary variables
Until now we have considered EP with only the pixel intensity variables, so let
us expand our analysis by including auxiliary variables yi ∈ Y , obtained through
some linear transformation y = Fx. Notice that the following computations
are general and they not depend on the linear transformation F .

As already mentioned for the general case, in each iteration step we need to
compute the first two moments of the posterior distribution with all Gaussian
priors and the tilted one.

In the case of the approximated posterior:

Q (x|p) ∝ 1

Z
e−

1
2 (x−µ)TΣ−1(x−µ)δ (y − Fx)

∏
j∈X

e
− (xj−aj)

2bj

2 ∏
j∈Y

e
− (eTj Fx−aj)

2bj

2

(42)
where ej ∈ RN is the vector of the standard basis, whose components are all

zero, except the j-th that equals 1. This will boil down to compute mean and
covariance of a multivariate Gaussian distribution, but we must distinguish the
two sets of variables.

Rearranging the Gaussian prior for the auxiliary variables :

((
eTj F

)
x− aj

)
bj

2

= xT 1

bj

(
F Teje

T
j F
)
x− 2

bj

(
aje

T
j F
)
x+ const (43)

In this way we can generalize and consider pixel and auxiliary variables
together:

−
∑

j∈X∪Y

(xj − aj)

2bj

2

=
1

2
xT

∑
j∈X

1

bj
eje

T
j +

∑
j∈Y

1

bj

(
F Teje

T
j F
)x+

+xT

∑
j∈X

aj
bj

ej + F T
∑
j∈Y

aj
bj

ej

+ const (44)

At each step of EP the equations will be updated according to:
A′ = Σ−1 +

∑
j∈X

1
bj
eje

T
j +

∑
j∈Y

1
bj

(
F Tej

)(
F Tej

)T
c′ = c+

∑
j∈X

aj

bj
ej + F T ∑

j∈Y
aj

bj
ej

Σ′ = A′−1

µ = Σ′c′

So we get the multivariate Gaussian:

Q (x|p) ∝ 1

Z
e−

1
2x

TA′x+xT c′
(45)
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The average with respect to the tilted distribution depends on the choice of
the exact priors, instead of mean and variance of the full Gaussian approximated
distribution:

< xi > Q(x) =

ˆ
dxQ(x|p)xi ∝

ˆ
dxe−

1
2x

TA′x+xT c′
xi (46)

< x2i > Q(x) ∝
ˆ
dxe−

1
2x

TA′x+xT c′
x2i (47)

So the moments of the approximated posterior distribution for the pixel
intensity variables are:

< x2i > Q(x)− < xi >
2
Q(x) = Σ′

ii (48)

< xi > Q(x) = µi (49)

while for the auxiliary variables:

< y2i >Q(x) − < yi >
2
Q(x)= eTi FΣ′F Tei (50)

< yi >Q(x)= eTi Fµ (51)

in this way the introduction of auxiliary variables does not make the EP algo-
rithm slower because we can calculate the moments of the auxiliary variables
from the statistics of the pixel variables.

As was shown in the general EP method with only pixel intensity variables,
the key step of each iteration of the algorithm is the moment matching condition,
when we impose the equality of moments of the tilted and the fully approximated
distributions.

So now let us compute the moments of the tilted distribution, where the
only difference with respect to (42) is one uni-variate Gaussian replaced by an
exact prior.

The subsequent calculations depend on the choice of the exact prior ψi(xi),
and obviously it is different as we deal with intensity or auxiliary variables.

In the next section, we show a possible choice for the auxiliary variables.
Let us introduce the difference variables: they are defined as the difference

between the intensity of neighboring pixels, yij = xi − xj . The new variables
take value in the interval [xmin − xmax, xmax − xmin].

One can prove that the linear operator F generating these difference vari-
ables in y = Fx is the incidence matrix F = R. We can imagine our image as
an indirect graph with N vertices and Ne edges: in the column of edge e of the
matrix R, there is one 1 in the row corresponding to one vertex of e and one
−1 in the row corresponding to the other vertex of e, and all other rows have 0.
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The empirical distribution of these variables shows that they can be well
fitted by a function of the form:

PBG (yi) ∝ ρδ (yi) + (1− ρ)
e−

y2
i

2σ2

√
2πσ2

(52)

this is the so called Bernoulli-Gaussian prior where ϱ is the sparse parameter
and σ2 is the variance.

If we choose an interval prior (14) for the intensity variables and a Bernoulli-
Gaussian for the auxiliary ones, the “true” posterior probability is:

P(x|p) ∝ e−
1
2 (x−µ)TΣ−1(x−µ)

∏
i∈X

I
[
xmin
i ≤ xi ≤ xmax

i

] ∏
j∈Y

(1− ρ) δ (yj) + ρ
e−

y2
j

2σ2

√
2πσ2


(53)

while we have already written the fully approximated distribution (42).
Since now the exact prior is different depending on the variable (intensity or

auxiliary), we will deal with two tilted distributions:

Q(i) (xi|p) ∝ e
− 1

2

(xi−µi)
2

Σii

I
[
xmin
i ≤ xi ≤ xmax

i

]
xmax
i − xmin

i

(54)

Q(i) (yi|p) ∝ e
− 1

2

(yi−µi)
2

Σii

(1− ρ) δ (yi) + ρ
e−

y2
i

2σ2

√
2πσ2

 (55)

We have already seen mean and variance in the case of pixel intensity vari-
ables in (34) and (35); now we will compute the moments of the tilted distribu-
tion in the case of auxiliary variables.

We report the formulas for the Bernoulli-Gaussian prior calculated in this
work [9] :

< yi >Q(i)=
1

ZQ(i)

ˆ
dyiyie

− 1
2

(yi−µi)
2

Σii

(1− ρ) δ (yi) + ρ
e−

y2
i

2σ2

√
2πσ2

 (56)

< yi >Q(i)=
1

ZQ(i)

ϱ

√
Σii

Σii + λ

λµi

Σii + λ
(57)

< y2i >Q(i)=
1

ZQ(i)

ˆ
dyiy

2
i e

− 1
2

(yi−µi)
2

Σii

(1− ρ) δ (yi) + ρ
e−

y2
i

2σ2

√
2πσ2

 (58)

< y2i >Q(i)=
1

ZQ(i)

ϱ

√
Σii

Σii + λ

[
λΣii

Σii + λ
+

(
λµi

Σii + λ

)2
]

(59)
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And the partition function Z is:

ZQ(i) = (1− ϱ)e
−λµ2

i
2Σii(Σii+λ) + ϱ

√
Σii

Σii + λ
(60)
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3 Results

3.1 Empirical priors
In the chapter of EP with auxiliary variables we have seen an example of a
linear function of the pixel intensity variables, namely the difference between
neighboring pixels. In [7] the empirical distribution of these variables has been
analyzed from a set of tomographic images of a certain portion of the body.
Then the prior (52) was designed estimating the parameters ϱ and σ with an
“expectation-maximization” [16] step in the EP algorithm, as explained in [7].

The results obtained have demonstrated the effectiveness of introducing aux-
iliary variables and the possibility of exploiting new information from some
function of the pixel variables.

In a similar way to what was done with the difference variables, now we
want to use other auxiliary variables, in some way connected with the intensity
variables through a linear transformation. The main improvement is that we do
not want to estimate the same parameters (or also the same functional form)
for all the priors of the auxiliary variables.

In this work we create a training dataset and, after applying a linear oper-
ator, we infer both the functional form and the parameters of each prior of the
auxiliary variables.

We need to create an image dataset because it is not easy to use EP algorithm
with large images, as the real-world tomographic images (large in the sense of
high resolution). In fact we have to invert matrices with large dimensions and
the computational cost of EP would increase significantly.

Figure 2: Dataset image example in gray-scale with linear size L = 64.

To this purpose, a training dataset of 20.000 images was created: we must
think of each of these images as a grid of numbers (a matrix) where each number
corresponds to a shade of gray; therefore, each entry varies from zero (black) to
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one (white). We try to reproduce the typical features of tomographic images,
which present the tissues of the organs in grayscale on a black background. The
dataset images are created by inserting a given number of circles on a black
background. We set the number of these circles equal to ncircles = 40: for each
of them the color is sampled from a uniform distribution in [0, 1], corresponding
to the grayscale range, while the radius is sampled from a Gaussian distribution
of zero mean and standard deviation σ = L

unif(4,6,7,10)∗√ncircles
.

Finally, we set the linear size L of the images (e.g. 64 or 128) and we create
the training dataset of 20.000 images. If we set to L = 64 the linear size of the
image, we deal with N = L× L = 4096 pixel variables.

The auxiliary variables are obtained through a linear transformation:

y = Fx (61)

where F is the transform matrix, x = vec (X) is the vector containing the
pixel intensities of an image and y = vec (Y ) is the corresponding vector of
auxiliary variables.

Then, we observe the behavior of the histograms of the auxiliary variables
and we infer the functional form and the parameters for each transformed vari-
able, fitting the data. We will show more in detail the fitting in the following
subsections, after defining the linear operator we have used, the Haar transform
matrix.

This approach is not very different from that used for the difference variables,
in fact we can also define a linear transformation F for these auxiliary variables
F = R, where R is the incidence matrix.

3.2 Haar case
The Haar transform is the first discrete wavelet transform, invented in 1909 by
Alfred Haar. The wavelet transform is the representation of a signal through
orthonormal series generated by a wavelet, similar to what happens in Fourier
analysis, where, however, the orthonormal series are trigonometric functions.
The main difference is that wavelets are localized in both time and frequency
while the standard Fourier transform is localized only in frequency.

We cannot localize sharply a signal in both time and frequency domains: at
a fixed time, we can measure an original signal and obtain the exact amplitude
but zero information about the frequency, while the Fourier transform give us
all information about the frequency and maximum uncertainty about time.

The wavelet transform is a sort of intermediate case between the two limit
situations just described: wavelets analysis give us information both in time
and frequency domain, but with less accuracy in the frequency spectrum with
respect to the Fourier analysis.

Let us introduce the Haar functions hk(z) defined for z ∈ [0, 1], where k is
the row index and can be decomposed uniquely in two integers p, q:

k = 2p + q − 1 (62)
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with k = 0, 1, ..., L − 1 , L = 2n , and where 0 ≤ p ≤ n − 1 , 0 ≤ q ≤ 2pfor
p ̸= 0 and q = 0 or q = 1 for p = 0.

The Haar functions are:

h0 (z) ≡ h00 (z) =
1√
L
, (63)

hk (z) ≡ hpq (z) =
1√
L


2

p
2

q−1
2p ≤ z <

q− 1
2

2p

−2
p
2

q− 1
2

2p ≤ z < q
2p

0 otherwise

(64)

The Haar transform matrix of order L consists of rows made up of hk (z); for
example if L = 8 the Haar transform matrix consists of 8 rows: h0 (z) , h1 (z) , ..., h8 (z)
:

H =
1√
8



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2

√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0
0 0 2 −2 0 0 0 0
0 0 0 0 2 −2 0 0
0 0 0 0 0 0 2 −2


(65)

H is orthogonal, meaning that H−1 = HT . In this work we set L = 64 in
order to obtain a suitable Haar transform matrix H ∈ RLxL for our dataset
images: in the figure 3 we visualize an heatmap of the transform matrix to get
an idea of the 2D arrangement of the Haar coefficients.

Figure 3: Heatmap of the Haar transform matrix for L=64.

23



The Haar transform is applied to each pixel of the image as:

Y = HXHT (66)

where x = vec (X) is the vector containing all pixel intensities and y =
vec (Y ) is the corresponding vector of transformed variables.

We want to define the linear operator that can be applied to the vector x:

y = (H ⊗H)x (67)

where ⊗ is the Kronecker product.

Figure 4: Dataset image after applying the Haar transform; the values of many
auxiliary variables are close to zero.

Looking at this image 4, it is quite easy to see the sparsity of the auxiliary
variables , the Haar coefficients. A huge number of these variables thus obtained
assume values close to zero, as confirmed by the peak present in the histogram
in figure 5 (here the quantities in the y-axis represent empirical frequencies).

Figure 5: Log-scale histogram of the Haar auxiliary variables of a single image:
P (y) is the absolute frequency, with no normalization.

24



Moreover, comparing different transformed images it has been noticed that
the informative part of each image resides in the upper left corner, while the
opposite corner is the one where there are more transformed variables equal to
zero.

We will show in the next section a possible application in data compression
of the Haar transform to show that we can, after applying the transform on
the pixel variables, set a large number of auxiliary variables equal to zero and
obtain good reconstruction results by doing the inverse transform.

3.2.1 The Haar transform to compress data

We take an image of the dataset and apply the Haar transform: then we set some
of these auxiliary variables equal to zero and apply the inverse Haar transform
to return an approximation of the image. We decimate the Haar coefficients
according to three criteria specified in the following and we study the behavior
of the reconstructed image as a function of the number of non-zero coefficients
used within the decompression.

In order to clarify the problem, we pass to a representation in terms of
vectors; if y = Fx is the vector of the auxiliary variables, we need the inverse
of the linear operator F = H ⊗H.

Thanks to the property of the Kronecker product, it is not difficult to prove
that the inverse of F is its transpose.

So after having set some variables equal to zero, we return to the starting
image with:

x̄ = F T ȳ (68)

where we denote with ȳ the vector of auxiliary variables with some of them
set to zero and x̄ the vector of the image obtained in this way.

Clearly if we do not set to zero any variable, we obtain exactly the starting
image x.

In the following we will explain the three selection methods that were used
to choose the order in which the variables were set equal to zero:

1. the index-based selection starts from the variables of the lower right corner
up to the upper left corner, where there are the variables that are further
away from zero, i.e. the most informative ones.

2. in the coefficient-based method variables closest to zero are cut out and
the others gradually.

3. Prior based. As regards the third selection method, however, it is neces-
sary to consider not only the single reference image of the dataset, but
the entire training dataset. In fact we collect the 20,000 values of each
auxiliary variable in a histogram: if we normalize by sum of weights only,
we obtain a discrete probability function for each bin (their relative fre-
quency), as shown in figure 6. Then we consider the height of the bin in
zero as the value of the probability of having zero: the selection order will

25



first “silence” the variables with the largest values of this probability and
then all the others in order up to its smallest value.

Figure 6: Empirical histogram of an auxiliary variable (index 500): the normal-
ization is by sum of weights only, so here P (y) represents the discrete probability
of each bin, with its value at zero highlighted.

We define the error with which we compare the reconstructed images after
having obscured a certain number of variables:

ϵ =
|x− x̄|
N

(69)

where N = 4096 is the number of auxiliary variables and x̄ is the vector of
the image obtained after having set equal to zero some auxiliary variables.

In figure 7 we plot the error ϵ as a function of K, the fraction of auxiliary
variables used to reconstruct the starting image.

When we decrease the amount of auxiliary variables, and so the information
per pixel used, the reconstruction error with the prior-based method increases
with less slope than the other two methods.

So, the prior-based method obtain better results: in particular with this
method it is possible to reduce the number of auxiliary variables used to recon-
struct the original image and to obtain however a good resolution in the image,
as can be seen in the image reconstructions in figure 8.

In table 1 we show the fraction K of components used and the relative
errors ϵ of the four reconstructions of image 8. The auxiliary variables used
are sorted with the prior-based method. The results show that an acceptable
reconstruction error (of order ∼ 10−4) is obtained even for a large number of
variables set equal to zero: this is a particular feature of the Haar variables.
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Figure 7: The error ϵ as a function of K, the fraction of components used
to reconstruct the image, for the three methods described above: prior-based,
index-based and coefficient-based.

Figure 8: Image reconstructions using the inverse of the transform matrix after
silencing a certain number of auxiliary variables, sorted with the prior-based
method. In the (a) panel we have a very good reconstruction as we used enough
auxiliary variables. Also in the (b) panel the error is acceptable even if we used
about half of the auxiliary variables. Note the (c) panel with an error of order
∼ 10−4 using only a fraction K = 0.26 of auxiliary variables. The (d) panel is
the only one with an error of the order 10−3, as can be clearly seen from the
inaccurate reconstruction.
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K ϵ

(a) 0.75 2× 10−4

(b) 0.51 5× 10−4

(c) 0.26 9× 10−4

(d) 0.02 2× 10−3

Table 1: Reconstruction error ϵ and fraction of auxiliary variables used K in
the four images in figure 8.

3.3 Fitting
Curve fitting corresponds to find the functional forms and the relative param-
eters of a mathematical function (“mapping function”) that best fits a series of
data.

After applying the Haar transform to all the 20.000 images of the training
set, we have to fit a suitable function to each histogram of the auxiliary variables.
We normalize all histograms by sum of weights and bin sizes: in this way the
histogram represents a probabilistic density function (PDF).

This means that we have to use probability distributions as mapping func-
tions: in the following we will define the distributions used in order to fit the
data.

Gaussian functions are widely used in statistics, so if we choose this function:

PGA (y) =
1√
2πσ2

e−
y2

2σ2 (70)

we need to estimate two parameters, the mean µ and the variance σ2.

Figure 9: Empirical histogram of an auxiliary variable: the normalization is
given by summing the weights and bins size, so here P (y) represents a proba-
bilistic density function (PDF), that can be fitted by distributions. The function
that best fits this data is the Gaussian distribution.
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Another possible mapping function is the Laplace distribution:

PLA (y) =
1

2
λe−λ|y| (71)

this distribution can be seen as two exponential distributions joined together
back-to-back. In the case of zero mean there is only the parameter λ to infer
and the distribution is symmetrical with respect to the y axis. An example of
Gaussian fitting is displayed in figure 9, while a Laplace one is shown in figure
10: in the empirical histograms of both auxiliary variables there is no peak, so
we can use these unimodal distributions to fit the data.

Figure 10: Empirical histogram of an auxiliary variable, where P (y) represents
a probabilistic density function (PDF): the best curve fitting is given by the
Laplace distribution.

To take into account the possibility of asymmetric behaviors, let us define
the asymmetric Laplace distribution:

P2L (y) = I [y > 0] ϱe−λ1|y| + I [y < 0] (1− ϱ) e−λ2|y| (72)

the two parameters λ1 and λ2 to be inferred allow us to modulate different
trends for positive or negative arguments, weighted by the ϱ parameter. An
example of an auxiliary variables with this behavior is shown in figure 11.

All three distributions written above are uni-modal, there is only one value
that appears with the maximum frequency. In the next we will consider two
bimodal distributions, made up by a linear combination with a delta function in
zero and an uni-modal distribution (Gaussian or Laplace). The delta function
can modulate really sharp distributions.
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Figure 11: Empirical histogram of an auxiliary variable, where P (y) represents
a probabilistic density function (PDF): the curve the best approximates this
data is the asymmetric Laplace distribution.

In the Bernoulli-Gaussian distribution, the parameters ϱ and σ will be esti-
mated for each auxiliary variable. So we will use:

PBG (y) ∝ ρδ (y) + (1− ρ)
e−

y2

2σ2

√
2πσ2

(73)

We have also fit the data with a combination of the delta function and the
Laplace distribution (Bernoulli-Laplace prior), and the parameters to estimate
are ϱ and λ :

PBL (y) ∝ ρδ (y) + (1− ρ)
1

2
λe−λ|y| (74)

Notice that in our Haar transform case we deal with N = 4096 intensity
variables and for each of them the histogram of the relative auxiliary one takes
into account information collected in the whole training set (20.000 images).
An example of these histograms is shown in figure 12, with the relative curve
fitting.

For these five distributions we fit each parameter and then we compute
the norm of the these functions with respect to the observed data, in order to
compare their accuracy. In some cases, however, comparing bimodal and uni-
modal distributions using the norm can produce inaccurate results in the choice
of priors.

So we introduce also another parameter κ which indicate the presence of a
peak in the histogram of the data: this is defined as the absolute value of the
difference between the histogram weight in zero and its neighbors. According
to this value we can distinguish between uni-modal (Gaussian or Laplace) and
bimodal distributions (Bernoulli-Gaussian and Bernoulli-Laplace). For example
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Figure 12: Empirical histogram of an auxiliary variable: the normalization is
given by summing the weights and bins size, so here P (y) represents a proba-
bilistic density function (PDF), that can be fitted by distributions. Unlike the
previous plots, now the distributions that best fit the data are the bimodal ones,
and in particular in this case the Bernoulli-Laplace.

in the figure 12 the curve fitting of an auxiliary variable is displayed: the dis-
tribution with the smallest norm would be a unimodal distribution, in contrast
to the presence of the peak clearly visible from the plot. With the κ parameter
discrimination it will be chosen instead a bimodal distribution (in this case the
Bernoulli-Laplace one).

Figure 13: Priors heatmap of auxiliary variables. The informative angle is well
described by Gaussian priors (in red) : moving away from this, the empirical
distributions become more peaked and are well described by Laplace prior (in
yellow). At a certain point only bimodal distributions (blue) can describe the
trends of the steeper auxiliary variables.

We plot in figure 13 an heatmap with the prior chosen for each auxiliary
variable. In this way it is easy to see that uni-modal auxiliary variables that do
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not have a peak are found mainly in the upper left corner: these are fitted by
Gaussian and Laplace distributions. Moving away from this angle, on the other
hand, the variables increase more and more with a peak of values around zero,
and they need Spike and Slab bimodal distributions.

There is also a particular case of asymmetric histograms, fitted by the asym-
metric Laplace distribution.

In appendix B we report the calculations of the moments of the tilted distri-
bution with respect to the various Laplace priors: the formulas thus computed
have been implemented in the EP algorithm, but they are unstable from a
numeric point of view because very often the normalization of the tilted distri-
butions (which contain the cumulative density function of a Gaussian density)
go to very small numbers. We tried to solve this problem by replacing the
cumulative distribution with an expansion but EP algorithm with these priors
continues to be numerically unstable.

To avoid this problem we unfortunately need to replace the Laplace, asym-
metric Laplace and Bernoulli-Laplace priors. In the figure 14 we can see the
new heatmap of priors we will use in the reconstructions.

Figure 14: Priors heatmap excluding the Laplace priors, with red Gaussian
priors and blue Bernoulli-Gaussian priors.

The asymmetric Laplace has been replace by a Gaussian prior. Moreover the
Bernoulli-Laplace has been replaced by the Bernoulli-Gaussian prior, because
the error slightly differs between bimodal distributions.

We substitute the Laplace priors comparing the norm of the Gaussian and
BG priors with respect to the observed data.

3.4 Reconstructions
In this section we report the results of some reconstructions carried out using the
EP algorithm: after describing the measurement process and the implementa-
tions of the algorithm, we compare the performances of the different techniques
used. In fact, we implement several approaches depending on the auxiliary
variables used and whether the parameters of the relative priors are estimated
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through the use of the training set or not. Therefore in a first analysis we re-
port the performances of these EP-based algorithms differing in the use of the
auxiliary variables.

Then we compare our best performers against other two methods: total
variation (TV) and simultaneous iterations reconstruction technique (SIRT).

Figure 15: Image reconstructions of EP algorithm in the two measurement
regimes: the sampling rate is α = 0.2 in the left panel, while in the right one it
is equal to α = 0.9. You can see the good accuracy of the reconstruction in the
high measurements regime.

We run EP algorithm in different measurements regimes, identified by the
parameter α = M

N , the sampling rate. In this image 15 we report the reconstruc-
tions of the same image in the two extreme situations: the lowest and highest
measurement regimes, showing the clearly different performances of the EP al-
gorithm. For these reconstructions we have used EP-diff, explained later in the
sub-chapter about the different implementations of the EP algorithm.

3.4.1 Measurement process

The measurement process is the mathematical description of the process of
acquiring the information obtained from the scanners device. We want to design
suitable projection matrix A that stores these information.

Clearly, the characteristics of the scanners device must be matched by the
matrices. There are different types of detectors with different functionality and
acquisition methods but a complete survey of this topic is beyond the scope of
this thesis (see [1] for details).

We will use two different methods to construct the projection matrices: for
the first experiments the projection matrix A is built using single ray projections
with uniformly chosen random directions in [0, 2π]. We recall that A ∈ RMxN

33



and each element Aij is the length of the portion of ray i passing through pixel
j. Instead to compare the performance of EP with the other methods (TV and
SIRT) we will reconstruct the images using a projection matrix representing a
2-D parallel beam geometry, as can be in the figure 16. In this projection matrix
we can tune the distances between detectors (changing the number of parallel
X-rays) and the projection angles (influencing the total number of X-rays).

Figure 16: 2-D parallel beam geometry: the main difference with respect to the
projection matrix used in the first experiment is that we have a certain number
of parallel X-rays for a given angle. Image taken from [17].

Each row in this matrix represents a single ray and the number of rows
M in the projection matrix depends on the sampling rate α, so it will change
according to which measurement regime we are considering for that given recon-
struction. If we sum all rows of a given pixel (namely a given column index of
this matrix), we can get an idea of the total intensity of X-rays passing through
each pixel for the two different projection matrices, as can be seen in figure 17.
When the projection matrix represents a parallel-beam geometry we have more
information in the central part of the image, where the rays at various angles
intersect more with each other with respect to when the direction of rays is
chosen uniformly in the range [0, 2π].

3.4.2 EP implementations

In this section we describe the six different implementations of the EP algorithm
used in the reconstructions.

• EP-int uses only the pixel intensity variables as described in section 2.2,
each of them described with a flat interval prior ψj (xj) (14). The following
methods are distinguished by the various auxiliary variables used. The
difference therefore lies in the term of the priors of these variables, since
all methods have an interval prior over the intensity variables. In the
chapter 2.2 “EP method” we explained how EP works in this case in order
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Figure 17: Heatmap showing the total information per pixel of different pro-
jection matrices: the left panel shows a superposition of rays whose direction
is chosen uniformly at random in the range [0, 2π], the center and right panel
depict the overlap of multiple parallel rays. In the right plot we reduce the range
of the colorbar to get an idea of this parallel beam geometry.

to approximate this “true” posterior distribution:

P (x|p) = 1

Z
e−

1
2 (x−µ)TΣ−1(x−µ)

∏
j

ψj (xj) (75)

where Σ−1 = βATA+ JL and mean µ = ΣβATp. Note we included the
pair prior in the multivariate Gaussian, as defined in (11).

• EP-diff introduces the use of empirical priors and auxiliary variables,
in particular the difference ones; they are obtained applying the linear
operator F on the vector containing all pixel intensity variables, where
F is the oriented incidence matrix. The estimation of the parameters ϱ
and σ of the difference-variable prior (the Bernoulli-Gaussian prior already
defined in (52) are estimated in this work [7] using the Gradient Descent
method over an approximate free energy. So in this case the length of the
priors vector is Ntot = N + Ne, because we deal with N = 4096 interval
priors for the pixel intensity variables and Ne Bernoulli-Gaussian priors
for the difference ones. The number of edges Ne between neighboring pixel
is computed using :

∑
v∈V deg (v) = 2Ne , where we sum all the degrees of

the vertices. The degree deg (v) of a vertex v is defined as the number of
edges that have v as an endpoint. The total number of edges of a square
grid of linear size L = 64 is Ne = 8064, so the length of the priors vector
considering both variables is Ntot = N +Ne.

• We use two versions of EP-Haar: in both versions the auxiliary variables
obtained through the Haar transform are used, with the linear operator
F = H⊗H of (67). The difference lies in the priors used for the auxiliary
variables.

1. in EP-Haar-nofit the vector of the priors of the auxiliary variables
is composed of Bernoulli-Gaussian priors with the parameters esti-
mated with EP, as done for the difference variables.
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2. in EP-Haar-fit instead we design for each auxiliary variable a specific
prior, whose functional form and relative parameters are estimated
using the training dataset, as explained in the chapter about Empir-
ical priors.

• The last two EP implementations use both the difference auxiliary vari-
ables and those obtained through the Haar transform. So in this case the
matrix F ∈ RMxN is composed by two blocks:

F =

[
R

H ⊗H

]
where the number of auxiliary variables is M = Ne +Nhaar, giving a total

amount of variables Ntot = Nint +Ne +Nhaar = 16256.
Also in this situation the difference lies in choosing the priors: in both we

use the Spike-and-Slab prior for the difference variables, as in the EP-diff case.

1. in EP-both-nofit we use the Bernoulli-Gaussian prior also for the Haar
auxiliary variables.

2. in EP-both-fit instead we design a suitable prior, for each Haar variable,
according to the information of the dataset, as explained for the EP-Haar-
fit method.

3.4.3 Results

In a first analysis the different implementations of the EP algorithm were com-
pared.

Figure 18: The error ε of reconstructed images as a function of the sampling
rate α for the six EP methods presented, with an error bar representing the
standard deviation.The projection matrix A is different for a given sampling
rate, while we aim to reconstruct the same image.
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We quantify the performances of the reconstructed images comparing the
reconstruction error ε, defined as the average l2 norm of the difference between
the original image x and its reconstruction x∗:

ε =
||x∗ − x||2

N
(76)

where N is the length of the pixel intensity vector.
The error ε is plotted as a function of the sampling rate α = M

N , which takes
value in α ∈ [0.2, 0.9].

Figure 19: The error ε of reconstructed images as a function of the sampling
rate α for the six EP methods presented: the projection matrix is the same for
a given sampling rate, while images are different. From the error bar we can see
more variance in the results with respect to the plot in 18.

In figure 18 we report the results comparing the mean error of five recon-
structions for each algorithm implementation under study in the different mea-
surement regimes: fixed the sampling rate α, we use five different projection
matrix A and we aim to reconstruct the same image. We recall that in these
matrices each row represents a single-ray projection in a random direction.

From the other hand we can also reconstruct different images using the same
projection matrixA. In a similar way to the previous plot we show the results
in figure 19: in this case the results show higher variance, specially in the low
measurement regime, but this is reasonable because now we are reconstructing
different images.

Apart from the case of EP-Haar, whose performance at some point no longer
improves, we can see in the graphs a similar trend for the other EP methods,
with an error in the reconstructed images that decreases as the sampling rate
increases (therefore as the measurements increase).

From both plots we can see that the key step consists of including as auxiliary
variables the pixel differences: in fact in all measurements regimes we obtain
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better performances with all the three implementations of EP algorithm with
difference variables.

Figure 20: The error ε of reconstructed images as a function of the sampling
rate α comparing the best two EP implementations with the TV method and
the SART one.

Including also the Haar variables this error slightly decreases, specially in
the high measurement regimes.

So far we have compared the performances of EP algorithms with each other:
now we extend our analysis by comparing the two EP implementations showing
better results with other methods commonly used in literature, the total vari-
ation method (TV) and the simultaneous algebraic reconstruction technique
(SART).

Figure 21: Image reconstructions: in the left panel we used EP-both-fit, while
in the right one the image is reconstructed using the TV method. In both of
them we are in the high measurement regime, with α = 0.7. The error using
TV (of order ∽ 9 ∗ 10−5) is smaller with respect to the error of EP-both-fit (of
order ∽ 2 ∗ 10−4) but the difference in the image resolution is not visible to the
naked eye.
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In this work we used TomoForward.jl and XfromProjections.jl pack-
ages, [2, 18].

In this case, the projection matrix represents a 2-D parallel beam geometry
(see paragraph 3.4.1 on measurement processes). The EP methods employed
in this analysis are EP-diff, with as auxiliary variables only the difference ones,
and EP-both-fit, which in addition to these EP also exploits the auxiliary Haar
variables.

In figure 20 we report the results of the four methods described: for each
of them we plot the mean of five reconstructions for different images, with the
same projection matrix for a given sampling rate. Compared to the previous
plots, the error bar representing the standard deviation is much lower: this is
reasonable, as now we have a matrix of the measures constructed in a different
way, which does not allow much variance as in the results shown above.

The reconstruction errors displayed show the best results obtained by TV
method compared to the other techniques (EP-both-fit, EP-diff or SART). How-
ever, as can be seen in the figure 21, errors smaller than 10−4do not improve
the quality of the reconstructed images: the two images, reconstructed using
EP-both-fit and TV, are indistinguishable to the naked eye.
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4 Conclusion
Looking at the results obtained both by comparing the EP methods with each
other and by comparing some of these with other image reconstruction algo-
rithms, we confirm the importance of introducing the auxiliary difference vari-
ables in the EP algorithm to reconstruct tomographic images. Furthermore, EP
algorithms have shown that they can include information via non-convex priors,
which is difficult or even not possible with standard optimization tools.

The idea behind this work was to exploit the advantages by introducing
another set of auxiliary variables, the Haar ones. To do this we created a
training dataset that tried to reproduce the characteristics of the tomographic
images. Studying the statistics of the new variables obtained through the Haar
linear transform we inferred the form and the parameters of the functions to
be inserted through the priors. By inserting this additional information, several
reconstructions have been launched to compare the results but the attempt
made through this work shows a slightly improvement with respect to EP-diff
in some regimes.

It is worth noting that the fitting performed can be improved by making
it possible to implement the family of Laplace priors, whose calculations have
been performed in the appendix B. These priors in fact make EP algorithms
unstable from a computational point of view.

However, the approach used in this thesis can also be adopted for other
auxiliary variables connected through a linear transform to the pixel intensity
variables, trying to obtain lower reconstruction errors and algorithms that re-
quire a lower number of measurements.
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A Appendix

A.1 Kullback–Leibler divergence
In mathematical statistics, the Kullback–Leibler divergenceDKL(P ∥ Q) is a
measure of the difference between two probability distribution; in particular
how much information lost when Q is used to approximate P . Typically P
represents the "true" distribution of data, while Q typically represents a model
or approximation of P .

For discrete probability distributions Pand Q defined on the same probabil-
ity space X, the KL is defined as:

DKL(P ∥ Q) =
∑
x∈X

P (x) log

[
P (x)

Q(x)

]
. (77)

The KL is non-negative and it is zero only if P = Q everywhere, thus
recalling the concept of distance.

A.2 Moments matching condition
In this section let’s show how the moment matching condition is the equivalent of
minimizing the KL divergence with respect to the parameters of the distribution
we want to use to describe our data.

Recalling (19) and (20), let’s write explicitly the partition function of both
distributions:

Z̃Q(i) =

ˆ
dNxe

− 1
2 (x−µ(i))TΣ−1

(i)
(x−µ(i))

ψi(xi) (78)

Z̃Q (ai, bi) =

ˆ
dNxe

− 1
2 (x−µ(i))TΣ−1

(i)
(x−µ(i))

e
− (xi−ai)

2

2bi (79)

where ϕi(xi) = 1√
2πbi

e
− (xi−ai)

2

2bi and ψi(xi) is the exact prior we want ap-
proximate.

Inserting these results in the definition of the KL divergence:

DKL

[
Q(i)||Q

]
=

ˆ
dNxQ(i) (x|y) log

[
ψi(xi)Z̃Q (ai, bi)

ϕi(xi)Z̃Q(i)

]

=

ˆ
dNxQ(i) (x|y)

[
(xi − ai)

2

2bi
+ logZ̃Q (ai, bi)

]
+ cost

< (xi − ai)
2
>Q(i)

2bi
+ logZ̃Q (ai, bi) + cost

where inside cost there all terms not depending on the parameters aior bi.
Imposing the minimization with respect to these parameters we obtain:
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∂DKL

[
Q(i)||Q

]
∂ai

=
− < xi >Q(i) +ai

bi
+

1

Z̃Q

∂Z̃Q

∂ai
(80)

∂DKL

[
Q(i)||Q

]
∂bi

= −
< (xi − ai)

2
>Q(i)

2b2i
+

1

Z̃Q

∂Z̃Q

∂bi
(81)

Now we insert the derivatives inside the integrals of the partition functions:

1

Z̃Q

∂Z̃Q

∂ai
=

1

Z̃Q

ˆ
dNxe

− 1
2 (x−µ(i))TΣ−1

(i)
(x−µ(i))

e
− (xi−ai)

2

2bi

(
xi − ai
bi

)
=<

xi − ai
bi

>Q

1

Z̃Q

∂Z̃Q

∂bi
=

1

Z̃Q

ˆ
dNxe

− 1
2 (x−µ(i))TΣ−1

(i)
(x−µ(i))

e
− (xi−ai)

2

2bi

(
(xi − ai)

2

2b2i

)
=
< (xi − ai)

2
>Q

2b2i

Multiplying the multivariate Gaussian times the uni-variate that is missing
in the cavity we obtain the distribution with all Gaussian priors Q(x|p), defined
in (17).

Let’s set equal to zero the derivatives in (80) and (81) :

0 =
− < xi >Q(i) +ai

bi
+ <

xi − ai
bi

>Q

0 = −
< (xi − ai)

2
>Q(i)

2b2i
+
< (xi − ai)

2
>Q

2b2i

Assuming bi ̸= 0, we obtain the moment matching condition:

< xi >Q(i)(x)=< xi >Q(x) (82)

< x2i >Q(i)(x)=< x2i >Q(x) (83)
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B Appendix

B.1 Tilted distribution moments
In the following we compute the moments (mean and variance) of the tilted
distribution with the Laplace prior, the Asymmetric Laplace distribution and
the Bernoulli-Laplace.

Let’s introduce some useful results that we will use in the next subsections
to compute these moments.

First of all, the expectation values calculated with respect to the tilted distri-
bution will be denoted with < x > instead of < x >Q(i) to simplify the notation
(this is done also for the variance).

The cumulative distribution function F (t,m,Σ) (CDF) of a random variable
x, evaluated at a given value t, is the probability that the distribution will take
a value less than or equal to t:

F (t;m,Σ) =
1√
2πΣ

tˆ

−∞

dxe−
(x−m)2

2Σ (84)

1− F (t) =
1√
2πΣ

+∞ˆ

t

dxe−
1
2

(x−m)2

Σ

The truncated normal distribution is the probability distribution derived
from that of a normally distributed random variable by bounding the random
variable from either below or above (or both).

For the interval [a, b], let’s define α = (a−m)√
Σ

and β = (b−m)√
Σ

.
We have used this formula of truncated Gaussian distributions:

1√
2πΣii

bˆ

a

dxxe
− (xi−µi)

2

2Σii = m1 +
√
Σii

Φ(α)− Φ(β)

F (β)− F (α)
(85)

where Φ(x) = 1√
2π
e−

x2

2 and F (x) = 1
2

[
1 + erf

(
x√
2

)]
is the CDF.

Notice that Φ(∞) = Φ(−∞) = 0 and F (∞) = 1, F (−∞) = 0.
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So, for [0,+∞]:

E (X|X > 0) = µi +
√
Σii

 Φ
(
− µi√

Σii

)
1− F

(
− µi√

Σii

)
 (86)

Var (X|X > 0) = Σii

1− µi√
Σii

 Φ
(
− µi√

Σii

)
1− F

(
− µi√

Σii

)
−

 Φ
(
− µi√

Σii

)
1− F

(
− µi√

Σii

)
2


(87)

And for [−∞, 0]:

E (X|X < 0) = µi −
√

Σii

Φ
(
− µi√

Σii

)
F
(
− µi√

Σii

) (88)

Var (X|X < 0) = Σii

1 + µi√
Σii

Φ
(
− µi√

Σii

)
F
(
− µi√

Σii

) −

Φ
(
− µi√

Σii

)
F
(
− µi√

Σii

)
2
 (89)

B.2 Laplace prior
Considering the partition function of the tilted distribution with the Laplace
prior:

Z =
1√

2πΣii

+∞ˆ

−∞

dxie
− (xi−µi)

2

2Σii

{
1

2
λe−λ|xi|

}

=
λ

2
√
2πΣii

 +∞ˆ

0

dxie
− (xi−µi)

2

2Σii
−λxi +

0ˆ

−∞

dxie
− (xi−µi)

2

2Σii
+λxi


Rewriting the first quadratic expression in the form − 1

2Ax
2 + bx+ c:

− 1
2
(xi−µi)

2

Σii
−λxi = − 1

2
x2
i+µ2

i−2xiµi

Σii
−λxi = − 1

2Σii

(
x2i + µ2

i + xi (−2µi + 2λΣii)
)

Mean and variance will be:

σ2 =
1

A
= Σii

m1 = σ2b = Σii −
1

2

[
(−2µi + 2λΣii)

Σii

]
= µi − λΣii
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Proceeding in a similar way for the second quadratic form we obtain:

σ2 = Σii

m2 = µi + λΣii

In order to obtain an equivalent expression we need to add a constant term;
finally we obtain in the partition function:

Z =
λρ

2
√
2πΣii

 +∞ˆ

0

dxie
− (xi−m1)2

2Σii
+ 1

2λ
2Σii−λµi +

0ˆ

−∞

dxie
− (xi−m2)2

2Σii
+ 1

2λ
2Σii+λµi


Using the CDF (84) :

Z =
λ

2
e

1
2λ

2Σii

{
e−λµi

[
1− F

(
− m1√

Σii

)]
+ eλµiF

(
− m2√

Σii

)}
(90)

Let’s compute mean and variance of the tilted distribution with the Laplace
prior:

< xi > =
1

Z
√
2πΣii

+∞ˆ

−∞

dxixie
− (xi−µi)

2

2Σii

{
λ

2
e−λ|xi|

}
=

λ

2Z
√
2πΣii

+∞ˆ

−∞

dxixie
− (xi−µi)

2

2Σii
−λ|xi|

Rearranging the exponential as written above:

=
λ

2Z
√
2πΣii

e
1
2λ

2Σii

e−λµi

+∞ˆ

0

dxixie
− (xi−m1)2

2Σii + eλµi

0ˆ

−∞

dxixie
− (xi−m2)2

2Σii


Using (86) and (88) :

< xi >=
λ

2Z
e

1
2λ

2Σii

e−λµi

m1 +
√
Σii

Φ
(
− m1√

Σii

)
1− F

(
− m1√

Σii

)
+ eλµi

m2 −
√
Σii

Φ
(
− m2√

Σii

)
F
(
− m2√

Σii

)


Inserting Z :

< xi >=

e−λµi

m1 +
√
Σii

Φ

(
− m1√

Σii

)
1−F

(
− m1√

Σii

)
+ eλµi

m2 −
√
Σii

Φ

(
− m2√

Σii

)
F

(
− m2√

Σii

)


e−λµi

[
1− F

(
− m1√

Σii

)]
+ eλµiF

(
− m2√

Σii

)
(91)
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Let’s compute the second moment:

〈
(xi − ⟨xi⟩)2

〉
=

1

Z
√
2πΣii

+∞ˆ

−∞

dxi (xi − ⟨xi⟩)2 e−
(xi−µi)

2

2Σii

{
1

2
λe−λ|xi|

}

As in the previous case, we separate the integrals and we apply (87) and
(89) :

=
λ

2Z
√
2πΣii

e
1
2λ

2Σii

e−λµi

+∞ˆ

0

dxi (xi − ⟨xi⟩)2 e−
(xi−m1)2

2Σii + eλµi

0ˆ

−∞

dxi (xi − ⟨xi⟩)2 e−
(xi−m2)2

2Σii


〈
(xi − ⟨xi⟩)2

〉
=

e−λµiΣii

{
1 + h1

[
Φ(h1)

1−F (h1)

]
−
[

Φ(h1)
1−F (h1)

]2}
+ eλµiΣii

{
1− h2

Φ(h2)
F (h2)

−
[
Φ(h2)
F (h2)

]2}
e−λµi [1− F (h1)] + eλµiF (h2)

(92)

B.3 Asymmetric Laplace prior
Sometimes it might be convenient to have a Laplace distribution that behaves
differently depending on whether the argument is positive or negative; so let’s
introduce the distribution and the corresponding tilted distribution, with par-
tition function:

Z =
1√

2πΣii

+∞ˆ

−∞

dxie
− (xi−µi)

2

2Σii

{
ρδ (xi > 0)λ1e

−λ1|xi| + (1− ρ) δ (xi < 0)λ2e
−λ2|xi|

}
We proceed as in the Laplace prior, separating the integrals and apply (84):

=
1√

2πΣii

ρλ1 +∞ˆ

0

dxie
− (xi−µi)

2

2Σii
−λ1xi + (1− ρ)λ2

0ˆ

−∞

dxie
− (xi−µi)

2

2Σii
+λ2xi



= ρλ1e
1
2λ

2
1Σii−λ1µi

[
1− F

(
− m1√

Σii

)]
+ (1− ρ)λ2e

1
2λ

2
2Σii+λ2µiF

(
− m2√

Σii

)
For the mean we use (86) and (88):

< xi >=
1

Z
√
2πΣii

+∞ˆ

−∞

dxixie
− (xi−µi)

2

2Σii

{
ρδ (xi > 0)λ1e

−λ1|xi| + (1− ρ) δ (xi < 0)λ2e
−λ2|xi|

}
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=
1

Z
√
2πΣii

ρλ1 +∞ˆ

0

dxixie
− (xi−µi)

2

2Σii
−λ1xi + (1− ρ)λ2

0ˆ

−∞

dxixie
− (xi−µi)

2

2Σii
+λ2xi



=

{
ρλ1e

1
2λ

2
1Σii−λ1µi

[
m1 +

√
Σii

Φ(h1)
1−F (h1)

]
+ (1− ϱ)λ2e

1
2λ

2
2Σii+λ2µi

[
m2 −

√
Σii

Φ(h2)
F (h2)

]}
ρλ1e

1
2λ

2
1Σii−λ1µi [1− F (h1)] + (1− ρ)λ2e

1
2λ

2
2Σii+λ2µiF (h2)

Defining c1 = ρλ1e
1
2λ

2
1Σii−λ1µiΣii and c2 = (1− ϱ)λ2e

1
2λ

2
2Σii+λ2µi , we can

rewrite:

< xi >=

{
c1

[
m1 +

√
Σii

Φ(h1)
1−F (h1)

]
+ c2

[
m2 −

√
Σii

Φ(h2)
F (h2)

]}
c1 [1− F (h1)] + c2F (h2)

While for the variance we use (87) and (89):

V ar(xi) =
1

Z
√
2πΣii

+∞ˆ

−∞

dxi (xi − ⟨xi⟩)2 e−
(xi−µi)

2

2Σii

{
ρδ (xi > 0)λ1e

−λ1|xi| + (1− ρ) δ (xi < 0)λ2e
−λ2|xi|

}

=

c1

{
1 + h1

[
Φ(h1)

1−F (h1)

]
−
[

Φ(h1)
1−F (h1)

]2}
+ c2

{
1− h2

Φ(h2)
F (h2)

−
[
Φ(h2)
F (h2)

]2}
c1 [1− F (h1)] + c2F (h2)

B.4 Bernoulli-Laplace prior
Let’s compute the first two moments of the tilted distribution with the Bernoulli-
Laplace prior:

Z =
1√

2πΣii

+∞ˆ

−∞

dxie
− (xi−µi)

2

2Σii

{
(1− ρ) δ(xi) + ρ

1

2
λe−λ|xi|

}

=
1√

2πΣii

(1− ρ) e
− µi

2

2Σii +
λρ

2
√
2πΣii

 +∞ˆ

0

dxie
− (xi−µi)

2

2Σii
−λxi +

0ˆ

−∞

dxie
− (xi−µi)

2

2Σii
+λxi



Also in this case we can rearrange the exponential:

Z =
(1− ρ) e

− µi
2

2Σii

√
2πΣii

+
λρ

2
√
2πΣii

 +∞ˆ

0

dxie
− (xi−m1)2

2Σii
+ 1

2λ
2Σii−λµi +

0ˆ

−∞

dxie
− (xi−m2)2

2Σii
+ 1

2λ
2Σii+λµi
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Using 84:

=
(1− ρ) e

− µi
2

2Σii

√
2πΣii

+
λρ

2
e

1
2λ

2Σii

{
e−λµi

[
1− F

(
− m1√

Σii

)]
+ eλµiF

(
− m2√

Σii

)}
Now let’s compute the mean and variance:

< xi >=
1

Z
√
2πΣii

+∞ˆ

−∞

dxixie
− (xi−µi)

2

2Σii

{
(1− ρ) δ(xi) +

λρ

2
e−λ|xi|

}

= λρ
2Z

√
2πΣii

´ +∞
−∞ dxixie

− (xi−µi)
2

2Σii
−λ|xi|

Inserting the already obtained results:

< xi >=
λρ

2Z
e

1
2λ

2Σii

e−λµi

m1 +
√
Σii

Φ
(
− m1√

Σii

)
1− F

(
− m1√

Σii

)
+ eλµi

m2 −
√
Σii

Φ
(
− m2√

Σii

)
F
(
− m2√

Σii

)


Recalling the expression of Z:

Z =
(1− ρ) e

− µi
2

2Σii

√
2πΣii

+
λρ

2
e

1
2λ

2Σii

{
e−λµi

[
1− F

(
− m1√

Σii

)]
+ eλµiF

(
− m2√

Σii

)}

=
λρ

2
e

1
2λ

2Σii

e−λµi [1− F (h1)] + eλµiF (h2) +
(1− ρ) e

− µi
2

2Σii

√
2πΣii

λρ
2 e

1
2λ

2Σii


=

λρ

2
e

1
2λ

2Σii

{
e−λµi [1− F (h1)] + eλµiF (h2) +

2 (1− ρ)

λρ
√
2πΣii

e
− µi

2

2Σii
− 1

2λ
2Σii

}
Finally:

< xi >=
e−λµi

[
m1 +

√
Σii

Φ(h1)
1−F (h1)

]
+ eλµi

[
m2 −

√
Σii

Φ(h2)
F (h2)

]
e−λµi [1− F (h1)] + eλµiF (h2) +

2(1−ρ)

λρ
√
2πΣii

e
− µi

2

2Σii
− 1

2λ
2Σii
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Let’s compute the second moment:

〈
(xi − ⟨xi⟩)2

〉
=

1

Z
√
2πΣii

+∞ˆ

−∞

dxi (xi − ⟨xi⟩)2 e−
(xi−µi)

2

2Σii

{
(1− ρ) δ(xi) + ρ

1

2
λe−λ|xi|

}

As in the previous case:

=
λρ

2Z
√
2πΣii

e
1
2λ

2Σii

e−λµi

+∞ˆ

0

dxi (xi − ⟨xi⟩)2 e−
(xi−m1)2

2Σii + eλµi

0ˆ

−∞

dxi (xi − ⟨xi⟩)2 e−
(xi−m2)2

2Σii


Using (87) and (89)

=
λρ

2Z
e

1
2λ

2Σii

[
e−λµiΣii

{
1 + h1

[
Φ (h1)

1− F (h1)

]
−
[

Φ (h1)

1− F (h1)

]2}
+ eλµiΣii

{
1− h2

Φ (h2)

F (h2)
−
[
Φ (h2)

F (h2)

]2}]

〈
(xi − ⟨xi⟩)2

〉
=

e−λµiΣii

{
1 + h1

[
Φ(h1)

1−F (h1)

]
−
[

Φ(h1)
1−F (h1)

]2}
+ eλµiΣii

{
1− h2

Φ(h2)
F (h2)

−
[
Φ(h2)
F (h2)

]2}
e−λµi [1− F (h1)] + eλµiF (h2) +

2(1−ρ)

λρ
√
Σii
e
− µi

2

2Σii
− 1

2λ
2Σii
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