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Abstract

The coexistence of superconductivity (SC) and charge- and/or spin-density waves
(CDW and/or SDW) is fundamental to our understanding behind the mechanism
of high-Tc SC. Materials like Fe-based pnictides, transition metal dichalcogenides,
heavy fermions or cuprate superconductors have gained significant interest as the
fluctuations associated with CDW and /or SDW are considered to be a key factor
in inducing SC in these systems.
Recently, the quasi-2D Pt-based rare earth intermetallic material LaPt2Si2 has
attracted a lot of attention as it exhibits strong interplay between CDW and
SC. LaPt2Si2 crystallizes in a CaBe2Ge2-type tetragonal structure (space group
P4/nmm), where two non-equivalent layers (Si2–Pt1–Si2) and (Pt2–Si1–Pt2) are
arranged in alternating stacking separated by lanthanum atoms, which results to a
crystal structure lacking inversion symmetry. Around TCDW= 112 K, a structural
transition from a high-temperature tetragonal to a low-temperature orthorhombic
structure, together with the CDW transition has been reported in polycrystalline
LaPt2Si2. Below TSL= 10 K, superlattice reflections were observed, indicating that
the unit cell of the LaPt2Si2 is tripled in size along the [100] direction. Below TSC

= 1.22 K the material becomes a superconductor.
Theoretical calculations show that the Fermi surface of LaPt2Si2 is of two-dimensional
nature and CDW and SC coexist in the (Si2-Pt1-Si2) layer. Also the calculations of
the phonon dispersions predict phonon-softening instabilities, indicating structural
instability. The softened phonon modes would mainly arise from Pt1, suggesting
that the CDW transition occurs in the Pt1 layers and has a large electron-phonon
interaction. Until now, the vast majority of the results have been reported only
on polycrystalline samples, but the very recent synthesis of good quality single
crystals allows further investigations to clarify the nature of the interplay between
the CDW and SC in LaPt2Si2.
This work presents recent inelastic neutron scattering results of LaPt2Si2 single
crystals performed at the HRC instrument in J-PARC, Japan. We investigated the
phonon excitation spectra below and above the structural transition TCDW= 85 K,
and clearly observed the CDW wavevector þq=(0.35,0,0), but no phonon softening
was observed. In addition, XRD and Raman scattering have also been performed
in order to characterize the material and better understand its properties. The
overall measured phonon dispersions show the two main energy levels predicted by
theoretical calculations. Moreover, the weak superlattice peaks appear at position
previously identified [1]. Interestingly, when increasing temperature the superlattice
peaks increase even above TCDW , an effect which will require further investigations
to be fully understood.
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Chapter 1

Introduction

1.1 Motivation

Superconductivity describes the property of conducting electricity with the complete
disappearance of electrical resistance in various materials when they are cooled
below a characteristic temperature. It is characterized by an expulsion of the
magnetic field from the interior of a sample. A simplified way to classify them is to
distinguish two types: low-temperature, or conventional, superconductivity, which
generally only occurs within a few degrees of absolute zero and is well-understood by
BCS theory or its extensions; and high-temperature superconductivity, which is not
well understood [2] [3]. Unconventional superconductivity refers to superconductors
where the Cooper pairs are not bound together by phonon exchange, instead
another type of exchange occurs e.g. spin fluctuation interactions.
Superconductivity has a lot of potential in today’s society, new applications for
superconductors are developed every day, however there is still a lot to know about
superconducting materials. The final goal of investigating high-temperature SC is
to hopefully, one day, be able to make SC that work at accessible temperatures.
An example is the use of superconductivity applied to power transmissions, which
would dramatically reduce energy costs around the world but there are many more
applications linked to technologies.
The mechanism of unconventional superconductivity is still largely unknown, years
after the discovery of the first cuprate superconductor by Bednorz and Muller
(1986) [4]. For this reason, much research has gone into elucidating the microscopic
properties of the many different families of unconventional superconductors with
the aim of finding the mechanism that binds (Cooper) pairs of electrons together,
in turn forming the basis for the emergence of the superconducting state. One
common theme is the inherent two-dimensionality of these materials, another is the
spontaneous formation in these materials of one-dimensional "stripe"-like structures,
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which in general carry both charge and (antiferro-)magnetism [5] [6]. In addition,
to form the Cooper pairs a dynamic interaction is searched for, similar to the (BCS)
electron-phonon coupling mechanism known from conventional superconductivity,
e.g. seen in simple metals [2] [3].
A superior method to study lattice- and magnetic dynamics on the microscopic
scale is neutron scattering, which is the central technique for this study. The
two-dimensional superconductor studied using neutron scattering is LaPt2Si2.

1.2 LaPt2Si2
The coexistence of superconductivity (SC) and charge- and/or spin-density waves
(CDW and/or SDW) is fundamental to our understanding behind the mechanism
of high-Tc SC. CDW and SC are states of broken symmetry in solids which require
electron-electron interaction mediated by phonons and are originated by instabilities
of the Fermi surface (nesting, gap). However, charge redistribution and Cooper
pairing are two independent phenomena with opposite effects on the electronic
spectrum: SC induces infinite conductivity, CDW induces semiconductor gap and
non-conducting state. Even if their effect is opposite, it has been observed that they
can coexist. Materials like Fe-based pnictides, transition metal dichalcogenides,
heavy fermions or cuprate superconductors have gained significant interest as the
fluctuations associated with CDW and /or SDW are considered to be a key factor
in inducing SC in these systems.
Recently, RPt2Si2 (R = La, Pr) system has attracted an intensive research inter-
est as it exhibits strong interplay between CDW and superconductivity. Unlike
cuprates and pnictides, SDW has not been found in these materials, one reason
to expect so is that they do not have a magnetic ion, unlike Cu or Fe. LaPt2Si2
crystallizes in a CaBe2Ge2-type tetragonal structure (space group P4/nmm), seen
in Fig. 1.1, where two non-equivalent layers (Si2–Pt1–Si2) and (Pt2–Si1–Pt2) are
arranged in alternating stacking separated by lanthanum atoms, which results in a
crystal structure lacking inversion symmetry.
Theoretical calculations show that the Fermi surface of LaPt2Si2 is of two-dimensional
nature [7] and CDW and SC coexist spatially in the (Si2–Pt1–Si2) layer. Also the
calculations of the phonon dispersions predict phonon-softening instabilities, which
should lead to structural instability [7, 8]. The softened phonon modes would
mainly arise from Pt1, suggesting that the CDW transition occurs in the Pt1 layers
and has a large electron-phonon interaction [7, 8].

In polycrystalline samples, a first order transition was observed from high tempera-
ture tetragonal to low temperature orthorhombic structure, which is believed to
be due to a CDW transition at TCDW = 112 K. Below TSL= 10 K, superlattice
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reflections corresponding to (n/3,0,0) where n=1 and 2 were observed, indicating
that the unit cell of the LaPt2Si2 is tripled in size along the [100] direction at low
temperature. Moreover at lower temperature there is a SC transition at TC = 1.22
K [9].
Later a single-crystalline LaPt2Si2 sample was measured with XRD [1]. The diffrac-
tion patterns show the occurrence of satellite Bragg peaks corresponding to the
wave vector q ≈ [0.36, 0, 0)]. This additional periodicity, is probably related to
the supposed CDW state. The satellites have their maximum intensity at 85 K,
disappear above 175 K and almost vanish below 85 K.
The phonon dispersion in this sample has never been measured, therefore the
aim of the inelastic neutron scattering experiment at High Resolution Chopper
Spectrometer (HRC) at J-PARC was to investigate the phonon modes in single
crystalline, quasi-2D Pt-based rare earth intermetallic LaPt2Si2, in order to observe
the phonon softening predicted by theoretical calculations, and confirm in this
way the occurrence of CDW (the softening should be a signature of CDW) [8] [10].
Maps for the phonon spectra at 3 different temperatures (3 K, 85 K, 220 K) were
acquired. The low temperature crystal structure, in the CDW phase, is not solved
(the only information in this regard is the fact that it should be orthorhombic).
The investigation of LaPt2Si2 single crystals is particularly important due to the
strong directional dependency of the in-plane CDW and superconductivity.

Figure 1.1: Crystallographic data and atomic structure of LaPt2Si2. The layered
structure with the alternating stacking planes (Si2–Pt1–Si2) and (Pt2–Si1–Pt2) is
clearly visible along the c axis. It has been calculated with VESTA program [11].
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1.3 Previous studies on LaPt2Si2
The properties of LaPt2Si2 as a single crystal are not much explored since the
majority of results have been reported only on polycrystalline samples [9][12][13][14].
Recently, several papers have been published in order to fully characterize and
understand this complex compound [1] [15].

Figure 1.2: Reciprocal space map of (0 4 0) diffraction at T = 300, 85, and 10 K.
The scattering plane corresponds to the basal plane. The black point shows the
position of q = (1/3, 0, 0). From [1].

In a recent publication [1], X-ray diffraction (XRD) patterns on single crystalline
LaPt2Si2 show the occurrence of satellite Bragg peaks corresponding to the wave
vector q ≈ [0.36, 0, 0)]. The satellites indicate the occurrence of the CDW
transition at low temperatures [1]. In the same paper, the group said that a
structural transition might occur due to the observation of the broadening of a
structural peak which implies that a and b axis are no longer equivalent [1]. The
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satellites reveal maximum intensity at 85 K, disappear above 175 K and almost
vanish below 85 K, as it is shown in Fig. 1.2. The map acquired during the INS
experiment at HRC allow to observe incommensurate reflections with a temperature
dependence that will be compared with the literature.
X-rays characterisation was also performed on the powdered single crystal, with
in-house equipment and the pattern was refined with a tetragonal CaBe2Ge2 model,
showing that the tetragonal symmetry is preserved down to low temperature [1], in
contrast with first order structural phase transition from tetragonal (high-T) to
orthorhombic (low-T) present in the polycrystalline samples [9].
In order to better understand the structure, XRD diffraction has been performed
as function of T in a range from 80K to 300K, using a Cu-alpha D8 diffractometer,
on these crystals to collect reliable structural information. However such a measure-
ment would not provide complete structural characterization as the measurement
system is limited in temperature range and resolution. Instead in Fig. 1.3 it
is possible to see XRD previously performed by Falkowski group using in-house
equipment.

Figure 1.3: XRD powder patterns of LaPt2Si2 collected at T = 5 and 300 K
refined using the CaBe2Ge2-type structure, space group P4/nmm (blue and black
lines, respectively). The peak positions are indicated by the vertical bars bellow
the data. Inset (a) shows the Laue diffraction pattern of LaPt2Si2 single crystal
with a view along the [001] axis. Inset (b) shows the SEM micrograph obtained
from the surface of single-crystalline LaPt2Si2 used for the EDX analysis. From [1].

Electrical resistivity reveals that the 85 K transition is hysteretic in temperature,
with the difference between heating and cooling being almost 10 K, proving the
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first-order type of the transition [1]. The transition dramatically enhances resistivity
in the low-T state, pointing to a formation of a pseudogap. This, however, does
allow a superconducting state, arising below Tc = 1.6 K [1]. The temperature
dependence of the upper critical field is not compatible with the weak coupling BCS
theory[1]. Strong anisotropy of the electronic structure and its dramatic changes at
the structure transition are manifest also in thermal expansion and thermoelectric
power [1].

Figure 1.4: Low-T detail ρ(T) in vicinity of the superconducting transition for
both crystallographic directions of single-crystalline LaPt2Si2 in various applied
magnetic fields. From [1].

A sharp superconducting transition bringing resistivity to the zero value is shown in
Fig. 1.4. The recorded actual values of critical temperature are for both directions
slightly different, T [110]

c = 1.65 K and T [001]
c = 1.5 K. At present it is not clear

what is the nature of the small difference. The presence of superconductivity is a
remarkable fact as archetypal CDW systems are not superconductors [16] as the

6



Introduction

two phenomena (CDW/SC) are competitive and detrimental to each other. In Figs.
1.4(a) and 1.4(b), it is shown the view of the low-T range together with effect of an
applied magnetic field on the superconducting transition for both crystallographic
directions. In both cases, Tc gradually decreases with increasing field and already
a field of 0.5 T pushes Tc below 0.4 K [1].
The superconductivity itself exhibits certain unconventional features, not compatible
with the common weak coupling BCS model [1].
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Chapter 2

Basics of Neutron
Scattering

This chapter is mostly based on the Notes of the Neutron Scattering Course that I
took at the University of Copenhagen, Niels Bohr Institute, by Kim Lefmann [17].

2.1 Introduction to Neutron Scattering, proper-
ties of the neutron and five reasons to use
them

Neutron scattering is a means to study the structure, dynamics (movement of
atoms) and the compositions of materials on the atomic and nanometer scale.
Today nearly 8000 researchers who use neutron centres for their scientific work could
be identified in Europe. They rely on the open access and user programs at nine
neutron sources across Europe and additionally eight smaller sources for specific
applications. Also neutron sources from abroad in America, Japan, Australia and
Russia are used by European researchers [18]. Neutrons play an important role in
the advancement of research into many different areas of science, such as biology,
materials science, chemistry, particle physics as well as engineering and medicine.
Neutron scattering also present some disadvantages, it is rare and time consum-
ing, experiments last from hours to days in neutron facilities. As the capacity is
limited, not all the proposals done by international and local researchers can be
accepted. As a consequence, neutron scattering should be used only when other
methods are inadequate. X-ray scattering is the technique chosen for the study
of atomic and nanometer-scale structure in materials. X-ray sources present lots
of advantages, they are more common and they are much stronger than neutron
sources, especially for synchrotron X-ray sources. However, for some purposes
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neutrons are instead chosen due to some properties that make them more convenient.

The neutron is a neutral particle, which is stable only in the confines of the nucleus
of the atom. Outside the nucleus, the neutron decays with a mean lifetime of
about τ = 886 s [19], it is much longer than the time a neutron spends within a
scattering experiment, which is a fraction of a second. As a consequence, neutron
decay is neglected in experiments. Its mass is rather close to that of a proton
(mn = 1.675 · 10−27 kg) [20].
Neutron has a particle-wave duality. When a neutron is slown down to low speed,
thousands m/s, it behaves as a wave. The neutron wave interfere with itself through
scattering from the nuclei in materials. From studying the interference pattern, it
is possible to know the structure of the material, the properties and the chemical
composition. In neutron scattering, the wave nature is hidden in the neutron wave
number

k = 2π
λ

(2.1)

or in the wave vector of length k (same direction as velocity)

þk = mnþv

~
(2.2)

Å (10−10 m) is the unit of measure for wavelengths, and Å−1 for wave numbers.
The neutron velocity is always measured in m/s. The neutron kinetic energy is
given by

E = ~2k2

2mn

(2.3)

which has a unit of measure in eV or meV, in particular 1 eV = 1.60218 ·10−19 J.
Adequate flux density for neutron scattering investigations of materials are produced
by neutron sources which are based on one of two principles, also illustrated in Fig.
2.1:

• Fission. It takes place within a reactor, it produces a high continuous flux of
neutrons and can be used for a variety of purposes including power generation
and experiments.

• Spallation. A high-flux source in which protons that have been accelerated to
high energies hit a target material, prompting the emission of neutrons.
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Figure 2.1: The two main methods of neutron production. Left: Traditional
nuclear reactors make use of production of neutrons for maintaining the chain
reaction; a surplus of neutrons can be used for neutron scattering. Right: Protons
accelerated into the GeV regime can excite heavy nuclei with a large neutron
surplus, creating free neutrons among the reaction products. From [17].

.

One common feature is that neutrons are moderated to slower velocities close to
the source and then transported to the neutron scattering instruments in neutron
guide systems. More details on the instrumentation will be given in later chapters.
There are two types of scattering, elastic and inelastic. The crystal is composed of
lattice planes, if a certain condition is fulfilled, there is constructive interference
between scattered waves from different lattice planes and the condition is the Bragg
Law:

nλ = 2dsin(θ) (2.4)
The scattering vector is

þq = þki − þkf (2.5)
where the wave vectors k have the length of k (wave number) and direction of
propagation of the neutron; it is the central concept as it links the experiment
with the material. þq should be equal to 2π/d to fulfil the Bragg law. In inelastic
scattering instead, the neutron comes in with þki and the final neutron has a þkf

with a different length, therefore the neutron lose some energy. This leads to the
need to define an energy transfer, the energy is conserved but given to the material.
As a consequence, one quantum of vibration appear in the material, therefore the
energy lost by the neutron is the same as the energy gained by the material. Also
the momentum is conserved.
By studying the energy transfer and the momentum of the neutron it is possible to
study what is happening inside the material, for example the dispersion relation,
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i.e. the correspondence between q vector and the energies for vibrations inside the
material.

Figure 2.2: Energy and momentum coverage of inelastic neutron scattering. From
[21].

In Fig. 2.2, it is possible to observe the energy and q coverage of inelastic neutron
scattering. It covers four order of magnitude in length and nine order of magnitude
in time scale. However, all the entire blue area in Fig. 2.2 cannot be covered
simultaneously. The instrument needs to be specialised to in a particular range
and this is why neutron scattering is very rich in instrument set ups.
Neutron has a wavelength typically of the order of one Armstrong and thus can
study the structure of materials. There are five reasons to use neutrons instead of
X-Rays:

• The neutron has a wavelength (Å) and an energy (meV) comparable to the
typical atomic spacing and vibrational energies therefore it is possible to study
both the atomic structure and dynamics.

• The neutron scattering cross section varies randomly through the periodic
table and is isotope dependent. It is possible to probe isotopes and light
elements, because the neutrons scatter from the core, neutrons feel the nuclear
potential, i.e. the inner structure of the nucleus.
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• The neutron probe is weak, the signal could be weak but most of the displayed
neutrons scatter only once so it is possible to use simulations to study them.

• The neutron is highly penetrating, it is possible to study thick samples and
samples in a complex environment.

• The neutron has a magnetic moment but no charge, enabling the study of
magnetic structure and dynamics.

2.2 The neutron flux and cross section

The neutron flux is defined as

ψ = number of neutrons impinging on a surface per sec
surface area perpendicular to neutron beam direction (2.6)

usual values are 104 − 109 n/(cm2 s).
The scattering cross section is defined as the ability of the system to scatter neutrons

σ = 1
ψ
number of neutrons scattered per second (2.7)

which has units of area.
If the sample is very thick then it will scatter everything, instead for thin samples
where the beam is not significantly attenuated through the scattering, the cross
section will be depending linearly on the system (sample) volume like σ = V Σ.
To understand how σ is distributed over the solid angle, the calculation leads to
the differential scattering cross section which is the intensity of neutrons scattered
into a particular solid angle

dσ

dΩ = 1
ψ

number of neutrons scattered into the solid angle dΩ per sec
dΩ (2.8)

The total number of scattered neutrons is the integral of neutrons per solid angle
over all of the 4π solid angle, hence

σ =
Ú dσ

dΩdΩ (2.9)
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Figure 2.3: An illustration of the scattering geometry. The incoming neutrons,
labeled ki, scatter at the center of the sphere with the scattering angle 2θ and
azimuthal angle φ. The neutrons scattered into the solid angle element dΩ (or
detector area dA), are described with kf . From [22].

When a neutron is absorbed by a nucleus, a wide range of radiations can be emitted
or fission can be induced. In most cases, the absorption cross section, σa, of thermal
neutrons is inversely proportional to the neutron velocity therefore: σa ∝ λ.

There is an actual absorption cross section for each and every nucleus,

σa,j = σa,j,th
λ

λth

(2.10)

where λth = 1.7982 Å. The absorption cross section for isotope j is given as σa,j,th

per nucleus in units of "barns" (1 barn = 10−28 m 2) and they are all tabulated e.g.
see the Neutron Data Booklet [23] or the NIST homepage [24].

The total absorption cross section is σa = q
j
σa,j. The total cross section is the

scattering cross section plus the absorption cross section which is the one to take
into account in order to calculate how the beam is attenuated through the sample.
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2.3 The neutron wave

Figure 2.4: An illustration of the initial wave, ψi, of wavelength λi, and the final
wave, ψf , of wavelength λf , describing a neutron scattering off a single nucleus.
The area, dA, for measuring the flux of the outgoing neutrons is the detector area
as sketched. From [17].

The neutron comes in with wave vector ki, most of the wave will continue but a
tiny part will scatter as a spherical wave. A plane wave describes the incoming (or
initial) neutron as

ψi(þr) = 1√
Y
eiþki·þr (2.11)

where Y is a normalization constant. The time dependence e−iωt has no role until
the inelastic scattering discussion will be explored in later chapters, therefore it
has been neglected.
Considering the idealized situation illustrated in Fig. 2.4 where a neutron scattered
by a single nucleus, labeled j, which is at a fixed in position. The scattered neutron
can be described as a spherical wave leaving the nucleus, which is centered at rj.
Therefore the scattered, or final, wave is

ψf (þr) = ψi(þrj)eiþkf |þr−þrj | bj

|þr − þrj|
(2.12)

where bj is a quantity characteristic for the particular isotope. Since bj has the unit
of length, it is usually denoted scattering length and is typically of the order 1 − 10
fm. This above equation is valid only for |þr - þrj| º bj, "far" from the nucleus.
The detector has an area dA = þr2dΩ. Since the scattering cross section is the final
aim of the calculation, the flux is a necessary quantity to move in this direction. If
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a volume element is taken dAdL in the incoming neutron wave, then the number
of neutrons per second, therefore the incoming neutron flux, is defined as

ψ = dN

dt

1
dA

= |ψi|2 dAdL
dL/þv

1
dA

= þv|ψi|2 = ~þki

m

1
Y

(2.13)

Taking into account the outgoing wave function, the number of scattered neutrons
in dΩ per second is

þv|ψf |2dA = ~kf

m

1
Y

b2
j

r2dA = ~kf

m

1
Y
b2

jdΩ (2.14)

which is valid only where þr º þrj.
The definition of the differential scattering cross section for one nucleus is given by

dσ

dΩ =
~þkf b2

j dΩ
mY

dΩ
mY

~þki

=
þkf

þki

b2
j = b2

j (2.15)

where þki = þkf , by assuming that the energy is conserved, therefore the energy of
the neutron is unchanged. This is the so-called elastic scattering.

2.4 Scattering from two nuclei - interference
If a new nucleus (þrjÍ) is added to the previous picture, again placed at fixed position,
new spherical waves will appear and interfere. The neutron wave is described to be
from one single neutron but it is the wave function that scatters from two different
nuclei at the same time.
Denoting the nuclear scattering lengths as bj and bjÍ , the final wave function,
coming out of the two nuclei can be defined as

ψf (þr) = ψi(þrj)eiþkf |þr−þrj | bj

|þr − þrj|
+ ψi(þrjÍ)eiþkf |þr−þrjÍ | bjÍ

|þr − þrjÍ |
(2.16)

The equation for the neutron reaching the detector is the same as before

# neutrons per second into dΩ = þv|ψf |2dA

= ~kf

mr2
1
Y

---eiþkiþrjeiþkf |þr−þrj |bje
iþkiþrjÍeiþkf |þr−þrjÍ |bjÍ

---2 dA
(2.17)

using again the approx that þr º þrj.
After writing the nuclear coordinate rj as the sum of parallel and perpendicular
component to r and checking that the perpendicular component is by far the
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smallest and vanishes to first order (formal proof on the notes [17]), only one
component of the nuclear coordinate, rj,|| is used in the calculation, it is possible
to obtain

~kf

mr2
1
Y

---eiþki·þrjeiþkf ·(þr−þrj)bje
iþki·þrjÍeiþkf ·(þr−þrjÍ )bjÍ

---2 dA =

= ~kf

mr2
1
Y

---eiþkf ·þr
---2 ---eiþki−þkf ·þrjbj + eiþki−þkf ·þrjÍ bjÍ

---2 dA (2.18)

There is a common factor of eiþkf ·þr which is a phase that depends on the position of
the detector. By substituting the scattering vector in the previous equation and by
recognizing that

---eiþkf ·þr
---2 = 1, the eq. (2.18) becomes

~kf

mr2
1
Y

---eiþq·þrjbj + eiþq·þrjÍ bjÍ

---2 dA (2.19)

For simplicity it is possible to assume bj = bjÍ , then b2
j can vary between zero and

four according to the phases. Two nuclei can scatter four times more than one
nucleus therefore with N nuclei, it possible to scatter by N2 more. In neutron
scattering, it is essential to define interference between waves scattered from a large
number of nuclei in the same way as it has been defined for two nuclei above. The
principle of interference applies equally well to many particles as to two, therefore
by generalizing the result to several particles, the elastic differential scattering cross
section from nuclei is given by

dσ

dΩ =
þkf

þki

------
Ø

j

bje
iþq·þrj

------
2

=
------
Ø

j

bje
iþq·þrj

------
2

(2.20)

which is at the basis of the Neutron Scattering Technique, and can be calculated
for particular structures.

Figure 2.5: An illustration of the scattering process with the incoming and
outgoing beam, the wave vectors, þki and þkf , and the scattering vector þq. From
[17].
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2.5 Coherent and Incoherent Scattering
Incoherence is defined as lack of coherence in scattering between different nuclei,
this is due to the potentials or scattering amplitudes b that can vary in space and
time. Scattering potential may depend upon the relative spin of the neutron and
the spin of the nuclei that can randomly flip (unless at low T), these fluctuations
might induce a variation in bj . Another effect that could also vary bj is the isotope
variation.
The quantity bj can be defined as an average plus a fluctuation that can vary in
time and space

bj → b̄j + δbj (2.21)
To make the calculation more treatable, some approximations on time and space
averages are done

ébjê = b̄j (2.22)

éδbjê = 0 (2.23)

éδbiδbjê = 0 (2.24)
Calculating the random fluctuations for two nuclei, the following result is observed

é dσ
dΩ |n=2ê = é

---(b̄j + δbj)eiþq·þrj + (b̄jÍ + δbjÍ)eiþq·þrjÍ
---2ê =

= é(b̄j + δbj)2 + (j̄Í + δjÍ)2 + (b̄j + δbj)(b̄jÍ + δbjÍ)[eiþq·(þrj−þrjÍ ) + e−iþq·(þrj−þrjÍ )]ê
= b̄2

j+ < 2b̄jδbj > + < δb2
j > +b̄2

jÍ+ < 2b̄jÍδbjÍ > + < δb2
jÍ > +

+ éb̄j b̄jÍ + b̄jδbjÍ + b̄jÍδbj + δbjδbjÍê[eiþq·(þrj−þrjÍ ) + e−iþq·(þrj−þrjÍ )]
(2.25)

where each average could be computed separately. It is useful to use the approxi-
mation defined in eq. (2.22, 2.23, 2.24). The value éδb2

jê is a randomly fluctuating
term squared, which can be only positive.

é dσ
dΩ |n=2ê = b̄2

j + b̄2
jÍ + b̄j b̄jÍ(eiþq·(þrj−þrjÍ ) + e−iþq·(þrj−þrjÍ )) + éδb2

jê + éδb2
jÍê

=
-----Ø

i

b̄ie
iþq·þrj

-----
2

+
Ø

j

σinc,j

4π

(2.26)

where by definition éδb2
jÍê = σinc,j

4π
. The incoherent scattering cross section σinc,j is

tabulated for each and every element and isotope, it represents a constant scattering
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Basics of Neutron Scattering

of neutrons, i.e. in all directions, without interference between scattering from
neighbour atoms. The interesting part is the first term (coherence part) which
will give the variation in scattering with the solid angle (interference) while the
second term will scatter everywhere, each nucleus on its own, with no interference,
and it comes from the assumption of uncorrelation. Incoherent scattering send out
neutrons in all directions and it is responsible for the background.
One defines the coherent scattering cross section for a single nucleus j as σcoh,j =
4πébjê2. The explicit average notation ébjê is dropped, and the symbol bj almost
exclusively means the average scattering length of a certain isotope or element.
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Chapter 3

Diffraction from Crystals

This chapter is mostly based on the Notes of the Neutron Scattering Course that I
took at the University of Copenhagen, Niels Bohr Institute, by Kim Lefmann [17].

3.1 Introduction to crystals
A crystal is a substance in which the constituent atoms, molecules, or ions are
packed in a regularly ordered, repeating three-dimensional pattern, forming a
lattice. A lattice is an arrangement in space of isolated points (lattice points) in a
regular pattern, showing the positions of atoms, molecules, or ions in the structure
of a crystal. Lattice vectors connect two lattice points. Primitive lattice vectors are
the shortest lattice vectors possible, three of them span the lattice space. All other
lattice vectors can be expressed as a set of three indices that tell the indices of the
vector sum that reproduces a particular lattice vector. In crystalline objects there
is a long range order, a basic pattern of atoms is repeated over and over in three
dimensions. Basic pattern can be made up of atoms or molecules or a building
block of some other structure. The unit cell is the smallest repeating volume of the
lattice. The volume of the unit cell is

Vo = þa(þb× þc) (3.1)

Any point in the lattice is given by a vector from the origin which is

þr = naþa+ nb
þb+ ncþc (3.2)

where na, nb and nc are integers. The angle between þa and þb is denoted γ, the angle
between þb and þc is α and between þa and þc is β.
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Diffraction from Crystals

The reciprocal lattice vectors are defined as

þa∗ = 2π
Vo

þb× þc

þb∗ = 2π
Vo

þc× þa

þc∗ = 2π
Vo

þa×þb

(3.3)

It has the following properties:
þa∗ · þa = 2π
þa∗ ·þb = 0

(3.4)

where the reciprocal lattice vectors are perpendicular to two of the three real space
vectors. On the reciprocal lattice space it is possible to define any point as

þτhkl = hþa∗ + kþb∗ + lþc∗ (3.5)

where h,k and l are integers.
Bravais lattice has exactly one atom per unit cell. Non Bravais lattice there are
more than one atom per unit cell. Position of i-th atom in the jth unit cell is
þrij = þrj + þ∆i with þrj the position of the jth lattice point and þ∆i the displacement
within the unit cell of that atom.
There are a number of geometrical symmetries to assign to the lattice, the translation
invariance is present but they can also have mirror symmetry, rotational invariance
etc. There are 7 different crystal groups and they fulfil different criteria that are
described in Table 3.1.

Table 3.1: An overview over the crystal systems, their properties, the correspond-
ing crystal lattices, crystal classes, and their distribution of space groups. From
[25].
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3.2 Scattering from crystals and Bragg law
The differential cross section from nuclear scattering is given by:

dσ

dΩ =
------
Ø

j

bje
iþq·þrj

------
2

(3.6)

where the sum is done over all atoms.
By inserting the crystal, there is the need to sum over all unit cells (j) and sum over
the atoms within that unit cell (i), the b can only depend on the position within
the unit cell because all unit cells are necessarily identical and using equation
þrij = þrj + þ∆i, eq. (3.6) becomes

dσ

dΩ =
------
Ø

j

Ø
i

bie
iþq·þrjeiþq·þ∆i

------
2

=
------
Ø

j

eiþq·þrj

------
2 -----Ø

i

bie
iþq·þ∆i

-----
2

(3.7)

More information on the symmetry is needed on the specific crystal to calculate
further. The second term of the equation (3.7) which contain a sum over all
atomic positions in the unit cell is called the nuclear structure factor |FN(þq)|2. The
intensity of the scattering is proportional to |FN(þq)|2, the height of the peaks from
the scattering reflects the nuclear structure factor.
Focusing on the first term, also called the lattice sum, further calculations can be
done

------
NØ

j=1
eiþq·þrj

------
2

=
NØ

j=1

NØ
jÍ=1

eiþq·þrje−iþq·þrjÍ

=
NØ

j=1

NØ
j−jÍ=1

eiþq·(þrj−þrjÍ )

= N
NØ

j−jÍ=1
eiþq·(þrj−þrjÍ )

= N
NØ

j=1
eiþq·(þrj)

(3.8)

This is an equation of the form |x2| = N |x| which will have 2 solutions, N if the
phase stay constant to modulo 2Ω and zero if the phase shift around. The first
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requirement is the same as saying that þq is a reciprocal lattice vector.

x =
0 = Nδþq,þτ

N
(3.9)

This is the only case in which the lattice sum is different from zero, the only place
in þq space where there is diffraction is on the reciprocal lattice points.
The distance between the lattice planes is d = 2π

|b∗| for a general τ , dτ = 2π
|þτ | .

From eq. (3.9), it is possible to see that |þq| = |þτ | which means that length of þq and
the length of τ (reciprocal lattice vector) are the same. This is equivalent to the
Bragg law.

Figure 3.1: Diffraction in Bragg geometry. The incoming and outgoing wave
vectors are þki and þkf , respectively, þq is the scattering vector, and þd is the relevant
lattice spacing in the crystal. The incoming and outgoing angles are equal. From
[26].

From Fig. 3.1 it is observed that

þq = þτ

2kisin(θ) = n
2π
d

22π
λ
sin(θ) = n

2π
d

2dsin(θ) = nλ

(3.10)

which is the Bragg law.
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3.3 Vibrations of the atoms and scattering
If the position of the atoms is time dependent, it is possible to define

þRj(t) = þrj + þUj(t) (3.11)

where þUij(t) is the vibration of the atoms and the average éþUj(t)ê = 0 because it is
a vibration around the lattice point.
From the differential cross section

dσ

dΩ = é

------
Ø

j

bje
iþq· þRj(t)

------
2

ê

= é
Ø

j

Ø
jÍ
bjbjÍeiþq· þRj(t)e−iþq· þRjÍ (t)ê

= é
Ø

j

Ø
jÍ
bjbjÍeiþq·þrje−iþq·þrjÍeiþq·þUj(t)e−iþq·þUjÍ (t)ê

(3.12)

The U(t) are less than a fraction of an Ångström (Å) so it is possible to Taylor
expand expression (3.12).

dσ

dΩ = é
Ø

j

Ø
jÍ
bjbjÍeiþq·þrj (1 + iþq · þUj − (þq · þUj)2

2 )(1 − iþq · þUjÍ − (þq · þUjÍ)2

2 )ê (3.13)

And because of éþUj(t)ê = 0, everything with U(t) to the first power vanish

dσ

dΩ =
Ø

j

Ø
jÍ
bjbjÍeiþq·þrj (1 − é(þq · þUj)2ê − é(þq · þUj)(þq · þUjÍ)ê (3.14)

Assuming that on average Uj and UjÍ are uncorrelated, meaning that the fluctuation
at j is not depending on fluctuation on jÍ then the term é(þq · þUj)(þq · þUjÍ))ê average
to zero.

dσ

dΩ =
Ø

j

Ø
jÍ
bjbjÍeiþq·þrj é1 − (þq · þUj)2ê (3.15)

If more terms would have been taken in the expansion, it would be possible to
recognize that é1 − (þq · þUj)2ê = e−é(þq·þUj)2ê which is the vibrational term, a lowering
of the scattering amplitude due to vibrations, also known as Debye Waller factor,
for convention written as e−2W . At T=0, it is very close to one and when the
temperature increases, it begins to drop until falling to zero around the melting
point.
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Therefore the differential cross section becomes

dσ

dΩ =
------
Ø

j

eiþq·þrj

------
2 -----Ø

i

bie
iþq·þ∆i

-----
2

e−2W

=
------
Ø

j

eiþq·þrj

------
2

|FN(þq)|2 e−2W

(3.16)

where
----q

i
bie

iþq·þ∆i

----2 = |FN(þq)|2.

3.4 Theory of diffraction
From the previous calculations in eq. (3.16), the differential cross section has been

derived as function of the structure factor, where the first term
----- Nq
j=1

eiþq·þrj

-----
2

is equal

to N2 q
þτ δþq,þτ so that if þq is a reciprocal lattice vector then it gives N2 otherwise

zero. On the atomic scale this is true, on the global scale, it scatters as N, linearly,
as when N becomes large (real crystals), the distribution becomes very high and
sharp and the integrated intensity under the curve becomes proportional to N. The
second term is

----q
i
bie

iþq·þ∆i

----2 = |FN(þq)|2, the nuclear structure factor squared which
is the Fourier transform of the atoms in the unit cell weighted by their scattering
length and the third term is e−2W , the Debye Waller factor which is approximately
1.
In order to make the delta function more mathematically treatable when working
with continuous variables it is possible to write

NØ
j=1

eiþq·þrj = c
Ø

þτ

δ(þq − þτ)

NØ
j=1

Ú
BZ

eiþq·þrjd3þq = c
Ø

þτ

Ú
BZ

δ(þq − þτ)d3þq

2π
Vo

= c

(3.17)

where one Brillouin zone is the same as one of the cells of the reciprocal lattice
and integrating the delta function over all space gives one. Vo is the volume of the
reciprocal unit cell.
If þrj is any lattice point then the complex phase would rotate around when þq varies.
It is a propriety of the Brillouin zone that the integral would vanish completely
unless þrj = 0. A formal proof is present on the notes [17].
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τ can rotate all over the solid angle but it will scatter only when the Bragg law is
fulfilled. This can happen in many different directions depending on the orientation
of the crystal forming a cone like in Fig. 3.2. It is difficult to calculate but not too
difficult to visualize especially with powder where the crystallites have all different
orientations, therefore no matter the orientation, the whole scattering cone will be
visible.

Figure 3.2: Illustration of the Debye-Scherrer cone for the diffraction from one
powder line. From [17].

The differential cross section becomes

dσ

dΩ = |FN(þq)|2 e−2WN
(2π)3

Vo

Ø
þτ

δ(þq − þτ) (3.18)

If there are crystallites everywhere, it is possible to do the integration over the
solid angle. This will give the total scattering power for one particular τ :

σþτ = |FN(þq)|2 e−2W jþτ
N

Vo

λ3

sin(θ) (3.19)

where jþτ is the multiplicity. So that if there is more than one scattering vector that
has the same length, they cannot be separated in the experiment. Instead they are
added up, therefore the number of equal τ is present in expression (3.19). θ is half
the scattering angle. The λ3 term comes from manipulation of the delta function
(formal proof on the notes [17]).
When doing an experiment, from measuring the total scattering of one ring, it is
possible to know a combination of |FN(þq)|2 jþτ 1

sin(θ) as usually the wavelength, the
N and Vo are constant. By measuring many rings that comes from the scattering
on different lattice planes, from the relative intensity and position it is possible to
reconstruct what the crystal structure is.
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3.5 Diffraction instrumentation
A reactor source produces the neutrons, the moderator slows them down and the
neutron guide make sure that the neutrons are transported to the instrumentation.
The monochromator (a crystal where the þd spacing is known) selects one particular
λ. The slit determines the scattering angle. Collimators are also used to improve
the resolution, they absorb neutrons with the wrong direction.
From the Bragg law

nλ = 2dmsin(θm) (3.20)

by determining θm (dm is known), it is possible to derive λ. The neutrons hit the
sample (powder) and scatter out in Debye-Scherrer cones (see Fig. 3.2).
Another option, used in a TOF source, is to have a chopper that determine the
time of flight that will then determine the λ.
The detectors, positioned after the sample, measure at many scattering angles at
the same time. Not all the cone is covered because of the limited height of the
detectors. This is taken into account in programs that fit the resulting data.

Figure 3.3: Example of Diffraction Instrument, D2B diffractometer at ILL,
Grenoble. From [27].

Often, in order to avoid scattering from the container and vacuum chamber around
the sample, a radial collimator is employed, so that neutrons that arrive from the
side are not able to get through. Only if they arrive from the center, they get
through. This improves the background noise, which is usually high as neutrons
scatter from anything they encounter on their way.
The spectrum obtained can be plotted as function of þq or 2θ and it shows lots
of peaks that get more smeared at increasing θ as effect of the resolution of the
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instrument.

3.6 Powder Diffraction
It is always possible to calculate the scattering cross section from a structure made
by some atoms by taking some of the scattering powder and taking into account
the positions. In crystalline lattice, as it is an ordered structure, the position is not
relevant; therefore the scattering cross section, seen in eq. (3.7), can be separated
into the lattice sum and the nuclear structure factor (sum over atoms in the unit
cell). For the lattice sum, only if þq = þτ then there is a lattice sum different from
zero. So the only place in q space where there is diffraction is on the reciprocal
lattice points, as shown in eq. (3.9). This is exactly equal to the Bragg law, derived
in eq. (3.10).
Rewriting the structure factor with þq = þτ

Fhkl =
NØ
i

bi · e2πi(hþxi+kþyi+lþzi) (3.21)

where there are the fractional coordinates in the unit cell (from the origin of the
unit cell).
It is important to know where in the q space there is scattering, and it allows to
calculate the structure factor when it is proportional to the intensity of the Bragg
peak.

Figure 3.4: Illustration of the crystal unit cell. From [28].
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When looking at the information given by the Bragg peak, the position in q space is
given by the reciprocal lattice vector, which is determined by the size and symmetry
of the unit cell because the position, which is given by τ , is related to the reciprocal
lattice vectors. The peak intensity is depending on the structure factor, that is
only determined by the content of the unit cell.
In single crystal experiment, the crystal is put in front of the beam and it can be
rotated until a reciprocal lattice point is found that satisfy diffraction condition and
spots on the detector are shown. The intensity of the Bragg peaks is proportional
to the structure factor and the peak positions indicate the unit cell and symmetry.
Diffraction can be done both either with X-rays and neutrons. Most of the
diffraction measurements are done with X-rays. For single crystal it is used to
determine the structure.

Ihkl = |Fhkl|2 (3.22)

In a powder there is a very large number of small crystallites that are completely
randomly oriented with respect to each other so instead of spots, on the detector,
rings are shown.
Isotropic powder diffraction data collected in 2D are usually integrated to 1D.
So the rings are seen as peaks in order to see the different peaks’ intensity. The
intensity is given by

Ihkl = Io · λ3 · ls
8πr

L · Vs · jhkl

V 2
o

|Fhkl|2 (3.23)

where:

• Io incoming neutron intensity

• λ neutron wavelength

• ls constant related to detector coverage

• r sample-to-detector distance

• jhkl multiplicity of reflection hkl

• Vo volume of the unit cell

• L Lorentz factor= 1ñ
1− v2

c2

• Vs volume of the sample

28



Diffraction from Crystals

It is derived on the notes [17]. Notice that NVc = Vs was already used in eq. (3.19).
All parameters that are not dependent on scattering angle and crystal structure
are grouped into one scale factor

Ihkl = S · L · jhkl |Fhkl|2 (3.24)

All information about the content of the unit cell is in the structure factor for a
given Bragg peak hkl, with the Debye-Waller factor taken into account

Fhkl =
NØ

i=1
bi · e2πi(hþxi+kþyi+lþzi) · e

−þq2·éþu2
i

ê
2 (3.25)

It can also be rewritten as

Fhkl =
NØ

i=1
bi · e2πi(hxi+kyi+lzi) · e−2Bi( sinθ

λ
)2 (3.26)

where Bi = 8πéþu2ê.
In general, looking at the effect of temperature, the intensity will drop with
increasing temperature (higher exponential of the thermal factor), especially with
the increasing of q (or θ). At high T, peaks will move to lower q values because of
thermal expansion of the unit cell. To get a very high quality powder diffraction
to obtain very precise structure, it is good advantage to do it at lower T because
then it shows higher intensity of the Bragg peaks even at high q values and that
means that when looking at the structure, there are more data to refine and then
one obtains a better idea of the atomic position in the unit cell.
Another important term is the Bragg peak width. The Bragg peak is not really
a delta function as instrumental broadening is present, like beam divergence,
wavelength distribution, so better the instrument, the more narrow the peaks but
there will always be some width. Instrumental broadening limits the resolution and
it is hard to separate peaks, and therefore it is harder to extract information from
the structure factor. To see for example structure changes, there is the need to
have narrow Bragg peaks (high resolution) to be able to determine the transition.
There are also sample effects such as grain size that could influence the results.
To sum up the information in the powder pattern are:

• Bragg peak positions: Unit cell size and symmetry

• Bragg peak intensities: Unit cell content

• Bragg peak width: Micro- and nanostructure; size and strain in the crystal
grains
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Powder diffraction can be used for different analysis:

• fingerprint: check if what has been synthesize has the right structure

• structure solution

• structure refinement: measure a pattern, take a model that is close to the
final structure and minimize the difference between them.

In this work, the diffraction technique has been used to study the unsolved structure
of LaPt2Si2, in particular x-ray diffraction.
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Chapter 4

Quantum Vibrations and
Inelastic Scattering

This chapter is mostly based on the Notes of the Neutron Scattering Course that I
took at the University of Copenhagen, Niels Bohr Institute, by Kim Lefmann [17].

4.1 Quantum mechanical description of scatter-
ing

Quantum mechanics is needed to describe the scattering in proper details and
the inelastic scattering. Take as a reference the description in Fig. 2.4 in which
there are plane waves coming in (ki), a nucleus at position rj and a final spherical
wave (kf). Plane waves is a good approximation if the assumption of being very
far from the scattering center is used. Assuming there is a serie of states |þkiê
and |þkfê, in order for |þkiê to scatter, the Hamiltonian is defined as Ĥ = p2

2m
+ V̂

where the kinetic term (describing particle in free space) is summed to V̂ . This
operator describes the scattering potential, it is in a very small range as nuclear
forces act in a length scale of the order of femtometers. The potential from the jth
nucleus can be approximated with a delta function, reasonable when the range of
the interaction is much smaller than wavelength of the scattering: V̂j = aδ(þr − þrj)
with a proportional constant a that will be defined.
Writing the Fermi Golden Rule which describes the rate of states i going to states
f , a transition probability, the following expression is obtained

Wi→f = 2π
~

dn

dEf

---éki|V̂ |kfê
---2 δ(Ei − Ef ) (4.1)

where dn
dEf

is the density of final states in energy. The term squared is the matrix
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element between the initial and final state and the interaction. Only states kf that
conserve energy are taken into account. We could calculate the density of states as

dn

dEf

= dn

dVk

dVk

dkf

dkf

dEf

(4.2)

Using

Vk = 4π
3 k3

f and Ef =
~2k2

f

2m
(4.3)

It is possible to derive

dVk

dkf

= 4πk2
f

dEf

dkf

= ~2kf

m

dkf

dEf

= m

~2kf

(4.4)

It is necessary to define boundary conditions, in order to so it is possible to imagine
a huge box, with side L º 1 m, with real space volume V = L3 = Y . It is needed
to have wavelength which is an integer fraction of the size of the cube, nλ = L, or
kx = n2π

L
where n is a positive integer.

Therefore the following equations are obtained

dVk

dn
= 2π

L

3 dn

dVk

= L3

2π
(4.5)

Giving

dn

dEf

= Y

(2π)3 4πk2
f

m

~2kf

= Y

2π2
kfm

~2 (4.6)

Substituting eq. (4.6) in eq. (4.1) and using the expressions for |kiê and |kfê
already defined in (2.11) we obtain

Wi→f = 2π
~

Y

2π2
kfm

~2
a2

Y 2

----Ú e−iþkf ·þreiþki·þrδ(þr − þrj)d3þr
----2

= kfm

~2
a2

π

1
Y

---e−i(þki−þkf )·þr
---2 (4.7)

Recalling that the flux is the density times the velocity

Ψ = éþki|þkiêþv = 1
Y

~ki

m
(4.8)
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The goal is to know how many neutrons will scatter in any direction (isotropic),
therefore in dΩ the Fermi Golden Rule becomes

Wi→f

-----dΩ = 2π
~

dn

dEf

-----
dΩ

---éþki|V̂ |þkfê
---2 δ(Ei − Ef )dΩ

4π (4.9)

Substituting the derived equation into the differential scattering cross section
described in eq. (2.8), we obtain

dσ

dΩ = Y m

~þki

1
dΩ

þkfma
2dΩ

~2πY 4π =
þkf

þki

m2a2

~2(2π)2 (4.10)

In elastic scattering |þki| = |þkf |. From the classical derivation (eq. (2.15)), it is
known that the differential scattering cross section should be equal to b2

j , this allows
to derive the proportionality constant as a = bj

~22π
m

.
Therefore by substituting the expression for a in the potential, the result for more
than one nucleus is V̂j = q

j bj
~22π

m
δ(þr − þrj), also known as Fermi pseudo potential,

and applying it in the Fermi Golden Rule, gives

Wi→f |dΩ = kfm

~2
1
π

1
Y

------
Ø

j

bje
−i(þki−þkf )·þr

------
2

(4.11)

The result obtained are consistent with the classical derivation given in Chapter 2,
in particular to the differential scattering cross section found in eq. (2.20).

4.2 Finding the expression for lattice vibrations
Neutrons can create excitations in materials. It is possible to detect the change
in energy of the neutron and the scattering angle and thereby learning something
about the excitation.
There are several types of motion in materials, motions of the nuclei. The vibrations
considered here are the vibrations in the solid lattice. By considering the lattice
with the lattice points and the basis, it is possible to use the same notation already
defined in the section 3.3 where a nucleus can move from its equilibrium position
as þRij(t) = þrj + ∆i + þUij(t) where ∆i is the displacement within the unit cell, þUij(t)
its a small deviation needed. éþUijê = 0 so that þrj + ∆i is the equilibrium position.
Assuming there is a potential energy coming from the chemical bondings, potential
energy between ions in the lattice (in the Bravais lattice case, one atom per unit
cell), it has the following expression

VjjÍ = 1
2kjjÍ

---þUj − þUjÍ

---2 (4.12)
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the interaction is quadratic in þU with a minimum at the equilibrium position.

Figure 4.1: A classical illustration of a system showing lattice vibrations in one
dimension. The description is done for a Bravais lattice, one atom per unit cell.
From [17].

From Fig. 4.1, having masses (all equal) connected by springs, with spring constant
all equal to k, result in a net force on the atoms. Assuming periodic boundary
conditions then the force on a general nucleus j is

Fj = k(Uj−1 + Uj+1 − 2Uj) = M
d2Uj

dt2
(4.13)

from Newton’s second law.
There are N variables, therefore N differential equations to solve. Assuming
periodicity in space it is possible to make an educated guess like

Uj = Aqe
iajþqe−iωqt (4.14)

the oscillation is periodic in time and space, a is the lattice constant. It is a wave
in a discrete medium, oscillations are real so the part that will survive is the real
part of the complex exponentials.
Plug the guessed solution in the equation (4.13)

M
d2Uj

dt2
=Fj = k(Uj−1 + Uj+1 − 2Uj)

M(−iwq)2Aqe
iajþqe−iωqt = kAqe

iajþqe−iωqt(e−iaq + e+iaq − 2)
−Mw2

qUj = −2kUj(1 − cos(aq))

w2
q = 4w2

osin
2(aq2 )

wq = 2wo

----sin(aq2 )
----

(4.15)

where wo is the classical vibrational frequency from wo =
ñ
k/M , wq is a unique

frequency.
In general, eq. (4.13) is a linear differential equation so any superposition will also
solve the equation

Uj =
Ø

q

Aqe
iajþqe−iωqt

(4.16)
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Graphically, the dispersion relation of the vibrations is shown in Fig. 4.2, wq vs þq,
two quantities that are linked. This is sufficient information to classify the system.

Figure 4.2: Dispersion relation for the nearest neighbour one-dimensional lattice
model within one Brillouin zone. From [17].

From quantum mechanics, it is possible to derive the Hamiltonian of the system as

H =
Ø

q

(nq + 1/2)~wq (4.17)

where n is an integer. It is like an harmonic oscillator for many different modes.
Each possible q will generate a mode, and the number of possible q is given by
boundary conditions. If the Hamiltonian is solved quantum mechanically for finite
T, the average energy of the system/vibrations is éEê = q

q(nB + 1/2)~wq and the
average number n for the harmonic oscillator in a thermal bath is the Bose number
nB = 1

e
~ωq
kBT

−1
which for low T is almost linear in T.

This term determine the thermal properties of solid, it is an important contribution
in heat capacity. Motion of energy or heat transport is governed by phonons, they
take energy from the warm part of the material to the cold part. Phonons are
important to understand the thermal properties and thermal expansion of the
material. More can be seen in [29].
From the boundary conditions it is possible to derive the possible values of q

eiþa·þqN = 1
þa · þqN = n2π

þq = n

N
ā∗

(4.18)

Quantized lattice vibrations are known as phonons. The low frequency part is the
sound, the dispersion reach zero linearly and sound is a combination of series of q.
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It will propagate with a group velocity of signal dω
dq

= c with c as the velocity of
sound. The low frequency part is of the order of Hz and kHz. At the top of the
band is of order 1-10 THz.
Most of the materials are non Bravais lattices. The real space lattice unit cell
doubles so the reciprocal space lattice is halved, therefore the drawing of the
dispersion relation changes. The other part of the dispersion is still there, still
physical but it is folded back, as seen in Fig. 4.3.

Figure 4.3: Dispersion relation for the nearest neighbour one-dimensional phonon
model when the unit cell is doubled without change in the vibration physics. This
means that the reciprocal lattice vector is halved with respect to the top panel,
a∗

2 = a∗/2. Note the occurrence of a low (acoustic) and a high (optical) branch.
From [17].

If every second atom of Fig. 4.1 has a different mass, there will be a slight
perturbation to the motion. The calculation includes twice as many differential
equations, two guesses are needed for the motion and the result is that there is this
an added part to the dispersion with a gap in between (detailed calculations are
done in the notes [17]). In general there would be n modes where n is the number
of atoms in the unit cell. All the modes that do not go to zero are called optical
while the ones that go to zero are the acoustic, where the sound lives. The name
optical comes from the fact that they can be probed with optical methods, light
scattering, Raman scattering. Neutron scattering can probe the full dispersion and
this is what it has been done in the experimental part.
Two of the most used programs to perform phonon calculations is three dimensions
are VASP [30] and phonopy [31]. Generally, the two main steps are the structure
relaxation and the phonon calculation. At first, the targeted structure is optimized,
in this step it is important to define the k points in the three directions based on the
lattice parameters in the unit cell and the ISYM parameter which determines the
way VASP treat symmetry [30]. The relaxed structure is then used for the phonon
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calculations and there are two main methods to perform them: supercell method
(finite-difference method) and density functional perturbation theory (DFPT). For
this step, an open source package called phonophy is used for phonon calculations
at harmonic and quasi harmonic level [31]. It has many features such as phonon
band structure, phonon density of states or partial density of state, phonon thermal
properties as free energy heat capacity and entropy, group velocity and many
others.
Uj becomes a vector, there is polarization index (real space direction of the vibration)
to the amplitude, there is a unit vector in the direction of the polarization.

þUj =
Ø
q,p

Aq,pe
iajþqe−iωq,ptÛj (4.19)

Vibrations can happen in different directions in 3 dimensions there are 3 polarization
modes, there are two transverse and one longitudinal. Therefore in reality there
will be 3n modes, there will be 3(n− 1) optical modes, the acoustic will split to
have 2 transverse acoustics and 1 longitudinal acoustic. Most of the vibration in
the optical mode are atoms making counter vibrations inside the unit cell so it is
not possible to say what is the direction at q close to zero.

4.3 Inelastic Scattering Theory
Here there is a derivation for the cross section for inelastic scattering in quantum
mechanics. Some ingredients need to be included in the previous quantum picture
seen in section 4.1, energy transfer is defined as

~ω = Ei − Ef (4.20)

The behaviour is collective of the material, the state of the sample is labelled as λi

and λf , before and after scattering.
The previous equations for the states |kiê and |kfê becomes equation for the whole
systems, neutron plus the sample

|λi
þkiê = 1√

Y
eiþki·þr|λiê

|λf
þkfê = 1√

Y
e−iþkf ·þr|λfê

(4.21)

The inelastic scattering cross section gives how many neutrons are going out in a
direction with a particular energy

d2σ

dΩdEf

= 1
ψ

number of neutrons scattered into dΩ in [Ef ;Ef + dEf ]
dΩdEF

(4.22)
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Rewriting the Fermi Golden rule, the probability to go from an initial to a final
state as

Wi→f |dΩ = 2π
~

---éλf
þkf |V̂ |λi

þkiê
---2 dn

dEf

δ(Eλi
+ Ei − (Eλf

+ Ef ))dΩ
4π (4.23)

with V̂j = q
j
bj

~22π
m
δ(þr − þrj).

Substituting it in eq. (4.22) and assuming the state of the sample before scattering
is at thermal equilibrium, we do not calculate the full cross section but the trasition
from a particular λi to a particular λf like

d2σ

dΩdEf

-----
λi→λf

= kf

ki

( m

2π~2 )2|éλf
þkf |V̂ |λi

þkiê|2δ(Eλi
− Eλf

+ ~ω)

= kf

ki

|
Ø

j

bjéλf |
Ú
e−ikf ·þrδ(þr − þrj)eiki·þrd3r|λiê|2δ(Eλi

− Eλf
+ ~ω)

= kf

ki

|
Ø

j

bjéλf |eiþqþrj |λiê|2δ(Eλi
− Eλf

+ ~ω)

= kf

ki

Ø
j

Ø
jÍ

éλi|e−iþqþrj |λfêéλf |eiþqþrjÍ |λiêδ(Eλi
− Eλf

+ ~ω)

(4.24)

the energy that the neutron loses goes in the sample.
Using some mathematical identities like

δ(a) = 1
2π

Ú
eiada ei Ĥt

~ |λê = ei Et
~ |λê and þRj(t) = eiHt/~Rje

−iHt/~ (4.25)

We reach

d2σ

dΩdEf

= 1
2π~

kf

ki

Ú Ø
j

Ø
jÍ
bjbjÍéλi|e−iþqþrj |λfêéλf |eiþqþrj |λiêe

i(Eλf
−Eλi

)t

~ e−iωtdt (4.26)

The second part of the equation can be written as

éλf |e
iEλf

t

~ eiþqþrje
−iEλi

t

~ |λiêe−iωtdt = éλf |e
iĤt
~ eiþqþrje

−iĤt
~ |λiêe−iωtdt (4.27)

where the position þrj is depending on the time, therefore þrj = þRj(t) as denoted
when calculating classical phonons.
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The full equation becomes

d2σ

dΩdEf

= 1
2π~

kf

ki

Ú Ø
j

Ø
jÍ
bjbjÍéλi|e−iþq þRj(0)|λfêéλf |eiþq þRjÍ (t)|λiêe−iωtdt (4.28)

where it is possible to sum over λf . Having |λfêéλf | = 1, it is possible to take
the thermal average over all λi, the thermal average of a general quantity a is
éaê = q

j pjéλj|a|λjê therefore

d2σ

dΩdEf

-----
λi

= 1
2π~

kf

ki

Ú Ø
j

Ø
jÍ
bjbjÍée−iþq þRj(0)eiþq þRjÍ (t)êe−iωtdt (4.29)

Taking the special case of vibrations around an equilibrium position, the phonon
approximation gives eq. (3.11), where þRj(t) is the sum of a static term and a
small displacement. Using this phonon approximation, the inelastic scattering cross
section becomes

d2σ

dΩdEf

= 1
2π~

kf

ki

Ú Ø
j

Ø
jÍ
bjbjÍe−iþqþrjeiþqþrjÍ ée−iþqþUj(0)eiþqþUjÍ (t)êe−iωtdt (4.30)

It is possible to make a classical calculation from eq. (4.30), where the displace-
ments are very small, therefore the average is treatable with Taylor expansion,
as ée−iþqþUj(t)ê ≈ 1 − iþqþUj(t) − 1

2(þqþUj(t))2 which is the same approximation done in
section 3.3 assuming the potential to be parabolic, so higher order terms are not
taken into account.
It is assumed to have a Bravais lattice, all bj = b, moreover Uj(t) is assumed to
be classical so that the eq. (3.11) is treated classically (writing jÍ − j = δ). The
lattice has translational symmetry, so the inelastic cross section cannot depend on
j therefore the expectation value cannot depend on j.

d2σ

dΩdEf

= N
b2

j

2π~
kf

ki

Ú Ø
δ

eiþqþrδé1 + iþqþUδ(t) − 1
2(þqþUδ(t))2 − iþqþUo(0)+

+ (þqþUo(0))(þqþUδ(t)) − 1
2(þqþUδ(t))2)êe−iωtdt

(4.31)

Averaging over all configurations is the same as averaging over all phases of the
phonons, therefore éþUo(0)ê = 0, also using the assumption that if we would take into
account orders greater than two, we would get 1 − (þqUo(0))2 → e−éþqUo(0))2ê → e−2W .
Substituting the Debye-Waller factor inside the expression would lead back to the
differential cross section already seen previously, ω can be integrated out and will
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cancel with 1
2π~ . The Debye-Waller factor is an attenuation, therefore diffraction

decreases due to the motion, due to the phonons.

d2σ

dΩdEf

= N
b2

j

2π~
kf

ki

Ú Ø
δ

eiþqþrδé(þqþUo(0))(þqþUδ(t))êe−iωtdt (4.32)

It is possible to define

þUδ(t) = êAkR{iþkþrδe
−iωkteiφ} (4.33)

where ê is a polarization vector, Ak is an amplitude, φ is an unknown phase, and
the frequency wk is of the phonon.
By substituting the expression for þUδ(t) in the cross section equation, by averaging
over φ, and defining the identities

s
ei(ωk−ω)tdt = 2πδ(ωk − ω) and q

δ e
i(þq−þk)þrj =

Nδ(þq − þk + þτ), the result leads to

d2σ

dΩdEf

= (qê)2Nb2
j

kf

ki

éA2
kê

4 (δ(þq − þk + þτ)δ(~ω − ~ωk) + δ(þq + þk + þτ)δ(~ω + ~ωk))

(4.34)

þq is the phonon momentum transfer, þk is the phonon momentum, δ(þq−þk+þτ ) gives
momentum conservation, while δ(~ω − ~ωk) gives energy conservation.
δ(~ω+~ωk) imply that the neutron gains energy and δ(þq+þk+þτ ) (phonon)momentum,
and that the neutron absorbs a phonon. Term éA2

kê is a thermal average, the
amplitudes gets higher with the temperature increases, more phonons correspond
to higher amplitude. In the quantum calculation case, everything is exactly the
same except that éA2

kê disappears (average thermal population). Moreover a factor
nB( ~ωk

kBT
) + 1 is present in front of the energy loss term (first deltas) and a factor

nB( ~ωk

kBT
) is present in front of the energy gain term (second deltas). In the energy

gain, the neutron absorbs a phonon, however if the temperature is zero, there are
no phonons, which implies that the cross section must be zero. In the energy loss,
a phonon is generated at zero temperature, this is what gives the Í + 1Í (emission).
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Chapter 5

Characterization of the
LaPt2Si2 sample

5.1 Information about the sample
The single crystalline samples were synthesized by collaborators Prof. Zakir Hos-
sain of the Indian Institute of Technology, Kanpur, India and Dr. Arumugam
Thanizhavel of the Tata Institute of Fundamental Research, Mumbai, India. They
have also performed the basic characterizations of the sample quality by using in
house X-ray diffraction and bulk magnetic methods (structure, superconducting
transition, etc.).
Until now, the vast majority of the results on this system have been reported only
on polycrystalline samples [9, 12, 13], but the very recent synthesis of good quality
single crystals allows further investigations to clarify the nature of the interplay
between the CDW and SC in LaPt2Si2 [32]. The single crystals of LaPt2Si2 were
grown using the Czochralski pulling method [32] by using high-purity elements La
(99.9%), Pt (99.9%) and Si (99.9%). To optimize the conditions of the growth, a
tungsten rod has been utilized and the crystal was pulled at a constant rate of 10
mm/h. In order to ensure that the crystal structure meet the requirement of a
single-phase nature, powder X-ray diffraction (XRD, crushed single crystal) with
Cu-Kα radiation has been performed.
Scanning electron microscopy (SEM) along with energy dispersive X-ray spec-
troscopy (EDX) were used to check the composition and homogeneity of the crystal.
In addition, with the Laue X-ray diffraction it was possible to orient the crystal
along the desired crystallographic direction, as will be shown in Chapter 8. With a
spark erosion cutting machine, the initial crystal has been divided into 5 different
pieces.
An overview of the structure parameters is given in Table 5.1 [32]. The final crystal
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used for the INS experiments was ∅ = 6 mm, L = 21 mm, having a total mass
m = 3.9759 ± 0.0002 g. This high-quality piece was selected and cut out from a
much larger single crystal, which is shown below in Fig. 5.1.

Figure 5.1: Our initial LaPt2Si2 crystal, before cutting, with the [100] direction
along the crystal.

Structure CaBe2Ge2-type tetragonal
Space group P4/nmm

Lattice parameters
a 4.285 (Å)
b 4.285 (Å)
c 9.831 (Å)

α = β = γ 90◦

Vcell 180.5 (Å3)

Table 5.1: A general overview of the sample crystal information: structure, space
group lattice parameters and volume of the primitive cell.
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5.2 Study on resistivity
Several studies on the resistivity were done in previous works [1] [15] [33] [9] [12].
The measurement of the resistivity as function of temperature seen in Fig. 5.2 is in
accordance with the previous literature. On the left it is possible to observe the
superconducting nature of the material, as the resistivity has a sharp drop to zero
below 1.6 K. It is possible to observe a transition around 100 K, related to the
CDW. The measurement was done for both cooling and heating. The hysteresis in
resistivity of LaPt2Si2 between cooling and heating data confirms the first order
nature of the phase transition.

Figure 5.2: Resistivity measurements on LaPt2Si2 along the c axis for increasing
and decreasing temperature. Right: magnetic field in the range 0.01 to 9 Tesla is
applied.

The resistivity data were collected at Paul Scherrer Institute (PSI) by the PhD
student Elisabetta Nocerino, KTH Royal Institute of Technology, Stockholm. The
data have been collected using the equipment at Physical Properties of Materials
lab at PSI with the support of Dr. Maria Luisa Medarde Barragan and PostDoc
Klein Yannick Maximilian.

5.3 Raman scattering characterization

5.3.1 Motivation
There are no previous Raman measurement in the literature on LaPt2Si2. Theoret-
ical calculations show that CDW and SC coexist in the (Si2–Pt1–Si2) layer. Also
the calculations of the phonon dispersions predict phonon-softening instabilities,
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which should lead to a structural instability that could be observed with Raman
spectroscopy [7, 8]. The two peculiar mechanisms occuring in LaPt2Si2 are:

• ∼ 1.22 K the material becomes superconducting. The Fermi surface exhibits
two gaps of different magnitude [13];

• ∼ 85 K CDW transition occurs. This is a first order structural transition.
From the literature [1], the diffraction patterns show the occurrence of satellite
Bragg peaks corresponding to the wave vector q ≈ [0.36, 0, 0)]. The satellites
have their maximum intensity at 85 K, disappear above 175 K and almost
vanish below 85 K [1].

Thanks to Raman spectroscopy across the CDW transition, it is possible to study
the temperature evolution of the CDW and extract the magnitude of the electronic
gap opened by the CDW at the Fermi surface ∆CDW [34]. The CDW manifests
itself as a modification of the shape of the peak of the Raman mode (i.e. broadening
of FWHM, or reduction of the integrated intensity).
The knowledge of ∆CDW is crucial to address several important questions such as
if the CDW can be understood within a scenario of weakly interacting electrons,
where the mean-field theory is used, or what is the relationship between CDW and
SC that can be understood through a comparison of the magnitudes of their band
gaps.
The aim is to determine the temperature dependence of the CDW order parameter
by observing the frequency shifts of the lines in the Raman spectra as a function of
temperature. The frequency shifts of the Raman lines are indeed proportional to
the square of the CDW order parameter [35]. Moreover, it is possible to determine
the magnitude of the ∆CDW by observing the line widths of the Raman lines as a
function of T. The FWHM of the Raman lines are related to the lifetime of the
corresponding phonons. Similarly to what had been observed in the superconductors
[36], the opening of a CDW gap at the Fermi surface prevents phonons with energies
smaller than the gap from relaxing through the excitation of an electron. This
results in an increase of the phonon’s lifetime with a consequent narrowing of the
corresponding Raman line.

5.3.2 Raman set up
Raman scattering consists in inelastic scattering of photons by matter. In general, a
light beam scatter on a sample and it can be transmitted without any modification
or it is absorbed (depending on the wavelength of the light and the nature of the
sample). Most of the incident beam is scattered elastically, therefore with the
same frequency as the incident photons but different direction, this is called the
Rayleigh effect. Instead a smaller percentage of the light is scattered inelastically
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(Raman effect), meaning that there is both an exchange of energy and a change in
the light’s direction: having an energy different (usually lower) from those of the
incident photons [37].
Raman scattering can be thought of as a two photon process. The electrons have
different vibrational levels, they are defined by specific energy differences. When an
incident monochromatic light interacts with an electron in the sample, the electron
absorbs energy from the incident photon and it raises to a virtual state of energy,
see Fig. 5.3. The energy transferred is given by E = hνi with νi as frequency of
incident photon. The electron then falls back to an energy level by losing energy.
If the energy lost is equal to the energy of the incident photon then the electron
falls back to its initial level and in this process emits another photon. Since the
energy lost is equal to the energy of the incident photon, their frequency is the
same (Rayleigh scattering).
Sometimes electrons when losing energy from the virtual state can fall back to a
different vibrational level, in this case the energy lost by the electron is different
from the energy absorbed from the incident photon. As a result the photon emitted
by the electron has a different energy and therefore frequency (Raman scattering).

Figure 5.3: Energy-level diagram showing the states involved in Raman spectra.
From [38].

Depending upon the final energy of the electron or the final vibrational level of
the electron, Raman scattering can be separated into Stokes lines and Anti Stokes
lines. If the frequency of the scattered photon is less than the frequency of the
incident photon, Stokes lines are observed on Raman spectrum. This happens when
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electron absorbs energy. Similarly when frequency of emitted photon is greater
than incident photon, Anti-stokes lines are observed, this means that energy is
released by the electron [39].
The Raman spectra gives the structural fingerprint by which molecules can be
identified. By studying the spectra one can identify the rotational levels and thus a
particular molecule. The spectrum is used for material identification and analysis.
The measurements on Raman scattering has been done at Chalmers University, by
Elisabetta Nocerino, PhD student at KTH with the support during the measure-
ments of Ezio Zanghellini, Senior Research Engineer at Chalmers. The measurement
conditions on the LaPt2Si2 single-crystal were:

• T range: 10 –300 K

• Wavelength: 514.531 nm

• Range: ∼ 0-600 cm−1

• Instrument: Dilor XY 800

• Power: 60mW

• Detector: LN2-cooled CCD

In general in a light scattering set up, a source of monochromatic light, usually
from a laser, is used, which is driven by the optics to the sample. The laser light
interacts with molecular vibrations, phonons or other excitations in the system,
resulting in the energy of the laser photons being shifted up or down. The shift
in energy gives information about the vibrational modes in the system. After the
sample there are other optics to gather the signal to the spectrometer. The photons
are then seen with a photo detector.
The sample that has been used was a smaller piece (see insert in Fig. 5.4) compared
to the one used in the INS scattering.
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Figure 5.4: Left: Raman Instrumentation, Dilor XY 800 at Chalmers University
(Göteborg). In the insert, it is possible to see the sample used during the experiment.
Right: Typical Experimental Setup for Raman scattering. From [40].

A skectch of the instrumentation set up used during the experiment is seen in Fig.
5.4. Dilor XY 800 has different specificity that can be used, depending on the
material analysed as seen in Fig. 5.5. CCD (charged-coupled device) is thermally
cooled with liquid Nitrogen. A Glan–Taylor prism is used to polarize the light.

Figure 5.5: Raman Instrumentation, Dilor XY 800 specifics.

Usually, the Rayleigh scattering is present, it is stronger than the Raman scattering,
close to the laser line. This can be a problem as it might overfill some channels. In
order to get rid of the Rayleigh scattering, Double subtractive (DS) spectrometer is
used. The first 2 stages of the monochromator are acting as a big notch filter that
allows just a certain amount of signal to go through, with a certain frequency. Then
the intermediate slit cuts off some of the frequencies, only a notch goes through.
After that, the frequencies are recombined so that the final notch go all through
the final slit of the double subtractive system. The entrance and final slit define
how sharp the edge of the notch is. The notch has then to be disperse, and this is
done with a final spectrometer phase. The CCD detector transforms the incoming
photons into photo electrons, which is a quantum effect. Therefore the counting of

47



Characterization of the LaPt2Si2 sample

photons can happen.

5.3.3 Data Analysis and Discussion

Based on the crystalline structure, it is possible to derive the expected Raman
mode. They are the vibrational modes allowed by the symmetry of the crystal
from the group theory. Of the allowed modes, only some of the them effectively
react to a Raman excitation, and they are called Raman active (they are the ones
visible) [41] and they are calculated by programs online (e.g. VASP [30], or from
crystallographic server like [42]) from the unitary cell of the crystal [43].
Polarized Raman spectroscopy can be useful in the study of oriented samples such
as single crystals. The polarizability of a vibrational mode is not equal along and
across the bond. Therefore the intensity of the Raman scattering will be different
when the laser’s polarization is along and orthogonal to a particular axis. As this
technique is referred to the crystalline axis, it is impossible to be applied in powder
samples. X,Y and Z are the position of the polarizators, that can be turned and
oriented in different directions. By polarizing light it is possible to chose one mode
only. The horizontal plane of the sample is the a-b (X and Y axis), wile the short
plane in height is the c axis (Z axis). Polarization is written with the Porto notation
[44], e.g. X(YY)X where outside the parenthesis there is the polarization of the
incoming and outgoing beam while inside there are the incoming polarization of
the laser beam and of the outgoing Raman signal.

Figure 5.6: Raman active modes for LaPt2Si2. Calculated with [42].

By polarizing the beam, the mode is selected. As the Z axis is the only axis known,
the Z(XY)Z is the only polarization allowed [39]. Other polarization were tried
out, for example at 45 degrees, but nothing relevant has been seen, as displayed on
the graph of Fig. 5.7.
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Figure 5.7: Left: Possible Raman polarizations for LaPt2Si2. Z(XY)Z is the
one of interest in our case as Z is the c axis of the crystal and the one that we
can identify. Right: Plot of intensity (a.u.) vs. Raman shift (cm−1) for different
polarizations at 300K. A zoom on the B2G mode for Z(XY)Z polarization is present.
A small insert on the top right corner explains briefly how polarization looks like.

Calculations on the expected modes for Z(XY)Z polarization give as a result the
B2G mode (left of Fig. 5.7) [42], therefore it has been assumed that the only visible
peak is exactly the B2G mode. In the plot of Fig. 5.7, just below 100 cm−1, there
are also some sharp spikes which do not belong to the sample, they come from
either noise or instrumentation. It is possible to see them also on the left hand side
of the plots in Fig. 5.8, they do not vary with the temperatures.

Once the B2G mode is selected, then the temperature ranges has been changed.
The background has been subtracted from the data, also the dark counts which
are the photons from the environment, they are visible also when the beam is off.

The peak at approximately 160 cm−1, i.e. 20 meV, seen in Fig. 5.8, increases with
the temperature, therefore it seems not to be related with the structure transition.
It could be related to some misalignment of the sample (c axis was not perfectly
parallel to the incoming beam). It is weaker compared to the B2G mode but it has
a similar trend in temperature.

In Fig. 5.8, a polynomial background has been subtracted and the correction
for the factor of occupancy of Bose-Einstein has been done. The Bose correction
takes into account the change of population of the vibrational states as function of
temperature.
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Figure 5.8: Raman scattering at different temperature measurements. On the
second plot, Raman shift is converted from cm−1 to meV.

The B2G mode is clearly visible at around 300 cm−1 and it is present at all
temperatures (Fig. 5.8).

The fit of the data was done with a Lorentzian function, which is standard for
Raman data [34]. The fit is temperature dependent and it is displayed in Fig. 5.9.
The parameters analysed are the amplitude of the peak (amp), the FWHM and
the position of the center as seen in Fig. 5.10.
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Figure 5.9: Lorentzian fit of the B2G mode selected at different temperatures.

From Fig. 5.10, it is possible to observe that the center and the FHWM are shifting
with respect to the temperature. At 85K there is something anomalous, this could
be the fingerprint of the CDW at 85K.

The FWHM behaviour is consistent with the literature results [1], where the
satellites have their maximum intensity at 85 K, disappear above 175 K and almost
vanish below 85 K. The broadening of the FWHM is consistent with the opening
of the gap at the Fermi surface [34].

The frequency for the Raman mode shows a kink around 85 K and then decreases
linearly as the temperature increases. Due to the weakness of the mode below
100K it was not possible to follow the temperature dependence of the CDW order
parameter below the transition. The linear temperature evolution of the phonon
frequency above the putative CDW transition could be a thermal effect due to the
fluctuations of the inter atomic potentials resulting from thermal expansion and
phonon phonon coupling.

51



Characterization of the LaPt2Si2 sample

Figure 5.10: Fit results for the three parameters, height, fwhm and center as
function of temperature.

To conclude, the data need to be completed, however, the FWHM plot shows a
clear constant dependence above 200K and a clear increase below 200 K, which lead
us to the conclusion that the CDW is present. The anomaly at 85 K is compatible
with the occurrence of a structural transition associated with a CDW transition,
as reported in the literature.
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Chapter 6

Single Crystal X-rays
Diffraction on LaPt2Si2

6.1 Background and motivation
X-ray powder diffraction (XRD) is an analytical technique primarily used for crystal
structural studies and can provide information on unit cell dimensions and atomic
positions. XRD is based on constructive interference of monochromatic X-rays and
a crystalline sample, when conditions satisfy Bragg’s Law (nλ = 2dsinθ), see Fig.
3.1. This law links the wavelength of electromagnetic radiation to the angle of
diffraction and the lattice spacing in a crystalline sample. The diffracted X-rays are
then detected and the counts rates are analyzed. By scanning the sample through
a range of 2θ angles, all the diffraction directions of the lattice should be seen due
to the random orientation of the crystallites in the powder material, as seen in Fig.
3.2. By converting the diffraction peaks to d-spacing, it is possible to identify the
material, as each one has a set of unique d-spacings.
The relevant theory of diffraction has been discussed in Chapter 3 for neutrons:
this can also be applied to X-rays.
All XRD studies of LaPt2Si2 that are seen in the literature [1] [32] were all done
with in-house instrumentation. A structural study of the polycrystalline material
revealed a structural transition from high-T tetragonal to low-T orthorhombic
symmetry at T = 112 K, showing a clear splitting of the (220) reflection peak into
two subpeaks with nearly equal intensity below T = 100 K [12].
It has been suggested that also in the case of single-crystalline LaPt2Si2 [32], the
formation of the CDW state could be associated with the structural phase transition.
The nature of the CDW transition in this compound is still not fully clarified.
In the last XRD measurement done by Falkowski et al. [1], the structure has been
refined within the tetragonal CaBe2Ge2 structure (with space group P4/nmm) in
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a T range 5–300 K, showing that the tetragonal symmetry in single-crystalline
LaPt2Si2 is preserved down to low temperatures.
The crystalline structure of the single crystal seems to be something still unsolved.
Unfortunately, there was no possibility to make a high-resolution synchrotron
experiment. At a large scale facility, lower T could have been reached also with
higher resolution and this could lead to the observation of the very weak crystalline
structure changes. Instead, there was the chance to perform an in-house XRD
experiment and have our own data on XRD to study.

6.2 Instrumentation
The experiment and the acquisition of the data was done by the PhD student Elis-
abetta Nocerino from KTH Royal Institute of Technology, at Stockholm University,
Department of Materials and Environmental Chemistry (MMK) with the support
of Dr. Andrew Kentaro Inge.
Typical Diffraction instrumentation has been discussed in chapter 3, paragraph 3.5.

Figure 6.1: Diffractometer geometry of D8 Venture Bruker Diffractometer. From
[45].
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The instrumentation used is a D8 Venture Bruker Diffractometer, an illustration
is shown in Fig. 6.1. It has a Mo source that goes through a monochromator,
selecting a wevalength of λ= 0.61063 Å. The slit determines the scattering angle.
Collimators and other optics are also used to improve the resolution.
Our smallest crystal (1 × 1 × 1 mm3) was crushed and mounted on a glass needle
with glue under the microscope. The X-rays hit the sample that has been cooled
with a liquid Nitrogen blower cryo-system, with a T range of 80-300 K. The pump
is responsible for the gas flow through the flexible vacuum insulated transfer line,
into the Cryostream cold head. The liquid nitrogen passes through a heater, which
evaporates most of the liquid into gas. This gas then flows outward along one path
of the heat exchanger, through the temperature and flow controller, to arrive at
the pump. This gas flows back into the Cryostream cold head where it is re-cooled
along the second path of the heat exchanger.
Photon detectors, positioned after the sample, count the scattered photons. A
photon detector has a surface that absorbs photons and produce an electrical signal
proportional to the number of photons absorbed.

Figure 6.2: Left: LaPt2Si2 sample used in the XRD experiment. Right: Position-
ing of the sample in the set up.

For the measurement strategy, it was assumed that there was no symmetry, therefore
every angle was taken, the angular scan covered the full 3D range with steps of 1.2
deg, the sample was rotated with a goniometer. Each angle was acquired for eight
seconds, a whole scan at a fixed T took approximately two hours.

6.3 Data analysis results
The program used for data treatment is APEX3, data reduction included absorption
correction for strong absorbers. Heavy elements as the ones present in LaPt2Si2
can easily absorb photons.
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Figure 6.3: 2D Maps of the Bragg reflections in the hk0 plane. Left: Data at 300
K. Right: Data at 85 K. The purple colour is the intensity scale, dark purple is low
intensity, light purple is high intensity.

In Fig. 6.3 at 85 K, some small reflections appear periodically around the big
Bragg reflections. They have a periodicity of (0.36, 0, 0) all over the map which
is the fingerprint of a structural change. During theoretical calculations done by
Dr. Johan Hellsvik from PDC Center for High Performance Computing, KTH,
Stockholm, Sweden, it was observed that it was not certain whether the primitive
cell has space group P4/nmm or I4/nmm [8]. Thanks to this experiment, it was
possible to observe that the unit cell is most definitely primitive (P), there is no
match for body centered (I) cell. This unit cell was used for all temperatures,
however at 85 K the program had some difficulties in recognizing the cell compared
to the other temperatures, which could indicate a structural change of the unit cell.

The halo (diffuse scattering), seen as two broad blobs close the the center of the
right panels (at 85 K) in Fig. 6.3, Fig. 6.4 and Fig. 6.5, is coming from the liquid
Nitrogen used in the blower cryo-system.

From the other planes, h0k and 0kl, seen in Fig. 6.4 and Fig. 6.5, no additional
Bragg peaks were observed between 300 K and 85 K, the 2D maps are shown for
completeness.
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Figure 6.4: 2D Maps of the Bragg reflections in the h0l plane. Left: Data at 300
K. Right: Data at 85 K.

Figure 6.5: 2D Maps of the Bragg reflections in the 0kl plane. Left: Data at 300
K. Right: Data at 85 K.

On the left of Fig. 6.6, the 2D map acquisition has been overlapped with the
calculated Bragg positions according to the unit cell P4/nmm (green spots). The
fractional peaks (satellites) are instead not matched by the chosen unit cell.
By using APEX3 it was not possible to identify the integrated intensities at the
fractional coordinates. In order to overcome this problem, the unit cell was tripled
in the ab plane by multiplying the coordinates by a factor three. With the tripling
in size it is possible to index also the small peaks, the ones around the big Bragg
spots, as seen on the right of Fig. 6.6. The program gives as output an hkl
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file, where there are the list of Bragg reflections, with their related coordinates,
intensities and errors. The program calculates the integrated intensity (area under
the peak) of the Bragg spots inside the green circles.

Figure 6.6: The plane is h00 and 0k0. Left: integrated intensity of the Bragg
spots in the original primitive cell. Right: in order to estimate the intensity of the
satellites, the unit cell was tripled along the a and b direction. The unit cell is now:
P4/nmm where a = b = 12.8412 Å and c = 9.83070 Å.

On the right of Fig. 6.7, the integrated intensity of two super structural peaks, the
(-0.33, 2, 0) and the (2, -0.33, 0), has been plotted as function of temperature. The
measurements with respect to the temperature were done at room temperature
first, then the sample was cooled down to 80 K, and then the data acquisition
was done while increasing the temperature. Unfortunately the statistics at room
temperature was not sufficient to include it in Fig. 6.7.
The intensity on the right of Fig. 6.7 seems rather jumpy and unphysical, and it
could be influenced by experimental inaccuracies, such as the temperature control
(N2 nozzle cooling is not as stable as a closed cryostat used in synchrotrons). There
is indeed a maximum at 85 K, where the satellites appear in the previous literature
[1], but it is a local maximum. By going up in temperature, another maximum is
reached around 100 K. From 120 K upward, the acquisition was done with a bigger
step in the temperature range due to lack of time.
From the 2D map at 200 K, it is not possible to see by eye the superstructure
peaks therefore the intensity should be zero. This lead to the conclusion that what
is seen around 200 K in Fig. 6.7 should be considered as background level. There
is also an instrumental effect, all the peaks that are equivalent reflections should
have the same intensity, instead they changed, but this can be due to instrumental
error. The error bars on the right of Fig. 6.7 are the sigma value that is calculated
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through the program and appear in the output file.

Figure 6.7: Left: temperature dependence of integrated intensity of the satellites
that appear at 85 K, from Falkowski paper [1]. Right: the integrated intensity of
two superstructural peaks as function of temperature from XRD data.

Comparing the XRD data with the Falkowski paper data, the results overall looks
quite similar, however, our data have more structure (up and down within a few K
temperature, also between 85 K and 90 K there is an heavy drop not present in the
paper). This needs to be further investigated. There are several differences in the
trend, for example the intensity at 80 K and 200 K is the same for our data but not
for the Falkowski measurements. The intensity ranges cannot really be compared
as the normalization procedure and the statistics are different. In the paper it is
mentioned that they had a limited angular coverage, therefore it is possible that
they did not see the whole evolution of the structure.

The transition from tetragonal to orthorhombic cannot be seen by eye from the 2D
maps, the position of the peaks are the same (green circles), what is changing is
the intensity of the equivalent peaks.
On the structure, there is a check that can be done as in tetragonal symmetry,
equivalent reflections should have the same intensity [46]. By taking the symmetry
class of tetragonal unit cell, certain symmetry operations that should be equivalent,
for example the intensity hkl should be equal to -khl. In orthorhombic (lower
symmetry) instead this permutation does not hold anymore. Thus, it is worth
taking one Bragg spot’s equivalent reflections and check between the several temper-
atures if the intensity changes. If the intensity change between the two coordinates
then they are not equivalent anymore, therefore there is no tetragonal symmetry [46].

The intensity of the (2,1,0) and (-1,2,0) peaks are plotted in Fig. 6.8. These two
intensities should be equivalent in a tetragonal symmetry, not in the orthorhombic
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one.
It is possible to observe that the intensity of the two peaks are equal in the whole
range within the calculated error except at 85 K where the values are very different
and exceed the error bar values. In order to determine a change in the symmetry
in an accurate way, a structural analysis with a refinement is needed. To conclude,
at 85 K there might be an hint of a possible change of symmetry but this cannot
be said with certainty. Further investigation is needed.

Figure 6.8: Integrated intensity of two equivalent peaks (2,1,0) and (-1,2,0) in
the tetragonal symmetry (hkl=-khl) as function of temperature.
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Chapter 7

Inelastic Neutron
Scattering: Experimental
background and setup

7.1 Experimental setup

7.1.1 J-PARC - Japan Proton Accelerator Research Com-
plex

The Japan Proton Accelerator Research Complex J-PARC is a joint project between
two organizations, High Energy Accelerator Research Organization (KEK) and
Japan Atomic Energy Agency (JAEA). The facility is located in Tokai village in
the northern region of Ibaraki prefecture, Japan.
J-PARC is a research facility, which consists of a series of proton accelerators and
the experimental facilities that make use of the high-intensity proton beams. It is a
multi-purpose and multidisciplinary facility open to users from all around the globe.
A unique variety of secondary particle beams, such as neutrons, muons, pions,
kaons and neutrinos are produced by colliding proton beams with different target
materials (spallation reactions). The application of those beams cover different
fields of research, from nuclear and particle physics to material and life science [47].
J-PARC consists of three proton accelerators:

• a 400 MeV linear accelerator (Linac) currently operating at 180 MeV

• a rapid-cycling synchrotron (RCS) with a total energy of 3 GeV

• a 50 GeV main ring (MR)
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In each case, target materials and designs are employed to maximize the production
of the desired secondary particle beam. During normal operation mode, over 90% of
the protons accelerated in the RCS are directed to the neutron and muon production
targets in the Material and Life Science Experimental Facility (MLF) [47]. The
remaining protons are transported to the main ring for further acceleration before
being extracted via one of the two main ring extraction ports that take them to
other facilities and the related experiments. Depending on whether the protons
come out from the slow extraction port, fast extraction port or are generated in
pion decay processes, they are sent to different experiments [47]. The proton beam
cascades the graphite target of muons and reaches to the target for neutrons [48].
The Material and Life Science Experimental Facility (MLF) provides the world’s
highest flux of neutrons and muons by proton-impact nuclear spallation reactions
with a 3 GeV proton synchrotron of 1MW beam power. With a total of 23 neutron
beam lines and 4 muon beam lines, the MLF facility has rapidly become a world
leading center of materials and life science research [48], an overview of the entire
research complex is provided in Fig. 7.1.

Figure 7.1: The entire view of the Japan Proton Accelerator Research Complex
(J-PARC), adapted from [49].

.

62



Inelastic Neutron Scattering: Experimental background and setup

7.1.2 HRC - The High Resolution Chopper Spectrometer

The inelastic neutron scattering (INS) studies of the LaPt2Si2 single crystalline
sample were performed by using the High Resolution Chopper Spectrometer (HRC)
in the MLF facility of J-PARC. This equipment provides opportunities to perform
dynamical studies of materials with high resolution over a wide energy-momentum
space. Three types of inelastic neutron scattering experiments can be performed
with the HRC: high-resolution experiments in a conventional energy-momentum
space, eV neutron spectroscopy, and neutron Brillouin scattering (NBS). Specifically,
we used it for high-resolution inelastic neutron scattering [50].

The instrument is located to face a decoupled moderator that has an area of 100
x 100 mm2. The moderator will send out neutrons in all directions. At first,
the neutron beam goes through to a T0 chopper, which reduces the background
noise produced from the high-energy neutrons. To increase the neutron flux at
the sample, supermirror guides tubes are used. Then, in the neutron beam line
leading up to the HRC instrument, a polychromatic pulsed neutron beam from the
moderator gets monochromatized using a Fermi chopper. When an incident pulsed
neutron beam goes through the slits in the rotating chopper, an initial energy (Ei)
is selected and the beam pulse also becomes well-defined in time.

Figure 7.2: Left: Sketch of the main elements of the cold chopper spectrometer.
Picture is not to scale. Time-of-flight diagram illustrating the selection of neutron
pulses by choppers, with the spectrometer running in repetition rate multiplication
(RRM) mode with N = 5. From [51]. Right: Geometry of a straight Fermi Chopper.
From [52].
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The distance of the Fermi chopper and the sample from the source are 14 and 15 m,
respectively. When the neutrons arrive at the sample position, they are scattered
by the sample, leading the initial state neutrons going into the final (scattered)
state, which is measured using the analyzer and detector array that covers a wide
range of different scattering angles. The detector array consists of 3He position
sensitive detectors (PSDs) that have a length of 2.8 m and a diameter of 19 mm,
located at 4 m from the sample position and can cover scattering angles up to ψ
= 62◦ for conventional experiments. In addition, another detector array of 3He
PSDs are located at L=5.2 m and cover scattering angles down to ψ = 0.6◦ for
NBS. Each PSD is mounted with its length direction oriented vertically.
A collimator system composed of slits of vertical Cd sheets is installed in order
to redirect the outgoing neutrons. One of two collimators with collimation angles
of 1.5◦ and 0.3◦ can be selected. The collimators reduce the background noise
at low angles down to ψ=3◦ for conventional experiments, and ψ=0.6◦ for NBS,
respectively.

The scattered neutrons are analyzed through their time-of-flight (TOF) as well
as the scattering angle (ψ), and the detected neutron counts are converted to the
dynamical structure factor S( þQ, ω) as function of the momentum transfer þQ and
the energy transfer E. An overview of the instrument is provided in Fig. 7.3 [53].
The High-Resolution Chopper (HRC) in J-PARC offers a very good compromise
between resolution (∆E/Ei ≥2.5%) and neutron energy (5 < Ei < 500 meV), as
well as wide angular coverage for the detector banks (ψ = 3 - 62◦ horizontal and
±20◦ vertical) that can be chosen for a high-resolution experiments in conventional
energy-momentum space. Moreover, there are two Fermi choppers that can be
chosen depending on the experiment conditions in order to optimize the experiments,
an high-intensity chopper (Fermi A) and an high-resolution chopper (Fermi B).
Each of them is composed of a slit package, which is a layered assembly of several
components that includes shielding plates and spacers (spacer width w) sandwiches
by curved walls (wall curvature R). The cross-section of the slit package of a vertical
slit is of 75 mm in width x 64 mm in height, with a length of 100 mm. It is inserted
in a cylindrical rotor, with a diameter of 125mm, that rotates around the vertical
axes with a frequency range f = 100 - 600 Hz [54]. The neutron pulse length,
the opening time, and the flight length, combined with the basic equation v = L

t

determine the initial velocity of the neutron vi. By error propagation it is possible
to get dv2 = (dL

t
)2 + (Ldt

t2 )2. Usually the second term dominates, giving dv = Ldt
t2 .

Figure 7.4 provide an overview of the differences in terms of intensity and energy
resolutions, as a function of Ei, with respect to different frequency settings for
Fermi A and Fermi B choppers [53]. In order to reach all the temperatures needed,
a 1K refrigerator (range 1-300K) has been used.
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Figure 7.3: (a) Layout of HRC. Thick lines indicate the detector arrays of 3He
position sensitive detectors. In the side view (upper figure), the values of the
lengths are indicated. In the top view (lower figure), the values of the scattering
angles (φ) are indicated. From [53]. (b) 3D-CAD of the HRC instrument [55].
(c) Installation of the High Resolution Chopper Spectrometer (HRC) at J-PARC.
From [56].
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Figure 7.4: Performance of Fermi choppers on the HRC. Intensity I and energy
resolution ∆E/Ei are plotted as a function of Ei for selected rotation frequency
f: Fermi A, the high intensity Fermi chopper, with w=2.4 mm and R=1.3 m in
(a) and (b), and Fermi B, the high-resolution Fermi chopper, with w=1.2 mm and
R=1 m in (c) and (d). From [53].
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7.2 Experimental plan
The experimental plan consisted in collecting the full phonon spectra map of
LaPt2Si2 by acquisition of a full 4D þS(Qx, Qy, Qz, ω) INS data set (through sample
rotational scans) at three different temperatures:

• base-T = 3 K< TSL = 10 K: superlattice phase

• T = 85 K: close to the CDW transition

• T = 220 K: compromise between TCDW and room temperature

The first step consisted in getting a full map of the sample phonon spectra at 85 K
with ω = 180◦ azimuthal rotation and ∆ω = 2◦ (scan of all even then odd angle
values), with a fixed energy for the incoming neutrons of Ei ≈ 60 meV, using the
Fermi A chopper, with a 200 Hz frequency, which yielded the best compromise for
intensity vs. resolution (see Fig. 7.4).
In this first scan, every angle was measured for 3 minutes, yielding a total of 3
hours measurement for the complete initial map. By analysing the preliminary
scan, it has been decided to proceed with a ω = 90◦ and ∆ω = 1◦ measurements,
with a þKi // [110] in order to coincide to [100] after the orthorhombic transition.
In order to have 30 minutes of scan per angle, each of the chosen temperatures
have been scanned for other 27 minutes per angle of rotation.
Due to the high background signal, empty can measurements have been performed
for 2.5 hours per each temperature of interest in order to subtract the aluminium
background of the sample container. 2.5 days were needed in order to acquire
the full 4D map for each of the three temperatures, leading to a 7.5 days for the
experiment in total.
Lastly, the raw data have been reduced using the HANA software [57], in order to
analyze and fit them with DAVE [58]. The fit was not always easy to perform, due
to the high signal to noise ratio, this is noticeable especially in the 3 K and 220 K
fitted data.
The experiments at HRC, J-PARC, has been possible thanks to our local contacts
Professor Takatsugu Masuda, Shinichiro Asai and Shunsuke Hasegawa from The
Institute for Solid State Physics, Tokyo University, which helped setting up the
experiment and provided support for the data analysis. Moreover, the instrument
scientist of HRC (J-PARC Center), Shinichi Itoh.
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Chapter 8

Alignment of the LaPt2Si2
sample

8.1 Crystal Alignment preliminary to INS
The aim of this process is to align the crystal in the desired scattering geometry
(crystal directions), before conducting the INS experiment. The following prelimi-
nary studies, with a focus on the X-Ray Laue technique and sample preparation
took place at the Institute of Solid State Physics (ISSP) of the University of Tokyo.
The high energy transmission Laue setup had been used to get a preliminary
overview of the five different samples.
The X-rays generated from this equipment have 450 kV of power at nominal working
conditions. This high energy ensures the investigation of both the material surface
and the bulk. The physics behind has been described in Chapter 3, and in particular
for X-rays in Chapter 6. The polychromatic X-rays hit the sample, and if the
Bragg condition is satisfied, then a Bragg point would appear on the detector. By
rotating the sample as well as moving and tilting it along the X and Y directions
[Fig. 8.1(a)], the reciprocal lattice points that satisfy the diffraction condition are
found, as it is shown in Fig. 8.2(a), which appeared as a luminescent rings, meaning
that the X-ray beam was almost parallel to a high symmetry crystal direction.
With geometrical considerations it was also possible to find the [100] direction, even
though there is no difference between [100] and [010], since the primitive lattice
vectors a and b have the same length in a tetragonal cell.
The Laue technique is not accurate for every sample. The sample taken into
account was quite thick and therefore the Bragg peaks map was not very clear.
In order to improve the alignment, X-ray diffraction was performed, Fig. 8.1(b),
in order to establish the position of the different crystal planes. When X-rays
arrive on the sample, photons would scatter on the crystal planes parallel to one

68



Alignment of the LaPt2Si2 sample

axis of the sample (in this case the c axis), if the c axis is effectively aligned then
the Bragg reflection should be in a specific coordinate in space, defined by the
2θ angle. Initially, with an ω-scan it has been possible to distinguish the crystal
directions and so with a 2θ scan it was possible to find the peaks of interest for
each crystal axes. By indexing the discovered peaks as (220), (200), (020), (040)
and (400), leading to the identification of the respective crystal axes. After the
alignment, the LaPt2Si2 crystal was initially mounted on an aluminium holder
using thin Al wire [Fig. 8.1(c)]. At this point, the sample has been placed again
in the transmission Laue for the final alignment [Fig. 8.1(d)], by using the same
procedure as before. The Laue is used in order to do again a quick check of the
alignment after the mounting, the support is on a material that can still be rotated
in case of misalignment. Every time the sample is rotated a new check has to be
done.

Figure 8.1: (a) Sample aligned in transmission Laue setup. (b) Sample mounted
in the XRD machine. (c) Assembling of the sample onto the sample holder. (d)
Final alignment of the crystal on holder. (e) Complete sample assembling with
thin aluminium canister covering the sample.
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Only one out of five crystal was suitable for further investigation and data from this
crystal are shown in Fig. 8.2. After a proper alignment, only a luminescent ring as
one bright spot should be visible, but in this case, additional rings were present due
to the presence of other domains [Fig. 8.2(b)]. In addition, depending on where
the scan was set, different results were obtained, leading to the conclusion that the
material itself had a certain amount of crystallites of different orientation. There
was no possibility to improve it, except for having a better crystal. Nevertheless,
this method ensures an high level of precision and the maximum tolerance of
misalignment is set at 1-2◦. During the final alignment, a Cd shielding of the
sample holder base was attached to reduce background signal.

Figure 8.2: (a) Preliminary alignment along [110], the luminescent ring was in
good agreement with the results from the Laue simulator. (b) The final alignment
along [110].

The Laue simulator software was used in order to analyze the pattern of different
crystalline directions starting from the structural data (primitive lattice vectors,
volume of the unit cell etc.) and it was possible to compare them with the data
collected.
Finally, the sample has been mounted into the aluminum sample holder canister
[Fig. 8.1(e)] in pure He atmosphere and closed using an indium sealing. The He
atmosphere is needed in order to cool down the sample to 3K without having
scattering with particles in the atmosphere and most importantly to keep a thermal
coupling between the sample and the surroundings. All other gases will freeze at 3
K temperature, and therefore fail to form a thermal contact.
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Chapter 9

Data Analysis and Results
on INS

9.1 Introduction to Data Analysis

The data analysis has been performed using DAVE, Data Analysis and Visualization
Environment by NIST. The data set is a full 4D þS(Qx, Qy, Qz, ω) map that in
the reciprocal space are identified by a 3D position vector (H,K,L) and as fourth
dimension the energy, therefore it is not easy to visualize it.

In order to display two dimensional cuts, two directions have been used in a 2D
plane while a partial integration on the other two dimensions have been performed
(see the top of each cut). The data have been collected for 90 different angles.
The background removal is essential to have accurate and clear results in terms
of phonon spectra (this can be seen in Fig. 9.8 and Fig. 9.13). At first, it has
been tried to map the entire background signal to see if any significant feature was
present and use it for comparisons. This was not possible because when collecting
the empty can measurements, only one angle has been measured, assuming that
in this configuration the neutrons beam would scatter identically for all rotation
angles (the crystal was not present).

However, if it is assumed to be in a powder diffraction configuration, it is possible
to plot some features of the background only. In Fig. 9.1 it has been plotted the
background at 3K treated like a powder with two different intensity ranges. It is
possible to see that the signal suddenly stops therefore it is not inelastic, hence
this can represent a multiple elastic scattering reaching the detectors.
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Figure 9.1: Plot of the background at 3K treated like a powder using Dave
program. Left: Intensity range [0, 0.1]. Right: Intensity range [0, 0.15].

9.2 Phonons at base temperature 3K
In order to have an overview of the phonon spectra, several cuts in the H-K plane
have been performed. At first, the phonon spectra were studied at different energy
ranges of approximately 2 meV interval each that could be seen in Fig. 9.2, 9.3,
9.4 and 9.5. The figures are ordered in a decreasing energy order from 30meV to
4meV. By eye inspection, it is possible to see that for example at 30meV, it is not
clear where the Bragg points are and if phonons are present, instead by lowering
the energy, more features appear, leading to conclude that the range between 6-8
meV was a good one to investigate. The L range is kept symmetrical and close to
zero in order to have sharper features but some analysis on broader L ranges is
also shown later (e.g. in Fig. 9.11 and Fig. 9.15).
In Fig. 9.7, it is possible to see the two phonons centered at H=0 and H=2 and both
at approximately K=-2 on this axis. These two regions are analyzed in details in the
next paragraphs. Depending on the intensity range used, it is possible to see more
clearly one of the phonons analysed; usually the H=0 is clear at smaller intensity
ranges while the H=2 at larger intensity ranges where the H=0 disappears. This is
due to the fact that the H=0 signal is close to the (020) Bragg peak while H=2
signal is close to the (220) Bragg peak therefore, as the intensity is proportional to
|Q|2, the H=2 phonon will have twice the intensity value.
On DAVE program, the smooth kernel for smoothing the 2D slice data can be
changed, the default kernel is [[0.1,0.2,0.1], [0.2,0.8,0.2], [0.1,0.2,0.1]]. The smoothing
is done by convoluting the rebinned data with a smoothing kernel. During this
analysis, the smoothing factor used is 2, it provides a good compromise between the
pixelling and the continuum between the data. From now on, when not specified,
all the data have been plotted performing the background subtraction in order to
cancel the features due to the scattering of the neutrons with the can of the sample.
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Figure 9.2: 3K overview of the phonon spectra without background subtraction
in the energy range ~ω = 21 − 30 meV, in decreasing order.

Figure 9.3: 3K overview of the phonon spectra without background subtraction
in the energy range ~ω = 15 − 21 meV, in decreasing order.
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Figure 9.4: 3K overview of the phonon spectra without background subtraction
in the energy range ~ω = 9 − 15 meV, in decreasing order.

Figure 9.5: 3K overview of the phonon spectra without background subtraction
in the energy range ~ω = 4 − 9 meV, in decreasing order.
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(a) (b)

(c) (d)

Figure 9.6: 3K overview of the phonon spectra with background subtraction at
increasing intensity ranges (see scale on the right).

Figure 9.7: 3K overview of the phonon spectra with circles on the two phonons at
H=0 and H=2, and both at approximately K=-2, analysed in the next paragraphs.

75



Data Analysis and Results on INS

9.2.1 Phonon at H=0
In order to analyse the whole 3D space, the dispersion has been plotted along three
main directions (H,K,L), at first near the localized phonon around H=0 and K=-2,
with an integration range of ±1 along both the K and L directions and then further
intervals are discussed. Several cuts have been done in the analysis process, here
the most relevant ones are presented.

Dispersion along the K direction

The whole energy range has been plotted along the K direction with and without
the background in Fig. 9.8. The green blur present at approximately 20 meV on
the left of Fig. 9.8 is disappearing when subtracting the background hence it is
linked to the empty can and not to the single crystal studied. In Fig. 9.8 the
intensity ranges are changed from left to right, in order to clearly see the features.
The left of Fig. 9.8, with intensity between 0-0.10 a.u., leads to a very intense blur
which does not allow to see any phonon branch. A zoom on the relevant energy
range is done in the next cuts, neglecting the negative energy values and also the
values above 30 meV, that does not seem to contain any feature of interest.
In Fig. 9.8, (0, -2, 0) Bragg peak is clearly seen, both if the color scale is zoomed
out and by the "tails" going out from it top left and bottom right.

Figure 9.8: Comparison between E along K. Left: Without background subtrac-
tion. Right: With background subtraction.

In Fig. 9.10 it is possible to see the phonon dispersion along the K axis for a range
between 0-30 meV. The same result is shown for two different intensity ranges,
0-0.08 a.u. on the left and 0-0.10 a.u. on the right column. In Fig. 9.10(c) and (d),
the H range is halved and the features appear more clear. Both the acoustic and
optics modes are visible, especially in Fig. 9.10(c) where the right acoustic branch
is coming out sharply from the phonon and the optics mode form a double bridge

76



Data Analysis and Results on INS

shaped branch on the top, creating almost a complementary shape as shown in Fig.
9.9.

Figure 9.9: A phonon dispersion relation for Silicon. It has been used to have
a reference of the shape of the dispersion relation when following the flow of the
discussion. From [59].

(a) (b)

(c) (d)

Figure 9.10: (a) Dispersion along K with intensity range [0,0.08]. (b) Dispersion
along K with intensity range [0,0.10]. (c) H range is halved for intensity range
[0,0.08]. (d) H range is halved for intensity range [0,0.10].

The green clouds at approximately 15meV, shown on the left of Fig. 9.10(a),
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disappears when the H range is halved, linking the 15meV modes to the values of
higher H.
The same cuts have been taken with double the L range as seen in Fig. 9.11. This
however does not seem to improve the features; instead they appear more broad and
unclear. This seem to prove that it is better to take a narrower L range symmetric
and closer to the origin. From Fig. 9.11(c) and (d) the acoustics branches are quite
clear and visible. Moreover, the blur present around 15meV is not disappearing
like in Fig. 9.10(c), which links it also to value of high L.

(a) (b)

(c) (d)

Figure 9.11: Dispersion along K. The L integration range is doubled with respect
to figure 9.10. (a) Dispersion along K with intensity range [0,0.08]. (b) Dispersion
along K with intensity range [0,0.10]. (c) H range is halved for intensity range
[0,0.08]. (d) H range is halved for intensity range [0,0.10].

By narrowing down the H range around [-0.2, 0.2], the intensity of the acoustic
modes become more sharp and strong when L=[-0.2,0.2], moreover, the uncertainty
is reduced compared to before by integrating on a narrower range (see Fig. 9.12).
Instead on the right of Fig. 9.12 the features are not as clear as when using a
narrower range of L, however the left acoustic branch is quite continuous.
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The analysis leads to the conclusion that along the K axis the shape and intensity
of the features is more clear in Fig. 9.10(c), compared to the other cuts studied.
There are two sharp acoustic branches coming out of the Bragg point and signs of
optical branches around 12-13 meV that seem to fall on the acoustic modes. More
optical modes could be present around 15 meV and slightly above.

Figure 9.12: Dispersion along K. The H integration range is narrowed down to
[-0.2,0.2] with respect to figure 9.10. Left: L range is [-0.2,0.2]. Right: L range is
[-0.4,0.4]. The white pixels are probably due to detector tube failure, as they have
a regular shape at the same angle.
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Dispersion along the H direction

When plotting the dispersion along the H axis without background subtraction
[left of Fig. 9.13], there is a strong 20 meV signal that disappears with background
subtraction, as seen on the right of Fig. 9.13. Instead a 10-15 meV signal arises
when subtracting the background, linking the previous 20 meV signal to the empty
can and not the single crystal. On the right of Fig. 9.13, it is possible to observe the
weak signal emerging after the background subtraction, accordingly the intensity is
lower (see the scale on the right).
Similarly to the energy analysis along the K direction, the intensity range needs to
be different in order to be able to see clearly the features.
A zoom between 0-30 meV has been done in order to concentrate the attention on
the energy range of interest.

Figure 9.13: Comparison between E along H. Left: Without background subtrac-
tion. Right: With background subtraction.

Also in Fig. 9.14 a zoom on the energy range between 0-30 meV has been performed
in the range H=[-1,1]. The same result is shown for two different intensity ranges,
0-0.8 a.u. on the left and 0-0.10 a.u. on the right column. There is a lower mode
that may have a dispersion down to zero at the Bragg point, which makes it an
acoustic mode.

In Fig. 9.14(c) and (d), the K range is narrowed down compared to Fig. 9.14(a) and
(b). The features seem to improve in intensity but not in sharpness. The branches
appear more flat compared to the previous K direction analysed, especially the left
one, they are likely optical branches with very weak dispersion.
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(a) (b)

(c) (d)

Figure 9.14: (a) Dispersion along H for intensity range [0,0.08]. (b) Dispersion
along H for intensity range [0,0.10]. (c) K range is halved with respect to (a) and
(b), for intensity range [0,0.08]. (b) K range is halved with respect to (a) and (b),
for intensity range [0,0.10].

The same cuts have been taken with double L range as seen in Fig. 9.15, the modes
appear more broad but, at the same time some, features get more clear, e.g. it
is now clear that there is nothing at 20 meV. Fig. 9.15(d) shows clear acoustics
branches. Optics lines are more visible thanks to the intensity increase, especially
in Fig. 9.15(a). Continuity between the features building the branches is more
clear in these results. The intensity range used here is lower than usual as at a
range between 0-0.1 a.u. the features were already disappearing.
In Fig. 9.16 it is possible to see that by narrowing down the K range around [-2.2,
-1.8], it does not seem to improve the sharpness of the feature. On the right of Fig.
9.16 the acoustic branches seem less pixelled compared to the left. The right hand
side of the acoustics branch seems almost to split in two at higher energy. Optics
modes are imperceptible.

81



Data Analysis and Results on INS

(a) (b)

(c) (d)

Figure 9.15: L range is [-0.4, 0.4]. (a) Dispersion along H for intensity range
[0,0.08]. (b) Dispersion along H for intensity range [0,0.10]. (c) K range is halved
with respect to (a) and (b), for intensity range [0,0.08]. (d) K range is halved with
respect to (a) and (b), for intensity range [0,0.10].

Figure 9.16: K range narrowed down to [-2.2,-1.8]. Left: Dispersion along H with
L range [-0.2,0.2]. Right: Dispersion along H with L range [-0.4,0.4].
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The analysis leads to the conclusion that along the H axis the best features can be
seen in Fig. 9.14(c) and 9.15(d). There are two strong acoustic branches coming
out of the Bragg point (unclear for the left branch), but they are very flat compared
to the dispersion along K. Weak flat optical branch between 10-15 meV might be
present. Another possible optical branch could be present just above 15 meV.
A general overview of the modes along the H axis is shown in Fig. 9.17 where
at H=0 there are flat acoustic and optical modes whereas at H=2 a clear and
sharp branch of the acoustic modes appears. As the intensity is proportional to
the square of þQ, in this case to H2+K2, the intensity at high values of H is larger
compared to intensity at low value of H, the features are much more visible on the
right of Fig. 9.17. In order to have a homogeneous range of intensity it would be
necessary to divide all the data by the respective H2+K2.

Figure 9.17: Energy overview along the entire H axis, features for both phonons
at H=0 and H=2 appear.
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Dispersion along the L direction

It is not easy to see the phonon dispersions along the L direction, the H and K
integration ranges are also quite big as seen in Fig. 9.18.
At first, the L range [-1,1] has been selected, as it shows good visibility of the
phonon dispersion relation.
On the left of Fig. 9.18, the entire energy range is plotted while on the right of Fig.
9.18 the energy has been zoomed in the range of interest. The acoustic branches
are quite clear and resembling nicely the dispersion relation fit (see Fig. 9.9), blur
is present. Some higher branches at around 15 meV could be linked to the optical
modes.

Figure 9.18: Left: Dispersion along L for intensity range [0,0.10]. Right: Disper-
sion along L for intensity range [0,0.10].

In Fig. 9.19(a) and (b) the H range is narrower while in Fig. 9.19(c) and (d) instead
the K range is narrower, both with respect to Fig. 9.18. This lead to sharper
features and more clear branches. Therefore decreasing the interval of integration
of H and K leads to an improvement of the plot and something more similar to
what is expected is found (see Fig. 9.9).
The outcomes suggests to plot other cuts with both H and K range even more
narrower, and this has been done in Fig. 9.20. This seems to go towards an
improvement of the visibility of the acoustics and optical branches of interest.
The analysis leads to the conclusion that along the L axis the best features can be
seen on the left of Fig. 9.20, since it is possible to see more clearly two branches
(around 8 meV and 12 meV). The dispersion along the L direction is the one that
better seems to fit the dispersion relation for the acoustic modes. Optics mode are
more visible along the K and H directions.
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(a) (b)

(c) (d)

Figure 9.19: (a) H range halved and K range kept constant, with respect to Fig.
9.18. (b) H range halved again and K range kept constant. (c) K range halved and
H range kept constant, with respect to Fig. 9.18. (d) K range halved again and H
range kept constant.

Figure 9.20: Left: Both H and K range are halved from their initial value used in
Fig. 9.18. Right: Both H and K range are decreased from their values on the left.
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9.2.2 Phonons at H=2

Dispersion along the K direction

In Fig. 9.21 it is possible to see the features at two different intensity ranges on the
left and right column. The left acoustic branch appears sharp and clear, the right
branch curvature is also visible and its shadow seems to have a consistent shape with
the dispersion relation expected. The left branch has higher intensity compared to
the right one, as already said previous, because the intensity is proportional to þQ2

therefore as we take the absolute value and the direction is squared, this is giving
an higher contribution at lower values of K, the direction in Q which is analyzed.
The optical modes are very weakly visible in these intensity ranges, in order to see
them it would be necessary to increase the intensity range but this would lead to
hard differentiation of the features appearing in the figures. The blur between 10
and 17meV on the left of Fig. 9.21 could be related to the presence of the optical
branches, moreover, around 15 meV there seems to be a weak optical branch along
the entire K direction.

Figure 9.21: Right: Phonon spectra in the range [0,30]meV with I= [0,0.08]. Left:
Phonon spectra in the range [0,30]meV with I= [0,0.10].

The same cuts have been performed doubling the L range to [-0.4,0.4], however no
mayor improvements have been observed, the blur is a little bit more intense but
the shape and intensity of the features seems to be the same as before, as shown in
Fig. 9.22.
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Figure 9.22: L integration is doubled. Left: Phonon spectra in the range [0,30]meV
with I= [0,0.08]. Right: Phonon spectra in the range [0,30]meV with I= [0,0.10].

In Fig. 9.23 the H range is narrowed down to [1.8,2.2] for two different L ranges on
the left and on the right. This is decreasing the continuity of the acoustic branches
compared to the previous cuts.
In conclusion, the best cuts along K direction for the H=2 phonon can be seen on
the left of Fig. 9.21 and of Fig. 9.22, where the acoustic branch sharply comes out
of the Bragg point and there is a hint for optical modes at higher energies.

Figure 9.23: H is narrower to [1.8,2.2]. Left: Phonon spectra along the K direction
with L range [-0.2,0.2]. Right: Phonon spectra along the K direction with L range
[-0.4,0.4].
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Dispersion along the H direction

Moving to the H direction, in Fig. 9.24, it is possible to observe the acoustic
branches. The right branch has higher intensity for the same dependence of the
intensity to þQ2 already mentioned above; this time it is on the right as the H values
taken into account are positive. In general, if there is a very strong branch only at
one side out from the Bragg peak, there could be a risk that the scattering is a
non-physical artefact of the instrument (a "spurion"). Therefore, in order to make
sure that the scattering is physical, there needs to be also a hint of scattering on
the other side. This seems to be evident on the left of Fig. 9.24 and Fig. 9.25
where an additional feature is present. Another check that has been done was to
change the intensity range in order to be able to see the branch on the left.

The optical branches are instead poorly visible. The intensity range should be
decreased even more to see them clearly but this would result in disordered features
appearing from the phonon branches without a clear distinction between the
acoustic and optical modes. The same cuts have been performed at two different
intensity ranges on the left and right column of Fig. 9.24.

Figure 9.24: Left: Phonon spectra in the range [0,30]meV with I= [0,0.08]. Right:
Phonon spectra in the range [0,30]meV with I= [0,0.10].

In Fig. 9.25 the L range has been doubled to [-0.4,0.4]. The width of the acoustic
branch is quite wide.

Some cuts have been performed also at a very narrow range around K=-2 (centre
of the phonon) with both L=[-0.2,0.2] and L=[-0.4,0.4]. The intensity increases
and it is not possible to see any improvements compared to the previous analysis.
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Figure 9.25: L integration is doubled. Left: Phonon spectra in the range [0,30]meV
with I= [0,0.08]. Right: Phonon spectra in the range [0,30]meV with I= [0,0.10].

Figure 9.26: K is narrower to [-2.2,-1.8]. Left: Phonon spectra along the H
direction with L range [-0.2,0.2]. Right: Phonon spectra along the H direction with
L range [-0.4,0.4].

Dispersion along the L direction

Along the L direction, the phonon modes are much more clear compared to the
previous cuts along H and K, leading this to be the preferred direction in order to
see the phonon dispersion relation.
Compared to the previous directions, the smoothing factor has been here decreased
to 1 in order to have a better overview of the phonon spectra in terms of quality of
the figures, however this increases the pixelling and the discontinuity between the
features.
Once the phonon has been localized, the integration on the H and K direction
has been narrowed down, to see if any improvements in the features appear. In
Fig 9.27(a) and (b) it is possible to observe clear acoustic branches coming out of
the Bragg point, however the features with high intensity are many therefore the
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branches are still hidden, moreover there is not a clear distinction between acoustic
and optical branches at first sight. The integration ranges of H and K are different
on the left and right of the figure in order to see if any relevant changes occur. The
narrower the H range, the more clear the dispersion relation seems to be.
In Fig 9.27(c), the acoustic branches are sharp and clearly visible and close to the
dispersion relation expected. Optical branches instead are poorly visible however
the disappearance of the features in between the acoustic branches makes the
figure more clean and the acoustic branches more clear. Around 15 meV there is a
concentration of brighter features which could be signatures of optical modes.

(a) (b)

(c)

Figure 9.27: Phonon spectra in [0,30]meV range along the entire L direction with
background subtraction. (a) H range is [1.5,2.5] for intensity range [0,0.10]. (b) K
range is [-2.5,-1.5] for intensity range [0,0.10]. (c) Phonon spectra along the entire
L range with energy [0,30] meV, H=[1.5,2.5] and K=[-2.5,-2.5].

In Fig. 9.28 the cuts of the phonon spectra have been done with a range of ±0.2
around the centre of the phonon situated at H=2 and K=-2, at first only along one
of the two integrated directions (see Fig. 9.28(a), (b)) and then for both directions
(see Fig. 9.28 (c)). Fig. 9.28(a)and (b) look all quite similar with clear acoustic

90



Data Analysis and Results on INS

branches and slightly visible optical branches around 15 meV. There is a clear
improvement compared to Fig. 9.27 in intensity and sharpness.
Where both intervals are narrowed down in Fig. 9.28(c) the intensity and pixelling
increases leading to branches less visible compared to the previous cuts but the
optical one seems more evident.

(a) (b)

(c)

Figure 9.28: The integration range around H and K has been narrowed down to
an interval very close to the centre of interest. (a) H range is [1.8,2.2] for intensity
range [0,0.10]. (b) K range is [-2.2,-1.8] for intensity range [0,0.10]. (c) Phonon
spectra in H=[1.8,2.2] and K=[-2.2,-1.8] for intensity range [0,0.10].

9.3 Comparison with 85 K and 220 K
The same type of analysis seen for the dispersion relation at 3 K has also been
performed at 85 K and 220 K. Here only the most relevant results will be presented,
assuming that some of the best integration ranges along the three dimensions in
the space have been found. Moreover, several 1D cuts along the dimension in space
taken into account (x axis) of 2 meV have been done in order to select the points
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in space with highest intensity (white points in the maps) and therefore see where
the branches should be, however this is only a guide for the eye. The results of the
investigation are illustrated in this paragraph.

9.3.1 Phonon at H=0
Dispersion along the K direction

(a) (b)

(c)

Figure 9.29: (a) Dispersion along K at 3 K with intensity range [0,0.08]. (b)
Dispersion along K at 85 K with intensity range [0,0.10]. (c) Dispersion along K at
220 K with intensity range [0,0.15].

In Fig. 9.29, the dispersion relation along K at three different temperatures has
been plotted. In all the three plots, also some weak optical modes are visible,
around 12-13 meV and 16 meV. The optical branch is less visible at 220 K where
instead only the left acoustic branch is clearly visible, the right one is only partly
there, this should be due to the dependence of the intensity to þQ2. The branches
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come out of the Bragg point, which is at K=-2 and H=0. Along the K direction, it
is expected to see the longitudinal acoustic modes.

Dispersion along the H direction

Along the H direction, the acoustic branches are clearly visible for both Bragg
points (0,-2,0) and (2,-2,0). The plot in Fig. 9.30 shows the dispersion relation
along the entire H direction.
In Fig. 9.30(b) a nice continuous line between the two acoustic branches of the
left and right Bragg points is present. The red "tails" going out from its top left
and bottom right show the position of the point of interest. Above 20 meV, almost
no features are present, therefore that intensity range is almost never taken into
account in this work.
As the temperature is increased, the features appear more blurred and the branches
are less sharp.

(a) (b)

(c)

Figure 9.30: Dispersion overview along the entire H axis, features for both
phonons at H=0 and H=2 appear. (a) At 3 K. (b) At 85 K. (c) At 220 K.

93



Data Analysis and Results on INS

(a) (b)

(c)

Figure 9.31: (a) Dispersion along H at 3 K with intensity range [0,0.08]. (b)
Dispersion along H at 85 K with intensity range [0,0.10]. (c) Dispersion along H at
220 K with intensity range [0,0.15].

By concentrating on the Bragg point at H=0 studied in this paragraph, it is possible
to plot its dispersion relation along the H axis, as seen in Fig. 9.31. At 3 K, there
are several strong intensity lines around 8 meV and 12-13 meV which could be
signatures of optical modes. They tend to disappear or merge with other features
as the temperature is increased, at the same time the acoustic branches become
more visible and broad. Along the H direction the longitudinal modes are seen.
Below 10 meV the calculations show that the acoustic and optic branches should
start to overlap, making it very challenging to distinguish them.
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Dispersion along the L direction

By taking H=0 and K=-2 as the center, and plotting the dispersion relation along
the L direction, the features appear broad and random. The only one in which it
is possible to observe by eye potential acoustic and optical branches is the one at 3
K (Fig. 9.32(a)).
It will be seen that in the case of H=2, K=-2 instead this direction will be the one
where the acoustic branches will be more visible and sharp.

(a) (b)

(c)

Figure 9.32: (a) Dispersion along L at 3 K with intensity range [0,0.08]. (b)
Dispersion along L at 85 K with intensity range [0,0.09]. (c) Dispersion along L at
220 K with intensity range [0,0.15].
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9.3.2 Phonons at H=2
Dispersion along the K direction

The same study has been done for the other Bragg point of interest, at H=2 and
K=-2. In Fig. 9.33, the intensity appears very high around the center of the
branches, going also up to almost 10 meV. Some weak optical branch could be seen
in Fig. 9.33(a) around 15 meV.
As the temperature increases, the features are more broad and unclear.
The features along the same direction appeared more sharp and clear when investi-
gating the region around H=0 and K=-2, as shown in Fig. 9.29.

(a) (b)

(c)

Figure 9.33: (a) Dispersion along K at 3 K with intensity range [0,0.08]. (b)
Dispersion along K at 85 K with intensity range [0,0.10]. (c) Dispersion along K at
220 K with intensity range [0,0.15].
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Dispersion along the H direction

Along the H direction, especially in Fig. 9.34(a) and (c) there is a clear dependence
of the intensity of the square of the þQ space, leading to a strong right acoustic
branch while the left one is only present around the Bragg point.

At 3 K, around 15 meV on the right of the Fig. 9.34(a), some optical branch seem
to appear and weakly propagate along the rest of the H direction.

At 85 K, both the acoustic branches are visible.

(a) (b)

(c)

Figure 9.34: (a) Dispersion along H at 3 K with intensity range [0,0.08]. (b)
Dispersion along H at 85 K with intensity range [0,0.08]. (c) Dispersion along H at
220 K with intensity range [0,0.15].
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Dispersion along the L direction

(a) (b)

(c)

Figure 9.35: (a) Dispersion along L at 3 K with intensity range [0,0.10]. (b)
Dispersion along L at 85 K with intensity range [0,0.10]. (c) Dispersion along L at
220 K with intensity range [0,0.17].

In Fig. 9.35, the dispersion relation along L is plotted. This seem to be the most
clear example of acoustic branches analysed so far. They start exactly from the
center of the Bragg point and nicely come out of it in a symmetric way.
Some weak optical features might be present in Fig. 9.35(a) and (b) around 15
meV.
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9.4 Subtraction of results at low temperature (3
K) from the results at high temperature (220
K)

In order to see if there are any changes between different temperatures, the results
at low temperature (3 K) have been subtracted from the one at high temperature
(220 K). This procedure tells if there is something at high T which is not present
at low T, with positive intensity.

(a) (b)

(c)

Figure 9.36: 3 K data set subtracted from 220 K data, centered at (0,-2, 0).
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(a) (b)

(c)

Figure 9.37: 3 K data set subtracted from 220 K data, centered at (2,-2, 0).

In Fig. 9.36 and Fig. 9.37, the subtracted data are shown from the 2 Bragg points.
We see that there is a signal at low energy transfers, close to the Bragg peak. This
is likely from low-energy phonons that are amplified by temperature due to the
increase of the Bose factor.
The elastic line is totally black because it has been subtracted. A strong intensity
red point in the center of the Bragg point is present in almost all the plots, showing
that Bragg point becomes stronger in intensity. By tuning the intensity range it is
possible to see the features in a more clear way, however this has not been shown
here. There is no apparent presence of optical branches; instead acoustic features
are present.
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9.5 Superstructure peaks

In previous studies on the single crystal LaPt2Si2 [1], X-ray diffraction (XRD)
patterns show the occurrence of satellite Bragg peaks corresponding to the wave
vector q ≈ [0.36, 0, 0)]. The observation is a clear evidence of lowering of the
tetragonal symmetry and points to a CDW state at low temperatures [1]. From
the authors’ results, the satellites reveal maximum intensity at 85 K, disappear
above 175 K and decline (or shifting from observable part of reciprocal space)
below 85 K, as it is shown in Fig. 1.2. During the INS experiment at HRC, it
was possible to acquire a map to observe the incommensurate reflections at three
different temperatures.
Previously also Gupta et al.[32] studied the superlattice reflections on polycrystalline
samples and found out a reflection at (n/3, 0, 0) where n = 1 and 2 below 10 K,
which indicates the tripling of unit cell below CDW transition.
The 1D cuts along the H direction with respect to the intensity are shown in
Fig. 9.38 at three different temperatures. In order to better understand the exact
position and intensity values, a zoom on the supposed superstructure peaks has
been performed and the x axis scale range has been narrowed down, as seen in Fig.
9.39.
On the H axis the peaks are at -0.35 and 0.35 in space, showing a good agreement
with the q ≈ [0.36, 0, 0)] measured by XRD [1].
The values of the intensity of the peaks are:

• 3 K: left peak 5 a.u. and right peak 8.5 a.u. ;

• 85 K: left peak 5.8 a.u. and right peak 9 a.u. ;

• 220 K: both peaks at 10.5 a.u. ;

The intensity of the peaks are instead very different in trend to what was expected,
as their maximum should be around 85 K and then the peaks should decrease both
at higher and lower temperature (3 K and 220 K in this case). Instead the peaks
from the INS data show a maximum at 220 K, and a similar lower value at both
3 K and 85 K, slightly increasing at 85 K. This is something unexpected and in
contrast with the literature mentioned above.
During the experiment, it was possible to collect data for incoming energy of
the neutrons at 12 meV, 23 meV and 61 meV, thanks to the use of the choppers
illustrated in Fig. 7.2.
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(a) (b)

(c)

Figure 9.38: Cut at the elastic (zero energy transfer) line with variable H to get
an overview of the Bragg peaks in the crystal. (a) At 3 K. (b) At 85 K. (c) At 220
K.

The data analysed in this chapter are the ones at Ei = 61 meV, covering a bigger
þQ space and also energy range compared to the other two incoming energies. As
the resolution should improve at lower energy, a check on the other two incoming
energies has been done for the study of the superstructure peaks. However, in the
12 meV data, the two Bragg points of interest were not covered in space. Instead
at 23 meV, the peaks were not clearly visible as their intensity was below 1 a.u..
Moreover, the incoming neutron flux was not very high at 23 meV. For completeness,
also the difference between 220 K and 3 K is shown in Fig. 9.40. On the left of
the same figure, the incoming energy is 61 meV, the intensity difference between
the peaks is clear and intense, while on the right of the figure, the data for the
incoming energy of 23 meV are shown, with an almost imperceptible difference
between the data collected at the two temperatures.
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(a) (b)

(c)

Figure 9.39: Zoom on the feature of interest in order to understand the exact
position and intensity of the supposed superstructure peaks (a) At 3 K. (b) At 85
K. (c) At 220 K.

Figure 9.40: Subtraction of the 3 K data from the 220 K data along the H
direction in the space. Left: Incoming neutron energy is 61 meV. Right: Incoming
neutron energy is 23 meV.
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Chapter 10

Discussion

In this work, LaPt2Si2 has been studied with several different techniques. The
very recent synthesis of good quality single crystals allows further investigations to
clarify the nature of the interplay between the CDW and SC in this material.
The superconducting state of unconventional superconductors is commonly in
competition with other order parameters, as for instance magnetic fluctuations [6].
There are reports of unconventional superconductors in which spin ordering and
superconducting state coexist [60] [61].
For a polycrystalline sample [9] a transition temperature T pc

S = 112 K has been
reported, and more recently the same group of researchers obtained for a power
sample, grinded from a single crystal, an ordering temperature T powder

S = 85 K [32].
At the structural transition, the onset of a charge density wave with periodicity of
three multiples of the lattice constant a has been observed.

Nonmagnetic calculations were performed with the commercial VASP software [62,
63] and Phonopy [31] by Johan Hellsvik, from PDC Center for High Performance
Computing, KTH, Sweden. Modeling of the phonon spectra of LaPt2Si2 can be
found in Fig. 10.1. The supercell that has been used is 3 x 3 x 2 with k point grid
6 x 6 x 6. The exchange correlation potential is PBE and the phonon calculations
were performed with spin-orbit coupling.
30 phonon dispersion curves are expected in total, since the work was performed
with 10 atoms and 1 primitive cell. Three are acoustic phonons and the rest are
optical phonons, which is in good agreement with what has been described in the
theory section.
The negative regions in some acoustic branches indicate that the phonon mode is
close to a structural instability. The energy is actually imaginary, but in order to
presenting it in a regular graph, it is shown as a negative number. The imaginary
energies appear for phonon modes where the forces are displacive and bring the
atoms away from their equilibrium positions.
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Figure 10.1: Phonon band structure from a 3 × 3 × 2 supercell VASP PBE SOC
calculation.

By comparing the INS results with the theoretical calculation, the overall measured
phonon dispersions show the two main energy levels predicted. There are strong
phonon features below 20 meV that are also investigated in Chapter 9. The bands
between 32 and 40 meV, present in Fig. 10.1 were neglected in the analysis as their
intensity is much weaker compared to the low energy bands. Instead, if the whole
intensity range is taken into account, as seen in Fig. 10.2, it is possible to observe
that just below 40 meV there are some evidence of weak optical phonon bands in a
compact way.

Kim et al. [8] studied the single elements contribution to the curve, they conclude
that the CDW exist in the Pt3-Pt4. The theoretical calculations done are in good
agreement with their results. In particular, they conclude that in the low energy
band, the Pt3-Pt4 layer is the one responsible for the presence of the phonons
from 0 to 10 meV. Around 12 meV, the curve presented a local minimum, and
subsequently another maximum, where both the Pt1-Pt2 and the La1-La2 layers
are responsible for. The upper energy levels are mainly related to the silicon atoms.
As seen in Fig. 10.1, the first optical phonon bands and the acoustic phonon are
overlapping, therefore it is not easy to determine the respective edges.

The aim of the INS experiment was to investigate the phonon spectra of LaPt2Si2,
in order to observe the phonon softening predicted, and confirm in this way the
occurrence of CDW.
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(a) (b)

(c)

Figure 10.2: Evidence of the phonon dispersion fingerprint between 35 and 40
meV along different directions in the þQ space.

The analysis of the inelastic scattering data has been done at all the three temper-
atures collected (3 K, 85 K and 220 K). At first, an overview on the H-K plane at
different energy ranges has been plotted in order to find the energy range at which
the dispersion relation appears more clear. In this range, the two Bragg points
of interest have been selected and analysed in Chapter 9. The background has
been subtracted. The cuts in the full 4D þS(Qx, Qy, Qz, ω) INS data set have been
done along all the three directions (H,K,L) with the integration along the other
two directions. For every direction and every plot, several intensity ranges have
been tried in order to find the range in which the features were more visible.
Above 30 meV, there is no strong dispersion, therefore the energy range taken into
account in the analysis is [0, 30] meV.
At the beginning, the whole Brillouin zone along the integrated directions is taken
into account, then the ranges are decreased, at first only along one direction, and
then along both, always around the Bragg point of interest. In general, the range
goes from ±1 to ±0.2 around the two Bragg points considered (0,-2,0) and (2,-2,0).
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Almost the entire analysis has been shown for 3 K and then only the most relevant
plots have been shown for the other two temperatures, 85 K and 220 K. Once
selected, these same plots have been cut along the Q space directions for a constant
energy range, and the maximum intensities have been selected and pointed in the
relevant plots. The points are then linked by a black line, to be a guide for the eye.

In general, the phonon spectra presents some very clear patterns in terms of acoustic
branches for the longitudinal(H) and transverse modes(K) in the low energy transfer
range.
Just above the elastic line, from approximately 3 meV one can observe the acoustic
modes. At 10 meV there is the superimposition between the longitudinal acoustic
and longitudinal optic up until 18 meV. This is in agreement with the theoretical
calculations, showing different intensities on the plots of Chapter 9. This is a
drawback in determining the edges of each band. Above this energy, the phonon
are difficult to see and also they are not organized in a typical band-like structure,
in fact they appear as groups/clusters. Since the material shows some anisotropies,
in the upper energy range, it is possible to see different features, which are not
consistent in every Q-point. Similar behaviour is present in the transverse modes
(K). Along the L direction instead, the dispersion relation is very random when
seen with the center at (0,-2, 0), instead the acoustic branches become very clear
around (2,-2,0). Some optical branches with weaker intensity might be present.
When analysing the data at 3K, the intensities decrease, but here the optical
branches are more visible, specifically from 5 to 20 meV due to the Pt and La
atoms, in fact there is no clear distinction between the acoustic and optic and they
appear as a single band.
If then we move to the upper optical band, this is not organised in a band-like
structure, and their intensity remains low compared to the branches at lower energy.
One cause for this is that the Silicon atoms provides the main contribution for the
high-energy phonons and Si has a lower neutron scattering length when compared
to both La and Pt, resulting in lower intensity levels.

Concerning the superstructure peaks, the investigation at Ei = 12 meV was
unsuccessful because the q range is not covered. The peaks at Ei = 23 meV are
very weak and almost imperceptible. From the subtraction of the 3 K data from
the 220 K data, the only difference is spotted exactly at q ≈ [0.35, 0, 0)] along H,
suggesting that the position of the satellites is in agreement with XRD [1] where
the satellites are seen at wave vector q ≈ [0.36, 0, 0)].
The disagreement is with the intensity trend of the satellites at different tempera-
tures. In INS data the maximum is at 220 K and then they decrease at 85 K and
3 K, leaving the satellite on the positive side of H being the one with the higher
intensity, as seen in Fig. 9.38 and Fig. 9.39.
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The analysis is not able to justify their unexpected dependence on temperature.
The data do not have the necessary resolution for structural analysis and precise
determination of the Q-vector for the satellite peaks.
To conclude, the INS results provided a good overview of the phonon spectra in
LaPt2Si2, but the resolution necessary to resolve an eventual phonon softening was
not present and these results opened further questions regarding the structural
transition.

More experiments have been performed on LaPt2Si2 in order to study its properties
and in order to reply to some of the questions opened by the INS results.
The performed resistivity measurements show the superconducting nature of the
material. Moreover a transition at around 100 K is observed as seen in Fig. 5.2,
which could be related to the CDW [1]. The results are in good agreement with
the literature [1] [15] [33] [9] [12]. The hysteresis in resistivity of LaPt2Si2 between
cooling and heating data confirms the first order nature of the phase transition.
Raman scattering has been performed and from Fig. 5.10 it is possible to observe
that the center and the FHWM are shifting with respect to the temperature. At
85 K there is something anomalous and this could be the fingerprint of the CDW
at 85 K.
The FWHM behaviour is consistent with the literature results [1], it shows a clear
constant dependence above 200K and a clear increase below 200 K, which lead us to
the conclusion that the CDW is present. As reported in the literature, the anomaly
at 85 K is compatible with the occurrence of a structural transition associated with
a CDW transition.

From X-ray diffraction between 80 K and 300 K, the 2D maps of the Bragg re-
flections show the appearance of satellites at 85 K in the hk0 plane only, with
periodicity (0.36, 0, 0) which is exactly the one observed from past research [1].
Comparing the integrated intensity of the satellites as function of temperature of
our data with the Falkowski paper (Fig. 6.7), the results overall look quite similar;
however, our data have more structure and several differences in the trend that
cannot be discarded. The difference in the trend could be caused by the limited
angular coverage that Falkowski’s group mentioned, therefore it is possible that
they did not see the whole evolution of the structure. On the other hand, due
to lack of time, the range of temperatures in the acquisition of the data from
110 K increases. Another interesting point is that we see an increase in the satel-
lites intensity at 220 K from the INS data, while it is not clear from the XRD
data what happens above 180 K. In Fig. 6.7 there is a slightly increase in in-
tensity from 200 K whose nature could be the background or something nonphysical.

A check in order to understand if the structural transition occurs has been done
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by studying the equivalent reflections for the tetragonal symmetry at different
temperatures. The one investigated in this case was the operation hkl which should
be equal to -khl. This is not true instead in the orthorhombic case, therefore by
performing this check, one of the two structure can be selected.
Two peaks investigated were (2,1,0) and (-1,2,0), as shown in Fig. 6.8, are equal
in the whole range within the calculated error except at 85 K, where the values
are very different and exceed the errorbar. To conclude, the behaviour at 85 K
could be a hint of the change of symmetry, however the measurement is limited
in the temperature range and resolution. Therefore, it is not possible to obtain a
complete structural characterization.

109



Chapter 11

Conclusion and Outlook

The phonon excitation spectra was investigated below and above the structural
transition TCDW = 85 K and we acquired maps at 3 different temperatures (3 K,
85 K, 220 K), for the first time. The CDW wavevector q=(0.35,0,0) was clearly
observed, but no phonon softening was observed. The measured phonon dispersions
are in good agreement with theoretical predictions, showing two main energy levels
(4-18meV and 32-42meV), and weak superlattice peaks were observed.
Interestingly, the incommensurate peaks we observed (q ≈ [0.35, 0, 0]), by doing
zero-energy-transfer cuts, were present in the full temperature range, even increas-
ing in temperature above TCDW , which is different from what has been observed
in XRD data [1]. The resolution was not enough to shown an eventual phonon
softening and opened further questions regarding the structural transition.

Resistivity measurements confirmed the superconducting nature of LaPt2Si2 and a
transition around 100 K was observed, which could lead to CDW.
The Raman scattering experiment confirmed the presence of the CDW. The anomaly
at 85 K is compatible with the occurrence of a structural transition associated with
a CDW transition, as reported in the literature.

The results from X-ray diffraction lead us to the identification of the unit cell and
the clear observations of satellites in the hk0 plane. The trend in intensity of the
satellites when compared to the previous literature [1] has important differences that
cannot be discard. Due to lack of time, the range of temperatures in the acquisition
of the data from 110 K increases, therefore more time should be allocated to the
study of the trend above this temperature, to better compare it with the previous
results.
When looking at the equivalent reflections for the tetragonal symmetry, the trend
was the same for the two peaks analysed and then only clear difference has been
observed at 85 K. This can be a hint of the change of symmetry however such
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measurement does not provide complete structural characterization. In order to
improve this picture, further measurements at both lower and higher temperature
should be performed, in order to have a complete overview of the intensity of the
satellites in a broader temperature range and check again if the trend is comparable
to the Falkowski result and consistent with the increase of the intensity of the
satellites around 220 K that is seen in INS results. The statistics could also be
improved if more time can be allocated to each temperature measurements and
more temperatures could be taken above 110 K. Moreover,in order to determine a
change in the symmetry in an accurate way, a structural analysis with a refinement
is needed.

Further investigations on the single crystal are necessary, in particular Neutron
Diffraction (ND) in order to clarify the structural evolution of single-crystalline
LaPt2Si2. A single crystal diffractometer would be needed to perform structural
characterization with better resolution compared to the X-rays diffractometer
used. In order to reach lower T, higher resolution and probably see the very weak
crystalline structure changes, the experiment should be performed at a large scale
facility. Moreover, X-rays detect also charge ordering effects, which we would like
to exclude by using neutrons.

Another suggestion could be to integrate the DFT calculations with the studies on
the Raman active modes. From the phonon eigenvalues and eigenvectors, it would
be possible to label the symmetries of modes and calculate the correct frequencies.
This could lead to verifying numerically if the 300 cm−1 is what we expect for B2G.

Finally, for the future could be to study also the superconducting state, where 1.6
K needs to be reached for single crystals [1], once the structure and CDW nature
would be clarified.
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