POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Continuous Remote Attestation
Process 1n the scenario of the ROOT
time precision distribution network

Supervisors

Prof. Antonio Lioy
Dr. Ing. Diana Gratiela Berbecaru

Candidate
Silvio GIROLAMI

MARZO 2022

To my parents, for all
theiwr sacrifices and for
believing 1n me even

when I didn’t have the

strength

Abstract

Nowadays the trustworthiness, accuracy and availability of time information
distributed over networks of every kind is becoming more and more relevant due
to the birth of several applications that require accurate and secure time and an
high-precision synchronization among their components. Several kinds of threats
can be identified in this type of distribution networks, attacks can be run starting
from the transmission of the time data until the moment when the information is
elaborated by the node.

A particular type of networks in which time becomes of primary importance are
the 5G telecommunications networks. In order to provide the expected Quality of
Service, synchronization is needed in time-precision networks like this. Together
with the distribution issue, the elaboration of the information received, that has to
be forwarded right after, become crucial too. Some telecommunication networks
are classified as critical infrastructure thus need particular robustness against cy-
berattacks.

In this paper, we identify several type of attacks that can be run against these
networks focusing our attention on software attacks that are run trying to take
control of a particular machine or simply to install some code on it or to change
its configuration. The goal of the thesis is to find a way to detect if an attack like
this happens and to report this as quickly as possible, by monitoring the platform
status constantly and notifying an anomaly as soon as it is detected, following the
principles of the Remote Attestation process.

Summary

More and more systems such as broadcasting networks, power grids, financial and
banking applications, transport networks and also telecommunication networks, are
gradually increasing the demand for accurate time synchronization and time
distribution solutions, even if with different requirements in terms of accuracy and
precision [2]. Probably one of the systems, among those listed above, with the
more restrictive requirements are the telecommunication networks since, with the
advent of the 4G technology, the need for accuracy in the distribution of time has
grown. This growth became even more significant with the latest technology in
this field: 5G, which requires the presence of multiple timing sources in the whole
network. In a scenario like this, great importance is given to the way in which
time is distributed across the network and how synchronization among nodes is
obtained, and most important whether they meet the fixed requirements or not.

It is precisely these requirements that are the subject of the study of the ROOT
project, whose goal is to analyse the impact and effects of cyberattacks against
transport-based distribution architecture [1]. The architecture under consideration is
based on satellite-derived timing information which is received by Global Navigation
Satellite System(GNSS) that can distribute the absolute time reference, through
dedicated precision transport protocols like PTP or WB-PTP (an enhanced version
of PTP), to terrestrial really accurate celsium clocks installed on each node of the
network|5].

Since time information plays such an important role in the scenario of 5G
telecommunication networks, it represents a security asset to be protected against
every type of attack that could undermine time distribution [22]. Among all the
possible kind of attacks, hardware-based, network-based and time protocol-based
attacks, the ones on which this thesis focuses on are the software tampering attacks:
these kind of attacks aim to gain access into the targeted machine, usually a node
of the distribution network, and modify configuration files or executable stored in
the machine or to download malicious code.

The goal of ROOT is not necessarily to prevent these attacks from happening
but to detect when they happen and identify the point of failure in the network in
order to limit the damages by isolating that infected node: to do so, the remote
attestation process is used. It consist in an administrator willing to attest the
trusted status of a remote machine, verifying that the software running on it and
its configuration files are the expected ones. A fundamental component of this
process is the Trusted Platform Module (TPM) that is an inexpensive chip
that can perform cryptographic operations. The reference software for Remote

2

Attestation is Keylime, which is an open source framework based on roles like the
Verifier, the Tenant and the Registrar.

The objective of the thesis is to create a testbed composed by several nodes,
each of which has a modified version of Keylime running on it, and to carry out the
remote attestation process simultaneously on every node created. In doing so the
goal is to verify that, despite the delay introduced by the RA process, the require-
ments of precision and accuracy of the time information for a 5G telecommunication
network are met.

Contents

1.1
1.2

2.1
2.2

3.1
3.2

Introduction

Problem statement

Objectives

Trusted Computing

What is Trusted Computing? .
Trusted Platform Module . . .
2.2.1 TPM 2.0 - Architecture
222 TPM20-TSS
2.2.3 TPM 2.0 - Roots of Trust

2.2.4 TPM 2.0 - Keys Hierarchies

Remote Attestation

Integrity Measurements
Remote attestation
3.2.1 Activation of credential .

3.2.2 Attestation process . . .

The ROOT Project

4.1 GNSS-based time synchronization solution

4.1.1 The GNSS-based solution

architecture

4.2 Attacks against GNSS-based architectures
4.2.1 Classification of attacks against GNSS RF Spectrum

5.1
5.2
2.3
5.4

4.2.2 Classification of attacks against the Distribution Network . .

The Keylime Framework

Background
Design
Keylime nodes’ architecture . .
Keylime and the ROOT project

20
20
25
26
28

31
31
32
34
34
35

6 Keylime Continuous Remote Attestation of a physical node with

a physical TPM 50
6.1 Prototype 50

6.1.1 Prototype bootstrap process with u-boot 51
6.2 Architecture of the proposed solution 54
6.3 Modifications made on the Keylime Framework 56

7 Keylime Continuous Remote Attestation of a physical node with

a TPM Simulator 59
7.1 Devices involved in the analysis 59
7.1.1 TPM2.0 Emulator and absence of the CRTM 60
7.1.2 TABRMD : Access Broker and Resource Manager Daemon . 61
7.1.3 IMA and TPM2.0 Emulator 64
7.2 Architecture of the solution 65
7.3 Modifications made on the Keylime framework 67

8 Keylime Continuous Remote Attestation of the ROOT infrastruc-

ture 70
8.1 Description of the proposed Architecture 70
8.2 Modifications made to the Keylime Framework 72
8.3 Attacks to the testbed and response from the framework 75
8.4 Tests and performances 77
8.4.1 Performance evaluation 79

9 Conclusions and future works 83
Bibliography 85
A Prototype characteristics 88

B Keylime installation on a platform with a physical TPM installed 90

B.1 Keylime Trust Agent Installation 90
B.1.1 Tpm2-tss. e 91
B.1.2 Tpm2-abrmd L o 92
B.1.3 Tpm2-tools 93
B.1.4 Installation of the Keylime Agent 94

B.2 Installation of the Keylime Tenant, Keylime Verifier and Keylime
Registrar framework on one single node 95

B.3 Launching Keylime and starting the attestation process 97

5

C Keylime installation on a platform without a physical TPM and

the abrmd installed 99
C.1 Keylime Trust Agent Installation 99
C.1.1 Tpm2-tss. o o o o 100
C.1.2 Tpm2-tools 101
C.1.3 TPM 2.0 Emulator 101
C.1.4 Enabling IMA 103
C.1.5 Installation of the Keylime Agent 103
C.2 Installation of the Keylime Tenant, Keylime Verifier and Keylime
Registrar framework on one single node 105
C.3 Launching Keylime and starting the attestation process 107

Chapter 1

Introduction

1.1 Problem statement

The birth of new technologies in the field of telecommunications networks, like 5G,
brought to life lots of projects trying to exploit those novelties. In this particular
context the ROOT project came out, trying to combine both the new 5G network
and the benefits brought by the Galileo GNSS system. The idea of this project
is to obtain a better distribution of the time through the network, in terms of
accuracy, trying to build an high-precision synchronization based on Galileo, and
in particular on its authenticated signals.

The most relevant aspect that 5G introduced with respect to timing and syn-
chronization is that it opens to the possibility of building telecom networks that are
much more resilient, bringing an increased level of robustness to the GNSS-based
timing sources [1]. This purpose is achieved passing through 4 pillars:

e 5G telecom networks: they introduced more stringent requirements to time
and phase synchronization. These requirements are satisfied by the use of
Distributed Granmaster Clock(D-CMC);

e Reliable GNSS receivers: new type of receivers are employed in the building
of the network providing much more security, in particular against jamming
and spoofing attacks, being able to work at different frequencies;

e New PTP mechanisms: a new protocol for a more accurate long-distribution
of time is used, WR~PTP. This protocol has an accuracy of nanoseconds and
a picoseconds precision of synchronization by extending the PTP protocol
[21];

e Network security: in order to verify the trustworthiness of the nodes of the
network, integrity check and remote attestation mechanisms are introduced
relying on trusted computing. Time becomes an important security asset and,
sure enough accordingly to Guy Buesnel, a PNT security technologist:

Poor understanding of network timing can create big risks for or-
ganisations, especially if they are managing critical infrastructures
that nations rely on.

Introduction

The work underlying this thesis is all about the fourth pillar and in particular
is focused on the remote attestation process to be done over the GNSS receivers
and the related management nodes.

The ROOT project aims to bring security in the whole network, starting from
the moment in which the time information is generated until the moment in which
it is received and elaborated, so working in a dividi et impera scenario, just focusing
on the computation made on a single receiver, it is possible to assume that the time-
related data that reaches the receiver is the original one, which means that it wasn’t
tampered with from the satellite to the device. Assuming this, what has to be done
is to verify that the node, which is going to make some computation based on the
time, behaves as expected and that the software running on it and its configuration
are correct. This process is called Remote Attestation and can cope with attacks
targeting the software but is ineffective with attacks aiming the hardware. The
framework that will be used in order to perform this remote attestation process is
Keylime: an open source framework thought for distributed infrastructure.

In the next chapters the concepts of Trusted Computing, Trusted Platform Mod-
ule and Remote Attestation will be introduced, since they represent fundamentals
concepts to better understand how the reliability of a device can be assessed.

1.2 Objectives

The main objective of this thesis is to illustrate the functioning of the Keylime
framework, trying to explain the reasons why it was chosen to implement the attes-
tation process in this particular scenario, outlining its strengths and the features
that makes it perfectly suited for the context of the ROOT project.

Once the framework will be described, it will be possible to understand that
ROOT’s specific architecture, and in particular the devices that compose it, re-
quire some modifications to the code in order to have it working properly in this
scenario. The main problem will be identified in the low performance devices that
make up the architecture: these are simple devices that very often have neither
a physical TPM nor the support for the installation of a resource manager or an
access broker. This lack of resources bring us to the modification of the framework:
the goal of this modifications is to overcome both the absence of a way to manage
the small memory available inside the TPM and the absence of communication
between the TPM Emulator and IMA.

Once the necessary modifications have been defined to make up for these short-
comings, the final objective is to ensure that the framework, running a single dae-
mon, can simultaneously certify both devices with a physical TPM on board and
devices with a TPM emulator. This is very important because the ROOT project
architecture contains both the kinds of device and it is necessary that they are
attested by the same process, without introducing excessive performance penalties
for Keylime.

Chapter 2

Trusted Computing

2.1 What is Trusted Computing?

The concept of Trusted Computing (TC) includes several cybersecurity key ideas
such as ntegrity, authenticity and confidentiality; in a more generic way it is linked
to the desire of being able to determine whether a system can be considered trusted
of not. It first came out in the middle of 80’s, when the concepts of Trusted Com-
puting Base and Security Parameter were presented for the first time in a paper
published by the Department of Defense (DoD) [3]: these ideas were ahead of the
time, since the security of the years was mainly a physical security. When Inter-
net began to spread in the 1990s and became more easily accessible, those ideas
started to be a matter of concern and so the big players in the market ran for cover
with software solutions to protect PCs. Of course these kind of solutions were not
enough: software solution by their own were not sufficient to guarantee the trusted
state of a Personal Computer since they are to easy to compromise. Hardware
solutions were needed

This conviction was the starting point for the work of the Trusted Computing Group
(TCG) since it was born in the first years of the new century. TCG is an organiza-
tion that promotes the development of tools and standards for the trusted comput-
ing technology and defines the guidelines for the concept of Trusted Platform, which
heavily depends on the Trusted Platform Module (TPM), an extremely important
chip presented by the TCG in the August of 2000 and now widely used. This
chip is the key point of the Trusted Computing System since it conveys important
mechanisms and features, like the secure storage, the chain of trust, cryptographic
operations, secure authorization and roots of trust. Since it is an hardware compo-
nent, it is not vulnerable to the same kind of breaches that a software component
is and, most importantly, can assess the status of the operating system at boot-
strapping time. Over the years, several versions of the TPM have been released,
each one trying to improve the previous with new features: in 2002 version 1.1b
came out, in 2004 version 1.2 was released and was a huge success and within a few
years was installed on practically every computer produced. Starting from 2005,
with the advent of the first attacks against SHA-1, the TCG began to implement
version 2.0, since the previous version was heavily based on SHA-1.

9

Trusted Computing

Following the Trusted Computing Group definition, a Platform can be consid-
ered trusted if its behaviour is the expected one, of course this is a necessary but
not sufficient condition for trustworthiness. It’s also necessary to determine the
identity of a platform, taking into account its software and hardware components,
that should behave in a predictable way.

Going deeper in the concept of trusted platform, the TCG defines some princi-
ples a system should be compliant with to be considered trusted, and these princi-
ples are [7]:

e Secure Input and Output: All the information that are exchanged through
the bus, since it is shared, should be ciphered.

e Memory Curtain: There are some kind of information, like private or symmet-
ric keys, that should stay private and not accessible even by the Operative
System. So there should be a kind of strategy, whose implementation de-
pends on the vendor, to keep these information isolated in the memory and
not accessible if not authorized.

e Endorsement Key: 1t is an asymmetric cryptographic key pair which is stored
in the TPM by the manufacturer at creation time. It never leaves the TPM
and cannot be accessed externally but can be only used in signature and
encryption operations.

e Sealed Storage: This is a particular type of encryption which is not only based
on the encryption key but also on the status of the system, both software and
hardware. In this way is it possible to decrypt a portion of the memory only
if you have the key and the system is in the same status that it had when
encryption was made.

e Remote Attestation: It is a process whose goal is to verify remotely that an
authenticated system is not compromised, that it was not tampered with and
that its behaviour is the one expected.

o Trusted Third Party(TTP): This is a key concept in the TCG specifications
since a TTP allows a verifier to access the identity of a platform without
exposing any private information of the TPM or of the platform hosting it.

2.2 Trusted Platform Module

Created in the 1990s by a group of engineers which became later the starting point
of the TCG, the Trusted Platform Module is a cryptographic coprocessor that is
now present in almost all devices. The idea behind this chip was to answer to
the great spread of personal computers and electronic devices of those years, in
particular because until that moment security had never been an issue: TPM was
the way to protect device’s cryptographic assets [10]. Among all the features it
has, the most relevant one, for the remote attestation process, is that the TPM
must be secure itself, in this way it can be seen as a Root Of Trust being able

10

Trusted Computing

to provide confidentiality, protection and integrity even if it’s not robust against
hardware-based attacks. Alongside with this feature, the other key functionality
of the TPM is identification, which means it is able to manage identity keys, in
particular its endorsement key pair that represent its own identity: this is crucial
in the remote attestation process since each TPM is responsible for report its own
state to the verifier, and this is done with a signature made with the EK.

There are two major versions of the TPM itself, the 1.2 and the 2.0 (from 2003
and 2014) where the 2.0 is the evolution of the 1.2 and alongside with some new
features, it introduces much more cryptographic algorithms, especially because of
the weaknesses of SHA-1. For these reasons the TPM 2.0 and its characteristics
will be presented in the following.

2.2.1 TPM 2.0 - Architecture

Probably the best way to understand the capabilities of the TPM is to study its
structure in order to understand what parts it is made of and what each part does.

Non-Volatile Memory Volatile Memory(RAM)

Platform Configuration Attestation Identity Key

Endorsement Key (EK) Registers (PCR)

Storage Root Key (SRK) 1/O buffer Session Storage

Internal BUS H H

Cryptographic Subsystem

Pseudo Random Number
Generator (PRNG) InEs Ee
Power
Detection Gl
Symmetric Cryptographic Asymmetric
Engine Cryptographic Engine

TPM

Figure 2.1. TPM 2.0 Internal architecture (source [11] [12])

TCG specifications report that it has several components and they are all con-
nected by an internal bus. The communication between the system and the TPM
itself is made through the I/O Buffer: here the system places commands data
for the TPM and the chip puts responses data for the external components. All
commands that are inserted in the buffer, which have a well-defined structure, are
validated and an authorization check is made on the memory location that has to
be accessed. This last check is done by the OPT-IN component, which maintains
flags to manage access rights and TPM routine.

Probably the most important components for this thesis are the Platform
Configuration Registers (PCR) which are shielded locations of memory used
to validate the measurements made by the system to its own internal components.
These registers are used in the field of remote attestation since they contain hashes

11

Trusted Computing

which are measurements of software components of the whole system. The number
of PCR is usually 23/24, but is actually variable depending on the vendor specifi-
cations, and each of them is used to store the hash of a specific part of the system,
as specified in the table 2.1 [6]

PCR Number Allocation
0 BIOS

1 BIOS Configuration
2 Option ROMs

3 Option ROMs configuration
4

5

6

MBR (Master Boot Record)
MBR Configuration
State transitions and wake events

7 Platform manufacturer specific measurements
8-15 Static Operating System

16 Debug

23 Application Support

Table 2.1. List of PCRs and the corresponding content

As already said, the content of these registers is the measurement of some piece
of software, regular file or configuration files, done through an hash; the peculiar
thing about PCRs is that their content cannot be modified if not at reboot time
or with a particular operation called extension. The value is cleared every time
the TPM is restarted, usually the value is set to all zeros, and it cannot be erased
of modified manually, extension is the only operation that can be done. This is a
one-way operation that involves the hash function

PCR new value = Hash(PCR old value || data to extend)

this means that, given the prc new value, is not possible to go back to its old
value. The content of PCRs can be simply read internally or externally to validate
the state of the system, usually through an operation of quote which is part of the
process of the remote attestation. PCRs can be collected in banks, each bank of
PCRs is extended with the same Hash algorithm so a bank is identified by the Hash
algorithm it uses.

As pointed before, one of the fundamental feature of the TPM is to manage
identity and to do so it needs to store cryptographic keys: they are stored in the
Non-Volatile Storage. This memory keeps two long terms keys, the Endorse-
ment Key(EK) and the Storage Root Key(SRK): the first one is used in some
critical tasks like the remote attestation process, the second one conveys the secure
storage into the TPM and is strongly linked to the TMP users in the sense that
changes every time the Take Qunership procedure is executed (a new user takes
the ownership of the TPM). Some NV memory can be also available for allocation
and to store owner authorisation data, like the owner-password.

12

Trusted Computing

The TPM also contains a Volatile Memory that holds transient data, which
can be of various type:

e A part of the TPM RAM is dedicated to the I/O buffer;
e PCRs are stored here;

e Object store: TPM RAM also contains data and cryptographic keys that can
be passed as parameters to commands like TPM2Load() or TPM2CreatePrimary();

e Session Store: TPM create some sessions to build a queue of operations. Each
session has some data associated with such as keys or some encrypted data.

A Power Detection Module manages the TPM power states (the only two
available states are ON and OFF). Following the TCG specification, the TPM
should be notified whenever the power states of the platform changes.

The last component, or better group of components, is the Cryptography
Subsystem, that implements all TPM’s cryptographic functions. It is possible to
identify 4 major components of this group:

e Hash Engine: this is probably the most relevant one for the remote attes-
tation process since it s the one that implements the expand function. In
any case, hash functions may be used also in other operations, even by ex-
ternal entities. Specification by the TCG requires SHA-1 and SHA-256 to be
available.

e Asymmetric cryptographic engine: a TPM must be able to perform
RSA cryptographic operations such as the digital signature, since they are
necessary for identification during the reporting phase of the RA process, but
also encryption, decryption and obviously verification are supported. To be
compliant with the specification, TPM has to support RSA-2048, ECC using
the Barreto-Naehrig 256-bit curve and the NIST P-256 curve.

e Symmetric encryption engine: Symmetric operation are also used by
the TPM that could need to encrypt some command parameters. The only
mandatory block cipher mode according to specifications is CFB while the
required algorithm is AES with a key of at least 128 bits.

¢ Random Number Generator: it is the source of randomness of the chip,
used for gathering entropy to create keys or nonces. It actually is a Pseudo
RNG (PRNG).

Now that the internal structure of the TPM has been described, it is supposed
to be easier to understand the security capabilities it has and the problems it tries
to address |10]:

e Identification of devices Thanks to the Endorsement Key and to the RTR,
the TPM conveys a new and more secure method, that differs from the MAC
of IP addresses, to identify a node in a network;

13

Trusted Computing

e Secure Generation of Keys Due to the presence of the Random Number
Generator inside it, the TPM can also provide a way to generate keys securely;

e Secure storage of keys As we saw, the TPM contains some shielded loca-
tions of memory, it is possible to store inside it several object. Since these
shielded locations are accessible only through Protected Capabilities, data
stored within are protected from unauthorized deletion, modification or dis-
closure;

e NVRAM storage The presence of a Non-Volatile memory allows the TPM
keep a copy of the EK certificate without the risk of loosing it;

e Integrity platform attestation Probably the most relevant feature for this
thesis scope, the TPM conveys an hardware-based solution to attest the in-
tegrity of a platform, avoiding the classical problems of a software-based so-
lutions.

2.2.2 TPM 2.0 - TSS

User-space Application

A

¥
Feature APl (FAFI)

A A 'y
L L v I
Enhanced AFI (EAFI)
Y [y Iy

L J L J v I

System AP (SAPI)

TCTI TCTI
TAE I RM
TCTI TCT
Simulator Driver TPM2.0 DRIVER
TPM2.0 Simulator TPM2.0 Hardware

Figure 2.2. TSS structure (source [13])

In order to make the interaction with the TPM more usable and intuitive, the
TCG came up with the implementation of the TCG Software Stack (TSS) which
provide some standard APIs for accessing the functions of the TPM easily. In this
way developers can use this software specifications to create client applications call-
ing the core functionalities of the TPM, like the primitives for key generation or
the collection of the measurements, in a trusted environment without knowing low

14

Trusted Computing

level details of teh TPM. The main goal is to provide a standard set of APIs for Ap-
plication vendors to use TPM which can be unrelated to the underlying hardware:
by writing specifications considering an abstraction of the hardware differences, is
possible to have APIs working regardless of the hardware, OS or environment. TSS
is composed by several layers to be scalable both for high performance end devices
and low end systems.

Every layer of the stack has a different level of abstraction, the closer to the
application the higher the level of abstraction:

e Feature API (FAPI): the first layer after the application, the one with the
higher level of abstraction which provide the 80% of the APIs needed by the
programmer. Since the high level of abstraction, the number of parameters
needed and the number of calls to be done are reduced: this provide a way of
programming using the TPM that is as easy as possible.

e Enhanced System API (ESAPI): this is an intermediate level whose goal is to
reduce the complexity required to call the system level APIs from the next
layer (the SAPT), but still allowing the call to cryptographic operations(like
the HMAC, encryption or decryption operations) [14]. Even if the ESAPT is
much easier to use than the SAPI, it still requires a in-depth understanding
about the TPM2.0 interface.

e System API (SAPI): this layer provide a complete mapping of the TPM2
commands, making available to the programmer the access to the whole set
of functionalities of the cryptographic coprocessor. It implements the re-
maining 20% of the APIs with particular attention to the low level calls, but
a deep knowledge of the TPM structures is required. Both synchronous and
asynchronous API are exposed.

o Marshalling/Unmarshalling (MUAPI): This API provides a set of marshalling
and unmarshalling functions for all data types, operations that are needed
both by the SAPI and the ESAPI, that’s way it has it’s own layer.

e TPM Command Transmisison Interface (TCTI): This is a linking layer be-
tween the hugher and the lower level of the stack, it doesn’t expose any API
but handles all the communication to and from the lower layers of the stack,
providing a standard interface to transmit/receive TPM command /responses.

e TPM Access Broker (TAB): this is the layer that manages the accesses to the
TPM handling multi-process synchronization, serving one process at a time,
with no interferences from others.

e Resource Manager: since more than one process can interact with the TPM
at the same time, a layer that can act as a virtual memory manager is needed.
The TPM has a really limited amount of memory, so the resource manager
is the component that swaps in and out different sessions and objects related
to different processes when the TPM passes from serving the request by one
process to serve the request from another one.

15

Trusted Computing

e Device Driver: it is the layer directly connected to the TPM and is the OS-
specific driver that handles all the direct communication with the device, like
the handshake. It sends requests to the TPM and receive responses to be sent
to higher level.

2.2.3 TPM 2.0 - Roots of Trust

As already stated, one of the main ideas behind the creation of the TPM was the
desire of being able to create a Chain of Trust starting from a Root of Trust, a com-
ponent that can be considered trusted since its misbehaviour cannot be detected:
the TPM is the solution to this. A Root of Trust is the minimum set of system
components that conveys trustworthiness to a platform and its strongly bounded
to the concept of Trusted Building Block.

Since the characteristics that affects the trustworthiness of a platform are multiple,
it would be more appropriate to talk about roots of trust where each one of them
is the starting point for one of the parts in which the process of trust attestation
is divided. According to its specifications, the TCG group considers a platform
trusted if it has three roots of trust, which are:

e Root of Trust for Measurement (RTM);
e Root of Trust for Storage (RTS);
e Root of Trust for Reporting (RTR).

The only thing that can be verified about a root of trust, since it is trusted by
default, is its implementation that can be properly verified and certified as trusted.

RTM

The first phase of the attestation process, whose goal is to define a platform as
trusted, is the integrity measurements, which is the concept behind the con-
struction of the chain of trust: every component measures the next one (Transitive
Trust). The role of the RTM is to make the needed measurements and to update
the PCRs through the extension operation: in this way information are passed to
the RTS. The problem here is to define the first ring of the chain of trust: the TCG
identifies the Core Root of Trust for Measurement (CRTM). The RTM is actually
the computing engine of the platform (generally the CPU) and it is controlled by
the CRTM, which is outside the TPM, usually in the BIOS or directly in the moth-
erboard, and contains an immutable piece of code (the RTM code): it is the first
set of instructions executed when a new chain of trust is created and its goal is to
check the system environment at boot time in order to attest the initial trust state
of the system [4].

e Static-RTM: every time we want to initialize a root of trust, a reboot of
the system is needed. When the system is rebooted, once the boot phase is
completed, it ends in a known initial state whose measurement can be checked
and validated easily, starting a chain of trust. It is called Static since the first
ring of the chain is the state at reboot time, which is immutable.

16

Trusted Computing

e Dynamic-RTM: the dynamic means that it is not necessary that the system is
rebooted to start a new chain of trust since the CPU can act as the CRTM and
protect some new portions of the memory, after they are measured, creating
a new RTM dynamically. The major advantage of the dynamic solution is
the fact that chains are much shorter, since there is no need to reboot the
system any time, and that it is possible to have intermediate trusted state to
start measurements from.

RTS

The second step of the attestation process is to collect the measurements done on
some object and store it into the PCR by performing the extend operation. The
idea is to have a shielded location of memory inside the TPM, which is accessible
only by the TPM itself and is protected by the SRK owner-bound asymmetric key
pair, that keeps integrity measurements and protects data and cryptographic keys.

RTR

The last phase of the attestation process is the reporting one. There are two
crucial points in reporting: sending the measurements taken properly and in a
secure way and being able to bind the measurements sent to TPM identity. The
RTR is responsible for this. This process represents the interaction between the
RTR and the RTS: the former has to report the content of the latter and this is
usually done by sending the digitally signed content of the needed PCRs (through
a TPM2Quote() for example). The digitally signature is the means by which we
have the binding between the measurements and the TPM identity and it is done
with the Attestation Identity Key(AIK), derived by the EK [12].

There are some key concepts around the idea of Trust which are particularly
important for this discussion:

e Trusted building Block (TBB): the CRTM and the TPM together make up
the TBB which is required to instantiate a Root of Trust;

e Trusted computing Base (TCB): is the set of components (HW and SW)
that manage the compliance to the security policies. Its peculiarity is that
it cannot be tampered with by an external component and the TPM can be
configured to not start if the TBB is not initialized in the correct way.

o Trust Boundaries: the TBB together with the Root of Trust build the trust
boundary. It can be extended, if needed, when the CRTM needs to use
another element and before using it, it should be trusted: to have this a
measurement, operation is done and if it is successful the trust boundary is
expanded.

e Transitive Trust: this is the operation underlying the attestation process and
integrity measurement. A trusted component, that is the root of trust in
the first step, can measure another component and once it has verified that

17

Trusted Computing

the measurement is the expected one, transfers its trustworthiness to that
component, that in turn can measure another component, creating a chain of
trust and expanding the trust boundary.

2.2.4 TPM 2.0 - Keys Hierarchies

The word hierarchy refers to a set of objects that are managed as a group. With
a view to trusted platform, a key hierarchy is a collection of objects like a seed,
primary keys and proof values. The seed is probably the most important element
of the hierarchy since it is its starting point: it is a large random number that never
leaves the TPM from which primary keys are generated. From these primary key
other objects are derived, the proof values, which are used by the TPM to attest
its identity when it sends some data. There are three types of persistent hierarchies
(they have a persistent seed and primary keys remain the same unless a reboot of
the TPM is performed) that are supported by the TPM:

e The platform hierarchy: used to ensure the integrity of the system firmware;

e The storage hierarchy: used by the platform owner for a variety of non-
privacy-sensitive purposes;

e The endorsement hierarchy: used when the user wants to ensure the in-
tegrity of privacy-sensitive data, attesting TPM identity since its primary
keys are guaranteed to be constrained and unique to each TPM by the man-
ufacturer. The keys of this hierarchy are also known as Endorsement Keys
(EKs) and are created starting from the unique endorsement seed contained in
the TPM. These keys are also used in critical tasks as the remote attestation
process.

The EK is never erased, never leaves the TPM and in order to be more protected

is used to generate the Attestation Identity Key (AIK), that is a kind of ephemeral
key pair that can be created many times to prevent traceability, that is the actual
key used to digitally sign the information sent by the RTR (through the Quote
operation). Usually, to attest the actual identity of the platform, together with the
digitally signed digest, an Endorsement Key certificate is sent along with the EK
certificate.
The Endorsement Hierarchy and the EK have a key role in the identification of a
platform: the RTR, and the reporting phase itself, are meaningless if not strictly
linked to the TPM they refer to. In this sense it becomes really important to find
a way to securely identify a TPM (which means a RTR) and to link the RTR to
the RTM that performed some measurements. This is all about the need for Secure
Identity, that is a proof of the physical bounding between the RTM and the RTR
and is needed to be sure that a particular quote was sent by a well defined TPM.
This is achieved through the EK, since it is almost impossible to have two TPM
with the same endorsement seed (that means same endorsement keys), and also to
the EK certificate, released by the TPM manufacturer and stored inside the TPM
itself.

18

Trusted Computing

There is another type of hierarchy that is supported by the TPM, the volatile
null hierarchy whose seed is regenerated, together with the primary keys, every time
the system is rebooted; it is used when the TPM is employed only as a cryptographic
coprocessor and it accessible by anyone.

19

Chapter 3

Remote Attestation

3.1 Integrity Measurements

Starting from the already described concepts of Transitive Trust and Trust Bound-
ary 2.2.3, we can define Integrity measurement as the operation that aims to create
transitive trust through the various components of the platform. The security pillar
on which it is based is integrity of course: the objective is to be sure that the file
(executable or not) that is about to be opened is the expected one and it was not
tampered with.

We have already identified the CRTM as the root of the chain of trust, for the same
reason it is also considered as the first step of the integrity measurement process,
since it has the duty to start the bootloader and the BIOS. Once the CRTM is
executed, every object that is called next, is measured just before being accessed
and has the duty to measure the next one to be opened, following the transitive
trust concept. Every measurement has to be recorded into a PCR, performing the
already mentioned extend operation: it is performed onto the designed PCR, whose
new value will be the hash of the concatenation of its old value and the measure-
ment done on the just measured object. In this sense, the extend function is a one
way operation and cannot be undone, keeping track of all the accessed files, since
the boot of the system, inside a PCR.

So the three phases the process of Integrity Measurements is divided in are:

1. The CRTM is the trusted component by definition, the only one that is not
measured and therefore is the first executed. It is the one that measures (i.e.
computing the digest) the rest of the BIOS and of the bootloader, than the
control is passed to the latter |12];

2. The boot loader computes the digest of the OS kernel and any additional
code that is needed, and just before executing it the proper PCR. is extended
with the digest evaluated;

3. Once run, the OS kernel measures whatever application, executable, config-
uration file and any other data that is accessed by the user and, once the
measurement is extended into the PCR, the process goes on with the next
object.

20

Remote Attestation

These three steps can be divided, following a temporal logic, into 2 groups: the
first two are related to what happens before the OS starts, while the last one is
about the operations performed by the OS. The first group is the so called Measured

Boot, while the second one is handled by the Integrity Measurements Architecture
(IMA).

Measured Boot

The Measured Boot is the first part of the integrity measurement process. It consists
in the measurement of all the files (both executable and configuration ones) that are
involved in the bootstrapping phase of the system: all these files are measured and
the resulting digest is stored in a specific PCR (following the guidelines contained
in Table 2.1). The order in which files are accessed and software components are
called in this phase is static, which means that the order is always the same, as
well as the PCR where each measurement is stored (Figure 3.1):

Load Core BIOS

CRTM measures Core BIOS — PCR 0: CRTM, Host Platform Code

CRTM measures Rest of BIOS —
__={ PCR 1: Host Platform Configuration

CRTM measures Motherboard
Configuration Settings

Load Rest of BIOS 7

BIOS measures ROM Firmware i 7] PCR 3: UEFI driver configuration and data

1
BIOS measures ROM Firmware Config [PCR 4: UEFI Boot Manager Code
Load Firmware _ |
Control returned to BIOS / PCR5: Boot Manager Code config and data
BIOS measures IPL /

| PCR 2: UEFIdriver code

PCR6: Host Platform Manufacturer Specific

BIOS measures IPL Config PCR7: Secure boot policy

d IPL
Log PCR 8: GRUB commands
IPL measures GRUB Kernel command line params
Kernel Module command line params
IPL measures GRUB Config |
7 PCR9: Files read by GRUB
Load GRUB

GRUB measures files, commands and 7 PCR 10: IMA measurements

kernel command line params

Load Kernel

[Normal boot sequence

IMA measures user space app. and files Measured boot sequence

Figure 3.1. Measured Boot operations order and PCRs involved (Source:|6])

The first component to be called is the only one that cannot be measured and for
this reason the CRTM was chosen: it measures itself, the BIOS and motherboard
configuration settings, extends PCR 0 and 1 and passes the control to the rest of
the BIOS.

The BIOS has the duty to measure the ROM Firmware and ROM Firmware’s
configuration files and extends PCRs 2 and 3.

The control is then passed to the ROM Firmware and, when the BIOS takes it
back, the Initial Program Loader (IPL) is measured: usually this is the code of the
primary boot loader. The measurement of the IPL is stored in PCR 4 while its
data and configuration’s measurements are stored in PCR 5.

21

Remote Attestation

The control is then passed to the primary boot loader, that calls the secondary one
(GRUB for x86 platform): GRUB’s measurements are stored in PCR 8 together
with every operation performed by it, while any file it accesses is measured and
extends PCR9. Once the GRUB has completed its operations, the control is passed
to the kernel, and the dynamic part starts.

The result at the end of the Measured Boot is to have a chain of trust that goes
from the CRTM up to the kernel, but the validation of this chain can be done in
two different ways:

e Secure Boot : the validation of the measurements is done step by step, which
means that every time a PCR is extended the measurements done are checked
with the software signatures of the component that is receiving the control of
the platform. If the digests match, the control passes from one component to
the other, while if the measurement is not valid, the boot process is stopped.
In this way the system boots only if it is in a trust state;

e Trusted Boot: the boot process goes on as just described and it terminates
in any case, since no check is performed until it is completed. When the
system starts, its state is properly checked by a third entity which has to
verify that all the values contained in the PCRs are the expected one.

Integrity Measurements Architecture

Measured Boot is the solution that covers only the first part of the integrity mea-
surements process, the static part. When the operating system starts, there is a
great variety of application and software components that could be accessed in un-
defined order, that is why the same solution cannot be adopted for the application
layer. The transitive trust process is based on the need to know which program,
files and in general object is accessed/executed and in which order, but once the
operative system is loaded, how do we cope with the dynamic part, the application
layer?

Since the whole list of measurements is not available through PCRs that only store
a "summary" of all the values, a list of all the digests can be kept; even if it is not
mandatory, the TCG strongly recommend it without giving any specification on
the implementation. There are several ways in which this could be done, but the
most popular TCG-Compliant solutions, and also what this project relays on, is the
Integrity Measurement Architecture (IMA), that doesn’t require any modification
of the Linux operating system.

IMA is an open-source trusted computing component of the kernel integrity
subsystem which introduces hooks within the Linux kernel allowing the system
to collect hashes of files as soon as they are loaded onto the Linux system, just
before being read or executed. Once the hash is evaluated and used to extend the
PCR, it is stored into the kernel memory where it cannot be modified by userland
applications and here it can be read locally or remotely to verify its integrity [15].

IMA is a really important instrument for the trusted computing process since it
allows to extend the static measurements done starting from the CRTM and going

22

Remote Attestation

on with the BIOS and the Kernel, all the way up to the application level [16] (the
dynamic part): it provides a way to know the files accessed, the order in which
they were accessed and their measurement. This is possible since IMA maintains
a runtime measurement list and thanks to the TPM an aggregate integrity value
over this list. This list is called Measurement Log (ML) and is a collection of
Measurement FEvents (MFEs) where each event consists in the measurement of an
object. This list is protected by an hash evaluated over it that is stored in a PCRs:
an external entity can compare the content of this PCR with an hash evaluated
over the list to check that the ML was not tampered with. If list’s integrity is
verified, the third entity analyses the list entry by entry verifying the integrity of
each object.

Enabling IMA is really easy, just add the parameters ima=on ima__policy=< policy >
to the kernel command line and reboot the system, and the kernel component will
run. Once IMA is enabled and running, it won’t measure every file, unless speci-
fied, but only the files that respects the policies that can be set through the kernel
command line parameter ima_ tcb (if you want the standard ones) or by modifying
the policy file in the securityfs file system in the user space, typically mounted at
/sys/kernel/security/ima. The measure is taken after the object of measurement
is opened but just before it is run so it is not possible for it to interfere with the
evaluation of the digest.

All the measurements are stored in a list, available both in ASCII and binary,
where it is possible to find the path, and the associated digest, of all the compo-
nent that are measured. These files are called ascit_runtime_measurement and bi-
nary _runtime_ measurement and are both available at /sys/kernel/security/ima/,
and their structure is the following one

PCE 3HA-1 Template Hash

0 dibb5%e83c3iTlbaéfiad

SHA-1 File Data Hash Filename

ad491619524786124f% ima 365aTadf8faB3608d381d97T75ec2£29563c2d0bd boot_a

Figure 3.2. ascii_runtime measurement file structure

where each column has a particular meaning:

e The first column from left to right is the PCR in which the digest is stored.
IMA maintains an aggregate of all the hashes evaluated and usually the PCR
in which this value is saved is the number 10 (like in this example);

e The second one is the template hash of the entry, which is a hash that com-
bines the length and values of the file content hash and the pathname.

e The third column represent the template that registered the integrity value
(ima in this case).

e The hash generated from the content of the file measured is contained in the
last but one column;

23

Remote Attestation

e The last column is the file path name of the file measured.

The first entry of this file is always the boot aggregate (the static part of the
attestation process): it is evaluated over the content of the PCRs from 0 to
7. If this aggregate cannot be evaluated (e.g. the TPM is missing) its value
is set to all-zeros. This aggregate value is calculated by reading the values
inside the PCRs from the bank whose hash algorithm is the one specified in
the kernel command line parameter sma_ hash. The default hash algorithm is
SHA-1 and can be changed to SHA256 by booting with ima_hash=sha256.

IMA’s ML is generally used by an external entity (the verifier) that wants to
verify the integrity of the system and its components: to do so the Validation
Mechanism of the ML has to be performed Figure 3.3. Tt starts with the check
of the hash evaluated over the whole list: it the value is correct, the verifier can
be sure that the ML was not tempered with and the process can continue. The
verifier keeps a whitelist containing all the trusted values (hashes) of the files that
can be accessed and measured, so when the validation moment comes, he starts
checking entry by entry: if the path inside the ME is contained into the whitelist,
and the corresponding measurement is also contained into that list, the validation
is successful. If the path is not found, it means that an untrusted file (it may be
new or it may never have been opened before) was accessed and the validation fails.
While if the hashes don’t match, it means that the file has been modified, by its
owner or by an attacker.

Whitelist

IMA Measurement Log Event name Trusted digests

16 3ed48cc...7ab71d8 ima-ng shalsﬁzll?chda_ﬁfrbnﬂt_aggregate boot_aggregate |12Tde52?Edcccah"4
18 8af71lbb...10aaebc ima-ng 5hal§ﬁ:3ff?ﬁb32..i Jinmit /init |3Ff?5b32?89ccbad..4

547aablb7249881F. ..
10 9aa23f0...16499dd ima-ng ‘shalsﬁ:zie??al..ﬁ /bin/sh /bin/sh ::ggg;;:::izig':;:::
18 c7l8eed...a55cd49%8 ima-ng sha25e:cled45... [fetc/ld.so.cache
18 89@1ddf...5547acc ima-ng sha256:1bdaa... Sfconffarch.conf
1@ 89@1ddf...55%4%acc ima-ng sha256:3b3lc... JSusr/bin/rm
18 89@1ddf...554%acc ima-ng sha256:3b31c... JSfusr/bin/cp

Figure 3.3. Validation Mechanism for the Measurement List

24

Remote Attestation

3.2 Remote attestation

When you find yourself in a cybersecurity environment, it is very common to need
to be sure that a system can be considered trusted, that all the software components
that are running or the ones already run were not modified, that its status is the
expected one and its configuration is correct. But the concept of attestation gains
much more sense and importance when there is an external entity, like a network
administrator, who wants to be sure that a particular node of a network is secure,
and not only the platform itself: in this case the process of attestation is called
Remote Attestation.

There are several kind of attestations but the most used and also a really simple
one is the Attestation of the platform which is done using the content of the TPM’s
PCRs. Tt is a simple method proposed by the TCG and is based on a digital
signature made with the ATK on some data TPM-related: the content of the PCRs.
The operation performed is called TPM2_Quote. Along with the digital signature,
a certificate validating the AIK used to sign the response is requested, in order to
be sure that the AIK is owned by a specific TPM: the EK certificate is also sent in
the TPM2 _Quote.

In the remote attestation process it is possible to identify several roles, but the
most important two are the Node, also called the Attester, and the Verifier. The
Verifier is the one that wants to attest the trusted status of a node of the network,
to do so it sends a challenge query, usually with a nonce in it for the freshness
of the response, that is the TPM2 Quote. The Node answers to this request by
reporting its boot state, its configuration, its status and everything it’s linked to
its own identity.

The concept of identity is really important and needs to be better explained:
the identities of a platform and of its TPM are a key point in the retorting phase
of the attestation, since the Verifier needs to be sure that the response to the quote
is coming from the targeted machine. Keys and certificates are the solution to this.
As it was already pointed out, the TPM contains several key hierarchies and the
one involved in the RA process is the Endorsement Hierarchy (EH). As each of the
hierarchies, also the Endorsement one has a seed, a large random number which
cannot be changed by the user, that is never exposed outside the secure boundary
and from which the primary key, that is called Endorsement Key(EK), is derived.
Primary keys like EK are generated using a FIPS-approved key derivation function
(KDF), which hashes the primary seed together with a key template. The template
for key generation is divided into two parts: the first part contains a description
of the type of key that is needed (symmetric or asymmetric, for signatures or for
encryption), the second part is used to introduce some entropy into the KDF.
Usually the latter is set to all zeros as the TCG specifies, since we use TPM’s
source of entropy.

Starting from the version 2.0 of the TPM, the process of the generation of
the EK is repeatable, this means that severals EKs can be created, by using the
TPM2 Createek command, but if the same seed and tampleate are used, the same
key will be generated: the seed is the real cryptographic root. The seed is created
by the manufacturer that can also create the EK pair: the private part of this pair

25

Remote Attestation

never leaves the TPM while the public part is put into an Endorsement Certifi-
cate, which can be created with the command TPM2 ActivateCredential. This
certificate attest the trustworthiness of that EK public part and also associate that
key to an authentic TPM manufactured by the vendor. Different types of primary
keys can be created (signing, storage, encrypting) using different algorithms (RSA,
ECC, SHA-1, SHA-256) and they don’t need to be stored in the NV-Storage of the
TPM since the procedure of derivation is repeatable and the same seed with the
same template results always in the same Key-pair.

So the EK and its certificate are extremely important since they are unique
to each TPM constituting an important asset for privacy: for all these reasons
they are used in a limited amount of cases and are used just as encryption keys,
not signing keys. To obviate this, an Attestation Identity Key (AIK) is created
starting from the EK and is used as signing keys: a user can decide to protect
its privacy, avoiding traceability, by creating a different AIK for each one of the
applications he is talking to. Then for each of these keys a certificate is created,
attesting that the key is owned by a TPM that is authentic and manufactured by
a certain vendor.

3.2.1 Activation of credential

The process of creating a key chain when the primary key is just used as an encryp-
tion key is not straight forward, but follows a process that is called Activation of
credentials which also includes a Privacy Certification Authority(CA) to certify the
attributes included in key’s certificate: a third party is needed because it should
be impossible to find any link between the several keys created by a TPM and
the TPM itself. This operation guarantees that the attestation key belongs to a
TPM with a certified primary key. So the primary key, that is the EK, is only an
encryption key, not a signing one but signing keys are required so secondary keys
are created (like AIK).

The CA creates certificate for those secondary keys that are then encrypted with
the primary key public part and decrypted by the TPM with the corresponding
private part, the steps are the following [10]:

CA SIDE

1. The TPM sends to the CA the certificate of the primary key(EK), that is the
one inserted in the TPM by its manufacturer, and the features the credential
(AIK) the TPM is requesting should have;

2. The CA verifies that the certificate is valid, usually checking directly with
the manufacturer whether he has ever produced a TPM associated to that
certificate;

3. The CA generates both a credential for the Key(AIK) and issues a certifi-
cate with the attributes specified in the first message. A secret, usually a
symmetric key, to protect the credential is created too;

26

Remote Attestation

1. EK certificate, Public Area of credential

Verify the certificats

3
Generate a credential,
a certificate for
redential and a secrej
o protect credenti

4
Generate a seed to
be used as input in

5.
Encrypt Seed with
EK public

6.
Seed and name of the,
AlK are pufin a KDF
to obtain a Symmedtric
Key and an
HMAC key

7 Enc{EK, Seed), Enc{Sym key, Secret), Enc{Secret Credential)

1.
Decrypt Seed with
E¥ private

2
Seed and key's
name into KDF to
pbtain Sym Key

3.
Check secret
integrity and

4
Decrypt credential
with Sym key

Figure 3.4. Description of the activation of credentials protocol

The CA generates a seed as input of a KDF, the seed it’s just a random
number if the key is an RSA key, or something more complicated for an ECC
key.

The seed is encrypted with the public part of the primary key(EK)

The Seed, together with the name of the key, is used in a TCG-compliant
27

Remote Attestation

KDF to generate a symmetric key and an HMAC key. The former is used to
encrypt the secret, the latter conveys integrity.

7. The secret is encrypted with the Symmetric key just obtained and an HMAC
is evaluated on it with the other key. The CA sends the encrypted seed, the
encrypted secret with its integrity value and the credential(ATK) encrypted
with the Secret.

TPM SIDE

1. The seed is decrypted using the private part of the Primary key(EK)

2. The seed and the key’s name(AIK) are the input of the same TCG-compliant
KDF function to obtain a symmetric encryption key and HMAC key. If the
seed and the name are correct, the keys obtained are the same that were
obtained by the CA and the TPM obtains the symmetrce key too.

3. The two key are used both to check the integrity of the secret through the
HMAC and to decrypt it. So, if the integrity check is passed, the TPM obtains
the secret.

4. The credential is decrypted with the Secret and it is activated.

So the result of this process is to obtain encrypted-user-data(seed) and a secret-
encryption-key (secret) wrapped together with the integrity value and we also have
the guarantee that the credentialed-TPM-object(AIK) is loaded on the TPM along
with the public-key-object(EK), everything starting from the certificate of the EK
and a set of desired features for the AIK.

3.2.2 Attestation process

Once the credential has been activated, before the attestation process can start, a
few steps need to be taken. First of all the verifier needs to store TPM’s public
part of the Endorsement Key and of Attestation Key together with their certificates
in its local database, where we can also find some policies including the expected
initial state of the Attester(i.e. the boot aggregate). All these measurements are
stored in the local database and are used as reference in the process of attestation
to determine the good state of the system (these are the Golden Values inside the
whitelist). In order to be properly attested, a system needs to implement the so
called measured boot that, if enabled, makes the system measure every software
image during the whole boot process: in this way at boot time every software is
measured and this value is stored both in a PCR, through the extension operation,
and in an event log file where we can find one entry for each software measured.
This event log is the file that was specified in section 3.1, that is /sys/kernel/secu-
rity /ima/ascii_runtime measurements.

After all these requirements are set up, the process can begin and this usually
happens with the Verifier starting it: it could be done after a particular event

28

Remote Attestation

happens or after a fixed interval or time in order to periodically check the state
of the remote machine. The model we are going to study in the following is an
example of how the process of remote attestation can be implemented, although
this is not the only possible one, it is useful to identify some fundamental steps

that are strictly needed.

TPM

Attester Verifier

iChaIIenge (nonce, PCRs, KeylD)

Associaiiurr
key-KeylD

Load EK & AK

(EK_HANDLE, EK Pub) &
(AK_HANDLE, AK Pub)

Quote(AK, PCRs, nonce)

Singnature(AK Pub, Quote)

Once the key provisioning process is over, the Verifier(V) asks the Attester(A)
for its EK and AK certificates that it can verify against CA, to which the Attester
is enrolled, so it knows its primary key (EK) certificate and can therefore verify the

Signature(AK Pub, Quote), Log

Validate Signature

CA

Valid / Invalid

Check
Event Log

Trust
decision

Figure 3.5. Description of the Remote attestation Protocol

signing key (AIK): now the process can start [17]

1. V creates a challenge to be sent to A containing the list of PCRs it needs, a
nonce for the freshness of A’s response and the keyID, that is an ID associated

to an EK specifing which is the TPM V wants to talk to;

2. A receives the challenge, recovers the corresponding EK and AIK and loads

them if they weren’t already in memory.

3. A runs the TPM2 Quote command asking the TPM to read the content of

the PCRs asked by V and to sign it with the AIK, including the received
What is actually signed by A with the AIK is a structure called
TPMS ATTEST, which contains some info about the key and the attestation

nonce.

process;

29

Remote Attestation

4. V receives the signature performed over the TPMS ATTEST structure and
verify it with the public part of the Attestation key, asking to the CA;

5. V validate the quote itself: starting from the information included into the
TPMS ATTEST structure, V reads the content of the log regarding the PCR
asked and compare them with the Golden values stored in the local database.
This comparison can be done value by value, analysing all the measurements
done on each piece of software (os, bootloader of application) or can be done
directly on the digest contained in the PCRs

6. V takes a decision whether the remote platform can be considered trusted or
not.

30

Chapter 4

The ROOT Project

With the advent of 5G technology, accurate and secure time synchronization solu-
tions are becoming increasingly important in the telecommunication field: although
the requirements for synchronization have not become more stringent, the role of
time synchronization has become much more critical [18]. Solutions that aim to
ensure good results in time distribution networks are being studied in the ROOT
research project (Rolling Out OSNMA for the Secure Synchronisation of Telecom
Networks). One of the main topics on which ROOT’s work is based on, is the
evaluation of risks in time distribution networks |1|, enumerating the cyberattacks
that can be run against them and evaluating the related impact they would have
on the entire architecture.

4.1 GNSS-based time synchronization solution

One of the emerging solutions for time synchronization, is the use of satellite-derived
timing information into the process of provisioning an absolute time information
in Time-Sensitive Networks (TSNs). The technologies on which this solution is
based on are GINSS (Global Navigation Satellite System) services and transport
domain networks: the use of GNSS receivers, terrestrial caesium clocks and a ded-
icated transport protocols, can satisfy the requirements on time synchronization
accuracy and precision, which should be in the order of sub-nanoseconds. Among
the GNSS services you can find Galileo, GPS and BDS that are offered by sev-
eral space agencies. Inside these distribution of time networks, synchronization
is obtained through a system of Primary Reference Time Clocks (ePRTCs),
terrestrial accurate clocks based on the GNSS technology that are able to carry
the time information across the network using a dedicated protocol, usually the
Precision Time Protocol (PTP) or the Network Time Protocol (NTP). The
former is thought for smaller network since it can satisfy more stringent require-
ments, being able to obtain an accuracy of microseconds and even nanoseconds [9];
the latter is designed for large and dynamic wide area networks obtaining an ac-
curacy of some milliseconds [8]. The PTP protocol can distinguish among several
types of clock: the source of the time information are the ePRTC clocks, which
are the source of time of the Grandmaster Clock (GM) that gives the time ref-
erence for the whole network thanks to a system of ordinary clocks called Slaves

31

The ROOT Project

coordinated by the GM [19].

4.1.1 The GNSS-based solution architecture

&»

GNSS Satellite

C-GMC GN5S5 Receiver D-GMC

Figure 4.1. High-level architecture of a time distribution network based on GNSS
systems, Centralized-Grandmaster clocks and Distributed Grandmaster Clocks

The goal of this solution is to obtain a network-wide time synchronization ac-
curacy of nanoseconds: the reference time information is the one generated by a
GNSS satellite which is then transmitted to GNSS receivers situated on Earth di-
rectly connected to the edge node of the distribution network. The time information
is transmitted from the satellite to the receiver by means of Radio-Frequency signals
(RF): that is why this area between the 2 devices is called GNSS RF Spectrum.
The edge node, that is directly connected to the GNSS receiver, is also linked to a
really accurate terrestrial clock made of iridium or caesium called Caesium Atomic
Clock (Cs AC): these two different sources are combined together by the Centralized
Grandmaster Clock (C-GMC) that generates an accurate time reference.

The C-GMC is the access point to the time distribution network since it sup-
ports specific transport protocol, such as PTP, NTP or WB-PTP, used to obtain
synchronization between the GMCs and all Slave Clocks. In order to provide more
robustness to the distribution network, in case the C-GMC either fails or is un-
reachable, a backup system is available in the network: multiple reference clocks
called Distributed Grandmaster Clock (D-GMC) |20] are available. This devices,
as well as the C-GMC, combine two different sources of time information to obtain
a time reference: the first one is the information coming from the GNSS receiver,
while the second one is from a device called Ove-Controlled Cristal Oscillator
(OCXO) or Rubidium clock (RC), that are cheaper than the caesium or iridium
ones.

In order to have an higher level of robustness, typically a network includes two
C-GMC (a backup clock is available), as well as two level of D-GMCs, located in
different physical spot but with a similar configuration. These devices are intrin-
sically hierarchical and this is due to the fact that they are employed in a layered

32

The ROOT Project

Tl : [Telecom operator
Backup | Mgmt HL3 evel
C-GMC Node

Mgmt |
Node
— .
R
- —— \‘ 0 — 3 \
Primary Mgmt b Mgmt | Backup | Telecom operator
D-GMC Node "% | Node D-GMC HLA | revel
L 'I 1 o i
..
)] |
. BC_/GM “ [[d pem el HLS | jyomoperater
[Mgmt | [Mgmt | -(BC/GM (<) }‘ Mgmt
Node Node Node /
PTP - » Network Timing Distribution Link
unaware PTP 8275.1
network network . memeeees GNSS signal

Network Management Link

Figure 4.2. Hierarchical level organization of a time distribution network based
on GNSS services (source |22])

way in telecommunication networks . An example of this architecture is the one
that organizes the C-GMCs and D-GMC in three different operational levels(4.2) :

e HL3: the layer that is ideally the nearest to the GNSS-satellite. This is
the regional level, the first to receive the time information. It contains the
primary C-GMC and the secondary one in case of failure of the latter, but
they are in different physical locations.

e HL/: this is the the layer in the middle, also reached by the signal of the
GNSS-satellites. This is the metro aggregation level and contains the second
level clocks, the D-GMCs; even in this case we have a backup clock to incre-
ment the resilience and robustness of the network. Both of the D-GMCs have

a direct channel of communication (usually an optical fiber link) with both
of the C-GMC.

e HLJ5: this is the last hierarchical level, the most distributed one and also the
one directly connected to the PTP-unaware network and to mobile stations
PTP-aware. The distribution devices employed in this layer are simpler than
the ones of the layers above, they are called BC/GM and, as well as Grand-
master clocks, they contain a GNSS-Receiver, the difference is that there is no
caesium or rubidium clock to support the receiver. This devices are directly
linked among them and at least two of them are connected to the 2 D-GMCs
of the layer above.

Each one of the time distribution device of every layer is directly connected to
a management node (Mgmt Node), in order to be configured and do some trou-
bleshooting in case of a failure or an attack occurs.

33

The ROOT Project

Probably the most suitable protocol for accurate time distribution in network
including clocks organized in a hierarchical way like the one just described, is the
PTP (IEEE-1588) and in particular its extension WB-PTP (White Rabbit - PTP
[21]): thanks to this enhancement it is possible to obtain a precision in the syn-
chronization in the order of nanoseconds or less.

4.2 Attacks against GINSS-based architectures

Studying the architecture of the GNSS-Based distribution network, seems pretty
clear that the time information, that way in which it is distributed through the ar-
chitecture and the synchronization among all the components are all key elements
in 5G telecommunication networks. Thus they represent an important asset that
is increasingly becoming target of cyberattacks. Distribution of a wrong time or
position information, delays in the receipt of time information, time desynchroni-
sation in the network and Denial of Service (DoS) are all possible result of a poor
security management.

Analysing the network we can identify two main critical areas for security, which
are the GNSS RF Spectrum and the Time Distribution Network: the former is the
area that goes from the GNSS-Satellite to all the GNSS-Receivers while the latter
is the set of Clocks, GNSS-Receivers and protocols used for the distribution of time.
They are two very different areas as are the threats to them, but despite this they
represent two possible weak points of distribution networks and thus they need an
appropriate study and protection against attackers.

4.2.1 Classification of attacks against GNSS RF Spectrum

The GNSS RF Spectrum is the region that goes from the GNSS-Receiver that
generates the time information and sends it using radio frequency signals to the
GNSS-Receivers placed on the node that could be a GMC of a BC/GM. Obviously,
for the node receiving the time information, on which the synchronisation of the
entire network is based, it is very important that the signal can be considered
trusted and that the sender is indeed the satellite and not any attacker: integrity
and authentication are key point in this context.

It is possible to identify three main classes of attacks that can be run against
the communication link between the GNSS-Satellite and the GNSS-Receiver |22]:

e Meaconing: this class of attacks consists in the retransmission of an old packet
sent by the satellite to the node. Essentially the attacker stores the authentic
packet and sends it to the receiver with a variable delay, in this way an old
information is transmitted to the node and this undermine the overall Quality
of Service.

e Jamming: in this case the attacker emits interference signals in order to
disrupt the functionalities of the receiver. By sending RF signal, the attacker
wants to block the reception of GNSS signal at receiver side.

34

The ROOT Project

e Spoofing: the goal of the attacker is to produce false information at the re-
ceiver by sending forged GNSS-signal with wrong time/position data [23].

Several studies have been conducted on this type of attacks and different so-
lutions have been found: two are the security aspect to be taken into account,
authentication and integrity. One of the most important solutions found is the
one brought by the European Galileo Program which added authentication to the
GNSS-signals. The solution is called Open Service Navigation Message Au-
thentication (OSNMA) and, along with authentication, it also conveys integrity:
its duty is to ensure that the signals received by a node of the distribution network
was actually produced by a Galileo satellite and that it was not modified while in
transit. By using this type of system, spoofing-like attacks can be easily detected.

4.2.2 Classification of attacks against the Distribution Net-
work

The class of attacks that are presented in this section are the attacks that try
to exploits the vulnerabilities of the set of nodes, GNSS-Receivers, Clocks and
protocols that compose the time distribution network and aim to undermine the
availability, integrity and accuracy on the exchanged time information. There are
two major types of attack that can affect this portion of the architecture and they
are:

e Attacks against the underlying protocol (usually PTP or its enhanced version
WR-PTP) of for the distribution of the time information. Among them we
find replay or delay attacks, DoS, MITM;

e Attacks against specific devices like the Distributed or Centralized GMCs,
trying to disrupt them of gain access into the network both using hardware
and software technique.

Attacks against the PTP protocol

The Precision Time Protocol, as well as its enhanced version the White Rabbit
Precision Time protocol, are two of the most widely used protocols for time distri-
bution. Since they are so much used, several ways to attack them have been found
[24]:

e Denial of Service (DoS) can be carried out in several ways and at various
network layers;

e Man-In-The-Middle (MITM) that includes delaying attacks, reply attacks,
packet content manipulation, packet removal and also masquerade attacks :
the aim is to ensure that the node receives incorrect or delayed information.

35

The ROOT Project

e A new class of threats has been found by a group of researcher: these threats
consist of two variants of the DoS spamming attacks trying to temporarily
steer of permanently skew the clock or worse to conduct a clock takeover
attack, both of master and slave clocks [25].

It is worth pointing out that some mitigation techniques and protection solutions
have been studied and proposed: first of all a new standard (IEEE-1588-2019),
which contains a possible solution based on a multipronged approach, has been
proposed. Another noteworthy solution to the PTP security problems is a modified
version of the protocol based on the key management system of the NTP and on
an identity-based authentication system [25].

Attacks against the software

Protecting GNSS-satellite signals in the RF Spectrum and during the exchange of
information through PTP-like protocols in time distribution networks is necessary
but it is not enough: another vulnerable point in the architecture of time distri-
bution are the nodes themselves. C-GMC, D-GMC and BC/GM, that represent
all the nodes of the network, are still vulnerable to potential attacks against the
software running within them; this type of attacks must also be taken into account
in order to achieve total network protection. These devices could be attacked and
compromised by generating and exchanging incorrect time information, leading to
poor synchronisation of the network nodes. The vulnerabilities that can affect this
kind of devices are multiple and can be exploited in several ways:

o Gain physical access to the node installing on it some malicious code using
an external storage or modifying some configuration options;

e Exploitation of vulnerabilities (like buffer overflows or other type of unchecked
conditions) of the Operating System or other software installed on the node;

e Installation of malicious code inside the targeted node, also using other type
of virus like worms or rootkits.

e Using side channels attacks, software backdoor, memory scraping or software
tampering attacks to modify the configuration of the software running on the
platform or the software itself.

According to the list just drawn up, both hardware and software security are
really important to keep a node safe and secure. Hardware side, the protection
is firstly physical, in fact the device could be physically damaged, all the sensors
could be tampered and the platform could be subject to reverse engineering and be
cloned. Software side, the attacks are multiple and aim to obtain a misbehaviour of
the programs running on the node or to extract sensitive information. The most ef-
fective countermeasure to these kind of software threats are Trusted Computing and
Software Attestation solutions, able to detect changes in the software configuration
and code. This kind of techniques will be the main topic of next chapters.

36

The ROOT Project

In the figure 4.3 a possible Software stack running on the GMCs is provided [20]:
of course this configuration is only a general description of the stack, which can
vary greatly, and just wants to be a simplified example to let the reader understand
which are the possible risks and the corresponding threats of a PTP node.

Of course a GNSS-Receiver is included in this stack configuration in order to
receive the signals from different types of satellites (GPS, Galileo, BeiDou, and/or
GLONASS) to estimate Position, Velocity and Time (PVT) information. The
receiver talks directly to a Linux kernel support that can receive and process two
different types of output:

e NMFEA 0183: a textual interface providing the PVT data coded according to
the National Marine Electronics Association (NMEA) 0183 standard;

e /PPS: an high precision analog signal with leading pulse edge synchronous
with the beginning of each second of the time scale

These two inputs are processed by the kernel which make them visible to two
different devices: a serial port, /dev/serial0, addresses the NMEA input while the
Linux Pulse Per Second Application Programming Interface (PPSAPI) is the one
dealing with the 1PPS, and the device is /dev/pps0. The data collected by these
two devices are then passed to the gspd service daemon, that can parse GNSS data
and then sends them to ntpd, the daemon implementing the NTP version 4. The
communication between the 2 daemons takes place through two shared memory
segments. The ntpd daemon is then able to correct and set the internal clock of
the node, assuring the needed synchronization.

The gspd daemon and the shared memory segments could also be absent: in
this case the device receiving the NMEA and 1PPS outputs are slightly modified
and the data could be directly passed to the ntpd daemon, through two dedicated
drivers.

After the internal clock has been properly synchronized, the ptpd (Precision
Time Protocol Daemon) is adopted to distribute the time over the time distribution
network.

This description of the SW, although general and not very detailed, shows how
important it is to protect the nodes in the network, which are responsible for the
information exchanged within it and therefore the synchronisation achieved there.

Other types of attack

As it was specified in the design of the time distribution network, each node is
linked, physically or remotely, to a management device: attacks targeting the un-
derlying network protocols used for the management of the time distribution devices
are also possible. Among these protocols we can find the ones for the remote access
like the Secure Shell (SSH) or Transport Layer Security (TLS), the ones for au-
thentication like RADIUS, the Simple Network Management Protocol (SNMPv3)
and classical network protocols like TCP/UDP and ICMP. All these protocols are
usually prone to manipulation of security data configuration (like keys, certificates

37

The ROOT Project

GNS3 Receiver

NMEA 1PP5

Kernel support
gpsd

Shared memory
ntpd

Internal clock

ptpd

! !

| Network Interface Card (NIC) |

Figure 4.3. Possible organization of the Software Stack running on a GMC

or access rules) or of network configuration parameters, but also to misconfigura-
tion. Typical attacks trying to exploit these kind of vulnerabilities are DoS attacks,
replay attacks and MITM, aiming to give to the destination device wrong or delayed
information, but also to obtain sensitive information exchanged between the GMC
and the management node. Another class of attacks could be the network attacks,
like ARP poisoning of spoofing attacks, the flooding attack or DNS attacks.

Nowadays several countermeasures exist against these well-known attacks, like
the use of firewalls, IDS and/or IPS, packet filtering and the adoption of good
network policies.

38

Chapter 5

The Keylime Framework

Developed by a security research group in MIT’s "Lincoln Laboratory” and pre-
sented at the end of 2016 through the whitepaper "Bootstrapping and Maintaining
Trust in the Cloud" |26], the Keylime Framework aims to provide high scalability
to the remote boot attestation process, proposing runtime integrity measurement
solutions. It is now a CNCF open source project which helps both users to contin-
uously check remote nodes using a hardware-based cryptographic root of trust and
developers by providing them a simpler way to manage the technology of the TPM
2.0.

5.1 Background

The context in which the idea of the Keylime framework was born is that of Cloud
Computing and, more specifically, Infrastructure as a Service (IaaS): we are there-
fore talking about a network scenario where there are several nodes connected to
each other, usually managed by a single tenant. So the final user is provisioned
with resources, in the form of computational power, storage and/or connections,
that he can use to run his own software. In this kind of networks, resources consist
of cloud nodes that could be in the form of physical or virtual machines: this re-
sources are given to the user who is able to deploy his software to these nodes and
control them. The key point is that tenants have no control over the underlying
infrastructure so they are not able to ensure, with their own implementation, that
the platform given by the TaaS provider remains in a good and safe state during
the computation. Nowadays, the TaaS cloud services available do not provide any
effective method to check the integrity and the trustworthiness of nodes and of
the environment in general. The policies currently in place in these infrastructures
severely restrict tenants’ ability to establish unique and unforgeable identities for
individual nodes that could not be tied to hardware-based root of trust but only
software-based solutions can be adopted. This would force tenants to send through
the cloud provider’s network unprotected information and sensitive data.

When TPM came out, it seemed to be a good solution to the problem of es-
tablishing a trusted hardware root of trust, conveying a unique identity to each
machine by referring to objects like the Endorsement Key, but these hopes were

39

The Keylime Framework

soon dashed. The cloud environment we are now considering, the one of the TaaS,
doesn’t fit very well the main features and ideas of the TPM: first of all the hard-
ware/physical nature of the chip is at odds with the trend in cloud environments
towards virtualisation, TPM’s standards and their implementation tend to be too
complicated and, not least, its low performances, requiring more than 500 ms for a
digital signature.

In order to deal with these issues, the developers of the framework have outlined

some basic security features that a TaaS should have to be compliant with Keylime
[26]:

e Secure bootstrapping: a tenant should be able to securely inject a root secret
into all of his nodes and, starting from this one, derive more secrets;

e System integrity monitoring: a tenant should be able to monitor each of his
node, being updated regarding integrity deviations of the underlying platform
within a second;

e Secure layering: a tenant should obtain secure bootstrapping and system
integrity monitoring also for virtualized nodes by leveraging a TPM in the
provider’s infrastructure;

o Compatibility: a tenant should be able to use hardware-rooted cryptographic
keys in software to secure services that they already use (e.g. disk encryption);

e Scalability: it should be possible to meet the above requirements in an laaS
system with thousands of virtual resources.

In the development of Keylime, which can be considered as an end-to-end laaS
trusted cloud key management service [26], all these requirements were taken into
account and were met by the researchers: in order to satisfy the requirement about
the secure bootstrapping, they developed a new bootstrap key derivation pro-
tocol for installing root secret and injecting identities into nodes. They also imple-
mented a way to have a periodic remote attestation process monitoring the
trusted status of the cloud node, by linking the attestation to the identity of the
remote platform, obtaining in this way the System Integrity Monitoring required.
This two solutions are provided both for virtualized environments and bare-metal,
which means that virtualization support is given, while the compatibility with the
most common services in the TaaS field (e.g IPsec, Puppet, Vault, LUKS) is granted
since they were integrated in the framework. One of the most appreciated features
of Keylime is its proven scalability since it is able to manage thousands of vir-
tual nodes at the same time and to process thousands of integrity report (IR) per
second.

Keylime’s main objective is to decouple the identity bootstrapping from the man-
agement of identities, and this goal is reached by putting itself between the software
based cryptographic Services and the TMP itself, exposing a simple interface to de-
velopers (as shown in figure 5.1). In this way Trusted Computing and high-security
services work together but independently: the former manages the bootstrapping
of the keys and the latter manages the identities.

40

The Keylime Framework

= Software-based Cryptographic Services]‘--:

i ID key revoked? L-E i--—% Software ID keys i

Keylime Trusted Computing Services

Valid TPM? Signed EKs

TPM/Platform Manufacturer Enrolment:

Figure 5.1. Keylime as a middleware between software-based Crypto-
graphic Services and trusted hardware. Decoupling of identity bootstrap-
ping from identity management

5.2 Design

In the development of the framework, researchers tried to address the limitations
of the cloud environment: the goal was to combine trusted computing and laaS in
order to obtain a hardware root of trust to be used as starting point to build trust
in the cloud infrastructure, considering both the provider’s systems and tenant’s
elements.

During the analysis of risks and threats, some assumptions were made: the cloud
provider is semi-trusted, which means that he is trustworthy but there could still be
some malicious insiders in its organization and some part of his infrastructure could
be under the control of the adversary. Specifically, the administrator has in place
some control systems and some policies to mitigate an eventual attack, while the
adversary is assumed to be able to monitor and modify portions of the network or
of the storage. Adversary’s goal is to obtain persistent access to a tenant system to
steal, modify or delete tenant’s data or services. To obtain one of these, the attacker
should modify the code of the process running but such modifications should be
detected by the runtime measurements. What the adversary is not supposed to be
able to do is to physically tamper with any host’s component or system.

What researchers also assumed, is that the administrator of the cloud infrastructure
is not voluntarily deploying any malicious code in the infrastructure and also that
the TPM is configured in the correct way creating valid credentials.

5.3 Keylime nodes’ architecture

As already pointed out, Keylime offers virtualization support in order to be compli-
ant both with physical node and virtual nodes; this work focuses on architectures
containing physical nodes.

It is really important to highlight that one of the main goals of Keylime is to
protect Tenant’s sensitive data (e.g identity keys or TPM credentials) from the
provider of the TaaS. This is the reason way in the first phase of the bootstrapping
process a symmetric ephemeral key Ky is generated. This key is used to encrypt
the data d that are passed to the node, using the AES-GCM algorithm(Encky,(d)).
In this way, when the node performs the registration to the framework, this Ky
is associated to its UUID (and also to its IP address). This payload, containing

41

The Keylime Framework

sensitive data d, doesn’t have a fixed structure but can contain several type of data:
software identity and certificate for high level services, some scripts to be run when
the payload is decrypted or when a revocation notification is received, a revocation
certificate to verify the notification or other files related to the revocation service.

The framework’s simplified architecture is presented in figure 5.2 and presents
several components:

Certificate Authority
Bootstrap key
derivation

Revocation
Motifier

Cloud Verifier

Software CA

Cloud Agent
(Cloud Node)
g dm o

Identity unwrap K

CRL
service

h

key AlIK good?
M N
h"'m Enrol.lm,,nr Tenant Registrar }
"’?e,fo‘-‘a;“x 1 TPM good?
%q. g T o
R h{ TPM / Platfarm ‘
Manufacturer

Figure 5.2. Keylime simplified structure (no virtualization support) (source [26])

e The Registrar is the component to which every node of the network has
to register itself using its own UUID, an alphanumerical identifier. For each
node registered, the Registrar stores three different pieces of information: its
EKpub keys, its AIK 1, keys and its EK certificate. In this way the Tenant has
the possibility to associate an EK,,, and an AIK,,, to a node, which holds
the corresponding EK,,i, and AIK,,. The verification of the EK certificate
is not a Registrar’s duty but a Tenant’s one and it is performed during the
key derivation protocol. So the Registrar is not storing any Tenant secret;

e The Cloud Verifier (CV) is the core element of the whole framework: once
a node is registered to the Registrar, the Tenant can start monitoring it
by asking to the CV to verify its integrity state. For this reason, it has a
central role in the whole architecture since it is the element that actually
checks the integrity state of the components of the infrastructure. It relies
upon the Registrar for retrieving the AIK,;, that is necessary to validate the
TPM _quote from the node;

e The Cloud Agent is the software component that runs on the remote node
whose integrity status the Tenant is interested in;

42

The Keylime Framework

e The Tenant is the customer which is using the TaaS: his goal is to verify
the status of its nodes. He starts the framework and ask to the Verifier to
start /stop monitoring a node. When the verifier is asked to verify the integrity
state of a platform by the Tenant, an encrypted payload d is also sent to it,
containing basic information to perform the integrity check on the node;

e The Software CA is responsible for combining trust and TPM-based in-
tegrity measurements together with the higher-level security services (like
[Psec), in this way it is not necessary to make services trusted computing-
aware;

e The Revocation Service allows the system to react when the trust state
of a node is not verified. When the Verifier finds an anomaly in the IR of a
node, a notification is sent to the CA and to all the other nodes interested in
the compromised service. Upon receiving this notification, the CA updates
its own CRL by revoking the certificate related to the identity key of the
untrusted node, then publishes the updated CRL. After consulting the CRL,
each node can react to the notification in a different way, by executing a script
the Tenant wrote for it.

Just by looking at all the components of the framework, it is possible to understand
that they are all linked together and that one cannot work properly without the
others. Anyway, it is possible to identify 4 operational phases in which the process
of bootstrapping and maintaining the framework is divided, these phases are:

1. Node Registration Protocol;
2. Three Party Bootstrap Key deriwation Protocol;
3. Continuous Remote Attestation;

4. Rewocation Protocol.

The Node Registration Protocol

The first step in the bootstrapping process of Keylime is the creation of the Regis-
trar, that is trusted by the Tenant after a verification of its identity. Then, when
a new node has to be initialized and added to the framework, its AIK needs to be
validated: to do so, the so called Node Registration Protocol has to be performed
(Figure 5.3).

The protocol is compliant with the existing TCG standard for creation and
validation of AIK keys and begins with the new node contacting the Registrar
to register itself to the framework with its TPM’s credentials. The sequence of
messages is the following:

1. The Node N sends to the Registrar R its identity (UUID) and its TPM
credentials, which are the public part of its AIK (AIK,,;) and the public part
of its EK (EK,up).

43

The Keylime Framework

Node Registrar
ID, AIK, ., EK

pub

e

Ence(H(AIK,,), K.)

M

HMAC, (ID)

k4

Figure 5.3. The 3 fundamental steps of the Node Registration Protocol (Source [26])

2. R receives EK,,, and checks its validity by contacting the manufacturer of
the TPM, then, if it is valid, R creates an ephemeral symmetric key K.. This
key is encrypted, along with the hash of AIK,p, using the EK,,,;, key. Doing
so, R is creating a challenge in order to see if N actually owns the private
part of EK (EK,iy). In fact N will be able to read the ephemeral key if and
only if he has the corresponding EK,y.

3. N receives the challenge by R and runs the TPM2 Activateldentity com-
mand, passing the encrypted payload to it. In this way, if EK,y is the right
one, the payload is decrypted, the ephemeral key is obtained and N can send
a proof of its identity to R by sending the HMAC of its UUID computed with
K.. Upon receiving the response by N, R evaluate the HMAC of the UUID
obtained at the first step and, if the result is the same as the message just
received by N, the credential are verified and the new node is activated.

The Three Party Bootstrap Key derivation Protocol

As already pointed out, the Tenant has to exchange sensitive data with the node
so, once the Node has been successfully registered to the Registrar, it is necessary
for the Tenant to make a key agreement with it. The idea is to obtain a bootstrap
symmetric key Ky, that can be used to encrypt the traffic between them. This
protocol is called Three Party because it involves three different components: the
Tenant, the Cloud Node and the Cloud Verifier.

To start this process, the Tenant generates a new random symmetric key Ky, that
will be used to encrypt data using the AES-GCM algorithm and then will divide
this key in 2 different parts: U and V. The V part is a secure randomly generated
number of the same length as Ky, that will be shared directly with the CV, to be
further provided to the node upon verification of its integrity state. The U part
is generated starting from V by evaluating U = Ky, & V and is then sent to the
Node. This division operation is done since the Tenant doesn’t want the provider
to obtain the symmetric key.

The protocol could be divided in three different phases, each one involving the
three parties in a different way as it is possible to see in figure 5.4.
Phase A sees the Tenant and the CV exchanging only one message: it starts with
the Tenant connecting to the CV over a secure channel to inform it that a new
Node is available. The Tenant sends to the CV some information about this new

44

The Keylime Framework

Cloud Agent
Tenant Cloud Verifier (cloud nide) Registrar
([T
! |uuip, v, IP, port, TPM_policy, whitelist
Fr---—-—-—-—-—-—-——-—— >
] RSBSOSV FRS
! noncegy, PCR_mask ‘:
I
I - 1
1 1
|| Quote i (nonceqy, 16: H(NK,p), X2 vi), NK i
I
1 1
i Get TPM credentials for UUID i
R R R B N H
i 1
i P AlKpup, ERpub, ERcere 4.-._. 4i
I
}‘ EnCNK]Jub(V} R E
N ———————————————————: « |
T .

Quote yx (nonce,, 16: H(NKypup)), NKpup

Get TPM credentials for UUID

g ————————————

Legend
= = = = Mutual TLS

=+ =+ = Server TLS
No TLS

Figure 5.4. Three Party Bootstrap Key Derivation Protocol in 3 phases:
A, B and C (Source: [26])

Node: its UUID, the V part of Ky, the IP address and the port to which the Node
is reachable, the T'PM policy and the whitelist. These elements are really important
for the attestation process since the TPM policy specify which are the PCRs to be
read when a TPM Quote is sent and the values they should contain, the whitelist
contains the trusted digest of the programs and files stored at the Node, whose
value has to be validated against the IMA Measurement List sent by the Node with
the quote operation.

Once phase A is completed, the two phases B and C start in parallel: in the
former the attestation process is carried out by the Tenant and in the latter it is
carried out by the CV. These phases are done in parallel so, at the end of them,
the Node obtains U from the Tenant and V from the CV. The idea is always the
same: the Tenant doesn’t want the provider of the cloud service to be able to read
this communication, so the Node, which doesn’t have a certified software identity,
generates an asymmetric key pair NK to encrypt sensitive information. The NK;,
is then sent to both the Tenant and CV to have an encrypted communication during
the two phases. The authenticity of the public key is proven by extending NK,.p
into the PCR 16, that is then further sent to both the entities in a Quote operation:
this means that the ephemeral key is authenticated using TPM credentials.

Phase B starts with the CV sending to the Node a freshly generated nonce (ncy)
and a PCR mask containing the PCRs that the CV wants the Node to include in the
next Quote operation. The Node replies with the requested Quote: it is evaluated
over the PCRs requested by the CV and their values, the value of the PCR 16 to
validate the ephemeral key and the nonce just received. Along with the Quote,
evaluated using Node’s AIK, the NK;, key is sent. Upon receiving this message,
the CV gets the TPM credentials of the Node, using a server authenticated TLS

45

The Keylime Framework

with the Registrar: in this way it is able to decrypt the Quote and to verify the
trusted state of the platform, by checking the nonce and all the values of the PCRs.
By decrypting the Quote, the AIK is automatically validated by the CV and the
identity of the node is verified. The last verification is made on the NK, : the
hash of the received value is evaluated and it is compared with the content of the
PCR 16. If every verification is successful, the last message of the phase is sent by
the CV: the value V encrypted using NK,,;, is received by the Node.

Phase C' contains the same sequence of messages of phase B with some small

differences: the Tenant doesn’t sends any PCR mask in the first message since the
Quote of the second message is evaluated only on the nonce and on PCR 16. This
is due to the fact that the Tenant doesn’t perform any kind of integrity check of the
Node, its only goal is to verify the identity of the Node and to validate the freshly
created NK,,;,. In the AIK validation phase, the Tenant performs some verifications
on the EK certificate: it has to be issued by a trusted TPM manufacturer whose
certificate should be stored in a Tenant’s local repository, the public key contained
in the certificate should the same as the EK,;, received by the Registrar and the
signature on the certificate has to be authentic and this is verified using the public
key contained in the TPM manufacturer’s certificate.
The last difference is in the final message: along with the encrypted value of U
(of course this time is U and not V), the HMAC of the UUID, evaluated with K,
is sent. The goal of the HMAC is just to let the node verify the correctness of
Ky, that now the Node is able to compute by combining the just retrieved U and
V. Once the HMAC of the UUID is checked and K, validated, the Node use this
key to decrypt Enckp(d), the encrypted payload received at the beginning of the
bootstrapping phase. When the data d are retrieved, the Node has to delete Ky
and V while stores U in the TPM NVRAM in order to be able to go through the
bootstrapping process again if rebooted.

The Continuous Remote Attestation

At this point we have seen the first two phases of the bootstrapping and mainte-
nance of trust process in a cloud environment with Keylime: so far we have seen
how a node can register itself to the framework by using its TPM credentials and
how the Tenant can verify that the Node is in a trusted status. The next phase
is to periodically check that the Node is still in a trusted state by performing a
Continuous Remote Attestation operation. The Tenant can specify an attestation
interval in the configuration file and the Verifier will poll the cloud Node to monitor
its integrity state every time this interval expires. This periodical verification of
the state is done by checking the IMA Integrity Report that the Node sends, once
time expires, to the Verifier within the Quote.

The attestation process is shown in figure 5.5: the CV periodically requests a Quote
to the Node and performs a check on it so he can detect every integrity violation
in the system.

The checks actually performed by the CV are:

e The Quote signature should be valid and the signature key should be the
AIKyiv key provided by the Registrar;

46

The Keylime Framework

I ™

=== AlKpyp |- > Registrar
Y

™ \

Cloud Verifier
A

nonce,
PCR_mask

Tenant

Quote 4y (nonce, x;:),
IMA ML, Measured Boot ML

s M

Cloud Agent J ‘

Legend
AlK (D= - TPM =+ == Sgrver TLS
EK &= "TUWN No TLS
LN 4

Figure 5.5. Periodical Remote Attestation Process performed by the CV

e The Quote should contain the PCRs specified in the TPM Policy and the
unspecified PCR 16 (containing the digest of the NK,up);

e The IMA ML should be validated and should match the PCR 10;

e The processes and files contained in the IMA ML are the one specified in the
whitelist and their digests match the one in the whitelist too.

It is worth highlighting that the ML is not explicitly signed, but the integrity
of the ML is performed implicitly: the quote, which is signed and therefore its
authenticity is guaranteed, contains the value of the PCR 10 and the ML should
match this value. This mean that, when the Verifier receives the list with all the
measurements, it performs the extension operation with each value of the list and
at the end, verifies that the resulting value matches the value of the PCR 10 con-
tained in the Quote. In this way the integrity of the ML is verified and its values
can be checked against the whitelist.

Timing is a very relevant factor in this context: of course there is a lower bound
for the time interval that can pass between an attestation and the other. This is
give by the time needed to perform the attestation itself which is usually near to 1
second, since just the TPM quote operation lasts about 500 ms. By default this
interval is set to 2 seconds, but as already said, it can be set by modifying the
configuration file: however it is a very important parameter since it also define the
amount of time an attacker have to perform an attack without being detected.

47

The Keylime Framework

The Revocation Protocol

During the Remote attestation process could happen that the integrity check re-
veal an integrity violation and the Node would not be considered trusted any more:
the result is the CV triggering the Revocation network. This relies on the revo-
cation notifier that is a server created by the CV at start up, implementing the
publish /subscribe pattern. This is triggered by the CV sending a signed message,
the revocation event, to this server that forward it to all its subscribers which could
be: the CA that can react to this event by revoking the certificate of the identity
key of the interested node, the cloud agents that can react by running their own
revocation script, if any, or any other type of service interested in the trust state
of the network.

5.4 Keylime and the ROOT project

It is important to remember that this work is to be intended in the wider context
of the ROOT project, performing an analysis of risks and threats affecting time
distribution networks. As already specified, the focus of this analysis is on the
threats affecting only the nodes of the infrastructure, without considering all the
other aspects, like the channels of communications. So the idea is to analyse the
risks that the information takes the moment it has arrived at the node and not
while it is in the network (as the network is something that can be trusted).
Referring back to the description of the ROOT architecture given above (in section
4.1.1), it is possible to understand that the distributed nature of this architecture
makes it really similar to a cloud environment or to an IaaS, and the same similarity
can be seen in the risks they both run. One of the possible risks that such an
architecture may run is that of having one of its nodes compromised, be it a C-
GMC or a D-GMC. This risk may result either in a simple modification of one of
the node’s daemons, for example the pipd, or in an attacker taking over the node.
It is then pretty straightforward that the just described Keylime Framework, being
perfectly suited to cloud environments, may also be suitable for a hierarchical and
distributed architecture such as that of ROOT.

Analysing Keylime’s main features, it is possible to see how this framework seems a
perfect solution for performing remote attestation also in the ROOT infrastructure
[26]:

e Keylime offers a support for System integrity monitoring, performed through
the continuous remote attestation process. This system could be used by
ROOT’s Tenant, along with the revocation framework, to be constantly up-
dated about the integrity status of all the nodes of the infrastructure;

e Keylime offers a good scalability, being able to monitor thousands of resources
at the same time. In this way, the characteristic large size of the ROOT
network would not be a problem;

e Keylime results to be compatible with the major high-level security services,
like IPsec, LUKS or Puppet, so it could be easily integrated in the whole
system;

48

The Keylime Framework

e Keylime performances, especially in terms of latency and quote per second
(we are talking about ROOT that is a time distribution network), are pretty
good. Taking into consideration physical nodes, Keylime was tested to be
able to perform approximately 2500 quotes per seconds, having a bootstrap
latency of about 750ms, deriving a key in less then 2 seconds and requiring
as little as 110ms to respond to an integrity violation.

All these features makes us consider Keylime a perfect candidate to add boot-
strapping and maintenance of hardware-rooted trust and continuous remote attes-
tation in ROOT’s systems. In the next chapters, the solutions adopted to install
and use Keylime in the ROOT project will be exposed.

49

Chapter 6

Keylime Continuous Remote
Attestation of a physical node with a

physical TPM

The idea behind this thesis is to be able to run Keylime in the scenario defined by
the ROOT project: an IaaS environment in which is it possible to perform the
Continuous Remote Attestation process on both devices with a physical TPM and
devices without a physical TPM install on them.

This chapter exposes the proposed solution for performing Remote Attestation in
an architecture involving only platforms with a physical TPM installed on them.
It will be described the physical prototype on which the installation of the Keylime
Agent was made, along with all the commands and operations performed on it, the
modifications made to the framework and the reasons why. The idea is to provide
a sort of step-by-step guide and description of how to use Keylime to perform the
system integrity monitoring: both the deployment of the Keylime Agent to the
node to be attested and the installation and bootstrapping of the Keylime Tenant,
Keylime Registrar and Keylime Cloud Verifier components will be described.

6.1 Prototype

In order to be close to the actual structure of the ROOT network, which involves
very simple and low performance nodes, this work was in part carried out on a
prototype that reflects these characteristics. The assumption that was made in this
first phase of the experimentation is that all the physical nodes of ROOT’s network
have a TPM on board, so that there is no need to find alternative ways to use the
framework, like virtualization or using a software TPM emulator. Obviously this is
a very reductive assumption, limiting the number of possible cases very much, but
it represents the first phase of experimentation.

The Proof-Of-Concept Trusted Platform represented in figure 6.1 is based on
the Raspberry Pi 4 single-board computer, equipped with an Infineon TPM v2 via
an Iridium evaluation board and preconfigured with the user space community TC

50

Keylime Continuous Remote Attestation of a physical node with a physical TPM

Figure 6.1. Photo of the physical Proof-Of-Concept Trusted Platform

software, IMA security subsystem enabled and a secondary partition encrypted
with the key sealed to the TPM’s PCRs 0-9. A complete list of prototype’s char-
acteristics is available in the Appendix A.

It is really important to point out that this kind of prototype should never be use
in a production environment since it presents some serious criticality: the TPM
chip could be easily unplugged, the electric signals could be easily monitored for
attacks, but mainly it doesn’t present any hardware Root-of-Trust, which means
that the CRTM is missing. As reported in section 2.2.3, the CRTM is the first
link of the chain of trust, an immutable set of lines of code, usually directly burned
in the motherboard or written into the BIOS, which has the duty of checking that
the right bootloader is read and run. Of course, the fact that the CRTM is missing
makes the whole system untrusted, since we have no guarantee that the authentic
bootloader was actually run. But it is important to underline that the untrusted
state of the Proof-Of-Concept, due to the lack of a CRTM, doesn’t invalidate in
any way the operations done after the bootloader is run: this means that, assuming
to have a properly working CRTM, the operations to be performed in order to be
able to remotely attest a device would be the same.

6.1.1 Prototype bootstrap process with u-boot

As described earlier, the prototype doesn’t contain any CRTM, either burned in
the motherboard or written in the BIOS, that can ensure to the user that the right
bootloader, in this case u-boot, was run. This is the reason why this prototype
cannot be use in a production environment. In the following, it will be assumed
that the right version of the u-boot bootloader is always launched.

The u-boot version (2020.04) installed on the board was patched in order to sup-
port some of the TPM2 Tools commands, useful to start up the TPM, measure the
boot components and extend the PCRs with these measures. This patched version

ol

Keylime Continuous Remote Attestation of a physical node with a physical TPM

of u-boot is able to measure boot files, some configuration files and extend, follow-
ing some directives, the specified PCRs. Which PCR each file’s measure should
extend is not defined by u-boot, it depends on the personal implementation and it
is described in the Table 6.1.

PCR Measured Files

0 u-boot.bin (u-boot image)

1 boot.src (boot script file, if any)

2 [N/A]

3 [N/A]

4 zImage/ulmage
(Linux kernel image)

5t platform configuration file
(if any, e.g. config.txt)

6 additional parameters for Linux

kernel command line (if any, e.g cmdline.txt)

7 [N/A]

8 [N/A]

9 [N/A]

Table 6.1. List of PCRs and related measurements by which they are extended

The last operation performed by the u-boot bootloader is launching the kernel
but, as it possible to see in Table 6.1, PCR 4 has to be extended with the measure-
ment of the kernel image: this is done by the bootloader just before lunching it.
Once the kernel is run, the TSS starts interacting with the TPM and the IMA ker-
nel module begins making its measurements, appending them to the IMA Measure-
ment Log(ML) and extending the PCR 10. The whole process, from the moment
in which the system is switched on to the moment in which the kernel starts, is
called secure boot. Assuming to have a CRTM, if the system performs correctly
all the steps just described, the secure boot can ensure that:

e The right bootloader was executed;
e The kernel just launched was measured;

e The measurement of the kernel was used to extend PCR 4.

What we cannot be sure of, is the fact that the right version of the kernel was
run: the operation that checks the integrity of the kernel is called authenticated
boot and leverages the measurement made on the kernel (that extended PCR 4).
There are several method that can be adopted to implement the authenticated boot,
probably the three most common are:

1. The first and most complicated solution is to encrypt the whole disk, includ-
ing the partition containing the kernel, and decrypt it if and only if the values

52

Keylime Continuous Remote Attestation of a physical node with a physical TPM

of the PCRs 0-9 are the expected ones: a sealing operation is therefore per-
formed. This means that the key used to encrypt the disk, which is stored in
the TPM, is sealed with the first ten PCRs and that it can be unsealed only
if, when the kernel is about to be run, the PCRs 0-9 contain the expected val-
ues (which are the same values they had at the moment of the sealing). The
problem with this solution, which would provide the higher level of security,
is in the version of u-boot: the commands related to the operations of sealing
and unsealing must be authenticated but the few commands that is possible
to add to u-boot are not authenticated. So the solution would be to patch
the commands contained in the TPM2 Tools, implementing authentication
for these commands: of course this would be heavy and time consuming op-
eration.

This problem does not arise if the commands are run after the kernel started:
in this case the T'SS is started too and the commands we need to perform
the sealing and unsealing phases are authenticated by it.

. The second solution tries to overcome the problems found in the first one: if
it is too hard to use authenticated commands before the kernel starts, let use
them after the kernel is run, when TSS is available and authenticated com-
mands too. Of course in this case it is not possible to encrypt the whole disk
since, in order to run the kernel, the portion of memory containing its code
has to be accessible. So the idea is to encrypt only a secondary partition
that the kernel tries to mount as soon as it can, by default. In this way, if the
kernel is not able to mount the partition because it was not able to unseal
the key and therefore to decrypted the second disk, the operative system will
send the system in Emergency mode, making the platform unusable. In order
to implement this solution, the encryption key is sealed with the PCRs 0-9.
When the kernel tries to mount the partition it also tries to decrypt it: to do
so the decryption key has to be unsealed, but this operation could be done
if and only if the PCRs from 0 to 9 contain the expected values. Of course
this solution has a lower security level than the first one, because the kernel
is not protected by the sealing and could be modified avoiding the mounting
of the secondary partition, but it is way easier to be implemented and it is
compliant with the requirements of the project.

. The third solution is the easiest one but also the one with the lower security
level. If our intent is to perform the remote attestation process, sooner or
later the IMA ML will be sent to the attester that will check its integrity
(this will be done with the Quote operation). The integrity of the IMA ML
is checked by comparing every digest it contains with some golden values
contained in Verifier’s local storage, then the verifier checks that the hash
of the whole log is the one expected. The first entry of the IMA ML is
the boot aggregate: when IMA starts, the first operation performed is to
compute this boot_ aggregate. This value is computed by hashing the PCRs 0-
7, then this value extends the PCR 10. This means that, when the attestation
process is performed, the values of the first eight PCRs are checked when the
boot aggregate is compared with the corresponding golden value: if they
aren’t equal, the attestation fails and this means that something in the boot

93

Keylime Continuous Remote Attestation of a physical node with a physical TPM

process was modified. So by performing the first remote attestation, checking
the validity of the quote, we are indirectly performing the last step of the
authenticated boot. This is the weakest solution since the boot process is not
verified until the first attestation is performed: this means that, if the kernel
was compromised, the attestation process could also not even start al all.

The solution, among the one presented, adopted for this project is the second

one, that avoids the complexity of the first one but still conveys a good security
level, performing secure boot and authenticated boot.
Once the boot process and the kernel version are verified, it is time to perform the
Continuous Remote Attestation Process installing, configuring and bootstrapping
Keylime. But let’s first see how the Keylime framework was modified to be used
in this project.

6.2 Architecture of the proposed solution

The solution proposed in this first phase of the project sees two different archi-
tectures: the simpler one is composed by two physical nodes, the first one is the
remote node, the Attester, that hosts the Keylime component Keylime Agent,
while the other node hosts three different components: the Keylime Tenant, the
Keylime_ Registrar and the Keylime Verifier. So we have a daemon running on
the node, called Attester, that speaks separately with the three daemons hosted by
the same machine, has shown in figure 6.2.

laaS Network

Keylime Verifier

('S Keylime Registrar

25 KeylimeTenant

Figure 6.2. Architecture considering only two physical nodes

The second architecture is slightly different, since its structure contains four
nodes: one of them is the same as before, and is the one hosting the Keylime Tenant,
the Keylime Registrar and the Keylime Verifier, the other three components are
virtual machines hosting the Keylime Agent component. It is important to point
out that the three virtual nodes we are considering here are virtual machine created
with the Linuz Kernel Virtual Machine, (KVM). Thanks to KVM, it is possible
to create virtual machines and attach to them different hardware elements: among

o4

Keylime Continuous Remote Attestation of a physical node with a physical TPM

these elements it is possible to find the TPM 2.0. Unfortunately, it is not possible to
connect the physical TPM of the computer running KVM to the VM, but another
solution is possible: using a software TPM Emulator. In fact by installing on
the host machine, running KVM, a software TMP emulator it is possible to attach
it to the virtual machine. In this way the VMs see the TPM as a real physical
device, but what we are actually using is a software emulator.

This second architecture was built in order to simulate, albeit to a lesser extent, a
cloud environment containing more than one node to be attested at the same time.
This architecture is shown in Figure 6.3.

= #*%. Physical TPM(Inserted
£18 Keylime Agent W with KVM)

Keylime component

Virtual Machine

Physical Machine

AV
|-
T4

¢/ Keylime Agent -
. VM (2%) Keylime Verifier

//

Keylime Agent

als
(29
v

Keylime Registrar

v

(= o KeylimeTenant

Avs
(=g
4\,

Figure 6.3. Architecture considering fours nodes, one physical and three virtualized

Thanks to the software TPM emulator installed on the host machine running
KVM, both virtualized hosts and the physical one are seen by the Tenant-Registrar-
Verifier node as physical nodes. The only real difference between these two kind
of nodes is the TPM manufacturer certificate, that is used during the Three Party
Bootstrap Derivation Key Protocol by the Tenant daemon. As specified in section
5.3, during the B phase of this Three Party protocol, the Tenant checks that the
TPM credentials saved at the Registrar are valid: in particular it checks that the
issuer of the EK ot is a trusted TPM manufacturer. Here a problem arises: while
the physical node has on board a physical TPM with an EK. issued by a trusted
TPM manufacturer, the EK..x of TPM of the VM was issued by the software
emulator developer and cannot therefore be considered as trusted by the Tenant.
This is the real difference between the two nodes and that’s the reason way we have
two different architectures: in the second one, thanks to Keylime configuration file,
the check performed in the B phase of the Key derivation Protocol on the EK . is
skipped. Of course this check is of fundamental importance, since it validates the
TPM credentials of the node we want to attest and skipping it is really dangerous,
but this architecture’s main goal is to test Keylime’s Verifier when is has to monitor
more than one Agent at the time.

S5

Keylime Continuous Remote Attestation of a physical node with a physical TPM

6.3 Modifications made on the Keylime Framework

The Keylime Framework is an open source project and its code is freely down-
loadable from the official GitHub repository. Considering the two different archi-
tectures described above, it is possible to identify two categories of devices: the
first one includes the device hosting the three components at the same time, while
the second one includes both the physical node to be attested and the VMs.

Since this experimentation was born in the context of the ROOT project, where we
have a network containing several kind of devices, among which there are also small
IoT devices with limited resources in terms of storage and computing power, the
devices chosen for the installation and testing of the various Keylime components
were modelled according to the needs of the project itself.

The device used to install the Keylime Tenant, the Keylime Registrar and the
Keylime_ Verifier, is a common laptop running an Ubuntu 20.04 as OS. Since we
are talking about a device that doesn’t have particular limitations in terms of stor-
age or performances, it can perfectly run the daemons contained in the repository
as they are, without any modification. For this portion of the framework just some
minor modifications were made.

The devices used to host the Keylime_ Agent were the ones shaped considering the
IoT devices of the ROOT network: on the one hand we have the physical prototype
described above and on the other hand we have the VMs, running an Ubuntu 20.04
Server Version as OS, with 15GB of storage and a 2 GB RAM. Since these devices
have limited resources, even if they could have run the Keylime Agent properly as
it is, some modifications were made in the code in order to make it lighter.

First of all, in order to save space on the disk, just the code and the libraries re-
lated to the Keylime Agent were considered: this means that the Attester is not
installing the whole Keylime Framework, but it is just downloading a repository
containing a python script implementing the Keylime Agent. The code for this
simplified version of the Agent is available at my personal GitHub repository.

The differences between this simplified version and the one available at the official
Keylime GitHub repository are listed here:

e The biggest difference is the support for the revocation framework: even
if Keylime provides a revocation framework, in this simplified version of the
Keylime_ Agent this service in not supported. This decision was made be-
cause this was not the main focus of the work, since the first objective was
to test if was possible to run the remote attestation process on devices like
the one I worked on. This modification involves the main() function in the
Trust _ Agent/New Agent2510/agent.py file;

e Another difference is that the support for the TPM emulator was removed.
As already specified the goal of this first part of the experimentation was to
work with devices with a physical TPM install. This modification involves
the main() function in the Trust Agent/New Agent2510/agent.py file;

e Another difference is in the management of the UUID: by setting the re-
lated fields in the configuration file(agent wuid), Keylime provides several
options to set or derive the UUID, (e.g it can be generated randomly, it can

96

https://github.com/keylime/
https://github.com/Sync88/Trust_Agent

Keylime Continuous Remote Attestation of a physical node with a physical TPM

be evaluated as the hash of the EK or can be derived from the metadata
service). This options are not supported by the simplified version of Agent,
which only accepts that the UUID is directly assigned to the Agent. As for
the previous two, also this modification involves the main() function in the
Trust_Agent/New Agent2510/agent.py file;

e The last modification was made in order to be able to perform some time mea-
surements: the idea is to measure the time needed by the Agent to create the
Quote. In the do GET function in the Trust Agent/New Agent2510/agent.py
file, some lines of code where added in order to read the time (from a timer)
just before the quote is evaluated and then to read the time again, just after
the quote is calculated. Then the difference between these two time read-
ings is written into a file containing all the measurements related to the quote

times,and it is available available at the path var/lib/keylime/quote_ creation_ times.

start_creating_quote = timer()

quote = tpm_instance.create_quote(nonce,
self.server.rsapublickey_exportable, pcrmask, hash_alg)

imaMask = pcrmask

end_creating_quote = timer()

with open("quote_creation_times.txt", "a") as f:
f.write("%f\n" % (end_creating_quote - start_creating_quote))

logger.info(’Quote creation time: %f sec’ % (end_creating_quote -
start_creating_quote))

This repository also contains a python script, called RAM CPU _usage.py, that,
once run, starts to periodically check the usage of both the RAM and the CPU, in
order to verify how many resources the Agent daemon is consuming. The results of
this analysis are then written into a file available in the same directory where the
script was run.

For what concerns the other three component of the framework, a slightly mod-
ified version of the Keylime 6.2.0 version is available at my personal GitHub repos-
itory. No modifications were made to either the Tenant or the Registrar.

With regard to the Keylime Verifier the only modification made to the code is once
again related to the need of making some time measurements. The goal of these
measurements is to evaluate the time that passes from the Quote request made by
the Verifier to the moment in which the Quote is verified and the trust decision is
made. To do so, the same solution used for the Agent is followed: the time is read
just before the GET request in made and it is read again once the quote is checked.
The difference of these two times is then written into the IR _ attestation_times.tzt
file , that will be created in the same directory where the Verifier daemon was run.

start_IR_attestation = timer()

res = tornado_requests.request("GET",
"http://%s:hd/vhs/quotes/integrity?nonce=Y,s&mask=}s&vmask=}
s&partial=Ys&ima_ml_entry=%d" % (agent[’ip’]l, agent[’port’],
version, params['"nonce"], params["mask"], params[’vmask’],
partial_req, params[’ima_ml_entry’]), context=None)

o7

https://github.com/Sync88/Trust_Agent
https://github.com/Sync88/Trust_Agent

Keylime Continuous Remote Attestation of a physical node with a physical TPM

response = await res
\\Some checks are performed on the response

failure = cloud_verifier_common.process_quote_response(agent,
json_response[’results’], agentAttestState)
if not failure:
end_IR_attestation = timer()
with open("IR_attestation_times.txt", "a") as f:
f.write("%f\n" % (end_IR_attestation - start_IR_attestation))

These are all the modification that were made to the framework, then the rest
of the operations were made by setting properly the parameters in the keylime.conf
file. This is the configuration file of the framework and is divided in several sections,
one for each of the components of the framework, plus a general section.

The installation steps and the commands needed to start properly all the com-
ponents are available in the Appendix B. This is supposed to be a practical guide
that leads the reader to a working environment where the Keylime framework, or
at least its modified version, can be tested.

In the following, a different scenario, and the related modifications to the frame-
work, will be presented: we are going to consider devices without a physical TPM
installed on them, trying to understand which are the security implications that
this condition have, and how to mitigate them modifying the framework.

o8

Chapter 7

Keylime Continuous Remote
Attestation of a physical node with a
TPM Simulator

The second scenario in which we want to deploy Keylime, is that of a network
containing only nodes without a physical TPM installed: if the previous chapter
studied an environment involving only devices with a physical TPM, this one wants
to describe the problems that have to be faced in a scenario including only devices
without a physical TPM and the way in which these problems can be solved. The
idea is to reach a solution in which both the kind of devices, with and without a
physical TPM on board, can be remotely attested at the same time in the same
infrastructure (that it the goal of Chapter 8). To do so, this two scenarios have to
be described separately, outlining and solving the related problems, in order to be
able to better understand the different criticality.

7.1 Devices involved in the analysis

The network at the centre of the ROOT project is based on simple devices and the
study presented in this thesis aims to be as close as possible to the needs and con-
straints within the project. Therefore, just as the previous chapter considered both
low-power nodes, like the prototype described, and virtual machines with limited
memory and low performances, in this chapter we want to present an architecture
made of devices with other kind of constrains and characteristics, trying to meet
the requirements for the ROOT distribution of time network. These are much sim-
pler devices than the one already presented, so simple that they do not even have
a TPM on board. While TPMs are very common in more sophisticated devices
such as laptops, it is very likely that one will find IoT devices that do not have this
module on board. Along with the lack of a physical chip, another component that
is most likely missing from these devices is the CRTM, already described in sec-
tion 2.2.3, which is the first link of the Chain of Trust, ensuring that the expected
bootloader is executed.

Overcoming the assumptions and consequent limitations made in the previous chap-
ter, we are now going to consider nodes that do not have the CRTM and which,

99

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

instead of a physical TPM, have a TPM Simulator installed, a software solu-
tion emulating the functionalities of the chip. This software-based solution is a
way to overcome the lack of hardware: obviously, this allows the device to bene-
fit from most of chip’s features, but the security properties of the device itself suffer.

In summary, the assumptions made in this chapter and the main characteristics
of the devices that will be analysed are:

e All devices considered in the analysis do not contain a CRTM or a physical
TPM, but a TPM Emulator is installed on them.

e Since we have to consider devices that should be as simple as possible, in order
to cover even the worst cases, only devices on which the TPM Access Broker
(TAB) and the Resource Manager (RM) are not installed will be analysed.

e The IMA kernel module is enabled on every device. This creates some prob-
lems because IMA expects to interact with a physical TPM: it is therefore
necessary to implement some changes to overcome this conflict.

7.1.1 TPMZ2.0 Emulator and absence of the CRTM

The first assumption made is about the TPM2.0 Emulator and the CRTM: replac-
ing the physical TPM with an emulator and not having the CRTM available means
that several considerations must be made with regard to the security implications.

First of all the absence of the CRTM, either burned into the motherboard or
written inside the BIOS, implies that there is no guarantee about which bootloader
is executed: as it was already underlined, the CRTM is an immutable set of com-
mand which ensures that the right bootloader is loaded and run.

Secondly, the fact that the TPM is a software installed in user-space, implies that
it can be run only once the bootloader is executed, the kernel is launched and the
OS starts. This makes impossible for the TPM to perform both the secure boot
and the authenticated boot phases. Since the TPM starts only after the bootloader
is executed, it is not possible for IMA to extend the PCRs of the chip with the
measurements it has taken of all the component executed before the Operative
System starts. As it was already explained in section 6.1.1, these two phases, both
the secure boot and authenticated boot, are very important from the point of view
of the attestation process: they ensure that the right bootloader is executed, that
the kernel is measured and this measurement is used to extend the expected PCRs
and that the kernel is loaded correctly. Because of the lack of a physical chip and
of the CRTM, the device owner cannot be sure of which version of the bootloader
was executed, and consequently also which version of the kernel was run. For this
reason, the first entry of the ML (Measurement Log) that is the boot aggregate
(see section 3.2.2) will be set to all zeros, since IMA it is not able to extend the
PCRs and this aggregate value is evaluated using the content of PCRs from 0 to 7.

60

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

Since we are talking about a problem that arises before the kernel itself is run,
it cannot be solved without hardware solutions, but none of them will be proposed
in the following: this means that the nodes inside the architecture being presented
in this chapter do not implement any kind of secure boot or authenticated boot.
The attestation process is therefore incomplete and only deals with the dynamic
part, measuring every user-space applications and files.

The software emulator that was chosen for the implementation is the IBM’s Soft-
ware TPM 2.0, which refers to the TCG TPM 2.0 specifications: this software is an
improvement of an implementation based on the source code donated by Microsoft.

7.1.2 TABRMD : Access Broker and Resource Manager Dae-
mon

As already described in section 2.2.2, two important components of the TCG Soft-
ware Stack (TSS) are the TPM Access Broker (TAB) and the Resource Manager
(RM): the former manages concurrent accesses to the TPM in multi-process envi-
ronments, guaranteeing that any TPM2 Tools operation performed for one process
is not interrupted in order to serve another process; the latter manages the small
amount on memory available on the chip, swapping in and out the context and
other data related to the process that has to be served. They put themselves be-
tween the System API and the Device Driver (that could be an actual driver or a
simulator) managing the access to the TPM .[27]

The TPM2 Access Broker and Resource Manager Daemon (TABRMD) is a daemon
implementing this two components, remaining faithful to the specifications dictated
by the TCG. The communication between daemon and clients is performed using
the DBus and Unix pipes, in order to send and receive commands and responses
but also for session management.

tpm2-tools Jtpm2-tss-engine] cryptsetup Jtpm2-pkcsi1
4.4. TPM2 Tools 4.5. TPM2 TSS Engine 4.6. Cryptsetup 4.7. TPM2 PKCS#11

tpm2-tss
4.2. TPM Software Stack 2.0

tpm2-abrmd
4.3. TPM2 Access Broker & Resource Manager
v TCTI 1]
Simulator Driver TPM2.0 Driver
8.1. TPM Simulator 2.5etup and Usage Environment
Isockets IIdeinme
TPM Simulator HW TPM
8.1. TPM Simulator | [2.setup and Usage Environment

D Setup used in this guide
[] Atternative setup
. Software installed with this guide

Figure 7.1. Structure of the TPM Software Stack and its components: role of the
Access Broker and the Resource Manager

In order to properly install and run this daemon, some dependencies have to be

61

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

met:

e GNU Autoconf

e GNU Autoconf archive

e GNU Automake

e GNU Libtool

e C compiler

e C Library Development Libraries and Header Files
e pkg-config

e glib and gio 2.0 libraries and development files

e libtss2-sys, libtss2-mu and TCTT libraries

e dbus

Among these requirements, it is possible to see that the TABRMD requires

the ¢lib-2.0 package and the GObject support for it: that is where the problem
with this daemon arises. These two packages are not supported on every kind of
GNU/Linux distro, especially on lighter versions of Linux, like the ones we should
focus our attention on, since, as already pointed out, the devices taken into account
by the ROOT project could likely be simple IoT devices. Therefore, for reasons
of compatibility and support, in this part of the thesis only devices that are not
compatible with these two packages will be considered: this means that, from now
on, the devices taken into account won’t run the TABRMD.
Neither of the two components will therefore be considered in the solution proposed
in the chapter and alternative solutions will be found to make up for their absence.
To solve this problem it is important to analyse the environment we are now consid-
ering: the devices chosen for this scenario are low performance machines, with few
programs and daemons installed. Among them, the only one accessing the crypto-
graphic module is the Keylime agent daemon, which uses it manly to perform the
Quote operation. The TAB provides multi-user support for the TPM installed on
the device, but since we are considering single-user devices with the Keylime agent
being the only process accessing the chip, there is no need for an Access Broker
to be installed on the devices making up this architecture.

For what concerns the role played by the Resource Manager, it cannot be
just not considered as in the case of the TAB, because it has two important role:
when a command is executed by the TPM, the RM has the duty to swap in the
data (objects, context and sessions) related to the user that is about to be served,
and to swap out the data currently stored in the TPM storage. Once the right
data have been swapped into the TPM, the RM manages the limited amount of
space available: it creates virtual handles for the context loaded in order to be
transparent to the application that always use the same handle and monitors TPM

62

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

commands flushing session and restoring the context of previous connections. This
first important task performed by the Resource Manager is not needed in our sce-
nario: swapping in and out contexts related to different sessions and restoring these
sessions is only needed if we put ourselves in a multi-user or in a multi-process en-
vironment. If we only have one user accessing the TPM and this is done through
the operations performed by one single daemon (the Keylime agent), we don’t need
to cope with the management of the context and session swapping.

The RM, however, does not only manage contexts and sessions, it also manages
objects: these are related to a single session and it is therefore necessary to find an
alternative way to manage them, since a RM is not available. TPM objects could
be either keys or data and are characterized by a public and perhaps a private part
and they belong to one of the hierarchies. Each of the three persistent hierarchies
the TPM has (Storage Hierarchy, Endorsement Hierarchy, Platform Hierarchy), is
generated starting from a seed, which never leaves the TPM. This secret seed is
then used as input of a KDF together with a public template which specifies the
algorithm, the key size, the policy and the key type. The KDF is constructed to
produce the same key if the seed and the input template are the same. The result-
ing primary key is then stored in TPM’s volatile memory: it is therefore a transient
object. Because of the limited amount of memory available inside the TPM, only
few keys can be moved to the persistent memory. Thanks to the repeatable prop-
erty of the KDF, even if the keys are flushed, they can be easily regenerated if the
same input id provided (the seed is persistent, so cannot be lost).

In the solution adopted in this chapter, the management of the memory is
performed in a very simple way, keeping into the transient memory only the strictly
necessary data. The EK and the AIK are stored into the persistent memory, the
NVRAM, surviving the power cycles. Each time the Quote operation is performed,
the TPM creates an handle that acts as a reference to the position in which the
AIK is stored: this reference is stored as a transient object. The transient (volatile)
memory is limited, if it is not freed, managing properly the handles, it gets full and
the Quote operations fails. If a Resource Manager is available into the platform,
this problem is handled by it, but in the scenario we are now considering, this has
to be done manually. A possible solution, albeit a quite invasive one, would be to
modify the command for the quote operation provided by the T'PM Tools, so that
the command does not create a new handle each time it is invoked but allows the
user to specify a previously used one.

The solution adopted here to overcome the absence of the Resource Manager is
much simpler and radical: the only objects involved in the attestation process are
the EK and the ATK, none of the transient object is used except the AIK key handle.
So every time a new quote operation has to be performed, all the transient object
are deleted with the tpm2_ flushcontext command, in this way the memory is freed
every time a new quote is sent and, when the ¢{pm?2 quote command is invoked
again, the needed handle is recreated and the attestation process is performed
properly.

It is really important to point out that this solution works in this very case because
the TPM is used just to perform the Quote command that only requires the handle
to the AIK stored in the NVRAM, and no other transient object is required.

63

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

7.1.3 IMA and TPM2.0 Emulator

We have already seen the Integrity Measurements Architecture in section 3.1: this
kernel module is the component needed to perform what is called the dynamic
part of the attestation process. It measures, following some user defined policy,
executable, configuration and every other kind of file, keeping track of all these
measurements in the Measurement Log (ML): a list of entries, where each entry
contains the path of the accessed object and the related hash (its measurement).
The ML is not the only way in which these measurements are recorded: each hash
value is use to extend the PCR 10, which contains a sort of summary of all the files
accessed. This module is essential to carry out the remote attestation process, that
is why it is enabled and used on every node of the proposed architecture
Unfortunately, the integration of IMA with a software TPM is not so easy. The
measurements kernel module expects to talk directly to a physical chip when it has
to extend the measurement into the dedicated PCR (usually PCR 10). It actu-
ally works fine with an in-kernel TPM device emulator, the problem arises when a
user-space TPM emulator is used. What is really hard to obtain in the latter case
is to have the PCR 10 extended with the measurement of an application before
the application starts: this is a crucial point in the attestation process since the
measurement must be extended into the PCR before the application starts, in order
to be sure that it was not modified in any way by the application itself. Since both
the application to be measured and the TPM emulator run in the user-space, this
cannot be guaranteed without an in depth modification of the IMA kernel module.
For this reason IMA doesn’t extend the PCR 10 of a TPM Emulator, which content
is always equal to all zeros.

But let’s make a step back to understand why it is so important for the attestation
process that the measurements are extended into PCR 10.

As it was specified in section 5.3, in the description of the Continuous Remote
Attestation process, the Integrity Report sent by the Attester contains the quote
it has created and the IMA ML: the quote, which is signed, contains, among the
other data, the value of the PCR 10 at the moment in which the quote is created.
This value represents the result of the extension operation performed with each of
the hashes contained in the ML: at the end, PCR 10 contains the aggregate of all
the measurements recorded by IMA into the ML. By signing the quote, and thus
the PCR 10 value contained in it, the Agent is indirectly signing the ML (by signing
its aggregate containend in PCR 10).

When the Verifier receives the Integrity report and wants to attest its validity has
to perform three actions:

1. Verify the authenticity and freshness of the quote just received: the Verifier
checks that the signature evaluated over the quote was performed with the
private part of the AIK registered to the Registrar and the quote has to
contain the nonce sent by the Verifier, in order to avoid a reply attack. If
these requirements are satisfied, the quote can be considered authentic and
valid, as well as the value of the PCR 10 it contains;

2. Verify the integrity of the ML: starting from the first entry of the ML, using
64

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

the hash value contained in each line, the Verifier performs the extend opera-
tion until the value obtained matches the one reported into the quote (which
it has just verified). If the values are the same, the integrity of the ML can be
considered verified: in this way the ML could be considered indirectly signed
and therefore can be used for the third step;

3. Verify the validity of each file contained in the ML: once the measurements
inside the ML are considered trusted, this list can be used to check that each
of the hash values it contains matches one of the values contained in the
whitelist (the golden values).

If all these steps are successfully completed, the node can be considered trusted.

But, if the value of the PCR 10 is not contained into the quote, or its value is not
meaningful since IMA is not able to modify it, as it happens in the case we are
considering where we have a TPM Emulator (the value of PCR 10 is equal to zero),
ML’s integrity cannot be verified and and the last two steps are compromised.
What is needed to overcome the absence of communication between IMA and the
TPM Emulator is to sign, directly this time, the ML that is sent into the Integrity
Report and to have the Verifier validating this signature before going on with step
2: this is exactly what was done in the proposed solution.
The idea is to sign the ML with the same key that is used to sign the quote, the
AIK, since the Verifier already knows its public part and send the signature into the
Integrity Report, together with the quote and the ML. The Verifier then validates
the signature over the ML just after it has verified the quote, so, if the verification
is successful, it can proceed with the attestation of the device, reading the ML and
checking that the hash of each file accessed is contained into the whitelist.

This kind of solution is not completely equivalent to the original one: the signa-
ture performed over the ML in user space guarantees that, if the the ML is modified
while in the network, this modification is detected by the Verifier who is not able
to verify the signature received in the IR. But if the attacker gains root access into
the Attester, he can modify the file just before the signature is performed and this
modification goes undetected.

With a physical TPM instead, even if the attacker gains access into the platform,
he is not able to modify the value of the PCR 10 sent into the IR, because the
only way in which PCRs can be modified is by an extend or a reset operation, but
the properties of the hash algorithms guarantee that it is almost impossible for an
attacker to perform a modification to a file and then perform the correct set of
extension operations over a PCR, being able to obtain the desired hash value into
the PCR.

The proposed solution is therefore less secure than the standard, but is still the
best that can be done if no hardware solution is available and you don’t want to
modify the TPM2 tools.

7.2 Architecture of the solution

The architecture proposed in this second phase of the project, unlike that of the first
phase, defines a single scenario: if in the first phase we considered both physical

65

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

nodes and virtual machines, in this part of the experimentation we are going to
consider only VMs with the characteristics presented at the beginning of this
chapter.

The architecture is made of four components, three of them are virtual machines
hosting the Keylime Agent daemon, and, as in the previous case, the fourth machine
runs at the same time the Keylime Tenant daemon, the Keylime Verifier daemon
and the Keylime Registrar daemon. Also in this case, as well as in the second
architecture of section 6.2, the nodes are virtual machines created with the Linux
Kernel Virtual Machine, (KVM): the difference is that this time no hardware TPM
is attached to these VM. To overcome the absence of an hardware TPM, a software
TPM is installed on these nodes, and the software chosen for this purpose is IBM’s
Software TPM 2.0. The VMs have the minimal version of the Ubuntu 20.04 LTS
OS, they have 15G of Storage and 2GB of RAM.

The OS running on the physical node with the 3 components installed is the same
as for the VMs, but this node is a common laptop with 256 GB of storage and
8GB of RAM, mounting an Intel i7-7500U CPU, with two cores and four logical
Processors.

All the nodes belong to the same private subnetwork, that is the local NAT created
by KVM: the same result would have been obtained on a public network, modifying
properly the keylime.conf file.

%) Keylime Agent] Software TPM

S

Keylime component

. b [w] Virtual Machine

VM 1._.‘: Physical Machine
B
VM<
. laaS Network

5\ .
o Keylime Agent

S — /

VM "3‘3‘ Keylime Verifier

A .
oy

V5 .
o Keylime Agent

&
\9

Keylime Registrar

KeylimeTenant

4!
s

Figure 7.2. Architecture considering fours nodes, one physical and three virtual-
ized with a TPM emulator installed

The daemons running in this architecture have some differences from the one
of the previous chapter, since they have to be compliant with the limitations and
assumptions made

66

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

7.3 Modifications made on the Keylime framework

As already analysed at the beginning of the chapter, some assumptions are needed
in order to let this architecture work properly and in the way it is intended to work
in the context of the ROOT project. Of course these assumptions lead to some
characteristics that the nodes of the network should have, has already pointed out.
In order to make the framework work properly in a scenario in which devices with
these characteristics are inserted, and to make it compliant with the requirements
of ROOT, some modifications to the code were needed. Each of the assumptions
outlined requires modifications to the framework, be they small or a little more
complicated:

1. The first assumption deals with the use of a TPM Emulator instead of a phys-
ical one. It is therefore necessary to find a way to to let the TPM Software
Stack communicate with the software TPM installed on the platform: it is
needed to configure the Transmission Interface (TCTT) specifying that the
interface to be used in order to talk to the emulator, is the one linked to the
TPM Emulator and not to the Access Broker. To do so, the /keylime/tp-
m/tpm_main.py file was modified commenting line 43 and decommenting
line 45:

if ’TPM2TOOLS_TCTI’ not in env:

Don’t clobber existing setting (if present)

#env[’TPM2TOOLS_TCTI’] =
’tabrmd:bus_name=com.intel.tss2.Tabrmd’

Other (not recommended) options are direct
emulator and chardev communications:

env [’TPM2TOOLS_TCTI’] =
’mssim:host=localhost,port=2321’

env[’>TPM2TOOLS_TCTI’] = ’device:/dev/tpm0’

is it possible to see that several configurations are available: the default one is
the tabrmd, that let the TCTT talk to the Access Broker, but the one chosen
here is the mssim one, which redirects the TCTI to the software emulator,
specifying the name of the host and the port that has to be contacted.

2. The second assumption deals with the absence of the TABRMD: the modifi-
cation performed to implement the simple management of the memory, due
to the lack of the RM, consists in flushing the transient objects every time
a new quote is sent. To perform this operation, the create quote function
in the /keylime/tpm/tpm_ main.py file (line 988), has to be modified, adding
the tpm2_ flushcontexrt command:

if self.tools_version == "3.2":

67

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

command = ["tpm2_quote", "-k'", hex(keyhandle), "-L",
“hs:%s" % (hash_alg, pcrlist), "-q", nonce, "-m",
quotepath.name, "-s", sigpath.name, "-p",

pcrpath.name, "-G", hash_alg, "-P", aik_pw]
elif self.tools_version in ["4.0", "4.2"]:

command = ["tpm2_quote", "-c", keyhandle, "-1",
"hs:%hs" % (hash_alg, pcrlist), "-q", nonce, "-m",
quotepath.name, "-s", sigpath.name, "-o0",
pcrpath.name, "-g", hash_alg, "-p", aik_pw]
self.__run(["tpm2_flushcontext", "-t"], lock=False)

retDict = self.__run(command, lock=False,

outputpaths=[quotepath.name, sigpath.name,
pcrpath.name])

Running the flushcontext command just before the quote command, allows
the user to free the small memory of the TPM, avoiding that it gets full,
blocking the TPM.

. The last consideration done was about the impossibility for IMA to talk to

the TPM Emulator, extending its PCRs: this means that the authentication

and verification of the integrity of the ML cannot be performed by checking

the value of the PCR 10, since it is meaningless, but the solution adopted

here consists in signing the ML with the AIK. The modification needed to let

the Agent perform the signature of the ML and for allowing the Verifier to

skip the check and validate the signature were made on several files.

The creation of the signature was implemented inside the /keylime/keylime_agent.py
file, at line 166:

if num_entries > O:
response[’ima_measurement_list’] = ml
response[’ima_measurement_list_entry’] = nth_entry
self .server.next_ima_ml_entry = num_entries
signature = tpm_instance.ml_sign(ml,"signature_file")
response[’signature’] = base64.b64encode(signature)

this modification involves a call to the ml_sign function that was created
inside the /keylime/tpm/tpm_main.py file. This function is the one that
actually creates the signature over the ML using the AIK key handle, the
password for accessing the AIK, passing these parameters, together with the
signing algorithm and the format of the output file, to the TPM2 Tools
command {pm2_ sign:

def ml_sign(self, ml, signature):

keyhandle = self.get_tpm_metadata(’aik_handle’)
aik_pw = self.get_tpm_metadata(’aik_pw’)

with open(’msg’,’w’) as fl:

68

Keylime Continuous Remote Attestation of a physical node with a TPM Simulator

n = fl.write(ml)

command = ["tpm2_sign", "-c", keyhandle, "-p",
aik_pw, "-o", signature, "-f', "plain", "-g",
"sha256", "msg"]

retDict = self.__run(command, lock=False)

with open(signature, ’rb’) as f2:
sign = f2.read()

return sign

So at this point the signature is created (in the ml_ sign function) and is
sent into the quote response from the Attester (since it is added to the re-
sponse dictionary). Once received by the Verifier, the signature has to be
checked and verified: this is done in the same file as before, inside the func-
tion _tpm2_ checkquote :

if ima_measurement_list is not None:
ret = cryptodome.rsa_verify(cryptodome.rsa_import_pubkey (
aikFromRegistrar), ima_measurement_list.encode(),
signature)
if not ret:
logger.error(“IMPOSSIBLE TO VERIFY THE SIGNATURE
OVER THE MEASUREMENT LIST")
return None, False

The only thing missing for the verification of the integrity of the ML, is that
the Verifier has to skip the check performed on the value of the PCR 10: to do
so the found_pcr variable inside the process measurement_list function in
the /keylime/tpm/tpm_main.py file is set to true and never modified. This
variable is used inside the code as a flag: it is set to False at the beginning
of the function and if, during the execution of the function, the value of the
PCR 10 contained into the quote matches the value evaluated over the ML,
the variable is set to True. By setting the variable directly to True, what
we are indirectly doing is disregarding the result of the PCR 10 check, and
therefore effectively skipping it.

These modifications make the framework meet all the requirements and the as-
sumptions defined at the beginning of this chapter, making the framework suitable
for the attestation of nodes which have a TPM simulator instead of a physical chip,
which do not have a CRTM, providing a solution for attesting the integrity of the
ML and managing the internal memory of the TPM.

Now that both the scenarios have been analysed individually, the next step would
be to outline a solution for a scenario which considers all these different devices
together.

69

Chapter 8

Keylime Continuous Remote
Attestation of the ROOT
infrastructure

In the last couple of chapters two different scenarios were presented: Chapter 6 was
dedicated to the analysis of the characteristics of a network where only devices with
a physical TPM installed on them were considered, but also to the description of the
way in which Keylime’s code has been modified to address the requirements that
a network like this has. Chapter 7 described the modifications that the framework
should undergo if the network in which it is used only contains devices without a
physical TPM installed on them and that do not offer support for the TPM Access
Broker and Resource Manager Daemon. These two environments are quite different
as well as the patches the framework requires in the two different cases. The goal
of this last chapter is to try to find a solution that leads to a scenario in which the
framework could manage at the same time the two kind of devices: machines with
a physical TPM on board and machines with a TPM software Emulator installed.
A description of the way in which Keylime reacts to the discover of some potential
attacks is then given, analysing some simple attacks and verifying that the frame-
work reports them properly, recognizes the untrusted status of the compromised
node and gives a brief description of what happened .

The last part of the chapter is focused on the performances of the framework in all
the different scenario analysed, considering also the various devices involved in the
whole project: the metrics that will be taken into account are the time needed for
the attestation process and the resources needed, in term of computational power
and storage.

8.1 Description of the proposed Architecture

The goal of the thesis is to obtain a framework capable of continuously attesting
the status of the devices making up the network of an laaS, which is based on a
network that should be compliant with the requirements of the ROOT project. As
already stated, the ROOT’s time precision distribution network could be made of
several nodes that can be ideally divided into 3 categories:

70

Keylime Continuous Remote Attestation of the ROOT infrastructure

e Tenant nodes: this first category of nodes is the one that includes the de-
vices running the three components that are usually managed by the Tenant,
which are the Keylime_ Verifier, the Keylime Registrar and of course the
Keylime_ Tenant. These components could be hosted either by different ma-
chines or by the same one and the devices running them have no special
requirement or limitation in term of performances or resources, other than
compatibility with all the packages needed for the installation of the frame-
work;

o Attester nodes with a physical TPM: this category of nodes is the one includ-
ing the devices already described in Chapter 6, that could either be VMs with
the support that allows the user to let the VM consider the software TPM
emulator running on the host machine as a physical component or low com-
putational power nodes that mount a physical TPM on them. These nodes
are the ones that have to be attested, running the Keylime Agent daemon,
and are characterized by a small amount of memory and low performances;

o Attester nodes without a physical TPM: as the previous category of nodes,
these machine are characterized by a small memory and a low computational
power. The difference with the elements belonging to the previous group, is
the fact that in this case no physical TPM is available and the cryptographic
module is replaced by a software emulator; furthermore, in order to include
even the simplest devices in this category, it was decided that all devices
without a physical TPM would also be incompatible with the TABRMD.

] SoftwareTPM

Keylime Agent 2% Keylime component
192.168.0.105::9002

A
&
Wl

Virtual Machine

Physical Machine

Physical TPM
laaS Network
192.168.0.0/24
VM 473 Keylime Verifier
2% 192.168.0.110::8881
I:‘,‘r. Keylime Registrar
A <% 192.168.0.110::8891
|=“5- KeylimeTenant
Keylime Agent %/ 192.168.0.110

\wiv

192.160.8.103::9002

Figure 8.1. Proposed architecture for the unified Tenant

The architecture that is going to be presented in this section contains three
nodes that were installed physically inside a laboratory and all plugged to the

71

Keylime Continuous Remote Attestation of the ROOT infrastructure

same private network, one for each of the categories just defined: it was decided
to host the three components under the Tenant control, the Keylime Verifier, the
Keylime_ Registrar and the Keylime Tenant, on one single machine in order to be
easily managed while using the framework. The machine chosen for this purpose
is a HP laptop, mounting a Intel(R) Core(TM) i7-3520M processor, with 4 CPUs
working at 2.90 GHz and 8 GB of RAM.

The node used to represent the second category is the already described prototype
from Chapter 6, whose characteristics are available in this Appendix A.

Finally, the third node composing this architecture comes from the third group and
has all the characteristics defined in the previous chapter (section 7.1): it is hosted
by a Microsoft NUC mounting a Intel(R) Core(TM) i5-5300U processor, with 4
CPUs working at 2.30GHz and 16 GB of RAM.

8.2 Modifications made to the Keylime Framework

The main purpose is to create a sort of “Unified Tenant” capable of managing at the
same time both devices which mount a physical TPM and devices which doesn’t.
In this way it is possible for a Tenant to perform the continuous remote attestation
process simultaneously on both the kind of devices, obtaining a framework that is
much closer to what the real structure of the ROOT architecture needs.

Purpose

EK RSA2048 Permanent, certifies valid TPM

AlK
successfully
tied to EK
identity

Tenant .

Registrar

AIK RSA2048 TPM key to sign quotes

K. AES256 Ephemeral challenge key to certify AIK

Challenge
node to
decrypt K,
with EK

Provide
public
keys

Legend

— — — Mutual TLS
— - — - Server TLS
NoTLS

- Tenant-controlled

Provider-controlled

Figure 8.2. Keylime Registration phase (Source [28])

The idea is to keep all the modifications made to the framework so far, adding a
logic to define if the code that should be executed is the one related to a device with
a physical TPM or to a device with a software TPM. The solution chosen to reach
this goals consists in the addition of a field inside the configuration file, specifically
inside the cloud agent section: the field is called physical tpm and it could be
equal to True or False, respectively if the agent does or doesn’t have a physical TPM
installed on it. What happens next, is that the Agent has to read that field and

72

Keylime Continuous Remote Attestation of the ROOT infrastructure

add that information to the data structure sent top the Registrar in the registration
phase. The registrar then inserts this information into its database, so that if the
Tenant has to perform the attestation process, it can retrieve the information from
the Registrar and perform the right set of commands, which depends on the value
of this new filed.

In figure 8.2 it is possible to see the registration phase performed by the Agent: the
modification proposed consists in sending, together with the information related to
the ID, the AIK and the EK of the Agent, also the information about whether the
node that is registering to the Registrar has or has not a physical TPM installed
on it.

From the Agent point of view, a little modification was needed into the
keylime/keylime_agent.py file, in the main function: the physical tpm field is read
from the configuration file and sent to the Registrar (which will store it into its
database) thanks to the doRegisterAgent function:

physical_tpm = config.getboolean(’cloud_agent’, ’physical_tpm’)

register it and get back a blob

keyblob = registrar_client.doRegisterAgent (registrar_ip,
registrar_port, agent_uuid, ek_tpm, ekcert, aik_tpm,
contact_ip, contact_port, physical_tpm)

To have the Registrar save the value of the variable physical tpm into the
database, some slight modifications to the Registrar db and to the Verifier bd were
needed, adding the field to the Agent table into the databases: this is done modify-
ing the database files keylime/db/registrar _db.py and keylime/db/verifier db.py.

It is important to remember that the validation of the EK certificate, performed
by the Tenant in the Bootstrap phase, should be performed only if we are consider-
ing a physical TPM, since it is not possible to verify the EK certificate of a software
TPM. Thus a check inside the check ek function, into the keylime/tenant.py file,
should be performed on the field considered, in order to skip the check on the
certificate if it is not needed:

def check_ek(self, ekcert, physical_tpm = 1):

if physical_tpm is not None and physical_tpm ==
logger.info("Skipping ekcert check due to the absence of a
Physical TPM")
return True

In the same way there is a difference on the validation of the ML authenticity
if the platform contains a TPM chip or not: in the case the module is physically
present, the PCR 10 value should be check, but if it is not, this check should be
skipped and a signature over the ML should be evaluated, sent and then validated.
This is done in two different files: the check on the PCR is performed, only if
a physical TPM is present, into the process measurement_list function in the
keylime /ima.py file, so a check is needed here:

73

Keylime Continuous Remote Attestation of the ROOT infrastructure

if physical_tpm:

found_pcr = (pcrval is None)
else:

found_pcr = True

by setting the value of the found pcr varaible (which is a flag set to true ongly
if the check over the PCR 10 is successful) to True, we are skipping the check on

the PCR.
The signature of the ML, whose implementation was described in Chapter 7, is

performed into the keylime_agent file:

if not self.server.physical_tpm:
signature = tpm_instance.ml_sign(ml,"signature_file")
response[’signature’] = base64.b64encode(signature)

Once performed by the Agent, the signature has to be validated, only if present,
by the Tenant, and this is done in the _¢pm2_ checkquote function in the keylime/tp-
m/tpm_main.py file:

if ima_measurement_list is not None and physical_tpm ==
ret = cryptodome.rsa_verify(cryptodome.rsa_import_pubkey
(aikFromRegistrar), ima_measurement_list.encode(),
signature)

if not ret:
logger.error ("IMPOSSIBLE TO VERIFY THE SIGNATURE OVER

THE MEASUREMENT LIST'")
return None, False

The last modification that has to be made in order to obtain a Tenant capable
of managing different devices at the same time, is in the create quote function
of the keylime/tpm/tpm_main.py file, deciding whether it is needed to flush the
memory of the TPM or not, overcoming the eventual lack of space into the RAM:

command = ["tpm2_quote", "-c", keyhandle, "-1", "Ys:%s" %
(hash_alg, pcrlist), "-q", nonce, "-m", quotepath.name, "-s",
sigpath.name, "-o0", pcrpath.name, "-g'", hash_alg, "-p",
aik_pw]

if physical_tpm ==
self.__run(["tpm2_flushcontext", "-t"], lock=False)
retDict = self.__run(command, lock=False,
outputpaths=[quotepath.name, sigpath.name, pcrpath.name])

The framework is ready to be installed except for one single modification that

74

Keylime Continuous Remote Attestation of the ROOT infrastructure

has to be performed manually just before its installation: the get emd_ enwv func-
tion contains the lines of code related to the configuration of the Transmission Inter-
face (TCTI): if the Agent has a physical TPM installed, the TPM2TOOLS TCTI
environment variable should be set in order to have the TSS communicating with
the TABRMD:; if the Agent doesn’t have a physical TPM, the variable should be
set in order to have the TSS talking directly to the TPM Emulator (setting the
TPM2TOOLS TCTI environment to “mssim”). In the former case line 43 should
be uncommented and line 45 commented, in the latter case the line to comment is
the 43 and the one to keep is line 45.

def _get_cmd_env():
env = os.environ.copy()
lib_path = ""
if °LD_LIBRARY_PATH’ in env:
lib_path = env[’LD_LIBRARY_PATH’]
if °TPM2TOOLS_TCTI’ not in env:
Don’t clobber existing setting (if present)
env [’TPM2TOOLS_TCTI’] =
’tabrmd:bus_name=com.intel.tss2.Tabrmd’
Other (not recommended) options are direct emulator and
chardev communications:
env[’>TPM2TOOLS_TCTI’] = ’mssim:host=localhost,port=2321°
env[’TPM2TOOLS_TCTI’] = ’device:/dev/tpm0’
env[’PATH’] = env[’PATH’] + ":%s" % config.TPM_TOOLS_PATH
env[’LD_LIBRARY_PATH’] = lib_path + ":%s" %
config.TPM_LIBS_PATH
return env

The last set of modifications that has to be taken into account, are the once
that were made with the goal of take some measurements to better understand the
performances of the framework in terms of time needed for the attestation process
and consumptions of RAM and CPU: this set of modification was already described
in section 6.3.

8.3 Attacks to the testbed and response from the
framework

The purpose of the Keylime framework is to attest the trusted status of a remote
node: this means that all the files stored into the node should be known and mea-
sured and that every change is recorded and registered. This means that, whenever
a file is added, modified, or accessed but this was not supposed to happen, the
framework should report this event to the Tenant, that can react accordingly.

In order to test the correct functioning of the framework, it is useful to run some
simple attacks emulating the behaviour that an attacker would have. The idea is to
modify some file, or to create a new one and access it, and verify that the Verifier
reports what happened, indicating which was the file or the files that didn’t match

75

Keylime Continuous Remote Attestation of the ROOT infrastructure

the golden values contained inside the whitelist.

The scenario that was taken into account during the experimentation is the one
of the architecture just described in this chapter: it was assumed that an attacker
was able to deploy a script to the target node, maybe using a vulnerability of one of
the protocols used inside the network, or maybe it was physically installed on it, or
it was present on the machine before the attestation process begun and remained
silent for long time. The assumption is that, somehow, this script is stored in the
machine, that the machine has netcat installed on it, which is plausible since it
is installed on most of Linux Distros and that this scripts runs. The script just
contains a bash command, the netcat command that allows a machine to connect
to a remote node and execute a bin file, in this case the executable of the bash:

$ nc -e /bin/bash <IP_of_the_Attacker> <port_to_be_contacted>

This command let the machine that runs it to connect to the device whose IP
address and port are specified. If this other device, let say the attacker, is listening
on that very IP address and port by running the command:

$ nc -1lnvp <port_to_expose> -s <IP_of_this_machine>

the attacker will see on its display the bash command line of the target machine:
what happened is that the attacker was able to force the target machine to connect
to itself, opening a reverse shell and gaining the access to that node.
Starting from this assumptions, the attacks that were run are two:

e Creation of a new file: we are now considering a situation in which the
Keylime Agent is running on the machine, the node is registered to the Regis-
trar and the Verifier is performing the continuous remote attestation process:
at this point, a new file is created. Depending on where the file is created,
two different reactions can be obtained: if the file is created and than saved
inside a repository whose path is contained in the excludelist considered by
the Tenant, the framework just keeps going with the attestation process since
the Verifier doesn’t find any integrity violation and this is right since that
repository is not of interest to the Tenant. When instead the file is created
and saved inside a repository that doesn’t match any path in the ezcludelist,
the Verifier finds the Integrity violation since the first quote sent by the Agent
after the creation of the file will contain the measurement of the file itself.
The problem is that the Verifier doesn’t have any value related to this file in
its whitelist, so the node is marked as untrusted. In a situation like this, what
happens is that the Verifier notifies the user that the digest of this new file is
not present in the whitelist, stopping the attestation process and scpecifying
the path of the new file;

e Modification of an executable file: the situation we are considering is
exactly the same as the situation above but this time we are considering

76

Keylime Continuous Remote Attestation of the ROOT infrastructure

an existing file, that was therefore already measured, whose measurement is
contained in the whitelist of the Verifier. The attack consist in modifying
the current version of a daemon, in the case of the attack run is the pipd
file, adding a vulnerability to the daemon. The goal is to verify that, in the
moment in which the new version of ptpd is executed, a new measurement
is performed and a new Integrity report is sent to the Verifier through a
Quote operation. Once the quote is received by the Verifier, it is checked and
the measurement of the daemon will be missing in the whitelist: thus the
attestation process is stopped and the path of the file that was modified is
specified by the Verifier.

The strength of this system is that, thanks to the properties of the digest
operation, it is barely impossible for the attacker to modify the executable in
a meaningful way and obtain the same digest as before the modification.

These two simple attacks show the power of the Keylime framework: it is not
able to prevent and stop an attack from happening, but it is able to detect that
something is wrong, and to report it in few seconds.

8.4 Tests and performances

The last phase of this thesis work aims to evaluate the performances of the frame-
work considering the testbed just described: the performances will be evaluated
considering the consumption of CPU and RAM but also in terms of time required
by the whole attestation process. The test that has been run is really simple: all
the components where run and the attestation of both the node with a physical
TPM and the node with a TPM emulator was started. The commands that were
run are listed above, in the same order in which they were run:

o Keylime Registrar: on the node hosting the three Tenant components, the
Registrar daemon was started. The idea is to run it using the command:

$ sudo keylime_registrar

in order to be able to see the log printed on the script and see what happens.

o Keylime Verifier: always using the command line opened on the Tenant node,
the Verifier is started, by running the command:

$ sudo keylime_verifier

o Keylime Agent, no TPM: on the node running the TPM emulator, a set of
considerations has to be done. Here it is not enough to run the command
that starts the agent, since we have to deal with the absence of the Resource
Manager. Just before the command starting the daemon some actions on

77

Keylime Continuous Remote Attestation of the ROOT infrastructure

the TPM emulator need to be done: it is possible that the TPM that it
is going to be used, was previously used for another attestation and stopped
either because an error occurred during the attestation or because the process
was manually interrupted. In order to bring the TPM back into a safe state
we need to restart the emulator: once the emulator is rebooted, the TPM
has to be started, and this is done by sending a startup command to the
TPM and then, since a new attestation is about to begin, the TPM has to
be cleared, deleting lockouts, endorsement and owner hierarchy authorization
values. Once these actions are performed, the daemon can be run:

$ sudo systemctl restart tpm.service
$ tpm2_startup -c

$ tpm2_clear

$ sudo keylime_agent

o Keylime Agent, physical TPM: thi situation is completely different since there
is no need to manage the absence of the RM or any other different situation.
In this case it is just needed to run the daemon:

$ sudo keylime_agent

At this point the two agent are registered to the Registrar, but the process is
not started yet.

e Keylime Tenant: the attestation process will be started by the Tenant, which
need to ask to the verifier to start attesting the remote node whose UUID
and [P address are specified, together with the whitelist and the exclude list
related to the agents.

#on the node with the TPM emulator)

$ sudo keylime_tenant -c add -v 192.168.0.110 -t
192.168.0.103 -uuid emulator-node -f payload.txt --allow
whitelist_emulator --exclude excludelist-emulator

#on the node with the Physical TPM

$ sudo keylime_tenant -c add -v 192.168.0.110 -t
192.168.0.105 -uuid emulator_physical -f payload.txt
--allow whitelist_physical --exclude excludelist_physical

Once all these commands are run, the attestation process of the the agents
starts, and thank to the modification made to the code, described in section 6.3,
the measurements of time and consumptions are taken.

78

Keylime Continuous Remote Attestation of the ROOT infrastructure

8.4.1 Performance evaluation

The test just described is perfectly comparable to a normal use of the framework
intended for the attestation of a remote node and has been conducted with the aim
of carrying out some measurements on the performance. This evaluation is based
on some metrics:

o (Quote Creation time: the first metric used for the evaluation of the per-
formance is the measurement of the time that the TPM, either physical of
emulated, takes to create the quote to be sent to the Verifier. These mea-
surements are taken thanks to the modification made on the code in the file
keylime/keylime_agent.py (see section 6.3): the file var/lib/keylime/quote_ creation times
is created, containing the time needed for the creation of every quote sent.

o Attestation Cycle time: this second metric is related to the whole attesta-
tion process, evaluating the time needed by the Verifier to request the quote,
obtain the response from the Agent, verify the quote and take the trust de-
cision. These measurements are conducted thanks to some minor modifica-
tions made on the keylime/cloud_verifier tornado.py file (see section 6.3):
the IR_ attestation_time.tst file is created in the same directory in which the
Keylime Verifier is run and contains the times needed to complete every at-
testation performed, from the moment in which the quote is requested until
the moment in which the trust decision is made.

o RAM and CPU consumption: the last metric aims to monitor the use of
resources, especially in terms of CPU and RAM usage. These measurements
are performed by running the RAM _CPU _usage.py script, that creates a file
containing the usage of the two hardware components.

CPU_usage = psutil.cpu_percent(interval=10)
RAM_usage = psutil.virtual_memory() .percent
with open("CPU_RAM_usage.txt", "a") as f:
f.write("CPU usage: %f\nRAM usage: %f\n" %
(CPU_usage, RAM_usage))

In the following we are going to analyse the results obtained with respect to the
three different metrics: all the measurements were carried out over a period of 2
hours: the values obtained were then used to evaluate the average values that will
be indicated in the following.

Quote creation times measurements

From the analysis on the data obtained measuring the quote creation times it was
possible to see a substantial difference between the time needed by the hardware
TPM and the time needed by the software TPM

It is possible to see how the time needed for the creation of the quote is much
higher in the case of a software TPM: the average time value for the physical TPM

79

Keylime Continuous Remote Attestation of the ROOT infrastructure

Quote Creation Time

=
=]

=B T T]

Physical TPM TPM Emulator

Figure 8.3. Comparison between the average quote creation time needed both by
a physical TPM (value 3.14 s) and a software TPM (value 8.633 s)

is 3.143 seconds while a Software TPM takes on average 8.633 seconds.

This big difference is mainly due to the signature operation introduced in the case of
a TPM emulator: to overcome the absence of communication between the emulator
and IMA, a signature mechanism was adopted to certify the integrity of the ML,
and this operation is the one requiring much more time.

Attestation process times measurements

The analysis of the time needed for the whole attestation process to start and to
be completed highlights what was already visible in the previous analysis: the time
needed for the attestation of the device with the emulator running is much higher
then the time needed by the device with a physical TPM. Once again, this is due to
the signature mechanism introduced in the emulator scenario: in this case what has
to be considered is the time needed for the validation of the signature, evaluated
over the ML.

Attestation Process Time

12

10

Physical TPM TPM Emulator

Figure 8.4. Comparison between the average attestation process time needed both
by a physical TPM (value 3.22 s) and a software TPM (value 10.23 s)

By analysing the average time needed for the quote creation (3,14 seconds)
and the corresponding value for the whole attestation process (3,22 seconds), in

80

Keylime Continuous Remote Attestation of the ROOT infrastructure

the scenario of a physical TPM, is it possible to see that the difference between
this two values (0,08 seconds), that is the time needed by the Verifier to validate
the quote received, it is way smaller than the corresponding value in the scenario
with a TPM emulator (8.63 seconds and 10.23 seconds). This difference is due
to the time needed for the verification of the signature in the second scenario.
The time needed for the attestation process to be completed is the sum of several
time contributions:

e The time needed for the quote request to be sent by the Verifier to the node;

e The time needed for the Attester to create the quote: this time can contain
also the time spent to evaluate the signature over the ML;

e The time needed by the Attester to read the ML;
e The time needed for the Attester to send the quote to the Verifier;

e The time needed by the Verifier to verify the quote response: this time could
also consider the validation of the signature performed over the ML.

Consumptions of CPU and RAM

The last metric is the one analysing the consumptions in terms of CPU and RAM
usage (in percentage), evaluated in 4 different situations: the scenario considering
the TPM emulator but without the attestation process running, the same scenario
but with the Keylime agent running, the scenario with the physical TPM and the
keylime Agent daemon stopped and the case with a physical TPM and the Keylime
Agent daemon running.

CPU RAM Usage (Percentage)

[I TE R I T I

SW- No Agent running SW- Agent running HW- No Agent HW- Agent running
running

=3

W CPU Usage RAM Usage

Figure 8.5. Comparison between the average percentage of use of CPU and RAM
in both a physical TPM and a software TPM

The graph depicts the consumption penalty introduced by the running Keylime
Agent: in the scenario considering a device with a TPM emulator installed on it,
the increase of CPU usage caused by the running daemon is near to the 1% while
the same increase in the scenario of a physical TPM is near to the 4%. This small
difference is due to the type of the CPU mounted on the device with a physical

81

Keylime Continuous Remote Attestation of the ROOT infrastructure

TPM, since is has much lower computational power than the one on the other de-
vice.

The consumption penalty, in terms of RAM usage, is instead quite similar in both
scenarios: the increase of RAM consumption in percentage is near to the 0,5%.

The analysis just performed on the measurement carried out on this test, high-
lighted the great scalability of the framework, along with the capability of the Agent
daemon to run on the device without placing a heavy burden on system resources,
guaranteeing a low latency even if the attestation process is going on.

82

Chapter 9

Conclusions and future works

The main objective of this thesis was to define a solution that could fit within
the ROOT project to better implement the remote attestation process. With the
advent of 5G technology, accurate and secure time synchronization solutions are
becoming increasingly important in the telecommunication field: although the re-
quirements for synchronization have not become more stringent, the role of time
synchronization has become much more critical.

The ROOT project is part of this reality and seeks to propose solutions that guar-
antee good synchronisation in time distribution networks. The new architecture
proposed by the project, is based on GNSS receivers, ePRTCs clocks, C-GMCs and
D-GMCs clock and dedicated protocols like the WB-PTP. These special elements
and technologies are distributed over three different layers and combined with sev-
eral kind of devices, commonly called management node: these particular devices
could be the target of several cyber attacks and part of the ROOT resources are
dedicated to the analysis, prevention and detection of these possible attacks.

The goal of this work is to enhance the ability of detect threats and attacks that
the nodes making up the architecture may already have suffered: this is done by
the implementation of a process of continuous remote attestation of all the nodes of
the infrastructure. For this purpose, the CNCF open source project called Keylime
Framework was chosen as the basis for the development of the attestation process.
Keylime was considered to be perfectly suited to the reality just described, as it
was developed for cloud environments and IaaS architecture, scenarios very close
to the distributed architecture described in the ROOT project. Features like high
scalability, making possible for a network manager to monitor a large number of
devices without penalising the performance, the high compatibility with the major
high level security systems and the high performance, especially in terms of latency
introduced in the communications among nodes, make Keylime the perfect candi-
date for this work.

Once Keylime had been studied and analysed, it was possible to identify the
features that needed to be modified in order to make the framework as close as
possible to the needs of the ROOT project: the main requirement dictated by the
ROOQOT project is the use, within the architecture, of very simple devices with little
capacity in terms of memory and computational power. To overcome this lack of
resources, in the first phase of the project a lighter version of the framework was

83

Conclusions and future works

created to be installed on some of the devices composing the architecture: the ex-
perimentation was conducted considering a prototype based on a Rasbperry Pi 4
computer.

The second phase of the work was dedicated to the modification of the framework in
order to make it compliant with the requirements of the simplest devices inserted
into the architecture: the kind of devices analysed in this phase are low power
machines without a physical TPM on board, whose role is covered by a TPM Em-
ulator, and without the support for the daemon implementing the Access Broker
and the Resource Manager. The absence of the AB was not a problem, since we
are considering a single process scenario where there is only one daemon trying to
access the TPM: the major problems were due to the absence of interaction between
IMA and the software TPM and to the lack of a RM. The former problem has been
overcome by introducing a signature mechanism over the ML sent inside the IR
during the Quote operation: this is due to IMA’s inability to write into PCR 10 of
the TPM emulator and thus verify the integrity of the ML. The latter problem has
been solved by introducing a simple management of the small memory available
inside the TPM: the volatile memory is freed every time a new Quote operation
is performed, in this way there is memory available for the creation of the needed
objects.

The last phase of the thesis work consisted in making the framework capable of
measuring both types of device, with and without a physical TPM, at the same
time: for this purpose a field in the configuration file was added in order to have
the framework act accordingly.

The project carried out and here described is just the starting point in the

wider scenario of the ROOT project: this project is constantly evolving and its
requirements evolve with it. Keylime also offers a revocation framework, which
was not studied and used in this project: this feature of the CNCF framework is
really useful since it allows to specify what to do if the attestation process going
on with a node fails: it is possible to implement some revocation policies isolating
the untrusted node or excluding it from the network.
Another aspect that could be very useful to improve is the management of the ex-
cludelist and the whitelist: by improving the whitelisting process, by implementing
new policies, it would be possible to increase the performance of the framework,
which would then manage fewer entries and therefore take much less time. The
same effect could be obtained by improving the rules for writing the exclude list,
avoiding the need to check all those files which may be considered useless for making
the trust decision. The work carried out in the thesis, therefore, opens the perspec-
tive to multiple insights into the world of the remote attestation and especially in
the use of the Keylime framework.

84

Bibliography

[1] The ROOT (Rolling Out OSNMA for the Secure Synchronisation of Telecom
Networks) Project, https://www.gnss-root.eu/

[2] E. Falletti, D. Margaria, G. Marucco, B. Motella, M. Nicola and M. Pini, "Syn-
chronization of Critical Infrastructures Dependent Upon GNSS: Current Vul-
nerabilities and Protection Provided by New Signals", IEEE Systems Journal,
vol. 13, no. 3, pp. 2118-2129, Sept. 2019, DOI 10.1109/JSYST.2018.2883752

[3] DOD 5200.28-STD, "Department of Defense Trusted Computer System Eval-
uation Criteria", 1985, pp. 1-129, DOT 10.1007/978-1-349-12020-8 1

[4] Anthony Piltzecker, "Microsoft Vista for IT Security Professionals", 1st Edi-
tion, March 1, 2007, pp 123-193, ISBN: 9780080556147

[5] IEEE 1588-2019 - IEEE Standard for a Precision Clock Synchronization
Protocol for Networked Measurement and Control Systems, June 16, 2020,
https://standards.ieee.org/standard/1588-2019 . html

[6] D. Challener, K. Yoder, R. Catherman, D. Safford, and L. V. Doom, “A prac-
tical guide to trusted computing®, IBM Press, 2007, ISBN: 978-0-13-239842-8

[7] R. Shirey, “Internet Security Glossary, Version 2.”, RFC-4949, August 2007,
DOT 10.1109/MS.2010.160

[8] D. Mills, J. Martin, J. Burbank and W. Kasch, “Network Time Protocol Ver-
sion 4: Protocol and Algorithms Specification”, RFC-5905, June 2010, DOI
10.17487/RFC5905

[9] V. Shankarkumar, L. Montini, T. Frost and G. Dowd, “ Precision Time Proto-
col Version 2 (PTPv2) Management Information Base”, RFC-8173, June 2017,
DOT 10.17487/RFC8173

[10] W. Arthur and D. Challener, “A practical guide to tpm 2.0”, Apress Open,
2015, ISBN: 978-1-4302-6583-2

[11] Trusted Computing Group, "Trusted Platform Module Library Part
1: Architecture”, TCG Published, November 8, 2019, https:
//trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.
0-Part-1-Architecture-01.16.pdf

[12] "Trusted Computing Group TPM Main Part 1 Design Principles”, TCG Pub-
lished, March 1, 2011, https://trustedcomputinggroup.org/wp-content/
uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.
pdf

[13] Trusted Computing Group, “TCG TSS 2.0 Overview and Com-
mon Structures Specification”, TCG Published, March 2, 2019,
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TSS-2.
0-0Overview-and-Common-Structures-Specification-Version-0.
90-Revision-02.pdf

85

https://www.gnss-root.eu/
https://doi.org/10.1109/JSYST.2018.2883752
https://doi.org/10.1007/978-1-349-12020-8_1
https://standards.ieee.org/standard/1588-2019.html
https://doi.org/10.1109/MS.2010.160
https://doi.org/10.17487/RFC5905
https://doi.org/10.17487/RFC8173
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-1-Architecture-01.16.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TPM-Main-Part-1-Design-Principles_v1.2_rev116_01032011.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TSS-2.0-Overview-and-Common-Structures-Specification-Version-0.90-Revision-02.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TSS-2.0-Overview-and-Common-Structures-Specification-Version-0.90-Revision-02.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG-TSS-2.0-Overview-and-Common-Structures-Specification-Version-0.90-Revision-02.pdf

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
23]

[24]

[25]

[26]

[27]

TCG TSS 2.0 Enhanced System API (ESAPI) Specification, https:
//trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1pO_
r08_pub.pdf/

Integrity Measurement Architecture (IMA), https://sourceforge.net/p/
linux-ima/wiki/Home/

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design
and implementation of a tcg-based integrity measurement ar-
chitecture”, 13th USENIX Security Symposium (USENIX Se-
curity04), San Diego, CA, USA, August 9-13, 2004 https:
//www.usenix.org/conference/13th-usenix-security-symposium/
design-and-implementation-tcg-based-integrity-measurement
Remote Attestation tpm2-software community, https://
tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/
Remote-Attestation.html

S. Ruffini, M. Johansson, B. Pohlman and M. Sandgren, “5G synchronization
requirements and solutions”, Ericsson Technology Review, https://www.
ericsson.com/en/reports-and-papers/ericsson-technology-review/
articles/bg-synchronization-requirements-and-solutions

M. Pini, A. Minetto, A. Vesco, D. Berbecaru, LM. Contreras Murillo, P. Nemry,
I. De Francesca, B. Rat and K. Callewaert, “Satellite-derived Time for En-
hanced Telecom Networks Synchronization: the ROOT Project.”, accepted for
publication at IEEE MetroAeroSpace, 2021, Naples (Italy), June 23-25, 2021,
DOT 10.3390/app11188288

D. Margaria, G. Ramunno and A. Vesco, “Trust in GNSS-based Time Syn-
chronization”, LINKS Foundation, Torino, 2021

M. Lipinski, T. Wlostowski, J. Serrano and P. Alvarez, “White Rub-
bit: a PTP application for robust sub-nanosecond synchronization”, In
2011 IEEE International Symposium on Precision Clock Synchronization
for Measurement,Control and Communication, pp. 25-30, DOI 10.1109/IS-
PCS.2011.6070148

D. Berbecaru and A. Lioy, “Attack strategies and countermeasures in
transport-based time synchronization solutions”, 2021

C. Guenther, “A survey of spoofing and countermeasures”’, Journal of the In-
stitute of Navigation, 2014, DOI 10.1002/navi.65

W. Alghamd and M. Shukat, “A detection model against precision time pro-
tocol attacks”, 3rd International Conference on Computer Applications Infor-
mation Security (ICCAIS), 2020, DOI 10.1186/s42400-021-00080-y

C. DeCusatis, R. Lynch, W. luge, . Houston, P. Wojciak, and S.Gundert,
“Impact of cyberattacks on precision time protocol”, IEEE Transaction on In-
strumentation and Measurement, vol. 69, no. 5, pp. 2172-2181, 2020, DOI
10.1109/TTM.2019.2918597

N. Schear, P. T. Cable, T. M. Moyer, B. Richard, and R. Rudd, “Bootstrap-
ping and maintaining trust in the cloud”, Proceedings of the 32nd Annual
Conference on Computer Security Applications, New York, NY, USA, Decem-
ber 2016, DOT 10.1145/2991079.2991104

TCG Group, Family 2.0, “TCG TSS 2.0 TAB and Resource Man-
ager Specification, Version 1.0, Revision 18, April 2019, https:
//trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_

86

https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf/
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf/
https://trustedcomputinggroup.org/wp-content/uploads/TSS_ESAPI_v1p0_r08_pub.pdf/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://sourceforge.net/p/linux-ima/wiki/Home/
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://www.usenix.org/conference/13th-usenix-security-symposium/design-and-implementation-tcg-based-integrity-measurement
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://tpm2-software.github.io/tpm2-tss/getting-started/2019/12/18/Remote-Attestation.html
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
https://www.ericsson.com/en/reports-and-papers/ericsson-technology-review/articles/5g-synchronization-requirements-and-solutions
https://doi.org/10.3390/app11188288
https://doi.org/10.1109/ISPCS.2011.6070148
https://doi.org/10.1109/ISPCS.2011.6070148
https://doi.org/10.1002/navi.65
https://doi.org/10.1186/s42400-021-00080-y
https://doi.org/10.1109/TIM.2019.2918597
https://doi.org/10.1145/2991079.2991104
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf

Bibliography

ResourceManager_v1p0_r18_04082019_pub.pdf
[28] Charles Munson, Nabil Schear and Martine Kalke, “Keylime: Enabling Trust
in the Cloud”, Massachusetts Institute of Technology, 7 May 2019

87

https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TSS_2p0_TAB_ResourceManager_v1p0_r18_04082019_pub.pdf

Appendix A

Prototype characteristics

This Appendix contains the lists of the main characteristics of the physical proto-
type used to install the Keylime Agent and test the Kyelime framework.

Hardware characteristics

e Raspberry 4 Pi Model B - 4GB RAM;

e 16GB microSD card;

e Infineon Iridium TPM evaluation board (TPM 9670 Raspberry) with an
OPTIGA SLI 9670AQ2.0 TPM (https://www.infineon.com/dgdl/Infineon-
OPTIGA _ SLx_ 9670 TPM_ 2.0 Pi_4-ApplicationNotes-v07 19-EN.pdf?
fileld=5546d4626¢1f3dc3016¢3d19f43972¢b).

Software installed and configured

e uBoot boot loader (version - 2020.04) with TPM enabled and boot script to
wake up the TPM and to measure the boot components and extend some
PCRs;

e Raspbian Buster Lite (kernel 4.19.118, no GUI)

kernel rebuilt with TPM2 driver built-in and IMA enabled with shal
kernel with some driver patched to enable IMA after the TPM

sshd enabled on all network interfaces

default configuration: not stripped down not hardened (no firewall,
[Pv4 and IPv6 enabled, no system proxy configuration)

WiFi not configured, but enabled

wired interface configured for DHCP

no proxy configuration

e TPM2 TSS v2.4.0

88

Prototype characteristics

TPM2 TABRM v2.3.1

TPM2 Tools v4.2

TPM2 TSS Engine v1.1.0

Cryptsetup with TPM support v2.0.3

In the following a description of the available partitions id reported:

e /dev/mmblkOpl => /boot (default)
e /dev/mmblkOp2 => / (default)
e /dev/mmblkOp3 => formatted ext4, not mounted, not used

e /dev/mmblkOp4 => /dev/mapper/EncSecPart => /mnt/encrypted

89

Appendix B

Keylime installation on a platform
with a physical TPM installed

This Appendix’s goal is to guide the reader during the installation of all the software
needed in order to have a Tenant which can ask to a Verifier, relying on a Registrar
to obtain TPM credentials, to perform the continuous remote attestation on one or
more Agents. This guide refer to an Agent with a physical TPM installed on it.

B.1 Keylime Trust Agent Installation

This section aims to guide the reader towards the installation of the Keylime Agent
on the remote node, either a physical one or a VM node. The Keylime Agent
should be installed on the remote machine that is to be measured or provisioned
with secrets stored within an encrypted payload delivered once trust is established.
This guide refers to a physical node with a Physical TPM on board, or to a VM
node which uses the TPM software emulator running on the host machine as a
physical one.

This guide refers to a simulation executed on a machine running Ubuntu 20.4
server version, and is based on the Github repository Linuxz TPM2 and TSS2 Soft-
ware, implementing APIs and infrastructure from the TCG TSS2 specifications.

This infrastructure is composed of:

o ipm2-tss: the TPM2 Software Stack proposed by the TCG gruop, which is
composed by several layers allowing the user to have an easier interface to
communicate with the TPM.

e ipm2-abrmd: a daemon implementing the TPM access broker and resource
manager from the TCG.

e tpm2-tools: the source repository for the TPM2.0 tools based on the tpm2-tss
which makes available the whole set of TPM’s functionalities.

90

Keylime installation on a platform with a physical TPM installed

N.B. if you are using a virtual machine on KVM, remember to add a TPM in the
hardware section of your virtual machine. In order to do this you have to install
swtpm on your host machine. Use the CRB mode, selecting an emulated device for
a TPM 2.0

B.1.1 Tpm2-tss

To build and install the tpm2-tss software the following software packages are re-
quired. In many cases dependencies are platform specific and so the following
sections describe them for the supported platforms.

e GNU Autoconf

e GNU Autoconf Archive

e GNU Automake

e GNU Libtool

e C compiler

e C library development libraries and header files
e pkg-config

e doxygen

e OpenSSL development libraries and header files
e libcurl development libraries

e Access Control List utility (acl)

So the commands to be run in order to properly install the tpm2 software stack,
on ubuntu 20.4, are:

$ sudo apt -y update

$ sudo apt -y install \
autoconf-archive \
libcmockaO \
libcmocka-dev\
procps \
iproute2 \
build-essential \
git \
pkg-config \
gee \
libtool \
automake \

91

Keylime installation on a platform with a physical TPM installed

libssl-dev \
uthash-dev \

autoconf \

doxygen \
libjson-c-dev \
libini-config-dev \
libcurl4-openssl-dev \
acl \

libglib2.0-dev

git clone https://github.com/tpm2-software/tpm2-tss.git tpm2-tss
cd tpm2-tss

sudo ./bootstrap

sudo ./configure

sudo make -j $(nproc)

sudo make install

€h P P & &L P

B.1.2 Tpm2-abrmd

The tpm2-abrmd is a daemon, which is implemented using Glib, uses the DBus of
the system bus and some pipes to communicate with the TPM.

Below the dependencies needed:

GNU Autoconf

GNU Autoconf archive

GNU Automake

GNU Libtool

C compiler

C Library Development Libraries

pkg-config

glib and gio 2.0 libraries

The daemon tpm2-abrmd can run as tss user or root. A good security practice
is to run the daemon as unprivileged user, which requires creating a user account
and group(in the following the name for the group and the user are "tss"). The
account and associated group must be created before running the daemon as follow:

$ sudo useradd --system --user-group tss

92

Keylime installation on a platform with a physical TPM installed

So the commands to be run in order to properly install the tpm2 access broker and
resource manager deamon are:

$ git clone https://github.com/tpm2-software/tpm2-abrmd.git
cd tpm2-abrmd

./bootstrap

./configure --with-dbuspolicydir=/etc/dbus-1/system.d
sudo make

sudo make install

sudo ldconfig

€h L P B L P

B.1.3 Tpm2-tools

This repository is the one implementing all the high level cryptographic operations
that can be performed by the TPM. The needed dependencied are:

e GNU Autoconf (version >= 2019.01.06)
e GNU Automake
e GNU Libtool

pkg-config

C compiler

C Library Development Libraries

ESAPI - TPM2.0 TSS ESAPI library

OpenSSL liberypto library

Curl library

The libcurl dependency can be satisfied in many ways, and likely change with
Ubuntu versions:

e libcurl4-openssl-dev 7.47.0-1ubuntu2.2
e libcurl4-nss-dev 7.47.0-1ubuntu2.2

e libcurl4-gnutls-dev 7.47.0-1lubuntu2.2

git clone https://github.com/tpm2-software/tpm2-tools
cd tpm2-tools

sudo ./bootstrap

sudo ./configure

sudo make -j $ (nproc)

sudo make install

€ & H H &L L

93

Keylime installation on a platform with a physical TPM installed

N.B. At this point is possible to have some problem with the simulator on the host
machine: in this case recompile and install again swtpm on the host machine

Once you have installed these 3 components reboot your system. After this
operation the node is ready to install the Keylime Agent.

B.1.4 Installation of the Keylime Agent

The Keylime Agent that is about to be installed is a slight modification of the
Keylime’s version of the Agent. It it possible to get it from the GitHub repository
Keylime Agent , and in order to get it the following commands are needed :

$ git clone https://github.com/Sync88/Trust_Agent.git
$ cd Trust_Agent
$ cd New_Agent2510

This commands will download the code but some python packages could be
needed and they can be installed by running :

$ sudo apt -y update

$ sudo apt -y install python3-pip\
python-yaml\
python3-tornado\
libssl-dev\
swig\
python3-dev\
gee\
python3-gnupg\

$ sudo pip install pyyaml
$ sudo pip install simplejson

At this point the configuration of the network must be set up: the configuration
file is called keylime.conf and you can find it in the repository just cloned but in
order to have it read by the Trust Agent this should be copied into the /etc folder.
In order to have the framework working properly some fields should be changed:

in the [cloud agent] section of keylime.conf

e cloudagent 1p and agent contact ip: it’s the IP address the Tenant, the Ver-
ifier and the Registrar can contact to talk to the Agent (the second parameter
is optional);

e cloudagent port and agent contact port: it’s the Agent’s Port you want to
expose to receive and send your messages to Tenant, Verifier and Registrar(the
second parameter is optional);

94

https://github.com/Sync88/Trust_Agent

Keylime installation on a platform with a physical TPM installed

o registrar_ip: it’s the IP address the Agent can contact to register itself to the
Registrar;

e registrar_port: it’s the port the Registrar exposes and at which he can be
reached;

e agent wuuid: it’s the Agent identifier that is used to be enrolled at the Reg-
istrar and the Verifier;

Once all these fields are set, the Keylime Agent can be started by running the
following command :

$sudo python3 ./agent.py

(it is possible to have a TABERROR after this command is run. In this case
install autopep8 running sudo apt install python3-autopep8 and than the command
autopep8 -i agent.py)

B.2 Installation of the Keylime Tenant, Keylime
Verifier and Keylime Registrar framework on
one single node

This section aims to guide the reader towards the installation of the three Keylime
components on one single node: this guide refers a to computer running the Ubuntu
20.04 operating system. The repository that is about to be downloaded is a slight
modification of the Keylime’s version 6.2.0. It it possible to get it from the GitHub
repository Keylime. This repository contains the whole framework by the compo-
nents we are interested in are:

e Verifier: is the component responsible for asking the Agent for quotes and
verifying them, reporting its trusted or untrusted state;

e Registrar: is the first component with which the Agent comes into contact
and where it can register its TPM credentials. The Registrar verifies them
and uses them for the remote attestation process;

e Tenant: it’s a sort of wrapper that manages both the previous two compo-
nents and allows the network administrator to register a new Agent to the
Verifier and to start the continuous remote attestation process.

Also in this case, the TPM2-tss, TPM2-abrmd and the TPM2-tools packages
have to be install, as shown above. In addition to them, also some dependencies
should be respected:

$ sudo apt install libssl-dev swig python3-pip autoconf autoconf-archive \
libglib2.0-dev libtool pkg-config libjson-c-dev libcurl4-gnutls-dev

95

https://github.com/Sync88/Keylime

Keylime installation on a platform with a physical TPM installed

Once the dependencies are met, the code implementing the modified version of
the Keylime framework could be downloaded and installed by running the following
commands:

$ git clone https://github.com/Sync88/tenant_keylime_signature.git
$ cd keylime
$ sudo pip3 install . -r requirements.txt

In order to run the Keylime components, it is also needed to add TPM 2.0
Resource Manager user, configure the TPM TCTT and start the TPM 2.0 resource
manager service as follows:

$ sudo useradd --system --user-group tss
$ export TPM2TOOLS_TCTI="tabrmd:bus_name=com.intel.tss2.Tabrmd"
$ sudo service tpm2-abrmd start

Once the code of the Keylime framework is downloaded and the access broker
daemon started, the keylime.conf file has to be copied in the /etc directory and
then properly changed to configure the three components in the right way.

$ sudo cp keylime.conf /etc/

in the [cloud verifier| section of keylime.conf

o cloudverifier ip : it’s the Verifier’'s IP address that will be the same as the
IPs of Registrar and Tenant;

e cloudagent port : it’s the Verifier’s Port you want to expose;

e registrar_ip : it’s the Registrar’s IP address used by the Verifier to ask to if
the AIK of the Agent is trusted;

e registrar _port: it’s the port the Registrar exposes and at which he can be
reached;

e quote interval: is the amount of time that should pass between an attestation
and the other. If is set to 0, it will be done as fast as possible.

All the other parameters can be set with their default value.

in the [tenant] section of keylime.conf

o cloudverifier ip: it’s the IP address where the Tenant can find the Verifier;
e cloudagent port: it’s the port the Verifier exposes;

e registrar_ip: it’s the IP address where the Tenant can find the Registrar;

96

Keylime installation on a platform with a physical TPM installed

e registrar _port: it’s the port the Registrar exposes;

e Ipm_cert_store: it’s the repository where the Tenant keeps all the trusted
certificate of the TPM manufacturer (this filed can be set with its own default
value)

e require_ ek cert:this field enables the EK certificate check during the Boot-
strap Key Derivation Protocol and is particularly important in our scenario.
If we are considering the first architecture described in section 6.2 this field
should be set to True. If we are considering the first architecture described
in section 6.2 this field should be set to False.

In order to have the Tenant working properly and accept a new physical Agent,
the certificate of the TPM manufacturer of the TMP mounted by the Agent, should
be stored in the directory specified in the tpm_cert store parameter. If we are
considering VM nodes, the certificate could not be retrieved so it is necessary to
set the require ek cert parameter to ‘False’.

All the other parameters can be set with their default value.

in the [registrar| section of keylime.conf
e registrar ip: it’s the IP address you want to assign to the Registrar;

e registrar _port: it’s the port the Registrar exposes;

All the other parameters can be set with their default value.

B.3 Launching Keylime and starting the attesta-
tion process

If all the steps described above are correctly executed and no problem has been
found, we are ready to run all the components. The order in which the daemons
are started is important too: specifically the Agent should be run after the Registrar
and the Tenant should be run after the Verifier. So the correct order in which to
start the daemons is :

1. The Registrar:
$ sudo keylime_registrar
2. The Verifier:
$ sudo keylime_verifier
3. (On the node hosting the Agent) The Agent:

$ sudo python3 ./agent.py
97

Keylime installation on a platform with a physical TPM installed

Then, in order to have the Verifier starting the attestation process monitoring
the Agent, we need to run the Tenant whit the following command:

$ sudo keylime_tenant -v <verifier_address> -t <agent_address>
-f <file_to_encrypt_and_send> --uuid <uuid_of_agent>
--allowlist <allowlist_file> --exclude <exclude_list>

this command is the most complicated one since it has some parameter:

o verifier address: is the IP address of the Verifier you want to contact (More
than one Verifiers could be present in the framework);

e agent address: is the IP address of the Agent we want the Verifier to monitor;

e file to encrypt and_send: this parameter is compulsory but the file in-
cluded could also be empty, but could also contain some information the
Tenant wants the Agent to receive;

e uuid_of agent: this is the UUID of the Agent we want to monitor;

o allowlist_file and exclude list: these parameters are not mandatory and
could also be set in the keylime.conf file. They represent the two files con-
taining respectively the golden values of the file that should be measured and
the list of files whose measurement should not be checked.

Once all of these commands are run, the Verifier will start monitoring the Agent
the Tenant specified, and every time an integrity violation is detected, the Agent
will be informed and will show an error message, and a similar error message will
be shown by the verifier.

98

Appendix C

Keylime installation on a platform
without a physical TPM and the
abrmd installed

This Appendix’s goal is to guide the reader during the installation of all the software
needed in order to have a Tenant which can ask to a Verifier, relying on a Registrar
to obtain TPM credentials, to perform the continuous remote attestation on one
or more Agents. This guide refers to an Agent without a TPM installed on it
and doesn’t include the installation of the Access Broker and Resource Manager
Daemon.

C.1 Keylime Trust Agent Installation

This section aims to guide the reader towards the installation of the Keylime Agent
on the remote node, either a physical one or a VM node. The Keylime Agent
should be installed on the remote machine that is to be measured or provisioned
with secrets stored within an encrypted payload delivered once trust is established.

This guide refers to a simulation executed on a machine running Ubuntu 20.4
desktop version, and is based on the Github repository Linux TPM2 and TSS2
Software, implementing APIs and infrastructure from the TCG TSS2 specifications.

This infrastructure is composed of:

o ipm2-tss: the TPM2 Software Stack proposed by the TCG gruop, which is
composed by several layers allowing the user to have an easier interface to
communicate with the TPM.

e tpm2-tools: the source repository for the TPM2.0 tools based on the tpm2-tss
which makes available the whole set of TPM’s functionalities.

e TPM 2.0 Simulator: this is a software emulator of the TPM since a physical
one is missing in this configuration.

99

Keylime installation on a platform without a physical TPM and the abrmd installed

N.B. Before starting the installation procedure it is necessary to uninstall
libtss2 version 2.3.2 :

$ sudo apt remove libtss2-esysO
$ sudo apt autoclean && sudo apt autoremove

C.1.1 Tpm2-tss

To build and install the tpm2-tss software the following software packages are re-
quired. In many cases dependencies are platform specific and so the following
sections describe them for the supported platforms.

e GNU Autoconf

e GNU Autoconf Archive

e GNU Automake

e GNU Libtool

e C compiler

e C library development libraries and header files
e pkg-config

e doxygen

e OpenSSL development libraries and header files
e libcurl development libraries

e Access Control List utility (acl)

So the commands to be run in order to properly install the tpm2 software stack,
on ubuntu 20.4, are:

$ sudo apt -y update

$ sudo apt install libssl-dev swig python3-pip \
autoconf autoconf-archive git 1ibglib2.0-dev libtool \
pkg-config libjson-c-dev libcurl4-gnutls-dev \

lcov pandoc liburiparser-dev libdbus-1-dev dbus-x11 \
automake gcc libgcrypt20-dev libcmocka-dev uthash-dev \
acl libssl-dev ssh

git clone https://github.com/tpm2-software/tpm2-tss.git tpm2-tss
cd tpm2-tss

sudo ./bootstrap

sudo ./configure --prefix=/usr

sudo make -j $(nproc)

sudo make install

€ & H H &L L

100

Keylime installation on a platform without a physical TPM and the abrmd installed

C.1.2 Tpm2-tools

This repository is the one implementing all the high level cryptographic operations
that can be performed by the TPM. The needed dependencied are:

e GNU Autoconf (version >= 2019.01.06)
e GNU Automake
e GNU Libtool

pkg-config

C compiler

C Library Development Libraries

ESAPI - TPM2.0 TSS ESAPI library

OpenSSL liberypto library

Curl library

The libcurl dependency can be satisfied in many ways, and likely change with
Ubuntu versions:

e libcurl4-openssl-dev 7.47.0-1ubuntu2.2
e libcurl4-nss-dev 7.47.0-1ubuntu2.2

e libcurl4-gnutls-dev 7.47.0-1lubuntu2.2

git clone https://github.com/tpm2-software/tpm2-tools
cd tpm2-tools

sudo ./bootstrap

sudo ./configure --prefix=/usr/local

sudo make -j $ (nproc)

sudo make install

€h L P B &L P

C.1.3 TPM 2.0 Emulator

This section contains the instructions for the installation of the TPM 2.0 Emulator:
this project is an implementation of the TCG TPM 2.0 specification. It is based
on the TPM specification Parts 3 and 4 source code donated by Microsoft. The
commands to download and install the emulator are the following:

$ wget https://jaist.dl.sourceforge.net/project/ibmswtpm2/ibmtpm1661.tar.gz
101

Keylime installation on a platform without a physical TPM and the abrmd installed

€h P P B L P

mkdir ibmtpml661

cd ibmtpm1661

tar -xzvf ../ibmtpml661.tar.gz

cd src/

sudo make

sudo cp tpm_server /usr/local/bin

In order to properly install and run the TPM daemon, some steps need to be
done:

e Edit file /lib/systemd /system /tpm-server.service by adding the following con-

tent:

$ sudo nano /1lib/systemd/system/tpm-server.service

[Unit]

Description=TPM2.0 Simulator Server daemon
Before=tpm2-abrmd.service

[Service]
ExecStart=/usr/local/bin/tpm_server
Restart=always
Environment=PATH=/usr/bin:/usr/local/bin
[Install]

WantedBy=multi-user.target

Reload daemon, start the tpm-server.service service and check that its status
is Active:

$ sudo systemctl daemon-reload
$ sudo systemctl enable tpm-server.service

Configure TPM Command Transmission Interface (TCTI) for TPM 2.0 Sim-
ulator:

$ export TPM2TOOLS_TCTI="mssim:host=localhost,port=2321"
Start and check the status of the tpm simulatur service:

$ sudo systemctl restart tpm-server.service
$ sudo systemctl status tpm-server.service

Let’s now check that the installation of the infrastructure is correct and that
tpm2-tools are correctly configured with the TPM 2.0 emulator by reading the PCR
banks (if the output contains the list of pcrs the output is the correct one) :

$ sudo tpm2_startup -c
$ sudo tpm2_pcrread

102

Keylime installation on a platform without a physical TPM and the abrmd installed

C.1.4 Enabling IMA
Before going on with the installation of the Keylime framework, it is necesary

to enable IMA, adding kernel parameters and setting ima policy to measure only
executable files:

e Edit the grub’s file /etc/default/grub

$ sudo nano /etc/default/grub

In this file, modify to the GRUB_CMDLINE LINUX kernel’s boot param-
eter adding

GRUB_CMDLINE_LINUX_DEFAULT="ima_tcb ima_hash=sha256"

this parameter enables the measurement of all the files, of any kind, accessed
by root.

Update GRUB’s configuration file to add the kernel boot parameter

$ sudo update-grub

Create directory /etc/ima

$ sudo mkdir /etc/ima/

Restart the system

Now it is possible to install the framework for the remote attestation. We have two
different installation, one for the Agent and one for the Tenant Node (including the
Tenant, the Verifier and the Registrar).

C.1.5 Installation of the Keylime Agent

The Keylime Agent that is about to be installed is a slight modification of the
Keylime’s version of the Agent. It it possible to get it from the GitHub repository
Keylime Agent , and in order to get it the following commands are needed :

$ git clone https://github.com/Sync88/agent_keylime_signature.git
$ cd Trust_Agent
$ cd agent_keylime_signature

This commands will download the code but some python packages could be
needed and they can be installed by running :

$ sudo apt -y update
$ sudo apt -y install python3-pip\

103

Keylime installation on a platform without a physical TPM and the abrmd installed

python-yaml\
python3-tornado\
libssl-dev\
swig\
python3-dev\
gee\
python3-gnupg\

$ sudo pip install pyyaml
$ sudo pip install simplejson

Once all the requirements are satisfied, it is possible to install the framework:

$ sudo cd keylime
$ sudo pip3 install . -r requirements.txt

At this point the configuration of the network must be set up: the configuration
file is called keylime.conf and you can find it in the repository just cloned but in
order to have it read by the Trust Agent, this file should be copied into the /etc
folder. (sudo cp keylime.conf /etc/). This file is divided in several sections, once
for each role the framework is divided in. In the case of the Agent, we need to
modify just the [cloud agent]| section, and in particular the following fields:

e cloudagent 1p and agent contact ip: it’s the IP address the Tenant, the Ver-
ifier and the Registrar can contact to talk to the Agent (the second parameter
is optional);

o cloudagent port and agent contact port: it’s the Agent’s Port you want to
expose to receive and send your messages to Tenant, Verifier and Registrar(the
second parameter is optional);

e registrar_ip: it’s the IP address the Agent can contact to register itself to the
Registrar;

e registrar _port: it’s the port the Registrar exposes and at which he can be
reached;

e agent wuuid: it’s the Agent identifier that is used to be enrolled at the Reg-
istrar and the Verifier;

Once all these fields are set, the keylime agent.service has to be installed by
running the installer.sh script that you can find in the Keylime repository. Re-
member to check the service’s status (it should be "Active”):

$ sudo services/installer.sh
$ sudo systemctl start keylime_agent.service
$ sudo systemctl status keylime_agent.service

104

Keylime installation on a platform without a physical TPM and the abrmd installed

If the state is "Failed", then try to clear the TPM and then start it again:

$ sudo tpm2_clear
$ sudo systemctl start keylime_agent.service
$ sudo systemctl status keylime_agent.service

At this point the installation on the Agent node is over. The only missing
point is the creation of a whitelist that will be stored at the Verifier to validate the
TPM quote:

C.2 Installation of the Keylime Tenant, Keylime
Verifier and Keylime Registrar framework on
one single node

This section aims to guide the reader towards the installation of the three Keylime
components on one single node: this guide refers a to computer running the Ubuntu
20.04 operating system. The repository that is about to be downloaded is a slight
modification of the Keylime’s version 6.2.0. It it possible to get it from the GitHub
repository . This repository contains the whole framework, the components we are
interested in are:

e Verifier: is the component responsible for asking the Agent for quotes and
verifying them, reporting its trusted or untrusted state;

e Registrar: is the first component with which the Agent comes into contact
and where it can register its TPM credentials. The Registrar verifies them
and uses them for the remote attestation process;

o Tenant: it’s a sort of wrapper that manages both the previous two compo-
nents and allows the network administrator to register a new Agent to the
Verifier and to start the continuous remote attestation process.

Also in this case, the TPM2-tss and the TPM2-tools packages have to be in-
stalled, as shown above. In addition to them, also some dependencies should be
respected:

$ sudo apt install libssl-dev swig python3-pip \
autoconf autoconf-archive \

libglib2.0-dev libtool pkg-config \
libjson-c-dev libcurl4-gnutls-dev

Once the dependencies are met, the code implementing the modified version of
the Keylime framework could be downloaded and installed by running the following
commands:

$ git clone https://github.com/Sync88/tenant_keylime_signature.git
105

Keylime installation on a platform without a physical TPM and the abrmd installed

$ cd Trust_Agent
$ cd tenant_keylime_signature
$ sudo pip3 install . -r requirements.txt

Once the code of the Keylime framework is downloaded the keylime.conf file
has to be copied in the /etc directory and then properly changed to configure the
three components in the right way.

$ sudo cp keylime.conf /etc/

The /etc/keylime.conf file is divided in several sections, the one that have to
be changed are:

in the [cloud verifier]| section of keylime.conf

o cloudverifier ip : it’s the Verifier’'s IP address that will be the same as the
IPs of Registrar and Tenant;

e cloudagent port : it’s the Verifier’s Port you want to expose;

e registrar ip : it’s the Registrar’s IP address used by the Verifier to ask to if
the AIK of the Agent is trusted;

e registrar_port: it’s the port the Registrar exposes and at which he can be
reached;

e quote interval: is the amount of time that should pass between an attestation
and the other. If is set to 0, it will be done as fast as possible.

All the other parameters can be set with their default value.

in the [tenant] section of keylime.conf

e cloudverifier ip: it’s the IP address where the Tenant can find the Verifier;
e cloudagent port: it’s the port the Verifier exposes;

e registrar ip: it’s the IP address where the Tenant can find the Registrar;

e registrar port: it’s the port the Registrar exposes;

e tpm_ cert store: it’s the repository where the Tenant keeps all the trusted
certificate of the TPM manufacturer (this filed can be set with its own default
value)

o require_ ek cert: this field enables the EK certificate check during the Boot-
strap Key Derivation Protocol and is particularly important in our scenario.
In the scenario we are now considering, a platform without a physical TPM,
this filed should be set to Fulse, since we cannot obtain a valid ek certificate
for a SW TPM.

All the other parameters can be set with their default value.

106

Keylime installation on a platform without a physical TPM and the abrmd installed

in the [registrar| section of keylime.conf

e registrar _ip: it’s the IP address you want to assign to the Registrar;

e registrar port: it’s the port the Registrar exposes;

All the other parameters can be set with their default value.

In order to properly run the framework it is needed to delete some files related to
the creation of the database: in particular the two files /var/lib/keylime/cv_data.sqlite
and /var/lib/keylime/reg data.sqlite, which are the file representing the databases
of the CV and the Registrar. This operation is needed in order to recreate the
databases with the first run of the framework.

Once the configuration file has been modified, run the installer.sh script in
order to install the keylime wverifier.service and keylime_ registrar.service. Let’s
start them and ensure that their status is "Active":

$ sudo services/installer.sh

$ sudo systemctl start keylime_registrar.service
$ sudo systemctl start keylime_verifier.service

$ sudo systemctl status keylime_registrar.service
$ sudo systemctl status keylime_verifier.service

If the state is "Failed", then try to clear the TPM and then start it again:
$ sudo tpm2_clear

sudo systemctl start keylime_registrar.service
$ sudo systemctl start keylime_verifier.service

&

$ sudo systemctl status keylime_registrar.service
$ sudo systemctl status keylime_verifier.service

In the same directory containing the whitelist, create 2 other files:

a. The exclude list that will be used to validate the quote, it contains the file
whose measurements should be ignored.

b. The payload file that will be ciphered and sent to the agent. In this context
in can be empty.

C.3 Launching Keylime and starting the attesta-
tion process

If all the steps described above are correctly executed and no problem has been
found, we are ready to run all the components. The order in which the daemons

107

Keylime installation on a platform without a physical TPM and the abrmd installed

are started is important too: specifically the Agent should be run after the Registrar
and the Tenant should be run after the Verifier. So the correct order in which the
services should be started is

1. The Registrar;
2. The Verifier;
3. The Agent.

Then, in order to have the Verifier starting the attestation process monitoring
the Agent, we need to run the Tenant whit the following command:

$ sudo keylime_tenant -v <verifier_address> -t <agent_address>
-f <file_to_encrypt_and_send> --uuid <uuid_of_agent>
--allowlist <allowlist_file> --exclude <exclude_list>

this command is the most complicated one since it has some parameter:

e verifier address: is the IP address of the Verifier you want to contact (More
than one Verifiers could be present in the framework);

e agent address: is the IP address of the Agent we want the Verifier to monitor;

o file to_ encrypt_and_send: this parameter is compulsory but the file in-
cluded could also be empty, but could also contain some information the
Tenant wants the Agent to receive;

e uuid_of agent: this is the UUID of the Agent we want to monitor;

e allowlist_file and exclude list: these parameters are not mandatory and
could also be set in the keylime.conf file. They represent the two files con-
taining respectively the golden values of the file that should be measured and
the list of files whose measurement should not be checked.

Once all of these commands are run, the Verifier will start monitoring the Agent
specified, and every time an integrity violation is detected, the Agent will be in-
formed and will show an error message, and a similar error message will be shown
by the verifier.

To see the log of each component could be seen by running:

a. On the Tenant node, to see the status of the attestation process, if the quotes
are validated or if there are measurements that are not matched:

$ tail -f /var/log/keylime/cloudverifier.log
b. On the Tenant node, to see the status of the registration process at the Registrar:

$ tail -f /var/log/keylime/registrar.log
108

Keylime installation on a platform without a physical TPM and the abrmd installed

¢. On the Tenant node, to see the status of the node:
$ sudo keylime_tenant -c status -u UUID1
d. On the Agent node, to see if the quote are sent to the verifier:
$ tail -f /var/log/keylime/cloudagent.log
Another possibility, if you want to see the logs directly on the bash without

going into the log file, is to stop all the services (Registrar, Verifier and Agent) and
running all the daemons by hand:

e The Registrar:
$ sudo keylime_registrar
e The Verifier:
$ sudo keylime_verifier
e (On the node hosting the Agent with the software Emulator) The Agent:
$ sudo systemctl restart tpm.service
$ tpm2_startup -c

$ tpm2_clear
$ sudo keylime_agent

109

	Introduction
	Problem statement
	Objectives

	Trusted Computing
	What is Trusted Computing?
	Trusted Platform Module
	TPM 2.0 - Architecture
	TPM 2.0 - TSS
	TPM 2.0 - Roots of Trust
	TPM 2.0 - Keys Hierarchies

	Remote Attestation
	Integrity Measurements
	Remote attestation
	Activation of credential
	Attestation process

	The ROOT Project
	GNSS-based time synchronization solution
	The GNSS-based solution architecture

	Attacks against GNSS-based architectures
	Classification of attacks against GNSS RF Spectrum
	Classification of attacks against the Distribution Network

	The Keylime Framework
	Background
	Design
	Keylime nodes' architecture
	Keylime and the ROOT project

	Keylime Continuous Remote Attestation of a physical node with a physical TPM
	Prototype
	Prototype bootstrap process with u-boot

	Architecture of the proposed solution
	Modifications made on the Keylime Framework

	Keylime Continuous Remote Attestation of a physical node with a TPM Simulator
	Devices involved in the analysis
	TPM2.0 Emulator and absence of the CRTM
	TABRMD : Access Broker and Resource Manager Daemon
	IMA and TPM2.0 Emulator

	Architecture of the solution
	Modifications made on the Keylime framework

	Keylime Continuous Remote Attestation of the ROOT infrastructure
	Description of the proposed Architecture
	Modifications made to the Keylime Framework
	Attacks to the testbed and response from the framework
	Tests and performances
	Performance evaluation

	Conclusions and future works
	Bibliography
	Prototype characteristics
	Keylime installation on a platform with a physical TPM installed
	Keylime Trust Agent Installation
	Tpm2-tss
	Tpm2-abrmd
	Tpm2-tools
	Installation of the Keylime Agent

	Installation of the Keylime Tenant, Keylime Verifier and Keylime Registrar framework on one single node
	Launching Keylime and starting the attestation process

	Keylime installation on a platform without a physical TPM and the abrmd installed
	Keylime Trust Agent Installation
	Tpm2-tss
	Tpm2-tools
	TPM 2.0 Emulator
	Enabling IMA
	Installation of the Keylime Agent

	Installation of the Keylime Tenant, Keylime Verifier and Keylime Registrar framework on one single node
	Launching Keylime and starting the attestation process

