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Abstract

In this work we give a brief overview of some fundamental concepts of Signal
Detection Theory, an established framework in psychophysics. After that, we
introduce the phenomenon of stochastic resonance, a non-linear effect whereby
signal detectability is enhanced by addition of small amounts of uncorrelated
noise. While introducing them, we concentrate mostly on concepts relevant for
our research. Whether stochastic resonance is a legitimate phenomenon within the
human brain or merely a secondary phenomenon is still largely a matter of dispute.
Subsequently, we outline our motivations for studying stochastic resonance effect
in the human brain and propose which controls should be applied for obtaining
conclusive evidence to settle the aforementioned controversy. Finally, we present
preliminary results of our pilot experiments and conclude by proposing potential
future directions of research.
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This master’s thesis is motivated by two objectives: a critical discussion of
current evidence supporting stochastic resonance as a genuine phenomenon in
human sensory processing; the active contribution of novel experimental evidence
specifically designed to address issues left unresolved by existing data.
Stochastic resonance (SR) is a nonlinear phenomenon whereby a sub-threshold signal
is rendered supra-threshold by the addition of small amounts of uncorrelated noise.
This phenomenon is generally attributed to the contribution of noise components
that fall within the energy band occupied by the signal: these components may
resonate with the signal and push detector activation above threshold.

SR can be studied quantitatively in humans using psychophysical techniques.
The primary goal of psychophysics is to quantify and model subjective experience
in relation to external stimuli. The theoretical foundations of sensory psychophysics
are formulated within an influential framework known as Signal Detection Theory
(SDT), a statistical theory that models how agents respond to input stimuli when
solving well-defined tasks. Minimal requirements for a psychophysical experiment
are (1) a task for the human subject to perform with a well-defined goal (e.g. detect
target X), (2) at least 2 possible states of the world (e.g. target X is present versus
target X is absent), (3) one or multiple presentation intervals during which the
subject is presented with sensory information regarding the state of the world and,
finally, (4) the subject’s behavioural output communicating their decision about
the state of the world. One cycle containing these 4 ingredients is called a ‘trial.’

A typical psychophysical experiment involves two visual stimuli: a known signal
superimposed onto a noise background (corresponding to state-of-the-world sn);
the noise background alone(state n). In the Yes-No protocol (YN), the human
subject only sees one stimulus or the other and is asked to report the inferred state
of the world (sn versus n). This task can be formulated to the subject with the
question: was the signal present or absent? In the 2AFC protocol, the subject is
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always presented with both stimuli: one in the sn state, and one in the n state;
they are then asked to decide which stimulus was in state sn and which stimulus
was in state n. This task can be formulated to the subject with the question: which
stimulus contained the signal? The goal is to identify the correct state of the world
on as many trials as possible.

From the viewpoint of SDT, the perceptual system constructs an internal
representation of the probability distributions associated with the possible states
of the world. These, combined with a decision criterion, support a behavioural
decision. We can formalize this viewpoint using the language of Bayesian statistics.
In general, we call prior the probability that the jth state of the world is the actual
state, and denote it p(hj). Secondly, the posterior is the probability that the
state of the world j is the real one, given that some evidence e has been observed,
mathematically expressed as p(hj|e). Here, e is the information provided to the
subject regarding the true state of the world. Thirdly, the likelihood is written as
p(e|hi), and is the probability that evidence e supports state of the world hi . We
can use likelihood to compute the likelihood ratio:

lij(e) = p(e|hi)
p(e|hj)

.

For a YN task, a decision scheme in our case consists of a statement of the form:

For some value of criterion β and some evidence e, if l12(e) > β, opt for
hypothesis h1, otherwise opt for h2 .

On the other hand, for a 2AFC task, the decision scheme could be stated as:

Given evidence e1 from interval 1 and e2 from interval 2, if lS,N(e1) > lS,N(e2),
opt for interval 1, otherwise opt for interval 2

.
Performance in the YN task depends not only on the perceptual representations

of the probability distributions associated with the possible states of the world,
but also on the decision criterion β. This quantity is associated with the specific
requirement of the YN decision strategy, and is not related to the perceptual
representation of the stimuli as such. Performance in the 2AFC task, on the other
hand, does not depend on this criterion. We focus on two measures of performance:
the percentage of correct responses (PC) and detectability. Detectability is an
index of separation between the two internal representations of the states of the
world. The hallmark of SR is a non-monotonic behaviour of these quantities as
a function of noise intensity, with a local maximum for some optimal amount of
noise.

Even though stochastic resonance is reported widely in the literature, for systems
ranging from single cells to psychophysical experiments in humans, there is still
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uncertainty as to whether the observed effects in humans are genuine or epiphe-
nomenal. The presence of SR in human perception is particularly puzzling because,
as stated above, it is currently believed that sensory behaviour conforms to the
principles of SDT: from a statistical standpoint, the addition of noise should always
result in reduced stimulus discriminability. Furthermore, the extrapolation from
single neurons to behaviour is not transparent. A simple simulation reported in this
thesis illustrates how SR effects may vanish when averaging across a population
of identical neuronal elements, even though the effects are present at the level of
each individual element. This example is meant to illustrate how SR effects at
the single-cell level may not translate to the level of the neuronal populations that
underlie behaviour.
Another potential confounding factor may be sub-optimal placement of the decision
criterion β. Under this scenario, spurious SR effects may be measurable in the form
of percent-correct values from YN tasks, but not from 2AFC tasks. A result of this
kind would indicate that SR does not emerge at the level of sensory perception,
but instead reflects sub-optimality of the decision-making process involved in YN
tasks.
An additional factor that may complicate the interpretation of SR-like measure-
ments in human behaviour is represented by spatial and/or temporal uncertainty
with respect to the location and instant of stimulus presentation. This uncertainty
would prompt human observers to monitor detectors over the entire spatial and/or
temporal interval over which they expect the stimulus to appear, and such inter-
val may be substantially wider/longer than the actual interval occupied by the
signal. This strategy is highly inefficient because detectors that fall outside the
spatio-temporal interval occupied by the signal do not provide useful information
for performing the task; rather, they degrade performance by contributing their
internal noise. This kind of sub-optimality may, under certain conditions, produce
effects that masquerade as SR.

We propose an experimental setup designed to minimize the effects of spatial
and temporal uncertainty. Furthermore, we combine YN and 2AFC tasks within a
unified design that allows direct comparison of the resulting measurements. We
collected data using three protocols: one where only YN trials are presented, one
where only 2AFC trials are presented, and one where YN and 2AFC trials are
mixed and presented randomly on each trial. This approach allows us to test the
possibility that SR may reflect sub-optimal placement of the decision criterion:
under this scenario, we expect to measure SR effects for PC only on YN trials and
not on 2AFC trials. If, on the other hand, SR effects persist for both conditions,
we may entertain the notion that SR occurs before the decision-making process
and reflects properties of the perceptual representation.

Our pilot results obtained using the YN procedure are suggestive of SR in the
human visual system, however some aspects of our dataset indicate the presence
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of additional factors. For example, we observe non-monotonic behaviour for
high noise levels, which is difficult to reconcile with an explanation based on SR.
Furthermore, pilot data from mixed-procedure-type trials expose inconsistencies
with data from single-procedure trials, raising concerns about the general validity
of measurements from the YN procedure: if SR is indeed a characteristic of
human sensory perception, it should emerge regardless of the particular modality
of behavioural readout. Follow-up studies will need to clarify why SR emerges in
pure YN trials but vanishes when trial types are mixed. We will address this issue
if the above-noted differences survive additional data collection in a larger subject
cohort.
Our immediate concern at this stage is to verify whether our pilot results are
robust or due to statistical fluctuation and error measurement. To address this
issue, we have collected a larger data sample under controlled stimulus conditions
in 10 participants and are developing appropriate analytical tools for determining
statistical bounds on our empirical quantities, significance of observed differences,
applicability of certain modelling frameworks, and possibly other applications that
may become necessary as we inspect our dataset more closely.
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Chapter 1

Introduction

Stochastic resonance (SR) is a non-linear phenomenon whereby a subthreshold
signal is rendered suprathreshold by the addition of small amounts of uncorrelated
noise [1]. Noise components within the energy band occupied by the subthreshold
signal push its intensity above threshold; consequently, although in general one
may expect signal detectability to decrease monotonically with decreasing signal-
to-noise ratio, in this case detectability presents a local maximum for a particular
non-zero value of noise. For larger values of noise, the signal is drowned out and
the detectability decreases monotonically.

SR is a well known physical phenomenon in systems with non-linear signal
detectors, e.g. detectors discriminating via a step function [2][3]. Recent studies
have shown that individual cells (or small populations) may exhibit SR effects [4]
[5] . These studies have been followed by attempts to demonstrate SR in more
complex systems, such as the human visual [6] and tactile sensory system [7],
however the evidence remains inconclusive: while some authors argue that SR
genuinely occurs at the level of human perceptual discrimination, others maintain
that it is an epiphenomenon [8] emerging for reasons such as decision uncertainty
[9], suboptimal decision threshold placement [10], non-controlled experimental
parameters [11], and possibly others.

Signal Detection Theory (SDT) is an established framework in psychophysics
[12]. One of its central goals is to understand the process through which an agent
decides whether a particular sensory experience is caused by a stimulus consisting
of a signal superimposed on a noisy background, or by noise alone. Thanks to its
statistical foundation, SDT represents a powerful theoretical framework for the
study of this phenomenon, providing theoretical underpinnings to the experimental
procedures widely employed in psychophysical experiments. By and large, it is the
theory that has been leveraged in psychophysical work on SR [2].

This report starts with a brief introduction to SDT and an overview of the
state-of-the-art regarding SR in complex biological systems, followed by a detailed
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Introduction

description of the specific project under way. We focus on those aspects of SDT
and SR that are directly relevant to psychophysics. The detailed description of
the experimental framework, laboratory setup and data analysis methods refer to
what has already been implemented and tested; whenever reference is made to
items that are under development and not yet completed, this will be made explicit
to readers. The final part of this report puts forward tentative hypotheses for
future directions of research; these may be or may not be undertaken, depending
upon different experimental outcomes expected in the process of verifying the
validity/applicability of our pilot results.

1.1 Signal Detection Theory
The following section is mostly based on "Signal Detection Theory and Psy-
chophysics" by D.M. Green and J.A. Swets [12], a work of fundamental importance
in the field, complemented by the review article "Signal Detection Theory, De-
tectability and Stochastic Resonance" by J. Tougaard [13]. We only introduce the
minimal theoretical concepts that are necessary to understand the experimental
setup, stimulus design and our choices of data analysis, without attempting a full
account of SDT or SR (such an account would far exceed the remit of this report).

SDT is foundational to contemporary sensory psychophysics. In a classical sense,
psychophysics studies and models the "relationship between stimulus and sensation"
[14]: it seeks to explain the connection between objective physical stimulation
and the subjective perception/sensation of a biological organism in response to
said stimulation. In the modern sense of contemporary formulations, the above
connection is statistical, hence the need for a theoretical framework rooted in
statistical decision theory.

Practically speaking (i.e. during experimentation in the laboratory), the minimal
requirements for a psychophysical measurement are the following [12]:

1. A task for the subject to perform. The specification of the task determines the
framework through which the subject will perceive stimuli and reach decisions.
Furthermore, the setting of the task allows for the classification and evaluation
of the procedure used to reach a decision

2. At least 2 possible states of the world represented by physical stimuli,
most often construed as pure noise (n) or a signal superimposed on a noisy
background (s)

3. One or more temporal/spatial presentation interval(s) during which the
subject is provided with sensory information regarding the state of the world

4. The subject’s response, generated by some sort of behavioural output (e.g.
button press), reflecting a decision about which state of the world most
probably generated the stimulus associated with that response
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Introduction

In psychophysical experiments a subject is presented with an input which they
then categorize as being caused by one of the possible states of the world, and
their response is registered. The possible responses are often, but not necessarily,
in a 1-to-1 correspondence with the states of the world. Put in other words, the
subject’s goal during an atom of the psychophysical experiment is to detect a
potentially presented signal.

As already mentioned, the ideas of Signal Detection Theory are formalized
through Statistical Decision Theory, which studies how an agent reaches optimal
decisions when presented with an input characterized by uncertainty [15]. In the
following we recall some cardinal concepts and results that will prove useful later.

1.1.1 General concepts
Any well-specified behavioural decision is associated with an equally well-specified
goal. Not only does having a goal give a particular decision scheme its meaning,
but it also makes it possible to choose some decision scheme to begin with. For
protocols that fall directly under the SDT framework, the goal amounts to giving
as many correct answers as possible in a given task. Because the input stimulus
is characterized by some degree of uncertainty (typically in the form of stimulus
noise), it is often the case that no decision strategy can achieve perfect performance
(correct response on every stimulus instance); however, we can say that, given a
specified objective, a particular decision rule works better than others - on average
(i.e. in a statistical sense).

We define each instance of a stimulus-response event as ‘trial’. On every trial,
either an s or n stimulus is presented, and the subjects’ goal is to determine whether
the observed stimulus originated from the s or the n configuration by responding
to the question "Was a signal presented in the last trial?". They would be correct
[incorrect] to answer ’yes’ [’no’] if s was presented, and ’no’ [’yes’] otherwise.

There are 3 fundamental elements to any decision, of which we consider the
discrete versions:

• hj ∈ {hj}N
j=1, the actual state of the world, usually characterized by presence

or absence of a signal
• ek ∈ {ek}M

k=1, the information provided to the subject regarding the state of
the world; this can also be thought of as evidence supporting different states
to different degrees and it can be an either qualitative or quantitative item, as
well as a combination of multiple elements of both types

• Hi ∈ {Hi}N
i=1, the subject’s decision regarding what the state of the world is,

given the evidence at hand

Subjects are always instructed on the possible stimuli they may witness, and
the corresponding states of the world that generate them. In our case, we restrict
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ourselves to 2 possible states of the world: signal+noise (s) and noise alone
(n). From the viewpoint of SDT, the perceptual system constructs an internal
representation of the probability distributions related to the possible states of the
world. These, combined with a decision criterion, support a behavioural decision.
The formalism of Bayesian statistics lends itself rather well here. We call prior
the probability that the jth state of the world is the actual state, and denote it
p(hj). Secondly, the posterior is the probability that the state of the world i is the
real one, given that some evidence has been observed, mathematically expressed
as p(hi|ek). Thirdly, the likelihood is written as p(ek|hi), and is the probability
that a piece of evidence ek is supportive of the state of the world hi. We can use
likelihood to compute the likelihood ratio:

lij(ek) = p(ek|hi)
p(ek|hj)

(1.1)

The likelihood ratio is a measure of the legitimacy attributed to hypothesis hi

by evidence ek. lij(ek) ∈ (0, 1) favours hypothesis hj, whereas lij(ek) ∈ (1, +∞)
favours hi.

In general, a decision scheme consists of a statement of the form:
For some value of criterion β and some evidence ek,

if lij(ek) > β, opt for hypothesis hi, otherwise opt for hj.

Figure 1.1: S and N probability distributions, the decision criterion, and the
detectability d’ (adapted from [16])

A critical underlying assumption is that subjects are capable of mapping arbitrary
stimuli to an internal metric scale, and hence indirectly to one another. This
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comparison is then used to decide whether a given stimulus is associated with a
given state of the world, e.g. s or n. It is not necessarily the case that subjects
weigh evidence as prescribed by the likelihood ratio: they may adopt different
rules. However, it can be proven that, given a criterion β, the likelihood ratio is the
optimal decision variable [12], as is any other decision variable that is an increasing
monotonic function of the likelihood ratio.

As mentioned earlier, for a given presentation of evidence regarding the true
state of the world, SDT makes the reasonable assumption that subjects can be
modelled as sampling from one of two probability distributions, depending on
the true state of the world. For two distributions with the same variance, simple
optimization shows that the optimal decision criterion lies exactly between the
means of the distributions. It is often assumed that the distributions of s and n are
Gaussian distributions, characterized by the same variance σ, with their respective
means µs and µn shifted from one another. Fig.1.1 features both distributions with
the optimal decision criterion.

The critical feature that characterizes the state of affairs depicted in Fig.1.1 is
the degree to which the two distributions are distinguishable from one another. Ulti-
mately, this is the property that will affect any decision based on those distributions,
and this property can be quantified via the detectability index d′:

d′ = µs − µn

σ
(1.2)

Eq.1.2 specifies a unit-less metric for quantifying the separation between the two
distributions associated to the evidence for the different possible states of the world:
for a given spread (unreliability) of the two distributions, increasing the distance
between them will produce larger d′ values; similarly, for a given distance between
the two distributions, reducing spread will increase d′. It is important to notice
that d′ does not depend on the criterion β since the latter does not enter Eq.1.2. β
is merely a way to convert information from the two distributions onto a decision
rule of the kind exemplified above. Another important remark is that, because σ is
monotonically related to the amount of external noise injected into the stimulus
(more stimulus noise → greater σ), d′ is expected to decrease monotonically with
increasing external noise. As mentioned briefly before, SR involves a non-monotonic
relationship between the discrimination performance of a sensory system and the
amount of external noise applied to the stimulus; if performance is assessed with
reference to d′, we must conclude that SDT does not predict SR.

In order to verify whether the above prediction experimentally applies or not,
in the laboratory d′ is estimated using various procedures. For the purposes of this
report, we focus on the Yes-No task (YN) and the 2 Alternative Forced Choice task
(2AFC). Even though the type of stimuli presented to the subject remain the same
in both tasks, the information given to the subject and the subsequent responses
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differ. Furthermore, because of these differences, each procedure has its own set
of advantages and shortcomings, which must be leveraged or controlled during an
experiment. More specifically, as we discuss in more detail below, the difference
between these two procedures lies in their ability to support an empirical estimate
of d′ that does not depend on response criterion β.

1.1.2 Yes/No Procedure
In a Yes/No procedure, every trial generally consists of a warning stage, a presenta-
tion stage, a decision stage and a feedback stage. These usually occur as a function
of time. The objective is usually to give as many correct answers as possible.

The warning stage consists of a cue that alerts the subject that a stimulus is
to be presented shortly. Cues can be given through any sensory modality; visual
and auditory cues are the most common ones. Even though this stage is somewhat
unnatural, in the sense that warning cues almost never happen in real life, it is
often introduced to alert subjects and maintain vigilance.

During the presentation stage, subjects are presented with a stimulus featuring
either signal+noise or noise alone. The typical question is "Did the last presentation
of the stimulus feature the signal?", and the subject is only allowed to answer
either "Yes" or "No". In some cases, feedback is provided to the subject, informing
them whether their decision was correct or not. It is often assumed that decisions
from any two separate trials can be treated as statistically independent, although
some degree of inter-trial dependence is known to exist and has been extensively
characterized [17].

After having been exposed to a stimulus, the subject’s response can then be
either S or N. We use the convention of writing in lowercase the real states of the
world, and in uppercase the subject’s responses. This yields 4 possible outcomes of
a decision event:

• S|s, called a hit, denoted by H
• N |s, called a miss, denoted by M
• S|n, called a false alarm, denoted by FA
• N |n, called a correct rejection, denoted by CR

After N trials, each of the four possible outcomes will make up a fraction of the
total. Each fraction is an estimate of the conditional probability that the subject
may opt for a hypothesis, given what the actual state of the world is. For each
state of the world, the probabilities of a decision conditional upon that state of the
world must add to one. For example, the probability of a hit and the probability of
a miss must sum unity. For this reason, there are only two degrees of freedom for
the four possible outcomes: all relevant information about the average behaviour of
the stimulus-response coupling can be captured, for example, by p(S|n) and p(S|s).
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s hit
p(S|s)

miss
p(N |s)

n false alarm
p(S|n)

correct rejection
p(N |n)

Table 1.1: Stimulus Response Matrix

How do we assess ‘performance’ in a yes-no task? The most straightforward
approach would be to calculate the percentage of correct responses (PC), i.e.
(p̂(S|s)+p̂(N |n))/2 where p̂ is the estimated probability from data (average of trials
of a given type). There is a potential confound with this measure of performance:
even under the simplest SDT model (Fig.1.1), it depends on the criterion β. Imagine
setting β to the extreme right of the plot in Fig.1.1: under this scenario, p̂(N |s)) = 1
and p̂(S|s)) = 0 (the observer always responds "no"), and percent correct is
50% i.e. chance. Based on PC, we would conclude that the observer’s internal
representation of the stimuli carries no discriminatory power: it produces a response
that is equivalent to pressing buttons randomly. However, this conclusion would
be incorrect: the internal representation is in principle capable of discriminating
between the two distributions associated with the two states of the world in
Fig.1.1; the problem is not with the internal representation, but with the manner
in which the observer has placed their criterion β when reading off that internal
representation for the purpose of producing a binary yes/no response. In other
words, it is entirely possible that the observer is able to perceive the difference
between stimuli generated by state-of-the-world s and stimuli generated by state-
of-the-world n, but applies a response criterion that does not reflect this ability.
When the criterion is placed in such sub-optimal way, we speak of ‘response bias’.

For a different way of expressing the concept discussed above, consider that
response bias can be influenced by prompting subjects to either avoid one type
of error, or prefer a certain type of correct response. For instance, a subject may
become less inclined to answer S if the punishment associated with a false alarm is
increased. On the other hand, propensity towards answering N may be increased
by increasing the reward for correct rejections, leading to a decrease of S responses.
Through such manipulations of the goal, one may influence a subject’s response
bias. We do not suppose, however, that the subject’s perceptual representation is
affected by this class of manipulations: in the most parsimonious account of sensory
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processing, stimuli are perceptually represented with a given fidelity, regardless of
how the associated behavioural responses are rewarded/punished. In other words,
the issue of how one goes about utilizing the information contained within the
perceptual representation for avoiding/prioritizing specific outcome behaviours is
viewed as separate from the issue of how much discriminatory power is carried by
the perceptual representation itself. Because percent correct depends on the former
(see above), it is not an appropriate metric for estimating the latter.

If we assume that the perceptual process is well-approximated by the scenario
depicted in Fig.1.1, then we can obtain an estimate of discriminatory power that is
independent of response criterion, i.e. a more direct estimate of d′ itself, via the
following expression:

d̂′ = Θ−1(p̂(S|s)) − Θ−1(p̂(S|n)) (1.3)

where Θ is the cumulative distribution function of the standard normal distribu-
tion. It must be emphasized that this expression is not, in general, an unbiased
estimate of d′ (as defined in Eq.1.2); in order for it to be so, we must assume
that the underlying sensory process conforms to the specifications of Fig.1.1: two
Gaussian distributions of equal variance subjected to a response criterion threshold.

1.1.3 2 Alternative Forced Choice Procedure
Another type of procedure is the 2 Alternative Forced Choice procedure. Generally
speaking, the goal assigned to subjects remains the same - responding correctly to
as many trials as possible. All stages of this procedure are exactly the same as for
the Y/N procedure, with only the presentation and the response stage differing
noticeably. In this procedure, both states of the world are shown on every trial.
The presentation of the two states can occur as a temporal sequence, presenting the
two states one after the other, or simultaneously at different spatial locations. The
subject must then decide which of the two presentations most likely contained the
signal. A general decision scheme for this type of setting consists of a statement of
the form:

Given evidence e1 from interval 1 and e2 from interval 2,
if lS,N(e1) > lS,N(e2), opt for interval 1, otherwise opt for interval 2.

As opposed to the decision rule introduced earlier, the rule immediately above
does not involve any response criterion β: the likelihood that the stimulus in the
first interval contains s as opposed to n (lS,N(e1)) is directly compared to the
likelihood that the stimulus in the second interval contains s as opposed to n
(lS,N (e2)); whichever interval returns the highest likelihood is selected as containing
the target stimulus.
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If we assume that likelihoods are computed from the underlying sensory rep-
resentation depicted in Fig.1.1, we must conclude that the PC is monotonically
related to d′: in this case, there is no issue with the potential role of criterion
bias as encountered when discussing the YN procedure (section 1.1.2), because the
notion of a criterion does not enter the decision rule. We are therefore left with a
criterion-free empirical estimate of performance that is transparently related to d′,
and therefore to the discriminatory power of the underlying sensory representation.

It is important to notice that the 2AFC decision rule contains an unstated
assumption: subjects are not expected to demonstrate any intrinsic bias towards
selecting either interval. In the example of spatial sequencing with the stimuli
appearing at two different spatial locations, the subject is assumed to have no a
priori preference for perceiving the signal appearing on the right, for instance, as
opposed to a signal appearing on the left (under conditions when the probability
of these two events is equal). Similarly, when stimuli are presented in temporal
sequence, subjects are assumed to have no preference for either the first or the second
interval. Although this assumption seems reasonable, it does not necessarily apply
and in fact does not apply under certain conditions (particularly with temporal
sequencing), making it necessary to verify its applicability from data.

1.2 Stochastic Resonance
Stochastic resonance is a statistical, non-linear phenomenon whereby the detectabil-
ity of a signal can be positively affected by the addition of relatively small amounts
of noise [1][2] [18] [19] [20]. The phenomenon is usually discussed in the context
of subthreshold signals. In general, for a signal that is slightly below detection
threshold at all times, there exists some optimal amount of noise for which the
detectability reaches a maximum, before decreasing monotonically.

This phenomenon is typically demonstrated for a sinusoidal signal whose intensity
is slightly below the detection threshold of a detector (Fig.1.2). Subsequently, a zero-
mean gaussian noise is added to the signal. The noise need not necessarily be white,
however its upper cut-off frequency is usually much higher that that of the signal.
A consequence of this superposition is that some of the noise frequencies resonate
with the appropriate signal frequencies, pushing them above the threshold level.
Whenever they upwardly surpass the threshold, the detector fires. Subsequently,
a random sequence of spikes can be associated with detector activation, and the
average instantaneous firing rate is modulated by the amplitude variation of the
signal. This translates to the power spectrum of the detected signal so that there
is a spike associated with the resonant frequency, surrounded by a relatively flatter
or vanishing power spectrum.

The detectability of a signal, when expressed in terms of the signal-to-noise
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ratio reads
d′ = Ss+n − Sn

Sn

(1.4)

where Ss+n and Sn are the spectra of the detected signal and the noise, respectively.
Generally, it is expected that the detectability of a signal decreases with the
SNR. However, a hallmark of SR is precisely a local maximum in the detectability
of the signal at some non-zero SNR. As the noise increases, the signal becomes
overwhelmed by it, so the detectability is a concave function of SNR [20].

Figure 1.2: Paradigmatic example of Stochastic Resonance (adapted from [21])

In the context of perceptual discrimination, SR is defined as a variation of
detection performance that is non-monotonic with increasing stimulus noise (de-
creasing stimulus SNR), reaching a maximum for a non-zero value of stimulus noise.
The phenomenon of SR is interesting from a neuroscientific standpoint due to the
inherent non-linearity of cortical structure and the ubiquity of noise, both external
and internal, in all sensory systems. It is therefore interesting from the viewpoint of
sensory perception and information processing. While some authors claim to have
demonstrated the presence of SR in human sensory discrimination [6], others are
of the opinion that it merely represents an epiphenomenon of possibly artifactual
origin [8]. As further clarified below, a major drive behind this study was to settle
this controversy conclusively.
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Chapter 2

Motivation

Even though the effect of SR within the human central nervous system superficially
may seem of relatively minute import, the reality may be substantially different.
The first part of this section outlines the wider scope of the study of SR in humans,
in an attempt to show the reader how the study of this phenomenon may contribute
to the understanding of the human experience. The second part of this section
provides motivation related to this particular project, and serves to elucidate doubts
and problems that have been (and are still being) considered in its ideation and
implementation.

In psychophysical experiments decisions are communicated via motor outputs,
or in other words, sensory phenomena are filtered through the nervous system and
subsequently result in behavioral output. Suppose that a subject hypothetically
perceived some stimulus without having been given any objective (so no response
mediated by behavior is required of him), and suppose it were possible to study
the nature of the subject’s internal representation of the event as informed by their
perceptive systems without them communicating their decision. One question that
arises is whether the perceptual system provides the individual with a definite or a
statistical representation of the world?

Drawing on experiences from normal, conscious existence one may be inclined
to state that the representation of the phenomena perceived in the world are of a
definite nature: they are either perceived or are not perceived. A counterargument
to that position is that such binary, definite representation is a byproduct of a
preponderance of intense enough evidence pointing to the presence (or absence) of
what is being witnessed (or not). If, however, the evidence were characterized by a
great deal of inherent uncertainty, the perceptive system may "prefer" generating
an internal representation which is statistical in nature, only to be rendered definite
by the decision process. Stated differently, it may be the case that during the
perception phase different events are assigned probabilities through some internal
process, only to be categorized in a definitive manner via the application of a
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(a) (b) (c)

Figure 2.1: Plotted performances of simulated neuronal elements: Fig.2.1(a):
Signal detection in single neuron; Fig.2.1(b): Signal detection in neuron population
(2AFC); Fig.2.1(c): Signal detection in neuron population (YN). Surface brightness
reflects detection performance (brighter for better performance).

decision criterion.
SR is inherently connected to the above question. A simplified instance of

this dichotomy is the difference in output between a single neuronal element and
a population thereof, illustrating how an SR effect at a single cell level need
not necessarily translate to the level of complex systems. To that end, Fig.2.1
contains plots obtained from a computer simulation activations of single and pooled
neuronal elements when given an input characterized by varying degrees of noise.
The neuronal element only fires if the presented input is higher than an activation
threshold.

Fig.2.1(a) shows the PC of a simulated single neuronal element endowed with a
threshold and a low level of internal noise relative to the external noise intensity. SR
can clearly be seen, especially for medium intensity signals. To understand how SR
is visible at the level of the surface plot in Fig.2.1(a), imagine taking a horizontal
slice across this plot for a signal level (y axis) that is about 1/3 away from the origin
along the y axis: if you were to plot this slice as a function of noise intensity (x axis),
it would look non-monotonic, peaking for a specific non-zero value of noise intensity.
Fig.2.1(b) shows performance obtained by pooling 100 simulated neuronal elements
sharing the same threshold while differing in internal noise, and averaging their
responses over 5000 2AFC type trials. It is immediately obvious that all traces of SR
vanish: any horizontal slice across the surface plot will be monotonically decreasing,
with maximum performance corresponding to 0 noise intensity. When the 100
neurons are exposed to an input, each randomly classifies the input depending
on its instantaneous internal state. When averaging across these multiple noisy
decisions, the original statistical structure of the underlying response distributions
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(before thresholding) is restored (albeit with loss of information). As predicted by
SDT, this structure should not manifest SR (see section 1.1.1).

Referring back to the discussion of definite vs. statistical representation, this
simulation serves as an illustration of how a statistical representation may emerge
from an amalgamation of lower level definite (binary) representations. The statisti-
cal representation can be again converted to a definite state through a post hoc
application of a decision criterion. However, it is important to highlight the subtle
distinction that, whereas in one case perceived items get definitively represented at
the perceptual level, in the other they are statistically represented at the perceptual
level, only to get definitively represented at the behavioral level via a decision
process. It is conceivable that the study of SR viewed through this lens could
contribute to the understanding of information processing and representation within
the human cortex, as well as to what happens on the interface between unconscious
and conscious perception.

In recent years, SDT has also been brought to bear on the problem of SR in
the human brain. The problem of decision criterion emerges in that context. In
particular, the decision criterion during YN trials is usually sub-optimally placed
due to the subject’s idiosyncrasies, which can lead to PC showing apparent effects of
SR. If these effects are epiphenomena, they should disappear when the same data is
used to compute d′ since the latter by definition 1.2 represents the discriminability
of stimuli at the perceptive level, and is independent of behavior.

Another way of controlling for the bias in YN trials is by comparing the obtained
results with those from 2AFC trials, since they are completely unbiased if the
requirements from section 1.1.3 are met. If SR effects are a secondary phenomenon
caused by sub-optimal bias placement, then they should not appear in the PC
obtained from 2AFC trials. Incidentally, this is exactly what can be seen by
comparing Fig.2.1(b) and Fig.2.1(c). A way for controlling for this is to either
implement YN type procedures and study the signal detectability, or to implement
a 2AFC procedure only.

A final concern relates to spatial and temporal uncertainty [9][11]. When a
subject is uncertain as to when or where a stimulus may appear, they apply a bank
of multiple detectors, each dedicated to a portion of the spatial and temporal field.
The input information is then sent through channels associated to those detectors
and is integrated across the whole spatial and temporal range. The result is not
efficient because not only does each detector have its own internal noise, but the
input for each detector potentially differs. If, for instance, a signal appears on only
a fraction of the total spatial range, only the associated detector may get a signal
input, while the others read out only noise. This sub-optimality may, under certain
conditions, produce SR-like effects [11]. A way to control for this is to reduce as
much as possible the uncertainty related to the stimulus presentation. This can be
done through careful addition of cues and markers to the experimental setup.
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Chapter 3

Methods

3.1 Experimental setup

The central element of the experimental setup consists in a computer code written
in Python3 [22], integrating elements of the open source package PsychoPy[23]. It
encodes for each aspect of the decision cycle and the data collection.

Healthy participants are placed in front of a screen, at a distance of approximately
57cm, so that a stimulus of height and length equal to 1cm occupies approximately
1 degree of visual angle. They are instructed on the nature of the task, and asked
to give as many correct answers as possible. No incentives are given to either avoid
or prefer any particular type of outcome. Each sequence of trials contains between
600 and 2000 trials, depending on a participants’ stamina and aptitude. We expect
to collect a total of 10000 − 12000 trial responses per subject. Each subject sits
through one or more sequences, potentially over a span of multiple days or weeks.

An initial phase consists in participants being exposed to sequences containing
solely "blocks" of Yes/No procedure type trials in order to confirm that our experi-
mental setup is indeed capable of detecting SR effects. Once that is confirmed, the
second phase consists in sequences containing the same number of randomly mixed
YN and 2AFC trials. One important aspect of the mixed trial type paradigm is
that it makes it impossible for the subject to adapt to a certain type of stimulus
layout. This adaptation could in turn bias the decision process and introduce
fictitious SR effects. Another important aspect is that it permits data collection
of two different procedures roughly in parallel, as opposed to sequentially, in a
span of hours or days. It can then be reasonably assumed that the resulting data
set is characterized by a uniform degree of internal noise, allowing a more direct
comparison between results of different procedure type trials.
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3.1.1 Stimuli
Every stimulus item is composed of 13 vertical, monochromatic bars. The length
and width of the bars is such that the stimuli are quadratic and subtending 2
degrees of visual angle. Each bar’s shade of grey is drawn from a 13-by-13 stimulus
matrix. A matrix row contains 13 different, gaussian-distributed values, whereas
each matrix column contains one value only, as can be understood from Fig.3.1.
The grey-scale of the monitor ranges from black to white, quantified respectively
by 0 and 1. For a healthy human subject, a barely but reliably detectable pulse is
expected to lie in a range of contrasts between 0.003 and 0.015 relative to the grey
background at 0.5.

The shades of grey of the noise are distributed according to a gaussian distribution
centered in 0.5, and with a variance equal to a percentage of the intensity of the
pulse drawn randomly for every trial from the set (0%, 3%, 5%, 10%, 20%, 40%).
The particular value of the threshold pulse intensity is preliminarily estimated for
every subject separately and an array of 2 − 3 values of intensity distributed around
that threshold intensity is chosen. The pulse intensity will randomly be sampled
from that array at each trial. As reported in Fig.3.1, the difference between an
n and an s state is that the latter features the pulse added to the central (7th)
bar. The presentation of a stimulus can occur on either the left of the right half
of the screen. Regardless of procedure and state, the geometrical center of a
stimulus always has an eccentricity of 2.5 degrees of visual angle with respect to the
geometrical center of the screen along the x axis, and no eccentricity with respect
to the geometrical center of the screen along the y axis.

3.1.2 Procedures and sequences
At the start of every trial, the screen features a white fixation cross which the
subject is instructed to fixate, and four white bars. The purpose of the bars is
to mark the locale of the pulse presentation, thus reducing spatial uncertainty.
These markers are static. The warning stage starts 150ms before the presentation
stage, and they end simultaneously. In the mixed procedure modality its purpose
is threefold: firstly, it reduces the temporal uncertainty the subject may otherwise
experience regarding the onset and duration of the presentation stage; secondly, it
removes uncertainty related to whether the forthcoming presentation is of YN or
2AFC type; thirdly, in YN type procedures it indicates on which side of the screen
will the stimulus appear. Fig.3.2 shows the presentation stage midway, with all the
elements in full view. Fig.3.1(a) features a YN trial with a pulse appearing on the
left-hand side of the screen, and Fig.3.1(b) shows a 2AFC trial with signal+noise
on the left, and just noise on the right-hand side of the screen. The presentation
stage lasts 250ms, after which the orange cues disappear and the fixation cross
turns white again.
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(a) Stimulus with pure noise (b) Stimulus with pulse + noise

Figure 3.1: Example of a pure stimulus (a) and a stimulus with a pulse added to
the noise (b). Both the pulse intensity and the noise variance have been adjusted
in order to make the stimuli more readily visible.

In the YN trial the subject communicates their answer to the question "Was
there a signal presented during the last trial?" by pressing either y (for "yes") or n
(for "no"). Alternatively, in the 2AFC trial they respond to the question "Where
was the signal presented during the last trial?" by pressing either the left of right
arrow key. Keys "y" and "n" are not accepted as answers to 2AFC trials, and vice
versa. After the participant has given an answer, the fixation cross turns red or
green depending on whether the response was incorrect or correct, respectively.
The resetting of the fixation cross’ color to white marks the end of the trial. Every
50 trials the participant is informed of their performance by displaying the PC they
have given during the sequence up to that point.

3.2 Data analysis
The set of tools for data analysis are incomplete since the experiment is still in the
pilot stage. What will mostly be considered is the PC for 2AFC trials, and the
d′ for YN trials. Plots of those quantities as functions of external noise level will
initially serve as a crude indication of whether SR effects emerge from the collected
data.

Another aspect of data analysis may include what we call "Response Conditioned
Averages" or RCA, an inverse correlation technique which will potentially give an
insight into the perceptual template the subject applies when a stimulus is presented
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(a) Yes/No presentation (b) 2AFC presentation

Figure 3.2: Example of the presentation stage for the 2 procedures employed in
the experiment. As in Fig.3.1, the pulse and the noise intensity have been adjusted
in order to make the stimuli more readily visible.

during a YN type trial. In practice, responses to YN trials are placed in 4 categories,
depending on the outcome: hits, false alarms, misses, and correct rejections. Within
each category, the average is taken over the stimulus matrices. After that the
matrices associated to N answers are subtracted from those associated to S answers.
The final result is referred to as "meta template" or simply "kernel". Considering
the baseline to be at 0.5, we expect the noise values in N response trials to be
on average negative enough to mask the pulse, whereas in the S response trials
we expect the noise values to be either close to 0 or positive - so they enable the
recognition of a pulse or even simulate it. Due to reasons beyond the scope of this
report, the values of each row of the resulting matrix should mimic a Mexican hat
function or Ricker wavelet. Inspecting the obtained wavelets in function of different
levels of noise, given a pulse intensity, may inform us as to whether and how the
perceptual template of the visual system changes depending on noise levels in this
sort of task.
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Chapter 4

Results and Conclusions

4.1 Results

In this section we present results thus far obtained during the pilot stage. These
are by no means conclusive, but may provide some legitimacy to our experimental
setup and the choices made along the way.

We have mentioned that the PC in YN trials may display SR due to sub-optimal
criterion placement, i.e. individual biases. This fictitious effect can be avoided
by plotting the detectability d′, or performing 2AFC trials. Fig.4.1 shows plots
obtained from 4200 pure YN trials for Subject 1 and 600 trials for Subject 2. Note
that the noise vales in Fig.4.1(a) are not exactly the same as in the array reported
in subsection 3.1.1. However they still represent noise levels as fractions of signal
intensity. Both figures indeed show an increase in detectability for a non-zero noise
level. Incidentally, for the same signal intensity both subjects display maximum
SR effects for the same quantity of noise added, i.e. 10% of signal intensity.

In figures (4.1(c),(d)), the x axis shows the positions of the stimulus bar relative
to the central bar, whereas the y axis contains numerical values associated to shades
of grey relative to the backdrop at 0.5. Indeed, it can be seen from the figures that
the Ricker wavelet shape is emerging. It is noteworthy that the wavelet is much
better defined in Fig.4.1(c) than in Fig.4.1(d), with the former being a much larger
data set.

Fig.4.2 shows plots from mixed-procedure-type trials for Subjects 1 and 2. It
can be seen that the detectabilities again display non-monotonic behavior as noise
increases. However, for Subject 1 the maximum is at 3% of signal intensity, instead
of 10%. Furthermore, no trials with signal intensity 0.003 and 40% noise were
sampled for Subject 2, due to the restricted size of the sample. The plots for PC
in the 2AFC trials also give no definitive evidence of SR. On the one hand, Subject
1 exhibits only a minuscule peak in performance at noise equal to 3% of signal
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(a) Detectability for Subject 1 (b) Detectability for Subject 2

(c) Kernel for Subject 1 (d) Kernel for Subject 2

Figure 4.1: Plots obtained from pure YN trials

intensity, falling within less than 2 standard deviations of the performances at
adjacent values of noise intensity. On the other hand, Subject 2 exhibits roughly
the same performance at 5% and 40% noise, indicating that both peaks could be
due to statistical fluctuations.

Finally, the perceptual meta-templates, while retaining some of the fundamental
features of Ricker wavelets, show no convincing structure.
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(a) Detectability for Subject 1 (b) Detectability for Subject 2

(c) PC in 2AFC for Subject 1 (d) PC in 2AFC for Subject 2

(e) Kernel for Subject 1 (f) Kernel for Subject 2

Figure 4.2: Plots obtained from mixed YN\2AFC type framework
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4.2 Conclusions
The pilot results obtained using the YN procedure are indicative of SR in the human
visual system. However, the relatively small sample and the non-monotonicity of
the plots for high levels of noise are issues that need to be addressed through more
data collection and analysis. Furthermore, a variant of YN trials may be introduced
in order to further reduce spatial uncertainty, namely by always presenting the
stimulus on only one side of the screen. Because this design may tempt observers
to move their eyes away from fixation and directly onto the expected location of
stimulus appearance, their eye position will be tracked to ensure that only trials
during which subjects looked at the fixation cross are retained for further analysis.

In contrast to single-type YN trials discussed above, pilot data from mixed-
procedure-type trials appear to indicate that SR in humans is epiphenomenal -
specifically referring to 2AFC trials. It could be argued that, if SR is indeed a
characteristic of human sensory perception, it should emerge regardless of the par-
ticular modality of behavioral readout. In other words, it should persist regardless
of whether the task at hand is of YN or 2AFC type, and regardless of whether
the procedure type is pure or mixed. Follow-up studies will need to clarify why
SR emerges in pure YN trials, but vanishes when trial types are mixed. We will
address this issue if the above-noted differences survive additional data collection
in a larger subject cohort (see below).

Our immediate concern at this stage is to verify whether our pilot results are
robust or due to statistical fluctuation and error measurement. To solve this issue,
we have collected a larger data sample under controlled stimulus conditions in
10 participants, and are developing appropriate analytical tools for determining
statistical bounds on our empirical quantities, significance of observed differences,
applicability of certain modelling frameworks, and possibly other applications that
may become necessary as we inspect our dataset more closely. If the observed
discrepancy between YN and 2AFC persists, it will be necessary to understand
the underlying perceptual mechanism. We will do this through further testing
with targeted stimulus manipulations, as well as with computational modelling
whenever appropriate.
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