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Introduction
In this thesis I investigate the coherent electron transport in a nanowire with spin-orbit
coupling. Spin orbit coupling is a relativistic effect resulting in a coupling between the
spin of an electron and its motion in an electric field. While in atomic physics it explains
the fine structure of the atomic spectrum, this effect is also relevant in various semicon-
ductors (e.g. InSb or InAs), for spintronics applications. In particular, nanowires (NWs)
with a strong Rashba spin orbit coupling (RSOC), are currently on the spotlight of the
condensed matter community. Indeed the technological advances in NW gating allow to
tune the RSOC. Moreover, when combined with a Zeeman magnetic field, the RSOC in
NWs gives rise to one-dimensional helical electron states that are topologically protected.
Inspired by these motivations, this thesis aims to model the electron transport properties
of NWs with an inhomogeneous RSOC and exposed to a Zeeman magnetic field, in the
low temperature mesoscopic regime, where decoherence is absent and the wavelike nature
of electrons emerges. The Thesis is organized as follows.

Chapter 1 reviews the origin of the spin-orbit coupling and its effects in semiconduct-
ing materials,

Chapter 2 reviews the Scattering Matrix approach (SMA), i.e. the quantum ap-
proach used to analyze the transport properties in the quantum mesoscopic regime. The
subsequent two chapters contain original research work. In particular:

Chapter 3 applies the SMA to the case of NW. In particular, motivated by the
advances in gating techniques, I focus on NWs with an inhomogeneous RSOC. After
performing the analytical calculation of the Boundary Matrix in each NW portion, I have
written a numerical Python code to compute the Scattering matrix of the NW, whence
I derived its transport properties. Specifically, I have considered two configurations of
the inhomogeneous RSOC that correspond to physically interesting situations, and I have
shown that the conductance can be widely tuned both electrically and magnetically.

Chapter 4 focusses on the regime where the RSOC is much bigger than the Zeeman
energy. This is the case where the NWs exhibits one-dimensional helical electron states,
i.e. states described by a massless Dirac equation where the helicity value (+/-1) encodes
the locking between the direction of propagation and the spin orientation. In particular,
I investigated the so called Dirac paradox, which emerges at the interface between two
regions of opposite helicity: An electron impinging from one side can seemingly neither
be transmitted nor reflected. While the Dirac paradox has been investigated in higher
dimensions (e.g. in 3D topological insulators), its implementation in NWs is particularly
interesting since the helical states are actual 1D channels, preventing electrons from es-
caping along the interface of the two regions. While purely massless Dirac models predict
that the solution of the Dirac paradox does not exist or is trivial, in a NW the paradox has
a non trivial solution, due to the role played by additional massive Dirac modes. Although
these modes carry no current, they allow the wavefunction matching at the interface for
the massless modes, and the electron transmission can be controlled electrically. These
results are described in a research article that is currently under review:
L. Gogin et. al "The Dirac paradox in 1+1 dimensions and its realization with spin-orbit
coupled nanowires", cond-mat arXiv:2109.07355
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Chapter 1

Spin-orbit interaction

1.1 Origin of the spin-orbit interaction

This section is devoted to illustrate the origin of the spin-orbit interaction, whose effects
in nanowires are the focus of my thesis. In atomic physics this interaction explains the
fine structure of the atomic spectra, i.e. the lifting of energy level degeneracy occurring
even in the absence of a magnetic field[47]. A customary pictorial way to explain the
origin of this interaction is that, due to relativistic effects, electric and magnetic fields
depend on the reference frame. Thus, an electron performing its orbit in the electric field
generated by the atomic nucleus feels an effective magnetic field in its reference frame.
The coupling of its spin with such magnetic field results in the ’spin-orbit’ interaction. At
a more rigorous level, such interaction can be properly derived from the Dirac equation
in non relativistic limit.[29, 37].

This section is structured as follows. We first present a heuristic derivation of the spin-
orbit interaction, based on the relativistic transformation of the electromagnetic fields.
Then, we present a rigorous derivation of the effect, starting from the Dirac equation
and analyzing its non-relativistic limit. Specifically we present two equivalent derivations.
One is based on a direct perturbative expansion[29], while the other one is based on the
Löwdin partitioning approach[25], which can be considered as the generalization of the
Foldy–Wouthuysen Transformation[37].

1.1.1 Heuristic derivation

A heuristic argument to justify the appearance of the spin-orbit interaction is based on
the Lorentz transformation of the electromagnetic field between two inertial reference
frames[47]. Let Σ be an inertial reference frame, where, at a given time t, a particle
with charge q is moving with velocity u. At that time, there is an instantaneous inertial
reference frame Σ′, moving with that constant velocity u with respect to Σ, where the
particle is momentarily at rest. Decomposing in each frame the electric and magnetic
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1 – Spin-orbit interaction

fields in direction parallel and orthogonal to u one has{
E = E‖ + E⊥
B = B‖ + B⊥

{
E′ = E′‖ + E′⊥
B′ = B′‖ + B′⊥

(1.1)

one has [74] 

E′‖ = E‖

E′⊥ = γ(E + u×B)⊥

B′‖ = B‖

B′⊥ = γ(B− u× E
c2 )⊥

(1.2)

where the relativistic factor γ = 1/
√

1− v2/c2 is roughly equal to 1 if |v| � c. In
particular, from Eqs.(1.2) we can see that, even if in Σ only an electric field E is present
(B = 0), in its rest frame Σ′ the particle experiences also a magnetic field perpendicular
to its velocity

B′ = γ
E
c
× u

c
' E× p

m0c2 (1.3)

In turn, the particle spin couples to such magnetic field B′ through a Zeeman coupling,
giving rise to an effective term

Hheuristic
so = − ~q

2m0
σ · B′ = − ~q

2m2
0c

2 σ · (E× p) (1.4)

where the so-subscript stands for ’spin-orbit’, since the prototypical example of this effect
occurs in an atom, where an electron experiences an effective magnetic field while perform-
ing its orbit under the electric field E = −∇V generated by the electrostatic potential V
of the nucleus.
This heuristic argument reproduces surprisingly well all the ingredients of the effect and
the dependence on the mass and c. However, Eq.(1.4) overestimates by a factor of 2 (i.e.
by the gyromagnetic factor g0 ' 2[47]) the actual coupling

Hso = − ~q
4m2

0c
2σ · (E× p) (1.5)

Here below we shall thus derive Eq.(1.5) rigorously, starting from the Dirac Equation.

1.1.2 The Dirac equation and its non-relativistic limit
A free relativistic spin-1/2 particle is described by the Dirac equation[29]

i~
∂Ψ
∂t

=
(
cα · p̂ + βm0c

2
)

Ψ (1.6)
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1.1 – Origin of the spin-orbit interaction

where p̂ = −i~∇ is canonical momentum, Ψ is the 4-spinor wavefunction of the particle,
and α, β is a vector of 4×4 matrices that in the case of 3+1 dimensions can be expressed
as

α =
(0 σ
σ 0

)
β =

(
σ0 0
0 −σ0

)
(1.7)

where σ = (σx, σy, σz) are the 3 Pauli matrices and σ0 is the 2× 2 identity matrix. The
Dirac equation (1.6) is fully relativistic and is characterized by the well known relativistic
energy spectrum, i.e.

E =
√
c2p2 +m2

0c
4 (1.8)

The coupling with electromagnetic fields E(r), B(r) can be introduced through the sub-
stitution of the canonical momentum by a kinetic one, and through an energy change

p̂→ π̂ = p̂− qA (1.9)
Ê → E + qV (1.10)

where V (r) and A(r) are the scalar and vector potentials, related to E(r), B(r)

E(r) = −∇V (r) (1.11)
B(r) = ∇×A(r) (1.12)

and q is the electrical charge. The Dirac Equation becomes

i~
∂Ψ
∂t

= ĤD Ψ (1.13)

where
ĤD

.= cα · (p̂− qA) + βm0c
2 + qV (1.14)

is the Dirac Hamiltonian. The spin-orbit effect is obtained from the non-relativistic limit
of the Dirac equation (1.13). In order to analyze this limit, we observe that the full 4× 1
spinor can be written as the composition of two 2× 1 spinors

Ψ(r, t) =
( ΦU (r, t)

ΦL(r, t)

)
(1.15)

where ΦU and ΦL denote the upper and lower spinor, respectively. In this way the Dirac
equation (1.13) can be rewritten as two coupled differential equations for each 2×1 spinor

i~
∂ΦU

∂t
= cσ · π̂ΦL +m0c

2ΦU + qV ΦU

i~
∂ΦL

∂t
= cσ · π̂ΦU −m0c

2ΦL + qV ΦL

(1.16)

Looking for stationary solutions( ΦU (r, t)
ΦL(r, t)

)
= e−i

E
~ t

(
φU (r)
φL(r)

)
(1.17)
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1 – Spin-orbit interaction

one can always write the energy E as the sum of the rest energy m0c
2 and the deviation ε

from it
E = m0c

2 + ε (1.18)
In the non relativistic limit, namely |p| � m0c, the rest energy m0c

2 is the dominant
energy scale, whereas

ε =
∣∣∣∣√c2p2 +m2

0c
4 −m0c

2
∣∣∣∣� m0c

2 (1.19)

represents the non-relativistic energy. Substituting Eq.(1.18) into Eq.(1.17) and singling
out the rest energy in the time-dependent phase, the full wavefunction (1.15) can be
expressed as the product of a fast oscillating factor related to the rest energy and a slowly
oscillating envelope ( ΦU (r, t)

ΦL(r, t)

)
= e−i

m0c
2

~ t︸ ︷︷ ︸
fast oscillating

e−i
ε
~ t

(
φU (r)
φL(r)

)
︸ ︷︷ ︸

slowly oscillating

(1.20)

Plugging the above relation into Eq.(1.16) one obtains a system of two coupled differential
equations for slowly oscillating wavefunctions{

cσ · π̂φL(r) = (ε− qV (r))φU (r)
cσ · π̂φU (r) = (2m0c

2 + ε− qV (r))φL(r)
(1.21)

This is the starting point to analyze the non-relativistic limit of the Dirac Equation. In
the literature there exist two methods to show that the spin-orbit interaction arises from
such non-relativistic limit. The first one is a perturbation expansion, while the second one
is the so called Löwdin partitioning. Here below I shall illustrate both these approaches.

1.1.3 The perturbative expansion method
Let us start by illustrating the perturbative expansion method. The second Eq.(1.21)
implies the relation

φL(r) = c

2m0c2 + ε− qV (r)σ · π̂φU (r) (1.22)

showing that the lower spinor φL is negligible w.r.t. the upper spinor φU in non relativistic
limit since |σ · π̂| = |π̂| � m0c

2. Plugging Eq.(1.22) into the first Eq.(1.21), leads to

σ · π̂ c2

2m0c2 + ε− qV (r)σ · π̂φU (r) = (ε− qV (r))φU (r) (1.23)

Note that, because V = V (r) and π̂ = −i~∇ − qA contains a derivative operator, the
operators σ · π̂ and (ε+ 2m0c

2 − qV (r))−1 do not commute.

In the non-relativistic limit one has

ε� m0c
2 |qV | � m0c

2 (1.24)
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1.1 – Origin of the spin-orbit interaction

and one can perform the following perturbative expansion

c2

2m0c2 + ε− qV (r) = 1
2m0

1
1 + 2m0c2+ε−qV (r)

2m0c2

= 1
2m0

(
1− ε− qV (r)

2m0c2 + . . .

)
(1.25)

which can be regarded as an expansion in powers of u/c � 1, where u is the particle
velocity, since from Eq.(1.23) one has |ε− qV | ∼ |π|2/2m0 = 1

2m0u
2.

Zero order of Eq.(1.25)

Retaining only the zero order of Eq.(1.25)

c2

2m0c2 + ε− qV (r) '
1

2m0
, (1.26)

and replacing it into Eq.(1.23) one obtains

(σ · π̂)2

2m0
φU (r) = (ε− qV (r))φU (r) (1.27)

Recalling that π̂ = p̂− qA and observing that

(σ · π̂)2 = π̂2 + iσ · (π̂ × π̂) =
= π̂2 − ~qσ · (∇×A) = π̂2 − ~qσ ·B (1.28)

one finds (
π̂2

2m0
− ~q

2m0
B · σ + qV (r)

)
φU = εφU (1.29)

This is the Schrödinger-Pauli equation for the 2× 1 spinor φU that represents the upper
and dominant part of the original 4× 1 Dirac spinor. Note that the Zeeman coupling has
the correct gyromagnetic factor g0 = 2 [37].

First order of Eq.(1.25)

Retaining also the first order in the expansion Eq.(1.25), which corresponds to a second
order in |u|/c,

c2

2m0c2 + ε− qV (r) '
1

2m0

1− ε− qV (r)
2m0c2︸ ︷︷ ︸
O(|u|/c)2

 , (1.30)

Eq.(1.23) becomes(
σ · π̂
2m0

(
1− ε− qV (r)

2m0c2

)
σ · π̂

)
φU (r) = (ε− qV (r))φU (r) (1.31)
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1 – Spin-orbit interaction

which can formally be written as

ĤUφU = εφU (1.32)

with
ĤU = σ · π̂

2m0

(
1− ε− qV (r)

2m0c2

)
σ · π̂ + qV (r) (1.33)

Notably, Eq.(1.32) cannot be considered as an eigenvalue equation for φU , for three rea-
sons. First, because the eigenvalue ε also appears in the Hamiltonian ĤU itself. Second,
by expanding the operator ĤU to O(|π̂|/2m0c)2 = O(|u|/c)2, it can be shown that it
contains a non-Hermitean term i~E · p̂. Third, because, differently from the zero order
case, the spinor φU is not normalized to this order.

Let us start by discussing the last issue. From the relation (1.22) between φL and φU , we
observe that the normalization of the 4× 1 spinor (1.15)[25, 29]∫

drΨ†Ψ =
∫
dr (φ†UφU + φ†LφL) = 1 (1.34)

implies that, to order O(|π|/2m0c)2 = O(|u|/c)2,∫
drφ†U

(
1 + (σ · π̂)2

4m2
0c

2

)
φU ' 1 (1.35)

This relation shows that, differently from the zero order case Eq.(1.26), to order O(|u|/c)2

the upper spinor φU itself is not normalized, since a fraction of the probability density is
ascribed to the lower spinor φ†LφL contribution[25]. In order to deal with a normalized
2× 1 spinor, one thus introduces a renormalized spinor

ϕ
.= ΩφU ↔ φU = Ω−1ϕ (1.36)

where the operator Ω = 1 + (σ·π̂)2

8m2
0c

2 compensates for the probability density leak of φU , in
order for the 2× 1 spinor ϕ to be normalized up to O(|π|/2m0c)2, in view of Eq.(1.35).
By multiplying both sides of Eq.(1.32) by Ω−1 ' 1− (σ·π̂)2

8m2
0c

2 [29]

Ω−1HAΩ−1ϕ = εΩ−2ϕ (1.37)

and by consistently retaining only terms to order O(|π̂|/2m0c)2 = O(|u|/c)2, one obtains
the equation for the normalized eigenfunction ϕ [29](

(σ · π̂)2

2m0
+ qV (r) + q

4m2
0c

2σ · π̂V (r)σ · π̂ − q

8m2
0c

2

{
(σ · π̂)2, V (r)

})
ϕ = εϕ (1.38)

Note that the kinetic momentum π̂ and V (r) do not commute. Eq.(1.38) can be rewritten
in a more insightful form by exploiting the following general equation{

Â2 , B̂
}
− 2ÂB̂Â =

[
Â ,
[
Â, B̂

]]
(1.39)
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1.1 – Origin of the spin-orbit interaction

to the operators Â = σ · π̂ and B̂ = V (r), and the following relations

[π̂, qV ] = iq~E (1.40)
[π̂i, Ei] = −i~∂iEi (1.41)

(σ · a)(σ · b) = a · b + iσ · (a× b) (1.42)

where a, b are two generic vectors, and the definitions (1.11)-(1.12) and π̂ = −i~∇− qA
have been used. With help of the above relations, Eq.(1.38) can be rewritten as[29](

(p̂− qA)2

2m0
− ~q

2m0
B · σ + qV (r)−

− q~
4m2

0c
2σ · E× (p̂− qA)− q~2

8m2
0c

2 ∇ · E
)
ϕ = εϕ (1.43)

Notably, Eq.(1.43) is now a proper eigenvalue problem for the normalized eigenfunction ϕ,
with a Hermitean Hamiltonian. While the first three terms can be easily identified with
already familiar contributions, namely the kinetic energy, Zeeman splitting and external
scalar potential, the last two terms correspond to the new corrections. In particular,

HD = − e~2

8m2
0c

2∇ · E (1.44)

is called the the Darwin term and can be interpreted as a smearing of the atomic potential
due to the quantum fluctuations of electron position as result of creation and annihilation
of electron-positron pair. In the case of Coulomb potential the Darwin term is non-
vanishing only at the origin. It thus involves only the s-state and then can be neglected
for atoms with high atomic number[24, 47]. The other term

HSO = − q~
4m2

0c
2σ · (E× π̂) (1.45)

is the spin-orbit interaction. By comparing with the heuristically derived expression (1.4),
we see that Eq.(1.45) now has the correct gyromagnetic factor.

1.1.4 Löwdin partitioning
An alternative derivation of the spin-orbit interaction from the non relativistic limit of
the Dirac equation can be carried out with the Foldy–Wouthuysen transformation, that is
a unitary transformation allowing to decouple small spinor component φL and dominant
one φU [37]. The transformation can be found in closed form in the case of free particle,
while in the presence of electromagnetic field the unitary transformation only could be
approximated with power expansion of 1/(m0c). Here we shall describe a more systematic
approach, known as the Löwdin partitioning, which can be considered as generalization
of Foldy–Wouthuysen transformation and that enables us to include the electromagnetic
field as well. The Löwdin partitioning is a quasi-degenerate perturbation theory that leads
to an approximated diagonalization of time independent block Hamiltonians[25]. It aims
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1 – Spin-orbit interaction

to construct a unitary transformation such that the resulting transformed Hamiltonian
would be block diagonal. With respect to Foldy–Wouthuysen transformation, the Löwdin
partitioning is valid for larger sets of possibly degenerate states. Consider the Hamiltonian
decomposition

H = H0 +H ′ (1.46)
where H0 is an unperturbed Hamiltonian whose energy eigenvalues En and corresponding
eigenstates |ψn〉 are known. The idea is that the unperturbed eigenstates can be divided
into 2 subsets {|ψn〉} = {|ψm〉 : m ∈ A} ∪ {|ψl〉 : l ∈ B}, and H ′ is a weak perturbation
that couple states from subset A and B. The coupling Hamiltonian H ′ can be written as

H ′ = H1 +H2 (1.47)

where H1 is the block diagonal part i.e. 〈ψm|H1|ψn〉 /= 0 if n,m ∈ A or n,m ∈ B and H2
is the off-diagonal part, i.e. 〈ψm|H2|ψn〉 /= 0 if n ∈ A, m ∈ B or vice versa m ∈ A, n ∈ B.
The two subsets of states of the full Hamiltonian can be decoupled if one can construct,
exactly or approximately, a unitary transformation U = e−S such that

H̃ = eSHe−S (1.48)

is block diagonal up to given order of perturbation H ′ i.e. 〈ψm|H̃|ψn〉 = O((H ′)δ) if
m ∈ A and n ∈ B. It can be observed that in order to guarantee the unitarity of
the transformation, the operator S must be anti-Hermitian S† = −S. Furthermore S
is expected to have non-block diagonal form. Using the Baker–Hausdorff formula, the
transformed Hamiltonian can be rewritten as

H̃ =
∑
j=0

1
j! [H0 +H1, S](j) +

∑
j=0

1
j! [H2, S](j) (1.49)

where [a, b](j) = [...[[a, b], b], ...b] is nested commutator at j-th order. Up to now H̃ still
contains a off-diagonal block contribution H̃n. Due to the property of S, they are expected
to have the form [H0 +H1, S](2j+1) and [H2, S](2j). In contrast, the block diagonal part H̃d

is expected to involve terms of the form [H0 +H1, S](2j) and [H2, S](2j+1). In general it is
hard to find in a closed form a unitary transformation S that eliminates the off-diagonal
blocks term H̃n. However, S could be approximated with a power expansion truncated at
given order

S ' S(1) + S(2) + S(3) + ... with S(j) = O((H ′)j) (1.50)
The constraint H̃n = 0 can be satisfied by imposing the mutual cancellation of similar
order of perturbation terms. This leads to a set of equations for each term of the power
expansions S(j)

[H0, S
(1)] = −H2 (1.51)

[H0, S
(2)] = −[H1, S

(1)] (1.52)

[H0, S
(3)] = −[H1, S

(2)]− 1
3[[H2, S

(1)], S(1)] (1.53)
...
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1.1 – Origin of the spin-orbit interaction

From the above set of equations it can be seen that the l.h.s. is of the order S(j), while
r.h.s is of the same order due to the product of expansion terms of S(i) with i < j and
perturbation Hamiltonian. Solution of this equations, i.e. the general form of S(j), can
be found in Appendix B of reference [25]. Using the expansion (1.50) and substituting it
into Eq.(1.49), the Hamiltonian H̃ can be expressed as

H̃ = H(0) +H(1) +H(2) +H(3) + ... (1.54)

We report here explicitly the entries of the first three expansion terms[25]

H
(0)
m,m′ = (H0)m,m′ (1.55)

H
(1)
m,m′ = H ′m,m′ (1.56)

H
(2)
m,m′ = 1

2
∑
l

H ′m,lH
′
l,m′

[ 1
Em − El

+ 1
Em′ − El

]
(1.57)

H
(3)
m,m′ = −1

2
∑
l,m′′

[
H ′m,lH

′
l,m′′H

′
m′′,m′

(Em′ − El)(Em′′ − El)
+

H ′m,m′′H
′
m′′,lH

′
l,m′

(Em − El)(Em′′ − El)

]
+ (1.58)

+ 1
2
∑
l,l′

H ′m,lH
′
l,l′H

′
l′,m′

[ 1
(Em − El)(Em − El′)

+ 1
(Em′ − El)(Em′ − El′)

]
(1.59)

1.1.5 Non-relativistic expansion with Löwdin partitioning

Let us now apply the Löwdin partitioning to analyze the Dirac Hamiltonian Eq.(1.14) in
the non relativistic limit. In this case the rest energy is a dominant energy scale with
|π̂| � m0c and |eV | � m0c

2. The Dirac Hamiltonian ĤD can thus be seen as describing
a particle at rest that is weakly perturbed by the kinetic term, and can be decomposed
according to Löwdin scheme as

H0 = m0c
2β (1.60)

H ′ = cα · π̂ + qV = H1 +H2 (1.61)

where

H1 =
(
qV 0
0 qV

)
H2 =

( 0 cσ · π̂
cσ · π̂ 0

)
(1.62)

When the particle is at rest and free from the electromagnetic field, the eigenvalue
problem ĤDψ = Eψ reduces to

m0c
2βψ = Eψ (1.63)

13



1 – Spin-orbit interaction

and has four eigenstates grouped into two degenerate subsets

ψA,1 =


1
0
0
0

 ψA,2 =


0
1
0
0

 (1.64)

ψB,1 =


0
0
1
0

 ψB,2 =


0
0
0
1

 (1.65)

with corresponding energies

EA = m0c
2 (1.66)

EB = −m0c
2 (1.67)

The states (1.64) ψA,i =
(
φU
0

)
with i = 1,2 identify the upper component φU of the

4-spinor and are expected to be dominant in non relativistic limit. In this way Löwdin
partitioning becomes rather simple to implement

H ′A,A = qV (1.68)
H ′A,B = H ′B,A = cσ · π̂ (1.69)

EA − EB = 2m0c
2 (1.70)

The expansion of transformed Hamiltonian up to third order terms can be written as [25]

H(0) = m0c
2σ0 (1.71)

H(1) = qV (1.72)

H(2) = 1
2m0

σ · π̂σ · π̂ (1.73)

H(3) = 1
4m2

0c
2σ · π̂qV σ · π̂ −

1
8m2

0c
2
[
σ · π̂σ · π̂qV + qV σ · π̂σ · π̂

]
= 1

4m2
0c

2σ · π̂qV σ · π̂ −
1

8m2
0c

2

{
(σ · π̂)2, qV (r)

}
(1.74)

With help of the identities (1.40-1.42) it is straightforward to simplify the above expansion
terms, obtaining

H(0) = m0c
2σ0 (1.75)

H(1) = qV (1.76)

H(2) = 1
2m0

(π̂2 − ~qσ ·B) (1.77)

H(3) = − q~
4m2

0c
2σ · (E× π̂)− q~2

8m2
0c

2∇ · E (1.78)
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1.1 – Origin of the spin-orbit interaction

The corrections up to second order correspond to already well known terms that can be
observed already with the simplest non relativistic expansion Eq.(1.29), for instance H(0)

is a rest energy, a constant offset and usually can be eliminated; H(1) is a potential energy
and H(2) contain the kinetic energy and the coupling term of the total angular momentum
with the magnetic field. On the other hand new correction terms are introduced only
with H(3). As one can see, the Hamiltonian H(1) +H(2) +H(3) obtained from the Löwdin
partitioning, coincides with the Hamiltonian (1.43) found with the perturbative method.

1.1.6 The case of an atomic central potential
Let us consider, in particular, the case of vanishing magnetic field (A = 0 → π̂ = p̂) and
of a central potential V = V (r), where r = |r|. The related electric field can be expressed
as E = − ∂

r∂rV r, and Eq.(1.45) acquires the form[37]

HSO = q~
4m2

0c
2
∂

r∂r
V σ · L̂ (1.79)

where L̂ = r× π̂ is the angular momentum operator. Introducing spin operator Ŝ = ~σ/2
this term can be expressed in form that justify its name as a coupling between spin and
orbit angular momentum operators

Hso = ζ(r) L̂ · Ŝ (1.80)

where we have introduced the radial function

ζ(r) = q

2m2
0c

2
1
r

∂V

∂r
(1.81)

It is straightforward to see that Hso does not commute with the angular momentum L̂.
Neither does it commute with the spin Ŝ, which is no good quantum number, so that the
spin degeneracy is lifted even for B = 0. However, the scalar product L̂ · Ŝ in the SO
term (1.80) commutes with both L̂2 and Ŝ2, and recalling that the square of total angular
momentum can be expressed as Ĵ2 = L̂

2 + Ŝ
2 + L̂ · Ŝ, the SO term (1.80) can be rewritten

as
HSO = ζ(r)

2
(
Ĵ

2 − L̂
2 − Ŝ

2) (1.82)

Here the radial function ζ(r) commutes with the operators Ĵ2, L̂2, Ŝ2. Moreover, L̂2, Ŝ2,
Ĵ

2 and Ĵz mutually commute and can be simultaneously diagonalized by states labelled
by the 4 quantum integer numbers (l, j, s,mj) corresponding to their eigenvalues, with
l = 0,1,2 . . ., j = |l− s|, |l− s|+ 1 . . . l+ s and mj ∈ {−j, j}. In particular, for an electron
the spin quantum number is locked to s = 1/2, and one has j = l ± 1/2. Furthermore,
the atomic wavefunction is characterized by the additional shell number n related to the
radial equation, so that the state can be labelled as |n, j, l,mj〉 with j = l ± 1/2. The
expectation value 〈HSO〉

.= 〈n, j, l,mj |HSO|n, j, l,mj〉 of the spin-orbit term (1.80) thus
reads[30, 47]

〈HSO〉 = ~2λSO
2

[
j(j + 1)− l(l + 1)− 3

4

]
(1.83)
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1 – Spin-orbit interaction

Here the average value λSO
.= 〈ζ(r)〉 identifies the strength of the spin-orbit coupling

correction to the non-relativistic atomic energy level. For a Coulomb potential V (r) =
− Z|e|/r and for the electron charge q = −|e|, Eq.(1.81) acquires the form

ζ(r) = 1
2m2

0c
2
Ze2

r3 (1.84)

and one obtains[24, 47]
|〈HSO〉| ∼ ~2〈ζ〉 ∼ Ry(Zα)2 (1.85)

where α ' 1/137 is the fine structure constant and Ry the binding energy of the hydrogen
atom. This shows that the spin-orbit coupling is stronger for atoms with large atomic
number Z.

1.2 Spin-orbit interaction in materials: Dresselhaus
and Rashba couplings

In Sec.1.1.6 we have seen the effects of the spin-orbit coupling in a single atom. In present
section we shall extend the analysis to the case of materials, where atoms are arranged
together in a regular structure. The electronic orbitals of different atoms come together
and hybridize forming the band structure of the solid determining the relevant properties
of the material. Bulk conducting states around the band minima can be described by a
parabolic effective model where the interaction with periodic crystal potential is taken into
account by effective mass. Here below we shall first discuss the effects of the SOC term
in the microscopic description of a solid. Then we shall focus on semiconductors, charac-
terized by a Fermi energy in the middle of a sufficiently narrow energy gap separating the
conduction and valence band, and we shall derive an effective model of a semiconductor
heterojunction in the presence of external electric field.

Let us start by discussing in general terms the symmetry properties of SOC. Indeed
as we have pointed out in previous section the spin-orbit coupling term is expected to lift
the spin degeneracy. In the absence of SOC one can express spin degeneracy of dispersion
relation as ε↓(k) = ε↑(k), that can be obtained by combining time reversal symmetry
(1.86) and spatial inversion symmetry (1.87)[19, 25]

ε↑(k) = ε↓(−k) (1.86)
ε↓(k) = ε↓(−k) (1.87)

There are in principle two ways to lift spin degeneracy, namely by breaking either the
time reversal symmetry (1.86) or the spatial inversion symmetry (1.87). The former way
can be pursued, for instance, by introducing magnetic field B i.e. a Zeeman splitting.
The latter way can be achieved by two main mechanisms in a material. The first one is
the lack of bulk inversion asymmetry(BIA), i.e. the lack of inversion symmetry inside the
unitary cell, like for instance in zinc-blended crystal structures, which do not have a center
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1.2 – Spin-orbit interaction in materials: Dresselhaus and Rashba couplings

of inversion. This asymmetry is known as Dresselhaus SOC[1] and its lowest order term
involve third power of momentum operator[67, 87]. Properties of Dresselhaus term are
completely determined by underlying material and cannot be controlled externally. The
other mechanism to break Inversion symmetry is the structural inversion asymmetry(SIA)
that has a macroscopic origin such as the surface irregularity or external electric fields[67,
87] and becomes dominant in semiconducting heterojunctions. In particular, this is the
case of a two-dimensional electron gas(2DEG) and may be shown to be linked to Rashba
SOC term that in the case of confinement in z direction[5, 67]

Hso ∝ σ × p̂ · ẑ (1.88)

The Rashba SOC is the most relevant inversion symmetry breaking term in low dimen-
sional materials and typically overwhelms the Dresselhaus term [87]. Furthermore, the
Rashba coupling constant could be controlled with external electric field, thereby allowing
many interesting application involving spin polarization manipulations and spin filtering.

1.2.1 k · p theory
The Schrödinger equation of an electron in a material in the absence of an externally
applied magnetic field is obtained from Eq.(1.43) by taking the crystal potential V0(r) as
a potential and by setting A = 0. Furthermore, we shall neglect the Darwin term, which
is relevant only for atoms with small atomic numbers. Using qE = −∇V0 and exploiting
σ · (∇V0 × p̂) = (σ ×∇V0) · p̂, one obtains(

p̂2

2m0
+ qV0(r) + ~

4m2
0c

2σ ·∇V0 × p̂
)

Ψ = EΨ (1.89)

Solving this equation in principle one could find the full set of eigenfunction Ψ and corre-
sponding eigenvalue E. However, this is in practice quite hard even without atomic-spin
orbit coupling, and some approximation must be invoked. The k ·p method is a powerful
technique that in principle allows to calculate with arbitrary precision all energy band
spectrum En,k around an arbitrary point k0[25]. It relies on the fact that, due to the dis-
crete translational symmetry of crystal potential V0, the wavefunction can be expressed
in Bloch form

Ψν,k(r) = eik·ruν,k(r) (1.90)

where ν is the band index, the envelope plane wave is slowly varying on the lattice period
while uν,k(r) has the cell-periodicity of the lattice.

The action of the momentum operator on the envelope plane wave can be expanded
using the product rule for differentiation, and the Schrödinger equation can be written as[

p̂2

2m0
+ V0(r) + ~2k2

2m0
+ ~
m0

k ·
(
p̂ + ~

4m2
0c

2σ ×∇V0(r)
)

+

+ ~
4m2

0c
2 p̂ · σ ×∇V0(r)

]
|ν,k〉 = Eν,k|ν,k〉 (1.91)
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1 – Spin-orbit interaction

where uν,k(r) = 〈r|ν,k〉. Notably, spin is no longer a good quantum number for Eq.(1.91),
because the Hamiltonian does not commute with any Pauli matrix. Thus the index ν
identifies a band label that is not spin degenerate. There are typically two strategies to
solve the eigenvalue problem Eq.(1.91). The first one will be discussed here below, while
the second one will be illustrated in the next subsection.

Perturbative approach in k

The first approach consists in performing a perturbative expansion in k. To illustrate the
idea, imagine one has solved the associated equation without the spin-orbit terms

[
p̂2

2m0
+ V0(r) + ~2k2

2m0
+ ~
m0

k · p̂
]
|n, s,k〉 = En,k|n, s,k〉 (1.92)

which exhibits spin-degenerate bands labelled by n, so that

|n, s,k〉 = |n,k〉 ⊗ |s〉 (1.93)

with s =↑, ↓ denoting the spin degeneracy. Because the Hamiltonian in Eq.(1.92) is
periodic for each k, for a fixed k0 the set of eigenstates |n, s,k0〉, with varying n and
s, form a complete basis set. One can thus expand the actual eigenfunction |ν,k〉 of
Eq.(1.91) as a linear combination of the basis |n, s,k0〉 of eigenfunctions of Eq.(1.92).
It is important to mention that, although the exact form and energy of these states
are unknown, they are not strictly necessary. What is more important, instead, is the
symmetry property of states at the point k0. Since the Hamiltonian must be invariant
under transformation of the symmetry group of the problem one may deduce which term
must appear in it[25]. It is thus worth performing a state expansion around the high
symmetry points, since that would allow to reduce the number of parameters that can be
treated as phenomenological. For this purpose one can consider the Γ-point at k0 = 0
that belong to Tetrahedral symmetry group Td.[46] Along with the symmetry property it
is also a suitable choice because for customary semiconductors the extreme of band can
be found in Γ-point[48], and the states in this point are referred as band edge states. The
full cell periodic wavefunction can be expressed as their linear combination

|ν,k〉 =
∑

m, s∈{↑,↓}
cν,(m,s)(k) |m, s〉 (1.94)

where cν,(m,s)(k) ∈ C are the expansion coefficient and the band edge states |m, s〉 =
|m, 0〉 ⊗ |s〉 are eigenfunctions of k = 0 Hamiltonian (1.92) without spin-orbit coupling.

〈m′, s′| p
2

2m0
+ V0|m, s〉 = Em,0 δm′,mδs,s′ (1.95)
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1.2 – Spin-orbit interaction in materials: Dresselhaus and Rashba couplings

Substituting the cell periodic wavefunction expansion into eq.(1.91) and projecting it on
an arbitrary base 〈m′, s′| one can find1

∑
m,s

[(
Em,0 + ~2k2

2m0

)
δm′,mδs,s′+

~
m0

k ·P(m′,s′),(m,s)+

+ ∆(m′,s′),(m,s)

]
cν,(m,s)(k) = Eν,kcν,(m,s)(k) (1.96)

P(m′,s′),(m,s) =〈m′, s′|p + ~
4m2

0c
2σ ×∇V0|m, s〉 (1.97)

∆(m′,s′),(m,s) = ~
4m2

0c
2 〈m

′, s′|p · σ ×∇V0|m, s〉 (1.98)

It is common practice in literature[25, 30] to neglect spin orbit term in (1.97) and in this
way it can be rewritten as a momentum matrix

P(m′,s′),(m,s) ' 〈m′|p̂|m〉δs′,s (1.99)

In general, Eq. (1.96) is an infinite dimensional linear system whose solution are set of
all expansion coefficient {cν,(m,s)(k)} and corresponding energies {Eν,k}. However, due
to the presence of the off-diagonal term as momentum P(m′,s′),(m,s) and atomic spin-orbit
coupling ∆(m′,s′),(m,s) matrices, the expansion coefficients of different bands turn out to
be coupled, thereby complicating the problem significantly.

Effective mass approximation.

We start by illustrating the diagonalization of (1.96) by means of the second order per-
turbation theory[25] considering k · P(m′,s′) and ∆(m′,s′) as a small perturbation. In this
case the dispersion relation is quadratic in the wave vector k and can be shown to acquire
the form[4, 8]

En,k = En,0 + ~2

2m0
k2 + ~2

m2
0

∑
m/=n

|k · 〈n|p̂|m〉|2

En,0 − Em,0
(1.100)

which can also be rewritten as

En,k = En,0 + ~2

2
∑

α,β∈(x,y,z)
kα

1
µα,βn

kβ (1.101)

through the effective mass tensor µα,βn [8]

1
µα,βn

= 1
m0

δα,β + 2
m2

0

∑
m/=n

〈m|p̂α|n〉〈n|p̂β|m〉
En,0 − Em,0

(1.102)

1Where have been considered the mean value of an general operator to be defined as A(m′,s′),(m,s) =
〈m′, s′|Â|m, s〉 =

∫
unit cell〈s

′|u†m′,0(r)Âum,0(r)|s〉dr
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where α, β ∈ (x, y, z) and p̂α a component of momentum operator. As can be seen from
dispersion relation (1.100) the second order corrections are proportional to the inverse
band edge gap En,0 −Em,0. This expression holds as long as |k| is small. More quantita-
tively, it holds if the energy difference |En,k − En,0| remains much smaller than all band
gaps |En,0−Em,0|, i.e. if kinetic energy term ~2k2/2m0 is smaller than the smallest band
edge gap. For this reason in some semiconducting materials with narrow fundamental gap,
namely direct gap between conducting and valence band, the parabolic effective model
for conducting states can loose its validity[4]. One could in principle improve the calcu-
lations by going to higher orders in k in the perturbation theory. However, this strategy
is typically quite cumbersome. Kane adopted another approach to tackle the problem,
instead.

1.2.2 The Kane model
The second approach to solve the problem Eq.(1.91) consists in diagonalizing it exactly,
i.e. at arbitrary k, within a restricted set of bands. Indeed one can observe that, as far as
conduction properties are concerned, only the states close to the Fermi level are relevant.
In this way one focuses on a limited subset of bands, while the rest can be treated as a
perturbation. This is the procedure proposed by Kane and the resulting model is called
the Kane model[4, 8]. Within this approximation, one can thus expand the actual state
|ν,k〉 in Eq.(1.91) in terms of a restricted set of N band edge states |m〉

|ν,k〉 '
N∑
m=1

c̃ν,m(k)|m〉 (1.103)

Importantly, in Kane’s approach the band edge states |m〉 are not spin degenerate, since
they are chosen in such a way to diagonalize the spin orbit term in Eq.(1.91) at k = 0

〈m′|
[
p̂2

2m0
+ V0(r) + ~

4m2
0c

2 p̂ · σ ×∇V0(r)
]
|m〉 = Em,0δm′,m (1.104)

whereas for k /= 0 one obtains from Eq.(1.91) the following set of equations

N∑
m

[(
Em,0 + ~2k2

2m0

)
δm′,m + ~

m0
k ·Pm′,m

]
c̃ν,m(k) = Eν,kc̃ν,m(k) (1.105)

where
Pm′,m ' 〈m′|p|m〉 (1.106)

Despite looking similar to Eqs.(1.96)-(1.97), the set Eqs.(1.105) is a set of finite dimen-
sional linear equations, since the number of considered states has been restricted to N .
Note that, even if the new band edge set has been chosen in such a way to diagonalize the
SOC term at k = 0, there may still be off-diagonal terms in the momentum matrix (1.106)
that would couple bands for k /= 0 . Nevertheless, based on the symmetry considerations,
it can be shown that the number of off-diagonal terms is significantly reduced and the
remaining ones are parameterized by a single phenomenological parameter.
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In order to implement the Kane approach, one has first to identify the basis |m〉
diagonalizing Eq.(1.104). As has been discussed in section 1.1.6, the spin orbit coupling
term can be diagonalized with total angular momentum basis[30, 47] and therefore one
may expect |m〉 → |J,mJ〉. In this way the SO coupling term is expected to be diagonal
and recalling Eq.(1.83)

〈HSO〉 ∝
[
j(j + 1)− l(l + 1)− 3

4

]
(1.107)

whence one deduces that all states are degenerate with respect to the sign change of mJ .
As will be seen below, the restricted set of band is composed by four elements, each with
a twofold degeneracy corresponding to the opposite values of mJ [8]. We can proceed in
three steps:

1. First of all let us discuss the eigenstates |m〉 in absence of the spin orbit coupling
matrix, i.e. when the second term on the l.h.s of in Eq.(1.104) is vanishing. In this
case the eigenstates are spin degenerate. Because spin is a merely dummy variable,
it will be neglected for the moment and reintroduced properly later. Therefore the
reduced Kane model is expected to take into account only 4 band edge states that
can be constructed with hybridized atomic states. Indeed in IV-V semiconductors
characterized by zinc-blended lattices there are 2 atoms per unit cell and the valence
electron form tetrahedral bonds with nearest neighbors and give raise in this way
binding and anti-bonding hybridized states. The wavefunction of the binding state is
concentrated in the space between 2 atoms and thus promotes the covalent bonding,
and vice versa for anti-bonding state wavefunction. Since solids consist of a large
number of unit cells, bonding and anti-bonding levels are broader into Energy bands.
The bonding states contribute to valence band, while the anti-bonding states to
conducting band[8, 30]. At the high symmetry Γ-point these states are expected to
transform according to the symmetry of the underlying lattice and may be identified
with s-like conducting states |S〉 and triple degenerate p-like valence state |X〉, |Y 〉
and |Z〉[8]. This definition meant to highlight the equivalence with the atomic s-
and p-state under symmetry transformation of the tetrahedral point group that
is indeed the symmetry group of the blended lattices type[2–4, 8, 46]. Since the
precise expression of the states has not been taken into account and only symmetry
property have been invoked, the corresponding energy of the states are treated as
phenomenological parameters that can be fit from experimental data(

p̂2

2m0
+ V0(r)

)
|S〉 = Es,0|S〉 (1.108)(

p̂2

2m0
+ V0(r)

)
|M〉 = Ep,0|M〉 (1.109)

withM ∈ {X, Y, Z} and can be defined the direct gap energy scale E0 = Es,0−Ep,0,
indeed only the energy differences matter, rather than their absolute magnitudes.
Exploiting the symmetry of the states can be show that the number of elements of
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momentum matrix can be significantly reduced. Indeed by observing that

[H0, r] = − i~
m0

p̂ (1.110)

one has[30]

−i ~
m0
〈m′|p̂|m, 〉 = [Em′,0 − Em,0] 〈m′|r|m〉 (1.111)

where m′,m ∈ {S,X, Y, Z} in this way degenerate p-like states are not mutually
coupled. Therefore it is enough to introduce only one phenomenological parameter
that would describe the coupling of the s-like and p-like states

i
m0

~
P0 = 〈S|p̂x|X〉 = 〈S|p̂y|Y 〉 = 〈S|p̂z|Z〉 (1.112)

2. Let us now construct eigenstates of the orbital angular momentum part |l, lz〉. By
analogy with atomic state the s-like states are characterized by state with angular
momentum l = 0 in this way can be identified orbital angular momentum basis with

|0,0〉 = |S〉 (1.113)

On the other hand p-like state are associated with l = 1 and orbital angular mo-
mentum basis can be expressed as combination of p-like states

|1, 1〉 = − 1√
2

(|X〉+ i|Y 〉) (1.114)

|1, 0〉 = |Z〉 (1.115)

|1,−1〉 = 1√
2

(|X〉 − i|Y 〉) (1.116)

3. Finally, let us now re-introduce the spin degree of freedom by adding half integer
spin states |1/2,+1/2〉 = | ↑〉 and |1/2,−1/2〉 = | ↓〉, the total angular momentum
eigenfunctions are expressed as combination of states that satisfy the quantum num-
ber constraint j = l ± 1/2 and mj ∈ {−j, j}, and 8 band edge basis can be written
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as [4, 8, 25, 30, 46]

|12 ,
1
2〉 = |0,0〉 ⊗ | ↑〉 = |S, ↑〉 (1.117)

|12 ,−
1
2〉 = |0,0〉 ⊗ | ↓〉 = |S, ↓〉 (1.118)

|32 ,
1
2〉 =

√
2
3 |1,0〉 ⊗ | ↑〉+

√
1
3 |1,1〉 ⊗ | ↓〉 =

√
2
3 |Z, ↑〉 −

√
1
6 (|X, ↓〉+ i|Y, ↓〉)

(1.119)

|32 ,−
1
2〉 =

√
1
3 |1,−1〉 ⊗ | ↑〉+

√
2
3 |1,0〉 ⊗ | ↓〉 =

√
2
3 |Z, ↓〉+

√
1
6 (|X, ↑〉 − i|Y, ↑〉)

(1.120)

|32 ,
3
2〉 = |1,1〉 ⊗ | ↑〉 = − 1√

2
(|X, ↑〉+ i|Y, ↑〉) (1.121)

|32 ,−
3
2〉 = |1,−1〉 ⊗ | ↓〉 = 1√

2
(|X, ↓〉 − i|Y, ↓〉) (1.122)

|12 ,
1
2〉 = −

√
1
3 |1,0〉 ⊗ | ↑〉+

√
2
3 |1,1〉 ⊗ | ↓〉 = −

√
1
3 (|X, ↓〉+ i|Y, ↓〉+ |Z, ↑〉)

(1.123)

|12 ,−
1
2〉 = −

√
2
3 |1,−1〉 ⊗ | ↑〉+

√
1
3 |1,0〉 ⊗ | ↓〉 = −

√
1
3 (|X, ↑〉 − i|Y, ↑〉 − |Z, ↓〉)

(1.124)

Figure 1.1: Band structure in the vicinity of the Γ-point. Conducting states correspond to
the Γ6 symmetry while valence to the Γ7, Γ8 symmetry. E0 is the semiconductor energy
gap and ∆0 is splitting introduced by SOC term. Light holes Γl8 are associated with states
mJ = ±1/2 and heavy holes Γh8 with mJ = ±3/2. [8]
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1 – Spin-orbit interaction

The band structure is qualitatively depicted in Fig.(1.1), where E0 is direct semi-
conductor gap and ∆0 is valence band splitting due to the spin orbit coupling. States
(1.117-1.118) are associated with Γ6 conduction band and have zero angular momentum,
therefore the spin-orbit terms is expected to vanish as well. On the other hand the valence
band is formed by combination of p-like state (1.119-1.124), and are expected to be de-
generate in absence of SOC. The effect of the SOC term is to split this 6 state into 2 group
that contribute to different valence subband. First of all may be considered 4-th fold de-
generate Γ8 band to which belong states (1.119-1.122). The expectation value of SOC for
Γ8 band can be evaluated as 〈Hso〉Γ8 ∝ ~2/2. On the other hand states (1.123-1.124) form
2-fold degenerate Γ7 band and SOC energy contribution is 〈Hso〉Γ7 ∝ −~2. In this way
valence subbands are splitted by spin orbit term, that can be treated as phenomenological
parameter

∆0 = 〈Hso〉Γ8 − 〈Hso〉Γ7 ∝
3
2~

2 (1.125)

In conclusion one can notice that Γ8-band is fourfold degenerate only for k = 0 instead
for k /= 0 is expected to split into 2 sub band characterised by different effective mass
namely light holes Γl8 and heavy holes Γh8 where former is characterized by mj = ±1/2
and later is associated with mj = ±3/2 More in details the difference between the light
and heavy holes can be seen by enforcing the validity of the effective mass approximation
Eq.(1.102) in the case of restricted state space and for the sake of simplicity considering
α = β = z. Using the definition of states (1.121-1.122), can be shown that heavy hole
band Γh8 does not coupled with Γ6 by momentum matrix〈

1
2 ,±

1
2

∣∣∣∣∣pz
∣∣∣∣∣32 ,±3

2

〉
= 0 (1.126)

therefore the effective mass of Γh8 states is the same as bare electron mass[8]. On the
other hand states (1.119-1.120) are coupled with Γ6 states by momentum matrix and
their effective mass can be approximated as[8]

1
mΓl8

= 1
m0
− 4P 2

0
3~E0

(1.127)

So far we have seen that band coupling term can be significantly simplified by applying
symmetry considerations and by introducing an appropriate basis. A cell periodic wave-
function is approximated by a linear combination of finite number band edge basis |m〉
that can be labeled by the superindex m = (j, jz) as in Eqs.(1.117) to (1.124). Since the
correspondence is established on the basis of the symmetry arguments, the specific form
of the states is unimportant, and the corresponding energies and spin orbit splitting can
be introduced as phenomenological parameter E0 and ∆0, respectively

〈m′|
(

p̂2

2m0
+ V0(r) + ~

4m2
0c

2 p̂ · σ ×∇V0(r)
)
|m〉 =


0 if m,m′ = 1,2
−E0δm′,m if m,m′ = 3 : 6
−(E0 + ∆0)δm′,m if m,m′ = 7,8

(1.128)
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1.3 – The effects of confinement potentials

Since the basis states are expressed in therm of s-like and p-like states [see Eqs.(1.117)
to (1.124)], all non-vanishing entries of the momentum matrix (1.106) turn out to be
proportional to phenomenological parameter P0 defined trhough Eq.(1.112), and read

P1,3 = i
m0P0

~

√
2
3

 0
0
1

 P1,4 = i
m0P0

~

√
1
6

 1
−i
0

 P1,5 = −im0P0

~

√
1
2

 1
i
0


(1.129)

P1,7 = −im0P0

~

√
1
3

 0
0
1

 P1,8 = −im0P0

~

√
1
3

 1
−i
0



P2,3 = −im0P0

~

√
1
6

 1
i
0

 P2,4 = i
m0P0

~

√
2
3

 0
0
1

 P2,6 = i
m0P0

~

√
1
2

 1
−i
0


(1.130)

P2,7 = −im0P0

~

√
1
3

 1
i
0

 P2,8 = i
m0P0

~

√
1
3

 0
0
1


In this way Eq.(1.105) can be rewritten in matrix form

H c̃ν(k) = Eν,kc̃ν(k) (1.131)

where c̃ν(k) = (c̃m,i(k))8
i=1 is 8-component vector and H is 8× 8 matrix[25]

H =



~2k2

2m0
0 i

√
2
3P0kZ i

√
1
6P0k− −i

√
1
2P0k+ 0 −i

√
1
3P0kZ −i

√
1
3P0k−

0 ~2k2

2m0
−i
√

1
6P0k+ i

√
2
3P0kZ 0 i

√
1
2P0k− −i

√
1
3P0k+ i

√
1
3P0kZ

−i
√

2
3P0kZ i

√
1
6P0k−

~2k2

2m0
− E0 0 0 0 0 0

−i
√

1
6P0k+ −i

√
2
3P0kZ 0 ~2k2

2m0
− E0 0 0 0 0

i
√

1
2Pok− 0 0 0 ~2k2

2m0
− E0 0 0 0

0 −i
√

1
2P0k+ 0 0 0 ~2k2

2m0
− E0 0 0

i
√

1
3P0kZ i

√
1
3P0k− 0 0 0 0 ~2k2

2m0
− E0 −∆0 0

i
√

1
3P0k+ −i

√
1
3P0kZ 0 0 0 0 0 ~2k2

2m0
− E0 −∆0


(1.132)

with k± = kx ± iky.

1.3 The effects of confinement potentials
In this section I shall present the envelope function formalism that can be seen as a
generalization of the k ·p theory in the case of non-periodic potential[30] originated from
either an external electric fields or internal irregularities[25]. The underlying hypothesis
of this approximation is that the external potential V (r) varies slowly over the crystal
period. Indeed in each unit cell the external potential is perceived as constant energy
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1 – Spin-orbit interaction

shift in this way different unperturbed band can be still considered independent since the
coupling term is

∫
unit cell uν′,k′(r)†V (r)uν,k(r)dr ' δν′,νδk′,kV (r). In this way the effect

of non-periodic potential can be taken into account on macroscopic level by a envelope
function that may be seen as generalization of the envelope plane wave in the case of
Bloch function.
We first present the envelope function formalism that allows to write a finite dimensional
system of equation similar to Eq.(1.131) with the difference that the Hamiltonian in
the case of the envelope function is expected to be a tensor instead of a matrix and
the complex coefficients are substituted by functions. One can thus exploit the same
band edge states and all the results discussed in the previous section. Next we use the
envelope function approximation to derive the macroscopic model of the semiconductor
hetero structure. The different material property in each level are taken into account by
phenomenological parameters and the heterojunction is represented by a step-like profile of
the phenomenological parameters. In this way at the interfaces between different materials
one expects the discontinuity of the potential that seemingly violates the basic assumption
on slowly varying potentials[25]. However, as long as the actual potential varies smoothly
over the lattice spacing, this effective model is known to provide results in agreement with
the experiments[8]. Finally we trace out the transversal degrees of freedom and present
the effective model for 2DEG with the Rashba spin orbit term[30].

1.3.1 The envelope function approximation
So far we have considered only the crystal periodic potential V0(r), and thus the Bloch
function Ψn,k indeed can be used. However, in the presence of an additional external
potential V (r) that is not necessarily periodic, the discrete translational symmetry is
broken. The Schrödinger equation reads[25][

p̂2

2m0
+ V0(r) + V (r) + ~

4m2
0c

2 p̂ · σ ×∇V0(r)
]

Ψ = EΨ (1.133)

and the Bloch wavefunctions are no longer eigenfunctions. Nevertheless the total wave-
function can still be expanded in term of Bloch wavefunction

Ψ(r) =
∑
ν,k

aν,kΨν,k(r) =
∑
ν,k

aν,ke
ik·ruν,k(r) (1.134)

or equivalently
|Ψ〉 =

∑
ν,k

aν,ke
ik·r|ν,k〉 (1.135)

where an,k are coefficients. In analogy with k · p theory, the cell periodic part can be
approximated as a combination of finite number of band edge basis at k = 0 [25] therefore
using the decomposition for cell periodic state (1.103) can be rewritten as

|Ψ〉 '
∑
ν,k

∑
m

aν,ke
ik·rc̃ν,m(k)|m〉 (1.136)
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1.3 – The effects of confinement potentials

where |m〉 are the band edge states (1.117-1.124) discussed in previous section. Finally,
by introducing the function

fm(r) =
∑
ν,k

aν,kc̃ν,m(k)eik·r (1.137)

the total wavefunction can be expressed as[8, 25]

|Ψ〉 '
∑
m

fm(r)|m〉 (1.138)

where the function fm(r) varies slowly in space and take into account the spatial depen-
dence introduced by external field. It is commonly referred as envelope function, since it
modulate the fast oscillating of the cell periodic part |m〉[8, 30]. Finally the approximation
of the wavefunction is plugged into Eq.(1.133) and projected on an arbitral basis 〈m′|, in
this way can be found∑

m

[(
p̂2

2m0
+ V (r) + E(0)

m

)
δm′,m + 1

m0
p̂ ·Pm′,m

]
fm(r) = Efm(r) (1.139)

where band edge energy E(0)
m and momentum matrix Pm′,m are the same that have been

found in previous section and correspond respectively to Eq.(1.128) and Eq.(1.129-1.130).
In this way the full problem of the bulk electron has been reformulated as the set of
the second order differential equation that describes the system at a macroscopic level.
The microscopic details corresponding to the fast oscillating cell periodic wavefunction
are taken into account by 3 phenomenological parameter E0,∆0, P0[8]. The system of
coupled second order equation can be rewritten in matrix-form[30]

Hf = Ef (1.140)
where f(r) = (fm(r))8

m=1 is a 8-component vector of envelope functions and H is a 8× 8
tensor that can be separated in 4 blocks[30]

H =
(
Hc Hcv

Hvc Hv

)
(1.141)

where Hc is a tensor that describes the envelope function associated with conduction band
Γ6

Hc =
(

p̂2

2m0
+ V (r)

)
12×2 (1.142)

On the other hand the Hv acts on the valence envelope functions. It is important to
notice that the kinetic energy term can be neglected, indeed since the envelope function
is assumed to vary slowly therefore one can expect that kinetic energy is negligible with
respect to fundamental gap energy scale p2/2m0 � E0, that indeed is expected to be
dominant[30].

Hv = (V (r)− E0) 16×6 −



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ∆0 0
0 0 0 0 0 ∆0

 (1.143)
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1 – Spin-orbit interaction

And finally Hcv is the tensor that couples the envelope function of the conduction and
valence bands

Hcv = i

 √
2
3
P0
~ p̂z

1√
6
P0
~ p̂− − 1√

2
P0
~ p̂+ 0 − 1√

3
P0
~ p̂z − 1√

3
P0
~ p̂−

− 1√
6
P0
~ p̂+

√
2
3
P0
~ p̂z 0 1√

2
P0
~ p̂− − 1√

3
P0
~ p̂+

1√
3
P0
~ p̂z

 (1.144)

where have been introduced p̂± = p̂x ± ip̂y and p̂i i ∈ {x, y, z} are the i-th component of
the momentum operator p̂. In order to guaranty the total HamiltonianH to be Hermitian
one may expect Hvc = H†cv.

1.3.2 SOC in a quantum well
At this point the microscopical details of the material have been taken into account with
phenomenological parameters and the material is described with an effective model on the
length scales much larger than the unit cell. In this way one may attempt to construct
macroscopic model for inhomogeneous structure such as 2DEG that can be realized by
growing in layers different types of materials or modulating doping density. Since micro-
scopic details have been traced out, irregularities of the heterojunction can be neglected
as well. The interface may be assumed to be perfectly flat and can be modulated with
piecewise profile of band edge energy, even though the cell periodic wavefunctions are still
assumed to be the same in all the materials[8].

I shall focus on the quantum well configuration of the conduction band, where the ma-
terial A in the central region has the lowest conduction band edge energy and is interfaced
from 2 sides with material B. We take the growth direction along (001) and heterojunction
can be modulated with piecewise profile of the phenomenological parameters along z-azis

E0(z) = EB
0 Θ(|z| − d/2) + EA

0 Θ(−|z|+ d/2) (1.145)
∆0(z) = ∆B

0 Θ(|z| − d/2) + ∆A
0 Θ(−|z|+ d/2) (1.146)

where Θ(z) is heavy side function and d is the length of central region. It also can be
introduce the external electric field Vext(z) slowly varying along the z-direction and the
non-periodic potential can be decomposed as

V (z) = Vext(z) + Ec(z) (1.147)

where Ec(z) is a profile of conduction band edge offset with EA
c = 0 that form the quantum

well potential for conduction electrons Ec(z) = EB
c Θ(|z|−d/2). Finally can be introduced

valence band edge energy
Ev(z) = V (z)− E0(z) (1.148)

the band structure of the heterojunction is pictured on the Fig.(1.2)
Since we are analyzing the case with vanishing magnetic field and external electric field

only along z, the electron motion in x− y plane can be considered free and the envelope
function can be decomposed into in plane and transversal parts

f = eik‖r‖g(z) (1.149)
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d

zy

x

Figure 1.2: Qualitative diagram of the heterojunction band structure in the case of linear
external potential Vext(z) = |Eext|z. [30]

with k‖ = (kx, ky, 0) and r‖ = (x, y, 0). In this way matrices (1.142-1.144) can be expressed
as

Hc =
(
~2k2
‖

2m0
+ p2

z

2m0
+ Vext(z) + Ec(z)

)
12×2 (1.150)

Hv = Ev(z)16×6 −



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ∆0(z) 0
0 0 0 0 0 ∆0(z)

 (1.151)

Hcv = i

 √
2
3
P0
~ pz

1√
6P0k− − 1√

2P0k+ 0 − 1√
3
P0
~ pz − 1√

3P0k−

− 1√
6P0k+

√
2
3
P0
~ pz 0 1√

2P0k− − 1√
3P0k+

1√
3
P0
~ pz

 (1.152)

where k± = kx ± iky. In this way we have found the system of coupled differential
equations that describe the envelope functions in z for Γ6 conduction band gc(z) =
(g1, g2, 0, 0, 0, 0, 0, 0)T as well as Γ7 and Γ8 valence band gv(z) = (0,0, g3, g4, g5, g6, g7, g8)T .
However, as far as the conduction properties are concerned, one should be interested only
in former part of the envelope function gc while the coupling with valence band may be
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1 – Spin-orbit interaction

included in the effective way. One way to do it would be by using the Löwdin partition-
ing. However the application turns out to be problematic, due to the space dependent
diagonal term and as follow the right ordering of matrix term in perturbation expansion.
Moreover, beyond the first few terms the perturbative approach becomes cumbersome. A
more systematic approach is the "folding down" method[30], which consists in introducing
a unitary matrix

U =
( 12×2 −(Hc − E)−1Hcv

−(Hc − E)−1Hvc 16×6

)
(1.153)

and the system of differential equations can be rewritten as

H̃g̃ = Eg̃ (1.154)

where

g̃ = U−1g (1.155)

H̃ = E + (H − E)U =
(
H̃c 0
0 H̃v

)
(1.156)

We first observe that, since the Hamiltonian (1.156) is dependent on the energy E, the
system (1.154) must be treated in self consistent way. This may lead to non-parabolic
dispersion relation even for in-plane motion and should be resolved approximately. On
the other hand the valence and conduction bands are decoupled and in principle can be
studied separately[30]. In this way if one is interested only in conduction band gc it is
straightforward to see from definition of U that g̃c = gc and the system of equation for
conduction band envelope functions reduce to

H̃c

(
g1
g2

)
= E

(
g1
g2

)
(1.157)

with H̃c = Hc−Hcv(Hv −E)−1Hvc. In the case Hv is diagonal it is trivial to perform the
inversion and the effective model for conduction band can be written

H̃c =
(
−
~2k2
‖

2m0
+ p2

z

2m0
+ Vext(z) + Ec(z)

)
12×2 −

(
M N
N∗ M

)
(1.158)

where the diagonal term

M = P 2
0

3~2

( 2
Ev(z)− E + 1

Ev(z)−∆0(z)− E

)
~2k2
‖

− P 2
0

3
∂

∂z

( 2
Ev(z)− E + 1

Ev(z)−∆0(z)− E

)
∂

∂z
(1.159)

contributes to the effective mass. Indeed the first term is proportional to ~2k2
‖ and thus can

be associated with in-plane kinetic energy. On the other hand the second term is properly
symmetrized momentum operator in the case of non uniform effective mass along z. In
this way may be introduced the effective mass

1
m∗(z, E) = 1

m0
− 2P 2

0
3~2

( 2
Ev(z)− E + 1

Ev(z)−∆0(z)− E

)
(1.160)
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Instead the off-diagonal term is

N = P 2
0

3
∂

∂z

( 2
Ev(z)− E + 1

Ev(z)−∆0(z)− E

)
ik− = α(z, E)(ikx + ky) (1.161)

and thus can be identified with the Rashba Spin-orbit coupling term

HSO = α(z, E)(kyσx − kxσy) (1.162)

with spin-orbit coupling

α(z, E) = P 2
0

3
∂

∂z

( 2
Ev(z)− E + 1

Ev(z)−∆0(z)− E

)
(1.163)

It can be noticed that the effective mass m∗(z, E) as well as the SOC constant α(z, E) are
dependent on energy. Then, the Hamiltonian (1.158) leads to non parabolic dispersion
relation and must be treated self-consistently. However conduction states of semiconduc-
tors materials typically have energy close to the band minima E ∼ Ec(z) and in the case
of weak external electric field the dominant energies scales are expected to be E0(z) and
E0(z)−∆0(z). The effective mass and spin-orbit coupling can be approximated as power
expansion in terms of

Vext(z) + Ec(z)− E
E0(z) � 1 Vext(z) + Ec(z)− E

E0(z)−∆0(z) � 1 (1.164)

The effective mass is approximated to zero order

1
m∗(z) = 1

m0
− 2P 2

0
3~2

( 2
E0(z) + 1

E0(z)−∆0(z)

)
(1.165)

On the other hand for SOC is kept up to first order term

α(z, E) = P 2
0

3
∂

∂z

[
1

E0(z)−∆0(z) −
2

E0(z)+

+
( 1

(E0(z)−∆0(z))2 −
1

E2
0(z)

)
(Vext(z) + Ec(z)− E)

]
(1.166)

and recalling that the piecewise profiles (1.145-1.146) can be rewritten

1
m∗(z) = 1

m0
− 2P 2

0
3~2

( 1
mB

Θ(|z| − d/2)− 1
mA

Θ(−|z|+ d/2)
)

(1.167)

α(z, E) = P 2
0

3
∂

∂z
(RB(z)Θ(|z| − d/2) +RA(z)Θ(−|z|+ d/2)) (1.168)

with
1
mi

= 2
Ei

0
+ 1
Ei

0 −∆i
0

(1.169)

Ri(z) = 1
Ei

0 −∆i
0
− 2
Ei

0
+
( 1

(Ei
0 −∆i

0)2 −
1

(Ei
0)2

)
(Vext(z) + Ei

c − E) (1.170)
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one can expand the derivative in Eq.(1.168) obtaining

α(z) = α0(z) + αint(z) (1.171)

Here α(z) is the bulk contribution of material and is raised by inversion asymmetry due
to the external field

α0(z) = P 2
0

3

( 1
(E0(z)−∆0(z))2 −

1
E2

0(z)

)
∂

∂z
Vext(z) (1.172)

whereas αint(z) is the contribution caused by asymmetry introduced by interface and is
proportional to delta functions at −d/2 and d/2.

αint(z) = (RA(z)−RB(z))(δ(z + d/2)− δ(z − d/2)) (1.173)

Finally effective parabolic Hamiltonian can be written as

H̃c =
(

~2k2
‖

2m∗(z) −
~2∂

2∂z
1

m∗(z)
∂

∂z
+ Vext(z) + Ec(z)

)
σ0 − α(z)(kyσx − kxσy) (1.174)

The discontinuity of the effective mass and spin orbit coupling at the interface in princi-
ple must be treated by appropriate boundary conditions, that should be derived imposing
the continuity of envelope function gc(z) and integrating the Heisenberg equation (1.157)
across each interface. It can be found that boundary conditions couple the SOC to the
motion along z[30]. However in the case of the quantum well for the conduction band,
the low energy states are expected to be bound states[8] with small probability to be
found near interface for deep enough well. In this way the influence of boundary condi-
tions is significantly reduced and Hamiltonian Eq.(1.174) can be approximated to 2DEG
Hamiltonan by tracing out z-degree of freedom[30]

H‖ = 〈H̃c〉 =
~2k2
‖

2m∗ σ0 − αR(kyσx − kxσy) (1.175)

where we define the spin-orbit coupling constant αR = 〈α0(z)〉+〈αint(z)〉 and the emerging
SOC term can be rewritten as Rashba spin orbit coupling[5, 67]

HSO = αR
~
σ × p̂ · ẑ (1.176)

where p̂ is canonical momentum, ẑ is unitary vector along the growth direction (001) and
αR is Rashba spin orbit constant. In the following sections we shall drop the subscript
and denote it simply as α.

1.4 SOC in 1D nanowires
In view of various technological applications a great deal of attention has been devoted to
quasi 1D systems where, due to the spin orbit coupling, it is possible to implement precise
electrical control of the spin precession. This is the case of nanowires. In order to describe
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the theoretical model for nanowires, we start by observing that in the previous section
we have derived the Hamiltonian of a quantum well where the confinement direction was
z and the plane of the 2DEG was x-y. However, direction of the structure inversion
asymmetry can equivalently be denoted by y and the 2DEG can be set in x-z plane. In
this way the Rashba term can be obtained from Eq.(1.176) by simple rotation around
x-axis that can be written in matrix form as

H =


(p̂2
x+p̂2

z)
2m∗ −

α
~ p̂x

α
~ p̂z

α
~ p̂z

(p̂2
x+p̂2

z)
2m∗ + α

~ p̂x

 (1.177)

where p̂n = −i~∂n with n ∈ {x, z}. One can now introduce a further confinement potential
V (z) along z and leave x direction free. The resulting structure is a nanowire. For the
sake of simplicity we consider infinite potential well of the width W i.e.

V (z) =
{

0 0 < z < W

∞ otherwise
(1.178)

In this way one can decompose the original Hamiltonian as

H = Hz +H1D +Hmix (1.179)

Hz = p̂2
z

2m∗σ0 + V (z)σ0 (1.180)

H1D = p̂2
x

2m∗σ0 −
α

~
σz p̂x (1.181)

Hmix = α

~
σxp̂z (1.182)

where Hmix exhibits off diagonal term and to a first approximation can be considered
as a perturbation. On the other hand it is straightforward to see that Hz and H1D are
diagonal

H1Dφs,kx(x) = εs(kx)φs,kx(x) (1.183)
Hzϕn(z) = Enϕn(z) (1.184)

φs,kx(x) = χse
ikxx and χs is a spinor part of the wave function with s ∈ {↑, ↓}, on the

other hand ϕn(z) with n > 1 is eigenstate of the well known solution of particle in the
box problem[33] degenerate in spin degree of freedom with corresponding energy

En = n2π2~2

2m∗W 2 (1.185)

In this way the total wavefunction can be expressed as

ψkx,n,s(x, z) = φs,kx(x)ϕn(z) = χse
ikxxϕn(z) (1.186)

With the spectrum of 1D unperturbed problem is composed by band structure En,s(kx) =
εs(kx) + En. However Hmix present off diagonal term that can be shown to couple the
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different bands m, m′, deforming in this way energy dispersion. Indeed in the absence of
coupling term there would exist points k′ such that Em,↑(k′) = Em′,↓(k′) restoring in this
way spin degeneracy that isn’t coherent with the symmetry of the problem and therefore
each band is distorted in order to avoid crossings in the energy spectrum[67]. The coupling
term can be seen more in details by tracing out trasversal degree of freedom(

Enδm,n +H1Dδm,n + (Hmix)m,n
)
χse

ikxx = Ẽn,s(kx)χseikxx (1.187)

where (Hmix)m,n =
∫
W ϕ†m(z)Hmixϕn(z)dz and Ẽn,s(kx) band structure including the

perturbation introduced by coupling. In the case of transversal confinement by an infinite
potential well (1.178) the band mixing term can be expressed as[33]

(Hmix)m,n = i
α

W

2mn
m2 − n2

(
1− (−1)|m−n|

)
σx (1.188)

The problem can be solved by taking into account only a finite number of bands by means
of the Löwdin partitioning discussed in Section 1.1.4. The distortion of energy spectrum
significantly depends on the number of included bands and, in view of investigation of
transport properties, the number of relevant bands must be carefully chosen in order to
avoid systematic errors due to the truncation of the Hilbert space[33, 67]. For typical
applications, the band coupling term can be neglected and the zero order perturbation
expansion can be considered as valid. Indeed in the case where the band gap ∆En is very
large, i.e. for separated energy bands, the energy scale of coupling term is insufficient to
give relevant contribution. In this way one can consider the validity of this approximation
by comparing energy scales of band gap and coupling term, that scales as[12, 39]

∆E0 ∼
~2

m∗W 2 (1.189)

(Hmix)m,n ∼
α

W
(1.190)

and imposing |〈m|Hmix|n〉/∆E0| � 1 one can find

W � ~2

αm∗
(1.191)

The typical materials used for quantum wires are InSb, InAs and GaAs[67]. These
narrow-gap semiconductors have recently attracted a particular attention since they are
characterized by a strong Rashba coupling and a large gyromagnetic factor that allow
them exhibit large Zeeman splitting even for small external magnetic fields. In this way
the maximal width of the confinement potential allowing to apply the independent band
approximation can be estimated with typical values of effective mass and Rashba coupling
constant. In the case of InSb one has m∗ = 0.015me and α ∼ 10−11eV m, whence one
deduces the constraint W � 0.5µm, which is well within reach of modern technology[12,
39]. Therefore it is realistic to implement full 1D nanowire describe by(

En +H1D
)
χse

ikx = En,s(k)χseikx (1.192)
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where kx has been redenoted as k to make the notation lighter. We first consider only
the lowest band in the nanowire and neglect the energetically higher bands separated by
energy gaps. This amounts to deal with a 1D system and one can drop the trasversal mode
quantum number n. In this way the eigenvalue equation can be rewritten in k-space as(

~2k2

2m∗ σ0 − αkσz

)
|s〉 = Es(k)|s〉 (1.193)

The above Equation is already diagonal and it is straightforward to identify the eigenvec-
tors | ↑〉 = (1, 0), | ↓〉 = (0, 1) and the corresponding eigenvalues

E↑(k) = ~2k2

2m∗ − αk (1.194)

E↓(k) = ~2k2

2m∗ + αk (1.195)

The dispersion relation is depicted in Fig.1.3. Due to the Rashba spin orbit term, the spin
degeneracy of the customary parabolic dispersion is lifted: The two parabolas related to
each spin component are shifted laterally, in opposite directions, by the spin-orbit wave
vector

kSO = |α|m
∗

~2 (1.196)

and lowered by spin-orbit energy

ESO = m∗α2

2~2 = ~2k2
SO

2m∗ (1.197)

Figure 1.3: Orange line E↑(kx), Blue line E↓(kx)
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1.5 Applications of the spin-orbit coupling
In recent years the great interest was concern on the study and development of the tech-
niques that allow to manipulate spin degree of freedom and to build the spin based devices
and novel field has emerged: spinotronics[21, 22, 88]. The spinotronics devices allow to
manipulate the information stored in spin degree of freedom rather then in charge and
are expected to benefit of several advantages such as large switching rates, lower power
consumption, increased integration densities with respect to conventional semiconductor
devices[21].

The first generation of spinotronic devices are based on giant magneto-resistive (GMR)
effect that introduces many common principles for other types of spinotronics devices. One
of the simplest GMR based device is Spin-valve, that is composed by two ferromagnetic
layers, iron or nickel alloy, sandwiching a thin nonmagnetic metal, usually copper. One
of the two magnetic layers is “pinned” i.e., the magnetization in that layer is fairly insen-
sitive to moderate magnetic fields, through which spin current is electrically injected[21].
Indeed in the ferromagnet material the population of states have preferred spin direction
and in this way out going current is spin polarized and emerge net spin current. The
other magnetic layer is “free” layer, and its magnetization can be changed by a relatively
small magnetic field and detect spin current: in the case its polarization is align with
injected spin, current doesn’t meet additional resistance and vice versa if free ferromagnet
is antialigned. The resistance of the junction can thus be tuned within 5-10%[21]. The
GMR spin valve has found extensive use in HDD read head[21, 88]. The improved version
of GMR spin valve is the magnetic tunnel junction (MTJ) which exploits a similar prin-
ciple, except that ferromagnet leads are separated by an insulating layer through which
transmission occurs via tunneling. The MTJ exhibits larger resistance modulation(20%
to 40%)[21]. It is applied in high information density HDD[88] and in integrated mag-
netic random access memory (MRAM) cells, which use magnetic hysteresis to store data
and magnetoresistance to read data[21]. Compared to conventional solid state memory
cell, MRAM exhibits a significant increase of read/write rate, lack of wear-out with write
cycling and lower energy for writing[21].

The next generation of spintronic devices is based on spin dynamics, i.e. the modu-
lation of the spin precession rate inside the material in contrast with spin torque based
devices. To this purpose the SOC plays a key role: By modulating the SOC constant
with a gate potential enables one to control the wave vector of the state at fixed energy.
In turn, this leads to a differential phase shift between the two spin polarizations states,
so that injected and detecting spin polarized current may lead to spin interference. This
idea is at the core of the Datta-Das transistor or spin-FET[12]. The main advantages of a
spin-FET are low energy consumption and fast switching speed since it does not involve
creating or eliminating the electrical conducting channels during the switching, required
by traditional FETs[67]. However the SOC introduces also some practical challenges. In-
deed in the presence of momentum elastic scattering, SOC decreases the coherence length.
This may lead to a vanishing spin polarized current, an effect known as weak antilocal-
ization. Indeed random changes in the velocity of the electron due to scattering cause
as well changes of the spin precession axis that leads to the spin relaxation. Even if the
electrons are injected spin polarized into the system, they will go out of phase because
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each individual electron has a different scattering history[87]. In this way in realization
of SOC based device one is restricted to ballistic transport only and main length scale of
device must be significantly smaller than the mean free path L0. Another technological
problem originates from the resistance mismatch on the ferromagnetic/semiconductor in-
terface, that cause the inefficient injection of the spin current, this problem however can
be mitigated by use of exotic ferromagnetic alloys[26].

1.5.1 Datta-Das transistor
One of the first spin-FET devices have been proposed by Datta and Das in 1990[12],
and is composed by a hetorojunction in similar way of classical transistor presenting as
well source, drain leads and gate that allow to control resistance of the transistor. The
current modulation arises from spin precession due to the spin-orbit coupling in narrow-
gap semiconductors, while magnetized contacts are used to inject and detect specific spin
orientations, the schematic representation is pictured on the figure (1.4)[12]

Figure 1.4: Datta-Das spin-FET structure. The iron contact are x-polarized ferromagnets
that are responsable for injection and detection of spin current. The centrall region
is composed by narrow gap semconductor in which the Rashba spin orbit coupling is
dominant and is controlled by gate potential VG. Figure taken from Ref.[12]

The source and drain leads are ferromagnetic material magnetized along x direction,
in this way injected spin current is polarized as well along x and can be expressed as
combination of z up and down states( 1

1

)
=
( 1

0

)
+
( 0

1

)
(1.198)

States injected from ferromagnetic lead are propagated in the 2DEG in x/z plane,
composed of narrow-gap semiconductor such as InGaAs, InAs or GaAs in which Rashba
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SOC is dominant and are described by

H =
(~2(k2

x+k2
Z)

2m∗ − αkx αkZ

αkZ
~2(k2

x+k2
Z)

2m∗ + αkx

)
(1.199)

However from 2DEG Hamiltonian can be seen that the state are characterised by spin
texture[89] and the spin orientation is perpendicular to the electron propagating direction,
spaning from (1, 1)T , (1,−1)T for transverse propagation i.e. kx = 0 to (1, 0)T , (0, 1)T
for kZ = 0[67]. In this way due to the angular spectrum the incoming states aren’t
forced to sharply spit in to different eigenvectors that as will be seen later give raise to
interference, but rather goes preferentially into states with spin component along x that
increase baseline transmission and reduce ability to modulate current. As consequence it is
crucial to restrict the trasversal degree of freedom for instance with external potential, and
consider in central region 1D electron transport[12]. Indeed as discussed in the previous
section, in the case of a very narrow 1D wire, the different energy band aren’t coupled
and can be treated as identical bands separated by energy gap proportional to their band
number. In this way in first approach one can consider case of the single mode and
generalize to multiple band later. Propagating state in the 1D wire in the presence of
Rashba coupling are described by Hamiltonian

H =
(

~2k2

2m∗ + αk 0
0 ~2k2

2m∗ − αk

)
(1.200)

with eigenvector and corresponding eigenvalues

|+〉 =
( 1

0

)
(1.201)

|−〉 =
( 0

1

)
(1.202)

E± = ~2k2
x

2m∗ ± αkx (1.203)

In this way injected x polarized state at fixed energy E is propagating towards the central
region as combination of spin up |+〉 and spin down |−〉 with different wavevectors k± =
±kSO +

√
k2
SO − 2mE

~2 , where kSO = |α|m/~2. The wave function in the central region can
be written as

φ(x) =
( 1

0

)
eik+x +

( 0
1

)
eik−x =

(
eik+x

eik−x

)
(1.204)

The injected electron is propagating in the central nanowire of the length L and at the
end must be detected by ferromagnet polarized along x; The transmission is maximum
if the spin of incident electron is aligned with ferromagnet polarization. In this way
transmission through nanowire is expected to be proportonal to the probability of the
state to be aligned with the polarizzation of drain ferromagnet at x = L that reads∣∣∣∣( 1, 1

) ( eik+L

eik−L

)∣∣∣∣2 = 4 cos2((k+ − k−)L2 ) (1.205)
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From which follows that current in principle can be modulated by a differential phase
∆θ = (k+ − k−)L that allow to minimize current for ∆θ = π and can be easily found to
be[12, 20]

∆θ = 2kSOL = 2m∗αL
~2 (1.206)

As mentioned above, in the case of a narrow wire, the conducting states of all bands En,k
exhibit the same differential phase shift ∆θ, independent of the band index and the wave
vector. Thus, differently from a typical quantum interference device that must be a single
channel to properly operate, the Datta-Das transistor in principle can be realized as multi
channel device that would operate properly for higher temperature and larger applied
bias that is necessary for inducing Rashba spin orbit coupling[12]. The above results have
been confirmed by more systematic investigation of the sub band coupling by [20] using
the tight binding model. On the other hand in the case of wide confinement potential,
the current modulation is expected to deviate from harmonic behaviour. Furthermore,
the multi channel case must be considered since the phase shift has a more complicated
dependence on energy and band index as result of band deformation[67].

The phase is proportional to the length of the central region and spin orbit constant
that is its turn can be controlled by the gate potential. As mentioned above, in order
to guaranty sufficiently large coherence length of spin current the spintronic device are
limited to only ballistic transport, in this way one may argue if for practical realization of
Datta-Das transistor the typical scale of coupling constant would be enough to introduce
phase shift of π in the central region with length smaller then mean free path L < L0.
To this purpose one can compare the typical scales of Rashba coupling constant: α =
10−11eV ·m and effective mass m∗ = 0.15me that give raise L(∆θ = π) = 0.8µm[26]. It is
coherent with tipical mean free path of high-mobility semiconductors at low temperatures
L0 > 1µm[12].

The first implementation of Datta-Das transistor has been done by [39] with non-local
measurement scheme, in which the current is injected in source ferromagnet after that
a fraction of injected electrons have ballistic trajectories to the drain, which develops
a voltage ∆V proportional to the projection of the electron spin on the magnetization
orientation of drain ferromagnet as in Eq.(1.205). The quantum wire is realised in a InAs
heterostructure with strong Rashba spin orbit coupling with the ferromagnetic contacts
realised with Ni81Fe19 permalloy[39, 67]. In Fig.1.5.a) the experimental measurements
of the drain voltage ∆V are reported. It can be indeed observed the typical oscillation
depending on the gate voltage. Also it can be noticed that in the case of shorter length of
the central region L = 1.25µm the range of gate voltage is extended. This stems from the
fact that the phase shift is proportional to L, so that electrons in a device with shorter
electrode spacing require a larger range of λ and therefore a larger range of gate potential
VG as well[39]. In Fig.1.5.b) we have reported the measurements for a fixed length of the
central region, at different temperatures. It can be observed that the oscillations caused
by the spin precession are washed out for higher temperature due to inelastic scattering,
which becomes more pronounced. Coherent effects are destroyed by localization effects.
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1 – Spin-orbit interaction

Figure 1.5: Experimental measurements of output voltage ∆V measured by [39]. The
panel (a) the output voltage at fixed temperature as function of gate voltage VG and dif-
ferent length of centrall nano wire L = 1.65µm, L = 1.25µm. The panel (b) measurements
for different temperatures. Refference [39]
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Chapter 2

The Scattering Matrix
formalism

In this chapter I shall discuss the Scattering Matrix formalism, a general approach that
allows one to investigate the conducting properties of a quantum mesoscopic system. In
a nutshell, a mesoscopic system has a typical size that is much smaller than the phase
breaking length, so that a propagating electron preserves its phase coherence and the
wave nature of quantum particles emerges e.g. in interference phenomena. Furthermore,
in the quantum mesoscopic regime, the transport properties also depend on the specific
arrangement of elastic scattering centers in each sample. Semiclassical approaches, like
Drude model or a Boltzmann kinetic theory, cannot be used to describe this regime,
since they neglect the wavelike nature of particles. The Scattering Matrix formalism,
developed by Landauer and Büttiker[14, 16, 17], is instead a fully quantum approach
and establishes the correspondence between the quantum probability of a particle to be
transmitted through a scattering region and its conduction properties.

This chapter is composed as follow. First of all I shall briefly discuss the relevant length
scales characterizing a system and recall the definition of the quantum mesoscopic regime.
Then, I shall illustrate a typical measurement setup involving a mesoscopic system and
describe the model adopted by Landauer and Büttiker formalism to describe it. Finally, I
will present the derivation of the conducting properties. In particular, I will focus on the
linear response regime.

2.1 The quantum mesoscopic regime
One of the hallmarks of the wavelike nature of quantum particles is the fact that waves
can interfere. However, in order to observe such phenomenon, a quantum particle must
be able to preserve its phase coherence over the time and lengthscales characterizing the
measurement. Let us consider a freely propagating electron wave Ψ = ei(k·r−Et/~), where
k and E denote its wavevector and energy, respectively. The electron can experience two
sorts of scattering events, namely elastic and inelastic. The former scattering changes
the wavevector k → k′ but preserves the energy E, whereas the latter also affects the
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energy. Elastic scattering events, typically due to static potentials, are reversible and do
not affect the phase coherence of the quantum particle. In contrast, inelastic scattering
events, caused by the interaction of the particle with the dynamical degrees of freedom of
the environment, are typically irreversible and eventually destroy the phase coherence.
One thus typically introduces two relevant length scales. The length Le denotes the
typical lengthscale over which an electron experiences elastic scattering and is called elastic
mean free path. In contrast, Lφ denotes the typical length an electron can travel before
experiencing inelastic scattering and is called phase breaking length. Depending on the
size L of the system, one can thus distinguish two regimes. A system with a size L� Lφ
is referred to as a macroscopic system and does not exhibit phase coherence effects. In
contrast, quantum coherence effects are expected to be observable in a system with a size
L . Lφ, which is thus called a quantum mesoscopic system.
When an electron Bloch wave propagates in a solid, elastic scattering is typically due to
impurities or defects, whereas inelastic scattering occurs because of the interaction with
the bath of the lattice vibrations (phonons) and/or the other electrons. On the one hand,
it is precisely because of the energy exchange with the phonon bath that the electron gas
can thermalize and reach the equilibrium state. On the other hand, from the quantum
mechanical point of view, the equilibrium state is a mixed state where phase coherence
is lost. Importantly, when temperature T is low, the lattice vibrations are suppressed
and phonon scattering becomes more and more negligible. The phase breaking length Lφ
thus increases when lowering the temperature, and an electron can travel a longer path
without experiencing inelastic scattering processes. Typically one has Lφ ∼ 1/T p, where
p is a power that depends on the specific system. However, one can roughly claim that,
as T is below the Kelvin range, Lφ is of the order of a µm, implying that nanosystems
are mesoscopic. Indeed a number of genuine quantum interference phenomena have been
experimentally observed in nanosystems. In this regime, transport properties (e.g. the
resistivity) are determined only by the elastic scattering with impurities. One can further
identify two mesoscopic subregimes[15]. In the diffusive regime, characterized by Le �
L . Lφ, describes the situation where electrons experience various impurity scattering.
This is typically the case of a metal. In contrast, the ballistic regime, characterized by
Le ∼ L . Lφ, identifies a mesoscopic system where impurity scattering is rare. Modern
nanotechnology fabrication techniques based on semiconductors nowadays enable one to
realize almost clean systems. This is thus the regime we shall focus on for the description
of semiconductor nanowires with spin-orbit coupling.
Notably, the semiclassical approaches neglecting the wavelike nature of particles fail to
describe mesoscopic systems, and a fully quantum approach is needed. The Scattering
Matrix formalism developed by R. Landauer and M.Büttiker[6, 7, 14, 16, 17], is widely
applied to the description of these systems. In this chapter we shall revise the main
aspects that will be then applied to the investigation of the nanowire in next chapter.
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2.2 Scheme of a typical measurement setup
A typical measurement setup for a quantum mesoscopic regime is sketched in Fig.2.1 and
consists of three main components: the mesoscopic system itself, the left and right elec-
trodes, and the leads connecting the electrodes to the mesoscopic system. Each component
is characterized by a specific regime that we summarize here below.

Mesoscopic
system

Lead LeadElectrode Electrode

Figure 2.1: Measurements framework.

Electrodes (or reservoirs)

The electrodes are treated as macroscopic electron reservoirs with a typical size that is
much longer than the phase coherence length, L � Lφ. The energy level spectrum of
these large electrodes is effectively a continuum. In each reservoir electrons experience
inelastic scattering processes that lead to thermal equilibrium[15, 16], so their distribution
is given by

〈ĉ(γ)†
E ĉ

(γ)
E′ 〉 = fγ(E) δ(E − E′) γ = R,L (2.1)

where
fγ(E) = 1

1 + e(E−µγ)/kBTγ
(2.2)

is the equilibrium Fermi distribution of the left (γ = L) or the right (γ = R) electrode,
with Tγ and µγ denoting its temperature and chemical potential, respectively.

Importantly, the electrodes are assumed to be statistically independent. Due to the
temperature difference ∆T = TL − TR and chemical potential difference ∆µ = µL − µR,
the overall system electrodes+mesoscopic system is in an out of equilibrium state and one
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observes a flow of electric current. Nevertheless, each reservoir is only weakly perturbed
by the small mesoscopic system, and its energy distribution can always be treated as the
equilibrium one. The situation is different for the mesoscopic system, though.

Mesoscopic system

The mesoscopic system is characterized by a size L . Lφ smaller than phase breaking
length Lφ. Here L can be taken as the longitudinal length, since the transversal size W
of the mesoscopic system is typically shorter than the longitudinal size (W < L . Lφ).
By definition of quantum mesoscopic regime, electrons in the mesoscopic system can only
experience elastic scattering processes, i.e. with impurities, while any inelastic scattering
processes, e.g due to the coupling with the thermal bath, the electromagnetic environment
and electron-electron interaction, can be neglected.
The chemical potential and/or temperature difference applied to the two electrodes induce
a current flowing through the mesoscopic system, which is thus driven into an out-of
equilibrium state. The lack of inelastic processes implies that electrons in the mesoscopic
system cannot thermalize and are intrinsically out of equilibrium and, differently from
the macroscopic electrodes, one does not assume any distribution for the electrons in the
mesoscopic system. The conducting properties are expected to be strongly dependent
on the wavelike nature of electrons, and also on the specific arrangements of scattering
centers.

The motion along the longitudinal direction is assumed to be free and is expected to be
characterized by the continuum spectrum. In contrast, the motion in transverse direction
is typically confined within a length scaleW and is expected to yield a discrete transversal
energy spectrum. In order to illustrate the effects of this confinement, let us imagine for
simplicity that the transversal confinement is described by a hard wall potential, whose
transverse states are characterized by discrete energy levels separated by

∆E⊥ '
~2π2

2m∗W 2 (2.3)

Comparing this energy scale with the thermal fluctuation energy kBT ' 25meV for room
temperature T = 300◦K, one can see that, if the transversal size of the system W is
of the order of nanometers, one has ∆E⊥ � kBT . In this way the thermal fluctuation
cannot induce the particle excitation between energy levels, and the quantum discreteness
of the transversal spectrum emerges. In particular, this means that, for a fixed total
energy E one can find only a finite number of transversal levels are compatible with a
conducting longitudinal motion. Typically this regime is even more consistent, since the
mesoscopic measurement set up is realized at the temperature significantly lower than the
room temperature, in order to maximise the coherence length Lφ, therefore the thermal
fluctuations are expected to be negligible[15].

Leads

The leads are assumed to be smoothly narrowing regions connecting the electrodes to the
mesoscopic system. Moreover, they are treated as ideal ballistic conductors, where neither
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elastic nor inelastic scattering occurs. Thus, electrons injected from the electrodes and
propagating through the leads do not modify the occupation distribution with respect to
the originating reservoir[15].

One may argue that such model of a scattering-free lead contacting the mesoscopic
system and electrodes is unrealistic. Indeed physically the contact between two different
materials typically exhibits a spurious contact resistance. However, such effect can actually
be included as a potential barrier in the mesoscopic system itself. This means that the
discussed idealized lead is in fact not unrealistic.

2.3 Landauer-Büttiker model for the setup
The Scattering matrix formalism developed by R.Landauer and M.Büttiker aims to de-
rive the out of equilibrium properties of the typical setup outlined above. In this section
I shall illustrate the main ingredients of this approach and the general procedure that
allows to derive the the transport properties[14, 16, 17], focussing in particular on the
linear response regime in the low temperature limit. In the next chapter I shall generalize
and apply this approach to the case of the Rashba nanowire.

Let us denote by x the longitudinal direction of the mesoscopic system, and by y-z the
transversal directions. We focus on a mesoscopic system with a short transversal sizeW of
the nanometer scale. Since the electron motion is confined along the transversal direction,
the current flow is only longitudinal (〈Ĵx〉 /= 0), while it vanishes in the transversal
directions, 〈Ĵy〉 = 〈Ĵz〉 = 0. In turn, the continuity equation

∂tρ̂3D = −∇ · Ĵ(r) , (2.4)

where

ρ̂3D(r) = Ψ̂†(r)Ψ̂(r) (2.5)

Ĵ(r) = − i~
2m∗

(
Ψ̂†(r)∇Ψ̂(r)−∇Ψ̂†(r)Ψ̂(r)

)
(2.6)

are the electron density and the electron current density operators, implies that in the
stationary out of equilibrium regime, where the expectation values are time-independent,
one has

0 = ∂t〈ρ̂3D(r)〉 = −∇ · 〈Ĵ(r)〉 = −∂x〈Ĵx(r)〉 (2.7)

Furthermore, due to the limited transversal size, it is worth introducing a longitudinal
density ρ̂(x) and a longitudinal current density Î(x) by integrating, at each longitudinal
section x, over the transversal directions

ρ̂(x) .=
∫∫

dydz ρ̂3D(r) (2.8)

Î(x) .=
∫∫

dydz Ĵx(r) (2.9)
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From Eq.(2.7) one has that

∂t〈ρ̂(x)〉 = −∂x〈Î(x)〉 = 0 (2.10)

This means that in stationary conditions the expectation value 〈Î(x)〉 of the longitudinal
current is independent of the longitudinal position x. For this reason, we can evaluate
it at any location. It is mathematically more suitable to evaluate it in the leads, where
electrons are assumed to propagate freely.

2.3.1 Modelling the leads
Because in the leads no scattering events are assumed to occur, the electron Hamiltonian
in the leads can be written as

H = − ~2

2m∗
∂2

∂x2 +− ~2

2m∗

(
∂2

∂y2 + ∂2

∂z2

)
+ U(y, z) (2.11)

where U(y, z) is transversal confinement potential accounting for the small transversal
size (e.g. infinite square well potential).
The Hamiltonian (2.11) is separable in the longitudinal (x) and the transversal (y, z)
coordinates, and is diagonalized by eigenfunctions

ψn,k(r) = φn(y, z)eikx (2.12)

where the plane wave eikx describes the free propagation along the longitudinal direction
x, while the transversal wavefunction φn(y, z) are localized wavefunction, due to the con-
finement potential U(y, z), which exhibit a discrete transversal energy spectrum Un, with
n ∈ N. The total energy spectrum of the Hamiltonian (2.11) thus reads

En(k) = ~2k2

2m∗ + Un (2.13)

and consists of a sequence of one-dimensional parabolic subbands in k, labeled by the
transversal quantum number n, and called the channels.

Because we deal with a many-electron problem, it is convenient to adopt the second
quantization formalism. The Hamiltonian is

Ĥ =
∫
drΨ̂†(r)HΨ̂(r) (2.14)

where H is the first-quantized Hamiltonian (2.11) and Ψ̂(r) is the electron field operator
satisfying the fermionic anticommutator relation{

Ψ̂(r), Ψ̂(r′)
}

= 0
{

Ψ̂(r), Ψ̂†(r′)
}

= δ(r− r′) (2.15)

In each lead γ = L,R the electron field operator can be expanded in terms of the mode
operators related to the propagating wavefunctions (2.12). The propagation direction is
determined by the sign of the group velocity[10]

vn(k) = 1
~
∂Ek,n
∂k

(2.16)
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2.3 – Landauer-Büttiker model for the setup

In view of the spectrum (2.13), states with k > 0 propagate rightwards, while states
with k < 0 propagate left-wards. However, in the Scattering matrix formalism, it is
customary to reword that in terms of incoming and the outgoing modes. The incoming
modes propagate from the reservoirs towards the mesoscopic system and are denoted by
â

(γ)
n,k, whereas the outgoing modes propagate from the mesoscopic system towards the

reservoirs and are denoted by b̂
(γ)
n,k[14]. The expression thus acquires a different form

depending on the lead γ = L,R[16, 23].

Ψ̂(r, t) =



1√
Ω
∑
n

∑
k>0

e−iEk,nt/~
[
â

(L)
n,ke

+ikx + b̂
(L)
n,ke

−ikx
]
φn(y, z) r ∈ Left Lead

1√
Ω
∑
n

∑
k>0

e−iEk,nt/~
[
â

(R)
n,k e

−ikx + b̂
(R)
n,k e

+ikx
]
φn(y, z) r ∈ Right Lead

(2.17)
The anticommutation relations (2.15) of the field imply that that creation and annihilation
operators satisfy

{â(γ)
n,k, â

(γ)
m,k′} = 0 {b̂(γ)

n,k, b̂
(γ)
m,k′} = 0 (2.18)

{â(γ)
n,k, â

(β)†
m,k′} = δγ,βδn,mδk,k′ {b̂(γ)

n,k, b̂
(β)†
m,k′} = δγ,βδn,mδk,k′ (2.19)

Importantly, since energy (and not wavevector) is conserved in the mesoscopic regime, it
is more suitable to label operators and eigenstates with energy E rather then with wave
vector. For a given value E of the total energy (2.13) only a limited number N(E) =∑
n Θ(E − Un) of parabolas lie below such value[15], and therefore exhibits conducting

states, i.e. eigenstates (2.12) with a real k ∈ R. These are called open channels or
conducting channels.

For the open channels one can invert the dispersion relation (2.13) and express the
positive wavevector as function of energy k = kn(E) with

kn(E) =
√

2m∗(E − Un)
~

(2.20)

and the related (positive) velocity as

vn(E) = vn(kn(E)) (2.21)

Then, transforming the discrete sum over k in Eqs.(2.17) into the integration over the
continuous variable E by means of

∑
k>0

. . . = Ω
2π

∫ ∞
0

dk . . . = Ω
∫

dE

2π~vn(E) . . . , (2.22)

where
νn(E) = 1

Ω
∑
k>0

δ(E − En(k)) = 1
2π~vn(E) (2.23)
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2 – The Scattering Matrix formalism

Figure 2.2: The dispersion relation of the leads (2.13) with 3 open channels N(E) = 3.
For each fixed energy E can be found the correspondent modes ±kn(E) with n = 1, 2, 3.

denotes the density of states per unit length and per propagation direction of the n-th
channel, the electron field operator can be rewritten as

Ψ̂(r, t) =



∫
dE

N(E)∑
n

e−iEt/~√
2π~vn(E)

[
â

(L)
n,Ee

ikn(E)x + b̂
(L)
n,Ee

−ikn(E)x
]
φn(y, z) r ∈ Left Lead

∫
dE

N(E)∑
n

e−iEt/~√
2π~vn(E)

[
â

(R)
n,Ee

−ikn(E)x + b̂
(R)
n,Ee

ikn(E)x
]
φn(y, z) r ∈ Right Lead

(2.24)
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2.3 – Landauer-Büttiker model for the setup

where we have introduced the new energy mode operators[14, 15]

â
(γ)
n,E =

√
Ω

2π~vn(E) â
(γ)
n,k (2.25)

γ = L,R

b̂
(γ)
n,E =

√
Ω

2π~vn(E) b̂
(γ)
n,k (2.26)

satisfy the anticommutation relations

{â(γ)
n,E , â

(β)†
m,E′} = δγ,βδn,mδ(E − E′) {b̂(γ)

n,E , b̂
(β)†
m,E′} = δγ,βδn,mδ(E − E′) (2.27)

Notably, because the incoming states originate from the related reservoir, their expectation
values are simply given by Eq.(2.1)

〈â(γ)†
n,E â

(γ)
n,E′〉 = fγ(E)δ(E − E′) (2.28)

where fγ(E) its Fermi equilibrium function of the related reservoir. Because in the lead
no thermalization occurs (inelastic scattering is absent), the outgoing mode have a dif-
ferent (and a priori unknown) distribution 〈b̂(γ)†

E b̂
(γ)
E 〉. Thus, although the electrodes are

assumed to be at equilibrium, the leads and the mesoscopic system are intrinsically out
of equilibrium[15]. In the above customary derivation, the spin degree of freedom does
not play any other role than a dummy degeneracy variable. In the next chapter we shall
generalize the Scattering Matrix approach to the case of Rashba nanowire where spin acts
not trivially.

2.3.2 The Scattering Matrix of the mesoscopic system
While in the leads the transverse channels are separate and independent by construction,
in the mesoscopic system, characterized by various elastic scattering centers, electrons can
scatter from one channel to the other elastically, i.e. along a horizontal line at energy E
line, as sketched in Fig.2.3. The energy distributions 〈â(γ)†

n,E â
(γ)
n,E〉 of the incoming channels

can be controlled through the electrodes (see Eqs.(2.1)), whereas the energy distribution
〈b̂(γ)†
n,E b̂

(γ)
n,E〉 of the outgoing channels depends on the specific scattering centers of the meso-

scopic system and is a priori unknown. One can thus think of the incoming channels as
"the input" and the outgoing channels as "the output", and the mesoscopic system as a
"black-box" connecting the latter to the former at each given energy E (see Fig.2.3). The
mathematical object encoding such black box is the Scattering matrix, denoted by S,
which that linearly relates the incoming and the outgoing modes b̂

(L)
E

b̂
(R)
E

 =

 SE

( â(L)
E

â(R)
E

)
(2.29)
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2 – The Scattering Matrix formalism

Left Lead Right Lead

Mesoscopic 
System

Figure 2.3: Black box model in the case of two conducting channels; Reg lines represent
incoming modes, blue lines are outgoing modes

where â(γ)
E = [â(γ)

n,E ]N(E)
n=1 , b̂(γ)

E = [b̂(γ)
n,E ]N(E)

n=1 are vectors of mode operators in lead γ. In
components, one has

b̂
(γ)
n,E =

∑
α,l

Sγ,n;α,l(E)â(α)
l,E b̂

(γ)†
n,E =

∑
α,l

â
(α)†
l,E S∗γ,n;α,l(E) (2.30)

The idea underlying the Landauer-Büttiker formalism is that, by re-expressing the out-
going mode operators in terms of the incoming ones through the Scattering Matrix, the
distribution 〈b̂(γ)†

n,E b̂
(γ)
n,E〉 of the outgoing channels, as well as the incoming-outgoing corre-

lations 〈â(γ)†
n,E b̂

(γ)
n,E〉 and 〈b̂

(γ)†
n,E â

(γ)
n,E〉, can be re-expressed in terms of the distributions of the

incoming channels, which are known from Eq.(2.1). Explicitly

〈â(γ)†
n,E â

(γ)
n,E′〉 = fγ(E) δ(E − E′) (2.31)

〈b̂(γ)†
n,E b̂

(β)
m,E′〉 =

∑
α,l

S∗γ,n;α,lSβ,m;α,l fα(E)

 δ(E − E′) (2.32)

〈b̂(γ)†
n,E â

(β)
m,E′〉 = S∗γ,n;β,mfβ(E) δ(E − E′) (2.33)

〈â(γ)†
n,E b̂

(β)
m,E′〉 = Sβ,m,γ,nfγ(E) δ(E − E′) (2.34)

Note that all the mode distributions and the correlations are proportional to δ(E−E′), i.e.
diagonal in energy, consistently with the fact that energy is conserved in the mesoscopic
regime.

Unitarity of the Scattering Matrix

Notably, the scattering matrix is unitary

S−1 = S† (2.35)
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2.3 – Landauer-Büttiker model for the setup

to guarantee the current conservation [10, 15, 17]. This can be illustrated phenomenolog-
ically by focussing on the case of one single band. In the left lead the incoming average
current in the interval dE around energy E is given by[16, 17]

dIin(E) = v(E)nin(E)ν(E)dE (2.36)

where v(E) and ninc(E) are the group velocity and the occupation number of the band,
whereas ν(E) = 1/(2π~v(E)) is the density of states per unit length and propagation di-
rection (see Eq.(2.23)), so that dρ(E) = ninc(E)ν(E)dE is the incoming electron density
per unit length. Note that the this expression is universal in the sense that it is indepen-
dent of the particular property of the lead and its quantum channel[17]. The total current
in the left lead is the difference between the incoming and the outgoing term

dI(γ)(E) = dI
(γ)
in (E)− dI(γ)

out(E) = 1
2π~ [n(γ)

in (E)− n(γ)
out(E)]dE (2.37)

Imposing the current conservation dI(L)(E) = −dI(R)(E) one finds

n
(L)
in (E) + n

(R)
in (E) = n

(L)
out(E) + n

(R)
out (E) (2.38)

Considering that n(γ)
in (E) = â(γ)†

E â(γ)
E and n(γ)

out(E) = b̂
(γ)†
E b̂

(γ)
E [36]

(
â(L)†
E , â(R)†

E

)( â(L)
E

â(R)
E

)
=
(
b̂

(L)†
E , b̂

(R)†
E

) b̂
(L)
E

b̂
(R)
E

 (2.39)

finally using Eq.(2.29)

(
â(L)†
E , â(R)†

E

)( â(L)
E

â(R)
E

)
=
(
â(L)†
E , â(R)†

E

)
S†ESE

(
â(L)
E

â(R)
E

)
(2.40)

therefore current is conserved only if the scattering matrix is unitary.

The scattering matrix (2.29) is customarily written in block form b̂
(L)
E

b̂
(R)
E

 =
(
r t′

t r′

)(
â(L)
E

â(R)
E

)
(2.41)

where r and r′ denote the matrices of reflection amplitudes, while t and t′ are the matrices
of transmission amplitudes. For instance, the reflection probability from the channel n to
the channel m in the left lead is

Rm,n(E) = |rm,n|2 (2.42)

whereas the transmission probability from the channel n in the left lead to the channel m
in right lead is[17]

Tm,n(E) = |tm,n|2 (2.43)
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2 – The Scattering Matrix formalism

Similarly

R′m,n(E) = |r′m,n|2 (2.44)
T ′m,n(E) = |t′m,n|2 (2.45)

denote the reflection probability from the n-th channel to the m-th channel in the right
lead and the transmission probability from the n-th channel in the right lead to the m-th
channel in the left lead, respectively. Exploiting the unitarity of the scattering matrix one
has ∑

m

[Rm,n(E) + Tm,n(E)] = 1 (2.46)

which reflects the fact that a particle inside a channel n is either reflected or transmitted
into some other channel m[15]. Finally, one can introduce the transmission function

T̃ (E) =
∑
m

∑
n

Tm,n(E) =
∑
m

∑
n

T ′m,n(E) (2.47)

which can also be re-expressed using Eq.(2.46)

T̃ (E) = N(E)−
∑
m

∑
n

Rm,n(E) = N(E)−
∑
m

∑
n

R′m,n(E) (2.48)

where we recall that N(E) is the number of open channels at the energy E.

Example of Scattering matrix: the case of δ-potential

So far, the general properties of the Scattering matrix have been discussed. Here I wish
to present an illustrative example of computation of the scattering matrix by means of
Transfer Matrix approach. This general method, originally developed in context of optical
systems[18], allows to find the solutions for the wave-like propagation and can be applied
to arbitrary forms of the scattering potential. Differently the scattering matrix, which
connects the outgoing to the incoming operators, the transfer matrix connects operators
at opposite sides of the scattering center or region. In quantum mechanics the perhaps
most representative applications of this approach are the quantum well problem[8] and
delta-potential scattering[36].

Let us illustrate the latter case by considering a one-dimensional free electron gas in
the presence of the two impurities, located at positions x0 and x1, that can be modeled
with a δ-potential. The second-quantization Hamiltonian reads

Ĥ =
∫
dxΨ̂†(x)

(
− ~2

2m∗
∂2

∂x2 + Λ0δ(x− x0) + Λ1δ(x− x1)
)

Ψ̂(x) (2.49)

and implies the following Heisenberg equation for the electron field operator Ψ̂

i~
∂

∂t
Ψ̂(x, t) = − ~2

2m∗
∂2

∂x2 Ψ̂(x, t) + Λ0δ(x− x0)Ψ̂(x, t) + Λ1δ(x− x1)Ψ̂(x, t) (2.50)
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2.3 – Landauer-Büttiker model for the setup

While in the regions out of the impurities (x /= x0 , x1) the Heisenberg equation above
is equivalent to a customary free electron model, for x = x0, x1 the δ potential induces
boundary conditions. The field is continuous at each impurity location Ψ̂(x−j , t) = Ψ̂(x+

j , t)
with x±j = xj±ε (j = 0,1 and ε→ 0). However, its first derivative should be discontinuous,
since the second derivative of the field ∂2

xΨ̂(x, t) in Eq.(2.50) exhibits δ-like singularities, in
order to compensate the δ-functions at x = x0, x1. Such discontinuity can be determined
by integrating the Heisenberg equation (2.50) over an infinitesimal interval around xj ,
that lead to the boundary conditions

Ψ̂(x−j , t) = Ψ̂(x+
j , t)

j = 0,1
∂xΨ̂(x+

j , t)− ∂xΨ̂(x−j , t) = Λ̃jΨ̂(xj , t)
(2.51)

where Λ̃j = 2m∗
~2 Λj . Due to the energy conservation in the mesoscopic system, the general

solution of the Hesinberg equation can be written as a superposition of the stationary
solutions Ψ̂E(x, t) = e−iEt/~Ψ̂E(x), where field Ψ̂E(x) is a linear combination of the plane
wave modes

Ψ̂E(x) =



1√
2π~v(E)

[
â

(L)
E eik(E)x + b̂

(L)
E e−ik(E)x

]
x < x0

1√
2π~v(E)

[
γ̂+
Ee

ik(E)x + γ̂−Ee
−ik(E)x

]
x0 < x < x1

1√
2π~v(E)

[
â

(R)
E e−ik(E)x + b̂

(R)
E eik(E)x

]
x > x1

(2.52)

where k(E) =
√

2m∗E/~ and the set of fermionic operators γ̂+
E , γ̂−E describe the propagat-

ing waves between the two impurities. Notably for the external region x < x0 and x > x1
we use the incoming â(β)

E and out going b̂(β)
E operators analogous to the ones used in the

lead field operator (2.24). Substituting the Ansatz (2.52) into the boundary condition
(2.51), one finds (

γ̂+
E

γ̂−E

)
= WE(x0)

(
â

(L)
E

b̂
(L)
E

)
(2.53)

which expresses the operators on the right of the x0-impurity as a function of the operators
on the left of such impurity. Similarly, one also finds(

b̂
(R)
E

â
(R)
E

)
= WE(x1)

(
γ̂+
E

γ̂−E

)
(2.54)

which expresses the operators on the right of the x1-impurity as a function of the operators
on its left. Here WE(xj) is a 2× 2 boundary matrix

WE(xj) =

 1− i Λ̃j
2k(E) −i Λ̃j

2k(E)e
−i2k(E)xj

i Λ̃j
2k(E)e

i2k(E)xj 1 + i Λ̃j
2k(E)

 (2.55)
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It can observed that det(WE(xJ)) = 1 and (WE(xj))1,2 = (W ∗E(xj))2,1. By combining
Eqs.(2.53) and (2.54), one can write(

b̂
(R)
E

â
(R)
E

)
= WE

(
â

(L)
E

b̂
(L)
E

)
(2.56)

where the total Transfer matrix WE = WE(x0) ·WE(x1) expresses the operators on the
right of the two-impurity scattering region as a function of the operators on its left.
Assuming for simplicity Λ̃0 = Λ̃1 = Λ̃ and introducing the energy scale EΛ = m∗

2~2 Λ2, the
entries of the total transfer matrix read

(WE)1,1 =

1− i
√
EΛ

E

2

−

i
√
EΛ

E

2

e2ik(E)(x1−x0) (2.57)

(WE)1,2 = i

√
EΛ

E

1− i
√
EΛ

E

 e−2ik(E)x0 +

1 + i

√
EΛ

E

 e−2ik(E)x1

 (2.58)

(WE)2,1 = (W ∗E)1,2 (2.59)

(WE)2,2 =

1− i
√
EΛ

E

2

−

i
√
EΛ

E

2

e2ik(E)(x1−x0) (2.60)

recalling the properties of the determinant of the matrix product one can find det(WE) =
det(WE(x0))det(WE(x1)) = 1.

By re-expressing the relation Eq.(2.56) in favour of the incoming operators, it is
straightforward to find the scattering matrix

SE = 1
(WE)2,2

−(WE)1,2 1

1 (WE)2,1

 (2.61)

and the transmission function can be computed in closed form as

T (E) =
∣∣∣∣∣ 1
(WE)2,2

∣∣∣∣∣
2

= 1

1 + 4EΛ
E

[
cos(2k(E)L) +

√
EΛ
E sin(2k(E)L)

]2 (2.62)

where L = x1 − x0. Notably the transmission function exhibits an oscillatory behavior
that is a hallmark of the interference phenomena in the region between two impurities.

2.3.3 Electrical current
The electrical current operator is obtained by multiplying the longitudinal current oper-
ator defined in Eq.(2.9) by the electrical charge q

Îc(x) = q

∫∫
dydz Ĵx = −i q~2m∗

∫∫
dydz

(
Ψ̂†(r)∂Ψ̂(r)

∂x
− ∂Ψ̂†(r)

∂x
Ψ̂(r)

)
(2.63)
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and can be expressed in terms of the energy mode operators using the expression (2.24)
of the electron field operator. For instance, in the left lead one obtains

Î(L)
c (x) = −

∫
dE

∫
dE′ei(E−E

′)t/~
∫∫

dydz

N(E)∑
n=1

N(E′)∑
m=1

iq~
2m∗

φ∗m(y, z)φn(y, z)
2π~

√
vn(E)vm(E′)

×

×
[
i(kn(E) + km(E′))

(
â

(L)†
n,E â

(L)
m,E′e

−i(kn(E)−km(E′))x − b̂(L)†
n,E b̂

(L)
m,E′e

+i(kn(E)−km(E′))x
)
−

− i(kn(E)− kn(E′))
(
â

(L)†
n,E b̂

(L)
m,E′e

i(kn(E)+km(E′))x − b̂(L)†
n,E â

(L)
m,E′e

−i(kn(E)+km(E′))x
)]

Exploiting the orthonormality of the transversal wavefunctions
∫
dxdy φ∗m(y, z)φn(y, z) =

δn,m, and recalling that vn(E) = ~kn/m∗, one finds

Î(L)
c (x) = q

2π~

∫
dE

∫
dE′ei(E−E

′)t/~× (2.64)

×
min(N(E), N(E′))∑

n=1

[
vn(E) + vn(E′)
2
√
vn(E)vn(E′)

(
â

(L)†
n,E â

(L)
n,E′e

−i(kn(E)−kn(E′))x − b̂(L)†
n,E b̂

(L)
n,E′e

i(kn(E)−kn(E′))x
)
+

+ vn(E)− vn(E′)
2
√
vn(E)vn(E′)

(
â

(L)†
n,E b̂

(L)
n,E′e

i(kn(E)+kn(E′))x − b̂(L)†
n,E â

(L)
n,E′e

−i(kn(E)+kn(E′))x
)]

Average current

In order to compute the expectation value of the current operator (2.64) we observe from
Eq.(2.31) that, due to the energy conservation, all expectation values of the mode operator
products are diagonal in energy, i.e. proportional to δ(E − E′). Thus the contribution
from the last line of Eq.(2.64) vanishes, and one obtains a quite simple expression

I(L)
c

.= 〈Î(L)
c (x)〉 = q

2π~

∫
dE

N(E)∑
n=1

(
〈â(L)†
n,E â

(L)
n,E〉 − 〈b̂

(L)†
n,E b̂

(L)
n,E〉

)
(2.65)

As expected from the continuity equation, at stationarity the average current (2.65) is
time and space independent. We now recall that that outgoing mode operators b̂(j)n,E are
related to the incoming mode operators â(j)

n,E through the scattering matrix Eq.(2.29)
through Eqs.(2.30).
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Exploiting Eqs.(2.31) one finds

I(L)
c

.= 〈Î(L)
c (x)〉 = q

2π~

∫
dE

N(E)∑
n=1

fL(E)−
∑
γ,i

|SL,n;γ,i|2 fγ(E)

 = (2.66)

= q

2π~

∫
dE

N(E)∑
n=1

((
1−

∑
i

|SL,n;L,i|2
)
fL(E)−

∑
i

|SL,n;R,i|2 fR(E)
)

=

= q

2π~

∫
dE

N(E)−
N(E)∑
i,n=1

|r′n,i|2
 fL(E) +

N(E)∑
i,n=1

|tn,i|2
 fL(E)

 =

= q

2π~

∫
dE

N(E)−
N(E)∑
i,n=1

R′n,i

 fL(E) +

N(E)∑
i,n=1

Tn,i

 fL(E)


Recalling the expressions (2.47) and (2.48) of the transmission function the current ac-
quires a simple form[16, 17]

I(L)
c = q

h

∫
dE T̃ (E)[fL(E)− fR(E)] (2.67)

where we have used the Planck constant h = 2π~.

2.3.4 Thermal current
Next let us discuss the thermal current inside the leads. Since the electrode is connected
only to the mesoscopic system, all the heat generated inside the reservoir will leak into
the leads. In this way can be written the continuity equation for heat density[71]

Q̇(L) = −J (L)
Q (2.68)

where Q̇(L)s time derivative of the heat density and J
(L)
Q is heat current floating out of

the electrode. Recalling the first law of thermodynamics dQ = dU + dW one obtain

Q̇(L) = U̇ (L) − Ẇ (L) (2.69)

where U̇ (L) is energy flux into left reservoir and Ẇ (L) is the work done on left reservoir
per unit time. Since the volume of reservoir is assumed to be constant the only source
of work done on the reservoir is caused by the change of particle number inside of it and
therefore[71]

Ẇ (L) = µLṄ
(L) (2.70)

where µL is chemical potential of the left reservoir and Ṅ (L) is the particle flux through
the left lead that can be expressed with the Landauer-Büttiker formalism

Ṅ (L) = 1
2π~

∫
dE T̃ (E)[fL(E)− fR(E)] (2.71)
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2.3 – Landauer-Büttiker model for the setup

On the other hand the energy flux can be written as

U̇ (L) = 1
2π~

∫
dE E T̃ (E)[fL(E)− fR(E)] (2.72)

and therefore the heat current can be expressed as[10, 71]

J
(L)
Q = 1

h

∫
dE(E − µL)T̃ (E)[fL(E)− fR(E)] (2.73)

2.3.5 Linear response regime
The results (2.67)-(2.73) are general and allow one to calculate charge and heat cur-
rent inside the leads. However, through the Fermi distribution functions they exhibit
a non linear dependence on the chemical potential µγ and the temperature Tγ of the
electrodes γ = L,R. In the linear response regime, the difference in chemical potentials
and temperatures of the electrode Fermi functions fL and fR are assumed to be small as
compared to the values µ = EF , T characterizing the equilibrium of the entire system
reservoir+mesoscopic sample[10]

µγ = EF + qVγ
Tγ = T + Θγ

(2.74)

One can then obtain simplified linearized expressions by approximating the Fermi function
as[10, 78]

fγ(E) ' f0 −
∂f0

∂E

(
qVγ + E − EF

T
Θγ

)
γ = L,R (2.75)

where f0 denotes the full equilibrium Fermi function. Substituting Eq.(2.75) into Eq.(2.67)
one obtains the linearized charge current

Ic = − q
h

∫
dE T̃ (E)∂f0

∂E

[
q(VL − VR) + E − EF

T
(ΘL −ΘR)

]
(2.76)

Similarly, the heat current (2.73) neglecting the second order perturbation term can be
written as

JQ = −1
h

∫
dE (E − EF )T̃ (E)∂f0

∂E

[
q(VL − VR) + E − EF

T
(ΘL −ΘR)

]
(2.77)

Finally, defining the applied voltage difference and the temperature difference

∆V .= VL − VR = (µL − µR)/q (2.78)
∆T .= TL − TR = ΘL −ΘR (2.79)

the above equations (2.76) and (2.77) can be written as linear response regime[10, 16]

I = G∆V + L∆T (2.80)
JQ = M∆V +N∆T (2.81)

57



2 – The Scattering Matrix formalism

with coefficients[10, 62]

G = −q
2

h

∫
dE T̃ (E)∂f0

∂E
(2.82)

L = − q

hT

∫
dE T̃ (E) (E − EF ) ∂f0

∂E
(2.83)

M = TL (2.84)

N = − 1
hT

∫
dE T̃ (E) (E − EF )2 ∂f0

∂E
(2.85)

In the low temperature limit the linear coefficients can be further simplified using the
Sommerfield expansion[48]. In particular, while for G the zero order is non vanishing,
for the other coefficients the second order of the expansion is the leading term, and one
obtains[10, 62]

G = q2

h
T̃ (EF ) (2.86)

L = qπk2
BT

6~
∂T̃ (E)
∂E

∣∣∣∣
EF

(2.87)

M = qπk2
BT

2

6~
∂T̃ (E)
∂E

∣∣∣∣
EF

(2.88)

N = πk2
BT

6~ T̃ (EF ) (2.89)

The quantum of conductance

Notably in the case of perfect transmission, T̃ (E) ≡ 1, one can find G ∝ N(EF ) and
therefore each channel contribute a quantum of conductance

G0 = q2

h
(2.90)

that is an upper bound for a quantum wire[17, 78]. It is a universal quantity, since it
only depends on constants of nature and is independent of the specific measurement set
up. Moreover, this implies that its inverse identifies , and commonly referred a resistance
RQ = G−1

0 = h/q2, whihc is referred to as the quantum of resistance. or also as the contact
resistance. This conclusion may seem to be counterintuitive, since it is at first unexpected
to find a resistance in a perfectly transmitting system. However, it arises from the interface
between regions with intrinsically different properties, namely the mesoscopic system and
the electrode. Indeed, differently from the mesoscopic system, in the electrodes inelastic
scattering occur and lead to thermalization: An electron outgoing from the mesoscopic
system and entering the electrode is redistributed among several modes and thermalized
according to the equilibrium distribution function of that electrode, of the electrode[15],
losing the initial information on the conducting modes and on the phase of the mesoscopic
system. This irreversible process is linked with dissipation and is the source of the quantum
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2.3 – Landauer-Büttiker model for the setup

of resistance, which is therefore also called the contact resistance. The quantization of
conductance, theoretically predicted by Büttiker[11] was observed for the first time in
experiments carried out in quantum point contacts in a two-dimensional electron gas[9,
13]
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Chapter 3

Rashba Nanowire exposed to
an external magnetic field

In this chapter I shall focus on the transport properties of a nanowire (NW) with Rashba
spin-orbit coupling (RSOC). In particular, I shall discuss the case of a nanowire exposed
to an external magnetic field, uniformly applied along the entire length of the nanowire.
Due to the interplay between the actual magnetic field and the effective Rashba "magnetic
field", this setup has received a great deal of attention in last years, since it allows to realise
some interesting physical effects, such as the presence of helical states, namely states
characterized by a locking between the direction of propagation and the spin orientation.
While helical states are known to exist at the boundaries of a two-dimensional topological
insulator, NWs enable one to realize actual one-dimensional helical channels.

I shall first describe the general properties and the main energy scales characterizing a
NW with a spatially homogeneous RSOC. Indeed the RSOC constant can be modulated
by applying the gate voltage applied either between the NW and the substrate or by
suitable metallic gates. In this way, various physically interesting regimes can be realized.
Then, I shall focus on the case of a inhomogeneous RSOC, which can also be realized by
applying different gate potentials on different portions of the NW. This inhomogeneous
configurations lead to interesting transport phenomena that I shall analyze by applying
the Scattering Matrix formalism described in the previous Chapter.

3.1 Nanowire with a homogeneous RSOC
Let us consider a Rashba NW where one single transversal channel is active in the physi-
cally relevant energy range. The electron dynamics is thus effectively described by a purely
1D model along the longitudinal direction, which we denote by x. The NW is supposed to
be deposited on a substrate and/or to be coupled to a metallic gate, and such SIA gives
rise to an electric field perpendicular to the substrate plane, which results in a Rashba
"effective magnetic field" lying in the substrate plane but orthogonal to the NW axis. As
sketched in Fig.3.1, we shall denote by y the direction perpendicular to the substrate and
by z the direction of the Rashba magnetic field. Notably, the Rashba RSOC can be tuned
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3 – Rashba Nanowire exposed to an external magnetic field

by the gate voltage applied between the NW and the substrate and/or additional gates.
In InSb or InAs NWs such RSOC can be particularly high [40, 45, 56, 57, 61, 81]. In turn,
the RSOC lifts the spin degeneracy of the bands, and one must take into account such
additional, intrinsic, degree of freedom, that effectively acts as a separate channel[23]. As
has been discussed in chapter 1.4, an electron in a 1D Rashba NW is described by the
first-quantized Hamiltonian

H = − ~2

2m∗∂
2
xσ0 + iασz∂x (3.1)

where α is the RSOC strength and x is the longitudinal direction of the NW. In the
following, it will particularly important to include also the effects of an additional Zeeman
coupling, due to an external magnetic field B applied perpendicularly to Rashba spin
orbit coupling term z. For the sake of simplicity we shall take the magnetic field along
the longitudinal NW direction x, i.e. B = Bxêx. The related Zeeman energy contribution
is h⊥ = gµBBx where g is gyromagnetic factor, and

µB = e~
2m∗ (3.2)

is the Bohr magneton, with e denoting the electron charge. The Hamiltonian of 1D single
channel NW can thus be rewritten as

H = p2
x

2m∗σ0 −
α

~
pxσz − h⊥σx (3.3)

where σx, σz are Pauli matrices, and σ0 is identity matrix. Notably, while RSOC preserves
the time-reversal symmetry T = iσyK, where K denotes complex conjugation, the external
magnetic field breaks it.

Figure 3.1: Schematic of the Rashba NW on the substrate. The external electric field ESIA,
caused by SIA at the interface between the NW and substrate, gives rise to the RSOC. The spin
quantization axis ~n lies in x-z substrate plane, and is determined by both the Rashba effective
"magnetic field" and the actual Zeeman magnetic field B.
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3.1 – Nanowire with a homogeneous RSOC

Since we shall deal with many electrons, we shall adopt the second-quantization for-
malism, and the NW Hamiltonian will described by

Ĥ =
∫
dxΨ̂†(x)

[
− ~2

2m∗∂
2
xσ0 + iασz∂x − σxh⊥

]
Ψ̂(x) (3.4)

where we have introduced the electron field operator Ψ̂(x) satisfying the fermionic anti-
commutation relations (2.15).
Importantly, the presence of the spin-orbit term in the Hamiltonian (3.4) yields an uncon-
ventional expression for the current operator. Indeed the Heisenberg Equation i~ ˙̂Ψ(x, t) =
[Ψ̂(x, t), Ĥ] dictated by the Hamiltonian (3.4) for the field operator Ψ̂ is

i~
∂Ψ̂(x, t)
∂t

= − ~2

2m∗∂
2
xΨ̂(x, t) + iσzα∂xΨ̂(x, t)− σxh⊥Ψ̂(x, t) (3.5)

and its adjoint equation reads

−i~∂Ψ̂†(x, t)
∂t

= − ~2

2m∗∂
2
xΨ̂†(x, t)− iσzα∂xΨ̂†(x, t)− σxh⊥Ψ̂†(x, t) (3.6)

Multiplying Eq.(3.5) by Ψ̂† on the left and Eq.(3.6) on the right by Ψ̂ and subtracting the
two resulting equations, one obtains the continuity equation

∂tρ̂+ ∂xĴ = 0 (3.7)

where
ρ̂(x, t) = Ψ̂†(x, t)Ψ̂(x, t) (3.8)

is the particle density, while

Ĵ(x, t) = −i ~
2m∗

(
Ψ̂†(x, t)∂xΨ̂(x, t)− ∂xΨ̂†(x, t) Ψ̂(x, t)

)
− α

~
Ψ̂†σzΨ̂ (3.9)

is the particle current density and consists of two contributions[84]. The first term is the
customary expression for the current operator and stems from the kinetic energy

Ĵkin = − i~
2m∗

(
Ψ̂†(x)∂Ψ̂(x)

∂x
− ∂Ψ̂†(x)

∂x
Ψ̂(x)

)
(3.10)

whereas the second term in Eq.(3.9) stems from the RSOC

Ĵso = −α
~

Ψ̂†(x)σzΨ̂(x) (3.11)

3.1.1 Spectrum
Since the single-particle Hamiltonian (3.3) commutes with the momentum operator px =
−i~∂x, it is suitable to rewrite the many-particle Hamiltonian (3.4) in k-space as

Ĥ =
∑
k

Ĉ†kH(k)Ĉk (3.12)
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3 – Rashba Nanowire exposed to an external magnetic field

where Ĉk =
(
ĉk↑
ĉk,↓

)
are the Fourier mode operators related to the field Ψ̂ through

Ψ̂(x) = 1√
Ω
∑
k

eikx
(
ĉk↑
ĉk↓

)
(3.13)

with Ω denoting the NW length, whereas

H(k) = ε0kσ0 − αkσz − h⊥σx =
(
ε0k − αk −h⊥
−h⊥ ε0k + αk

)
(3.14)

is a k-dependent 2× 2-matrix, with

ε0k = ~2k2

2m∗ (3.15)

denoting the customary parabolic band in the absence of RSOC and Zeeman terms. From
Eq.(3.14), we expect the spin quantization axis to lie in x-z plane, as depicted on Fig.3.1,
and to be intermediate between the directions x and z dictated by the Zeeman and Rashba
terms, respectively. Explicitly, such direction forms with the z-axis an angle θ(k) that
depends on the wavevector k and is identified by the unit vector

~n(k) = (sin(θ(k)), 0, cos(θ(k))) (3.16)

where the angle θ(k) ∈ [−π, π] is defined through
sin(θ(k)) = h⊥√

α2k2 + h2
⊥

cos(θ(k)) = αk√
α2k2 + h2

⊥

(3.17)

In turn, Eq.(3.14) can be rewritten as

H(k) = ε0kσ0 −
√
α2k2 + h2

⊥ ~n(k) · ~σ (3.18)

whence one can straightforwardly deduce the spectrum, consisting of two bands

E1(k) = ε0k −
√
h2
⊥ + (αk)2 (3.19)

E2(k) = ε0k +
√
h2
⊥ + (αk)2 (3.20)

As compared to the NW spectrum without magnetic field (see Fig.1.3), the two bands
(3.19) and (3.20) are separated by a gap ∆ = 2EZ at k = 0 opened up by the Zeeman
term, as shown in Fig.3.2.
Notably, the problem is characterized by two energy scales, namely

ESO = m∗α2

2~2 (spin-orbit energy) (3.21)

EZ = |h⊥| (Zeeman energy) (3.22)

Depending on the values of ESO and EZ , from Eqs.(3.19)-(3.20) one can identify two
relevant regimes:
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3.1 – Nanowire with a homogeneous RSOC

• EZ < 2ESO (Rashba dominated regime), illustrated in Fig.3.2a, in which the lowest
band exhibits a local maximum at k = 0 and two local minima at k = ±kmin
with kmin = kSO(1 + (h⊥/2ESO)2) with energy Emin = E−(kmin) = −ESO(1 +
(h⊥/2ESO)2);

• 2ESO < EZ (Zeeman dominated regime), illustrated in Fig.3.2b, in which both
energy bands exhibit minima at k = 0 and resemble Zeeman dispersion relations.

(a) Rashba dominated regime EZ < 2ESO
where Emin = −ESO(1 + (h⊥/2ESO)2) and
kmin = kSO(1 + (h⊥/2ESO)2)

(b) Zeeman dominated regime EZ > 2ESO

Figure 3.2: Dispersion relation in Rashba and Zeeman dominated regimes.

The spectrum (3.19, 3.20) and the spin direction angle θ in Eq.(3.17) can also be
re-expressed in terms of these energy scales as

E1(k) = ε0k −
√
E2
Z + 4ε0kESO (3.23)

E2(k) = ε0k +
√
E2
Z + 4ε0kESO (3.24)

and 
sin(θ(k)) = sgn(h⊥) EZ√

E2
Z + 4ε0kESO

cos(θ(k)) = 2sgn(αk)
√

ε0kESO
E2
Z + 4ε0kESO

(3.25)

respectively.
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3.1.2 Eigenstates
Propagating modes

Propagating modes are eigenfunctions of the Hamiltonian (3.3) of the form

ψk(x) = 1√
Ω
eikxχ(k) (3.26)

where k ∈ R and χ(k) is a 2×1 spinor, eigenvector of the Hamiltonian matrix (3.14). For
each wavevector k, there are two of such eigenvectors, χ1 and χ2

H(k)χ1,2 = E1,2(k)χ1,2 (3.27)

with corresponding eigenvalues given in Eqs.(3.23)-(3.24). The explicit expression of χ1,2
reads 1

χ1(k) =


cos

(
θ(k)

2

)
sin
(
θ(k)

2

)
 χ2(k) =


− sin

(
θ(k)

2

)
cos

(
θ(k)

2

)
 (3.28)

as can straightforwardly be deduced from the expression (3.18) of the Hamiltonian in terms
of the unit vector ~n(k). Introducing the unitary matrix Ξ = (χ1, χ2), whose columns are
such eigenvectors, and exploiting the property

Ξ†(k)H(k)Ξ(k) =
(
E1(k) 0

0 E2(k)

)
(3.29)

the Hamiltonian (3.12) is rewritten in a diagonalized form

Ĥ =
∑
k

(
E1(k)γ̂†1kγ̂1k + E2(k)γ̂†2kγ̂2k

)
(3.30)

where the diagonalizing operators γ̂1k and γ̂2,k are related to the Fourier modes through

Ĉk =
(
ĉk↑
ĉk,↓

)
= Ξ(k)

(
γ̂1k
γ̂2,k

)
= χ1(k)γ̂1k + χ2(k)γ̂2k (3.31)

Substituting Eq.(3.31) into Eq.(3.13), one can see that the eigenstates χ1 and χ2 corre-
spond to plane waves, i.e. to propagating modes

Ψ̂(x) = 1√
Ω
∑
k

eikx (χ1(k)γ̂1k + χ2(k)γ̂2k) (3.32)

1From trigonometric formulas one has cos (θ(k)/2) =
√

[1 + cos(θ(k))]/2 and sin (θ(k)/2) =
sgn(h⊥)

√
[1− cos(θ(k))]/2, where cos(θ(k)) is given by Eq.(3.17).
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Evanescent modes

Together with the propagating modes, one can also identify evanescent modes, namely
eigenfunctions of the Hamiltonian (3.3) of the form

ψκ(x) = eκxξ(κ) (3.33)

where κ ∈ R, and ξ(κ) is 2 × 1 vector. These solutions exponentially decay for either
x → ∞ or x → −∞, depending on whether κ < 0 or κ > 0. Although in the case of
a homogeneous NW these eigenfunctions are not part of the Hilbert space since they are
not normalizable, they will play a crucial role later when considering the inhomogeneous
problem, where the solution is built up using both the propagating and the evanescent
modes of each locally homogeneous region. For this reason it is worth describing them
here.
When the NW Hamiltonian (3.3) is applied to evanescent waves (3.33), the Schrödinger
equation H ψκ(x) = Eψκ(x) in κ-space reduces to an eigenvalue problem for a non-
Hermitean matrix (

−ε0κ + iακ −h⊥
−h⊥ −ε0κ − iακ

)
ξ(κ) = E ξ(κ) (3.34)

with
ε0κ = ~2κ2

2m∗ . (3.35)

One can easily find the eigenvalues

E1(κ) = −ε0κ −
√
E2
Z − 4ε0κESO (3.36)

E2(κ) = −ε0κ +
√
E2
Z − 4ε0κESO (3.37)

and the eigenvectors

ξ1(κ) = 1√
2

(
e−i arctan(sinh(θ(κ)))

1

)
ξ2(κ) = 1√

2

(
−ei arctan(sinh(θ(κ)))

1

)
(3.38)

where the angle θ(κ) is defined with

sinh(θ(κ)) = 2sgn(ακ)
√

ε0κESO
E2
Z − 4ε0κESO

(3.39)

Note that, differently from the propagating states, the spinor (3.38) of evanescent modes
lies in x-y plane rather then x-z-plane.

3.1.3 The Rashba dominated regime: helical states
Let us examine in more details the NW in the Rashba dominated regime EZ < 2ESO. In
particular, it is possible to show that, in the deep Rashba dominated regime EZ � 2ESO,
the states inside the magnetic gap energy range |E| < EZ � 2Eso are helical, i.e. they
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exhibit a locking between the propagation direction and the spin orientation[44, 54, 55, 58,
65, 66, 72, 75, 82, 85]. For instance right-moving electrons are characterized by (say) spin-
↑, whereas left-moving electrons are characterized by the opposite orientation, i.e. spin-↓.
Helical conducting channels have been observed at the boundaries of a 2D Topological
Insulator[32, 34, 42, 43, 51, 53, 76]. However, the helical states realized with NWs have
some peculiarities: First they are genuine 1D channels, instead of edge states of a 2D
material. Second, their helicity, i.e. the sign determining which spin orientation is locked
to which propagation direction, is controlled by the sign of the RSOC. The helicity of the
Rashba states inside the energy gap is represented qualitatively on the Figure 3.3.
In order to illustrate how this effect arises, we first observe that the direction of the
quantization axis (3.16) is determined by the sign of the product αk. In particular, the
change αk → −αk leads the unit vector ~n in Eq.(3.16) to be reflected with respect to
x-axis, for a given sign of α it is equivalent to

θ(−k) = π − θ(k) (3.40)

Therefore one can write explicitly the spinor part of the conducting states inside the gap
for the left propagating modes χ1(k) and right propagating modes χ1(−k)

χ1(k) =
(

cos( θ(k)
2 )

sin( θ(k)
2 )

)

χ1(−k) =
(

cos(π2 −
θ(k)

2 )
sin(π2 −

θ(k)
2 )

)
=
(

sin( θ(k)
2 )

cos( θ(k)
2 )

) (3.41)

In particular, in the regime |E| � EZ � 2ESO one finds that k ≈ ±2kSO, up to
O
(
(EZ/2ESO)2), and from Eq(3.25) that angle θ(k) becomes independent on k and assume

only two values θ ' 0, π according to the sign of α
sin( θ(k)

2 ) '
√

1
2(1− sgn(α))

cos( θ(k)
2 ) '

√
1
2(1 + sgn(α))

(3.42)

Substituting Eqs.(3.42) in Eq.(3.41), one realizes that spinors become eigenvectors of σz,
namely | ↑〉 = (1, 0)T and | ↓〉 = (0, 1)T and the states with opposite wave vectors and
velocities turn out to have opposite spin orientation. For instance in the case α > 0
the states with k ' +2kSO are right-moving and have spin-↑, whereas the states with
k ' −2kSO are left-moving and have spin-↓

χ1(2kSO) '
( 1

0

)
χ1(−2kSO) '

( 0
1

)
(3.43)

These states are thus characterized by a positive helicity. For α < 0 one obtains helical
states with negative helicity, namely right-moving states have spin-↓, while left-moving
states have spin-↑. As we shall discuss here below, this behaviour is typically well captured

68



3.1 – Nanowire with a homogeneous RSOC

by the massless Dirac-like model. However, near k = 0, one may identify as well a gapped
modes described by the massive Dirac-like model, shown in Figure 3.3. For energy inside
the gap these modes should give rise to the evanescent solution, that as pointed out in the
previous sections may be crucial in the case of inhomogeneous RSOC constant. Therefore
one should consider more systematic approach that would allow to capture all relevant
aspects of the problem.

(a) α > 0 (b) α < 0

Figure 3.3: Spin-momentum locking in the case of deep Rashba dominated regime EZ � 2ESO.
The green and red lines represent massless Dirac-like modes and correspond respectively to the
spin-down and spin-up branches. The yellow lines are massive Dirac-like modes.

In order to investigate more in details the properties of the helical Rashba states
within the regime |E| � EZ � 2ESO let us derive the effective model, namely the linear
expansion in low energy excitations with respect to the fully occupied ground state that is
assumed to be a Fermi sea |FS〉 with all NW modes occupied for E < 0. For this purpose
first of all the Hamltonian (3.12) should be rewritten in term of main energy scales ESO
and EZ

Ĥ =
∑
k

Ĉ†k

(
~2

2m∗ (kσ0 − sαkSOσz)2 − ESOσ0 − EZσx

)
Ĉk (3.44)

where sα = sgn(α) and we assume h⊥ > 0 for definiteness. After that we proceed by
expanding it around k ∼ ±2kSO and k = 0.

Expansion near k = ±2kSO.

In order to extract the low energy Hamiltonian governing the dynamics of helical states
near the two Fermi points k = ±2kSO. Specifically, let us for instance focus on the vicinity
of 2sαkSO, which thus corresponds to +2kSO if α > 0 (sα = +1) and −2kSO if α < 0
(sα = −1) and consider a small deviation q from it, by setting k = 2sαkSO + q, with
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|q| � kSO. Then, the Rashba NW Hamiltonian (3.44) can be rewritten as

ĤNW
∣∣∣
k'+2sαkSO

' (3.45)

'
∑
|q|�kSO Ĉ

†
2sαkSO+q

(
~2

2m∗ (q + sαkSO)2 − ESO −EZ
−EZ ~2

2m∗ (q + 3sαkSO)2 − ESO

)
Ĉ2sαkSO+q

and, neglecting the quadratic terms in q, the expression can be simplified to

ĤNW
∣∣∣
k'+2kSO

'
∑

|q|�kSO

Ĉ†2sαkSO+q

(
sα~vSOq −EZ
−EZ 3sα~vSOq + 8ESO

)
Ĉ2sαkSO+q (3.46)

where vSO = ~kSO/m∗. By diagonalizing the block matrix

H(q) =
(
sα~vSOq −EZ
−EZ 3sα~vSOq + 8ESO

)
(3.47)

one finds eigenvalues

E1(q) = sα~vSOq + 4ESO −
√

16E2
SO + E2

Z + 8ESOsα~vSOq + (~vSOq)2 (3.48)

E2(q) = 3sα~vSOq + 4ESO +
√

16E2
SO + E2

Z + 8ESOsα~vSOq + (~vSOq)2 (3.49)

Recalling that in deep Rashba dominated regime the spin orbit energy ESO is the dominant
energy scale (EZ , ~vSO|q| � ESO) one can expand the above eigenvalues up to first order
in ~vSO|q|/ESO and EZ/ESO, obtaining

E1(q) ' sα~vSOq (3.50)

E2(q) = 8ESO
(

1 +O
(~vSOq
ESO

))
(3.51)

One can thus see that in this regime the eigenvalues are equal to the diagonal terms of the
matrix (3.47), which are energetically quite separated. For this reason the off diagonal
Zeeman terms that couples the spin-↑ and spin-↓ components of Ĉ†2sαkSO+q acts as a weak
perturbation and eventually can be neglected. Furthermore, since we are interested in
the low energy sector |E| � EZ , the large energy E2 ∼ 8ESO characterized by the spin-
↓ electrons can be neglected, and only the low energy E1 ∼ sα~vF q describing spin-↑
electrons must be retained. The Hamiltonian (3.46) thus reduced to

ĤNW
∣∣∣
k'+2sαkSO

'
∑

|q|�kSO

sα~vSOq ĉ†2sαkSO+q,↑ĉ2sαkSO+q,↑ , (3.52)

One can follow a similar approach near the −2sαkSO Fermi point, this time finding
that only the spin-↓ states matter, from which follows

ĤNW
∣∣∣
k'−2sαkSO

' −
∑

|q|�kSO

sα~vSOq ĉ†−2sαkSO+q,↓ĉ−2sαkSO+q,↓ , (3.53)
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3.1 – Nanowire with a homogeneous RSOC

By combining Eqs.(3.52)-(3.53) one thus obtains the low energy Hamiltonian near the
k = ±2kSO points

ĤNW
∣∣∣
k'±2kSO

'
∑

|q|�kSO

~sαvSO q
(
ζ̂†q↑, ζ̂

†
q↓

)
σz

(
ζ̂q↑
ζ̂q↓

)
(3.54)

where we have redenoted 
ζ̂q↑

.= ĉ2sαkSO+q,↑

ζ̂q↓
.= ĉ−2sαkSO+q,↓

(3.55)

From the expression of the Hamiltonian (3.54) it is clear that and that ζ̂q↑,↓ describe
massless propagating modes.

Expansion near k = 0.

Beside the propagating modes, however, one can identify as well gapped (i.e. massive)
modes, related to the upper and lower bands for k ∼ 0 and sketched by yellow lines in
Fig.3.3. In order to extract the low energy contribution from these modes, one can expand
Eqs.(3.44) near k ∼ 0

ĤNW
∣∣∣
k'0
'

∑
|q|�kSO

Ĉ†q

(
−sα~vSOq −EZ
−EZ −sα~vSOq

)
Ĉq (3.56)

This time the diagonal entries of the matrix in Eq.(3.56) have relatively low energies
comparable to the off-diagonal Zeeman term EZ , and thus spin-↑ and spin-↓ components
get coupled. The low energy effective model reads

ĤNW
∣∣∣
k'0
' −

∑
|q|�kSO

~sαvSO q
(
η̂†q↑ η̂

†
q↓

)
σz

(
η̂q↑
η̂q↓

)
(3.57)

−EZ
∑

|q|�kSO

(
η̂†q↑ η̂

†
q↓

)
σx

(
η̂q↑
η̂q↓

)

where the newly redenoted operators 
η̂q↑

.= ĉq↑

η̂q↓
.= ĉq↓

(3.58)

describe massive modes, due to the Zeeman term.

Low energy Hamiltonian

Summing up Eqs.(3.54) and (3.57) one obtains a low-energy NW Hamiltonian. Moreover,
we observe that the obtained effective model shares the low energy sector with a model
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3 – Rashba Nanowire exposed to an external magnetic field

where the constraints on wave vector q is removed. Thus, we can argue that the low
energy behaviour of the Rashba NW is described by the model

ĤLEM =
+∞∑
q=−∞

(
ζ̂†q↑ ζ̂

†
q↓

)(~vSOq 0
0 −~vSOq

)(
ζ̂q↑
ζ̂q↓

)

+
+∞∑
q=−∞

(
η̂†q↑ η̂

†
q↓

)(−~vSOq −EZ
−EZ ~vSOq

)(
η̂q↑
η̂q↓

)
(3.59)

that involves both massless Dirac modes ζ and massive Dirac modes η. Introducing the
corresponding fields

ζσ(x) = 1√
Ω
∑
q

ζq,σe
iqx ησ(x) = 1√

Ω
∑
q

ηq,σe
iqx (3.60)

where σ = {↑, ↓} the second-quantization Hamiltonian can be expressed as

ĤLEM =
∫
dx Φ̂†(x)

(
sαvSO τzσz p̂x −

EZ
2 (τ0 − τz)σx

)
Φ̂(x) (3.61)

where we have introduced Pauli-like matrices τz and τ0 that act on the massive-massless
space of the pseudospin Φ̂(x) = (ζ↑(x), ζ↓(x), η↑(x), η↓(x))T .
Following a similar approach, one can perform the expansion of the field components
(3.13)

Ψ̂↑(x) = 1√
Ω
∑
k

ck,↑e
ikx ' 1√

Ω
∑

|q|�kSO

ei(2kso+q)xζq,↑ + 1√
Ω

∑
|q|�kSO

eiqxηq,↑ (3.62)

Ψ̂↓(x) = 1√
Ω
∑
k

ck,↓e
ikx ' 1√

Ω
∑

|q|�kSO

ei(−2kso+q)xζq,↓ + 1√
Ω

∑
|q|�kSO

eiqxηq,↓ (3.63)

extending again validity of the model, field operator can be written more compactly as

Ψ̂(x) =
(

e2isαkSOxζ↑(x) + η↑(x)
e−2isαkSOxζ↓(x) + η↓(x)

)
(3.64)

3.2 The case of inhomogeneous RSOC
As we have discussed in chapter 1, the strength of the RSOC can be controlled by the
external electric field, typically by applying the a gate potential Vg to a gate separated from
the NW with a insulating layer e.g. aluminium oxide, as sketched in Fig.3.4a. Notably, to
recent advances in gating techniques[63, 68, 83, 92] enable one to experimentally control
both the magnitude[64, 70, 73, 79, 86, 87, 91] and the sign[27, 64] of the RSOC. Thus,
by applying different gate potentials to different portions of the NW, an inhomogeneous
profile on the RSOC can be realized, as illustrated in Fig.3.4b for the case of two gates
Vg,1 and Vg,2.
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3.2 – The case of inhomogeneous RSOC

(a) Schematic representation of
the experimental set up [83].

(b) Configuration with two gate for different pieces of the
Nanowire.

Figure 3.4: Set up of the gate controlled Rashba SOC.

Motivated by these experimental trigger, we now wish to extend our analysis to a NW
with inhomogeneous RSOC profile α(x). Since the space-dependent α(x) does not com-
mute with the momentum operator px, in order to ensure that the SOC Hamiltonian term
is Hermitian, the product between α and px must be replaced by their anticommutator

HR = α

~
px → HR = 1

2~{α(x), px} (3.65)

and the second-quantized Hamiltonian of the inhomogeneous NW becomes

Ĥ =
∫

Ψ̂†(x)
(
p2
x

2m∗σ0 −
σz
2~{α(x), px} − σxh⊥

)
Ψ̂(x) = (3.66)

=
∫

Ψ̂†(x)
(
p2
x

2m∗σ0 − σz
(
α(x)
~

px −
i

2∂xα
)
− σxh⊥

)
Ψ̂(x) (3.67)

The expression for the density and current operators in the inhomogeneous case are again
dictated by the Hamiltonian (3.67) and the continuity equation. Repeating the same
procedure outlined at the end of Sec.3.1 for the homogeneous case, one obtains

ρ̂(x, t) = Ψ̂†(x, t)Ψ̂(x, t) (3.68)

Ĵ(x, t) = −i ~
2m∗

(
Ψ̂†(x, t)∂xΨ̂(x, t)− ∂xΨ̂†(x, t) Ψ̂(x, t)

)
− α(x)

~
Ψ̂†σzΨ̂ (3.69)

which generalizes to the inhomogeneous case the expression (3.9) given in Sec.3.1.
In general, since [px, H] /= 0, the inhomogeneous problem is complex and cannot be

diagonalized exactly by planewaves. However, since any profile α(x) can ultimately be
approximated with a piecewise constant profile (as sketched in Fig.3.5), we shall consider
such type of profile and we shall build up the solution of the inhomogeneous problem
by suitably matching the electron field operator in each locally homogeneous portion of
the NW. Then, by applying the Scattering Matrix Formalism[36, 90], where the exter-
nal regions act like the leads and the inhomogeneous profile determines the Scattering
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3 – Rashba Nanowire exposed to an external magnetic field

region, we shall compute the transport properties through the inhomogeneous NW in the
mesoscopic regime, focussing in particular on the linear coefficients derived in Chapter 2

G = q2

h
T̃ (EF ) (3.70)

L = qπk2
bT

6~
∂T̃ (E)
∂E

∣∣∣∣
EF

(3.71)

M = qπk2
bT

2

6~
∂T̃ (E)
∂E

∣∣∣∣
EF

= TL (3.72)

N = qπk2
bT

6~ T̃ (EF ) = π2k2
bT

3q G (3.73)

where T̃ (E) =
∑
n,m S

†
L,nR,mSL,nR,m and S is scattering matrix that will be derived in

following sections.

(a) Single interface (b) 2 interfaces

Figure 3.5: A piecewise constant profile of SOC α(x)

3.2.1 Relabelling the states in terms of energy
The solution of the inhomogeneous problem will be built by suitably matching the wave-
functions of each piecewise homogeneous NW region. The propagating eigenstates Eqs.(3.26)
and the evanescent eigenstates Eqs.(3.33) found in Sec.3.1 for the homogeneous problem
are labelled by their wavevectors k and κ, respectively. However, as pointed out in chap-
ter 2, in order to investigate the NW properties in the mesoscopic regime, the first step
is to relabel such states in terms of energy rather than wavevector, since energy is the
conserved quantity in such regime. The electron field operator will be thus expressed as
an energy superposition of energy modes, as in Eq.(2.24).

Propagating states. As far as the propagating modes are concerned, inverting the
relations (3.19)-(3.20) in favour of the energy, one finds for each energy E two possible
values of (positive) wavevector

k±(E) =
√

2m∗
~

√
E + 2ESO ±

√
4EESO + 4E2

SO + E2
Z (3.74)
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3.2 – The case of inhomogeneous RSOC

At each energy E there are a priori four wavevectors, namely two positive ones, k±(E),
and two negative ones −k±(E). However, only real wavevectors (k ∈ R) actually describe
propagating modes, and must be retained. For them, the magnitude v = ~−1|∂kE| of the
group velocity is expressed as a function of energy as

vη(E) = ~kη(E)
m∗

√
4EEso + 4E2

so + E2
Z∣∣∣2Eso + η

√
4EEso + 4E2

so + E2
Z

∣∣∣ η = ± (3.75)

The eigenvectors (3.28) can also be re-expressed in terms of energy

χ1(±kη(E)) =

 cos
(1

2θ(±kη(E))
)

sin
(1

2θ(±kη(E))
)
 χ2(±kη(E)) =

 − sin
(1

2θ(±kη(E))
)

cos
(1

2θ(±kη(E))
)

(3.76)

where

cos
(
θ(±kη(E))

2

)
=

√√√√√1
2

1± sgn(α)

√
4ESO(E + 2ESO) + η4ESO

√
4EESO + 4E2

SO + E2
Z∣∣∣√4EESO + 4E2

SO + E2
Z + η2ESO

∣∣∣


(3.77)

sin
(
θ(±kη(E))

2

)
= sgn(h⊥)

√√√√√1
2

1∓ sgn(α)

√
4ESO(E + 2ESO) + η4ESO

√
4EESO + 4E2

SO + E2
Z∣∣∣√4EESO + 4E2

SO + E2
Z + η2ESO

∣∣∣


(3.78)

Evanescent states. One can proceed in a similar way for the evanescent modes. Their
spectrum (3.36, 3.37) can be inverted in favour of energy, obtaining

κ±(E) =
√

2m∗
~

√
−(E + 2ESO)±

√
4EESO + 4E2

SO + E2
Z (3.79)

One can express the evanescent spinors (3.38) in term of energy

ξ1(±κη(E)) = 1√
2

(
e∓i arctan(sinh(θ(κη(E))))

1

)
(3.80)

ξ2(±κη(E)) = 1√
2

(
−e±i arctan(sinh(θ(κη(E))))

1

)
(3.81)

where

sinh(θ(κη(E))) = sgn(α)

√
−4ESO(E + 2ESO) + η4ESO

√
4EESO + 4E2

SO + E2
Z∣∣∣√4EESO + 4E2

SO + E2
Z − η2ESO

∣∣∣ (3.82)
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3 – Rashba Nanowire exposed to an external magnetic field

(a) Rashba dominated regime EZ < 2ESO,
where Emin = −ESO

(
1 + E2

Z/4E2
SO

)
.

(b) Zeeman dominated regime EZ > 2ESO.
With Emin = −EZ .

Figure 3.6: The NW propagating modes. Panel (a) for Rashba dominated regime, panel
(b) for the Zeeman dominated regimes. Red and green curves describe modes propagating
rightwards and leftwards, respectively. Alongside is represented the wave vector that is
associated to the corresponding band in each energy range.

Rashba dominated regime (EZ < 2ESO) (Emin = −ESO
(
1 + E2

Z/4E2
SO

)
)

energy range propagating states velocity evanescent states

Emin < E < −EZ

4 propagating states
χ1(±k−(E))e±ik−(E)x

χ1(±k+(E))e±ik+(E)x

[k±(E) ∈ E1 band]

∓v−(E)
±v+(E) No evanescent modes

−EZ < E < − E2
Z

4ESO

2 propagating states
χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]

±v+(E) ξ1(±κ+(E))e±κ+(E)

[κ+(E) ∈ E1 band]

− E2
Z

4ESO
< E < EZ

2 propagating states
χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]

±v+(E) ξ2(±κ+(E))e±κ+(E)

[κ+(E) ∈ E2 band]

EZ < E

4 propagating states
χ2(±k−(E))e±ik−(E)x

χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]
[k−(E) ∈ E2 band]

±v−(E)
±v+(E) No evanescent modes

Table 3.1: Eigenstates of the NW in the Rashba dominated regime. The wavevectors k± and
κ± are given by Eqs.(3.74) and (3.79). The spinors χ1,2 and the velocities of the propagating
modes are given in Eq.(3.76) and Eq.(3.75), respectively, while the spinors ξ for the evanescent
modes are given in Eqs.(3.80, 3.81).
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3.2 – The case of inhomogeneous RSOC

(a) Rashba dominated regime
EZ < 2ESO

(b) Weakly Zeeman dominated regime 2ESO < EZ <

4ESO, with Emin = −ESO
(

1 + E2
Z

4E2
SO

)
.

(c) Strongly Zeeman dominated regime 4ESO < EZ ,
with Emin = −ESO

(
1 + E2

Z

4E2
SO

)
.

Figure 3.7: Evanescent mode inversion. Panel (a) is Rashba dominated regime EZ < ESO,
panel (b) is a week Zeeman dominated regime with 2Eso < EZ < 4Eso and panel (c) is a strong
Zeeman dominated regime 4ESO < EZ . The thin lines correspond to ±κ+(E) while the bold
lines to ±κ−(E). A orange line represent the energy band E1(κ) and blue line is E2(κ) energy
band.

The three possible regimes

Depending on the value of ESO and EZ on the energy E, the nature (propagating/evanescent)
and the type (upper/lower band) of NW states changes. In Table 3.1 we have summa-
rized the expression of the eigenfunctions (propagating and evanescent) in the Rashba-
dominated regime, for each energy value E. In particular, propagating states exist for
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Weak Zeeman regime (2ESO < EZ < 4ESO)
energy range propagating states velocity evanescent states

−ESO
(

1 + E2
Z

4E2
SO

)
< E < −EZ no propagating states

ξ1(±κ+(E))e±κ+(E)x

ξ1(±κ−(E))e±κ−(E)x

[κ±(E) ∈ E1 band]

−EZ < E < − E2
Z

4ESO

2 propagating states
χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]

±v+(E) ξ1(±κ+(E))e±κ+(E)

[κ+(E) ∈ E1 band]

− E2
Z

4ESO
< E < EZ

2 propagating states
χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]

±v+(E) ξ2(±κ+(E))e±κ+(E)

[κ+(E) ∈ E2 band]

E > EZ

4 propagating states
χ2(±k−(E))e±ik−(E)x

χ1(±k+(E))e±ik+(E)x

[k−(E) ∈ E2 band]
[k+(E) ∈ E1 band]

±v−(E)
±v+(E) no evanescent states

Table 3.2: Eigenstates of the NW in the weak Zeeman dominated regime. The wavevectors k±
and κ± are given by Eqs.(3.74) and (3.79). The spinors χ1,2 and the velocities of the propagating
modes are given in Eq.(3.76) and Eq.(3.75), respectively, while the spinors ξ for the evanescent
modes are given in Eqs.(3.80, 3.81).

E > Emin, that is also highlighted in Fig.3.6(a), where red and green curves denote right-
and left-moving propagating states, respectively. Their wavevectors are given by Eq.(3.74),
the spinors χ1 and χ2, related to the lower and upper band, respectively, are given in
Eq.(3.76), while the velocities are given in Eq.(3.75). In contrast, evanescent modes exist
for |E| < EZ , as shown in Fig.3.7(a), their wavevectors are given in Eqs.(3.79), and the
related spinors, related to the upper and lower band, are given in Eqs.(3.80)-(3.81).
As far as the Zeeman-dominated regime is concerned (2ESO < EZ), propagating modes
exist for E > −EZ (see Fig.3.6(b)), while evanescent modes exist for Emin < E < EZ .
However, the explicit expression and type (upper/lower band) of the NW states also de-
pends whether the NW is in the weak Zeeman subregime (2ESO < EZ < 4ESO) or in the
strong Zeeman subregime (4ESO < EZ), as shown in Figs.3.7(b) and (c). The expressions
of eigenstates in the weak and strong Zeeman regimes are summarized in Tables 3.2 and
3.3, respectively. Details about the derivation can be found in Appendix A.1 and A.2.
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Strong Zeeman regime (4ESO < EZ)
energy range propagating states velocity evanescent states

−ESO
(

1 + E2
Z

4E2
SO

)
< E < − E2

Z

4ESO
no propagating states

ξ1(±κ−(E))e±κ−(E)x

ξ1(±κ+(E))e±κ+(E)x

[κ±(E) ∈ E1 band]

− E2
Z

4ESO
< E < −EZ no propagating states

ξ1(±κ−(E))e±κ−(E)x

ξ2(±κ+(E))e±κ+(E)x

[κ−(E) ∈ E1 band]
[κ+(E) ∈ E2 band]

−EZ < E < EZ

2 propagating states
χ1(±k+(E))e±ik+(E)x

[k+(E) ∈ E1 band]

±v+(E) ξ2(±κ+(E))e±κ+(E)

[κ+(E) ∈ E2 band]

E > EZ

4 propagating states
χ2(±k−(E))e±ik−(E)x

χ1(±k+(E))e±ik+(E)x

[k−(E) ∈ E2 band]
[k+(E) ∈ E1 band]

±v−(E)
±v+(E) no evanescent states

Table 3.3: Eigenstates of the NW in the strong Zeeman dominated regime. The wavevectors k±
and κ± are given by Eqs.(3.74) and (3.79). The spinors χ1,2 and the velocities of the propagating
modes are given in Eq.(3.76) and Eq.(3.75), respectively, while the spinors ξ for the evanescent
modes are given in Eqs.(3.80, 3.81).

3.2.2 Results for the conductance of the single interface problem

We start by discussing the case of one single interface located at x = x0, as depicted on
the Figure 3.5a. The spin orbit coupling profile is thus

α(x) =
{
α(0) x < x0

α(1) x > x0
(3.83)

The Hamiltonian (3.67) can be rewritten in this case as

Ĥ =
∫
dxΨ̂†(x, t)

(
− ~2

2m∗σ0∂
2
x + iσz

(
α(x)∂x + α(1) − α(0)

2 δ(x− x0)
)
− h⊥σx

)
Ψ̂(x, t)

(3.84)
As one can see, a δ-term appears at the interface, due to the derivative of the SOC pro-
file in Eq.(3.67). Although this seems at first similar to the problem of scattering off a
δ-potential, the discontinuity of the SOC cannot be recast as an effective scalar potential,
as one can see by deriving the field boundary conditions at the interface.

79



3 – Rashba Nanowire exposed to an external magnetic field

Boundary conditions

First of all observe that the Heisenberg equation for the field operator in the case of
piecewise constant SOC profile (3.83) reads

i~
∂

∂t
Ψ̂(x, t) =

(
− ~2

2m∗σ0∂
2
x + iσz

(
α(x)∂x + α(1) − α(0)

2 δ(x− x0)
)
− h⊥σx

)
Ψ̂(x, t)

(3.85)
From Eq.(3.85) we deduce that the field operator must be continuous at the interface

Ψ̂(x−0 , t) = Ψ̂(x+
0 , t) (3.86)

where x±0
.= x0 ± ε, with ε→ 0 [90]. However the derivative ∂xΨ̂ of the field must exhibit

a discontinuity in order to compensate for the δ(x− x0) appearing in Eq.(3.85). In order
to determine such discontinuity, one can integrate Eq.(3.85) on the infinitesimal interval
[x−0 ;x+

0 ] around interface,

i~
∂

∂t

∫ x0+ε

x0−ε
dx Ψ̂(x, t) = (3.87)

=
∫ x0+ε

x0−ε

(
− ~2

2m∗σ0∂
2
x + iσz

(
α(x)∂x + α(1) − α(0)

2 δ(x− x0)
)
− h⊥σ1

)
Ψ̂(x, t)dx

obtaining

0 = − ~2

2m∗σ0
(
∂xΨ̂(x+

0 )− ∂xΨ̂(x−0 )
)

+ iσ3
α(1) − α(0)

2 Ψ̂(x0) (3.88)

which can be rewritten, with the help of Eq.(3.86), as( ~2

2mσ0∂x − i
α(0)

2 σ3

)
Ψ̂(x−0 , t) =

( ~2

2mσ0∂x − i
α(1)

2 σ3

)
Ψ̂(x+

0 , t) (3.89)

Finally the full set of boundary conditions (3.86) and (3.89) can also be rewritten in terms
of the spin-orbit energy

Ψ̂(x−0 , t) = Ψ̂(x+
0 , t)(

σ0∂x − isgn(α(0))k(1)
SOσ3

)
Ψ̂(x−0 , t) =

(
σ0∂x − isgn(α(1))k(1)

SOσ3

)
Ψ̂(x+

0 , t)
(3.90)

where
k

(j)
SO

.= m∗|α(j)|
~2 j = 0,1 (3.91)

denotes the spin-orbit wavevector in each region. In particular, one can notice the differ-
ence between the boundary conditions Eqs.(3.90) originating from the piecewise RSOC
and the boundary conditions (2.51) obtained from the conventional δ-potential scatter-
ing reported in the section 2.3.2. In particular, in the former case the first derivative is
discontinuous by an imaginary unit. Nevertheless it can be shown that the derivative of
the particle density ρ̂ = Ψ̂†Ψ̂ as well as the z component of spin density ŝz = Ψ̂†σzΨ̂ are
continuous[90].
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Transfer Matrix

Exploiting the boundary conditions (3.90) it is now possible to derive the Transfer Matrix.
To this purpose, we first exploit the fact that, since the system is mesoscopic, energy is
conserved, and we can write the general solution as a superposition over the energy E
of stationary solutions Ψ̂E(x, t) = Ψ̂E(x) e−iEt/~. In turn, the field Ψ̂E(x) in the j-th
region (j = 0,1) is the superposition of all possible modes (propagating and evanescent)
characterizing the region at fixed energy E. These modes can be selected from Tables 3.1,
3.2 and 3.3, depending on the parameter regime (Rashba-dominated, weakly or strongly
Zeeman dominated) and the energy sub-range. Let us suppose, for instance, that the
region j with a RSOC α(j) is in the Rashba dominated regime (2E(j)

SO > EZ). Then,
the field operator Ψ̂E(x) acquires a different expression Ψ̂E(x) depending on the energy
sub-range. Explicitly:

(1) for E > EZ (above the gap) one has

Ψ̂(j)
E (x) = 1√

2π~

 1√
v

(j)
+ (E)

(
ĉ

(j)
E χ

(j)
1 (k(j)

+ (E))eik
(j)
+ (E)x − id̂(j)

E χ
(j)
1 (−k(j)

+ (E))e−ik
(j)
+ (E)x

)
+

(3.92)

+ 1√
v

(j)
− (E)

(
f̂

(j)
E χ

(j)
2 (k(j)

− (E))eik
(j)
− (E)x − iĝ(j)

E χ
(j)
2 (−k(j)

− (E))e−ik
(j)
− (E)x

)
(2) for |E| < EZ (inside the magnetic gap) one has

Ψ̂(j)
2,E(x) = 1√

2π~

 1√
v

(j)
+ (E)

(
ĉ

(j)
E χ

(j)
1 (k(j)

+ (E))eik
(j)
+ (E)x − id̂(j)

E χ
(j)
1 (−k(j)

+ (E))e−ik
(j)
+ (E)x

)
+

(3.93)

+ f̂
(j)
E ξ(j)

nE (κ(j)
+ (E))eκ

(j)
+ (E) + ĝ

(j)
E ξ(j)

nE (−κ(j)
+ (E))e−κ

(j)
+ (E)

]

with nE = 2 for E > − E2
Z

4ESO and nE = 1 for E < − E2
Z

4ESO .

(3) for energy E < −EZ (below the gap) one has

Ψ̂(j)
3,E(x) = 1√

2π~

 1√
v

(j)
+ (E)

(
ĉ

(j)
E χ

(j)
1 (k(j)

+ (E))eik
(j)
+ (E)x − id̂(j)

E χ
(j)
1 (−k(j)

+ (E))e−ik
(j)
+ (E)x

)
+

(3.94)

+ 1√
v

(j)
− (E)

(
f̂

(j)
E χ

(j)
1 (k(j)

− (E))eik
(j)
− (E)x − iĝ(j)

E χ
(j)
1 (−k(j)

− (E))e−ik
(j)
− (E)x

)
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3 – Rashba Nanowire exposed to an external magnetic field

Here we have used the fact that the velocity of incoming and outgoing modes has opposite
sign and we have introduced the notation

k(j)
η (E) = kη(E;α(j)) κ(j)

η (E) = κη(E;α(j)) v(j)
η (E) = vη(E;α(j)) (3.95)

χ(j)
n (k) = χn(k;α(j)) ξ(j)

n (κ) = ξn(κ;α(j)) (3.96)

whereas ĉ(j)
E , d̂(j)

E , f̂ (j)
E and ĝ(j)

E denote the fermionic operator with energy E in the j-th
region. Using the field expansion (3.92-3.94), in general one can rewrite the boundary
conditions (3.90) in a matrix form

M
(0)
E (x0)


ĉ

(0)
E

d̂
(0)
E

f̂
(0)
E

ĝ
(0)
E

 = M
(1)
E (x0)


ĉ

(1)
E

d̂
(1)
E

f̂
(1)
E

ĝ
(1)
E

 (3.97)

whereM (j)(x0) ∈ C4×4 is 4×4 complex boundary matrix, which columns
(
M (j)(x)

)
m
are

reported in the Appendix(C) for each energy range. In turn, from the boundary matrix
can be found the transfer matrix WE(x0) =

(
M

(1)
E (x0)

)−1
M

(0)
E (x0) that describe how

operators on the right of interface at x0 depend from the operators on the left
ĉ

(1)
E

d̂
(1)
E

f̂
(1)
E

ĝ
(1)
E

 = WE(x0)


ĉ

(0)
E

d̂
(0)
E

f̂
(0)
E

ĝ
(0)
E

 (3.98)

Scattering Matrix

From Eq.(3.98) it is now possible to compute the scattering Matrix. For this purpose first
of all one should introduce the incoming ân,E and outgoing b̂n,E particle operators. The
incoming modes are states moving toward the interface, namely right-moving modes on
the left of the interface and left-moving modes on the right of the interface, whereas the
outgoing modes are the ones emerging from the interface towards the leads and are thus
left-(right-)moving on the left(right) hand side of the interface. As discussed in Section
3.2.1, the correspondence of the modes and the sign of the velocity is summarized In Tables
3.1, 3.2 and 3.3, therefore one finds that operators ĉ1,E and ĉ2,E are always expected to be
propagating and furthermore ĉ1,E is characterized by positive group velocity and ĉ2,E with
negative one. Therefore it is straightforward to find the mapping to incoming/outgoing
operators(see fig.3.8,3.8b)

ĉ
(0)
E → â

(0)
1,E d̂

(0)
E → b̂

(0)
1,E (3.99)

ĉ
(1)
E → b̂

(1)
1,E d̂

(1)
E → â

(1)
1,E (3.100)
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3.2 – The case of inhomogeneous RSOC

(a) Over the gap energy range E > EZ

(b) In the gap energy range |E| < EZ .

(c) Under the gap energy range E < −EZ

Figure 3.8: Incoming/outgoing modes mapping in the |E| > EZ energy range

On the other hand for operators ĉ3,E and ĉ4,E one has to distinguish between the energy
out of the gap, where modes are propagating, and the energy inside the gap, where they
are evanescent. First of all let us consider out of the gap energy range, in particular for
E > EZ one can find that ĉ3,E is associate with positive group velocity and ĉ4,E with
negative one (see Fig.3.8a), and therefore

f̂
(0)
E → â

(0)
2,E ĝ

(0)
E → b̂

(0)
2,E (3.101)

f̂
(1)
E → b̂

(1)
2,E ĝ

(1)
E → â

(1)
2,E (3.102)
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3 – Rashba Nanowire exposed to an external magnetic field

Instead in the case of E < −EZ and Rashba dominated regime one finds the opposite(see
Fig.3.8c)

f̂
(0)
E → b̂

(0)
2,E ĝ

(0)
E → â

(0)
2,E (3.103)

f̂
(1)
E → â

(1)
2,E ĝ

(1)
E → b̂

(1)
2,E (3.104)

Finally, for energies |E| < EZ inside the magnetic gap, the operators ĉ3,E , ĉ4,E are associ-
ated with evanescent modes. In order to ensure the wavefunction normalization, we have
to rule out the operators of the divergent modes

f̂
(0)
E → γ̂

(0)
E ĝ

(0)
E → 0 (3.105)

f̂
(1)
E → 0 ĝ

(1)
E → γ̂

(1)
E (3.106)

as represented in Fig.3.8b.
Equation (3.98) can thus be rewritten by elucidating the incoming/outgoing mode nature.
For |E| > EZ one can write 

â
(1)
1,E

b̂
(1)
1,E

â
(1)
2,E

b̂
(1)
2,E

 = WE(x0)


â

(0)
1,E

b̂
(0)
1,E

â
(0)
2,E

b̂
(0)
2,E

 (3.107)

while for |E| < EZ one can write
â

(1)
1,E

b̂
(1)
1,E

0
γ̂

(1)
E

 = WE(x0)


â

(0)
1,E

b̂
(0)
1,E

γ̂
(0)
E

0

 (3.108)

Now that we have derived the Transfer Matrix WE(x0) of the interface, we can determine
the Scattering Matrix, which expresses the outgoing mode operators b̂n,E in terms of the
incoming mode operators ân,E . Explicitly, for energies |E| > EZ one has four propagating
modes and Eq.(3.107) can be expressed as

b̂
(L)
1,E

b̂
(L)
2,E

b̂
(R)
1,E

b̂
(R)
2,E

 = SE


â

(L)
1,E

â
(L)
2,E

â
(R)
1,E

â
(R)
2,E

 (3.109)

In general it is not trivial to determine an analytical expression for the scattering matrix,
since it requires the inversion and multiplication of 4×4 boundary matrixM . Nevertheless,
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3.2 – The case of inhomogeneous RSOC

the transmission function can be easily computed numerically with the help of scripting
languages as Python or Wolfram Mathematica.
For the energy range |E| < EZ inside the gap, Eq.(3.108), restricted to the propagating
modes, implies  b̂

(L)
1,E

b̂
(R)
1,E

 = SE

 â
(L)
1,E

â
(R)
1,E

 (3.110)

and the Scattering Matrix is 2× 2.

Conductance of the single interface problem

From the above results on the Scattering Matrix we can now compute the transport
properties in the problem of a single interface separating two regions with different RSOC.
For definiteness, we set the RSOC on the right side to a positive value, for a spin-orbit
energy 2E(R)

SO /EZ = 0.5 corresponding to the Zeeman dominated regime. The RSOC on
the left side, however, is set to different values (and sign) in order to sample all relevant
regimes. In a compact notation, we will write such sign in front of the spin-orbit energy
E

(L)
SO .
Specifically, Fig.3.9(a) shows the conductance G (in units of the conductance quantum

G0 = e2/h) as a function of energy E/EZ in the case where the spin-orbit energy on the
left side has the same sign as the spin-orbit energy on the right side. One observes a
practically perfect transmission, namely G = G0 inside the gap and G = 2G0 outside the
gap, regardless of the value of spin-orbit energy E(L)

SO . In particular, when the left side is
in the Zeeman dominated regime like the right side, i.e for 2E(L)

SO/EZ = 0.2, 0.7 (blue and
orange curves, respectively), the behavior resembles a step-function, and the difference
between the weak and strong Zeeman regimes is negligible. In contrast, if the left region
is in the Rashba dominated regime, 2E(L)

SO/EZ = 3 (green curve), a deviation from perfect
transmission is observed only at the magnetic gap edges E/EZ ' ±1, where suppression
cusps occur.

A different scenario emerges when the RSOC takes opposite sign across the interface
(Fig.3.9(b)). While transmission is practically perfect when the left hand side in the strong
Zeeman regime (blue curve), it reduces when one enters the weak Zeeman regime (orange
curve) and even more when the Rashba dominated regime (green curve) is reached. We
can, however, observe some features that are common to these cases. The conductance is
roughly symmetric with respect to the midgap energy value E = 0, and gets strongly sup-
pressed at the edges E/EZ ' ±1 of the magnetic gap, where it exhibits a cusp singularity.

The important role of the RSOC sign can also be highlighted by considering an in-
terface where both sides are in the same regime and by looking at the conductance G
as function of energy E/E(R)

SO , for various values of the Zeeman energy EZ . Specifically,
in Fig.3.10(a), which describes the case where the RSOC takes the same sign across the
interface (E(L)

SO/E
(R)
SO = 0.8), all curves exhibit a perfect transmission for E > −EZ , with

a step-like behavior characterizing the number of propagating channels (1 or 2). Here the
Zeeman energy only controls a number of such channels, i.e. the value at which the jump
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(a) The RSOC has the same sign in both sides of the interface.
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(b) The RSOC takes opposite sign on the two interface sides.

Figure 3.9: The conductance of the single interface E(L)
SO |E

(R)
SO in units of conductance quantum

G0 = e2/h as a function of the energy E/EZ for fixed spin-orbit energy on the right 2E(R)
SO /EZ =

0.5 (Zeeman dominated regime) and for various values of spin-orbit energy on the left side:
strong Zeeman regime (blue curve), weak Zeeman regime (orange curve), Rashba dominated
regime (green curve)

occurs. Note in particular the conductance maximum G = 2G0 of the blue curve at neg-
ative energies: This is due to the fact that, when both sides are in the Rashba dominated
regime, two conducting channels are present also for energies below the magnetic gap, i.e.
for Emin ≤ E ≤ −EZ (see Fig.3.6(a)).
Figure 3.10(b) then describes the case of opposite RSOC sign across the interface (com-
pactly denoted as E(L)

SO/E
(R)
SO = −0.8). The conductance behavior is now non-monotonic

and strongly dependent on the value of the Zeeman energy. Indeed EZ determines not
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3.2 – The case of inhomogeneous RSOC

only the location of the suppression cusps at the magnetic gap edges, but also the mag-
nitude of G in the entire energy range. In particular, when the NW is in the Rashba
dominated regime (blue curve), the transmission is significantly suppressed inside and
below the magnetic gap.
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(R)
SO

Figure 3.10: The conductance of the single interface E
(L)
SO

∣∣∣E(R)
SO in units of the conductance

quantum G0 = e2/h is plotted as function of the energy E/E(R)
SO for fixed E

(L)
SO/E

(R)
SO and for

different values of the ratio EZ/ESO,R. (a) the case where the RSOC takes the same sign on
both interface sides. The transmission is perfect and the Zeeman energy EZ only controls the
number of propagating channels (0, 1 or 2). (b) the RSOC has opposite signs across the interface.
In this case the Zeeman energy also determines the magnitude of conductance over the entire
energy range. Note that, when both sides are in the Rashba-dominated regime (blue curves) a
peak of 2G0 conductance is present for Emin < E < −EZ , i.e. for −0.878 < E/E

(R)
SO < −0.5,

due to the presence of two propagating channels below the magnetic gap energy (see Fig.3.6(a)).
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The role of evanescent modes

As we have seen above in Fig.3.9(a), when the sign of the RSOC is the same on both
sides of the interface, the conductance is practically perfect over a wide range of energies,
regardless of the energy regime of the two regions (Zeeman-Zeeman or Rashba-Zeeman),
while one could naively expect a lower conductance value when the two interface sides
are in the opposite energy regime, due to a misalignment of the electron spin of the
propagating modes. The reason for this seemingly surprising result is that, although the
current is carried by the propagating modes only, the evanescent modes also contribute
to it indirectly, as they are crucial in realizing the spinor matching of the wavefunction at
the interface.

To illustrate the role of the evanescent modes, we consider again the configuration
of Fig.3.9(a): While the interface right side is fixed to the Zeeman-dominated regime
(2E(R)

SO /EZ = 0.5), we shall compare the case where the left region is in the Zeeman-
dominated regime (2E(L)

SO/EZ = 0.7) and the case where it is in the Rashba dominated
regime (2E(L)

SO/EZ = 3.0). We focus for definiteness on the scattering problem at E = 0,
i.e. in the middle of the magnetic gap. From the NW eigenstates Eqs.(3.76), one can find
that, when the left side is also in the Zeeman regime, the spin of the propagating mode
incoming from the left lies in the x-z plane and forms an angle θ ' 0.17π with the z-axis,
which is very similar to the angle θ ' 0.21π of the propagating mode outgoing to the right
side. The almost perfect transmission is thus due to the pretty good spin matching of the
propagating modes at the interface. In this case the evanescent modes have a negligible
weight, as illustrated in Fig.3.11a, where the spatial profile of the wavefunction at E = 0
(spin-↑ and spin-↓ components) is plotted, together with its evanescent part.

In contrast, when the left side is in the Rashba dominated regime, the spin of the
incoming mode forms an angle θ ' 0.05π that is very different from the one of the
transmitted wave on the right side (θ ' 0.21π). At first, one could thus expect a low
transmission. However, this time the presence of the evanescent modes is significant, as
shown by the wavefunction spatial profile in Fig.3.11b. Their spin, lying in the x-y plane
and almost directed along the x-axis, is able to compensate for the spin misalignment of
the propagating modes. This ensures a correct spin wavefunction matching (3.90) without
any significant reflection, and one obtains again an almost perfect transmission. Thus,
differently from the customary homogeneous case, in inhomogeneous RSOC problems the
evanescent modes can play a crucial role in general in determining transport properties,
as we shall see again in Chapter 4.

Finally, when the two sides have opposite RSOC signs, the spin angle difference be-
tween the incoming mode and the transmitted mode is too large to be compensated by
the presence of evanescent modes. The spin wavefunction matching (3.90) can only be
ensured by the presence of a reflected wave, causing a conductance suppression shown
above in Fig.3.9(b).
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(a) Left side in Zeeman dominated regime 2E(L)
SO/EZ = 0.7.
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(b) Left side in Rashba dominated regime 2E(L)
SO/EZ = 0.7.

Figure 3.11: The spatial profile of the wavefunction Ψ(x) for E = 0, 2E(R)
SO /EZ = 0.5 and

interface at x = 0, the upper panel of each plot represent a spin up component Ψ↑ wile the
lower panel a spin down component Ψ↓. Notably in the case of Zeeman dominated regime,(plot
(a) and right hand side of the interface of plot (b)) the propagating states(oscillating lines) are
characterized by both spin-up and -down components. On the other hand in Rashba dominated
regime the spin-up component is dominant(left hand side of the interface on plot (b)). Blue and
orange lines are respectively real and imaginary part of the wavefunction; Green and red lines
are respectively real and imaginary part of evanescent mode.
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3.2.3 Generalization to multiple interfaces
It is straightforward to generalise the same approach to the case of multiple interfaces.
The transfer matrix WE(xj) =

(
M

(j+1)
E (xj)

)−1
M

(j)
E (xj) across each interface, located

at xj , can be computed as in the previous case. After that one can observe that the
operators on right of xi are the same as the operators on the left of xj+1, as sketched in
Fig.3.12, therefore the transfer matrix across two consecutive interfaces can be written as
the product WE(xj+1)WE(xj) of the two single-interface transfer matrices. Similarly, one
can chain all of N interfaces and write the total transfer matrix WE =

∏N
j=0 WE(xN−j)

for the whole scattering regions, in analogy with Eq.(3.98)
ĉ

(R)
E

d̂
(R)
E

f̂
(R)
E

ĝ
(R)
E

 = WE


ĉ

(L)
E

d̂
(L)
E

f̂
(L)
E

ĝ
(L)
4,E

 (3.111)

where apex L and R mark the rightmost and leftmost operators w.r.t. the scattering

Figure 3.12: Generalization of the transfer matrix to multiple interfaces.

region. The correspondence with the incoming/outgoing operators can be established in
the similar way as in the case of single interface case with the help of Eq.(3.99-3.106). In
turn, the scattering matrix can be derived from Eq.(3.111) for |E| > EZ

b̂
(L)
1,E

b̂
(L)
2,E

b̂
(R)
1,E

b̂
(R)
2,E

 = SE


â

(L)
1,E

â
(L)
2,E

â
(R)
1,E

â
(R)
2,E

 (3.112)

On the other hand for |E| < EZ Eq.(3.111) can be rewritten as b̂
(L)
1,E

b̂
(R)
1,E

 = SE

 â
(L)
1,E

â
(R)
1,E

 (3.113)
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3.2.4 Results for the conductance of the double interface prob-
lem

Let us now apply the general approach described in the previous section to the case
where we have two interfaces. This configuration enables us to describe two physically
interesting setups. The first one is when a NW with finite length d and RSOC is contacted
to two normal metallic leads without RSOC. The second situation is where the two outer
regions represents two portions of a NW, coupled to different gate voltages and thereby
characterized by different RSOC, which are separated by an inner region without RSOC
that can be considered as a magnetic barrier.

Setup 1: Finite nanowire contacted to metallic leads

Let us start by considering a NW with RSOC and a finite length d contacted to two leads
without RSOC (E(1)

SO, E
(2)
SO = 0). The magnetic field is applied everywhere. This setup is

sketched in Fig.3.13. Since the pure Zeeman regime was considered in the outer regions,
it is sufficient to limit the energy interval to E > −EZ since there are no propagating
modes in the leads for E < −EZ .

Rashba NanowireLead Lead

Figure 3.13: Metallic lead model 0|α|0

In Fig.3.14 we have reported the conductance G/G0 as a function of energy E/EZ . The
three panels refer to different values of the NW length d, in terms of the spin-orbit length
k−1
SO. In particular, Fig.3.14(a) describes the case of a short NW (kSO d = 0.3). The outer

regions, where the RSOC is absent, are by definition in the strongly Zeeman-dominated
regime, whereas for the central region we have taken three different values of RSOC, i.e.
three different values for the ratio ESO/EZ of spin-orbit energy to Zeeman energy. For
ESO/EZ = 0.1 , 0.4, the central region is in the strongly and weakly Zeeman dominated
regime (blue and orange curves) respectively, and a practically perfect transmission can be
observed. For ESO/EZ = 10 (green curve), the central region is in the Rashba-dominated
regime. In this case the conductance G/G0 is strongly suppressed near the lower gap edge
E/EZ = −1, and it monotonically increases with energy reaching a perfect transmission
in the middle of the gap E = 0.

The scenario starts to change when the length of the NW becomes comparable with
the spin-orbit length, as can be seen from Fig.3.14(b) where kSO d = 1. While the trans-
mission G/G0 remains perfect for the entire energy range when the central region is in
the strongly Zeeman dominated regime (blue curve), it exhibits suppression cusps near
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Figure 3.14: The conductance of the lead Model 0|ESO|0 in units of G0 = e2/h is plotted as
function of the energy E/EZ , for different values of the spin-orbit energy of the central region,
which is in the strongly Zeeman dominated regime for ESO = 0.1EZ (blue curve), in the weakly
dominated Zeeman regime for ESO = 0.4EZ (orange curve), and in the Rashba dominated
regime for ESO = 10EZ (green curve). The three panels refer to three different values of the
NW length d, in units of the spin-orbit length k−1

SO.
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the boundaries of the magnetic gap (E/EZ ∼ ±1) in the case of weakly Zeeman domi-
nated regime (orange curve). Moreover, if the central region is in the Rashba-dominated
regime, the transmission significantly deviates from 1 over the entire energy range and, in
particular, it acquires a non monotonic behavior.
This behavior becomes even more clear in the case of a long NW (kSO d = 6), illustrated
in Fig.3.14(c), where the green curve features an oscillatory behavior, with perfect trans-
mission reached for E/EZ ' −0.55 and E/EZ ' 0.4, and a suppression near the gap
edges E = ±EZ . A long NW thus behaves like a sort of spin-dependent Fabry-Pérot in-
terferometer: The spin-dependent backscattering of the electronic waves at the NW/lead
interfaces causes a constructive/destructive interference pattern that depends on the ratio
of the electron wavelength, determined by its energy E, to the NW length d, causing an
enhancement or suppression of the conductance.

Setup 2: The magnetic barrier configuration Eso,L|0|Eso,R

Let us now discuss a setup where two portions of the NW are coupled to different gates
and thereby acquire different values of RSOC in different regions. The two regions are
separated by a region of length d where the RSOC is assumed to be negligible (E(1)

SO = 0).
This setup is sketched in Fig.3.15.

Rashba Nanowire

Gate 1 Gate 2

Figure 3.15: Configuration with different gates.

The central region, where the RSOC is absent, is in the strongly Zeeman-dominated
regime. For definiteness, we set the outer gated regions to the Rashba dominated regime
(E(R)

SO = 3EZ) where, as discussed in Sec.3.1.3, the states inside the gap energy range are
helical, with an helicity depending on the sign of RSOC. We shall set the RSOC to be
positive in the right region, while for the left region we will consider both positive and
negative sign. This will be compactly denoted through a ’sign’ attributed to the spin-orbit
energy E(L)

SO of the left region. The behavior of the conductance G significantly depends
on whether the two outer regions have the same or opposite sign of the RSOC, and on
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3 – Rashba Nanowire exposed to an external magnetic field

the value d of the separation between the gates compared to the Zeeman length k−1
Z ,

as illustrated in Fig.3.16. In particular, Fig.3.16(a) shows the case of a short separation
(kZ d = 0.3). If the left region has the same RSOC sign as the right region, the conductance
inside the gap is perfect (orange curve), while if the sign of the RSOC on the left is opposite
to the right one the conductance is suppressed inside the gap energy range (blue curve). In
this case the behaviour of the conductance is thus similar to the case of a single interface
(see Fig.3.9).

However, for an intermediate distance between the gates, kZ d = 1, we observe from
Fig.3.16(b) that the behavior of the conductance qualitatively changes. In the case of
equal RSOC signs the conductance is almost ideal except for a suppression in the range
EZ/2 < E < EZ , whereas in the case of opposite RSOC signs the conductance is almost
perfect in the entire energy range. As a whole, the difference between the two cases of
equal or opposite RSOC in Fig.3.16(b) is reduced, as compared to the short separation
case of Fig.3.16(a). This is due to the fact that, for larger separation d, the electron
spin has a spatial room to re-adapt to the different orientation imposed by the opposite
RSOC sign. Finally, in the case of large separation kZ d = 6, illustrated in Fig.3.16(c),
the behaviour of the conductance is almost identical in both cases of equal or opposite
RSOC signs, except for a small difference near the gap edge E/EZ = +1.

We conclude by observing that, since both regions are in the Rashba-dominated regime
and the RSOC sign determines the helicity of the helical states, the setup with opposite
RSOC signs induced by the gates implements a peculiar setup, namely a junction of
helical states with opposite helicity. This non trivial problem represents the so called
Dirac paradox, and will be discussed more in details in following chapter. Note that such
a configuration, which is rather easily realized in NWs through appropriate gating, would
be quite hard to implement in the helical edge states of a 2D Topological Insulator.
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Figure 3.16: The conductance of the magnetic barrier E(L)
SO |0|E

(R)
SO in units of conductance

quantum G0 = e2/h as function of the energy E/EZ , for a fixed NW length d. The right
region is assumed to be in the Rashba-dominated regime (E(R)

SO = 3EZ). The various curves
refer to different values of RSOC of the left region. Orange line E(L)

SO = 0.5E(R)
SO , blue line

E
(L)
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Chapter 4

The Dirac paradox and its
realization with nanowires

In this chapter I shall discuss a paradoxical situation that emerges in Dirac materials,
called the Dirac paradox, and then I shall analyze its implementation with spin-orbit
nanowires.

In various materials on the spotlight of Condensed Matter research, such as graphene,
topological insulators and Weyl semimetals, the electronic properties turn out to be well
described by an effective massless Dirac Hamiltonian[31, 38, 43, 49, 51, 77, 80], rather than
the customary Schrödinger Hamiltonian. Notably, massless Dirac states are characterized
by an helicity, i.e. a locking of their spin orientation to their momentum. The Dirac
paradox arises when a junction between two materials with opposite helicity is formed:
An electron impinging from one side of the interface can seemingly neither be transmitted
nor reflected, precisely because of the locking between spin and momentum. This config-
uration has been investigated in a junction between two 3D topological insulators, whose
conducting states flow on the surface and are described by a 2D massless Dirac Hamilto-
nian. In that case the Dirac paradox has been solved by finding that electrons leak along
the interface surface. However, in 1D Dirac heterojunctions, this escape possibility does
not exist and the solution to the paradox is less trivial. This is what I shall discuss in
the first part of this chapter. In particular, I will show that, when the customary case
of purely massless Dirac modes is considered, the solution of the paradox either is trivial
or does not exists, depending on the way the helicity crossover occurs across the inter-
face. Then, I will demonstrate that, when additional massive Dirac modes are taken into
account, a non trivial solution exists and a tunable transmission can be found.

In the second part of the chapter, I will discuss the implementation of the 1D Dirac
paradox. In particular, while the Dirac paradox configuration would be quite hardly
feasible with the helical edge states of Topological Insulators, I will argue that it can
be realized with spin-orbit nanowires. Indeed, as shown in chapter 3.1.3, in the deep
Rashba-dominated regime EZ � 2ESO the nanowire exhibits 1D massless Dirac helical
states inside the magnetic gap, whose helicity is determined by the sign of the RSOC.
One can thus find that the setup with an inhomogeneous RSOC profile, analogous to
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4 – The Dirac paradox and its realization with nanowires

“Magnetic barrier configuration” (see Fig.3.15), where in outer regions the RSOC takes
opposite signs, precisely realizes the 1D Dirac paradox configuration. Notably, we shall
show that such inhomogeneous setup is precisely described by the massless+massive Dirac
model mentioned above. Thus, while massive modes are usually neglected when the RSOC
can be considered homogeneous, they become important in inhomogeneous RSOC setups
also at low energy. Indeed, although massive modes carry no current directly, they can
indirectly determine the conductance by guaranteeing the spin wavefunction matching at
inhomogeneities.

4.1 Dirac paradox
Let us first briefly recall that the electronic properties of various materials, in physically
realistic regimes, are well described by an effective Dirac model. In analogy with Eq.(1.14)
one has

H = vF α · p̂+ ∆β (4.1)

where the light velocity and the mass terms appearing in the actual relativistic version
are replaced by parameters of the material, namely the Fermi velocity (c → vF ) and the
gap between two valence and conduction bands (m0c

2 → ∆). In the 1D case one needs
only two anticommuting matrices that can be chosen to be α1

.= σz and β .= σx

H1D = vFσz p̂x + ∆σx (4.2)

where p̂x = −i~∂x. It can be easily seen that the Hamiltonian H1D commutes with the
momentum operator and therefore it can be diagonalized with the planewaves

ψk(x) = ωeikx (4.3)

where ω is a 2× 1 spinor eigenvector. The Hamiltonian (4.2) can be rewritten in k-space

H = vF~k σz + ∆σx (4.4)

and its eigenvalues
E±(k) = ±

√
∆2 + v2

F~2k2 (4.5)

describe two electronic bands separated by a gap E+(0) − E−(0) = 2∆ at k = 0. Since
the Hamiltonian (4.4) is expressed as a combination of two Pauli matrices, the spin of
its eigenvectors lie in x-z spin-plane depending and the specific direction depends on the
ratio of the kinetic and mass terms. Notably, for energy inside the gap (|E| < ∆), the
Hamiltonian (4.2) formally admits evanescent solutions too. These evanescent massive
states in principle can be obtained with the mapping k → −iκ. The spin of the related
eigenvectors in this case lies in the x-y plane. In particular, for E = 0, it can be shown
to align with y axis and to take the form

ω0 = 1√
2

(
−i
1

)
(4.6)
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4.1 – Dirac paradox

One can obtain the massless case by setting ∆→ 0. In this limit the Dirac Hamiltonian
(4.2) reduces to

H1D = vFσz p̂x (4.7)

and the spinor eigenvectors can be easily identified with

ω↑ =
( 1

0

)
ω↓ =

( 0
1

)
(4.8)

with corresponding eigenvalues

E↑(k) = vF~k (4.9)
E↓(k) = −vF~k (4.10)

One can observe that the massless Dirac states are characterized by spin momentum
locking and therefore one can define a helicity operator as

λ̂ = σz p̂x
|p̂x|

(4.11)

that indeed commutes with the Dirac Hamiltonian. In particular, from Eqs.(4.9)-(4.10)
we note that electron states with positive energy E > 0 are characterized by a positive
helicity (〈λ̂〉 > 0), since the positive wavevectors correspond to the spin-↑, while negative
wavevectors to spin-↓. States with negative energy have negative helicity (〈λ̂〉 < 0).
Notably, the opposite situation occurs in the case negative Fermi velocity vF → −vF .

4.1.1 Massless Dirac heterojunctions
Let us now consider the interface between two massless Dirac materials characterized by
opposite Fermi velocity i.e. v(L)

F on the left and v(R)
F on the right such that v(R)

F = −v(L)
F .

The second-quantization Hamiltonian describing the helical states present on the two bulk
sides of the interface reads

Ĥ(L/R) = v
(L/R)
F

∫
Ψ̂†(x)σzpx Ψ̂(x) dx (4.12)

where Ψ̂ = (Ψ̂↑, Ψ̂↓)T is the 2 × 1 electron field operator. One thus has states with op-
posite helicity i.e. 〈λ̂(L)〉 = −〈λ̂(R)〉. If one analyzes the scattering problem across the
interface, one finds a paradoxical situation, depicted on the Fig.4.1: The states incident
on the interface can seemingly neither be transmitted nor be reflected, due to spin con-
servation. Indeed let us for instance consider an electron wave incoming from left. It
cannot be transmitted because in this case it should flip the spin to match the helicity of
outgoing state on the right. At the same time, it cannot be reflected either, due to the
spin-momentum locking. This dilemma is called Dirac paradox. This problem has been
widely discussed in the literature[52, 59, 60] in the context of 3D Topological Insulators
(TIs), where the interface between two TIs with surface states with opposite helicity is
considered. It has been shown that in the case of 3D TI this paradox is solved by surface
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4 – The Dirac paradox and its realization with nanowires

gapless state emerging from hybridization of states from each TI, that absorb the incident
modes. This means that electrons can leak along the interface surface separating the two
TIs. In the one dimensional case, however, there is not enough degree of freedom to give
raise for localized state and alternative mechanism should emerge that would allow the
conservation of momentum and spin.
The solution of the 1D version of the paradox may change significantly depending on the
model used to describe how the interface interpolates from the ĤL to the ĤR bulk Hamil-
tonians. Here we first discuss examples that realise the Dirac paradox using the massless
modes only.

k
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Figure 4.1: Illustration of the Dirac paradox. On each interface side the blue line represents
the spin-↑ branch of the massless dispersion relation, while red line the spin-↓ branch. On the
left side of the interface the right-moving states are associated with spin-↑ and left-moving states
with spin-↓, while the opposite occurs on the right side of the interface: the two interface sides
are characterized by an opposite helicity. A spin-↑ incoming from the left can seemingly be
neither transmitted nor reflected, due to spin conservation.

Model 1: velocity sign change

The simplest way to model the interface between helical states is to consider the spatially
dependent profile of the Fermi velocity v(x) such that v(x → −∞) = v

(L)
F and v(x →

∞) = v
(R)
F . In this case the momentum operator does not commute with the velocity

profile and therefore one should replace their product by a half of their anti-commutator
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4.1 – Dirac paradox

vF px → 1
2{v(x), px} and the second-quantizzation Hamiltonian become

Ĥ =
∫

Ψ̂†(x)σz
{v(x) , px}

2 Ψ̂(x) dx (4.13)

The Heisenberg equation associated to the Hamiltonian above can be written as

∂tΨ̂ = −σz
(
v(x)∂xΨ̂ + ∂xv

2 Ψ̂
)

(4.14)

Following the approach described in the chapter 3.1 one can find the associated current
operator

Ĵ(x) = e v(x)Ψ̂†(x)σzΨ̂(x) (4.15)

where e is the electron charge.
We consider the stationary solutions of Heisenberg equation that can be expressed in

the form Ψ̂(x, t) = Ψ̂E(x)e−iEt/~. Substituting it into Eq.(4.14) and multiplying the left
side by σz one can find

∂xΨ̂E = v−1(x)
(
−∂xv2 σ0 + i

E

~
σz

)
Ψ̂E (4.16)

which solution can be found by integrating both sides in dx′ over the interval [x, xR] where
xR is a reference point

Ψ̂E(x) = exp
[
−1

2

∫ x

xR

∂xv

v(x′)dx
′
]
× exp

[
iEσz

∫ x

xR

dx′

~v(x′)

]
Ψ̂E(xR) (4.17)

Taking advantage of ∂x ln |v(x)| = ∂xv/v(x) one can can express the above solution as

Ψ̂E(x) =
√
v(xR)
v(x) exp

[
iσz

∫ x

xR

kE(x′)dx′
]

Ψ̂E(xR) (4.18)

where we defined kE(x) = E/~v(x). Finally one can introduce the the field operator at
the reference point xR

Ψ̂E(xR) = u√
2π~|v(xR)|

âE (4.19)

where u is a space-independent 2 × 1 spinor and âE the corresponding energy-E mode
operator fulfilling {aE , a

†
E′} = δ(E−E′). For each energy value E there are two indepen-

dent solutions, related to two orthogonal choices for the spinor u. In this way Eq.(4.18)
takes the form

Ψ̂E(x) = 1√
2π~|v(x)|

e
iσz
∫ x
xR

kE(x′)dx′
u âE (4.20)

from which follows that at any space point-x, including possible discontinuity points of
v(x), the following boundary condition holds√

|v(x+)|Ψ̂E(x+) =
√
|v(x−)|Ψ̂E(x−) (4.21)
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where x± = x± ε with ε→ 0.
Notably, in the case where the velocities vL on the left and vR on the right have the

same sign, the velocity profile changes only in magnitude without vanishing in any point.
In this case one can express the Hamiltonian (4.13) in equivalent form

Ĥ =
∫

Ψ̂†(x)σz
√
v(x)

[
px

√
v(x)

]
Ψ̂(x) dx (4.22)

The solution of this model has been discussed in Ref.[41], where those authors have found
a perfect transmission independently on the values of the velocity on the left/right.

However, in the case of the Dirac paradox, the velocity profile v(x) vanishes at some
point x0 in order to allow the sign change of the Fermi velocity. This significantly compli-
cates the problem. In particular one can observe that kE(x)→∞ for x→ x0, in this way
the phase of the Eq.(4.20) is well defined only if the integral

∫ x
xR
kE(x′)dx′ is finite, that

corresponds to |v(x)| = O(|x− x0|α) with 0 < α < 1. Moreover the field operator (4.20)
is expected to diverge as Ψ̂E ∼ 1/

√
|v(x)| for x→ x0. Nevertheless the current Eq.(4.15)

is still finite due to the boundary conditions (4.21). Indeed using the stationary solution
for the field operator (4.20) one can write

ĴE(x) = sgn(v(x)) e
2πu

†σzu â
†
E âE (4.23)

Notably, at the point x0 where the velocity profile changes the sign, the current fulfills
JE(x−0 ) = −JE(x+

0 ). Since a discontinuity is incompatible with the continuity equation,
which implies that for a stationary state the average current is spatially homogeneous (see
chapter 3.1). One concludes that the only way to achieve it with Eq.(4.23) is ĴE(x) ≡ 0 ∀x
and therefore u†σzu = 0. In this way one can immediately identify two candidate for the
spinor part of the eigenstate with u+ = (1 , eiφ)T /

√
2 and u− = (e−iφ,−1)T /

√
2, where

φ is an arbitrary phase. Since each spinor eigenvector consists of both spin-↑ and spin-↓
components, one may conclude that on each interface side both an incoming and an out-
going bulk states must be present. In this way one cannot assign a separate weights to
this modes, and it is impossible to construct a scattering state solution.

In conclusion, this model characterized by a spatially dependent velocity profile, implies
that there is no solution to the Dirac paradox, since it is impossible to build a scattering
state that would satisfy the continuity equation. The only physically available solution
must involve the modes injected from both sides. Furthermore one may notice that the
model (4.13) involves only of the σz-component of spin and the velocity profile only affects
its magnitude and sign. In this sense this model is purely scalar.

Model 2: spin-active interface

The alternative model of the Dirac paradox is given by the Hamiltonian

Ĥ = vF

∫
Ψ̂†(x)

(
e−iθ(x)σx/2pxσz e

+iθ(x)σx/2
)

Ψ̂(x) dx (4.24)
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where the crossover between the regions is achieved by rotation of the σz spin around the
x-axis, rather then the direct inversion of the Fermi velocity as in the case of previous
model. In particular the space-dependent phase θ(x) is expected to span from θL = 0 for
x→ −∞ to θR = π for x→ +∞.

Note that, in contrast to the scalar model (4.13), the model (4.24) involves the full
SU(2) spin structure. Thus the Hamiltonian terms at two different space points do not
commute in general. As previously shown, using Hamiltonian (4.24), one can derive the
Heisenberg equation

∂tΨ̂(x) = −vFσze−iθ(x)σx/2∂x
(
eiθ(x)σx/2Ψ̂(x)

)
(4.25)

and the current operator

Ĵ(x) = evF Ψ̂†(x)
(
e−iθ(x)σx/2σz e

+iθ(x)σx/2
)

Ψ̂(x) =

= evF Ψ̂†(x) [σz cos θ(x)− σy sin θ(x)] Ψ̂(x) (4.26)

Integrating the Heisenberg equation around any point x, one can obtain the boundary
condition

eiθ(x
+)σx/2Ψ̂(x+) = eiθ(x

−)σx/2Ψ̂(x−) (4.27)
that, indeed, implies the continuity of the current operator (4.26). Furthermore in the
case of a step-like profile of the phase θ(x), i.e. θ(x < 0) = 0 and θ(x > 0) = π with an
interface at x0 = 0, the boundary conditions become{

Ψ̂↑(0+) = iΨ̂↓(0−)
Ψ̂↓(0+) = iΨ̂↑(0−)

(4.28)

One can notice that the spin-flip has been introduced at the interface. This effect can be
seen explicitly by considering the scattering states solution of Heisenberg equation (4.25)

ψE(x) =



(
1
0

)
eiEx/~vF â

(L)
E +

(
0
1

)
e−iEx/~vF b̂

(L)
E x < 0

(
0
1

)
eiEx/~vF b̂

(R)
E +

(
1
0

)
e−iEx/~vF â

(R)
E x > 0

(4.29)

where â(j)
E , b̂(j)E are respectively the incident/reflected energy-E mode operators on the left

(L) or right (R) side of the interface at x0 = 0. Substituting the scattering state (4.29)
into boundary conditions (4.28) one finds{

â
(R)
E = ib̂

(L)
E

b̂
(R)
E = iâ

(L)
E

(4.30)

from which scattering matrix (2.29) can be derived

S =
(0 −i
i 0

)
(4.31)
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4 – The Dirac paradox and its realization with nanowires

and it is straightforward to see that the transmission is perfect for any energy and Fermi
velocity.

We thus deduce that the spin-flip processes at the interface, introduced by the model 2,
give a trivial solution of the Dirac paradox.

4.2 Dirac Heterojunctions with massless and massive
modes

So far we have discussed two models that realize the Dirac paradox with purely massless
Dirac modes. Depending on the specific way the crossover between regions with different
helicity is modelled, we have obtained somewhat opposite results. While Model 1 predicts
that the only physical solution is not a scattering state (it describes particle injection
from both sides) and carries no current, Model 2 does allow a perfect transmission across
the interface through the introduction of spin-flip processes on the interface. Here we
introduce an essentially different model to answer the Dirac paradox, which involves both
massless and massive Dirac modes. As we shall see, such model does allow to obtain a
tunable transmission coefficient without involving any spin-flip processes at the interface.

k
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Figure 4.2: The band structure of the massless+massive Dirac model implementing the Dirac
paradox. In analogy with the Fig.4.1 red and blue lines represent the massless modes, while
green curves represent massive bands with gap 2∆ at k = 0.

Let us thus assume that that, each side of the interface is characterized by massive
and massless Dirac fermions, as sketched in Fig.4.2. The two bulks of each interface side
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4.2 – Dirac Heterojunctions with massless and massive modes

is thus modelled with the following Hamiltonians

Ĥ(L) = +vF
∫

Ψ̂†(x)τzσzpxΨ̂(x) dx− ∆
2

∫
Ψ̂†(x)(τ0 − τz)σx Ψ̂(x) dx (4.32)

Ĥ(R) = −vF
∫

Ψ̂†(x)τzσzpxΨ̂(x) dx− ∆
2

∫
Ψ̂†(x)(τ0 − τz)σx Ψ̂(x) dx (4.33)

where Ψ̂ = (ζ̂↑, ζ̂↓, η̂↑, η̂↓)T . Here σ0 is the 2× 2 identity matrix, whereas σ = (σx, σy, σz)
are the Pauli matrices acting on the spin space, whereas τ0 and τ = (τx, τy, τz) are the
corresponding matrices acting on the massless-massive degree of freedom, which we can
dub pseudospin. The second term in Eqs.(4.32)-(4.33) introduces a gap term only for
modes η̂↑ and η̂↓. Thus, ζ̂↑, ζ̂↓ and η̂↑, η̂↓ correspond to the massless and massive fields,
respectively. In particular, later we shall be interested in the energy range inside the mass
gap |E| < ∆ where the massive modes are gapped and do not carry any current, so that
only massless modes are propagating. The different sign in the first terms of Eqs.(4.32)-
(4.33) corresponds to the opposite helicity for both component of the pseudospin Ψ̂, and
thus in particular on the massless modes.

In order to model the crossover between the two bulks (4.32) and (4.33) across the
interface, we introduce a 4× 4 spatially varying matrix U(x), which acts on the Ψ̂-spinor
and takes two constant values in the bulk of the two regions

U(x)→
{
U (L) for x ∈ bulk of the left side
U (R) for x ∈ bulk of the right side

(4.34)

The model adopted for the entire Dirac-heterojunction is thus

Ĥ = vF

∫
Ψ̂†(x)U †(x)τzσzpx

(
U(x) Ψ̂(x)

)
dx− ∆

2

∫
Ψ̂†(x)(τ0 − τz)σx Ψ̂(x) dx (4.35)

where requirements

U (L)†τzσzU
(L) = +τzσz (4.36)

U (R)†τzσzU
(R) = −τzσz (4.37)

on the U (L/R) matrices implement the different helicity sign on the first term of Eq.(4.35),
in order to recover Eqs.(4.32)-(4.33) in the bulks. For example, it can be observed that
a possible choice for a U(x)-matrix fulfilling Eqs.(4.36)-(4.37) is U(x) = exp[iθ(x)τxσ0/2]
with the space dependent phase θ(x) that varies from θL = 0 to θR = π. With this choice,
the model (4.35) describes the interface in an analogous way as a spin-active model (4.24),
but this is now done by rotating the pseudo spin (instead of the actual spin), around x-
axis. Below we shall discuss more general expressions for the U (L) and U (R) matrices, and
we shall discuss how they can be linked to realistic systems, such as nanowire with RSOC
in low energy deep Rashba-dominated regime.

For simplicity, we shall assume a piecewise constant profile for the transformation U(x)

U(x) =
{
U (L) x < x0

U (R) x > x0
(4.38)
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4 – The Dirac paradox and its realization with nanowires

We can consider the Heisenberg equation associated with the model (4.35)

i~∂tΨ̂(x, t) = −i~vFU †(x)τzσz∂x
(
U(x)Ψ̂(x, t)

)
(4.39)

and its conjugate

i~∂tΨ̂†(x, t) = −i~vF∂x
(
Ψ̂†(x, t)U †(x)

)
τzσzU(x) (4.40)

By adding Eq.(4.39) multiplied by Ψ̂† on the left to Eq.(4.40) multiplied by Ψ̂ on the
right, we obtain the continuity equation for the density ρ̂ = Ψ̂†Ψ̂ and the current operator

Ĵ(x) = evF Ψ̂†(x)U †(x)τzσz U(x)Ψ̂(x) (4.41)

Furthermore, by integrating the Heisenberg Eq(4.39) over an infinitesimal interval around
interface located at x0, we obtain

U (R)Ψ̂(x+
0 ) = U (L)Ψ̂(x−0 ) (4.42)

or equivalently
Ψ̂(x+

0 ) = M Ψ̂(x−0 ) , (4.43)

where M = (U (R))−1 U (L) is the transfer matrix. As consequence of Eqs.(4.36)-(4.37) the
transfer matrix M must fulfill

M†τzσzM = −τzσz (Requirement #1) (4.44)

Importantly, here we want to avoid trivial solutions of the Dirac paradox like in the case
of the model (4.24). Thus, in order to rule out the possibility of a spin active interface, we
introduce a second constraint that ensures the transfer matrix M to be diagonal in spin
space, i.e.

M must involve
only σ0 and σz

(Requirement #2) . (4.45)

We conclude this section with a remark. Taking the limit x → x±0 of the current (4.41)
and recalling the conditions (4.36)-(4.37) one finds an opposite sign for the expressions
Ĵ(x±0 ) = ∓evF Ψ̂†(x±0 )τzσz Ψ̂(x±0 ) obtained from the two interface sides. At first, this might
look like a discontinuity of the current, which is physically not allowed by the continuity
equation in the stationary regime. However, such discontinuity is only seeming. Indeed
from Eq.(4.43) we observe that the field Ψ̂ is itself discontinuous. Such discontinuity is
due to a δ(x)-term arising from pxU(x) in the Heisenberg Equation (4.39), applied to U(x)
in Eq.(4.38). The discontinuity of the field compensates for such sign change and returns
a continuous current, as can also be seen by inserting Eq.(4.42) into Eq.(4.41).

4.2.1 Derivation of the transfer matrix
In the previous section we have determined the requirements (4.44)-(4.45) that the transfer
matrix M must fulfilll in order to model the Dirac paradox in a setup without spin-flip
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4.2 – Dirac Heterojunctions with massless and massive modes

process at the interface. Let us now discuss the general form of the transfer matrix that
would fulfill such constraints. It is straightforward to see that M should be expressed as
a combination of σ↑ = (σ0 + σz)/2, σ↓ = (σ0 − σz)/2 only and therefore can be expressed
as

M = M↑σ↑ + M↓σ↓ , (4.46)
where M↑,↓ are 2 × 2 matrices that operate on the massless-massive pseudospin space.
In particular one can observe that with help of the properties σ2

↑,↓ = σ↑,↓ and σ↑σ↓ =
[σ↑, σz] = [σ↓, σz] = 0, the condition Eq.(4.44) can be rewritten for each pseudo spin
transfer matrix M↑,↓ as

M†στzMσ = −τz σ =↑, ↓ (4.47)
that, in turn, for each spin sector σ =↑, ↓ can be fulfilled by a generic 2×2 complex matrix

Mσ =
(
aσ bσ
cσ dσ

)
(4.48)

the entries of which satisfy |cσ|2 − |aσ|2 = 1, |bσ|2 − |dσ|2 = 1 and a∗σbσ = c∗σdσ and
therefore one obtains

Mσ = eiνσ
(

iβσe
−iγσ (1− iβσ) eiχσ

(1 + iβσ) e−iχσ −iβσeiγσ
)

, (4.49)

Notably, for each spin sector σ =↑, ↓, the matrix Mσ depends of 4 real parameters
χσ, γσ, βσ, νσ. We thus have 8 parameters as a whole. Furthermore one has the prop-
erties M−1

σ (βσ, χσ, νσ, γσ) = Mσ(βσ, χσ,−νσ,−γσ) and det(Mσ) = − exp[2iνσ]. The full
transfer matrix M is obtained by substituting Eq.(4.49) into Eq.(4.46) and in general can
be written as

M =


iβ↑ e

i(ν↑−γ↑) 0 (1− iβ↑)ei(ν↑+χ↑) 0
0 iβ↓e

i(ν↓−γ↓) 0 (1− iβ↓)ei(ν↓+χ↓)
(1 + iβ↑)ei(ν↑−χ↑) 0 −iβ↑ei(ν↑+γ↑) 0

0 (1 + iβ↓)ei(ν↓−χ↓) 0 −iβ↓ei(ν↓+γ↓)


(4.50)

Consistently with the constrain (4.45), the entries of the transfer matrix (4.50) that are
responsible for direct spin-flip, i.e. coupling of different spin components, are vanishing.
Finally it is also possible to derive the explicit expresson for U (L) and U (R). First of all we
observe that the requirement (4.36) is satisfied with U (L) = τ0σ0 and U (R) = M−1, that
in turn can be easily find by recalling the property M−1(β,χ,ν,γ) = M(β,χ,−ν,−γ) of
the transfer matrix, where each bold symbols labels the pair of related parameters, e.g.
β = (β↑, β↓).

4.2.2 Scattering states
Since we have found the general expression (4.50) of the transfer matrix, we can now
focus on the scattering state solution. We recall that the 4 × 1 spinor Ψ̂ of the model
(4.35) consists of both massless ζ̂↑, ζ̂↓ and massive η̂↑, η̂↓ modes. Inside the gap (|E| < ∆),
massless modes are propagating, while massive modes are evanescent. In particular, at
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E = 0, i.e. in the middle of the massive energy gap, one can construct the scattering state

Ψ̂E(x) =



â(L)


1
0
0
0

 eik0x + b̂(L)


0
1
0
0

 e−ik0x + ĉ(L)
√

2


0
0
−i
1

 eκ0x x < x0

â(R)


1
0
0
0

 e−ik0x + b̂(R)


0
1
0
0

 eik0x + ĉ(R)
√

2


0
0
−i
1

 e−κ0x x > x0

(4.51)

where k0 = 0, κ0 = ∆/~vF . Following the notation used in chapter 2, we have introduced
the incoming and outgoing operators â(γ) and b̂(γ) on the left side (γ = L) and right side
(γ = R) of the interface. Notably, the massless propagating states ζ̂↑, ζ̂↓ (the upper two
components of Ψ̂E), have opposite helicity on the two sides of the interface: On the left
side right-moving and left-moving states have spin-↑ and spin-↓, respectively, whereas the
opposite occurs on the right side. This indeed corresponds to the premises of the Dirac
paradox. The ĉ(L) and ĉ(R) operators are associated with evanescent massive modes η̂↑, η̂↓
(the lower two components of Ψ̂E).

By plugging Eq.(4.51) into Eq.(4.43) and by exploiting Eq.(4.50), one can find the
following relations (

b̂(L)

b̂(R)

)
= S

(
â(L)

â(R)

)
(4.52)

and (
ĉ(L)

ĉ(R)

)
= S̃

(
â(L)

â(R)

)
(4.53)

Here

S = ie−i∆χ

(1− iβ↑)(1 + iβ↓)

 ei∆ν + e−i∆γβ↑β↓ i(ei(γ↓−ν↑)β↓ − ei(γ↑−ν↓)β↑)

i(ei(ν↑−γ↓)β↓ − ei(ν↓−γ↑)β↑) e−i∆ν + ei∆γβ↑β↓

 (4.54)

is the Scattering Matrix returning the outgoing propagating modes in terms of the incom-
ing propagating modes, with ∆χ .= χ↑ − χ↓, ∆ν .= ν↑ − ν↓ and ∆γ .= γ↑ − γ↓, whereas

S̃ =
√

2 e−iχ↑
1− iβ↑

β↑e−iγ↑ ie−iν↑

ie+iν↑ β↑e
iγ↑

 (4.55)

is the matrix yielding the evanescent modes in terms of the incoming propagating modes.
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4.2 – Dirac Heterojunctions with massless and massive modes

Let us now emphasize the differences with respect to the models 1 and 2 that are purely
based on massless modes and that we have discussed in Sec.4.1.1. Just like Model 1 [see
Eq.(4.13)], the massless+massive model (4.35) does not involve any spin-active interface.
However, while Model 1 has no scattering state solution to the paradox and exhibits a
vanishing transmission, the massless+massive model (4.35) admits a solution in terms of
scattering states. In particular, from the scattering matrix (4.54) it is straightforward to
obtain the transmission coefficient as

T = |S1,2|2 = |S2,1|2 =
β2
↑ + β2

↓ − 2β↑β↓ cosϕ
(1 + β2

↑)(1 + β2
↓)

(4.56)

which depends on the 3 parameters β↑, β↓ and ϕ = ∆γ + ∆ν. Furthermore, differently
from Model 2 [see Eq.(4.24)], which directly introduces a spin-flip process at the interface,
in model (4.35) transmission of an incoming state with spin-↑ to an outgoing state with
spin-↓ is possible because of the mediation of the massive evanescent states, as will be
highlighted here below.

The role of the evanescent modes

In order to highlight the role of the massive modes in the transmission process, one can
focus on the state with a mode incident only from the left side, by setting â(R) → 0.
Assuming γσ = χσ = νσ = 0 and an interface position at x0 = 0, we insert the scattering
state (4.51) into the transfer matrix equation (4.43), obtaining

0
b̂(R)

−i√
2 ĉ

(R)

1√
2 ĉ

(R)

 =


iβ↑ 0 (1− iβ↑) 0
0 iβ↓ 0 (1− iβ↓)

(1 + iβ↑) 0 −iβ↑ 0
0 (1 + iβ↓) 0 −iβ↓




â(L)

b̂(L)

−i√
2 ĉ

(L)

1√
2 ĉ

(L)

 (4.57)

Let us start by analyzing the case β↑ = 0. In this case the above system becomes
0
b̂(R)

−i√
2 ĉ

(R)

1√
2 ĉ

(R)

 =


0 0 1 0
0 iβ↓ 0 1− iβ↓
1 0 0 0
0 1 + iβ↓ 0 −iβ↓


︸ ︷︷ ︸

M


â(L)

b̂(L)

−i√
2 ĉ

(L)

1√
2 ĉ

(L)

 (4.58)

This configuration is schematically represented in Fig.4.3(a). In particular, the left panel
pictures the scattering wavefunction, where wavy lines correspond to the propagating
modes and the green solid line represents an evanescent mode, with the blue and red
color indicating spin-↑ and spin-↓ components, respectively. The right panel illustrates
how the transfer matrix connects the modes across the interface (black lines). One can
observe that a spin-↑ particle incoming form the left (â(L), blue wiggy line) is connected by
transfer matrix M only with a massive state ĉ(R) on the right through the entry M31 = 1.
However, since this evanescent mode (green box) is characterized by a spinor with both
spin components, it is linked back to the outgoing spin-↓ massless mode b̂(L) on the left
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4 – The Dirac paradox and its realization with nanowires

by the matrix entry M42 = 1 + iβ↓. In turn, the latter is also coupled, through the entry
M22 = iβ↓, to the spin-↓ transmitted mode b̂(R) on the right. In this way the presence
of the evanescent massive mode with the spin orthogonal to spin of propagating modes
mediates and indirectly allows an effective spin-flip transmission between propagating
massless states with opposite helicity.

Next, let us consider the the opposite configuration, namely the case β↓ = 0. In this
case Eq.(4.57) reduces to


0
b̂(R)

−i√
2 ĉ

(R)

1√
2 ĉ

(R)

 =


iβ↑ 0 1− iβ↑ 0
0 0 0 1

1 + iβ↑ 0 −iβ↑ 0
0 1 0 0


︸ ︷︷ ︸

M


â(L)

b̂(L)

−i√
2 ĉ

(L)

1√
2 ĉ

(L)

 (4.59)

This configuration is pictured in Fig.4.3(b). Similarly to the previous case, the mode â(L)

incoming from the left side is connected with the evanescent mode ĉ(R) on the right side
through the M31 = 1 + iβ↑, which in turn gives rise to the outgoing mode b̂(L) on the left
through the connection M24 = 1. However, in contrast with the case of β↑ = 0, the path
for the outgoing mode on the right is completely different. Indeed, due to the M33 = −iβ↑
entry, a connection between massive modes on opposite sides of the interface opens up.
Moreover, the outgoing mode b̂(R) on the right is connected to the massive mode on the left
with M42 = 1. Despite these differences, the transmission between massless propagating
states with opposite helicity again occurs due to the presence of the evanescent modes on
both sides of the interface.

In the most general case, one has that both β↑ and β↓ are finite and the transmission
coefficient (4.56) results from a combination of the two previous cases. Finally we observe
that, if both β↑ and β↓ vanish, one finds a zero transmission. In this case the mechanism
that suppresses the transmission can be explained by observing that the transfer matrix
(4.50) becomes M = τxσ0 and therefore the boundary conditions can be written as

{
ζ̂σ(0+) = η̂σ(0−)
η̂σ(0+) = ζ̂σ(0−)

σ =↑, ↓ (4.60)

Each incoming massless mode of a given spin is coupled uniquely to the massive evanescent
mode with the same spin component on the other side of the interface.

In conclusion, we have obtained that, although in energy range inside the gap the
massive evanescent modes carry no current directly, they are crucial in the inhomogeneous
setup such as the Dirac paradox. Indeed massive modes are localized at the interface
and indirectly couple the two spin channels. This is what enables an effective spin-flip
transmission between propagating states with opposite helicity. Moreover, the resulting
transmission coefficient is tunable from 0 to 1 through the 3 parameters β↑, β↓ and ϕ [see
Eq.(4.56)].
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M22

Figure 4.3: The left-hand side of each panel depicts the scattering state wavefunction of a
particle injected from the left. The blue and red colors correspond to the spin-↑ and spin-↓
components of the spinor eigenstate, respectively. Wavy lines are associated with propagating
states, in particular the incoming modes are always characterized by spin-↑ while outgoing
modes by spin-↓. The solid green lines corresponds the evanescent wave of the massive mode.
The right side of each panel illustrates the transmission process described correspondingly with
Eq.(4.58)-(4.59). The black lines are associated with entries of the transfer matrix that connect
non vanishing contribution to the scattering state. Panel (a) refers to the case β↑ = 0: The
evanescent mode appears only on the right side of the interface. Here M31 = 1, M42 = 1 + iβ↓
and M22 = iβ↓. Panel (b) describes the case β↓ = 0: The evanescent modes arise on both sides
of the junction. Here M31 = 1 + iβ↑, M33 = −iβ↑ and M24 = M42 = 1. In this way, although
the transfer matrix presents the direct connection only between the states with the same spin,
the evanescent modes of the massive field indirectly allow a spin-flip transmission between the
propagating modes.
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4 – The Dirac paradox and its realization with nanowires

4.3 Realization with spin-orbit nanowires
In the previous section we have discussed the massless+massive model that admits non
trivial solutions to the Dirac paradox in 1D. Here we present its possible implementation.
First of all it worth recalling that the 1D helical Dirac states can be found at the edges of a
quantum spin Hall system[28, 34, 35, 50, 69]. However, in that case the interface between
two regions would be a line that in principle could provide the electrons with a way to
escape the paradox, like in the case of 3D Topological insulators. In this section I show
that a genuinely 1D Dirac paradox can be realized with a Rashba NW in the presence
of the Zeeman splitting. As has been shown in chapter 3.1.3, a NW in the deep Rashba-
dominated regime (EZ � 2ESO) exhibits massless helical states, whose helicity can be
controlled by the sign of the RSOC. However, as shown in Section 3.1.3, the low-energy
Physics of NWs actually involves both the massless helical modes near k ∼ ±2kSO and
the massive modes near k ∼ 0, which both enter in the low-energy electron field operator
Eq.(3.64). Remarkably, the NW low energy Hamiltonian (3.61) has precisely the same
structure as the Hamiltonians (4.32) and (4.33) of the massless+massive model describing
the bulk of the two sides of the Dirac paradox problem, upon identifying vSO → vF ,
EZ → ∆ and Φ̂ → Ψ̂. Note that the sign sα of the RSOC in Eq. (3.61) determines the
sign of the velocity on each interface side. In the literature about low energy transport
properties in NWs, a uniform RSOC is typically assumed and the massive modes are
neglected, since they simply carry no current. However, as we have discussed above,
massive modes become important in inhomogeneous RSOC problems.

Let us revisit the “magnetic barrier” setup discussed in the previous chapter (see
Fig.3.15) and focus in particular on the case where the RSOC in the two outer regions is
equal in magnitude but opposite in sign. In a physically realistic setup, this two regions
are separated by a region with negligible RSOC, so that

α(x) =


+α > 0 for x < −d/2 (region 1)
0 for|x| < d/2 (region 2)
−α < 0 for x > +d/2 (region 3)

(4.61)

with α > 0. Furthermore we assume that the outer regions 1 and 3 are in deep Rashba-
dominated regime (2ESO � EZ), while the internal regions 2 is obviously in the strongly
Zeeman dominated regime.
Following the discussion of the inhomogeneous NW in Sec.3.2, the matching condition
Eq.(3.90) can be written explicitly for the left interface at x0 = −d/2 as

Ψ̂(x−0 , t) = Ψ̂(x+
0 , t)(

σ0∂x − i kSOσ3

)
Ψ̂(x−0 , t) = σ0∂xΨ̂(x+

0 , t)
(4.62)

and for right interface at x1 = d/2 as
Ψ̂(x−1 , t) = Ψ̂(x+

1 , t)

σ0∂xΨ̂(x−1 , t) =
(
σ0∂x + i kSOσ3

)
Ψ̂(x+

1 , t)
(4.63)
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As we have seen in the Section 3.2.4 in general the transmission coefficient can be computed
numerically. However for the energy window |E| � EZ � 2ESO one can use the low
energy model in order to find analytical results. Indeed using the low energy expression
for the field (3.64), the stationary field operator Ansatz can be written in each region as

Ψ̂E(x) =



(
e2i kSOxζ↑(x) + η↑(x)
e−2i kSOxζ↓(x) + η↓(x)

)
x < −d/2

ĥE√
2

(
1
1

)
eik2,Ex + ĝE√

2

(
1
1

)
e−ik2,Ex + d̂E√

2

(
1
−1

)
eκ2,Ex + f̂E√

2

(
1
−1

)
e−κ2,Ex |x| < d/2

(
e−2i kSOxζ↑(x) + η↑(x)
e2i kSOxζ↓(x) + η↓(x)

)
x > d/2

(4.64)
where ĥE , ĝE , d̂E and f̂E are mode operators and k2,E = kZ

√
1 + E/EZ , κ2,E = kZ

√
1− E/EZ .

This field operator can be used in matching conditions (4.62)-(4.63), which in turn can
be rewritten for the interface at x0 = −d/2 as

e−ikSOdζ̂↑(−d/2) + η̂↑(−d/2) = Ψ̂E↑(−d/2)
e+ikSOdζ̂↓(−d/2) + η̂↓(−d/2) = Ψ̂E↓(−d/2)
+ikSO

[
e−ikSOdζ̂↑(−d/2)− η̂↑(−d/2)

]
= ∂xΨ̂E↑(−d/2)

−ikSO
[
e+ikSOdζ̂↓(−d/2)− η̂↓(−d/2)

]
= ∂xΨ̂E↓(−d/2)

(4.65)

and for the interface x1 = +d/2 as

Ψ̂E↑(d/2) = e−ikSOdζ̂↑(d/2) + η̂↑(d/2)
Ψ̂E↓(d/2) = e+ikSOdζ̂↓(d/2) + η̂↓(d/2)
∂xΨ̂E↑(d/2) = −ikSO

[
e−ikSOdζ̂↑(d/2)− η̂↑(d/2)

]
∂xΨ̂E↓(d/2) = +ikSO

[
e+ikSOdζ̂↓(d/2)− η̂↓(d/2)

] (4.66)

To be consistent with the limit of low energy physics, we have neglected the derivatives
∂xζ̂ and ∂xη̂ of the slowly varying fields with respect to the term proportional to kSO,
since they involve wavevectors |q| � kSO. The boundary conditions can be reformulated
in a matrix form as

P


ζ̂↑(−d/2)
ζ̂↓(−d/2)
η̂↑(−d/2)
η↓(−d/2)

 = V(−d/2)


ĥ
ĝ

d̂

f̂

 (4.67)

V(d/2)


ĥ
ĝ

d̂

f̂

 = Q


ζ̂↑(d/2)
ζ̂↓(d/2)
η̂↑(d/2)
η̂↓(d/2)

 , (4.68)
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with

P =


e−ikSOd 0 1 0

0 eikSOd 0 1
kSOe

−ikSOd 0 −kSO 0
0 −kSOeikSOd 0 kSO

 , (4.69)

Q =


e−ikSOd 0 1 0

0 eikSOd 0 1
−kSOe−ikSOd 0 kSO 0

0 kSOe
ikSOd 0 −kSO

 (4.70)

and

V(x) = 1√
2
×


eik2,Ex e−ik2,Ex eκ2,Ex e−κ2,Ex

eik2,Ex e−ik2,Ex −eκ2,Ex −e−κ2,Ex

ik2,Ee
ik2,Ex −ik2,Ee

−ik2,Ex κ2,Ee
κ2,Ex −κ2,Ee

−κ2,Ex

ik2,Ee
ik2,Ex −ik2,Ee

−ik2,Ex −κ2,Ee
κ2,Ex κ2,Ee

−κ2,Ex

 (4.71)

The correspondence of the low energy fields in the outer regions can be found by rewriting
the boundary conditions Eq.(4.65)-(4.65) in a transfer matrix form (4.43)

ζ̂↑(d/2)
ζ̂↓(d/2)
η̂↑(d/2)
η̂↓(d/2)

 = ME


ζ̂↑(−d/2)
ζ̂↓(−d/2)
η̂↑(−d/2)
η̂↓(−d/2)

 (4.72)

where ME = Q−1V(d/2)V−1(−d/2)P is a transfer matrix that depend on energy E and
the length of the central region d through two dimensionless parameters kZd and kSOd.

We consider for simplicity the middle of the gap, E = 0, which turns out to be a
representative value for the entire low energy range |E| � EZ . Notably in the case of
deep Rashba dominated regime kZd � kSOd, we can treat kZd as a small parameter,
while retaining a finite value for kSOd. One can thus expand the transfer matrix ME=0 in
powers of kZd, up to O((kZd)4) and find

M0 '



ikSOd/2 A (1− ikSOd/2)eikSOd B

A∗ −ikSOd/2 B∗ (1 + ikSOd/2)e−ikSOd

(1 + ikSOd/2)e−ikSOd −B −ikSOd/2 A∗e2idkSO

−B∗ (1− ikSOd/2)eikSOd Ae−2ikSOd ikSOd/2


(4.73)

where

A = i
−6 + kSOd(kSOd+ 6i)

12kSOd
e2idkSO(kZd)2 (4.74)

B = −i(kSOd)2 + 6
12kSOd

eikSOd(kZd)2 (4.75)
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Notably the entries that couple spin-↑ to spin-↓ components are proportional to A, B
and therefore are of the order O((kZd)2). Thus, these terms can be neglected in the limit
kZd� 1 with respect to other entries, which order is O(1). Therefore the transfer matrix
can be approximated as

M0 '


ikSOd2 0 (1− ikSOd2 )eikSOd 0

0 −ikSOd2 0 (1 + ikSOd2 )e−ikSOd
(1 + ikSOd2 )e−ikSOd 0 −ikSOd2 0

0 (1− ikSOd2 )eikSOd 0 ikSOd2

 .

(4.76)
One can immediately recognize the similarity between Eq.(4.76) and the transfer matrix
of the massless+massive Dirac model Eq.(4.50), discussed above. The correspondence
can be explicitly highlight by identifying β↑ = −β↓ = kSOd/2, χ↑ = −χ↓ = kSOd and
γ↑ = γ↓ = ν↑ = ν↓ = 0. In this way, whenever the central region can be considered
much shorter compared to the Zeeman wavelength lZ = k−1

Z characterising locally the
wavefunction therein, the transfer matrix M0 does not couple the spin components of
outer regions and becomes independent of the Zeeman energy EZ . However it still couples
massless and massive modes and still depends on kSOd. This parameter represents the
ratio between the crossover region length d and the spin-orbit length lSO = k−1

SO, and may
be finite because of the deep Rashba-dominated regime kZ � kSO.

0 1 2 3 4 5 6 7 8 9 10
kSOd

0.0

0.5

1.0

T0

Figure 4.4: The transmission coefficient (4.77), plotted as a function of kSOd, covers the entire
range T0 ∈ [0,1].

In analogy with the Eq.(4.56) one obtains the transmission coefficient related to the
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4 – The Dirac paradox and its realization with nanowires

transfer matrix (4.76) as

T0 = (kSOd)2

(1 + (kSOd/2)2)2 , (4.77)

As a function of kSOd, T0 varies over the full range T0 ∈ [0,1], as shown in Fig.4.4. For
small values kSOd � 1 the transmission is low, T0 ∼ (kSOd)2, whereas for finite values
of kSOd we note from Fig.4.4 that T0 increases, and a perfect transmission T0 = 1 is
obtained for kSOd = 2. Then, for large values of kSOd the transmission decreases again
as T0 ∼ 16/(kSOd)2.

4.3.1 Transmission coefficient in the case of InSb
Let us now consider the particular implementation of the Rashba NWwith InSb, where the
effective electron mass is m∗ = 0.015me. Two NW regions are coupled with two different
metallic gates, which induce opposite RSOC signs, and are separated by a crossover
region with length d = 100nm and with a negligible RSOC. The numerical results of
the conductance G/G0 at midgap (E = 0) is shown, in units of the conductance quantum
G0 = e2/h, as a function of the spin-orbit energy ESO in Fig.4.4(a) Each solid lines
corresponds to a different value of the Zemman energy EZ . The dashed curve corresponds
to the analytical solution (4.77) found in the low-energy limit, where external regions are
effectively described by the massless+massive Dirac model. In particular for ESO → 0 the
exact transmission coefficient tends to 1. This is because in this limit all three NW regions
are characterized by exactly same regime, i.e. Zeeman dominated regime. However, as
soon as spin orbit energy becomes sufficiently large to make the outer regions enter the
deep Rashba dominated regime (2ESO � EZ) all the curves converge to the low-energy
limit Eq.(4.77), independently on the particular value of Zeeman energy. This is indeed a
hallmark of the Dirac paradox regime. As we have discussed, in this case the transmission
takes place even without the spin-flip processes at the interface by the mediation of the
massive modes localized at the interface. In Fig.4.4(b) we display the same plot, zoomed
to a realistic range of spin orbit energy values, i.e. up to ESO = 0.5meV. We fix the
maximum Zeeman energy to be EZ = 0.1meV, so that the Rashba dominated regime in
outer region can be reached. Again, as ESO increases, all curves merge to the analytical
result obtained with the massless+massive model (dashed curve).

In conclusion, the 1D Dirac paradox configuration can be realized with a spin-orbit
NW that is suitably coupled to two gates, and its linear conductance G can be tuned over
a large range of values by modulating the spin orbit energy. This can be realistically done
via the gate voltage.
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0 1 2 3 4 5 6 7 8 9 10
ESO[meV]

0.0

0.5

1.0

G/G0

(a)

EZ = 0.1meV

EZ = 0.05meV

EZ = 0.01meV

EZ = 0.005meV

massless+massive
Dirac model

0.0 0.1 0.2 0.3 0.4 0.5
ESO[meV]

0.0

0.5

1.0

G/G0

(b)

EZ = 0.1meV

EZ = 0.05meV

EZ = 0.01meV

EZ = 0.005meV

massless+massive
Dirac model

Figure 4.5: The Dirac paradox configuration realized with a InSb NW setup where two outer
gated regions are characterized by opposite RSOC and the central region has a width d = 100 nm.
The midgap conductance G, obtained from the numerically exact solution with the profile (4.61),
is plotted in units of the conductance quantum G0 as a function of the spin orbit energy, for
different values of the external magnetic field EZ (solid curves). At each value of EZ , when
the Rashba-dominated regime (2ESO � EZ) is reached, the various solid curves all tend to the
dashed curve describing the result Eq.(4.77), obtained in the low energy limit from the effective
massless+massive Dirac model. Panel (b) is a zoom of panel (a) in the regime of spin-orbit
values that are realistic with present gating techniques.
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Chapter 5

Conclusions

In this thesis I have investigated the coherent electron transport in a nanowire with spin-
orbit coupling. These systems are currently on the spotlight of Condensed matter physics,
in view of their technological versatility and their potential application in various research
areas, ranging from topological systems to quantum information and quantum engines.

In the first chapter I have reviewed the origin of the spin-orbit coupling from the Dirac
Equation, recalling its implications—– on atomic physics and on solid state systems. I
have specifically discussed the Rashba spin-orbit coupling (RSOC), which arises from the
structural inversion asymmetry present in various semiconductor heterojunctions, includ-
ing nanowires (NWs) on a substrate.

In the second chapter I have revisited the main aspects of quantum mesoscopic physics,
i.e. the regime where quantum coherence of electron waves is preserved. I have briefly
reviewed the Scattering Matrix formalism developed by Landauer & Büttiker, which allows
to derive a general expression of the current through a mesoscopic system, relating the
conducting properties to its Scattering matrix.

I have then combined the ingredients presented in Chapters 1 and 2 to analyze the
coherent transport in a NW with RSOC exposed to an additional magnetic field applied
along the NW axis. The interplay between the Rashba and Zeeman terms is known to
imply non-trivial spin properties for the energy spectrum and the eigenstates of the NW.
Depending on the value of the spin-orbit energy ESO and the Zeeman splitting energy EZ ,
two relevant regimes can be identified: The Zeeman dominated regime (ESO < 2EZ) and
the Rashba dominated regime (2EZ < ESO), as shown in Fig.3.2. In particular, in the
latter regime the propagating states inside the magnetic gap (|E| < EZ) are helical, i.e.
they are characterized by spin-momentum locking, and are described by a massless Dirac
model.

While most theoretical approaches in the literature consider the NW as infinitely long
and with a homogeneous RSOC, in a realistic setup the NW has a finite length, it is con-
tacted to electrodes (reservoirs) and coupled to metallic gates, which enable one to locally
control the RSOC in different NW portions. In order to take these aspects into account, I
have adopted an inhomogeneous RSOC model that was recently used in the group of my
supervisor to predict equilibrium properties of a NW coupled to two metallic electrodes. I

119
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have extended the application of this model to investigate the out of equilibrium transport
properties of the NW.

This original research work is illustrated in the second part of Chapter 3 and in Chap-
ter 4. In particular, in Chap.3.2, I have applied the Landauer-Büttiker formalism to
compute the conducting properties of a NW with a piecewise constant RSOC profile.
Specifically, I have combined my analytical calculations of the boundary matrix stemming
from the Heisenberg equation with a numerical code I have written in Python to determine
the Scattering matrix of the inhomogeneous NW. Thereby I could extract the NW con-
ductance and its dependence on the energy, the RSOC and magnetic field. This approach
is quite general and can be applied to analyze various configurations. For definiteness,
I have focussed on a few physically relevant cases. The results can be summarized as
follows:

1) Single Interface between two NW portions with different RSOC. In this case I have
pointed out that the transmission strongly depends on the relative sign of the RSOC in
the two regions. Specifically, for equal RSOC signs the transmission across the interface
is practically perfect, even when the two regions are in opposite regimes (e.g. Zeeman and
Rashba dominated) (see Fig.3.9(a)). This is due to the support of evanescent modes that
allow the wavefunction spin matching at the interface that the propagating modes alone
cannot guarantee. In contrast, when the RSOC takes opposite signs across the interface,
the conductance gets suppressed with increasing the spin-orbit energy (see Fig.3.9(b));

2) Finite length NW contacted to metallic leads. In this case the finite length of the
NW determines an inhomogeneity of the RSOC at the NW/lead contacts, and makes the
NW behave like a sort of spin-dependent Fabry-Pérot interferometer for electron waves
(see Fig.3.13). The conductance thus depends on the constructive/destructive interference
effects of the electron waves, determined by the ratio of the NW length to the electron
wavelength. In particular, when the NW length is comparable or longer than the spin-
orbit length, i.e. for strong RSOC, the transmission coefficients acquires a non monotonic
behavior (see Fig.3.14(b) and (c));

3) “Magnetic barrier configuration”, where two gated NW portions with different RSOC
are separated by a distance d of purely Zeeman coupling (see Fig.3.15). The behavior of
the conductance G significantly depends on the relative sign of the RSOC in the two
regions and on the distance between them.In particular, while for short separation one
recovers the results of the single interface problem, i.e. an almost perfect conductance for
equal RSOC and a conductance suppression for opposite RSOC signs (see Fig.3.16(a)), for
larger separation the electron spin has sufficient spatial room to re-adapt to the different
orientation imposed by the opposite RSOC sign, and the behaviour of the conductance is
energy dependent but almost identical in both cases of equal and opposite RSOC signs,
Fig.3.16(c).

Finally, in Chapter 4 I have investigated the Dirac paradox problem and its imple-
mentation with NWs. The paradox consists in the fact that, at the interface between
two massless Dirac models with opposite helicity, a transversally impinging electron can
seemingly neither be transmitted nor reflected, due to the locking between spin and mo-
mentum (see Fig.4.1). As compared to the higher dimensional cases previously analyzed
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in the literature, the paradox in one spatial dimension is more interesting, since electrons
cannot leak along the interface. Thus, in the first part of Chapter 4 I have discussed this
case on general grounds, analyzing various models for interfaces between Dirac states with
opposite helicity. I have first shown that models involving purely massless Dirac modes
lead to either no solution of the paradox (i.e. it is impossible to construct eigenstates in
the form of a scattering state), or to a trivial solution of the paradox (the interface directly
introduces spin-flip processes). Then, by introducing a model involving both massless and
massive Dirac modes (see Fig.4.2), I have shown that, despite direct spin-flip processes
at the interface are forbidden, one obtains a non-trivial solution of the Dirac paradox,
where properly defined scattering state solutions are possible. Indeed the transmission of
an incoming massless electron impinging with spin-↑ into an outgoing electron with spin-↓
is accomplished indirectly, assisted by massive modes that, despite carrying no current
for energies inside their gap, guarantee the spin component matching (see Fig.4.3). In
this way the transmission coefficient depends in general on three parameters and is thus
tunable from 0 to 1.

In the second part of Chapter 4, I have then shown that this model for the one-
dimensional Dirac paradox can be realized in NWs. Notably, while the Dirac paradox con-
figuration would be extremely hard to realize with the helical states of a two-dimensional
topological insulator, in NWs this is possible because the helicity of the helical states
emerging in a NW in the strong Rashba-dominated regime is determined by the sign
of the RSOC, which in turn can be controlled by suitable gates in two NW portions.
For definiteness, I have considered the physically realistic parameters for a InSb NW.
I computed numerically the exact transmission coefficient, which in general depends on
the spin-orbit energy ESO, the Zeeman energy EZ and the distance between the two re-
gions with opposite RSOC sign. However, as the spin-orbit energy increases and the NW
reaches the Rashba-dominated regime, the Dirac paradox configuration can be realized.
In this case the dependence on the Zeeman energy is lost and the transmission coefficient
only depends on the spin-orbit energy (solid curves of Fig.4.5) and perfectly agrees with
the result obtained from the massless+massive Dirac model introduced in the first part
of Chapter 4 (dashed curve of Fig.4.5). This result shows that, in contrast to the usual
low-energy model adopted in the literature for NW, which only involves massless helical
modes, in an inhomogenous configuration like the Dirac paradox the actual low-energy
properties are described by both massless and massive Dirac modes, near the NW Fermi
points k ∼ ±2kSO and k ∼ 0, respectively. These results are described in a research article
that is currently under review: L. Gogin et. al “The Dirac paradox in 1+1 dimensions
and its realization with spin-orbit coupled nanowires”, cond-mat arXiv:2109.07355
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Appendix A

Energy relabelling of
eigenfunctions

The eigenfunctions of the NW with homogeneous RSOC found in section 3.1 are labeled by
a wave vector. To treat the inhomogeneous RSOC case, the eigenfunctions are constructed
by matching the eigenfunctions of the various regions. However, in order to apply the
Scattering Matrix Formalism, we first need to re-express the eigenfunctions in terms of
energy, since this is the quantity that is preserved in the mesoscopic regime. In this
Appendix we provide some details about such relabelling.

Propagating modes

ψk,n(x) = χn(k)eikx (A.1)
where n = {1, 2} and energy dispersion relation is

E1(k) = ε0k −
√
E2
Z + 4ε0kESO (A.2)

E2(k) = ε0k +
√
E2
Z + 4ε0kESO (A.3)

with ε0k = ~2k2

2m∗ and k ∈ R. The spinor eigenvectors can be written as

χ1(k) =
(

cos( θ(k)
2 )

sin( θ(k)
2 )

)
χ2(k) =

(
− sin( θ(k)

2 )
cos( θ(k)

2 )

)
(A.4)

where

cos
(
θ(k)

2

)
=

√
1 + cos(θ(k))

2 (A.5)

sin
(
θ(k)

2

)
= sgn(h⊥)

√
1− cos(θ(k))

2 (A.6)

and

cos(θ(k)) = 2sgn(αk)
√

ε0kESO
ε0kESO + E2

Z

(A.7)
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Evanescent modes

These states can be obtained with mapping k → −iκ and eigenfunction reads

ψκ,n(x) = ξn(κ)eκx (A.8)

where n = {1, 2} and energy dispersion

E1(κ) = −ε0κ −
√
E2
Z − 4ε0κESO (A.9)

E2(κ) = −ε0κ +
√
E2
Z − 4ε0κESO (A.10)

with ε0κ = ~2κ2

2m∗ and κ ∈ R. The spinor part of evanescent state may be written as

ξ1(κ) = 1√
2

(
e−i arctan(sinh(θ(κ)))

1

)
ξ2(κ) = 1√

2

(
−ei arctan(sinh(θ(κ)))

1

)
(A.11)

where

sinh(θ(κ)) = sgn(ακ)2
√

ε0κESO
E2
Z − 4ε0κESO

(A.12)

As pointed out in the chapter 2, in order to investigate the conducting properties the
eigenfunctions should be labeled by energy. In this appendix we present the complete
discussion of the inversion of the dispersion relation for propagating as well as evanescent
modes

A.1 Propagating modes
First of all let us consider the propagating modes. The dispersion relation (A.2- A.3) can
be rewritten as

E1(k)− ε0k = −
√
E2
Z + 4ε0kESO (A.13)

E2(k)− ε0k =
√
E2
Z + 4ε0kESO (A.14)

Raising both side of equation above to the second power, one loose the track of the
correspondent band and for a given energy obtain

ε0k
2 − 2(E + 2ESO)ε0k + E2 − E2

Z = 0 (A.15)

that, in turn, can be easily solved and wave vector can be expressed as function of energy

k±(E) =
√

2m
~

√
E + 2ESO ±

√
4EESO + 4E2

SO + E2
Z (A.16)

with k±(E) ∈ R+, however this condition is not true for all energy ranges and in order to
find the correct domain of validity one have to introduce the constrain for k+(E)

E + 2ESO +
√

4EESO + 4E2
SO + E2

Z > 0 (A.17)
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Rashba regime EZ < 2ESO Zeeman regime 2ESO < EZ

E < −ESO
(
1 + E2

Z

4E2
SO

)
No real solutions No real solutions

−ESO
(
1 + E2

Z

4E2
SO

)
< E < −EZ k±(E) ∈ R No real solutions

−EZ < E < EZ k+(E) ∈ R k+(E) ∈ R
E > EZ k±(E) ∈ R k±(E) ∈ R

Table A.1: Real solutions of k±(E) for each energy range in Rashba dominated and
Zeeman dominated regimes.

and for k−(E)
E + 2ESO −

√
4EESO + 4E2

SO + E2
Z > 0 (A.18)

the solutions of which can be found on the Table A.1
In this way the wave vector for each fixed energy have been found, however it is still

does not clear which spinor eigenvector should be used. The correspondence of the energy
band and wave vector can be found by substitution of a given wave vector kn(E) in the
the dispersion relation (A.2-A.3) and finding the combination of indices (n,m) such that
satisfy

Em(kn(E)) = E (A.19)
the summary of the solution can be found in Table A.2

Rashba regime EZ < 2ESO Zeeman regime 2ESO < EZ

−ESO
(
1 + E2

Z

4E2
SO

)
< E < −EZ

k+(E) belong to E1
k−(E) belong to E1

No real solutions

|E| < EZ k+(E) belong to E1 k+(E) belong to E1

E > EZ
k+(E) belong to E1
k−(E) belong to E2

k+(E) belong to E1
k−(E) belong to E2

Table A.2: The real solutions of k±(E) and their corresponding energy bands

Once the expression of the wave vector in function of energy have been found, one
can use this results to express the spinor in term of energy ass well. Indeed taking the
absolute value of Eq.(A.13, A.14) one can find√

E2
Z + 4Esoε0kη(E) =

∣∣∣∣2Eso + η
√

4EEso + 4E2
so + E2

Z

∣∣∣∣ (A.20)

in this way Eq.(A.7) can be rewritten as

cos(θ(±kη(E))) = ±2sgn(α)

√
ESO

(
E + 2ESO ±

√
4EESO + 4E2

SO + E2
Z

)
∣∣∣2Eso + η

√
4EEso + 4E2

so + E2
Z

∣∣∣ (A.21)

finally combining Eq.(A.21) with Eq.(A.5) one can obtain the expressions for cos( θ(±kη(E))
2 )

and sin( θ(±kη(E))
2 ) reported in Eqs.(3.77, 3.78), that in turn can be used for the spinors
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(3.76)

χ1(±kη(E)) =
(

cos( θ(±kη(E))
2 )

sin( θ(±kη(E))
2 )

)
χ2(±kη(E)) =

(
− sin( θ(±kη(E))

2 )
cos( θ(±kη(E))

2 )

)
(A.22)

In conclusion let us introduced the group velocity that in general is defined as

v1(k) = ∂

~∂k
E1(k) = ~

m∗
k

1− 2ESO√
E2
Z + 4ε0kESO

 (A.23)

v2(k) = ∂

~∂k
E2(k) = ~

m∗
k

1 + 2ESO√
E2
Z + 4ε0kESO

 (A.24)

that with help of the Eq.(A.16, A.20) can be rewritten in term of energy

v1(±kη(E)) = ±kη(E) ~
m∗

∣∣∣2Eso + η
√

4EEso + 4E2
so + E2

Z

∣∣∣− 2ESO∣∣∣2Eso + η
√

4EEso + 4E2
so + E2

Z

∣∣∣ (A.25)

v2(±kη(E)) = ±kη(E) ~
m∗

∣∣∣2Eso + η
√

4EEso + 4E2
so + E2

Z

∣∣∣+ 2ESO∣∣∣2Eso + η
√

4EEso + 4E2
so + E2

Z

∣∣∣ (A.26)

One can observe that if k+(E) ∈ E1 the numerator of Eq.(A.25) can always be simplified
as ∣∣∣∣2Eso +

√
4EEso + 4E2

so + E2
Z

∣∣∣∣− 2ESO =
√

4EEso + 4E2
so + E2

Z (A.27)

on the other hand, for E < −EZ (i.e. k−(E) ∈ E1), it can be shown that 2Eso −√
4EEso + 4E2

so + E2
Z > 0 and the numerator of Eq.(A.25) can be expressed as∣∣∣∣2Eso −√4EEso + 4E2

so + E2
Z

∣∣∣∣− 2ESO = −
√

4EEso + 4E2
so + E2

Z (A.28)

Instead in the case E > EZ (i.e. k−(E) ∈ E2) one finds 2Eso−
√

4EEso + 4E2
so + E2

Z < 0
and the numerator of Eq.(A.26) can be simplified as∣∣∣∣2Eso −√4EEso + 4E2

so + E2
Z

∣∣∣∣+ 2ESO =
√

4EEso + 4E2
so + E2

Z (A.29)

In conclusion we can summarise the above results by introducing the group velocity as a
function of energy

vη,±(E) = ±sgn((E+EZ)(1−η)+(1+η))~kη(E)
m∗

√
4EEso + 4E2

so + E2
Z∣∣∣2Eso + η

√
4EEso + 4E2

so + E2
Z

∣∣∣ (A.30)

the absolute value of which |vη,±(E)| = vη(E) is given in Eq.(3.75).
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A.2 Evanescent modes
In analogy with the propagating modes the dipersion relation of evanescent modes (A.9,
A.10) can be inverted as well and wave vector can be expressed as function of energy

κ±(E) =
√

2m
~

√
−(E + 2ESO)±

√
4EESO + 4E2

SO + E2
Z (A.31)

with κ1(E), κ2(E) ∈ R+ and the correct domain is fixed with constrain for κ+(E)

−(E + 2ESO) +
√

4EESO + 4E2
SO + E2

Z > 0 (A.32)

and for κ−(E)
−(E + 2ESO)−

√
4EESO + 4E2

SO + E2
Z > 0 (A.33)

which solution are summarized in Table A.3

EZ < 2ESO 2ESO < EZ

E < −ESO
(
1 + E2

Z

4E2
SO

)
No real solutions No real solutions

−ESO
(
1 + E2

Z

4E2
SO

)
< E < −EZ No real solutions κ±(E) ∈ R

−EZ < E < EZ κ+(E) ∈ R κ+(E) ∈ R
E > EZ No real solutions No real solutions

Table A.3: Real solutions of κ±(E) for each energy range and Regime.

In this way have been found the wave vector for each energy range however it is not
straightforward to which energy band belong each wave vector. This correspondence can
be found analogously with the case of propagation modes, namely for a given κn must be
found a set of indices (n,m) such that satisfy

En(κm(E)) = E (A.34)

Notably one find a subdivision of Zeeman dominated regime into 2 subranges namely weak
Zeeman dominated regime for 2Eso < EZ < 4Eso and strong Zeeman dominated regime
for 4Eso < EZ , that can be found in Table A.4.
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EZ < 2ESO 2ESO < EZ < 4ESO
−ESO

(
1 + E2

Z

4E2
SO

)
< E < −EZ No real solutions κ±(E) both belong to E1

−EZ < E − E2
Z

4ESO κ+(E) belong to E2 κ+(E) belong to E2

− E2
Z

4ESO < E < EZ κ+(E) belong to E1 κ+(E) belong to E1

4ESO < EZ

−ESO
(
1 + E2

Z

4E2
SO

)
< E < − E2

Z

4ESO κ±(E) both belong to E1

− E2
Z

4ESO < E < −EZ
κ+(E) belong to E2
κ−(E) belong to E1

−EZ < E < EZ κ+(E) belong to E2

Table A.4: The real solutions of κ±(E) and their corresponding spinor part of the wave-
function
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Appendix B

Current operator in the
presence of Rashba coupling.

As we have seen in Sec.3.1, in the case of Rashba nanowire the current operator turns
out to consist of 2 terms: the first one is the customary expression and can be called the
kinetic current (3.10), whereas the second term raises from spin orbit coupling

ĴSO = −α
~

Ψ̂†(x)σzΨ̂(x) (B.1)

In this way the total current operator can be expressed in term of spectrum as

Ĵ =
∫
dE

(
Ĵkin(E) + ĴSO(E)

)
(B.2)

where in analogy with the field operator each term is expressed as piecewise function for
each energy range and involve the square product of corresponding field operator (3.92,
3.93, 3.94) and their complex conjugate[23]

Ĵkin(E) = J
(1)
kin(E)Θ(E − EZ) + J

(2)
kin(E)Θ(EZ − |E|) + J

(3)
kin(E)Θ(EZ − E) (B.3)

ĴSO(E) = J
(1)
SO(E)Θ(E − EZ) + J

(2)
SO(E)Θ(EZ − |E|) + J

(3)
SO(E)Θ(EZ − E) (B.4)

For the sake of simplicity we consider the current only in the left lead and in the gap
energy range J (2)

kin(E), J (2)
SO(E).

Kinetic term. First of all let us to discuss the kinetic current contribution. Inside the
gap energy range current operator has relatively simple expression since there present only
one conducting channel

J
(2)
kin(E) = − i~

2m∗
ik1(E)

π~|v+(E)|

[
χT1 (k+(E))χ1(k+(E))â†1,E â1,E− (B.5)

− χT1 (−k+(E))χ1(−k+(E))b̂†1,E b̂1,E
]

(B.6)

129



B – Current operator in the presence of Rashba coupling.

observe that
χT1 (±kn(E))χ1(±kn(E)) = 1 (B.7)

in this way the kinetic term can be simplified as

J
(2)
kin(E) = ~

2m∗
k+(E)

π~|v+(E)|

[
â†1,E â1,E − b̂†E,1b̂1,E

]
(B.8)

SOC term. On the other hand the SOC term can be written

J
(2)
SO(E) = −α

~
1

2π~|v+(E)|

[
χT1 (k+(E))σzχ1(k+(E))â†1,E â1,E+ (B.9)

+ χT1 (−k+(E))σzχ1(k+(E))b̂†1,E b̂1,E
+ χT1 (−k+(E))σzχ1(k+(E))b̂†1,E â1,Ee

i2k+(E)x

+ χT1 (k+(E))σzχ1(k+(E))â†1,E b̂1,Ee−i2k+(E)x
]

observe that

χT1 (±k+(E))σzχ1(±k+(E)) = ± cos (θ(k+(E))) (B.10)
χT1 (±k+(E))σzχ1(±k+(E)) = 0 (B.11)

In this way the spin orbit term simplifies as

J
(2)
SO(E) = −α

~
cos (θ(k+(E)))

2π~|v+(E)| [â†1,E â1,E − b̂†1,E b̂1,E ] (B.12)

In conclusion the total current can be expressed

J
(2)
kin(E) + J

(2)
SO(E) =

k+(E)− kso cos
(
θ(k+(E))

)
2πm∗|v+(E)|

[
â†1,E â1,E − b̂†1,E b̂1,E

]
(B.13)

with kso = |α|m∗/~2. Recalling that

v+(E) = k+(E) ~
m∗

1− λkSO√
E2
Z + λ2k2

+(E)

 (B.14)

cos(θ(k+(E))) = λk+(E)√
E2
Z + λ2k2

+(E)
(B.15)

the total current in side the gap can be expressed

J
(2)
kin(E) + J

(2)
SO(E) = 1

2π~

[
â†1,E â1,E − b̂†1,E b̂1,E

]
(B.16)

It can be noticed that the current operator has exactly the form reported by Büttiker
in Eq.(2.65) in the presence of single channel[14, 16, 17]. Following a similar approach,
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one can also find the current contribution in the other energy ranges. In contrast to
the present case, however, due to the non orthogonality of the spinor components, the
kinetic and spin-orbit current terms alone result to be space dependent due to the mixed
terms b̂†n,E âm,E that couple the injected and reflected modes of different channels[23].
Nevertheless summing both terms, off diagonal contributions drop out, and one obtains
the customary Landauer-Büttiker formula. The main difference with the energy range
within the gap is the presence of the an additional channel due to the spin degree of
freedom and therefore one can summarise the result as

J(E) = 1
2π~

N(E)∑
n

[â†n,E ân,E − b̂
†
n,E b̂n,E ] (B.17)

with N(|E| < EZ) = 1 and N(|E| > EZ) = 2. In this way one can indeed take advantages
of results computed in previous chapter and compute the conducting properties with help
of the scattering matrix only.
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Appendix C

Details about the transfer
matrix.

In this appendix we provide details about boundary matrix M (j)(xi) from the Eq.(3.97)
of the single interface problem in the NW. The column of the transfer matrix are expected
to be 4-component vectors and are derived from the corresponding eigenfunction. I use
the simplified notation in order to represent aech column: as multiplication of a vector of
2× 2 matrix which entries are identity matrix σ0 and A(i)(x) = xσ0 − isgn(α(i))k(i)

SOσz in
this way a generic column reads

(
σ0

A(ik)

)
χeikx =


χ↑e

ikx

χ↓e
ikx(

ik − isgn(α(i))k(i)
SO)χ↑eikx(

ik + isgn(α(i))k(i)
SO)χ↓eikx

 (C.1)

From the discussion in previous chapter one can conclude that for each regimes must be
used different energies range according to which must be chosen eigenfunctions. However
in general can be identified in total 4 energies ranges nominated I), II), III), IV ). In
the case of Rashba dominated regime and Weak Zeeman regime this energy ranges are

I) − ESO

(
1 + E2

Z

4E2
SO

)
< E < −EZ (C.2)

II) − EZ < E − E2
Z

4ESO
(C.3)

III) − E2
Z

4ESO
< E < EZ (C.4)

IV ) EZ < E (C.5)
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On the other hand for Strong Zeenman regime must be used

I) − ESO

(
1 + E2

Z

4E2
SO

)
< E < − E2

Z

4ESO
(C.6)

II) − E2
Z

4ESO
< E < −EZ (C.7)

III) − EZ < E < EZ (C.8)
IV ) EZ < E (C.9)

EZ < 2ESO 2ESO < EZ < 4ESO 4ESO < EZ

I)

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(ik−)

)
χ1(k−)eik−x

4)
(

σ0
A(−ik−)

)
χ1(−k−)e−ik−x

1)
(

σ0
A(κ+)

)
ξ1(κ+)eκ+x

2)
(

σ0
A(−κ+)

)
ξ1(−κ+)e−κ+x

3)
(

σ0
A(κ−)

)
ξ1(κ−)eκ−x

4)
(

σ0
A(−κ−)

)
ξ1(−κ−)e−κ−x

1)
(

σ0
A(κ+)

)
ξ1(κ+)eκ+x

2)
(

σ0
A(−κ+)

)
ξ1(−κ+)e−κ+x

3)
(

σ0
A(κ−)

)
ξ1(κ−)eκ−x

4)
(

σ0
A(−κ−)

)
ξ1(−κ−)e−κ−x

II)

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(κ+)

)
ξ1(κ+)eκ+x

4)
(

σ0
A(−κ+)

)
ξ1(−κ+)e−κ+x

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(κ+)

)
ξ1(κ+)eκ+x

4)
(

σ0
A(−κ+)

)
ξ1(−κ+)e−κ+x

1)
(

σ0
A(κ+)

)
ξ2(κ+)eκ+x

2)
(

σ0
A(−κ+)

)
ξ2(−κ+)e−κ+x

3)
(

σ0
A(κ−)

)
ξ1(κ−)eκ−x

4)
(

σ0
A(−κ−)

)
ξ1(−κ−)e−κ−x

III)

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(κ+)

)
ξ2(κ+)eκ+x

4)
(

σ0
A(−κ+)

)
ξ2(−κ+)e−κ+x

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(κ+)

)
ξ2(κ+)eκ+x

4)
(

σ0
A(−κ+)

)
ξ2(−κ+)e−κ+x

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(κ+)

)
ξ1(κ+)eκ+x

4)
(

σ0
A(−κ+)

)
ξ1(−κ+)e−κ+x

IV)

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(ik−)

)
χ2(k−)eik−x

4)
(

σ0
A(−ik−)

)
χ2(−k−)e−ik−x

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(ik−)

)
χ2(k−)eik−x

4)
(

σ0
A(−ik−)

)
χ2(−k−)e−ik−x

1)
(

σ0
A(ik+)

)
χ1(k+)eik+x

2)
(

σ0
A(−ik+)

)
χ1(−k+)e−ik+x

3)
(

σ0
A(ik−)

)
χ2(k−)eik−x

4)
(

σ0
A(−ik−)

)
χ2(−k−)e−ik−x

Table C.1: All the column of the transfer matrix
(
M (j)(x)

)
m

where the number in each
cell is the column number m and the energy ranges I), II), III), IV) are given by equations
(C.2-C.5) for Rashba dominated regime and weak Zemman regime and by equation (C.6-
C.9) for Strong Zeeman regime
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