
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Visual approach to design and
development of event-based software for

industrial applications

Supervisor

Prof. Massimo PONCINO

Thesis Tutor

Dott. David BENEDETTI

Candidate

Gaetano GALASSO

April 2022

Abstract

The goal of this thesis is to develop a software capable of handling event-based
systems[1], providing the user the ability of modelling them thanks to an easy-to-use
Graphical User Interface and, then, allowing to generate final code representing
the system, which is editable by the user, if needed. The software, called GEM
(Generic Event-based Modeling), exploits the framework developed by the Zirak
s.r.l.[2] company, which provides the APIs to deal with an event-based system: it
allows the user to establish policies for event signalling, event dispatching and event
handling behaviour(s). The tool chosen to design and develop the software is the
Qt framework[3], given its C++ integration and its academic-use license, but also
for its ability to ease the handling of GUIs for software and its ability to connect
graphic and business worlds easily, through the usage of design facilities, such as
signal/slot paradigm. Currently, the developed User Interface does not provide all
the features offered by the GEM framework, but it will be possibly updated later.

Table of Contents

List of Figures iii

Acronyms vi

1 Introduction 1

2 Technical context and state of the art 5
2.1 State of the art . 5

2.1.1 Event-based systems . 5
2.1.2 Finite State Machine . 6
2.1.3 Toolkits to handle event-based systems and FSMs 11

2.2 Technical context . 14
2.2.1 Templates and Metaprogramming 14
2.2.2 Introduction to Qt . 15

2.3 Thesis goal . 17

3 Software Development 19
3.1 Generic Event-based Modeling framework 19

3.1.1 Features and objects . 20
3.2 Visual approach to software modeling 23

3.2.1 Architectural composition 23
3.2.2 Features and Use Cases . 27
3.2.3 Usage scenarios . 33
3.2.4 Development approach and issues found 47

4 Future works 53
4.1 Improvements to the framework . 53
4.2 Improvements to the GUI . 55

5 Conclusions 60

Bibliography 63

ii

List of Figures

2.1 Request-driven architecture as in [6]. 6
2.2 Event-based architecture as in [6]. 6
2.3 State machine handling button pressing as in [7]. 7
2.4 Switching light example modelled with Moore machine as in [7]. . . 8
2.5 Switching light example modelled with Mealy machine as in [7]. . . 8
2.6 Switching light example modelled with Harel statechart as in [7]. . . 10
2.7 Switching light example modelled with Harel statechart and com-

posite states as in [7]. 10
2.8 Switching light example modelled with Harel statechart and sub

diagrams as in [7]. 11
2.9 Differences between types of state machine described above as in [7]. 11

3.1 Diagram of design pattern MVC. 20
3.2 GEM User Interface architectural composition. 24
3.3 Drawing area of GEM User Interface. 25
3.4 Actions accessible from toolbar (1) and menu (2). 26
3.5 Actions accessible from state’s transitions window. 26
3.6 Use case diagram of GEM software. 28
3.7 Actions accessible from toolbar (1) and menu (2) in state machine

window. 30
3.8 Create a signaller: step 1. 33
3.9 Create a signaller: step 2. 34
3.10 Create a signaller: step 3. 34
3.11 Create a bind: step 1. 35
3.12 Create a bind: step 2. 36
3.13 Create a bind: step 3. 36
3.14 Show binds (objects): step 1. 37
3.15 Show binds (objects): step 2. 38
3.16 Show binds (queues): step 1. 39
3.17 Show binds (queues): step 2. 39
3.18 Create a transition: step 1. 40

iii

3.19 Create a transition: step 2. 41
3.20 Create a transition: step 3. 41
3.21 Create a transition: step 4. 42
3.22 Set guard actions: step 1. 43
3.23 Set guard actions: step 2. 43
3.24 Set guard actions: step 3. 44
3.25 Set guard actions: step 4. 44
3.26 Set entry actions: step 1. 45
3.27 Set entry actions: step 2. 46
3.28 Set entry actions: step 3. 46
3.29 Directory tree of generated code. 52

4.1 Protected sections in main.cpp file. 58

iv

Acronyms

ADT
Abstract Data Type

CAL
Code Abstraction Layer

FSM
Finite State Machine

GEM
Generic Event-based Modeling

GUI
Graphical User Interface

IoT
Internet of Things

OS
Operating System

PDA
Push-Down Automata

POD
Plain Old Data

REST
REpresentational State Transfer

vi

Chapter 1

Introduction

Nowadays, the software design has become very important for several industrial
fields and applications, since software can be the final product or the way to reach
a goal. All the industrial fields use software, from automotive to aerospace, from
gaming to building, and that is the reason why, more than 50 years ago, the
Software Engineering[4] born: its the principles apply on software development,
and in particular to design, develop, maintain, test and evaluate software.
Software engineering has been devised to deal with issues of low-quality software
projects. Problems arise when a software does not respect timelines, costs, and
some levels of quality. Software Engineering ensures that the application is made
consistently, correctly, on time, respecting costs and within requirements. The
software engineering demand also emerged to provide for the large rate of change
in user requirements and environment on which application can be work.
A software product is rated on how easily it can be used by the end-user and the
functionalities it offers. An application must achieve in the following areas:

• Operational: it tells how well a software works on operations like correctness,
functionality, efficiency, budget, usability, dependability and security.

• Transitional: it is fundamental when an application is shifted from one
platform/environment to another. So, portability, adaptability and reusability
are placed in this field.

• Maintenance: it specifies how well an application works in the changing
environment, so maintainability, modularity, scalability and flexibility belong
to this area.

Furthermore, to fit with all the areas above, Software development lifecycle needs to
be respected: it is a steps list in software engineering to develop software application.
They can be grouped into:

1

Introduction

• Software requirements
It is about the listing, analysis, specification and validation of software require-
ments. They can be of three types: functional, non-functional and domain
requirements. The first set indicates what the software should perform in
terms of features: for instance, for bank applications, functional requirements
could be like login, logout, send wire transfers, see payments history, etc. Non-
functional requirements deal with usability, security, reliability, performance,
maintainability, etc. Domain requirements consider the characteristics of a
certain domain of projects: in fact, the operational domain and environment
impose requirements on the system; so, the domain requirements can be new
functional or non-functional requirements, or constraints on the existing ones.

• Software design
It involves the process of defining the whole architecture (e.g., components,
interfaces, etc.) of a system. It deals with the interaction between a system
and its environment at a high level of abstraction (interface design), with the
main components of a system and their properties, interfaces and interactions
between them (architectural design) and with internal elements of the system
components, their relationships and algorithms (detailed design).

• Software construction
It is the main step of software development and groups coding/programming,
testing (unit and integration) and debugging together. However, during this
phase, testing is usually performed by the software developer while the software
is under developing, to decide if the just written code is ready for the next
step.

• Software testing
It is an empirical phase, in which software is subjected to investigation to
inform stakeholders about the product quality. It is performed by staff or
developers other than the one(s) who developed and wrote the code.

• Software maintenance
It is the last and usually longest step since it refers to the after-shipping
support to the costumer(s). It takes care of software maintenance to correct
possible faults and to update it to enhance features and performances. Usually,
this step requires more than 40% of the project cost.

Software engineering generally starts with the first step, when a stakeholder submits
his requirements to a service provider organization. The software development
team isolates user, system and functional requirements. The requirement is col-
lected by conducting interviews, studying the existing system or referring to a
database. After that, the team checks if the software can be made to satisfy all

2

Introduction

the requirements of the stakeholder. Then, the developer(s) establishes a schedule
of his plan. System analysis also involves a study of software product limitations.
As well as requirement and analysis, a software design is made. The software
design implementation starts with code programming in a proper programming
language. Software testing is done while coding by the developers and further tests
are performed by testing experts.
All the methods and steps just seen above describe the Software development and
Software engineering; however, Software engineering is not a set of static and canon-
ical methods only, but the creative aspect is very important, from requirements
drawing up to code writing.
Software Engineering is a very wide computer science sector that is exploited in
different fields, and a lot of actors already present or just entered into the market
bring their know-how.
One of these actors is the Zirak s.r.l. company, which devised this thesis project:
it was born in 2000 from the grouping of different companies working on the IT
field, and in particular on some different business models, which include on-site
consulting, turnkey solutions and R&D (that may lead to final products); it has
several autonomously managed departments, such as Automotive, IoT and Soft-
ware, and it has been able to reach two important goals, innovation and costumer
satisfaction.

Before talking about reasons that led to devise this thesis project, an explanation
about event-based systems is needed; an event-based system is a programming
paradigm for application design, in which the program flow is determined by an
external event, the main element of the solution: the event producer, that detects
the event, notifies it without knowing how it will be consumed and, then, the event
consumer, that receives the event notification, elaborates it in a asynchronous way;
this is opposed to a request-driven model, in which the consumer makes repetitive
requests until the provider notifies the event.

In 2021, Zirak designed and developed a framework to design event-based systems:
they are systems replying to events generated from the outside (e.g., the environ-
ment, other systems connected). They are present in a lot of industrial fields and
applications: for instance, car sensors continuously generate events that are handled
from the control units to perform several computations (e.g., the cruise control
system); in avionic systems, autopilots exploit event-based system paradigm to
control aircrafts, reading their current position, and then controlling a flight control
system to guide the vehicle; in smartphone operating systems, the event-driven
paradigm is used to handle all the events coming from the user or from the OS
itself (e.g., touchscreen, voice assistant, app notifications, etc.). In particular, the
framework developed by Zirak born thanks to the experience of the company in
the Automotive sector, but it could be exploited for various industrial fields.

3

Introduction

Since the framework could be used writing code only, Zirak thought to develop a
User Interface to let the user defining its own system more easily, without dealing
straight with the framework APIs and helping the user to save time in system
deployment thanks to the automatic generation of code that implements what the
user defined visually. All these reasons led Zirak to develop a software able to
overcome all the inconvenience of the framework usage (e.g., code writing, frame-
work knowledge), and this is what the thesis aims at. In addition to the User
Interface developing, the goal of this thesis is to lighten the workload in some
Software engineering phases: certainly, from a time point of view, software design
and construction phases benefit from a GUI that let the developer to model a
system and generate automatically the code that defines it; even integration, that
is part of the construction phase, can benefit from the developed GUI, thanks to
the ability of the software to create a unique system that integrates together all the
defined components; then, software configuration control can benefit from the GUI
for the same reasons described about the two phases above since, when modifying
the system, the developer only has to modify the system through the GUI and
generate the code again; finally, software maintenance phase, for the same reasons
described regarding the software configuration control step, can benefit from the
GUI, since it let the developer to modify the system more easily with respect to
modify the system using the framework (i.e., C++ code).
Software engineering and its phases can be deepen exploiting the Guide to the
Software Engineering Body of Knowledge (SWEBOK)[5].

The thesis is composed by four chapters (leaving out this one), starting from an
overview and going deeper and deeper: in the next chapter (Chapter 2) an overview
of the technical context and state of the art is given, explaining what event-based
systems and state machines are, and seeing approaches, paradigms and frameworks
used to develop the thesis project (i.e., metaprogramming and Qt framework);
then, in Chapter 3, the framework and GUI are introduced, listing all the features
they provide to show how powerful they can be, and explaining some details about
software designing and implementation; in Chapter 4, possible improvements on
both framework and User Interface are listed; finally, in Chapter 5, a recap will
summarize the thesis work, giving personal comments about the whole experience
too.

4

Chapter 2

Technical context and state
of the art

2.1 State of the art
2.1.1 Event-based systems
According to Red Hat[1], event-driven system is a programming paradigm for
application design, in which the program flow is determined by an external event,
the main element of the solution. This is opposed to a request-driven model (we
will see the differences at the end of this subsection).

Nowadays, there are many software designs based on event-driven architecture.
They can be created in any programming language because event-driven is not a
programming language, but a programming paradigm. An event-driven system is
asynchronous since event producers do not know who or what is listening for an
event, and the event does not know what the effects of its occurrence are.

An event, that is the core of this type of architecture, is any important occurrence
or change in state for system hardware or software. Its source can be an internal
or external input, like a mouse click or a sensor output. An event must not be
confused with its notification, which is sent by the system to notify other parts of
the system that an event has occurred.

Event-driven systems are based on communication between event producers and
consumers. The former set detects the event and notifies it, not knowing how it
will be consumed. Once an event has been detected, it is communicated to the
consumers through the so-called event channels, where the event is processed in an
asynchronous way, and then the consumer may elaborate it. The platform that

5

Technical context and state of the art

processes the event executes the right response to it, sending the event to the
correct consumer(s). It is a very important step since it is where the occurrence of
an event is visible.

So, the event-driven architecture helps to create flexible systems that can adapt to
changes and make decisions in real time.

Finally, let’s see the main difference between a REpresentational State T ransfer
system (REST) and an Event-based system: the first one is based on repetitive
requests until the provider notifies the expected response, following a polling stategy,
which may be resource-consuming (Figure 2.1); instead, the latter is based on the
event, so the consumer subscribes to the event notification and waits for it (Figure
2.2).

Figure 2.1: Request-driven architecture as in [6].

Figure 2.2: Event-based architecture as in [6].

2.1.2 Finite State Machine
According to Yakindu documentation[7], a state machine is a behavioural model. It
is composed of a finite number of states and that is the reason why it is also called
finite-state machine (FSM). The machine performs transitions between states and
produces outputs based on the current state and a given input. There are two main
types of state machines: Mealy and Moore. Then, there exists a more complex
type, defined in the Harel model. In order to better understand the outcome of
this thesis, we provide an overview about what these types have in common and
what are their differences.

6

Technical context and state of the art

Figure 2.3: State machine handling button pressing as in [7].

The basic objects of a state machine are states and transitions. A state is a
condition of a system depending on previous inputs and it causes a reaction on
following inputs. The state from which the system computation starts is called
the initial state. A transition defines for which input the machine changes state
and what will be its destination state. Depending on the state machine type, states
and/or transitions produce outputs. Consider the state machine described in Figure
2.3: it has two states, Off and On. Off is the initial state, as indicated by the
arrow, so it is activated when the state machine starts. The edges between the
states show the state transitions. They define which kind of input triggers a state
change. Here, the active (current) state is changed from Off to On for the input
buttonpressed, and back again to Off for the same one. We will extend the simple
switch example seen above to highlight the differences between Mealy, Moore and
Harel state machines.

• Moore Machine
As said before, there are two main types of FSM. One of these is the Moore
machine, named by its inventor Edward Moore in 1956, when the concept
was introduced. In this kind of machines, states produce outputs, and the
output is determined by the current state only. The switch example seen above
(Figure 2.3) has been changed into a light switch with different brightness levels
(Figure 2.4). The light switch has two buttons: ON and OFF. Pressing the ON
button, the light is turned on and it also toggles through the different brightness
levels. Every button pressed raises a corresponding event (ON_pressed or
OFF_pressed) upon which the machine reacts with a state change and an
output, that is the brightness level in this case. Since in Moore machines only
states produce outputs, one dedicated state per brightness level is needed.

7

Technical context and state of the art

Figure 2.4: Switching light example modelled with Moore machine as in [7].

• Mealy Machine
The Mealy machine concept was introduced by George H. Mealy in 1955.
With respect to Moore machines, Mealy ones produce outputs on transitions
only and not in states. This difference often generates machines with fewer
states because more logic can be assigned to transitions.

Figure 2.5: Switching light example modelled with Mealy machine as in [7].

Be aware that both state diagrams (Figures 2.4 and 2.5) describe the same
system. In fact, a states diagram modelled with a Moore machine can be
always translated into a Mealy machine and vice versa, without losing any
expressiveness.

8

Technical context and state of the art

• Harel statechart
We have just said that Mealy machines can reduce the number of states, but
for systems having a lot of states they may become unmanageable.
David Harel said:

“A complex system cannot be beneficially described in this naive
fashion, because of the unmanageable, exponentially growing multitude
of states, all of which have to be arranged in a ‘flat’ non-stratified
fashion, resulting in an unstructured, unrealistic, and chaotic state
diagram.”

"A state approach must be modular, hierarchical and well-structured".

So, he introduced additional concepts like state composition and orthogonality,
and he invented the term “statechart”, defining it as the mixture between state
diagrams, depth, orthogonality and broadcast communication.
Basically, an Harel statechart is a Mealy or Moore machine extended by further
concepts that allow to model complex systems in a more efficient way.
Using composite states and sub-diagrams (they are basically state machines
grouped into states), one can build deeper state diagrams, while keeping
it clear and well-structured. Orthogonality is expressed using the so-called
regions: different sub-state machines that can be executed side by side.
Moreover, events are very important to achieve broadcast communication and
let the system to describe complex behaviour. Thanks to guards, we can ensure
that a given event triggers a transition only if a given condition is satisfied.
Inter-level transitions (they connect states of different levels and regions),
history states (used to remember the last active state inside a composite state),
entry, exit and state actions (routines executed each time the system goes to,
stay in or exit from a state) are further Harel statechart elements that make
this type of machine so important in describing complex systems’ behaviour.

We said that, describing the same system, Harel statecharts use a fewer number
of states with respect to Mealy machines: this is possible thanks to variables,
which can be used in input and output expressions. Regarding the same light
switch example see before, variables can be used to store the brightness level
instead of a different state for each level (Figure 2.6). In this way, we can
simplify the statechart by merging all Light On states into one and executing
the output actions on a self-transition (a transition that goes into the source
state). Here we just increment the brightness value each time the transition is
activated. So, we can increase the number of brightness levels without adding
new states.

9

Technical context and state of the art

Figure 2.6: Switching light example modelled with Harel statechart as in [7].

To show the use of composite states we can extend the light switch example,
adding a motion detection mode (Figure 2.7). When the MOT button is
pressed, the motion sensor is activated. Once the sensor detects any motion
(event motion_detected), the light is turned on at the highest brightness level
(brightness = 3). This behaviour can be modelled with a composite state that
groups the two states Motion Detected and No Motion Detected together.

Figure 2.7: Switching light example modelled with Harel statechart and composite
states as in [7].

As you can note, Harel statecharts mix the characteristics of Mealy and Moore
machines, since outputs can be produced by states as well as transitions as
reported in Figure 2.7.
We can even go one step further and insert the logic of the Motion Detection
Mode into a sub diagram (Figure 2.8). In this way, the system becomes more
comprehensive and it shows the operational modes as well as the switching
among them in an easier way.

Figure 2.9 shows the differences between the previously described types:

10

Technical context and state of the art

Figure 2.8: Switching light example modelled with Harel statechart and sub
diagrams as in [7].

Figure 2.9: Differences between types of state machine described above as in [7].

2.1.3 Toolkits to handle event-based systems and FSMs
Now, we will see three different toolkits, which handle finite state machines and/or
event-based systems, analyzing pros and cons, providing a comparison platform
with the final product that this thesis aims at developing.

• Yakindu Statechart tools[8]
It is a toolkit for developing, simulating, and generating executable code for
finite state machines. It is based on the open-source development platform
Eclipse.
It is available in Standard and Professional Edition, which are free if you use
them for non-commercial or educational purposes, otherwise the user shall
purchase the license (the latter having a higher price, providing additional
features).

The Standard Edition provides the following features:

– GUI for the graphical editing and representation of state machines

11

Technical context and state of the art

– A simulator to simulate the behaviour of state machines
– Code generators to transform graphical representation of state machines

into programming language source code like C, C++, Java and Python
– Custom generator projects exploiting Xtend or Java in order to create

any code
– Validator to check for syntactical or semantical issues of the modelled

state machine (e.g., a state without transitions)
– Framework to test state machines with unit tests

The Professional Edition adds features such as:

– Integration with the C programming language to access variables, types,
etc.

– Simulation and debugging tools with breakpoints and snapshots

The main pros of Yakindu tool are:

– Handling of state machines with a lot of features like composite states,
history nodes, orthogonality, two different execution approaches (event-
driven vs cycle-based)

– Presence of simulator, validator and tester
– Code generation in different programming languages

The main cons are:

– Absence of elements that handle events in a different way with respect
to state machines (e.g., simple event handlers that receive events and do
routines according to the event, without dealing with states)

– Licences to buy if you want to develop a system for commercial use (even
for the Standard Edition)

– Unique event queue for dispatching events, so no possibility to dispatching
events in parallel

– Integration with C and C++ programming languages with Professional
Edition only

• OPNET[9]
It is a software that enables the simulation behaviour and performance of any
kind of network. It provides built-in protocols and device models, and it allows
to create and simulate different network topologies.

Main pros of Opnet:

12

Technical context and state of the art

– Network planning and design.
– Validating hardware architecture.
– Protocol modelling.
– Traffic modelling of telecommunication networks.
– Evaluating performance aspects of complex software systems.
– Create/import topology/configuration.
– Simulator to execute designed network.

Main cons of Opnet:

– The user needs to purchase the license to use it.
– The set of protocols/devices is fixed.
– No facilities that enable code generation for the modelled network.

• OMNET++[10]
It is a C++ simulation library and framework, mainly for simulating networks
intended in a wider sense.
It provides a component architecture for models, and modules are programmed
in C++, then grouped into bigger components and models thanks to a high-
level language named NED (NEtwork Description).

The main pros of Omnet++ are:

– Open-source and free software.
– Simulation kernel library using C++.
– The NED topology description language.
– Simulation IDE based on Eclipse.
– Interactive simulation runtime GUI.
– Command-line for simulation execution.
– Utilities (Makefile creation tool, etc.).
– Model frameworks developed as independent projects such as sensor

networks, internet protocols, etc.
– SystemC integration.
– Compatibility with all platforms with a C++ compiler.

The main cons of Omnet++ are:

– No facilities that enable code generation for the modelled network.
– Few models available.
– Open-source and free for non-commercial purposes only.

13

Technical context and state of the art

2.2 Technical context
2.2.1 Templates and Metaprogramming
Usually, it is necessary to define a priori the variable type used as function argu-
ments, as well as class members, due to the static check performed over types by
C++ language. This can require duplicating entire code sections only to adapt
their use to different types, going against the fundamental principle of code reuse.
Let’s look to the following piece of code, where swap_integers and swap_strings
functions are basically identical, except for the variable types they have as argu-
ments.

1 void swap_integers (i n t& a , i n t& b)
2 {
3 i n t tmp = a ;
4 a = b ;
5 b = tmp ;
6 }

1 void swap_str ings (s t r i n g& a , s t r i n g& b)
2 {
3 s t r i n g tmp = a ;
4 a = b ;
5 b = tmp ;
6 }

One of the most interesting aspects of C++ programming language is the presence
of a metaprogramming[11] system. It enables the execution of operations at compile-
time, like elaborating source code, using the keyword template: it is used to indicate
a generic code section (for instance, a function, a class or a variable, starting from
C++14), which implementation can be adapted to several data types.
So, thanks to metaprogramming, it is possible to collapse the definition of the two
functions above into only one, so that it is valid for any data type, as shown in the
following code snippet:

1 template <typename T>
2 void swap_generic (T& a , T& b)
3 {
4 T tmp = a ;
5 a = b ;
6 b = tmp ;
7 }

14

Technical context and state of the art

The keyword template, followed by a list of parameters typename NameType
between angle brackets, is used for the swap_generic function in order to make
it a generic one. During compile step, each time a call to a generic function
is found, the compiler applies rules to define the correct value to assign to the
NameType parameter (in this case, T) and it adds to the original source code an
“overload” of that function in which the generic parameter is substituted by specific
type. This process is called template instantiation and it comes before the compile
step. This type of use of templates in C++ is an example of generic programming
and, differently from other object-oriented programming languages, the template
definition in C++ constitutes a programming language in itself.
The metaprogramming explained above is the type metaprogramming one, but
there are other two important metaprogramming types[12]: the value and hybrid
metaprogramming; the former is used to compute values at compile-time, instead
of during execution, while the latter exploits templates to reduce execution time
too.

In GEM framework, template is the main element used to define basically all the
objects that it contains, like state machines generic definition, that can be exploited
to define state machines of different types.

2.2.2 Introduction to Qt
Qt[3] is a framework for creating and modelling graphical user interfaces and cross-
platform applications that can be executed on several different hardware/software
platforms such as Linux, Windows, macOS, Android or embedded systems, with
little changes or even without changing the code.
Most GUIs created with Qt appear with a native interface, in which case Qt is
classified as a widget toolkit. Non-GUI programs can be developed too (terminal
programs), such as consoles for servers.
Qt supports different compilers, including the GCC C++ compiler, the Visual
Studio suite and PHP. It also provides Qt Quick, that includes a declarative
scripting language named QML that exploits JavaScript to provide the logic. With
Qt Quick, it is possible to rapidly develop mobile devices applications, while their
logic can still be written using native code to achieve the best possible performance,
according to the underlying target platform.

Qt relies on the following key concepts:

• Abstraction of the GUI
Qt exploits the native style APIs of the platform in which it is mounted on,
assuming that it provides such an API set. Moreover, on some platforms Qt
is the native API.

15

Technical context and state of the art

• Signal/slot paradigm
It is a framework construct introduced in Qt for communication between
objects. The concept is that UI widgets can send signals containing event
information which can be received by other controls using special functions
called slots; so, a signal notifies an event that triggers one or more actions
(slots).

• Metaobject compiler
The metaobject compiler (MOC) is a tool that is executed on the sources of a
Qt program. It interprets certain macros from the C++ code and uses them
to generate additional C++ code with meta information about the classes
used in the program. This meta information is exploited by Qt to provide
programming features not available natively in C++, such as signal/slot
paradigm and asynchronous function calls.

• Language bindings
Thanks to this feature, Qt can be used in various programming languages
other than C++, such as Python, Javascript, C# and Rust.

Qt has its own set of tools to make easier the cross-platform development; Qt
Creator is one of these tools, that is the main one used in the creation of GEM
software. Qt Creator is a cross-platform IDE for C++ and QML that exploits Qt
Designer, another Qt tool useful to design the GUI layout, although Qt Designer
can still be started as a standalone tool.
In addition to Qt Creator and Qt Design, Qt provides qmake, a cross-platform
build script generation tool that makes automatic the generation of Makefiles for
development projects across different platforms.

So, thanks to all the features of Qt, in particular for its signal/slot paradigm and
the Qt Design tool that helped a lot in the designing of the GUI, thanks to the
various number of widgets and visual customization it provides, it has been chosen
for designing and developing of GEM user interface. Furthermore, since the GEM
software is only for academic-use at the moment, the open source (free) Qt license
has been chosen. However, if it is converted into a standalone application by Zirak,
the paid license will be taken into account.

16

Technical context and state of the art

2.3 Thesis goal
Up to now, we have seen an overview about event-based systems (Section 2.1.1),
state machines (Section 2.1.2) and toolkits that handle them (Section 2.1.3); in
particular, we have seen how these toolkits deal with event-based systems and FSMs
in different ways and with different features. However, we also listed their drawbacks,
such as no ability to deal with generic event handlers, whose state machines are
a particular implementation, no deep integration with C and C++ programming
languages and, last but not least, no chance to generate code automatically. These
are only some of the limitations that the toolkits shown have.

The goal of this thesis is to try to overcome the limitations above
grouped in a unique software. Obviously, the toolkits reported in Section 2.1.3
are developed by teams of experienced developers and they have been set up after
a lot of hours of designing and development, unlike the limited amount of time of
GEM product development; however, this thesis outcome tries to start a software
project that will be updated in all its aspects, possibly having a platform with more
features and a more pleasant visual aspect than now. In fact, in Chapter 3, we
will see that the User Interface does not provides all the framework functionalities,
since it is only a starting point for a wider software project (see Chapter 4 for more
details about future works and possible improvements about the GEM software).

The idea is to have a software, capable of handling an event-based system that can
contain:

• Event handlers with their interface in order to deal with incoming events

• State machines containing:

– States
– Composite states
– Transitions

• Signallers to notify events to event handlers and state machines

• Dispatching queues to send events in parallel

• Binding features to connect signallers to event handlers and FSMs, selecting
the favourite dispatching queue

In order to deal with all these features and many others, the GEM (Generic
Event-based Modeling) framework has been exploited.
GEM is a framework developed by Zirak s.r.l.[2] and, as its name implies, it handles

17

Technical context and state of the art

generic event-based systems: so, the user can use the large number of available APIs
to model an entire event-based system with all the features listed above. But, since
the framework is entirely written using high-level programming languages like C and
C++, the developer has to know the entire set of APIs and all their functionalities
before using the framework. That is the reason why the GEM framework has been
extended with a easy-to-use GUI, that let the user to model its system with all
the features, without knowing the framework APIs and especially decreasing the
amount of time needed to arrange the software code, thanks to the code generation
functionality (the whole GEM software is contained in the Zirak GitLab repository).
In Chapter 3 we are going to see in details both GEM framework and User Interface,
in order to better understand why the entire platform (framework+GUI) has been
developed and all the benefits it can provide.

18

Chapter 3

Software Development

In this chapter, we discuss the development of the GEM software: first of all,
we will see an overview about the framework, how it is made and the features it
provides (Section 3.1); then, we will go deeper into the development of the User
Interface, seeing all the design choices made, what it offers to the user and how it
works (Section 3.2).

3.1 Generic Event-based Modeling framework
The purpose of the framework is to model generic event-based systems through
several APIs, and thanks to three main activities:

• Signalling
It is the activity in charge of notifying events to the system and, in particular,
to event handlers. It is basically the interface of the system with the external
environment. It can be filtered in various ways in order to prevent some events
from entering the system.

• Handling
It is the activity in charge of taking events from the outside (i.e., from signallers)
and performing actions accordingly. In other words, it is the control activity
of the system in which events are consumed. This phase is carried out by
generic event handlers and structured state machines.

• Dispatching
It is the activity in charge of transporting events from signallers to handlers.
It involves all the communication channels used to perform event dispatching,
such as dispatching units: they are queues in which events flow from event
producer (signaller) to event consumer (handler). It also lets the system to be

19

Software Development

faster in events dispatching and communication thanks to parallel dispatching,
if used: in fact, if more dispatching units are used, event(s) can be notified
to different handlers simultaneously, assuming that binding process has been
performed accordingly.

3.1.1 Features and objects
As discussed above, the purpose of the framework is to model generic event-based
systems and, thanks to models, event handlers and state machines, it may realize the
design pattern MVC, that stands for Model-V iew-Controller. It is an architectural
pattern widespread in the software systems development, able to separate the
logical data representation from the business logics.

Figure 3.1: Diagram of design pattern MVC.

In Figure 3.1, a diagram of MVC design pattern is reported. The model provides
methods for accessing data, useful for the application, the view uses the data
contained in the model to provide an interaction between users and system, the
controller receives commands from the user (generally through the view) and uses
them for modifying the other two components state (view and model).

Now, let’s speak about features and objects the GEM framework provides:

• Signallers
Signallers are one of the most important elements into the framework, since
they are used to signal whatever event is needed: in fact, they can be declared
using any C++ type, be it POD-type or user-defined type, in order to signal
that type of events. They can be bound to dispatching queues in order to send
their events to one or more receivers. They can be “on-demand” signallers,
so they are used according to the user needs, timed signallers, so they use
time-based strategies, function signallers, so they signal the outcome of a
function call, and function caller/function callee, so that they can be used to
realize the Qt signal/slot paradigm.

20

Software Development

• Filters
They can be applied to signallers and enable source event filtering, and they
may differentiate parallel dispatching, so they can be applied to different
dispatching queues with different types of filtering. The GEM framework
provides several types of filters:

– Sampling filter that generates events every n samples
– Threshold filter that generates events according to a threshold t
– Range filter that generates events according to a range r
– Timed filter that generates events every time interval i
– Deviation filter that generates events according to deviation d from last

valid event
– Custom filter that generates events according to a user-defined filter

• Models
They are used to contain static lists of signallers. They realize an index for
the whole component and enable compile-time indexing of signallers. Models
make easier the communication between sub-components.

• State Machines
State machines are one of the main objects in GEM framework. We already
discussed about them in Section 2.1.2 and we have seen the features they can
provide to an event-based system, since they handle events performing actions
strictly related to them. In GEM framework, state machines can be primary or
forwarding machines: the former can be used as input in the binding process,
and the user can set values in the state machine arity; the latter, instead,
cannot be used as input in the binding process, and they shall receive arity
tuple from the outside. The arity of a state machine is a set of parameters
that are used to tune the state machine behavior while it is operational; it can
be declared when defining state machine or it can be not used at all, defining
the so-called empty arity state machine. Moreover, GEM framework supports
mixed nesting, it means that a system can be composed of several types of
state machines (i.e., primary and forwarding ones). Finally, the framework
provides the possibility of dealing with two different policies for state machine
structure, bound-free (flat-reference) and object-plugin (object-reference): in
the former, every action point may refer any callable entity and, if an object,
it shall be already included in the call and cannot be changed; in the latter,
every action point shall refer an object of type T and the reference object is
not included in the call and can be changed during the state machine life-cycle:
in fact, an object is a parameter in the state machine arity through which the
user may change the reference object.

21

Software Development

In the following, the two type of states are described. They are very similar
to the ones described when discussing about Harel model (Section 2.1.2).

– States
States are the main element, together with transitions, composing state
machines. They may contain three kinds of actions: entry actions, ex-
ecuted when the system enters the state; step (or state) actions when
the system is into the state; exit actions when the system exits from
the state. They may contain transitions to other states or to themselves
(loop transitions). Transitions may contain actions to, called transitions
actions.

– Composite states
Composite states are states that may contain one or more state machines,
each activated by some guard conditions on the triggering event. If more
than one state machine is present, only one of them will start at entry.
Once the system exits from a composite state, reset actions are performed,
and the current state machine is reset.

• Event handlers
Event handlers are, together with state machines, the unique event listener
object provided by the GEM framework. Unlike state machines, they have
only a handle event function that is executed whenever an event is signalled
to it from some signallers.

• Dispatching
Signallers described above need communication channels in order to notify
events to related listeners: the channel prototype used is the dispatching queue.
Signallers and listeners are bound together: the binding may be 1-to-1 or
1-to-N, in order to signal the same event to multiple listeners in a serial fashion,
using the same dispatching queue. If we need parallel dispatching, we can
use as much queues as we want. But, with serial dispatching, one thread is
needed only, unlike the parallel one that uses as many threads as the number
of queues used. During binding phase (when listener is connected to signaller
through a dispatching queue) one can choose the queue he wants, otherwise
the default dispatching queue will be chosen automatically.

• Binding
Binding is the way through which signallers are connected to listeners (event
handlers and state machines). As mentioned before, one can choose the
dispatching queue to exploit, otherwise the default queue is chosen if no
queue is specified. There is also the possibility to unbind two elements, so
disconnecting them and preventing communication with each other.

22

Software Development

• Timers
Finally, timers allow to trigger actions on a timing-basis: they can be one-shot
(they work only once) or periodic (they trigger over a predefined amount of
time). They also allow to configure/change the clock type at OS-level (i.e.,
the period between time ticks).

3.2 Visual approach to software modeling
We listed all the objects provided by the GEM framework (see Section 3.1.1) but, in
order to use them, we have to know the APIs they provide. The goal of this thesis,
as already said in Section 2.3, is to provide to the user a visual environment easing
the use of the framework, while modeling the software system. In the following, we
will discuss how the GEM software is made and what it provides to the user, how it
integrates the GEM framework and the main issues found during its development.
It is very important to remind that, as already said in Section 2.3, the User Interface
does not offer all the functionalities provided by the GEM framework, which will
be possibly added in future release.

3.2.1 Architectural composition
We may now delve into the GEM software implementation, looking at its architec-
ture model. Figure 3.2 shows the software architecture, highlighting its partition
in three modules: the GEM GUI, the Business Logics and the GEM framework.
The main function of the Business Logics block is to support the GUI layer while
the user is interacting with visual objects; moreover, such a block uses the GEM
framework when the system code must be generated.
It must be pointed that, in Figure 3.2, components in Actions Logics block are the
visual representation of GEM framework components (e.g., signaller component in
Actions Logics is the visual representation of signaller in GEM framework).

In the following, an overview of the components that build the GEM software is
given:

• Drawing Logics
This logic layer aims at providing the user the ability to represent the software
system by means of figurative language; it also provides interaction logics that
ease the user in navigating through the software components. Now we see
more in detail how it has been designed and how it works.
As you can see from Figure 3.3, the drawing area, called DragWidget in
GEM GUI, occupies most of the application area, since it is used to define
the system, inserting signallers, event handlers, state machines and bindings

23

Software Development

Figure 3.2: GEM User Interface architectural composition.

between objects. The same Qt object (i.e., DragWidget) is used in the so-called
State Machine Frame, that is the window in which states and transitions of a
state machine are handled. As its name implies, this widget provides drag and
drop functionalities of objects to provide the user the ability to move objects
wherever it wants.

Drag Widget area offers several functionalities that can be grouped into two
parts, one for handling drag/drop actions and objects menus and one for
handling connections between objects (i.e., bindings and transitions), even
if they are strictly connected between them, since whenever an object with
bindings or transitions connected to it is moved, they are moved together with
the object.
The set of features that handles drag/drop actions and objects menus leverages
the underlying system of events for drag, drop and mouse movement/actions
supported by Qt. Whenever an object contained in the Drag Widget is left
clicked, the QMouseEvent event is generated and the object name (e.g., the
name of a state machine), type (e.g., state machine, signaller, etc.) and icon

24

Software Development

Figure 3.3: Drawing area of GEM User Interface.

are retrieved; then, thanks to QDragEnterEvent and QDragMoveEvent events,
the GEM software understands if the moved object is contained and moved
into the Drag Widget, or if it is allowed to be moved: for instance, if the
clicked object is a bind or a transition, the event is rejected since they are
not allowed to be moved, as they are only when objects connected to them
are moved. Instead, if an object is right clicked, the proper menu is shown,
providing the set of actions allowed on the desired object (e.g., editing object
name, remove object, etc.).
The other set of features, which handles creation and movement of bindings
and transitions, unlike drag, drop and mouse events, was not already supported
by Qt, but it has been designed and implemented by scratch (see Section 3.2.4).
Whenever the creation of a connection between two objects (i.e., bindings
and transitions) is needed, the corresponding method is called (createBind
or createTransition); instead, whenever an object with at least one bind or
transition is moved, the moveBind or moveTransition methods are called.

• Actions Logics
This logic layer aims at providing the high-level actions, needed to perform
the main operations over the drawn software system. It deals with all the
objects that are manageable within GEM software: signallers, state machines,
event handlers, dispatching queues and bindings. Depending on the action
and on the object, it works in a different way: for instance, if the user wants to

25

Software Development

create an object, it can use the GEM UI toolbar and then, the proper object
menu (Figure 3.4). Moreover, in order to deal with transitions inside state
machines, the user can exploit the actions accessible from the proper state’s
window (Figure 3.5).

Figure 3.4: Actions accessible from toolbar (1) and menu (2).

Figure 3.5: Actions accessible from state’s transitions window.

26

Software Development

• Code Abstraction Layer
The Code Abstraction Layer is one of the most important elements in GEM
software since it represents the “bridge” between GUI and framework. In fact,
it aims at providing high-level APIs able to represent the framework actual
APIs, decoupling the representation and the operation layers. This eases the
maintenance and extensibility of the code, if the framework changes/expands
(except for those changes that would involve further code layers in the system:
in the UI layout, for example).
In the GEM software code, the Code Abstraction Layer is a component that
provides the APIs needed to handle the objects the GUI supports: for instance,
it provides APIs to create, edit or delete objects.

• Code Database
This layer aims at storing the high-level representation of the code currently
involved in the system drawn by the user, tracing all the relationships between
software components and symbols; in other words, what is drawn in the UI has
a corresponding data structure in this layer. The Code Database is included
in the Code Abstraction Layer, since they are strictly related: for instance,
if the user wants to create a new object (e.g., a signaller), the proper API,
included in the Code Abstraction Layer, accesses the Code Database to insert
the new object, with all the parameters set by the user (e.g., signaller name,
signaller type, etc.).

• Project R/W-er
The layer aims at realizing the logics needed to read and write the project
information from/in the project format file (i.e., .gem), enabling the user to
store all the information for an ongoing project and resuming it later, avoiding
the need to modelling the entire project at once.

• Code Generator
The Code Generator layer aims at realizing the logics needed to generate the
actual code required to implement the system drawn in the UI by the user.
It exploits the Code Abstraction Layer to retrieve the objects defined by the
user and, then, it generates code using the APIs provided by the framework
in a directory chosen by the user, following a predefined arrangement for code
and directory tree.

3.2.2 Features and Use Cases
In this Section, we discuss all the features the GEM software provides. In Figure
3.6, the use case diagram is shown, and we analyze it more in detail in the following.
It must be pointed out that a use case diagram is a graphical representation of

27

Software Development

the interactions between user and system; its name derives from the use cases
composing it (e.g., manage signallers, configure dispatching, etc.). It should be
shown the user(s) interacting with the use cases but, since it is always the same
(i.e., the developer using the GEM software), for sake of visibility it has not been
reported. The "extend" relation is used when a use case (i.e., project handling)
enhances another use case (i.e., draw system); instead, the "use" relation (also
known as dependency relation) is used when a use case (i.e., generate code) relies
on another use case (i.e., draw system) for its implementation.

Figure 3.6: Use case diagram of GEM software.

• Manage signallers
We discussed about signallers in Section 3.1.1: they are used to signal events
to the system: they always are one of the two objects involved in bindings
(the other one can be an event handler or a state machine). In GEM software,
signallers have only two parameters: name of the signaller and its type; the
type is an important parameter, since it indicates what type of events the
signaller generates. The type should be one among the set of built-in types
supported by C++ language, such as int, float, double, etc.
The GEM software allows the user to create a signaller through toolbar (Figure
3.4 (1)), indicating its name and type, to edit a signaller through its menu
(Figure 3.4 (2)), modifying the name and/or the type of the signaller, and to
remove a signaller by means of its menu (Figure 3.4 (2)).

28

Software Development

• Manage event handlers
We discussed about event handlers in Section 3.1.1: as their name implies,
they are used to handle events by means of function called handleEvent. In
GEM software, event handlers have three parameters: event handler name,
type and function; in particular, the type, unlike signallers, indicates the event
handler class name, since every event handler is identified by its name and its
class name (the class that contains the handleEvent function). The function
parameter contains the handleEvent function implementation.
The GEM software allows the user to create an event handler through toolbar
(Figure 3.4 (1)), indicating its name and class name, edit an event handler
through its menu (Figure 3.4 (2)), modifying its parameters (name, class name
and function implementation), and to remove an event handler through its
menu (Figure 3.4 (2)).

• Manage state machines
We discussed about state machines in Section 3.1.1: they are one of the most
complex objects provided by GEM software. In fact, in GEM software they
need several parameters: name, type (primary or forwarding, even if only
primary state machines are admitted now by the GUI), init (or entry) state
(the state from which the execution starts), states and transitions.
The GEM software allows the user to create a state machine through toolbar
(Figure 3.4 (1)), indicating its name, to edit a state machine name (Figure 3.4
(2)), and to remove a state machine through its own menu (Figure 3.4 (2)).
As reported by Figure 3.4 (2), the user has the ability to inspect a state
machine, dealing with states and transitions:

– States
We discussed about states in Section 3.1.1. In GEM software, states have
their name and actions: the latter can be of three types, depending on
when they are executed; in fact, states can have entry actions, executed
when the system enters a state, step (or state) actions, executed when
the system is into the state and an event leads no transition to activate,
and exit actions, executed when the system exits from the state.
The GEM software allows the user to create states inside a state machine
through the toolbar (Figure 3.7 (1)), to edit a state (Figure 3.7 (2)),
modifying its name and actions, to set it as init state (Figure 3.7 (2)),
and to remove a state through its own menu (Figure 3.7 (2)).

– Transitions
We discussed about transitions in Section 3.1.1, while dealing with states.
In GEM software, transitions have an index that uniquely identifies them,
source and target states as parameters (they are the same in case of loop
transitions), guard that defines the condition for which the transition is

29

Software Development

activated, and transition actions that are executed whenever a transition
is taken.
The GEM software allows the user to create a transition through the
toolbar (Figure 3.7 (1)), defining whether it is a loop or not, source and
target states, to edit a transition through the state’s transitions window
(Figure 3.5), modifying its source and target states (the user can also
change the transition from normal to loop one and vice versa), its guard
and transition actions and even inverting a transition (changing target
and source roles), and to remove a transition through its menu or state’s
transition window (Figure 3.5).

Figure 3.7: Actions accessible from toolbar (1) and menu (2) in state machine
window.

• Configure dispatching
We discussed about dispatching queues and bindings in Section 3.1.1: they
are important in the events communication, since they let signallers to notify
events to consumers (i.e., generic event handlers and state machines). In
particular, binding is the connection step between a signaller and a consumer
over a dispatching queue, but the connection itself is named bind.

– Dispatching queues
In GEM software, dispatching queues have only their name as unique
parameter. When starting a new project, a Default queue is already

30

Software Development

present, but the user can create (and remove too) others through the
toolbar (Figure 3.4 (1)). In particular, when removing a queue, if it is
assigned to one or more binds, the user can decide if removing those binds
too, or redirecting them to the Default queue.

– Binds
In GEM software, binds have, similarly to transitions, an index to uniquely
identify them, the signaller and the handler they belong to, and the
dispatching queue exploited for the communication.
They can be created through the toolbar (Figure 3.4 (1)), edited through
their menus (Figure 3.4 (2)), giving the user the ability to modify the
signaller, the handler and the dispatching queue, and removed through
their related menus (Figure 3.4 (2)).
In addition, the user can check the binds in which an object is involved,
or check in which bind a dispatching queue is involved: the former can
be done through the menu of every object that can be involved in a bind
(i.e., signallers, generic event handlers and state machines), selecting the
"Show binds" option (Figure 3.4 (2)); the latter can be done by double
clicking on a dispatching queue name in the left-side list (Figure 3.4).

• Project handling
We discussed about Project R/W-er in Section 3.2.1: it is a logical module
that is in charge of saving and resuming ongoing projects, without the need of
modelling the system all at once. It is split in two parts, one for saving and
one for loading the project:

– Save project
As its name suggests, it is used to save an ongoing project, that will be
possibly resumed later. It exploits the Code Abstraction Layer to retrieve
all the objects defined by the user and then, thanks to the QDataStream
Qt object, they are serialized and saved on a file, which position in the
file system is chosen by the user. In addition to the object parameters we
discussed above, the position in the Drawing area (Figure 3.3) is saved
too, so that, when loading the project, they can be positioned in the same
place they were when the project was saved. Finally, when the project
is saved and the user chooses the name of the project file, the project
name is saved with the same name given to the file. The project name is
assigned also to the directory containing the generated code, and that is
the reason why, during first saving, the software asks the user to save the
project before generating the code.
The user can save a project simply through the toolbar in Figure 3.4 (1),
clicking on Project -> Save project .

31

Software Development

– Load project
As its name suggests, it is used to load all the information for a project,
saved during a previous work session. It works using the opposite process
undertaken by its counterpart: thanks to the QDataStream Qt object, it
reads the project file, loading the objects together with their parameters in
the Code Abstraction Layer (i.e., in the Code Database) and updating the
GUI using the visual representation of the imported objects, respecting
the position they had during the saving project phase.
The user can load a project simply through the toolbar in Figure 3.4 (1),
clicking on Project -> Load project .

• Generate code
We discussed about Code generator in Section 3.2.1: it is a module used to
generate automatically the code about the modelled system. It exploits the
Code Abstraction Layer to retrieve all the objects defined by the user and then,
according to the GEM framework APIs, it writes on files the code representing
the modelled system.
The code generation phase starts from signallers, without which the system
has not sense due to the definition of an event-based system (signallers are
fundamental for the notification of the incoming events): if no signallers
are found in the modelled system, the code generation stops, showing the
corresponding warning to the user; otherwise, the code generation process
continues, scanning all the other objects and generating the code accordingly.
Each object type has two dedicated files, an header (.h) and a source (.cpp)
file: the former contains the linking to the GEM framework, the declaration of
all the objects of that type (e.g., all the signallers defined by the user) with the
extern keyword, in order to enable their usage in files outside the project (i.e.,
the whole system) and the init function prototype, that is used to initialize all
the declared objects; the ".cpp" file contains the linking to the corresponding
header file described above, the definition of all the objects of that type (e.g.,
all the signallers defined by the user) and the init function implementation, in
which the objects are initialized and checked whether their initialization was
successful or not.
The code generation process just described is the same for all the objects,
except for state machines, that have a dedicated header and source file each:
in fact, state machines are the objects that contains most of the information in
GEM software, and writing the code related to all the state machines defined
by the user in one single file would make the maintenance more difficult, due
to the implementation required for entry, exit, state, guard and transition
actions, but also the implementation of the state machine structure, such as
transitions between states.

32

Software Development

3.2.3 Usage scenarios
After discussing features and use cases, in this section we see some usage scenarios
of the GEM software. For sake of reading, only some scenarios will be shown.

• Scenario 1: Create signaller
Precondition: No precondition needed.
Post condition: signaller is created.

1. The user clicks on Signaller → Add Signaller... in the toolbar (Figure 3.8).

Figure 3.8: Create a signaller: step 1.

2. The user inserts signaller name and type (Figure 3.9).
3. The signaller is created and the user can move it wherever he wants (Figure
3.10).

33

Software Development

Figure 3.9: Create a signaller: step 2.

Figure 3.10: Create a signaller: step 3.

34

Software Development

• Scenario 2: Create bind
Precondition: signaller(s) and handler(s) (generic event handler and/or state
machine) already created.
Post condition: bind is created.

1. The user clicks on Bind → Create bind... in the toolbar (Figure 3.11).

Figure 3.11: Create a bind: step 1.

2. The user selects the signaller and the handler to bind together and the
queue to assign to the bind (Figure 3.12).
3. The bind is created (Figure 3.13).

35

Software Development

Figure 3.12: Create a bind: step 2.

Figure 3.13: Create a bind: step 3.

36

Software Development

• Scenario 3: Show binds (objects)
Precondition: binds already created.
Post condition: binds are shown.

1. The user right clicks on a signaller, event handler or state machine and
then clicks on Show binds in the menu (Figure 3.14).

Figure 3.14: Show binds (objects): step 1.

2. A list of binds involving the chosen object is shown (Figure 3.15).

37

Software Development

Figure 3.15: Show binds (objects): step 2.

• Scenario 3 bis: Show binds (queues)
Precondition: binds already created.
Post condition: binds are shown.

1. The user perform a double-click on a queue in the list on the left side of
the main window (Figure 3.16).
2. A list of binds involving the chosen queue is shown (Figure 3.17).

38

Software Development

Figure 3.16: Show binds (queues): step 1.

Figure 3.17: Show binds (queues): step 2.

39

Software Development

• Scenario 4: Create transition
Precondition: state machine already created, at least one state created.
Post condition: transition is created.

1. The user does right click on a state machine and then does click on Show
state machine in the menu (Figure 3.18).

Figure 3.18: Create a transition: step 1.

2. The user does click on Transition → Add Transition... in the toolbar
(Figure 3.19).
3. The user selects the source and target states of the transition to be created,
and the transition type in the Arrow combo box (if Loop type is chosen, when
changing source/target state, the other changes accordingly since, in loop
transitions, source and target states must be the same) (Figure 3.20).
4. The transition is created (Figure 3.21).

40

Software Development

Figure 3.19: Create a transition: step 2.

Figure 3.20: Create a transition: step 3.

41

Software Development

Figure 3.21: Create a transition: step 4.

• Scenario 5: Set guard actions for a transition
Precondition: transition already created.
Post condition: guard actions are set.

1. The user does right click on a state machine and then does click on Show
state machine in the menu (Figure 3.22).
2. The user does right click on a state from which the involved transition
comes out and then does click on Show transitions in the menu (Figure 3.23).
3. The user does click on a transition and then does click on Set guard button
(not clickable button if, in that transitions list, the chosen one is an inward
transition, since guard actions are checked only when the system goes out
from a state) (Figure 3.24).
4. The user defines the guard actions and then does click on Ok button (Figure
3.25).

42

Software Development

Figure 3.22: Set guard actions: step 1.

Figure 3.23: Set guard actions: step 2.

43

Software Development

Figure 3.24: Set guard actions: step 3.

Figure 3.25: Set guard actions: step 4.

44

Software Development

• Scenario 6: Set entry actions for a state
Precondition: state already created.
Post condition: entry actions are set.

1. The user does right click on a state machine and then does click on Show
state machine in the menu (Figure 3.26).

Figure 3.26: Set entry actions: step 1.

2. The user does right click on a state and then does click on Set entry actions
in the menu (Figure 3.27).
3. The user defines the entry actions and then does click on Ok button (Figure
3.28).

45

Software Development

Figure 3.27: Set entry actions: step 2.

Figure 3.28: Set entry actions: step 3.

46

Software Development

3.2.4 Development approach and issues found
So far, we presented all the features that both the framework and GUI offer, and
then we have seen some usage scenarios about different functionalities they provide.
However, the design and development process required effort, features to implement
and how to do that, and how to schedule the development activities according to
their intrinsic dependencies. Hence, in this section, we delve into the GEM software
design, in order to provide a clear breakdown for the activities involved together
with the effort needed for this thesis project. In the following, for sake of reading,
the GEM software design and implementation activity is analyzed, dividing the
description into several primary steps.

• Framework acquaintance
As a first step, the GEM framework has been studied, with the purpose of
getting familiar with it. All the APIs provided has been analyzed, understand-
ing their context of working, their dependencies and their preconditions; then,
some test programs has been implemented in order to see how the framework
behaves and how it must be used. This had also the purpose of observing
the emerging properties of the whole framework, such as constraints in the
code development and arrangement, or rules that shall be taken into account
during code generation and integration with extern user code.

• Requirements elicitation
The next step in the software design has been the elicitation of project
requirements, that is an important step, defining the perimeter of the software
project, that must be respected throughout the development and from which
an evaluation for the effort needed may be provided. The diagram reported
in Figure 3.6 is the result of this step. As already pointed out in Section 2.3,
the GUI does not offer all the framework’s functionalities, and this facilities
tuning also derives from this step: in fact, listing all the requirements and
use cases the software should have had, the limited available amount of time
for developing the software has been taken into account, and this led to a
functional requirements and use cases adjustment with respect to all the
functionalities the GEM framework offers.

• Support facilities selection and integration
It has been a very important step concerning the GUI design, since it was
devoted to searching all the relevant libraries of Qt to design the visual as-
pect of the GUI and to implement visual features, such as drag and drop of
components (i.e., signallers, event handlers, state machines and states). In
particular, in order to implement the drag and drop feature, the Draggable
Icons Example[13] provided by the Qt documentation has been analyzed and
tested, and then it has been used as the basis for the Drawing Area (Section

47

Software Development

3.2.1).
Although other facilities and examples regarding drag and drop functionality
have been investigated, such as Drag and Drop Puzzle Example[14] and Drag
and Drop Robot Example[15], they were not as useful as Draggable Icons Exam-
ple, since the puzzle example requires to drop puzzle pieces in predetermined
positions, robot example requires to drop color icons on robot body only, while
draggable icons example lets the user free to drop icons wherever it wants, and
this is perfect for GEM draggable components (i.e., signallers, states, etc.).

• Code Abstraction Layer design
This activity involved the design of the core component in the system, that is
in charge of defining the logic entities mapped to their corresponding visual
representation, and tracking their usage in the GUI, as extensively discussed
in Section 3.2.1.
In GEM software code, the Code Abstraction Layer is composed of several
ADTs (i.e., Abstract Data Types), represented as struct entities through C++
language, each containing the parameters for the component it defines (see
Section 3.2.2 for component parameters): for instance, the state struct has
the name of the state, the three action types (entry, step/state and exit),
the transitions connected to it (both outward and inward) and the position
the state has in the drawing area. More complex definition requires the
state machine struct, containing state machine name, its type (i.e., default is
primary) and init state, the position of the state machine component in the
drawing area, and states, transitions and binds belonging to it.
When a component struct contains the reference to another component (e.g.,
transitions connected to a state, states belonging to a state machine), the
definition of that reference could be of two different types: the struct may
contain an array of indexes for those components which do not belong to that
component only (it is the case of transitions in state struct and binds in state
machine struct, since both connect two components), or it may contain an
array of components that belong to that component only (it is the case of
states and transitions in state machine struct, since both components belong
to that state machine only). Furthermore, we need to say that, due to the
Qt visual objects handling, each component needs a unique identifier to be
distinguished from the others: for components such as signallers or states,
their name has been chosen as identifier; instead, for transitions and binds
that do not have proper names, a numerical index has been chosen to identify
them. So, when dealing with both visual and non-visual components, their
unique identifiers (i.e., name or index) are exploited to edit or deleting them.

48

Software Development

1 s t r u c t statemachine {
2 QString name ;
3 QString i n i t _ s t a t e ;
4 QString sm_type ;
5 std : : deque<state > s t a t e s ;
6 std : : deque<t r a n s i t i o n > t r a n s i t i o n s ;
7 QPoint pos ;
8 std : : deque<int > bind ings ;
9 } ;

10

11 s t r u c t t r a n s i t i o n {
12 i n t index ;
13 QString from_state ;
14 QString to_state ;
15 QString guard_action ;
16 QString ac t i on ;
17 QString arrow ;
18 QPoint pos ;
19 i n t w, h ;
20 QPixmap pixmap ;
21 } ;
22

23 std : : deque<statemachine> statemachines ;
24

Once defined the struct for all the components, we need a container for
them. Primarily, the std::vector structure was used but, after optimization
considerations that belong to Software Engineering, it was replaced by the
std::deque structure: in fact, std::deque structure is a double-ended queue
and, in memory, it is allocated in blocks of equal size chained together, unlike
std::vector that is allocated in a contiguous fashion. This difference in how they
are implemented leads the std::deque to be useful when growing or shrinking
the data collection from one of the two ends, or when dealing with very large
data sizes: in particular, in the latter case, the std::deque is better than
std::vector due to the large cost of reallocation required by std::vector, and due
to the possibility of running out of memory, since a contiguous memory block
is always needed. So, state machines, event handlers, signallers, binds and
queues are defined as std::deque, each one with their corresponding struct as
type of its std::deque (e.g., state machine struct for state machines std::deque,
event handler struct for event handlers std::deque, etc.), unlike dispatching
queue component that has not its own struct due to its unique parameter
(i.e., queue name), so it is defined as a std::deque of string type. States
and transitions, as said above, belong to the state machine in which they
are contained, so they are defined as std::deque with their struct type, but

49

Software Development

their std::deque definition occurs in the state machine struct definition (see
code section above). So, when accessing an event handler, it is only required
to access the std::deque referring to event handlers, while accessing a state
requires the access to the state machine std::deque to retrieve the proper state
machine, and then accessing the states std::deque inside the state machine
accessed before to retrieve the proper state.

• User Interface design
The UI design has been the longest part of the project, since it involved the
design and implementation of the entire User Interface in all its parts. As
discussed above, in the Support facilities selection and integration paragraph,
the searching of Qt libraries for implementing the drag an drop actions has
been the basis for the implementation of the GUI. Once done that, the creation
of the components started. The most demanding job of the UI design has
been the transitions (and binds) creation, since they are represented by arrows
that connect states (or event producer/consumer in the binds case), so we
needed a way to display these arrows in a proper way: after a preliminary
review on how set arrows angles and dimensions, the findChild Qt API has
been chosen to retrieve information about an object (e.g., position, dimension,
etc.) using its name (i.e., name of states in transitions case). So, in the case of
transitions, when findChild Qt API returns position of source and target states,
the createTransition function, mentioned in Section 3.2.1 when discussing
about Drawing Logics, computes the angle, position and dimensions (i.e.,
height and width) to apply to the arrow figure, called pixmap in Qt, relying on
information about states position provided by Qt. The entire process described
above is repeated when a state, with at least one transition connected to it, is
moved: since every state has trace of transitions connected to it, each time a
state is moved, Qt exploits these information to recreate all the transitions
involved. After that, the implementation of all other components, together
with their actions (i.e., creation, editing, deletion), has been done. The binds
implementation has been the last step about UI design, and it has been
managed with the same logic of transitions described above.

50

Software Development

• Save/Load project implementation
After finishing the UI design, with all the components and features imple-
mented, the save/load project feature was realized. We discussed about this
functionality in Sections 3.2.1 and 3.2.2, when dealing with Project R/W-er
and Project handling. First of all, the Qt documentation part covering the
Qt file handling features[16] has been analyzed, and then used as basis for
the save/load project design. Once understood how to implement it, the
save and load project facilities have been implemented: for this purpose, the
QDataStream type provided by Qt has been exploited, thanks to its ability to
serialize information passed to an object of that type (i.e., all the information
contained in Code Abstraction Layer); when loading a project, the information
stored in the project file need to be taken out in the same order they were
inserted.

• Code generator implementation
The last step of GEM software design has been the code generator imple-
mentation: we discussed about that feature in Sections 3.2.1 and 3.2.2, when
dealing with code generation. Before implementing the code regarding this
feature, a preliminary review about preconditions and post-conditions for
components mapping, translation order for CAL objects, code arrangement
and directory tree has been performed. Regarding preconditions and post-
conditions for components mapping, and translation order for CAL objects,
it has been established that signallers, event handlers, dispatching queues
and states are the components that can be handled and translated at first,
without dependencies; then, after defining states, transitions can be handled
and, consequently, state machines. Finally, once defined all the components
above, binds can be handled. These conclusions have been reached thanks to
the review on the GEM framework APIs and components dependencies (e.g.,
a bind cannot be defined without definition of components it connects).
Instead, regarding code arrangement and directory tree, the structure in Figure
3.29 has been designed. When generating code, the GEM software creates
the project folder with the same project name chosen when saving project;
inside it, three main folders are contained: gem_framework, inc and src: the
first one contains all about the framework, with all the header and source
files required for using it; the second one contains all the headers about the
modelled system (i.e., private_inc) and a folder in which the user can add
its own header files (i.e., user_inc); the last one contains all the source files
about the modelled system (i.e., private_src) and a folder in which the user
can add its own source files, and in which the main.cpp file, containing the
main() function, is created (i.e., user_src).

51

Software Development

Figure 3.29: Directory tree of generated code.

Even if the generated files contain the behavior of the modelled system, the
user should add some code in order to start the system in a proper way: for
instance, if inside the handleEvent function of event handlers are inserted
some particular definitions (e.g., std::cout for displaying messages), the user
has to include the required header file (iostream in the case of std::cout).
Moreover, the main() function is generated in such a way that the program
execution stops immediately, due to the presence of stop framework API call
right after the start framework API call; so, if the user wants to check whether
the modelled system behaves as expected, it has to modify the main() function
body too.
The compile process shall be led manually since, at the moment, the GEM
software does not provide automatic compiling facility (e.g., make, CMake).
However, the automatic compile facility can be enhanced in future versions of
the software.
The command to compile the code has to include all the header files (i.e.,
headers of the framework, headers of the components generated by the GEM
software and possible header files created by the user), source files (i.e., sources
of the framework, sources of the components generated by the GEM software
and possible source files created by the user) and the main.cpp file path, as
well as the name to assign to the object file created after the compiling process.

52

Chapter 4

Future works

In this chapter, we delve into possible improvements in the GEM software, both in
terms of additional functionalities that the software may provide to the user, and
from the standpoint of further facilities that may be integrated in the underlying
framework.
It is worth noting that all the features described in Chapter 3 are encompassed by
the first release of the GEM software; instead, the features described in this chapter
have been identified as possible improvements for future release of the software.

4.1 Improvements to the framework
The GEM framework provides several functionalities to handle event-based systems.
However, it can be enhanced with other facilities, such as:

• Additional state machine types
At the moment, the GEM framework supports primary and forwarding state
machines, that can be configured (i.e., nested) to represent any kind of behavior.
However, it can be useful to let the user the ability to choose a specific type
of state machine: for instance, a state machine that behaves like a sequence
recognizer could be useful to be already integrated in the GEM framework (e.g.,
the user should only define the sequence of events to recognize). The PDA
state machine (Push-Down Automata) could be useful to implement in the set
of state machines supported by the framework too: PDAs are classical state
machines using a stack as support data structure during operation; primary
example in which such state machines are useful is the recognizing of pairwise
parenthesis. Finally, Mealy and Moore state machines (see Section 2.1.2) can
be another type of state machine to integrate in the GEM framework, since
they are widespread.

53

Future works

• Priority-based events dispatching
As discussed in Section 3.1.1, when dealing with dispatching, the GEM frame-
work provide to the user the ability to define as many dispatching units as it
wants, in order to exploit parallel dispatching. However, both in serial and
parallel dispatching, events are consumed using a FIFO (First In First Out)
policy, and without applying any priority to the events.

• Generalization of arity configuration
Another aspect that may be improved is the configuration of the state machines
arity: at the moment, the user can set the state machine arity, providing only
raw values (e.g., for an integer parameter, the user may pass only values to
the API); in some systems it may be useful to have the capability to configure
the arity using a broader set of means, allowing the user to implement as
much as possible the variability of the system. This is case of any object that
is callable: static functions, functors, lambdas, etc. This way, the framework
would be enable the user to model the target system using more flexible APIs.

• Timed synchronization
Before dealing with this possible improvement, a brief explanation about
synchronized (sync) state is needed: when it enters, it spawns several parallel
threads, and then it provides result(s) to the user. The Flynn taxonomy[17]
classifies computer architectures, according to the multiplicity of data and
instructions they handle: there are Single Instruction Single Data architectures,
in which operations are executed sequentially; Single Instruction Multiple
Data architectures, in which the same instruction is executed on different
processing units and with different sets of data; Multiple Instruction Single
Data architectures, in which different instructions works on the same data;
Multiple Instruction Multiple Data architectures, in which different instructions
work on different data. In the sync states context, we denote the "function"
as the "instruction" and the "parameter set" as the "data". The sync state
enables the handling of different multiplicities of functions and parameter
sets, such as: Single Function Single Parameter Set (a function returning only
one value); Single Function Multiple Parameter Sets (a function returning
more than one value); Multiple Function Single Parameter Set (more than
one function returning only one value); Multiple Function Multiple Parameter
Sets (more than one function returning more than one value).
A timed synchronization is the combination of a sync state and a timer: after
a certain amount of time, so when the timer expires, the system does not wait
for the sync state result(s) anymore; it may be useful in real-time systems
that have time threshold to respect.

54

Future works

• Networked dispatching
It involves two different systems and, in particular, the communication between
them. Let’s take into account a remote and a local system: networked
dispatching (also known as remote dispatching) is a type of events dispatching
in which the remote dispatching unit receives an event from a signaller therein
and sends it to a local signaller or dispatcher. It can be useful if we want
different system to communicate between them, signalling events one for each
other.

4.2 Improvements to the GUI
The set of improvements regarding the GUI can be divided into two groups: the
former concerning the functionalities of the framework that are not yet included in
the GUI and that would enhance the user capabilities in software design, and the
latter concerning the features missing in the whole GEM software.
According to this distinction, the possible improvements to the GUI are:

• Framework functionalities missing for the user

– Timed signallers
We mentioned them in 3.1.1, when dealing with signallers. They are used
to signal events of any type (like standard signallers) using a timed-window
strategy.

– Function signallers
We mentioned them in 3.1.1, when dealing with signallers. They are used
to signal events produced by a function.

– Function caller
We mentioned them in 3.1.1, when dealing with signallers. They are
used to call functions running on other threads (i.e., implementing the
signal/slot strategy provided by Qt framework).

– Function callee
We mentioned them in 3.1.1, when dealing with signallers. They are used
to provide wrappers for functions, which react to remote calls coming
from a function caller object.

– Event filters
We mentioned them in 3.1.1, when dealing with filters. They can be
applied to signallers, in order to let events be accepted or filtered out,
according to the policy defined by the filter applied. Such filtering may be
also defined by means of a composed strategy: in this case, the user may
define nested filters, that act as composed functions. In GEM framework,

55

Future works

they are available in different configurations: sampling filters, used to
generate events every n samples; threshold filters, used to generate events
according to a threshold t; range filters, used to generate events according
to a range r ; timed filters, used to generate events every time interval i;
deviation filters, used to generate events according to deviation d from
the last valid event; custom filters, used to generate events according to a
user-defined filter.

– Event models
We mentioned them in 3.1.1, when dealing with models. They are used
to arrange the full set of signallers (regardless of their type) used by the
process and ease the access to the current state to the other software
components.

– Event waiters
They are used to receive events of type T from a designated signaller
(whichever its type is), forwarding them to subscribed functions according
to associated filters (e.g., "forward all events from this signaller having
their value equal to 13 to this associated function", or "forward all events
from this signaller having their value less than 3.14 to this associated
function").

– Composite states
We mentioned them in 3.1.1, when dealing with composite states. They
are used to allow the user to build multi-layer logic FSMs: when entered,
such a state may trigger sub state machine, according to the event that
triggered the entering. Once the system exits from a composite state,
reset actions may be performed, and the current active state machine is
reset.

– Arity for state machines
We mentioned them in 3.1.1, when dealing with state machines. The arity
of a state machine is a set of parameters that are used to tune the state
machine behavior while it is operational; it can be declared when defining
state machine or it can be not used at all, defining the so-called empty
arity state machine. At the moment, the GEM software supports the
empty arity by default.

– Object-reference state machines
We mentioned them in 3.1.1, when dealing with state machines. They are
also called object-bound state machines; that is, state machines in which
every action point shall refer an object of type T : such an object reference
is included in the arity of the state machine and the user can change it
during the state machine life-cycle.

56

Future works

– Forwarding state machines
We mentioned them in 3.1.1, when dealing with state machines. They are
used as the main skeleton of the logic state machine: they provide the
ability to forward the input arity, together with the current dispatched
event. They cannot be used as input in the binding process, and they
shall receive arity tuple from the outside.

– Timers
We mentioned them in 3.1.1, when dealing with timers. They allow to
trigger actions on a timing-basis: they can be one-shot (they work only
once) or periodic (they trigger over a predefined amount of time). They
also allow to configure/change the clock type at OS-level (i.e., the period
between time ticks).

• Other functionalities missing in GEM software

– Protected sections
They are useful when overwriting files during code generation: when
the user starts the code generation process concerning a system whose
code has already been generated, files are overwritten, discarding all the
changes the user did to the code. Protected sections are, as their name
suggests, code sections that are preserved during code generation.
The most useful part in which insert protected sections is the main.cpp
file, since it is the unique generated file that, at the moment, cannot be
modified through the GUI (all the other files can be edited by means of
acting on the corresponding software component).
In Figure 4.1, the possible protected sections in main.cpp file are high-
lighted: the first one can be used to contain the headers and global
variables; the second one can be used to contain local variables or other
code lines useful for the user; the third one is the if body, so it can contain
the actions to perform in case of system initialization failure; the fourth
protected section may be used to perform some actions before starting the
system; the fifth one can be used to perform some actions after the system
started (e.g., the user can insert the blocking of main() function, in order
to avoid the immediate stop of dispatching activities, until some event(s)
come(s), as discussed in Section 3.2.4, when dealing with Code generator
implementation, at the end of the paragraph); the sixth protected section
may contain actions to perform after the system stops; the last one can
be used to write whatever the user wants (e.g., new methods/functions
declaration).

57

Future works

Figure 4.1: Protected sections in main.cpp file.

– Compiling process
As discussed in Section 3.2.4, when dealing with Code generator imple-
mentation, at the end of the paragraph, the GEM software does not
provide automatic compiling facility, but the compile process shall be
performed manually. However, a possible improvement could be the one
of making this process automatic: a makefile can be exploited to declare
all the rules regarding the make command, which is used to compile
the code and to generate the object file; on top of that, a CMakeLists
file may be created, and exploiting CMake tool we may ease the user
in Makefile generation/updating, when writing code outside the GEM
software. Furthermore, an additional feature might be allowing to compile
the code straight from the GUI, enabling the immediate feedback for the
user and saving time during system design.

58

Future works

– Increased drawing area
In Section 3.2.1, we discussed about Drawing Logics and, in particular,
about Drawing Area of GEM UI (see Figure 3.3). At the moment, it can
contain few components due to its size, but in future it would be possibly
enlarged to contain more components.

– Exclusion of components from code generation
As discussed above, when dealing with protected sections, we mentioned
the problem of code overwriting: a possible solution could be to let the
user choosing the code of which components to generate again (i.e., to
overwrite), so that the added code after the previous code generation is
not overwritten.

– Editable main() function
A possible improvement to the GUI could be the possibility of letting the
user to write the main.cpp file using the GUI; this way, the user would
not need to edit the main.cpp code after generation.

59

Chapter 5

Conclusions

The goal of this thesis is to develop a software capable of handling event-based
systems, providing the user the ability of modelling them thanks to an easy-to-use
Graphical User Interface and, then, allowing to generate final code representing
the system, which is editable by the user, if needed.
An event-based system is a programming paradigm for application design, in which
the program flow is determined by external events, the main element of the whole
architecture: the event producer detects the events, and notifies them without
knowing how they will be consumed; then, the event consumer, that receives the
event notifications, elaborates them in a asynchronous way. This is opposed to the
polling model, in which the consumer makes repetitive requests until the provider
notifies the event.
The software, called GEM (Generic Event-based Modeling), exploits the framework
developed by the Zirak s.r.l. company, which provides a set of APIs to deal with
an event-based system: the framework relies on C++ language, and leverages
template metaprogramming extensively, in order to adapt its generic code to the
developer needs. For instance, two swap functions, one used for swapping two
integer variables content and another one used for swapping two string variables
content, can be collapsed into only one in order to make it valid for any data type.
The tool chosen to design and develop the software is Qt framework, given its C++
integration and its academic-use license, but also its ability to ease the handling
of GUIs for software and its ability to connect graphic and business worlds easily,
through the usage of design facilities, such as signal/slot paradigm.
The GEM software allows the user to establish policies for event signalling, event
dispatching and event handling behaviour(s). Events are notified by signallers,
each with a type that depends on the value type notified: they are bound to event
handlers. Once received, events can be consumed by generic event handlers or
by state machines, according to their defined behaviour. Furthermore, the user
can decide whether to signal events in a serial or in a parallel way thanks to the

60

Conclusions

chance of defining multiple dispatching queues: in fact, if the user wants to notify
an event at the same time towards different objects (i.e., event handlers and state
machines), it can bind the same signaller together with the two target objects using
two different dispatching queue.
The GEM software provides the user the ability of saving the project about the
modelled system and to resume it later, without the limitation of defining the
system all at once.
As we discussed above, the final step is the code generation, that provides a well-
organised directory in which the user can find all the objects (with their parameters)
translated using the GEM framework; then, the user can edit the code to finalize
the system behaviour (e.g., edit the main() function).
The User Interface does not provide all the features offered by the GEM framework
due to the limited amount of time, but it will be possibly updated later. Moreover,
the GEM framework will be enhanced as well, with other features such as synchro-
nized states and priority-based events dispatching. Finally, the User Interface will
be updated from a visual interaction point-of-view, making it more pleasant to the
user, in addition to the missing features (e.g., timers, filters, etc.).
Summarizing, since the framework is entirely written using high-level programming
languages like C and C++, the developer should know the entire set of APIs and
all their functionalities before using the framework. That is the reason why the
GEM framework has been extended with a easy-to-use GUI, which lets the user to
model its system with all the features, without dealing straight with the framework
APIs and especially decreasing the amount of time needed to arrange the software
code, thanks to the code generation facility.

As discussed in Chapter 1, event-based systems are present in many industrial
fields and have as many applications, such as automotive, avionic/aerospace and
operating systems, to cite some of them. Moreover, as discussed in Section 2.3,
there are toolkits that deal with event-based systems in different ways and with
different features, but they have some drawbacks, such as no ability to deal with
generic event handlers, no deep integration with C and C++ programming lan-
guages and no chance to generate code through an automatic process. The added
value of this thesis is to develop a software capable of managing different software
components from which an event-based system can benefit, such as signallers,
generic event handlers, state machines and dispatchers. Moreover, some drawbacks
from other software on the market may be overcome, such as the ability of handling
projects (i.e., save and load project facilities) and the ability of generating code
automatically. All the features it provides, together with the benefits it can bring
to the industrial fields and applications mentioned above, make the GEM software
a promising and rising toolkit, possibly with additional features that would increase
its value and usefulness.

61

Conclusions

In conclusion, I would like to mention the hard and soft skills this thesis allowed to
learn: first of all, it allowed to deepened the knowledge about several aspects of
Software Engineering, going into detail of its principles and steps, which helped a
lot in this project design and implementation; in particular, activities such as tasks
(re-)scheduling, effort (re-)evaluation and risks (re-)assessment, performed during
the whole project, were fundamental in order to meet the final deadline for this
thesis. Furthermore, it allowed to strongly enhance the knowledge about software
design and programming, especially with Qt framework and C++ programming
language; in addition, it allowed to learn about different theoretical topics, such as
event-based systems, state machines, metaprogramming and templates. Finally, it
allowed to improve skills about writing a thesis and Latex environment, exploited
to write it.

62

Bibliography

[1] Red Hat. What is event-driven architecture? Sept. 2019. url: https://
www . redhat . com / en / topics / integration / what - is - event - driven -
architecture. (accessed: 07.02.2022) (cit. on pp. i, 5).

[2] Zirak Website. url: https://www.zirak.it/ (cit. on pp. i, 17).
[3] Qt Website. url: https://www.qt.io/ (cit. on pp. i, 15).
[4] The Economic Times. Definition of ’Software Engineering’. url: https:

//economictimes.indiatimes.com/definition/software-engineering.
(accessed: 14.03.2022) (cit. on p. 1).

[5] R.E. Fairley P. Bourque, ed. Guide to Software Engineering Body of Knowledge.
Version 3.0. IEEE Computer Society, 2014. url: www.swebok.org (cit. on
p. 4).

[6] Anvita Bajpai. Event-Driven vs Request-Driven (RESTful) Architecture in
Microservices. Dec. 2020. url: https://www.techtalksbyanvita.com/
post/event-driven-vs-request-driven-rest-architecture. (accessed:
07.02.2022) (cit. on p. 6).

[7] Yakindu. What is a state machine? url: https://www.itemis.com/en/
yakindu/state-machine/documentation/user-guide/overview_what_
are_state_machines?hsLang=de. (accessed: 03.02.2022) (cit. on pp. 6–8, 10,
11).

[8] Yakindu. What are YAKINDU Statechart Tools? url: https://www.itemis.
com/en/yakindu/state-machine/documentation/user-guide/overview_
what_are_yakindu_statechart_tools?hsLang=de. (accessed: 08.02.2022)
(cit. on p. 11).

[9] OPNET. OPNET Network Simulator. url: https://opnetprojects.com/
opnet-network-simulator/. (accessed: 08.02.2022) (cit. on p. 12).

[10] OMNeT. What is OMNeT++? url: https://omnetpp.org/intro/. (ac-
cessed: 08.02.2022) (cit. on p. 13).

63

https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://www.redhat.com/en/topics/integration/what-is-event-driven-architecture
https://www.zirak.it/
https://www.qt.io/
https://economictimes.indiatimes.com/definition/software-engineering
https://economictimes.indiatimes.com/definition/software-engineering
www.swebok.org
https://www.techtalksbyanvita.com/post/event-driven-vs-request-driven-rest-architecture
https://www.techtalksbyanvita.com/post/event-driven-vs-request-driven-rest-architecture
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_state_machines?hsLang=de
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_state_machines?hsLang=de
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_state_machines?hsLang=de
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_yakindu_statechart_tools?hsLang=de
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_yakindu_statechart_tools?hsLang=de
https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/overview_what_are_yakindu_statechart_tools?hsLang=de
https://opnetprojects.com/opnet-network-simulator/
https://opnetprojects.com/opnet-network-simulator/
https://omnetpp.org/intro/

BIBLIOGRAPHY

[11] Gabriella Giordano. Introduzione ai template. Mar. 2019. url: https://
www.html.it/pag/375063/template- metaprogrammazione/. (accessed:
11.02.2022) (cit. on p. 14).

[12] Douglas Gregor David Vandevoorde Nicolai M. Josuttis. C++ Metaprogram-
ming. Nov. 2017. url: https://www.informit.com/articles/article.
aspx?p=2832416. (accessed: 14.03.2022) (cit. on p. 15).

[13] Qt. Draggable Icons Example. url: https://doc.qt.io/qt-5/qtwidgets-
draganddrop-draggableicons-example.html. (accessed: 16.03.2022) (cit.
on p. 47).

[14] Qt. Drag and Drop Puzzle Example. url: https://doc.qt.io/qt- 5/
qtwidgets- draganddrop- puzzle- example.html. (accessed: 20.03.2022)
(cit. on p. 48).

[15] Qt. Drag and Drop Robot Example. url: https://doc.qt.io/qt-5/qtwidg
ets-graphicsview-dragdroprobot-example.html. (accessed: 20.03.2022)
(cit. on p. 48).

[16] Qt. Part 6 - Loading and Saving. url: https://doc.qt.io/qt-5/qtwidge
ts-tutorials-addressbook-part6-example.html. (accessed: 17.03.2022)
(cit. on p. 51).

[17] Wikipedia. Flynn’s taxonomy. url: https://en.wikipedia.org/wiki/
Flynn%27s_taxonomy. (accessed: 23.03.2022) (cit. on p. 54).

64

https://www.html.it/pag/375063/template-metaprogrammazione/
https://www.html.it/pag/375063/template-metaprogrammazione/
https://www.informit.com/articles/article.aspx?p=2832416
https://www.informit.com/articles/article.aspx?p=2832416
https://doc.qt.io/qt-5/qtwidgets-draganddrop-draggableicons-example.html
https://doc.qt.io/qt-5/qtwidgets-draganddrop-draggableicons-example.html
https://doc.qt.io/qt-5/qtwidgets-draganddrop-puzzle-example.html
https://doc.qt.io/qt-5/qtwidgets-draganddrop-puzzle-example.html
https://doc.qt.io/qt-5/qtwidgets-graphicsview-dragdroprobot-example.html
https://doc.qt.io/qt-5/qtwidgets-graphicsview-dragdroprobot-example.html
https://doc.qt.io/qt-5/qtwidgets-tutorials-addressbook-part6-example.html
https://doc.qt.io/qt-5/qtwidgets-tutorials-addressbook-part6-example.html
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy

	List of Figures
	Acronyms
	Introduction
	Technical context and state of the art
	State of the art
	Event-based systems
	Finite State Machine
	Toolkits to handle event-based systems and FSMs

	Technical context
	Templates and Metaprogramming
	Introduction to Qt

	Thesis goal

	Software Development
	Generic Event-based Modeling framework
	Features and objects

	Visual approach to software modeling
	Architectural composition
	Features and Use Cases
	Usage scenarios
	Development approach and issues found

	Future works
	Improvements to the framework
	Improvements to the GUI

	Conclusions
	Bibliography

