
Continuous integration for End-to-End testing
of mobile applications

Gabriele Fantini

March 14, 2022

Contents

I Introduction 4

1 Background 5
1.1 Software testing . 5

1.1.1 Software verification and validation phase 5
1.1.2 Levels of tests . 7

1.2 Testing mobile applications 10
1.2.1 Challenges . 10
1.2.2 Automation frameworks 12
1.2.3 Record and replay tools 16
1.2.4 Automated test input generation techniques 19
1.2.5 Bug and error reporting/monitoring tools 19
1.2.6 Mobile testing services 21
1.2.7 Device streaming tools 22

1.3 Continuous integration, delivery and deployment 22
1.3.1 Continuous Integration 22
1.3.2 Continuous Delivery 22
1.3.3 Continuous Deployment 22

II Evaluation of tools for mobile testing 24

2 Selected Instruments 26
2.1 Android Espresso . 26

2.1.1 Architecture Details 26
2.1.2 Environment Setup . 27
2.1.3 Tool Capabilities . 28

2.2 Appium . 31
2.2.1 Architecture Details 31

1

2.2.2 Environment Setup . 32
2.2.3 Tool Capabilities . 32

2.3 Sikuli . 35
2.3.1 Architecture Details 35
2.3.2 Environment Setup . 35
2.3.3 Tool Capabilities . 35

3 Experimental Subject 39

4 Procedure 40
4.1 Test Cases . 40

4.1.1 Espresso . 40
4.1.2 Appium . 40
4.1.3 Sikuli . 40

5 Tools Evaluation 49
5.1 Final considerations . 49

5.1.1 Espresso . 49
5.1.2 Appium . 50
5.1.3 Sikuli . 51

III Tools implementation in a CI/CD pipeline 53

6 Tools for CI/CD 54
6.1 GitHub Actions in depth . 55

6.1.1 Workflow . 55
6.1.2 Events . 55
6.1.3 Jobs . 56
6.1.4 Steps . 56
6.1.5 Actions . 56
6.1.6 Runners . 56

7 Implementing a CI/CD pipeline 57
7.1 Android Emulator Runner . 57
7.2 CI/CD pipeline using Espresso 58

7.2.1 Repository Workflow 58
7.3 CI/CD pipeline using Appium 59

7.3.1 OmniNotes Repository 59

2

7.3.2 Appium Repository . 63
7.4 CI/CD pipeline using Sikuli 64

7.4.1 OmniNotes Repository 64
7.4.2 Sikuli Repository . 64
7.4.3 Screenshots Recording 69

7.5 The X virtual framebuffer . 70

8 CI/CD Pipelines Evaluation 72
8.1 Procedure . 72

8.1.1 Increased Test Set . 72
8.1.2 Pipelines and Tools Modifications 72
8.1.3 Analyzing Fragmentation 73
8.1.4 Analyzing Flakiness . 74

8.2 Results . 74
8.2.1 Considerations . 76

IV Conclusions 78

9 Achievements 79
9.1 Espresso pipeline . 79
9.2 Appium pipeline . 79
9.3 Sikuli pipeline . 80

10 Future developments 81
10.1 Continuous Integration Environment 81
10.2 Testing Framework Implementation 81

10.2.1 Appium . 82
10.2.2 Sikuli . 82

11 Acknowledgements 83

3

Part I

Introduction

4

Chapter 1

Background

1.1 Software testing

Software testing is the process of evaluating and verifying that an application
or software product is functioning properly against requirements. Benefits
of testing include bug prevention, reduced development costs, and improved
performance. Software testing is a crucial phase in any software development
life cycle, especially in AGILE’s ones. An example of a common software life
cycle is represented in Figure 1.1. The duration of each iteration depends
on the adopted software development practice, varying from one week to
several months. Other than the test phase, there is the strategy phase that
comprehends a planning stage and an analysis stage. The first helps to define
the project scope as well as the problems, the latter helps build the system’s
requirements. The design stage outlines the details for the overall system,
even down to specific aspects. The development phase is where developers
actually start writing code and building applications in accordance with the
pre-defined design and requirements. The deployment phase is where the
final software solution is deployed into the target production environment.
And the maintenance phase, in which developers handle possible software
bugs or problems.

1.1.1 Software verification and validation phase

The testing phase can be divided into two macro areas: the verification phase
and the validation phase.

5

Strategy Design Development

TestingDeploymentMaintenance

VerificationValidation

Figure 1.1: Software life cycle with its phases.

6

Software verification

Software verification is the process of checking code, design, documents and
programs to verify that the software has been built according to the re-
quirements or not. It answers the question of ”Are we building the product
right?”. During this phase no test code is executed, giving it the name of
static testing. Methods used in verification are reviews, walkthroughs, in-
spections and desk-checking. Usually, software verification is done by the
quality assurance team.

Software validation

Software validation is a dynamic process of testing and validating if the soft-
ware product meets the exact needs of the customer or not. The process helps
to ensure that the software fulfills the desired use in an appropriate environ-
ment. It answers the question of ”Are we building the right product?”. This
phase includes tests code execution, giving it the name of dynamic testing.
Methods used in validation are Black Box Testing, White Box Testing and
non-functional testing. Usually, software validation is done by the testing
team.

1.1.2 Levels of tests

Different levels of tests exist, each one with a specific granularity (how the
test is isolated or integrated) and goals. The Figure 1.2 illustrates the test
pyramid. As Martin Fowler says:

”The test pyramid is a way of thinking about how different kinds
of automated tests should be used to create a balanced portfolio.
Its essential point is that you should have many more low-level
UnitTests than high level BroadStackTests running through a
GUI. [...] In short, tests that run end-to-end through the UI are:
brittle, expensive to write, and time consuming to run. So the
pyramid argues that you should do much more automated testing
through unit tests than you should through traditional GUI based
testing.” [10].

7

Unit Tests

Integration Test

E2E

Figure 1.2: Tests pyramid.

8

Unit testing

In unit testing, the smallest testable parts of an application, called units, are
individually and independently scrutinized for proper operation, to ensure
that the individual parts of a program work properly on their own, speeding
up testing strategies and reducing wasted tests. A unit can be almost any-
thing, like a line of code, a method, or a class. Generally, though a unit is
traceable to a single function. This testing methodology is done during the
development process by the software developers and sometimes QA staff.

Integration testing

Integration testing usually involves testing a particular unit (usually referred
to as a module or functionality) that has dependencies on another unit. The
goal of these tests is to check the connectivity and communication between
different components of the application. It is performed in an integrated
hardware and software environment to ensure that the entire system func-
tions properly.

End to end testing

In end-to-end testing, the goal is to test the product the same way a real
user experiences it, testing the application’s workflow from beginning to end
to make sure everything functions as expected.

Others test modalities

There are also other different modalities in which tests can be made, each
one independent from the granularity level and not mutually exclusive from
the others. These modalities are:

• Record and Replay testing, a way of testing the application graphical
user interfaces. It consists in a tool which captures a user interactive
session and then automatically replay it any number of times without
human intervention.

• Model Based testing, a technique in which test cases are derived from
a model that describes the functional aspects of the system under test.

9

• Random testing, also known as monkey testing, is a technique where
the software is tested by providing random inputs and checking its
behavior.

• Black-box testing, where functionalities of software applications are
tested without having knowledge of internal code structure, implemen-
tation details and internal paths.

• White-box testing, where internal structure, design and coding of soft-
ware are tested to verify flow of input-output and to improve design,
usability and security.

• Regression testing, checking if previously developed and tested software
still performs after a change.

• GUI level testing, the process of ensuring proper functionality of the
graphical user interface. GUI testing can require a lot of programming
and is time consuming whether manual or automatic. Usually GUI
tests are also of the type End to End.

1.2 Testing mobile applications

In recent years, the mobile industry has grown exponentially, made up of mil-
lions of applications and developers, and billions of devices and users. The
rapidly evolving hardware and software platforms, in conjunction with their
enormous variety, make mobile application testing a difficult task. The sub-
division of the tools for mobile testing has been taken from the article Con-
tinuous, Evolutionary and Large-Scale: A New Perspective for Automated
Mobile App Testing [16], among with some of the tools proposed.

1.2.1 Challenges

Compared to desktop or web applications, mobile apps are highly event-
driven. They accept inputs from users and the surrounding environment,
coming from a big set of sensors and hardware components. These diverse
input scenarios are difficult to emulate in a controlled testing environment,
making near impossible to test apps against a large set of configurations that
are representative of “in-the-wild” conditions.

10

Fragmentation

The phenomenon of Fragmentation is one of the larges challenges when test-
ing apps: for an app to be successful, developers must assure the correct
functioning of it on a very big set of configurations, due to the diversity
of existing devices. The set can be represented by a matrix that combines
several variations of operating systems, versions and devices. Fragmentation
is more prominent in the case of Android, because the open-source nature
has led to a large number of devices with different configurations operating
during the same time period. A statistic from 2015 says that there were more
than 24,000 different Android devices [17] and we can easily assume that this
number has gone up a lot since then. In the case of iOS, the fragmentation
is lower, as the number of devices is limited and controlled by Apple, and
the market share is more biased toward devices with the latest OS [14].

Test flakiness

A flaky test is a test that both passes and fails periodically without any
code changes, in other words, a test with a non-deterministic behavior. As
Jason Palmer said in the article Test Flakiness – Methods for identifying and
dealing with flaky tests, the real cost of test flakiness is a lack of confidence
in tests, which places a team with flaky tests in a position similar to a team
with zero tests. Important causes of flakiness are [19] [22]:

• Inconsistent assertion timing, when the application state is not
consistent between test runs.

• Reliance on test order, when test are dependent between each other.

• Unstable test environment, like failing to allocate enough resources
to satisfy test requirements.

• The application itself, like race conditions, uninitialized variables,
memory leaks.

• The underlying hardware and operating system, for example
network failures or disk errors.

11

1.2.2 Automation frameworks

A testing framework is a set of guidelines or rules that helps developers or
testers to create and design test cases. Usually these are GUI-level tests for
mobile apps through hand-written or recorded scripts, that specify a series
of action to be performed on GUI-component and then test for some state
information via assertion statement. An automation testing framework is
an execution engine to perform automated test with the minimal manual
interference. Even if the script’s code is highly reusable and this family of
techniques is quite efficient due to standardization, there are some drawbacks.
While these frameworks typically provide cross-device compatibility of scripts
in most cases, the fragmentation problem can appear, for example, with
different app states or GUI attributes. Also they usually don’t support all
the complex user actions that the mobile scenario offers, or interfaces to
simulate contextual states. The most problematic thing is that scripts are
tightly coupled with the application code and as that rapidly evolves, these
become very difficult and time consuming to maintain.

• UIAutomator is a mobile testing framework offered by Google as
a part of SDK Manager, suitable for cross-app functional UI testing
across system and installed apps. It consists of a Java library which
has APIs to create functional UI tests as well as an execution engine to
run the tests. Appium is a newer version of UIAutomator. [8] [20] [13]

Pros: UIAutomator was created specifically for android UI testing and
is very easy to use for black-box test cases. The Ui Automator
Viewer gives a graphical view of UI components which makes it
easy to view components on the device and it enables to work
directly with UI elements. Also good documentation and tutorials
are available.

Cons: It supports only Java and Kotlin languages and the web view is
not supported. Working with lists using the API is a complicated
process.

• Espresso is an open source android UI testing framework developed
by Google, designed for whit- box testing. It is one of the most popular
automation testing frameworks for Android. [8] [20] [13]

Pros: Free and open-source. It offers simple API to quickly write
UI test cases. It is customizable, easy to use and fast. The de-

12

pendency on the Hamcrest library allows to use matchers to test
complicated scenarios. Also using Espresso Recorder is possible
to create UI tests without writing the code.

Cons: It works only on the Android platform and support just Kotlin
and Java to write test cases. Application source code is required,
meaning this framework is mainly for developers. It doesn’t sup-
port test automation for contact synchronization and push no-
tification. If the test requires working with Android or another
app outside the application being tested, additional tools such as
UIAutomator might need to be used. Tests use hard coded GUI’s
Ids, so if any change a tests code refactoring must be done.

• Appium is a popular cross-platform mobile testing automation tool,
enabling developers to test native, web and hybrid apps on Android
and iOS devices. It offers wide coverage of test automation with device
settings, gestural inputs, and different environmental conditions. [8]
[20] [13]

Pros: It support multiple code languages to write test scripts and de-
veloper can use the same code to test Android and iOS devices.
It is capable of testing outside the target application. Also it is
supported by a large community and since it is open-source, it can
run on real devices as well as emulators and simulators.

Cons: The initial setup is quite complex and the execution perfor-
mances are relatively slow. Also it has a limited support for ges-
ture. Tester can execute only one test at a time per Mac while
using iOS, giving some scalability issues.

• Robotium is an open-source test automation framework for native and
hybrid mobile apps, developed to effectively perform grey-box testing.
Gray-box testing allows to test an application via source code or apk
files. [20] [8]

Pros: It is easy and quick to write and run tests. It automatically
tests multiple devices simultaneously. Robotium integrates with
Gradle, Maven, Ant and offers Robotium Recorder that can record
test cases quickly.

13

Cons: Can not simultaneously test multiple applications. It does not
offer notification handling of mobile devices and managing incon-
sistent failures is challenging.

• Robolectric is a framework to do fast and reliable unit tests on An-
droid. Unlike traditional emulator-based Android tests, Robolectric
tests run inside a sandbox which allows the Android environment to
be precisely configured to the desired conditions for each test, isolates
each test from its neighbors, and extends the Android framework with
test APIs which provide minute control over the Android framework’s
behavior and visibility of state for assertions. [11] [28]

Pros: It doesn’t require to run an emulator and can be combined with
other test tools like Mockito, Espresso etc. .

Cons: Excels at aiding Unit testing, but does not cover all the func-
tionality a real device or emulator can offer. Project setup may
require a bit of a tinkering. Also as both Gradle and android build
tools are shipping out newer build versions at a fast rate, stable
Robolectric versions will sometimes start having problems with
the changed build tooling.

• Ranorex is a GUI test automation framework provided by Ranorex
GmbH. It uses standard programming languages such as VB.NET and
C# to automate application. Ranorex has a good Record, Replay and
Edit User Performed Actions with the Object-Based Capture&Replay
Editor, which means that the Ranorex Recorder offers a simple ap-
proach to create automated test steps for web, mobile (native and
WAP) and desktop applications. Ranorex can be used for regression
testing in continuous build environments to find new software bugs
much faster. [25]

Pros: It is a multi platform application. Ranorex Recorder with its
drag-and-drop interface allows for conducting script-free tests ap-
plying keyword-driven testing. It offers image-based test automa-
tion with smart object identification technique to automatically
detect any change to the UI.

Cons: It is an expansive licensed tool, it supports only a few languages
and it lacks of macOS support. Also it has a small community .

14

• Calabash is a test automation framework that enables creating and
executing acceptance tests for Android and iOS apps without coding
skills required. It enables automatic UI interactions within an appli-
cation. Cucumber, a behavior-driven development language, is used
to write test scripts. Calabash can test native, web, and hybrid apps
simultaneously on hundreds of iOS and Android devices while getting
real-time feedback. [7] [20]

Pros: The use of Cucumber language allows anyone without program-
ming knowledge to understand and write test codes. It supports
simulators, emulators, and real devices. It can be integrated with
CI/CD frameworks such as Jenkins.

Cons: Xamarin has stopped active development of Calabash in 2017
owing to the rising popularity of native iOS and Android testing
frameworks such as XCUITest and Espresso and the increasing
growth of Appium as a cross-platform solution. Also the commu-
nity support is not great. There is no recorder option to record
tests which means no code is generated by the tool.

• Quantum is Perfecto’s open source, cross-platform test automation
framework that support behavior-driven development (Perfecto is a
cloud platform for web and mobile app testing). It allows users to
quickly build a test using a single, JavaScript framework, Jasmine, for
testing native and web apps. Quantum provides testNG integration for
execution management, ability to write BDD scripts and a wide range
of pre-built commands. [24]

Pros: It is a free download from GitHub and can be extended as
needed.

Cons: Very small community and documentation.

• Qmetry is a complete package of Selenium-driven automated end-to-
end testing with detailed reporting and trending, mobile quality au-
tomation and behavior-driven development. Abstracting the technical
implementation away from the operational components, it facilitates
streamlined and structured approach. It allows reusable test assets.
It can run a single test case against multiple test data sets provided
through CSV, XML, JSON, Microsoft Excel or custom database. It

15

supports unified scripting across different digital platforms and ad-
vanced reporting with trending and root causes. [23]

Pros: Ready made steps available which is designed on the top of
selenium native methods which will help the Testers to write their
scenarios very easy. It supports Recorder functionality which will
automatically store the steps with suitable locators to generate
the sample flow of testing scenarios.

Cons: Heavy application due to which it goes on hang up if already
another heavy application is running.

1.2.3 Record and replay tools

As already stated in 1.1.2, Record and Replay is a way to run tests with-
out programming knowledge. This is done by using a tool that allows to
manually perform user interactions, also complex ones, on the graphical user
interface and save them as a test. This supports fully automatic regression
testing of graphical user interfaces and makes application testing a faster and
lighter task, that can be easily automated. However, despite the advantages
and ease of use these types of tools afford, they exhibit several limitations.
Most of these tools suffer from a trade-off between the timing and accuracy of
the recorded events and the portability of recorded test scripts. For context,
some R&R based approaches leverage the /dev/input/event stream situated
in the Linux kernel that underlies Android devices. While this allows for
extremely accurate R&R, the scripts are usually coupled to screen dimen-
sions and are agnostic to the actual GUI components with which the script
interacts. On the other hand, other R&R approaches may use higher-level
representations of user actions, such as information regarding the GUI com-
ponents upon which a user acts. While this type of approach may offer more
flexibility in easily recording test cases, it is limited in the accuracy and tim-
ing of events. An ideal R&R approach would offer the best of both extremes,
with highly accurate and portable scrips, suitable for recording test cases or
collecting crowdsourced data. R&R requires oracles that need to be defined
by developers, by manually inserting assertions in the recorded scripts or
using tool wizards.

• RERAN is a record and replay tool for the smartphone Android op-
erating system. At a high level, it captures the input events sent from

16

the phone to the operating system of a user session, and then allows
the sequence of events to be sent into the phone programatically. At
low level, RERAN consists of three steps. First events are recorded
with the Android SDK’s getevent tool, then the output is sent into
RERAN’s Translate program. The output from the Translate program
is then sent into RERAN’s Replay program. The Replay program sends
the events back into the event stream of the phone.[26]

Pros: It is able to replay 86 out of the Top-100 free apps on Google
Play. Also it can replay complex GUI gestures and some device
sensors.

Cons: Replay does not always work 100% specially with sessions over
10 minutes.

• VALERA stands for Versatile-yet-lightweight Record-and-replay tool
for Android. It uses a novel technique named sensor-oriented replay
(recording and replaying sensor and network input, event schedules,
and inter-app communication via intents) to achieve high accuracy and
low overhead. [32]

Pros: Versatile and lightweight tool.

Cons: Almost inexistent documentation and community. Works only
for Android.

• Mosaic is a cross-platform (based on Python), timing-accurate record
and replay tool for Android-based mobile devices. Mosaic enables cross-
platform record and replay through a novel virtual screen abstraction.
User interactions are translated from a physical device into a platform-
agnostic intermediate representation before translation to a target sys-
tem. The intermediate representation is human-readable, which allows
Mosaic users to modify previously recorded traces or even synthesize
their own user interactive sessions from scratch. [18]

Pros: Mosaic’s unique virtualization scheme abstracts away the hard-
ware and software complexity related to user input to replay user
interactions across a variety of different mobile devices.

Cons: Almost inexistent documentation and community.

17

• Barista is built on top of Espresso, it provides a simple and discover-
able API, removing most of the boilerplate and verbosity of common
Espresso tasks.[4]

Pros: Improved stability through auto retry and auto scroll. Very
good documentation, easy to use.

Cons: Idling resources still have to be implemented manually.

• Sikuli automates anything that can be seen on the screen of a desktop
computer running Windows, Mac or some Linux/Unix. It uses image
recognition powered by OpenCV to identify GUI components. This is
handy in cases when there is no easy access to a GUI’s internals or the
source code of the application. Though Sikuli is currently not available
on any mobile device, it can be used with the respective emulators on
a desktop computer or based on VNC solutions.[30]

Pros: Easy and fast black-box testing.

Cons: The image recognition is dependant from screenshots resolu-
tion, that are used to recognize GUI elements. So taking screen-
shot in an environment and running tests in another environment
cause tests flakiness.

• Robotium Recorder is based on the open source Robotium test au-
tomation framework. It allows to easily create test cases for android
app and re-run them later.[27]

Pros: Installation is simple, it works as a plugin for either Eclipse or
Android Studio. Easy tests recording.

Cons: It only supports a single app at a time and it is for Android
only.

• Espresso Recorder lets create UI tests without writing any code. By
recording a test scenario, it is possible to record interactions with a
device and add assertions to verify UI elements in particular snapshots
of the app to be tested. Espresso Test Recorder then takes the saved
recording and automatically generates a corresponding UI test that can
be run to test the app. Espresso Test Recorder writes tests based on
the Espresso Testing framework.[5]

18

Pros: It allows to record both interactions and assertions, making pos-
sible to verify the state of specific widgets. It also supports mul-
tiple assertions.

Cons: It supports only basic and simple assertions. Test cases with
animations or asynchronous operations cannot be tested.

1.2.4 Automated test input generation techniques

This family of techniques automated the process of input generation to dra-
matically ease the burden on developers and testers. Such approaches are
typically designed with a particular goal, or set of goals in mind, such as
achieving high code coverage, uncovering the largest number of bugs, reduc-
ing the length of testing scenarios or generating test scenarios that mimic
typical use cases of an app. AIG are classified into three categories: random-
based input generation, systematic input generation and model-based input
generation. Additionally, other input generation approaches have been ex-
plored including search-based and symbolic input generation. The specific
limitations of these tools fail to address broader challenges, including flaky
tests, fragmentation, limited support for diverse testing goals, and inadequate
developer feedback mechanisms.

1.2.5 Bug and error reporting/monitoring tools

They are an integral part of many mobile testing workflows. There are two
types of tools in this category: tool for bug reporting (also known as issue
trackers), and tools for monitoring crashes and resource consumption at run-
time. Classic issue trackers only allow reporters to describe the bugs using
textual reports and by posting additional files such as screenshots. In the
case of tools for monitoring, if developers do not choose to include third-party
error monitoring in their application (or employ a crowd-based approach),
typically, the only user-feedback or in-field bug reports they receive are from
user reviews or limited automated crash reports. Unfortunately, many user
reviews or stack traces without context are unhelpful to developers, as they
do not adequately describe issues with an application to the point where the
problem can be reproduced and fixed.

19

(a) Espresso logo. (b) Appium logo.

(c) Sikuli logo. (d) Robotium logo.

(e) Barista logo.

Figure 1.3: Some of the tools logos.

20

1.2.6 Mobile testing services

Due to the sheer number of different technical challenges associated with
automated input generation, and the typically high time-cost of manually
writing or recording test scripts for mobile apps, it has become a popular
alternative to outsource testing services. Some of the most popular services
are: Perfecto Cloud Lab [21], AWS Device Farm [3] and Firebase Test Lab
[9].

Crowd-sourced functional testing

Crowd testing involves a large number of testers based in different locations,
both experts and non-experts. With a broader set of people conducting tests
in a diverse range of conditions and in a real life scenario, it’s more likely
that they will spot any bugs. Tester are then compensated for the number
of true bugs discovered.

Usability testing

In a usability-testing session, a researcher (called a “facilitator” or a “moder-
ator”) asks a participant to perform tasks, usually using one or more specific
user interfaces. While the participant completes each task, the researcher
observes the participant’s behavior and listens for feedback, aiming to the
measure the UX/UI design of an app with a focus on ease of use and intu-
itiveness.

Security testing

Security Testing aims to uncover any design flaws in an app that might
compromise security. It can be Grey Box, analyzing application source code
to find vulnerabilities, or it can be Black Box, analyzing the application
downloaded from a store.

Localization testing

Localization Testing tries to ensure that an app will function properly in
different geographic regions with different languages across the world.

21

1.2.7 Device streaming tools

Tools for device streaming facilitate developer when testing mobile applica-
tion by mirroring a connected device to their PC or accessing devices remotely
over the internet.

1.3 Continuous integration, delivery and de-

ployment

1.3.1 Continuous Integration

Continuous integration is a practice where developer merge their code changes
to the main branch of a repository as often as possible. The changes are then
validated by creating a build and running automated tests against it. This
avoid integration challenges when comes the moment of merging development
branch to the main branch after many commits. Continuous integration puts
a great emphasis on testing automation to check that the application is not
broken whenever new commits are integrated into the main branch. Another
advantage of doing continuous integration is that running a complete test
suite for each small change can bring to a better bug detection and resolu-
tion.

1.3.2 Continuous Delivery

Continuous delivery automatically deploys all code changes to a testing
and/or production environment after the build stage. On top of automated
testing there is an automated release process.

1.3.3 Continuous Deployment

In continuous deployment, every change that passes all stages of the produc-
tion pipeline is released directly to the customers without human interven-
tion: only failed test prevent a new change to be deployed.

22

BUILDS ACCEPTANCE
TESTS

DEPLOY TO
STAGING

ACCEPTANCE
TESTS

DEPLOY TO
STAGING

TESTS

BUILDS TESTS

DEPLOY TO
PRODUCTION

DEPLOY TO
PRODUCTION

Continuous Integration

(manual)

(automatic)

Continuous delivery

Continuous deployment

Figure 1.4: The structure of a common CI/CD pipeline and the difference
between continuous delivery and continuous deployment.

23

Part II

Evaluation of tools for mobile
testing

24

Studying and evaluating testing frameworks for mobile applications, in
a more refined way, is the main goal of this thesis. In particular, the focus
is on better describing the modes of operation, the required setup and its
difficulties and the issues that may occur during the execution of tests.

25

Chapter 2

Selected Instruments

From the crowded selection of testing tools that the market offers have been
chosen three tools. These will be used to conduct GUI level end-to-end tests.
The first two tools are from the automation framework group, in particular,
the first one is for white-box testing and the second for black-box testing.
The last tool is from the record and replay tools and is for black-box testing.

2.1 Android Espresso

The choice of Android Espresso is dictated from mainly three reason:

1. Created by Google, it is a native framework for Android automated
testing, so it is well maintained, compatible with nearly all Android
versions, and it has a big community support.

2. It is stable and it has a simple workflow with fast feedback.

3. Effortless setup and integration with Android Studio, the native An-
droid development environment.

2.1.1 Architecture Details

Espresso provides a large number of classes to test the user interface and the
user interaction of an android application. They can be grouped into five
categories: [6]

26

• JUnit runner, to run the espresso test cases written in JUnit3 and
JUnit4 style test cases. It is specific to android applications and it
transparently handles loading the espresso test cases and the applica-
tion under test both in actual device or emulator, executes the test
cases and reports the result of the test cases.

• JUnit rules, in particular ActivityTestRule to launch an android ac-
tivity before executing the test cases.

• View matchers, to match and find UI elements/views in an android
activity screen’s view hierarchy.

• View actions, to invoke the different actions on the selected/matched
view.

• View assertions, to assert the matched view is what is expected.

The workflow of the framework can be resumed as:

1. AndroidJunit4 will prepare the environment to run all the test cases:
it starts the emulator, installs the application and makes sure the ap-
plication to be tested is in a ready state. It will run the test cases and
report the results.

2. The activity/activities to be tested will be started by the Android JUnit
runner using the ActivityTestRule.

3. Every test case needs a minimum of single onView or onDate method
invocation to match and find the desired view.

4. onView and onDate return a ViewInteraction object, that can either
invoke an action or check an assertion.

2.1.2 Environment Setup

To avoid test flakiness, it’s highly recommended to turn off systems ani-
mations on the virtual or physical devices used for testing. Then Espresso
dependencies must be added to the project using Gradle: for a complex
project and especially for developers that don’t know well the application
code, this step might require some effort in order to succeed, because incom-
patibility errors may arise or the required code can be put into the wrong

27

build.gradle file. To run the tests the application code must be available
and must compile without error. This is another problem because sometimes
the code present on the online repository may be incomplete or with the
wrong dependencies.

2.1.3 Tool Capabilities

Espresso is well integrated with Android Studio IDE. Tests can be run in
sequence or one by one by clicking on the icon that appears at the left of the
function annotated with @Test as shown in Figure 2.1 and Figure 2.2.

Figure 2.1: Espresso run test button.

Figure 2.2: Espresso run test button expanded.

Each time a test needs to be run a Gradle build executes, which takes
between 2 to 4 minutes. An emulator or a real device must be available to
run the tests. It’s possible to execute only 1 test at a time on each device.
Tests results are displayed in a dedicated section of the Android Studio IDE
(Figure 2.3). If a test failed the cause of the error is quite comprehensive (
Figure 2.4).

Tests can be executed also via ./gradlew connectedAndroidTest com-
mand. This allows to automate test execution and produce a Gradle tests
report.

28

Figure 2.3: Espresso successful test.

29

Figure 2.4: Espresso failed test.

30

2.2 Appium

Appium has been chosen because of:

1. It is well documented and widely spread across the developers commu-
nity.

2. It supports cross platform test cases.

3. Because Appium uses JSON Wire Protocol for client/server communi-
cation, it allows writing clients (and so test scripts) in many different
languages.

2.2.1 Architecture Details

Appium uses vendor-provided automation frameworks (Apple Instruments,
XCUITest, UIAutomation for iOS and UiAutomator/UiAutomator2 for An-
droid). Those are wrapped in one API called WebDriver API, which specifies

Appium ServerTest Scripts

Mobile JSON
Wire

Protocol

Apple
 Instruments

UIAutomator

Figure 2.5: Appium architecture details.

a client-server protocol. With this client-server architecture, a client (with

31

test scripts) written in any language can be used to send the appropriate
HTTP request to the server. [2]

2.2.2 Environment Setup

Appium setup is very tricky. First of all Appium server must be installed,
that runs on Node.js, second it must be configured to connect to the android
device (simulated or real). Then Appium Inspector must be installed, a tool
to rapidly inspect the GUI and record tests, and configured to connect to
the Appium server. Last but not least one of the available Appium client
libraries must be chosen, depending on the programming language wanted
to be used.

2.2.3 Tool Capabilities

Appium Server GUI

Is a graphical interface for the Appium Server. It allows to set options,

Figure 2.6: Appium Server GUI.

32

start/stop the server, see logs, etc... Also, it is not needed to use Node/NPM
to install Appium, as the Node runtime comes bundled with Appium Desktop
(Figure 2.6)

Appium Inspector

Is basically just an Appium client (like WebdriverIO, Appium’s Java client,
Appium’s Python client, etc...) with a user interface. There’s an interface
for specifying which Appium server to use, which capabilities to set (Figure
2.7),

Figure 2.7: Start a session in Appium Inspector.

and then interacting with elements and other Appium commands once
started a session. This allows to easily inspect the GUI of the application
(Figure 2.8) and record a test case using the record functionality (Figure
2.9) which automatically generates the test script based on the client library
selected.

33

Figure 2.8: Appium Inspector connected.

Figure 2.9: Appium Inspector test recording functionality.

34

Appium Client Library

Once the tests have been recorded using Appium Inspector, they can be
saved and run using one of the available client libraries for Appium. In this
case, it has been used the Java Client Library, Intellij Idea Community IDE,
and the TestNG Framework to make assertions and organize tests.

2.3 Sikuli

Sikuli is a good pick from the record and replay tools because:

1. Very fast set up with nearly zero configuration.

2. Fast and easy test recording, with little coding knowledge required.

3. Cross platform tests.

2.3.1 Architecture Details

Sikuli is written in Java and is used as a library that exposes some APIs.

2.3.2 Environment Setup

Sikuli is the fastest option. It is as easy as downloading the Sikuli portable
jar file and launching it. When running test scripts an Android Emulator
with the app to be tested must be available and running. To save and run
tests in a more organized way, it has been used the Sikuli Java Library, the
TestNG framework and IntelliJ Idea Community for the IDE.

2.3.3 Tool Capabilities

The Sikuli portable jar offers a graphical interface that allows to capture a
portion of the screen and save them as .png images (Figure 2.10).

Then it shows them as thumbnails on the scripts section, which gives the
possibility to run tests as Python scripts on the go (Figure 2.11), perform-
ing an action on items captured and making assertions. Sadly Sikuli does
not support well (or at all) complex user interaction such as swipe, pinch,
scroll down, etc... This is a huge limiting factor to test case complexity and
completeness.

35

Figure 2.10: Sikuli IDE Home.

36

Figure 2.11: Sikuli IDE with captured element.

37

The thumbnails can be shown also as file names, so it is possible to copy
and use them in the separate Java code (Figure 2.12).

Figure 2.12: Sikuli IDE with captured element as file name.

38

Chapter 3

Experimental Subject

The application that has been chosen to run the tests is OmniNotes. It is
an open-source application, with code available on the GitHub Repository.
The project structure is simple enough to be understood in a short times and
the code compiles with all the dependencies without errors, making it a very
good candidate.

Figure 3.1: OmniNotes.

39

https://github.com/federicoiosue/Omni-Notes.git

Chapter 4

Procedure

4.1 Test Cases

Five test cases, that represent some of the main user actions, have been
chosen.

1. Navigate through the app to the info section (Figure 4.1).

2. Insert one new note (Figure 4.2).

3. Archive an existing note (Figure 4.3).

4. Search for a note (Figure 4.4).

5. Delete a note and empty the trash (Figure 4.5).

The code of the tests is available at Test Repository.

4.1.1 Espresso

A comprehensive tests summary is shown in Figure 4.6.

4.1.2 Appium

A comprehensive tests summary is shown in Figure 4.7.

4.1.3 Sikuli

A comprehensive tests summary is shown in Figure 4.8.

40

https://github.com/gabrielefantini/OmniNotesTestCasesThesis.git

1

2

3

4

Figure 4.1: Navigate through the app to the info section.

41

1

2

3

4

Figure 4.2: Insert new note.
42

1 2

3

Figure 4.3: Archive a note.
43

1

2

3

Figure 4.4: Search a note.
44

1

2

3

4

5

6

7

8

Figure 4.5: Delete a note and empty the trash.
45

Espresso

Test Test Result Problems Encountered

1. Navigate through the app
to the info section.

2. Insert one new note.

3. Archive an existing note.

This test include a swipe action.
Complex user action like

this one are replicated without
problems by Espresso,

that offers a rich set of API.
The swipe action introduces a
implicit delay in the test flow and

must be handled with a
”waitForText()” to

avoid test flakiness

4. Search for a note.

5. Delete a note and empty the
trash.

Espresso handles well
 also the lists,

 offering a set of API
for the Re-cyclerView.

 In this case it has been used
”actionOnItemAtPosition()”

that allows to easily select an
item from a list, avoiding
ambiguities that otherwise

 may arise if searching
an item from layout ID or

textcontent.

Figure 4.6: Espresso tests results.

46

Appium

Test Test Result Problems Encountered

1. Navigate through the app
to the info section.

Ok, but longer lists may cause
problems

The scroll down action
 is handled manually with a
TouchAction that performs

a scroll down, moving from the
bottom of the screen

 to the top. This is not
so precise and

can cause test flakiness.

2. Insert one new note.

3. Archive an existing note.
Ok, but can cause test
flakiness with different

screen resolutions.

The swipe action is
handled with a manual
 swipe from the right

to the left of the screen.
 This is quite verbose and
both the swipe action

and the scroll down of the
previous test have

been manually generated,
 because the Appium Layout

Inspector does
not generate working code

4. Search for a note.

5. Delete a note and empty the
trash.

Possible ambiguities
can cause test flakiness.

Lists are handled not so well:
 using the

 ”findElement(By.xpath())”
it is possible to encounter

ambiguities that
 will lead to test failure.

Figure 4.7: Appium tests results.
47

Sikuli

Test Test Result Problems Encountered

1. Navigate through the app
to the info section.

This test case can not
 be reproduced due to

 the absence of
scrolling down

interaction support.

2. Insert one new note.

3. Archive an existing note.
Possible test flakiness
caused by replacing

swipe left with drag and drop.

The swipe left action has been
simulated with a ”dragDrop” from
right to left. Currently complex
mobile user interaction are not

supported and must be simulated
with the available API.

4. Search for a note.

5. Delete a note and empty the
trash.

Figure 4.8: Sikuli tests results.

48

Chapter 5

Tools Evaluation

5.1 Final considerations

5.1.1 Espresso

• The Ease of Use is good. Espresso APIs are simple to learn and well
documented. The layout IDs can be easily discovered using the Layout
Inspector functionality of Android Studio.

• Test Flakiness is mainly caused by asynchronous events that can be
present during a test, such as loading data from an external source, or
by animation embedded into the application and that can’t be removed
via animation settings on Android. After all, tests with Espresso have
good reliability.

• Test Execution Time is quite alarming. Even a small modification
of the test code requires some minutes to rebuild, making debugging of
test scripts an annoying task and possibly affecting scalability.

• Test Scalability is not good if Espresso is taken as a standalone solu-
tion: after each test the application state can’t be reset, so it is difficult
to make each test independent from the others. Having the layout IDs
coupled with the test scripts is not a big problem if both the test and
the application code are in the same repository because, when a mod-
ification occurs in the code, a correct refactor is run across the entire
project using the IDE functionality.

49

Conclusion

Espresso is a great tool for developers that know well the application code
and want to write E2E tests simply and rapidly. The integration on a pipeline
of CI/CD can be a viable solution with the addition of other tools that can
manage application state between tests (like Android Test Orchestrator), and
the ability to run multiple tests at once, which means having the capability of
run multiple Gradle builds simultaneously and then having multiple emulated
devices available.

5.1.2 Appium

• Appium is easy to use. With Appium Inspector tests are recorded
quickly and easily. In the situation examined the last version of Appium
Inspector generates an obsolete code of the java client library, so extra
steps were needed to adapt the code. In an ideal scenario, tests are
recorded and then run with near-zero effort. In this specific case test
results are handled using the IntelliJ IDE with the TestNG framework,
and displayed in a specific section of the IDE. If a test failed the cause of
the error is not very comprehensive and needs a detailed investigation.

• Test Flakiness is caused mainly by animation delays and can be fixed
by setting explicit waits on the elements that give problems or an im-
plicit wait on the driver. Running tests when Appium Inspector is
connected can cause some unexpected errors. Sometimes running one
test multiple times does not generate the same results. In conclusion,
Appium is less reliable than Espresso, but it remains a solution with
good reliability.

• Test Execution Time is less than Espresso, due to the ability to run
tests without recompiling the application code each time: it takes just
the compilation time of the Appium client code.

• Test Scalability is very good: after each test the application state is
reset, avoiding conflicts and promoting tests isolation. The fact that the
application does not need to recompile each time gives the possibility
to run a lot of tests in much less time. Tests can also be parallelized
using one of four strategies:

50

1. Running multiple Appium servers, and sending one session to each
server.

2. Running one Appium server, and sending multiple sessions to it.

3. Running one or more Appium servers behind the Selenium Grid
Hub, and sending all sessions to the Grid Hub.

4. Leveraging a cloud provider (which itself is running many Appium
servers, most likely behind some single gateway).

Tests with complex user interaction require writing some code manually
and may break just with minor application changes. Also, long lists
with similar elements can be difficult to handle.

Conclusion

Appium is a brilliant solution to run E2E tests of an application, also without
knowing its code. It is a good candidate to build a test automation suite due
to its abilities of scalability and tests isolation. The main problem that may
limit the effectiveness of the testing tool is random test flakiness and the
difficulties to replicate complex user interactions. The first can be alleviated
by running the Appium solution in a stable and controlled environment, the
second standardizing the code.

5.1.3 Sikuli

• Ease of Use Sikuli is very easy to use, due to its fast setup and
intuitiveness of test cases recording.

• Test Flakiness: Sikuli uses image recognition powered by OpenCV
to identify GUI components, so it is robust to test flakiness caused by
animations or GUI random delays but it requires the complete control
of the current OS screen and input peripherals such as mouse and
keyboard.

• Test Scalability is not good at all. First of all application state can’t
be reset between tests, making tests dependent on each other. Second,
Sikuli requires a full desktop environment to run. This yields to running
multiple tests in parallel a heavy computational task.

51

Conclusion

Sikuli is a good tool for running E2E testing without the need to access
application code or to a GUI’s internals. It’s an easy tool with a fast setup
and good versatility, but the main drawbacks are the inability to reproduce
complex user interaction, the absence of test isolation and the computational
cost of running tests on parallel with multiple OS instances.

52

Part III

Tools implementation in a
CI/CD pipeline

53

Chapter 6

Tools for CI/CD

Currently, there is a vast amount of tools for CI/CD in the market. From
this crowded place have been examined only two tools:

1. Jenkins, an open-source automation server in which the central build
and continuous integration process take place. It is a self-contained
Java-based program with packages for Windows, macOS, and other
Unix-like operating systems. With hundreds of plugins available, Jenk-
ins supports building, deploying, and automating software development
projects. The license is free and it has an active community behind it.
[12]

2. GitHub Action, that enables the creation of custom software develop-
ment lifecycle workflows directly in a GitHub repository. These work-
flows are made out of different tasks so-called ”actions” that can be run
automatically on certain events, allowing the creation of a complete
CI/CD pipeline. Actions are free for every open-source repository and
include 2000 free build minutes per month for all private repositories,
which is comparable with most CI/CD free plans. [31]

Jenkins supports declarative syntax for the pipeline, which is very similar to
the GitHub Actions syntax. It follows that, once a CI/CD pipeline has been
defined in one of the two tools, it’s nearly painless to switch to the other tool.
For this reason, it has been implemented only a solution with the GitHub
Actions.

54

6.1 GitHub Actions in depth

GitHub Actions help automate tasks within the software development cy-
cle. They are made of multiple components that work together to run jobs.
(Figure 6.1)

Figure 6.1: GitHub Actions components.[31]

6.1.1 Workflow

The workflow is an automated procedure added into a GitHub repository.
It is made up of one or more jobs and can be scheduled or triggered by an
event. Workflows can be made reusable, avoiding duplication and making
them easy to maintain. [31]

6.1.2 Events

An event is a specific activity that triggers a workflow. For example, it can
originate from GitHub after a push of a new commit to a repository, when an
issue or pull request is created, etc... Also, it is possible to trigger a workflow
using the repository dispatch webhook when an external event occurs.[31]

55

6.1.3 Jobs

A job is a set of steps that execute on the same runner. By default, a workflow
with multiple jobs will run those jobs in parallel but can be configured to
run sequentially.[31]

6.1.4 Steps

A step is an individual task that can run commands in a job. A step can be
either an action or a shell command. Each step in a job executes on the same
runner, allowing the actions in that job to share data with each other.[31]

6.1.5 Actions

Actions are standalone commands that are combined into steps to create a
job. Actions are the smallest portable building block of a workflow. They
can be custom made, or created by the GitHub community. [31]

6.1.6 Runners

A runner is a server that has the GitHub Actions runner application installed.
It can be hosted by GitHub, or can be hosted in a dedicated server. A runner
listens for available jobs, runs one job at a time, and reports the progress, logs,
and results back to GitHub. GitHub-hosted runners are based on Ubuntu
Linux, Microsoft Windows, and macOS, and each job in a workflow runs in
a fresh virtual environment. [31]

56

Chapter 7

Implementing a CI/CD pipeline

Three different pipelines have been implemented, each one using one of the
tools evaluated before. All of the three pipelines can be combined together
to reach different testing objectives.

7.1 Android Emulator Runner

All the pipelines use the GitHub Action named
reactivecircus/android-emulator-runner, that installs, configures and
runs hardware-accelerated Android Emulators on macOS virtual machines.
The old ARM-based emulators were slow and are no longer supported by
Google. The modern Intel Atom (x86 and x86 64) emulators require hard-
ware acceleration (HAXM on Mac & Windows, QEMU on Linux) from the
host to run fast. This presents a challenge on CI as to be able to run hardware
accelerated emulators within a docker container, KVM must be supported by
the host VM which isn’t the case for cloud-based CI providers due to infras-
tructural limits. Fortunately, the macOS VM provided by GitHub Actions
has HAXM installed so it is possible to create a new AVD instance, launch
an emulator with hardware acceleration, and run Android tests directly on
the VM. This is also possible to achieve on a self-hosted Linux runner, but
it will need to be on a compatible instance that allows enabling KVM (for
example AWS EC2 Bare Metal instances). In conclusion, to run fast and
smoothly, the action requires a GitHub MacOs runner. [1] The action does
the following steps:

1. Installs and updates the required Android SDK components.

57

2. Creates a new instance of AVD (Android Virtual Device) with the
provided configurations.

3. Launches a new Emulator with the provided configurations.

4. Waits until the Emulator is booted and ready to use.

5. Runs a custom script provided by the user once the Emulator is ready.

6. Kills the Emulator and terminates the action once the script is finished.

7.2 CI/CD pipeline using Espresso

All the code is contained in one repository: the code is available at the
GitHub Repository. The repository structure is illustrated in the figure.
The overall system structure is represented in Figure 7.1.

EspressoContinuousIntegration

omniNotes

src

test

androidTest

testForThesis.java

.github

workflows

main.yml

installApkAndRunTest.sh

7.2.1 Repository Workflow

The repository workflow is defined in the main.yml file. After each push
event a job is started. The job is executed on a runner with the latest
version of the Ubuntu operating system and it is made of 5 steps:

58

https://github.com/gabrielefantini/EspressoContinuousIntegration.git

GitHub servers

Local Host
Push

OmniNotes with
Espresso Tests
Git repository

Test report

GitHub runner with MacOs

Espresso.yml
OmniNotes

with Espresso Tests
Repository

Android
Emulator

Tests report

Email provider

Tests report

Gradle server

GitHub Artifact

Figure 7.1: UML deployment diagram of Espresso CI/CD pipeline.

7.3 CI/CD pipeline using Appium

All the code has been split into two repositories. One repository contains all
the application source code and the other contains tests code. The overall
system structure is represented in Figure 7.3.

7.3.1 OmniNotes Repository

The code is available at the GitHub Repository. The repository structure
is illustrated below.

OmniNotesContinuousIntegration

omninotes

.github

workflows

main.yml

The omninotes directory contains the application source code and the
.github/workflow contains the main.yml files, which defines a workflow
shown in Figure 7.4.

59

https://github.com/gabrielefantini/OmniNotesContinuousIntegration.git

actions/checkout

Push

 actions/setup-java

reactivecircus/android-
emulator-runner@v2

Checks-out the repository
under

$GITHUB_WORKSPACE, so
the workflow can access it.

Downloading and setting
up a requested version of

Java

Install and create an
Android Emulator with

window enabled

run Espresso tests

Run "./gradlew
connectedAndroidTest

--info"

dawidd6/action-send-
mail@v3

Sends an email with the
tests report

Upload test reports
as an artifact

Figure 7.2: Workflow of the Espresso GitHub repository.

60

GitHub servers

Local Host

Push

OmniNotes APK

OmniNotes source code
Git repository

Push

Appium test code
Git repository

Connects to

Connects to Appium ServerAndroid Emulator

Generates
test code Appium Inspector

main.ymlOmniNotes
repository

Test report

GitHub runner with MacOs

Appium.yml

Appium test code

Appium
Repository

Generates

Dispatch Event

GitHub runner with Ubuntu

Download

APK artifact

Android
Emulator Connects to Appium

Server

Tests report

Email provider

Tests report

Gradle server

GitHub Artifact

Figure 7.3: UML deployment diagram of Appium CI/CD pipeline.

OmniNotes Repository workflow

The repository workflow is defined in the main.yml file. After each push
event a job is started. The job is executed on a runner with the latest
version of the Ubuntu operating system and it is made of 5 steps:

1. Checkout. Checks out the repository under the GitHub Workspace ,
so the workflow can access it and generate the APK from the source
code.

2. Setup JDK. Downloads and sets up a requested version of Java.

3. Build APK. Runs the bash command bash ./gradlew assembleDebug

--stacktrace which builds the APK.

4. Upload APK. Uploads the APK as an artifact from the workflow, al-
lowing to share data between jobs.

5. Send event to another repository. Executes a Curl POST to
AppiumContinuousIntegration and to

61

https://api.github.com/repos/gabrielefantini/AppiumContinuousIntegration/actions/workflows/appium.yml/dispatches

SikuliContinuousIntegration, sending a dispatch event. This re-
quires GitHub’s username and the access token of the recipient repos-
itory. Both values must be stored as secrets on this repository, respec-
tively named PAT USERNAME and PAT TOKEN.

actions/checkout

Push

actions/setup-java

build apk

upload apk as an
artifact

send event
 to another repository

Checks-out the repository
under

$GITHUB_WORKSPACE, so
the workflow can access it.

Downloading and setting
up a requested version of

Java

Builds APK using
"gradle assembleDebug

-- stacktrace"
command

Send a dispatch event to a
specific repository.

Figure 7.4: Workflow of the GitHub repository containing the application
source code.

62

https://api.github.com/repos/gabrielefantini/SikuliContinuousIntegration/actions/workflows/main.yml/dispatches

7.3.2 Appium Repository

The code is available at the GitHub Repository. The repository structure
is illustrated in the figure.

AppiumContinuousIntegration

scripts

RunAppiumServer.sh

src

test

java

Demo.java

.github

workflows

appium.yml

The scripts directory contains the RunAppiumServer.sh, a bash script
to install Appium server on a GitHub runner, the Appium client test code
in the src folder and the .github/workflow contains the appium.yml files,
which defines a workflow shown in Figure 7.5.

Appium Repository workflow

The repository workflow is defined in the appium.yml file. After each push
event or after a dispatch event, a job is started. It is possible to run tests
in parallel with different emulated devices and versions using a matrix, that
allows you to create multiple jobs by performing variable substitution in a
single job definition. The job is executed on a runner with the latest version
of the Mac OS operating system and it is made of 8 steps:

1. Checkout. Checks out the repository under the GitHub Workspace, so
the workflow can access it.

2. Download APK artifact. Download an artifact from another repository.
In order to do this, a Personal Access Token of the other repository is
needed. It must have a ”repo” scope and must be stored as a secret of

63

https://github.com/gabrielefantini/AppiumContinuousIntegration.git

this repository, with the name of ACCESS TOKEN. The artifact is stored
under ./apps directory.

3. Set Up JDK. Downloads and sets up a requested version of Java.

4. Install and Run Appium Server. Elevate privileges of RunAppiumServer.sh
and execute the script. This installs Appium Server and runs it.

5. Give Gradlew privileges.

6. Run Appium Test. It’s executed the
reactivecircus/android-emulator-runner action with the script ./gradlew
test --info, which runs Appium tests.

7. Send Email. After all the tests are completed, a test report is generated.
Using the dawidd6/action-send-mail it is possible to send the report
via email.

8. Upload Test Report as a GitHub artifact, so the test results are directly
accessible from the workflow results in the Action section on the GitHub
repository.

7.4 CI/CD pipeline using Sikuli

All the code has been split into two repositories. One repository contains all
the application source code and the other contains tests code. The overall
system structure is represented in Figure 7.6.

7.4.1 OmniNotes Repository

It is the one described in the previous solution, at subsection 7.3.1 on page
59.

7.4.2 Sikuli Repository

The code is available at the GitHub Repository. The repository structure
is illustrated below.

64

https://github.com/gabrielefantini/SikuliContinuousIntegration.git

actions/checkout

Push

dawidd6/action-
download-artifact@v2

 actions/setup-java

Install and run
Appium server

reactivecircus/android-
emulator-runner@v2

Checks-out the repository
under

$GITHUB_WORKSPACE, so
the workflow can access it.

Download an artifact from
another repository. This is
the APK that will be tested.

Downloading and setting
up a requested version of

Java

Install and create an
Android Emulator

 workflow_dispatch

 Run an .sh script present
in the repository

run Appium tests

Run "gradle test --info"

dawidd6/action-send-
mail@v3

Sends an email with the
tests report

Upload test reports
as an artifact

Figure 7.5: Workflow of the GitHub repository containing the Appium tests.
65

GitHub servers

Local Host

Push

OmniNotes APK

OmniNotes source code
Git repository

Push

Sikuli Git repository

Android Emulator Takes Screenshots Sikulix IDE

main.yml
OmniNotes
repository

Test report

GitHub runner with MacOs

Main.yml

Sikuli test inputs

Client

Sikuli
Repository

Generates

Dispatch Event

GitHub runner with Ubuntu

Download

APK artifact

Client

Android
Emulator

Tests report

Email provider

Tests report
Gradle server

Screenshots

GitHub artifact

Xvfb (X server)

Inputs

Sikuli
Tests in Java

Figure 7.6: UML deployment diagram of Sikuli CI/CD pipeline.

66

SikuliContinuousIntegration

ArchiveNote.sikuli

DeleteNoteAndEmptyTrash.sikuli

GoToInfo.sikuli

InsertNewNote.sikuli

SearchNote.sikuli

LongTestRun.sikuli

InstallAPKandRunTests.sh

src

test

java

Tests.java

.github

workflows

main.yml

All the .sikuli folders contain screenshots used for Sikuli tests. In the
src folder is Tests.java, with java code to run Sikuli tests. The .github

folder contains the main.yml that defines the workflow described in the Fig-
ure 7.7.

Sikuli Repository Workflow

The repository workflow is defined in the main.yml file. It consists of a job
with 9 steps executed in a runner with MacOs :

1. Checkout. Checks out the repository under the GitHub workspace, so
the workflow can access it.

2. Download APK artifact. Download an artifact from another repository.
In order to do this, a Personal Access Token of the other repository is
needed. It must have a ”repo” scope and must be stored as a secret of

67

actions/checkout

Push

dawidd6/action-
download-artifact@v2

 actions/setup-java

Add X11 and start
Xvfb

reactivecircus/android-
emulator-runner@v2

Checks-out the repository
under

$GITHUB_WORKSPACE, so
the workflow can access it.

Download an artifact from
another repository. This is
the APK that will be tested.

Downloading and setting
up a requested version of

Java

Install and create an
Android Emulator with

window enabled

 workflow_dispatch

Install X11 and then start
Xvfb

run Sikuli tests

Run "gradle test --info"

dawidd6/action-send-
mail@v3

Sends an email with the
tests report

Upload test reports
as an artifact

Figure 7.7: Workflow of the GitHub repository containing the Sikuli tests.
68

this repository, with the name of ACCESS TOKEN. The artifact is stored
under ./apps directory.

3. Set Up JDK. Downloads and sets up a requested version of Java.

4. Give Gradlew privileges.

5. Add X11. Install the X Window System, also called X11. It provides
a basic framework for a GUI environment.

6. Start Xvfb on DISPLAY number 1. Start the X virtual framebuffer, a
display server implementing the X11 display server protocol.

7. Run Sikuli Tests. It’s executed the reactivecircus/android-emulator-runner
with no-window options disabled, which enables the display of the em-
ulator, and with enable-hw-keyboard, which enables keyboard input
to the emulator. This option modifies the file config.ini of the An-
droid Virtual Device. In particular, the last one has been added af-
ter an issue opened on the GitHub Action’s repository and without
it enabled, Sikuli can’t send key input to the emulator. After the
AVD is created and the Android Emulator starts, it is executed the
script InstallAPKandRunTest.sh. It connects the terminal to the DIS-
PLAY number 1. Then using ADB it installs the apk on the emulator
and launches the application. When the application starts it executes
./gradlew test --info that launches the Sikuli tests written in Java.

8. Send Email. After all the tests are completed, a test report is generated.
Using the dawidd6/action-send-mail it is possible to send the report
via email.

9. Upload Test Report as a GitHub artifact, so the test results are directly
accessible from the workflow results in the Action section on the GitHub
repository.

7.4.3 Screenshots Recording

The ideal solution represented in Figure 7.6 assumes that it is possible to
replicate exactly the environment present on the GitHub runner, allowing
to record the tests locally. In reality, this is not possible with the runner
hosted directly by GitHub and setting up a self-hosted runner requires a real

69

dedicated server. To obviate this, Appium’s solution has been used to take
screenshots directly on the GitHub runner instance.

7.5 The X virtual framebuffer

The X virtual framebuffer (Xvfb) is a display server implementing the X11
display server protocol. The X11 protocol, also called X Window System,
is a network-transparent windowing system for bitmap displays. It uses a
client-server model: X server program runs on a computer with a graphical
display and communicates with various client programs. Any application
that requires GUI and interacts with the X server is called X client. X
server requires a graphical display and without it, it will not start and all the
X clients would fail. In the GitHub runner scenario there isn’t any display,
thus a standard X server can’t be executed and the Android Emulator, which
aims to output the emulated device screen, and Sikuli, that needs a display
to recognize display areas similar to its test screenshots, can’t be executed.
So a virtual X server has been used, which instead of outputting signals to
screen, outputs signals to memory. An implementation of a virtual X server
is Xvfb. It does not require any kind of graphics adapter, screen or input
device. A framebuffer is a memory buffer of a GPU, where are memorized all
the data required to represent a frame on the screen. In Xvfb the framebuffer
instead of being on the GPU memory, is saved on the RAM. A representation
of Xvfb is on Figure 7.8. So, as shown in Figure 7.6, on the GitHub runner
it’s installed and executed an X virtual framebuffer, with Android Emulator
and Sikuli being both X clients. The first outputs the emulated screen and
the second search on the virtual display for screenshots match and then sends
virtual inputs.[15]

70

X server

X client

X client

X client

InputsOS Kernel

Virtual Inputs

Mouse Keyboard

Memory

GPU memory

Framebuffer

Framebuffer
Display

Figure 7.8: Xvfb structure.

71

Chapter 8

CI/CD Pipelines Evaluation

The proposed solutions in Chapter 7 have been analyzed in this Chapter,
testing their performances in different environments and situations.

8.1 Procedure

8.1.1 Increased Test Set

In addition to the test cases introduced in 4.1 have been added another five:

1. Insert a new checklist.

2. Insert a new note with reminder.

3. Sort notes.

4. Add a new category.

5. Remove an existing category.

8.1.2 Pipelines and Tools Modifications

The pipelines introduced in Chapter 7 have been modified to execute multiple
tests in the same workflow. In addition to that, a build matrix has been used
to allow the workflows to run tests across multiple Android devices. The
build matrix is created using the strategy keyword on the .yml file.

72

Espresso

The Android Test Orchestrator has been used in order to achieve tests
isolation on the same workflow. This required only some changes to the
build.gradle file.

Appium

An implicit wait of five seconds has been added to the ”AndroidDriver” to im-
prove test’s stability. When searching for a single element, the driver should
poll the page until an element is found or the timeout expires, whichever
occurs first. When searching for multiple elements, the driver should poll
the page until at least one element is found or the timeout expires, at which
point it should return an empty list.[29]

Sikuli

To achieve tests isolation, before each test, it is called a function named
cleanAppState which sequentially executes three ADB commands:

1. adb shell am force-stop

2. adb shell pm clear

3. adb shell am start

This solution is a stretch and can cause test flakiness: for example, the adb

shell am start command restarts the application, but the application’s
startup time depends on the execution environment and can vary a lot.

8.1.3 Analyzing Fragmentation

To analyze the impact of the device’s fragmentation problem, for each pipeline
the 10 test cases have been executed on 10 different devices. The devices cho-
sen are shown in Table 8.1.

The choice was dictated by the already available devices offered by the
reactivecircus/android-emulator-runner GitHub action. Nevertheless,
it’s possible to notice that the screen resolution and aspect-ratio vary a lot,
for example from Pixel 3a to a Pixel or a Pixel c (as shown in Table 8.1),
offering a good benchmark, especially for the Sikuli solution. For this one, as

73

screen resolution screen aspect ratio
Nexus 6 2560x1440 px 16:9

Nexus 6P 2560x1440 px 16:9
Nexus 9 2048x1536 px 4:3
Nexus S 800x480 px 16:9

Nexus 5X 1920x1080 px 16:9
Pixel 2 1920x1080 px 16:9

Pixel c 2560x1800 px 1:
√

2
Pixel xl 2560x1440 px 16:9
Pixel 3a 2220x1080 px 18.5:9

Pixel 4 xl 3040x1440 px 19:9

Table 8.1: Devices utilized for tests with their screen resolution and aspect
ratio.

already said in 7.4.3, the screenshots have been taken from Appium’s solution
on Nexus 6.

8.1.4 Analyzing Flakiness

To analyze test flakiness, the 10 test cases have been executed 10 times on
the Nexus 6. Each workflow execution has the same environment but, given
the fact that GitHub hosts runners as a free service, the performances vary
a lot depending on the availability of resources. This increases test flakiness
due to unexpected lags of the Android emulator.

8.2 Results

To evaluate the solutions, only the success or the failure of each test has been
taken into account. This is because as already said in 8.1.4 the service in
use is free and the performances vary depending on the availability of the
resources, so values like the execution time can not be taken into account.
The results of the tests are reported in Figure 4.6, Figure 4.7 and Figure 4.8.

As shown in Table 8.2, Espresso has the highest success rates, followed
by Appium and then Sikuli.

74

fragmentation flakiness
Espresso 89% 97%
Appium 83% 88%
Sikuli 17% 34%

Table 8.2: Success rate of tests of the different solutions.

Espresso Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok failed ok ok ok failed ok ok failed
searchNote ok ok ok ok ok ok failed failed ok ok

insertNewCategory ok ok ok ok ok ok failed failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok failed ok ok failed ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Espresso Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok failed ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok failed ok failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok ok ok ok ok failed ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok failed ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok failed ok ok failed failed ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok ok ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok ok ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash failed ok ok ok ok ok ok ok ok failed
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Sikuli Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed failed ok ok failed ok failed failed

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed failed ok ok failed ok failed failed

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed failed failed failed failed failed failed failed failed failed

deleteNoteAndEmptyTrash failed ok failed failed ok failed failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed failed ok ok failed ok failed failed

Sikuli Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok failed ok ok ok ok ok ok ok

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed ok ok ok ok ok ok ok

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed ok failed ok ok failed failed failed ok ok

deleteNoteAndEmptyTrash ok failed failed failed failed ok failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed ok ok ok ok ok ok ok

Figure 8.1: Results of Espresso’s solution.

Espresso Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok failed ok ok ok failed ok ok failed
searchNote ok ok ok ok ok ok failed failed ok ok

insertNewCategory ok ok ok ok ok ok failed failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok failed ok ok failed ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Espresso Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok failed ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok failed ok failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok ok ok ok ok failed ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok failed ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok failed ok ok failed failed ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok ok ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok ok ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash failed ok ok ok ok ok ok ok ok failed
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Sikuli Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed failed ok ok failed ok failed failed

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed failed ok ok failed ok failed failed

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed failed failed failed failed failed failed failed failed failed

deleteNoteAndEmptyTrash failed ok failed failed ok failed failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed failed ok ok failed ok failed failed

Sikuli Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok failed ok ok ok ok ok ok ok

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed ok ok ok ok ok ok ok

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed ok failed ok ok failed failed failed ok ok

deleteNoteAndEmptyTrash ok failed failed failed failed ok failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed ok ok ok ok ok ok ok

Figure 8.2: Results of Appium’s solution.

75

Espresso Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok failed ok ok ok failed ok ok failed
searchNote ok ok ok ok ok ok failed failed ok ok

insertNewCategory ok ok ok ok ok ok failed failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok failed ok ok failed ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Espresso Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok failed ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok failed ok failed ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok ok ok ok ok ok ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu ok ok ok ok ok ok ok ok ok ok

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed ok ok ok failed ok ok ok

deleteCategory ok ok ok ok ok ok failed ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok failed ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash ok ok ok failed ok ok failed failed ok ok
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Appium Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok ok ok ok ok ok ok ok ok

deleteCategory ok ok ok ok ok ok ok ok ok ok
searchNote ok ok ok ok ok ok ok ok ok ok

insertNewCategory ok ok ok ok ok ok ok ok ok ok
insertNewCheckList ok ok ok ok ok ok ok ok ok ok

deleteNoteAndEmptyTrash failed ok ok ok ok ok ok ok ok failed
sortNotes ok ok ok ok ok ok ok ok ok ok
infoMenu failed failed failed failed failed failed failed failed failed failed

archiveNote ok ok ok ok ok ok ok ok ok ok
insertNewNote ok ok ok ok ok ok ok ok ok ok

Sikuli Fragmentation Nexus 6 Nexus 6P Nexus 9 Nexus S Nexus 5X pixel_2 pixel_c pixel_xl pixel_3a pixel_4_xl
insertNoteWithReminder ok ok failed failed ok ok failed ok failed failed

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed failed ok ok failed ok failed failed

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed failed failed failed failed failed failed failed failed failed

deleteNoteAndEmptyTrash failed ok failed failed ok failed failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed failed ok ok failed ok failed failed

Sikuli Flakiness (Nexus 6 x 10) 1 2 3 4 5 6 7 8 9 10
insertNoteWithReminder ok ok failed ok ok ok ok ok ok ok

deleteCategory failed failed failed failed failed failed failed failed failed failed
searchNote ok ok failed ok ok ok ok ok ok ok

insertNewCategory failed failed failed failed failed failed failed failed failed failed
insertNewCheckList failed ok failed ok ok failed failed failed ok ok

deleteNoteAndEmptyTrash ok failed failed failed failed ok failed failed failed failed
sortNotes failed failed failed failed failed failed failed failed failed failed
infoMenu undefined undefined undefined undefined undefined undefined undefined undefined undefined undefined

archiveNote failed failed failed failed failed failed failed failed failed failed
insertNewNote ok ok failed ok ok ok ok ok ok ok

Figure 8.3: Results of Sikuli’s solution.

8.2.1 Considerations

Espresso

Regarding fragmentation (Figure 8.1), Espresso’s solution handles well nearly
every device except for the Pixel c, which is a tablet with an unusual aspect
ratio of 1 :

√
2, which can cause some unexpected GUI behaviours. Ignoring

that, the success rate rises up to 93% which is a good result. Espresso handles
well also the flakiness (Figure 8.1), with a success rate of 97%: the tests that
involve the deletion and insertion of a category are the only ones with some
failures. This can be attributed to the fact that they require handling some
complex dialog. Ignoring that the success rate raises to 100%.

Appium

When the test of navigation through info section is performed remotely on
a GitHub runner the ”TouchDown action” fails every time, giving the test’s
success rate of 0% for both the fragmentation and the flakiness. If the ”in-
foMenu” test is excluded the success rate in flakiness reaches 97% which is
comparable to the Espresso one. Regarding fragmentation, if also the Pixel
c’s results are ignored for the reasons explained in 8.2.1, the success rate
raises up to 93%, the same of Espresso’s solution. (Figure 8.2)

76

Sikuli

Looking at Figure 8.3 seems that Sikuli’s success rates are near 0%, but
further considerations are needed to better understand the phenomena.

1. The ”infoMenu” test, which expects to navigate through the app to the
info section, can not be executed as explained in Figure 4.6.

2. The ”archiveNote” test fails because the swipe left action (Figure 4.3)
is executed with Sikuli dragDrop function, which is sensible to the
position of the Android emulator on the host screen.

3. The ”deleteCategory” and ”insertNewCategory” tests fail because the
dialog for the addition of a new category (Figure 8.4) has the category’s
colour, which can be selected with a click on the dot in the center, that
is picked randomly each time. This makes impossible for Sikuli to
recognize that GUI element.

So considering only the tests ”insertNoteWithReminder”, ”searchNote”, ”in-
sertNewNote” and ignoring Pixel c results for the reasons explained in 8.2.1,
the success rate in fragmentation is near 52% and in flakiness is 90%.

Figure 8.4: Dialog for the addition of a new category in Omninotes applica-
tion.

77

Part IV

Conclusions

78

Chapter 9

Achievements

9.1 Espresso pipeline

The solution that utilizes Android Espresso necessitates nearly zero setups:
it is required only to have a GitHub repository and to define the workflow of
the pipeline in a .yml file. Although it is limited to the Android ecosystem,
this solution is the most reliable of the three, but it requires more time to
write tests. In conclusion, it is the most suitable solution for developers
that want to write white box, end-to-end, GUI levels tests in an Android
environment and are inclined to spend more time writing tests in favor of
reliability and robustness to flakiness and fragmentation (8.2).

9.2 Appium pipeline

The solution based on Appium has similar performances to the Espresso one.
To take advantage of fast test recording, it necessitates also a local setup
that includes Appium Server, Appium Inspector and an Android emulator,
requiring more time to set up than the Espresso solution. The application
and the tests code are split into two GitHub repositories: this can be both
a benefit, which offers a separation between the development and testing
phase (Figure 1.1), and a drawback, because of increased maintenance costs.
In conclusion, this solution is more suitable for developers that work with
both Android and iOS, that want to have the ability to record tests in a fast
way and write them in the language they prefer, sacrificing some reliability
and robustness that the Espresso solution offers.

79

9.3 Sikuli pipeline

The proposed solution records the tests by taking screenshots of the Android
emulator on the GitHub runner using the Appium pipeline. This removes
all the benefits that Sikuli offers, which are fast test recordings with nearly
zero setups. In a scenario where it is possible to have a self-hosted GitHub
runner with a reproducible environment in a local host where screenshots for
tests can be taken, developers may benefit from this solution to make simple
black-box, end-to-end test in an extremely fast way. For example, it can be
very useful for making simple end-to-end tests of a legacy application, like
compiling some forms. As can be seen in 8.2, in simple test cases on a single
device, this solution has good reliability, especially in relationship with the
velocity and simplicity of test recording.

80

Chapter 10

Future developments

In this chapter will be suggested some of the improvements to the proposed
solutions, that could be done in the future.

10.1 Continuous Integration Environment

The following improvements can be brought to all the pipelines, indepen-
dently of the testing framework used.

• Using self-hosted GitHub runners or Jenkins in order to have
more control of the testing environment and make it more stable. This
can significantly reduce test flakiness, as an unstable testing environ-
ment is one of the major causes (1.2.1). The controlled environment
will also allow to test performances others than the simple success rates.

• Generating better and more detailed test reports or aggregating
the reports of more pipelines in a single solution.

• Using a custom action for the Android emulator instead of
ReactiveCircus/android-emulator-runner.

10.2 Testing Framework Implementation

The implementation of the testing framework in both the local and the
pipeline environments plays a primary role not only in the performances
but also in the usability and the speed with which developers record tests.

81

10.2.1 Appium

Appium can be improved in the local environment with an update of the
Appium Inspector, so the tests can be directly recorded with the necessity
to add only a little code to complete test scripts. This will drastically speed
up test recording.

10.2.2 Sikuli

Having the same environment both local and on the pipeline could improve
a lot the solution based on Sikuli, allowing to easily take screenshots locally
instead of taking them with the tricky solution adopted with the use of
Appium (7.4.3). This would also reduce test flakiness and improve the test’s
success rates. The mechanism adopted to isolate tests necessitates being
improved with the ability to reset the application state consistently. Finally,
the screenshots taken for tests must be handled in a better way to support
the scalability of the solution.

82

Chapter 11

Acknowledgements

I thank Prof. Luca Ardito, Prof. Morisio Maurizio, Prof. Torchiano Marco
and Riccardo Coppola to gave me the possibility to make this thesis. I thank
my loved ones, that have always supported me throughout my studies.

83

Bibliography

[1] android-emulator-runner GitHub Repository. url: https://github.
com/ReactiveCircus/android-emulator-runner.

[2] Appium Official Website. url: https://appium.io/docs/en/about-
appium/intro/?lang=en.

[3] AWS Device Farm website. url: https://aws.amazon.com/it/

device-farm/.

[4] Barista GitHub repository. url: https://github.com/AdevintaSpain/
Barista.

[5] Create UI tests with Espresso Test Recorder. url: https://developer.
android . com / studio / test / other - testing - tools / espresso -

test-recorder.

[6] Espresso Testing Framework - Architecture. url: https://www.tutorialspoint.
com/espresso_testing/espresso_testing_architecture.htm.

[7] Continuous Testing Expert. A Comparison Report on the Top 4 iOS
Testing Tools. url: https : / / digital . ai / catalyst - blog / a -

comparison-report-on-the-top-4-ios-testing-tools.

[8] Continuous Testing Expert. Comparing the Top 4 Android Testing
Tools. url: https://digital.ai/catalyst-blog/comparing-the-
top-4-android-testing-tools.

[9] Firebase Tes Lab website. url: https://firebase.google.com/docs/
test-lab.

[10] Martin Fowler. TestPyramid. url: https : / / martinfowler . com /

bliki/TestPyramid.html.

[11] Get Started Page. url: http://robolectric.org/.

[12] Jenkins’s official website. url: https://www.jenkins.io/doc/.

84

https://github.com/ReactiveCircus/android-emulator-runner
https://github.com/ReactiveCircus/android-emulator-runner
https://appium.io/docs/en/about-appium/intro/?lang=en
https://appium.io/docs/en/about-appium/intro/?lang=en
https://aws.amazon.com/it/device-farm/
https://aws.amazon.com/it/device-farm/
https://github.com/AdevintaSpain/Barista
https://github.com/AdevintaSpain/Barista
https://developer.android.com/studio/test/other-testing-tools/espresso-test-recorder
https://developer.android.com/studio/test/other-testing-tools/espresso-test-recorder
https://developer.android.com/studio/test/other-testing-tools/espresso-test-recorder
https://www.tutorialspoint.com/espresso_testing/espresso_testing_architecture.htm
https://www.tutorialspoint.com/espresso_testing/espresso_testing_architecture.htm
https://digital.ai/catalyst-blog/a-comparison-report-on-the-top-4-ios-testing-tools
https://digital.ai/catalyst-blog/a-comparison-report-on-the-top-4-ios-testing-tools
https://digital.ai/catalyst-blog/comparing-the-top-4-android-testing-tools
https://digital.ai/catalyst-blog/comparing-the-top-4-android-testing-tools
https://firebase.google.com/docs/test-lab
https://firebase.google.com/docs/test-lab
https://martinfowler.com/bliki/TestPyramid.html
https://martinfowler.com/bliki/TestPyramid.html
http://robolectric.org/
https://www.jenkins.io/doc/

[13] Tomer Kalmovich. Fastest Mobile Automation Testing Tool – Appium
vs. XCUITest vs. TestProject vs. UiAutomator vs. Espresso. url: https:
//blog.testproject.io/2020/04/08/fastest-mobile-automation-

testing-tool-appium-vs-xcuitest-vs-testproject-vs-uiautomator-

vs-espresso/.

[14] Federica Laricchia. iOS version share of Apple devices worldwide 2016-
2022. url: https://www.statista.com/statistics/565270/apple-
devices-ios-version-share-worldwide/.

[15] Lei Mao. Running X Client Using Virtual X Server Xvfb. url: https:
//leimao.github.io/blog/Running-X-Client-Using-Virtual-X-

Server-Xvfb/.

[16] Kevin Moran Mario Linares-Vásquez and Denys Poshyvanyk. Contin-
uous, Evolutionary and Large-Scale: A New Perspective for Automated
Mobile App Testing. url: https://arxiv.org/pdf/1801.06267.pdf.

[17] Leo Mirani. There are now more than 24,000 different Android devices.
url: https://qz.com/472767/there-are-now-more-than-24000-
different-android-devices/.

[18] Mosaic’s GitHub Repository. url: https://github.com/Matthalp/
mosaic.

[19] Jason Palmer. Test Flakiness – Methods for identifying and dealing with
flaky tests. url: https://firebase.google.com/docs/test-lab.

[20] Yash Patel. Which Are The Top And Trending Mobile Testing Frame-
works? url: https://www.thesunflowerlab.com/blog/which-are-
the-top-and-trending-mobile-testing-frameworks/.

[21] Perfecto Cloud Lab website. url: https://www.perfecto.io/supported-
devices/monthly-subscription-plans.

[22] George Pirocanac. Test Flakiness - One of the main challenges of au-
tomated testing. url: https://testing.googleblog.com/2020/12/
test-flakiness-one-of-main-challenges.html.

[23] QMetry Automation Framework. url: https://qmetry.github.io/
qaf/latest/docs.html.

[24] Quantum Perfecto Integration. url: https://www.perfecto.io/
integrations/quantum.

[25] Ranorex home page. url: https://www.ranorex.com/.

85

https://blog.testproject.io/2020/04/08/fastest-mobile-automation-testing-tool-appium-vs-xcuitest-vs-testproject-vs-uiautomator-vs-espresso/
https://blog.testproject.io/2020/04/08/fastest-mobile-automation-testing-tool-appium-vs-xcuitest-vs-testproject-vs-uiautomator-vs-espresso/
https://blog.testproject.io/2020/04/08/fastest-mobile-automation-testing-tool-appium-vs-xcuitest-vs-testproject-vs-uiautomator-vs-espresso/
https://blog.testproject.io/2020/04/08/fastest-mobile-automation-testing-tool-appium-vs-xcuitest-vs-testproject-vs-uiautomator-vs-espresso/
https://www.statista.com/statistics/565270/apple-devices-ios-version-share-worldwide/
https://www.statista.com/statistics/565270/apple-devices-ios-version-share-worldwide/
https://leimao.github.io/blog/Running-X-Client-Using-Virtual-X-Server-Xvfb/
https://leimao.github.io/blog/Running-X-Client-Using-Virtual-X-Server-Xvfb/
https://leimao.github.io/blog/Running-X-Client-Using-Virtual-X-Server-Xvfb/
https://arxiv.org/pdf/1801.06267.pdf
https://qz.com/472767/there-are-now-more-than-24000-different-android-devices/
https://qz.com/472767/there-are-now-more-than-24000-different-android-devices/
https://github.com/Matthalp/mosaic
https://github.com/Matthalp/mosaic
https://firebase.google.com/docs/test-lab
https://www.thesunflowerlab.com/blog/which-are-the-top-and-trending-mobile-testing-frameworks/
https://www.thesunflowerlab.com/blog/which-are-the-top-and-trending-mobile-testing-frameworks/
https://www.perfecto.io/supported-devices/monthly-subscription-plans
https://www.perfecto.io/supported-devices/monthly-subscription-plans
https://testing.googleblog.com/2020/12/test-flakiness-one-of-main-challenges.html
https://testing.googleblog.com/2020/12/test-flakiness-one-of-main-challenges.html
https://qmetry.github.io/qaf/latest/docs.html
https://qmetry.github.io/qaf/latest/docs.html
https://www.perfecto.io/integrations/quantum
https://www.perfecto.io/integrations/quantum
https://www.ranorex.com/

[26] RERAN - Record and Replay for Android. url: https://www.androidreran.
com/.

[27] Robotium Recorder. url: https://plugins.jetbrains.com/plugin/
7513-robotium-recorder.

[28] S.D. Stack Overflow answer. url: https://stackoverflow.com/

questions/18271474/robolectric-vs-android-test-framework.

[29] Set Implicit Wait Timeout. url: https://appium.io/docs/en/

commands/session/timeouts/implicit-wait/.

[30] Sikulix official website. url: http://sikulix.com/.

[31] Understanding GitHub Actions. url: https://docs.github.com/en/
actions/learn-github-actions/understanding-github-actions.

[32] Iulian Neamtiu Yongjian Hu. VALERA: An Effective and Efficient
Record-and-Replay Tool for Android. url: https : / / ieeexplore .

ieee.org/document/7833000.

86

https://www.androidreran.com/
https://www.androidreran.com/
https://plugins.jetbrains.com/plugin/7513-robotium-recorder
https://plugins.jetbrains.com/plugin/7513-robotium-recorder
https://stackoverflow.com/questions/18271474/robolectric-vs-android-test-framework
https://stackoverflow.com/questions/18271474/robolectric-vs-android-test-framework
https://appium.io/docs/en/commands/session/timeouts/implicit-wait/
https://appium.io/docs/en/commands/session/timeouts/implicit-wait/
http://sikulix.com/
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://ieeexplore.ieee.org/document/7833000
https://ieeexplore.ieee.org/document/7833000

	I Introduction
	Background
	Software testing
	Software verification and validation phase
	Levels of tests

	Testing mobile applications
	Challenges
	Automation frameworks
	Record and replay tools
	Automated test input generation techniques
	Bug and error reporting/monitoring tools
	Mobile testing services
	Device streaming tools

	Continuous integration, delivery and deployment
	Continuous Integration
	Continuous Delivery
	Continuous Deployment

	II Evaluation of tools for mobile testing
	Selected Instruments
	Android Espresso
	Architecture Details
	Environment Setup
	Tool Capabilities

	Appium
	Architecture Details
	Environment Setup
	Tool Capabilities

	Sikuli
	Architecture Details
	Environment Setup
	Tool Capabilities

	Experimental Subject
	Procedure
	Test Cases
	Espresso
	Appium
	Sikuli

	Tools Evaluation
	Final considerations
	Espresso
	Appium
	Sikuli

	III Tools implementation in a CI/CD pipeline
	Tools for CI/CD
	GitHub Actions in depth
	Workflow
	Events
	Jobs
	Steps
	Actions
	Runners

	Implementing a CI/CD pipeline
	Android Emulator Runner
	CI/CD pipeline using Espresso
	Repository Workflow

	CI/CD pipeline using Appium
	OmniNotes Repository
	Appium Repository

	CI/CD pipeline using Sikuli
	OmniNotes Repository
	Sikuli Repository
	Screenshots Recording

	The X virtual framebuffer

	CI/CD Pipelines Evaluation
	Procedure
	Increased Test Set
	Pipelines and Tools Modifications
	Analyzing Fragmentation
	Analyzing Flakiness

	Results
	Considerations

	IV Conclusions
	Achievements
	Espresso pipeline
	Appium pipeline
	Sikuli pipeline

	Future developments
	Continuous Integration Environment
	Testing Framework Implementation
	Appium
	Sikuli

	Acknowledgements

