
POLITECNICO DI TORINO
Master’s Degree in Computer Engineering

Master’s Degree Thesis

Enhance robustness of test cases by
linting bad practices

Supervisors

Dott. Riccardo COPPOLA

Prof. Maurizio MORISIO

Prof. Ardito LUCA

Candidate

Davide CALARCO

03/2022

Summary

In software testing, GUI test cases are software functions that test the quality of
the application under test (AUT) only passing through the graphical user interface
(GUI). GUI test cases are well-known to be fragile, namely they do not pass
anymore as soon as an element in the GUI gets modified. The thesis therefore
aims at investigating the sources of fragility in GUI-based test cases and how to
decrease it. For the purpose, first it is presented the overall background about
software testing with particular attention to web applications. Then, a statistical
collection and analysis on real projects aims at giving an objective overview about
how testers face fragility and the forms under which fragility appears. A second
data collection and analysis, this time on community-crafted wikis, produces a
direct and practical set of good practices as countermeasures for fragility. The
analysis of these wikis suggests to implement a linter, that is a static analyzer, to
enforce such good practices in test cases; after an assessment about the deployment
environment of the linter and its design, the thesis presents the results: test cases
taken from real projects differ from the ideal model where the aforementioned rules
apply; fragility has multiple sources, categorized in a taxonomy. Subsequently,
the threats to validity criticize the methodologies followed to collect data and test
the linter. Finally, the thesis suggests the possible future improvements about the
present study and the linter.

ii

Acknowledgements

ACKNOWLEDGMENTS

I would like to praise the doctor Riccardo Coppola that guided me along this
journey.

I would like also to thank professors Maurizio Morisio and Ardito Luca for the
opportunity to take this interesting thesis subject.

Last but not least, special gratitude goes to my family and friends that supported
me from the very beginning of this chapter of my life.

iii

Table of Contents

List of Tables vii

List of Figures viii

Acronyms xi

1 Introduction 1

2 Background and Related Work 3
2.1 Software testing . 3
2.2 Testing of web applications . 5
2.3 GUI testing . 7
2.4 Technologies for web application testing 11

2.4.1 Selenium . 13
2.4.2 Cypress . 15
2.4.3 Other tools . 15

2.5 Fragility of tests . 16
2.6 Approaches to reduce fragility . 19

2.6.1 Resiliency . 19
2.6.2 Antifragility: a new way to engineer errors 20
2.6.3 Robustness, resiliency and antifragility in comparison 21
2.6.4 A further countermeasure: the Page Object Pattern 22

3 Conceptualization of the fragility issue 24
3.1 Data collection from test suites history 25

3.1.1 Design . 25
3.1.2 Fragilities related to locators 29
3.1.3 Fragilities related to library restyling 32
3.1.4 Fragilities related to comments 32
3.1.5 Fragilities related to licenses 33
3.1.6 Fragilities related to generalizations 34

v

3.1.7 Fragilities related to assertions 35
3.1.8 Fragilities related to wait strategies 36
3.1.9 Discussion . 39

3.2 Data collection from wikis . 40
3.2.1 Methodology . 40
3.2.2 Recommendations from the wikis 41

3.3 Data analysis . 50

4 Tool design 53

5 Tool validation 59
5.1 Methodology . 59
5.2 Selected Software Artifacts . 60
5.3 Results . 60
5.4 Threats to Validity . 63

6 Conclusions 65

A GitHub references 67

Bibliography 68

vi

List of Tables

3.1 The table summarizes the list of recommendations formalized within
this study, along with their state of implementation. 43

vii

List of Figures

2.1 The V model software process follows a standard development pat-
tern: first design, then implement and finally test. 4

2.2 This BPMN chart models the developer, who also acts as a tester,
that for each requirement first writes the related test case and then
the pertinent source code. 5

2.3 The widget at the center has coordinates (300, 300), which are
relative to the container. The coordinates in this case refer to the
top-left corner of the widget. 8

2.4 The element highlighted in green on the top right of the GUI cor-
responds to an element with tag ’td’ and class attribute equal to
’ToWrd’. The inspector tab of the browser shows the HTML code
from which the DOM is built and rendered, and in particular it
highlights the widget. At the bottom-left corner, the inspector shows
that the highlighted text box is child of the ’body’ element, which
in turn is child of the ’html’ root element of the web page. 9

2.5 This graph represents all the possible actions that can follow an
event, namely the graph is complete. The underlying algorithm will
trim those edges according to some policy, otherwise the number of
resulting test cases would be exponential [4]. 10

2.6 Testing tools usage in 2017. 12
2.7 The Selenium suite as of 2021. 13
2.8 . 18
2.9 Comparison of fragility countermeasures in terms of benefit. 21

3.1 The collection process: scanning different test cases. 25
3.2 The collection process: clicking on the test case’s history, at the

center-right edge of the image. 26
3.3 The collection process: listing test case’s commits. 26
3.4 The collection process: inspecting test case’s changes in a commit. . 27
3.5 The collection process: writing down data on a spreadsheet. 27
3.6 Data have been rolled up and categorized. 29

viii

3.7 Data have been rolled up and categorized according to the locator
type. 30

3.8 A slight modification of the text of the dropdown label (at the end
of the string) causes the statement to fail. 31

3.9 Example of methods that wrap more fine-grained functionalities. . . 33
3.10 Comments are spread at different scopes. 34
3.11 The literal 4444 gets generalized in the constant named ’port’. Now

the constant can be re-used everywhere in the same source file. . . . 34
3.12 The tester, manually or through the IDE, replaces the duplicated

snippet with the invocation to a function called ’login’. 35
3.13 Testers apply two kinds of generalizations, especially when the test

case gets longer and longer. 35
3.14 The chart is the result of filtering and cleaning assertion modifications

recorded from diff files. 36
3.15 Testers can synchronize test statements with the AUT through

different kinds of strategies. 37
3.16 What a recommendation is within this study. 42
3.17 On the left, the ice-cream test plan. On the right, the pyramid test

plan. 44
3.18 Mindmap that enumerates the various causes of fragility. 51

4.1 UML deployment diagram . 54
4.2 UML class diagram . 56
4.3 The linter is analyzing the test case. 57
4.4 The linter underlines the code smells. 57
4.5 Each code smell is enriched with an informational tooltip, shown as

soon as the mouse hover over it. 58

5.1 Chart report on Java folder, grouped by recommendation. 61
5.2 Chart report on Java folder, grouped by test file. 61
5.3 Chart report on Javascript folder, grouped by recommendation. . . 62
5.4 Chart report on Javascript folder, grouped by test file. 62

ix

Acronyms

AUT
Application Under Test

POP
Page Object Pattern

GUI
Graphical User Interface

DOM
Document Object Model

CSS
Cascading Style Sheet

IDE
Integrated Development Environment

AOP
Aspect Oriented Programming

E2E
End-to-End

SE
Software Engineering

TDD
Test-Driven Development

xi

BPMN
Business Process Model and Notation

BDD
Behaviuor-Driven Development

OS
Operating System

xii

Chapter 1

Introduction

Software engineering borrows the concept of fragility from metalworking, like also
rigidity, viscosity and so on. As commonly known, an object can respond in two
ways when it gets subjected to some force: it morphs by bending itself, or it tries
to keep a shape. In this last case, the object may either endure as it is against the
force, or break in pieces; the more fragile the body is, the more breaking points
occur within the volume of the object. In computer science, the software devoted
to test an application, a.k.a. test cases, behave similarly: as soon as the AUT
(Application Under Test) gets changed by a developer, test cases tend to break and
need to be corrected accordingly; this phenomenon goes by the name of fragility
of test cases. The more fragile a test case is, the more defects are induced by a
modification in the AUT. Within the scope of this study, one step further has been
done by widening the definition of fragility, as described in subsequent chapters.

Fragility is a property that affects quality of test cases, that is their maintain-
ability. Nowadays, several tools try to improve quality of test suites: frameworks
(i.e. Pyccuracy, Jasmine), libraries (i.e. Selenium), as well as dashboards (i.e.
TestQuality), wrapper libraries (i.e. FluentBuilder), plugins (i.e. fastlane-plugin-
test_center), static analyzers (Sonar). However, the aforementioned techniques
only address test suites’ fragility indirectly, that is as part of a whole, or partially.
The purpose of the present study is therefore to face the fragility problem tête-à-tête,
first by defining its boundaries and then implementing an automated tool that,
given the results of the study, can aid testers in developing a less fragile test suite.

Fragility is an issue that affects most of the possible software artifacts in computer
science, since change is an intrinsic property of software, namely it tends to evolve.
For the purpose of the present study, the scope of possible software artifacts has
been shrunk to GUI testing, where each test case emulates the behaviour of final
users in order to find bugs in the AUT. This kind of technique is widely adopted
because it allows to check the alignment of the application with the functional
requirements agreed with the customer or the end user.

1

Introduction

According to some heuristics, test cases would be flaky because users demand
too much from them and from browser automation tools [1]. This statement, from
one hand, highlights that visual testing is not a panacea, which is the reason why
several testing techniques exist. On the other hand, however, the present study
wants also to underline that it exists a gap from what is the ideal correct usage of
visual testing and what testers actually know and write down while coding GUI
test cases.

The remainder of the thesis is structured as follows: chapter 2 describes the
state of the art about software testing, with particular attention to web applications
(section 2.2), GUI test cases (section 2.3), testing tools (section 2.4), the definition
and characteristics of fragility (section 2.5) and countermeasures against fragility
(section 2.6). After that, chapter 3 aims at providing a different view on fragility by
first collecting data from the field (section 3.1 and section 3.2), and then analyzing
them to provide a taxonomy on the different causes of fragility (section 3.3). Then,
chapter 4 discusses and shows the design of a linter to help testers in decreasing
fragility. Subsequently, chapter 5 criticizes the linter characteristics by subjecting
a series of real software test cases to the linter. Finally, chapter 6 ends with the
possible future paths of the present study.

2

Chapter 2

Background and Related
Work

2.1 Software testing
SE (Software Engineering) is the branch of engineering that tries to model software
processes and facets. Indeed, programs have a complex lifecycle which therefore SE
splits in separate but coherent steps. The overall goal of such steps is to produce a
program, given in input a set of requirements. SE models each step of a software
process as a function that, receiving a certain resource like documents or source
code, returns a new artifact with added value. The following list summarizes the
standard steps of a general software process:

Requirement analysis is the step where a software company listens to customer’s
desires and formalize them in the so-called ’requirement document’. This
document may change along time, depending on which software process the
firm opts for. A requirement document typically partitions the set of desired
features in functional requirements and non-functional requirements; the
former ones establish what the software should do, while the latter ones state
how the software must satisfy the former ones. For instance, in case of an
online library, the application must allow users to skim the next page of the
catalogue in less than one second;

High-level design is the task of thinking the architecture of the software that is
going to be created. In this step, designers envision, evaluate and write down
the various modules of the tool and their mutual connections at a high level
of abstraction, in accordance with the requirement document discussed above;

Detailed design is the process step where designers choose the low-level options

3

Background and Related Work

available to implement the modules of the program;

Implementation is the core of software processes, as it provides for the developer
team writes the working source code in compliance with the requirement
document, the architecture and the detailed design;

Unit testing belongs to the testing sub-process, whose general aim is to validate
the program against the detailed design. In particular, unit testing focuses on
the modules of the tool considered separate from each other;

Integration testing checks the validity of the modules of the tool, when they
work together; the behaviour of the modules must mirror the high-level design
presented earlier;

System testing (or E2E (End-to-End)), finally, checks how much the software
product, seen as a black box, suits the requirements established during re-
quirement analysis.

The aforementioned steps of software processes do not have any intrinsic order
of application; depending on the specific software process chosen by the developing
firm, such phases appear in a specific order. For instance, a traditional process is
the V-model shown in Figure 2.1.

Figure 2.1: The V model software process follows a standard development pattern:
first design, then implement and finally test.

Other software process models, like TDD (Test-Driven Development), put
system testing in place from the very beginning of the development: for each
requirement defined in the requirement document, the tester/developer first writes

4

Background and Related Work

the related test and then the source code. Figure 2.2 formalizes the typical TDD
development/testing process.

Figure 2.2: This BPMN chart models the developer, who also acts as a tester,
that for each requirement first writes the related test case and then the pertinent
source code.

Some software processes stress some phases at the expense of other ones. For
instance, Agile methodologies put emphasis on working code, that is on sources
and tests, whereas documents must remain very lightweight.

This thesis does not restrict the research net on any specific software process.

2.2 Testing of web applications
As for standalone desktop programs or mobile software, web application testing
is a branch of the wide topic about software testing. Consequently, it inherits
from general software theory diverse concepts, common findings and observations
pertaining any aspect of test-related tasks, from psychological to economical; for
instance, testing has the purpose of finding errors in an application or demonstrating
its correctness. However, some peculiarities make web application testing diverge

5

Background and Related Work

from the other techniques. A presentation of the main concepts on web application
testing is therefore necessary to achieve the goal of the study, as this chapter does.

Nowadays, people expect that every organization, whether a private firm or a
social association, exposes its services on a web page [2]. Depending on the mission
of the organization, Internet applications are more or less complex: schools and
churches devote small focus on their web application which then result to be quite
small and poorly maintained; instead, retailers tend to develop a full-fledged web
portfolio. [2]

Users have a high-level standard about web applications today, which must
satisfy a specific set of properties, here listed by decreasing order of importance for
the service’s perception of the user: aesthetics, responsiveness, precision, availability,
usability, privacy, reliability and so on. If the web application doesn’t match the
expectation, a user may decide to check for another trustworthy company that
offers the same service with better quality. In case of products in the flesh, people
are instead willing to accept an unsatisfactory program bought on the shelf of a
store, as long as it fulfills their basic needs, since they have paid for that program.
Web applications have become the new first impression of companies, in the sense
that users perceive the image of a firm on the basis of its website [2].

In order to ensure a high-tech quality, on the company side there must be a
certain effort on testing the web application before any deployment or upgrade.
Such effort amounts to half of the time and more than half of the cost in the context
of a project, since the very beginning of the project itself [2].

If the development of a web application presents specific facets with respect to
other types of software, the same can be stated about testing web applications.
The resulting challenges stem from the great set of failure points that can occur
in such applications, which cannot be controlled; since testing an application
means detecting its failures, a test suite must take into account the aforementioned
challenges, here partially summarized: [2]

1. User-related issues: a user can be more or less skilled, employ different browsers,
operating systems and devices; the connection speed may also be fast or slow;

2. Business issues: the web application may interact with third-party hyperlinks,
so testers must understand the system behind them for the sake of accuracy;

3. Internationalization issues: some data like timezone, currency and language
may vary depending upon the user’s culture;

4. Security issues: a company must seriously perform a risk analysis of its network
and establish what are the security countermeasures to deploy against the
considered attacks, like authentication, authorization, privacy and so on; these
features must be thoroughly tested;

6

Background and Related Work

5. Testing environment issues: the test infrastructure must be identical to the
real production ecosystem, which is made up of specific web servers, databases,
firewalls and so on.

2.3 GUI testing
One strategy to test a web application is GUI testing: this term refers to all the
techniques that pass through the visual interface exposed by the AUT to check its
behaviour. GUI testing can in turn be further split in minor categories, depending
on the method employed by test cases to find web elements at execution time:

• Coordinate-based locators: elements rendered by the AUT are historically
found by test cases through their coordinates within the graphical interface
(see Figure 2.3);

• DOM-based locators: test cases interact via the DOM data structure. The
DOM (Document Object Model) data structure is a representation of a web
page, automatically built by browsers; it conveys the hierarchical organization
of elements that are rendered on the web page and their attributes like id,
name and so on (see Figure 2.4);

• Visual-based locators: test cases interact with the AUT through algorithms for
image recognition; the tester collects some screenshots of the graphical state,
which are then used by these algorithms to assert the presence or absence of
elements or attributes in a certain application state.

GUI testing concentrates on the front-end tier of the client-server architecture.
As a consequence, it probes bugs in the client-side scripts, in the presentation layer
to some extent and in the business rules compliance; it can be employed also for
performance testing, although this practice is discouraged since visual test tools
introduce an unknown overhead to operations [1].

Given the domain where graphical testing sheds light in order to find bugs, it is
a high-level testing technique (a.k.a., end-to-end testing). Therefore, testers must
formerly create lower-level tests for separate independent components, so as to
easier the task of detecting which is the code snippet causing the failure [2]. As
explained later in the thesis, the order of creation of test cases may follow different
rules.

Graphical testing belongs to the category commonly called black-box testing,
since it models a web application as a set of widgets and events working as a whole
to accomplish a purpose. In other words, these tests don’t depend upon how an
actual functional requirement has been implemented.

GUI testing is a difficult task, for diverse reasons [3]:

7

Background and Related Work

Figure 2.3: The widget at the center has coordinates (300, 300), which are relative
to the container. The coordinates in this case refer to the top-left corner of the
widget.

1. Interfaces are designed to be human-friendly rather than approached by a
computer program;

2. Isolating graphical components is useless since they are strongly coupled. This
is also the reason why the GUI testing cannot belong to the unit testing
category;

3. GUIs are event-driven.

A GUI test can be further classified according to this taxonomy:

1. Functional test: the purpose is checking whether the web application works
as expected and without issues;

2. Acceptance test: this is a subcategory of functional testing; it checks the
application compliance against the customer’s expectation;

3. Performance test: the goal is measuring how the application performs under
different workloads; the load is simulated through multiple users that activate
a certain feature, whereas performance measures like latency are gathered
through other tools;

4. Interface-only test: what is being tested is not the whole AUT, quite just its
mere interface, or better, the behaviour of the GUI in response to a business
logic that was already tested through unit tests [3];

8

Background and Related Work

Figure 2.4: The element highlighted in green on the top right of the GUI
corresponds to an element with tag ’td’ and class attribute equal to ’ToWrd’. The
inspector tab of the browser shows the HTML code from which the DOM is built
and rendered, and in particular it highlights the widget. At the bottom-left corner,
the inspector shows that the highlighted text box is child of the ’body’ element,
which in turn is child of the ’html’ root element of the web page.

The creation of GUI test cases can be:

manual : this is the basic procedure;

partially automated : the testing tool translates the actions of a tester in test
cases;

completely automated : an algorithm autonomously builds test cases.

Among the fully-automated creation testing approaches, the event-driven one
has been studied previously [4]. Such paradigm models the GUI of the AUT as a
graph, where each node represents an event, while each edge is a possible action
between two events. The first observation that come out from this method is that

9

Background and Related Work

the focus is on events rather than widgets; secondly, the GUI gets modeled in a
state machine useful to formalize and, at the same time, enumerate all the possible
actions of the end user; considering all the possible paths is in turn an important
task in testing. Figure 2.5 is an example of GUI model produced by event-driven
algorithms.

Figure 2.5: This graph represents all the possible actions that can follow an event,
namely the graph is complete. The underlying algorithm will trim those edges
according to some policy, otherwise the number of resulting test cases would be
exponential [4].

Given the predominant monetary and time costs to develop a software project,
along with the impact on user acceptance, testing a web application is a critical
process. As such, the development team (testers included) apply the regression
testing technique: they reuse tests written for a previous version of the web
application so as to avoid creating tests from scratch at each upgrade. However,
the aforementioned technique is not enough, as tests may not be compatible with
the upgraded web application. The present study investigates why tests break
when a web application changes and which patterns developers should follow to
reduce the chance of breakage in a test suite, under the same conditions.

Anyway, testers must first consider that automating tests is not always the case:

10

Background and Related Work

if the application is going to change considerably in the near future, or the project
management didn’t devote so much time for testing, then the tester should just
manually operate on the application without writing any programmatic test suite.
Functional tests, that is GUI tests or graphical tests, require much resources to
be run. The developer must therefore first wonder about he should instead build
other types of tests, like unit tests or even manual tests. They must also take into
account an important benefit GUI tests, namely they cover large portions of the
AUT, whose features are often mission-critical for the web application. [1]

The following code snippet is an example of GUI test case; the language used is
JavaScript, while the test tool is Selenium WebDriver:

1 i t (’ Should be on the home page ’ , f unc t i on (done) {
2 var element =
3 d r i v e r . f indElement (se lenium . By . className (’ banner−t ex t ’)) ;
4 element . getText () . then (func t i on (t ext) {
5 expect (t ex t) . toBe (’ S t a t i s t i c a l Bus iness Reg i s t e r ’) ;
6 done () ;
7 }) ;
8 }) ;

The purpose of the above test case is to check that the banner in the header of
the web page shows "Statistical Business Register". The first statement searches
for the first element in the GUI whose className attribute is ’banner-text’. The
second statement wraps two inner statements, executed as soon as the text of the
element becomes available: the former, at line 5, asserts (that is checks) whether
the text is equal to ’Statistical Business Register’. In the affirmative case, the test
case is considered passed (line 6); otherwise the test case reports a logical failure
because the text does not match the expected value. Instead, if the driver cannot
find any element having the specified className selector, the test case throws an
exception, which is an error.

It is important to notice the difference between failure and error: while the
former one represents a semantical gap between the expected outcome and the
actual one, the latter has only to do with a wrong test execution.

2.4 Technologies for web application testing
As web applications are characterized by a range of software properties, like per-
formance and security, there exist several frameworks which enable developers to
enhance a subset of them. Figure 2.6[5] gives a quantitative outline on the usage
of testing tools. The bar chart shows that projects typically adopt a Continuous
Integration tool, a framework to automate testing and an actual testing platform.

11

Background and Related Work

Free tools like Selenium and Appium are generally preferred to proprietary appli-
cations such as HP and UFT. Given the relevance of the Selenium testing tool
demonstrated by Figure 2.6, along with the desired target platform of the thesis
which is web applications for computers only, the present study investigates test
suites written for the Selenium tool. In order to better understand the context, the
next section first of all gives an outline of the Selenium portfolio.

Figure 2.6: Testing tools usage in 2017.

12

Background and Related Work

The tools that will be described in this chapter are not meant for a specific
direct research step within this study, quite just to give a theoretical background
on some existing tools and set the stage for subsequent findings based on them.

2.4.1 Selenium
The present study has chosen Selenium as the target tool for research. Here follows
a brief description thereof, intended to justify this choice and present the software
capabilities.

In order to launch Selenium test cases, the tester has to either use Selenium
IDE, which is actually an extension for Firefox, or the Selenium WebDriver library.
Selenium IDE has the so-called capture and replay capability: it records the actions
performed by the tester and automatically translate them into statements, which
become test cases. Although more promising thanks to the capture and replay
capability, Selenium IDE has some limitations as pointed out by previous studies.
Indeed, it does not provide classical features that are available in the traditional
programming paradigm, like conditional statements and logging; additionally,
Selenium IDE produces too much duplicated code. [6]

Selenium is more in general a software suite, as shown in Figure 2.7.

Figure 2.7: The Selenium suite as of 2021.

Selenium Grid tool allows to split the execution of a test suite on different
machines, so as to run them in parallel and so decrease the time needed to complete.
Indeed, the execution of GUI testing is a long-standing problem in general, due to
its slowness.

13

Background and Related Work

Although the Selenium project started in 2004, it is still widely used by companies
for a range of reasons:

1. Selenium is free, fact that encourages novices on trying it; on the business
side, companies acknowledge that Selenium is one of the few testing tools that
is simultaneously free and powerful at the same level of pay-for-use tools;

2. Selenium is compatible with a range of browsers, the most used nowadays:
Chrome, Firefox, Edge, Safari and so on; this kind of support with browsers
is native, in order to overcome the limitations of the sandbox in browsers;

3. It allows to write test cases in several programming languages, the most
common as of today: JavaScript, Java, C#, etc;

4. Integrated from the start with Agile, DevOps and Continuous Delivery work-
flow; these three concepts indeed have great relevance in the modern software
development paradigm;

5. Selenium supports mobile testing through specific tools, like Selendroid and
Appium;

6. Testers can run Selenium on Windows, Linux and Mac.

It is essential to observe that all these features are not so commonly supported
by other testing software, overall.

However, Selenium leads some disadvantages that must be taken into account:
[7]

1. Steep learning curve: novices and non-skilled people like managers will find
Selenium quite complex to learn since good programming skills are required;

2. No support for desktop apps: Selenium does not provide any direct way to
test stand-alone applications designed for offline and local usage;

3. No built-in image comparison: Selenium has to be integrated with other tools
when doing visual testing, a.k.a. image comparison;

4. No reporting capabilities: Selenium has to be used in combination with
dashboards that record the execution measures.

The present study concentrates on test cases integrated with the Selenium Web-
Driver and its evolutions, although no particular attention is put on distinguishing
the different versions thereof.

14

Background and Related Work

2.4.2 Cypress
Though the present study focuses on test suites written for Selenium, it may be
useful to compare it with another tool for better comprehension. The selected
tool is Cypress, whose developing team explicitly sheds light on its differences and
advantages w.r.t. the well-established Selenium suite [8].

Cypress runs inside the browser, that is in the same event loop of a web
application; Selenium is instead designed as an outside driver that issues commands
to the browser through the network. Cypress test cases therefore benefit from a
native access to the DOM, to the AUT and to the underlying network traffic. Testers
in other words have greater control over the testing environment by arbitrarily
setting its properties; this is a great advantage, given what section 2.2 explained.

As this study discusses later on, one disadvantage of GUI tests is the synchro-
nization between the driver statements and the state of the AUT. Cypress runs
inside the browser, so it can automatically coordinate the test suite execution and
the AUT state without explicit management from the developer. The relevance of
this point is highlighted by the remainder of this study.

Unlike Selenium, Cypress automatically takes screenshots without requiring
third-party support. This feature is useful both for visual testing, if needed, and to
debug a test case. Test cases written for Selenium are indeed difficult to debug.

Finally, the other relevant difference w.r.t. Selenium is the built-in dashboard
that enables testers to enjoy their work. Indeed, GUI testing is known to be a
repetitive task: even medium-sized web applications contain tens of GUI screens and
hundreds of GUI actions [9], so testers find this task tedious; the direct consequence
is a lower level of attention from developers, that unintentionally inject several
bugs in tests. This is a kind of psychological fragility, as defined by the taxonomy
discussed later on in section 3.3.

2.4.3 Other tools
Another technique for web application testing, which is pretty close to GUI testing,
is BDD (Behaviuor-Driven Development). This technique is an extension of TDD
(Test-Driven Development), applied to acceptance test cases. Indeed, customers
typically provide a set of test cases that the AUT must pass in order to be considered
’accepted’. Tools that focus on this strategy try to express acceptance test cases in
natural language, so that they can be understood even by non-expertise people on
programming like managers. One of these tools is Pycurracy, a BDD-styled tool
written in Python that aims to make it easier to create automated acceptance tests
[10]. Here follows another example, where the behaviour of a test case is encoded
in a specification language, whose syntax is based on XML:

15

Background and Related Work

1 <TestCase>
2 <Type>JButton</Type>
3 <Order>7</Order>
4 <Action>
5 <Push>yes</Push>
6 </ Action>
7 <LogMessage>push button (1)</LogMessage>
8 </TestCase>

The test case gets then automatically translated into a GUI test case in the flesh
[11]. A significant advantage of BDD, which is in common with other test-first
development methods, is that one can write test cases even if the AUT is not fully
implemented yet.

There is a plethora of tools that help during the testing process. Some of them
can be classified as dashboards, which group test cases in minor categories like
’To-Do’, ’Passing’, but not only. For instance, Percy [12] automatically collects
snapshots of the whole application page set; when a change in the AUT affects the
GUI, Percy notifies the developers about it.

Sikuli [13] is a record-and-playback tool, whose main feature is to translate the
actions of the tester within the GUI in test statements. Anyone can use these kind
of tools; however, the playback feature keeps the machine’s cursor busy for a quite
a long time, since the playback speed is limited.

Vista [14] is a prototype tool for the automatic repair of a test suite. The
description of such kind of tools is discussed later in subsection 2.6.1.

Vista leverages computer vision to correct breakages occurring in test cases.
TestQuality [15] measures fragility of test cases by inspecting which of them

still work for different versions of the web application. This analysis is a kind of
prediction: the more a test case has survived without any breakage, the greater
chance that it will keep working for the next release of the application.

TestQ [16] is a static analyzer that inspects the whole source code of test
suites in a project in order to detect code smells and present them in a GUI
through hierarchies, graphs, measures and charts. TestQ concentrates on overall
maintenance, but some considered code smells pertain fragility more or less directly.

Other platforms rather concentrates on the self-healing process, where test cases
that present a breakage get repaired. This technique is thoroughly explained later
in the thesis.

2.5 Fragility of tests
Following the ISO/IEC-25010 standard, the fragility property, sometimes called
brittleness, belongs to the wide category ’Maintainability’ and, more in detail, to its

16

Background and Related Work

subcategory ’Modifiability’. Here is indeed reported the definition of modifiability
according to the standard: «Degree to which a product or system can be effectively
and efficiently modified without introducing defects or degrading existing product
quality». It is essential to stress that the present study investigates fragility about
test cases, rather than about the AUT.

Fragility of test cases depend upon many factors, like the testing tool, the
developer knowledge and the testing technique. Concerning this last one, several
strategies can be adopted as discussed in section 2.2. The three techniques respond
differently to modifications in the AUT:

• Coordinate-based testing: as the target element is moved across the graphical
interface, all the referencing test cases break. On the other hand, if the element
is just lifted or lowered w.r.t. the DOM hierarchy, no direct breakage occurs
in the test suite;

• DOM-based testing: if an element gets moved w.r.t. the GUI in the same
page, no test case directly breaks as the underlying DOM structure has not
been modified accordingly. Instead, whenever an element is moved to another
container, web page or its attributes are changed, so test cases may break
depending on the employed locator;

• Visual testing: even if an element gets moved according to either the GUI
or the DOM, visual tests don’t break for direct reasons, since the element’s
appearance in a certain state did not change. However, similar objects in
the GUI may disturb the recognition of the intended element and produce
false positives or disrupt the flow of a test case which may succeed without
accomplishing its real purpose.

As the previous list points out, no technique is universal and fragility-free. The
three ways elements on the web page are located, called locators, are fragile against
a certain type of modification and robust toward another one.

Previous studies, like [17], built a taxonomy on the various fragility causes in
mobile apps. Although some variations exist due to the deployment environment,
most of these causes are in common with desktop applications; subsequent chapters
will demonstrate this. Figure 2.8 shows a two-level taxonomy [17] that categorizes
each change to a wider abstract change concept.

Here follows a brief description of the taxonomy:

Test code change only pertains changes in the test source files;

Application code change is about the evolution of the business logic of the
AUT;

17

Background and Related Work

Figure 2.8

Execution time variability models the overheads due to network latency and
host machine workload;

Compatibility adaptations are changes in the code that take care of selecting
the right approach to solve a problem w.r.t. the host Android OS (Operating
System);

18

Background and Related Work

GUI interaction change have the purpose to align the test code with the up-
graded way of accessing / checking graphical widgets;

GUI Views arrangement considers any addition / modification / deletion of
the GUI of the AUT;

View identification is about locator changes, that is how the test code retrieves
an element of the AUT;

Access to resources categorizes all the modifications on the methods used to
fetch resources of the project, like properties files;

Graphic changes , finally, embrace all those modifications in the appearance of
widgets, like screen size or textboxes width.

The present study will propose a one-level taxonomy with the same intent as
the aforementioned one.

2.6 Approaches to reduce fragility
The fragility of test suites is a problem that can be addressed also by enhancing
one property of theirs: robustness, resiliency or antifragility.

What make the three properties differ is their approach toward change:

1. Robustness: the purpose of improving such a property of a test suite is to
avoid any future modification at all; in other words, this technique struggles
with the concept of change by shielding the test suite against any modification.
Robustness is a kind of fault prevention, which is enforced by following best
practices [18];

2. Resiliency: methods that enhance this characteristic of a test suite still try to
refuse change, but, if that happens, they adapt the test suite by repairing it,
namely by correcting it automatically;

3. Antifragility: this modus operandi totally embraces change, since antifragile
software learns from bugs how to improve itself.

2.6.1 Resiliency
Also called ’Self-healing’ or ’Auto-repairing’, resiliency is the traditional alternative
to reduce fragility beside robustness. In essential terms, a repairing tool automati-
cally solves breakages; when the repairing tool cannot determine a suitable patch
for the broken code, a human tester intervene to solve the issue manually.

A previous study distinguishes three types of breakages [9]:

19

Background and Related Work

Direct breakages cause the test to fail in the same statement where the source
of the failure resides;

Propagated breakages provoke a failure of the test case some statements after
the real source of the failure;

Silent breakages do not cause the test to fail, although the test behaviour se-
mantically diverges from the intent of the test case.

Healing tools can only probe direct or propagated breakages as their direct
consequence is a test failure, whereas silent breakages remain undetected. That’s
why repairing tools cannot totally replace human maintainers. Moreover, even in
case of direct or propagated breakages, the repairing tool may find more than one
admissible solution, so a human operator must come into play also in this case.

The paramount idea behind the repair strategy is that most actions that testers
perform in order to align breakages can be automated. Indeed, as pointed out
previously in this study, GUI testing is a repetitive task, fact that often enables
automation.

subsection 2.4.3 already presented some self-healing tools.

2.6.2 Antifragility: a new way to engineer errors
The concept of antifragility is traced back to the book ’Antifragile’ of Nassim
Nicholas Taleb. Most test frameworks nowadays pretend that what the developer
wants is a robust or resilient test suite. However, the real opposite of fragility goes
by the name of antifragility, whereas robustness and resiliency are just on the way
between the two concepts [19].

A resilient system is not antifragile, either; an adaptive resilient system is. In
other words, state and behavioural repairs described in subsection 2.6.1 subtend to
an antifragile process if no human intervenes. In final analysis, an adaptive resilient
system is a learning system which actively changes its behaviour in response
to breakages; this process recalls Artificial Intelligence and Machine Learning
techniques studied by Data Science [18]. Although this approach is promising, the
present thesis does not follow it since it requires skills proper of data scientists.
The study therefore just presents antifragility without the willingness to provide
an actual implementation.

Since antifragile software enhances when a failure (breakage) occurs, it should
self-inject faults as well. This is the reason why antifragile software is said to
embrace change. For instance, Netflix deliberately introduces stress like delays and
breakdowns in their servers to test them; the Netflix team calls this technique as
’chaos engineering’.

20

Background and Related Work

This approach, that is antifragility, shapes the maintenance process to be reactive
to spontaneous changes stemming from business evolution; this point is important
and has industrial relevance, as business is in continuous ferment. Additionally,
the induced changes may reveal some solutions that innovate the system [19]. The
benefit is that antifragile software is a source of innovation for projects.

In general, antifragility triggers a revolution of the current noosphere about
testing (design principles, mindset of engineers and so on) [18]. Traditionally
speaking, bugs are evaluated as unwanted by developers due to their disruptive
effects. Antifragility, besides the implementation requirements, asks first of all
for a change of mindset, where the fault is seen as a kickstart for improvement.
This task is more psychological than technical and demonstrates that testing is
not about know-how only. The present study will underline this observation in
multiple occasions in subsequent chapters.

2.6.3 Robustness, resiliency and antifragility in comparison
The effectiveness of the three approaches described so far is shown in Figure 2.9.

Figure 2.9: Comparison of fragility countermeasures in terms of benefit.

The figure underlines the effectiveness of each countermeasure in qualitative
terms. Each technique responds differently to induced or natural stress, which

21

Background and Related Work

comes more or less spread along time.
In the basic form (’Fragile’ curve), a fragile application just breaks when a

change occurs; in this scenario, developers did not devote any particular attention
to software fragility, either with or without purpose.

Robustness (’Robust’ curve) is the worst strategy intended to address the fragility
problem. It works by delaying to some extent the time where software breaks, but
that instant will return anyway later on.

Resiliency (’Resilient’ curve) is a better policy than robustness. However, both
robustness and resiliency tend to zero when the stress tends to infinite. This common
problem is the kickstarter for a better solution, which is not just theoretical. As
pointed out later on, developers unconsciously or voluntarily feel the need for a
solution such that no further human effort will be required to maintain software
when a change in the AUT happen.

Antifragility (’Antifragile’ curve) is the best strategy to respond to stress in
modern Software Engineering. Among the benefits of antifragility briefly described
in subsection 2.6.2, the chart above underlines its capability to benefit from stress.
Indeed, the curve tends to infinite when change tends to infinite, unlike the other
curves.

2.6.4 A further countermeasure: the Page Object Pattern
Another existing technique to reduce fragility is the POP (Page Object Pattern),
which has been catching on in the last years. According to its basic principle,
testers must separate the behaviour of tests from their actual implementation: a
test case is just a series of human-friendly abstract actions, like "Do login"; each
action, in turn, calls the underlying low-level functions to carry out the task. Here
is an example of test that follows the POP pattern:[1]

1 @Test
2 pub l i c void t e s tLog in () {
3 SignInPage s ignInPage = new SignInPage (d r i v e r) ;
4 HomePage homePage = signInPage . l og inVa l idUse r (" userName " , "

password ") ;
5 assertThat (homePage . getMessageText () , i s (" He l lo userName ")) ;
6 }

As it can be observed from the code, each page of the related web application is
modelled as a class according to the Object-Oriented Programming. Each class
implements the actions needed to perform one abstract action.

Test cases benefit from this pattern under the fragility point of view since, if
the AUT gets changed, they remain as is due to their behavioural design. What
will be modified is the implementation, that is the page classes. In other words,

22

Background and Related Work

the POP moves the fragility problem from test cases to more fine-grained tasks
which face small issues. The consequence is that the sum of maintenance effort
needed by each implementation function is strictly lower than the maintenance
effort required by a test suite that does not adopt the POP.

It is worth to mention here that the page object pattern helps in the fragility
problem depending on the definition of fragility; previous studies [6] argued that
POP don’t improve robustness of test suites, since page objects still belong to test
cases. However, according to the definition of fragility within the present study, the
POP helps because it reduces by a factor of three the time needed to realign the
test suite and by a factor of eight the LOCs involved in the realignment, as pointed
out by the same studies. These maintenance indicators in turn affect whether
the test team is willing to devote time for testing or proceeds in deleting tests to
reduce the maintenance effort; but deleting test cases is a kind of modification
which increases fragility.

23

Chapter 3

Conceptualization of the
fragility issue

This chapter first gives the definition of fragility within the scope of the thesis.
Secondly, there is a bottom-up data collection process with the purpose of gathering
in-the-flesh data on the most common fragility issues. Thirdly, another data
collection task is performed where the source are community-crafted wikis. Finally,
it follows the analysis of the collected data to infer a model that tries to fit those
data and, simultaneously, leads to decrease fragility in test suites.

Let S be an arbitrary snippet of code, like a statement or a test case. Then S
is fragile against a modification M if M can be applied to S. The measurement of
the degree of fragility of S increases as the number of times M occurred in the wild
enhances.

The above definition is wide, since M may or may not take place in the AUT.
For instance, M can be a comment modification or even a macro definition. It is
also wider than some previous related works which considered breakages only as
a response to changes in the AUT. Concerning the measurement modality of the
degree of fragility given a snippet S, it is necessary to count the occurrences of M
that took place in projects developed in the past. Incidentally, this way to measure
fragility of a currently-available test case is a kind of prediction and has to do with
quantitative data mining.

In any case, the above definition considers a modification relevant only when
it happened at least a certain amount of times in the wild: for example, evident
style modifications that occurred in < 0.1%, w.r.t. a sample of test cases taken
from the wild, induce a negligible level of fragility. Instead, if a modification has
never occurred, then, according to the above definition, it induces fragility with
null level, which is equivalent to state that the modification doesn’t produce any
fragility at all.

24

Conceptualization of the fragility issue

The upper definition has been actually built incrementally, as the data collection
process was going on. However, the desire to enlarge the scope of the definition
to every applicable modification was established from the very beginning of the
present study.

3.1 Data collection from test suites history
3.1.1 Design
The first step on data collection consists of inspecting a test case, or better its
modifications between successive commits, along its lifetime in a project. The
task was performed on GitHub, thanks to its user-friendly graphical interface.
Incidentally, no script has been leveraged for the purpose described in this section.

In order to accomplish the aforementioned collection process, the search key
‘extension:java filename:*test* language:Java selenium‘ was applied in the GitHub
search bar. GitHub groups results by categories like ’Repositories’, ’Code’, ’Wikis’
and so on; this section leveraged the category ’Code’, in order to work on test cases;
the other collection process, described in section 3.2 instead selected ’Wikis’. The
GitHub utility then shows a series of test cases as result, sorted by best match,
and split up in 10 test cases per web page, as shown in Figure 3.1.

Figure 3.1: The collection process: scanning different test cases.

For each test case, GitHub allows to land on the pertinent web page, where the
button currently called ’History’ lists all the commits of a repository to which the
test case has been involved, that is modified, as shown in Figure 3.2.

25

Conceptualization of the fragility issue

Figure 3.2: The collection process: clicking on the test case’s history, at the
center-right edge of the image.

For each commit, it is enough to click on its title, which acts as a link, so as to
vision the modifications applied to files w.r.t. the previous commit, as shown in
Figure 3.3 and in Figure 3.4.

Figure 3.3: The collection process: listing test case’s commits.

At this point, the collection process starts (or continues) and data are written

26

Conceptualization of the fragility issue

Figure 3.4: The collection process: inspecting test case’s changes in a commit.

down on a spreadsheet, as shown in Figure 3.5.

Figure 3.5: The collection process: writing down data on a spreadsheet.

The spreadsheet is subdivided in rows, each storing an N-uple with signature:

27

Conceptualization of the fragility issue

(project, test case path, type of modification, number of occurrences).
’project’ is a string that uniquely identifies a repository on GitHub. If this

identifier is copied and pasted into the GitHub search bar, the result indeed
shows one repository only;

’test case path’ is the relative path of the test case within the repository; this
metadata helps in locating the test case given the repository; notice that a
test case is a test file in this context, not just a test function;

’type of modification’ is a label that categorizes a modification for future statis-
tics; see Figure 3.5 for an example;

’number of occurrences’ normally refers to how many changes of the same type
occur in the same test case within a commit. As a consequence, multiple
instances of the same identical modification in a test file are counted as distinct
modifications, so all of them concur to the final measure.

Since the GitHub search outcome is grouped by test case, storing the repository
identifier and the test case relative path avoids to consider the same project multiple
times.

It has been decided to stop the collection process at page 72, having a reasonable
database at hand. Nothing prevents future collection effort in order to increase the
corpus. As previously pointed out, since the test cases and their relative project
identifiers are saved into the spreadsheet, it is possible to avoid starting from
scratch.

The number of scanned test cases is 720, since the process stopped at page 72
and GitHub shows 10 test cases per page. However, test cases that traced back
only to one commit were discarded, since only differences between different versions
of the same test case are relevant. However, having just one commit doesn’t imply
that developers didn’t find any fragility issue during maintenance, quite that they
have not been traced back on GitHub. From the number of total test cases and
the actual entries in the spreadsheet, it comes out that the actual number of test
cases involved in multiple commits is 66 (9.2%).

The purpose of this collection is, as described apart in the study, to underline a
general and objective overview of the modifications that developers apply to test
cases. The general data roll-up is shown in Figure 3.6.

The total number of probed modifications is 1291, each one belonging to a
category as shown in Figure 3.6. The various categories are ranked by decreasing
number of modifications, beside the last one about unlabeled type of modifications.
A category is the semantic generalization of various types of modification from the
spreadsheet.

The successive sub-sections discuss each category shown in Figure 3.6 with more
detailed data and description.

28

Conceptualization of the fragility issue

Figure 3.6: Data have been rolled up and categorized.

3.1.2 Fragilities related to locators
The most relevant category is about locator modifications, the traditional main issue
on GUI testing (32%). Figure 3.7 shows the general trend about locator-related
modifications.

An XPath is a kind of locator that identifies a web element through the hier-
archical DOM path of it. If the path starts from the root of the web document,
the XPath is said absolute, otherwise it is called relative. Here is an example of
absolute XPath of the submit button of a probable web page:

1 " /body/ div [@name=\" conta ine r \ "] / items [3] / input [type=\"submit \ "] "

Returning to the study, the longer the XPath, the greater the probability that
the XPath is involved in a change. A change in the AUT may trigger other XPaths
to be modified, beside the directly-interested ones. For instance, the addition or
deletion of an item in a collection causes a correction not just to the pertinent
XPath, quite also to the subsequent ones in the list that get shifted upwards or
downwards. Imagine to delete the item at index 2 in the ’items’ collection of the

29

Conceptualization of the fragility issue

Figure 3.7: Data have been rolled up and categorized according to the locator
type.

XPath shown above; the consequence is that the XPath would (its logical reference
is incorrect), but other XPaths that eventually refer to any item at index greater
than 3 would break as well.

XPath locators reveal their strong fragility given that 28% of the total modifica-
tions belong to this category alone, whereas their occurrence w.r.t. the locator-based
modifications is 85%.

CSS (Cascading Style Sheet) locators identify one or multiple web elements
through the properties defined in their ’style’ attribute; these properties convey
data about aesthetics of web elements. Here follows an example of CSS locator
inside an assert statement; the locator should find an element with tag ’a’ and
’lang’ attribute equal to ’en’:

1 ve r i f yEqua l s (se lenium . getText (" c s s=a : lang (en) ") , " t h i s i s the
f i r s t element ") ;

Figure 3.7 ranks CSS locators at second position (4.8%) w.r.t. the total number
of modifications. Their modification frequency is however much lower than XPaths,
like also the subsequent locators. This finding suggests that all the remaining kinds
of locator, CSS included, would be robust. The shown data however also depend
upon the preference of testers, which opt for a kind of locator rather than another

30

Conceptualization of the fragility issue

one for some reason. section 3.2 will clarify this point by using another kind of
data source.

An id locator references a web element through its ’id’ attribute. Such attribute
is a plain string, like ’search-bar’ or ’sort-feature’. It appears to be rarely modified
by testers, since it represents just the 2.2% of the total modifications within the
shown sample.

Text is a common attribute for web elements, since it is one of the most basic
forms to represent data. Consequently, text locators are eligible to be a universal
kind of locator. However, text locators are tightly bound to the presentation
layer of the AUT, causing their great fragility. Figure 3.8 shows an example of
modification on a text locator.

Figure 3.8: A slight modification of the text of the dropdown label (at the end of
the string) causes the statement to fail.

At fifth position, with a percentage of 1.4%, there are modifications of link
locators. This type of locator embraces hyperlinks of a web page, which typically
convey the landing page of the link and the text that is shown to the user.

Tag locators refer to elements sharing the same tag, which in web applications
define the nature of widgets across a page. A tag is a predefined keyword, so it
can only assume a certain built-in static value. As such, tag locators are typically
useful to select multiple elements in once. Their frequency of change is 0.7% w.r.t.
the total modifications.

Name locators refer to an element through its ’name’ attribute. This attribute
must not be confused with the ’class’ attribute used to assign a CSS style to the
element. Name locators are typically employed in forms as unique identifiers, like
the following statement demonstrates:

1 d r i v e r . f indElement (By . name(" password ")) . sendKeys (" 123 ") ;

Name attributes are occasionally modified, since just one occurrence has been
recorded. Unlike web applications, desktop applications instead widely employ
names to identify items; indeed, local applications have a GUI which in most cases
is a composition of forms (a.k.a. windows).

No locator-related modification pertain screenshots, as far as the statistics
report. This number is justified by the fact that the present study concentrates
on GUI testing rather than visual testing, although it would have recorded such
modifications in any case. Image recognition indeed requires additional modules

31

Conceptualization of the fragility issue

installed together with the testing tool in order to find an element, thought as data
structure, given its appearance on the GUI.

Screenshots can also be employed to do assertions, as subsection 3.1.7 will
underline better. In fact, asserting a visual statement does not require to infer the
data structure associated to an element, quite just a sort of graphical matching
capability.

3.1.3 Fragilities related to library restyling
The second most relevant type of modification, as shown by Figure 3.6, is about
library restyling, namely the task of developers that adapt the library methods to
their actual needs.

Although the task does not functionally affect test cases, the definition of fragility
defined within the scope of this research embraces the effort to write such utility
methods.

The task is performed in 5 test cases out of the 66 total maintained test cases
(7.5%). The most relevant test case (94% of the restyle modifications) has been
entirely re-ported to a corrected API of the testing tool. Mapping the whole existing
tool API is famous to be a tedious task, which partially justifies why it is delivered
so rarely. The remaining 4 test cases have got instead spurious mappings.

What encourages developers to write such functions comprises clearness, read-
ability or convenience, as shown in Figure 3.9.

The task is strictly related to the extraction of functions or macros from frequent
snippets, shown later on in subsection 3.1.6. The difference is that library restyling
may take place ahead of need, while data generalization typically is issued when
duplicated snippets start to appear.

An alternative motivation may consist of organizing a test case in logical parts,
like steps of a use case, especially when the test is getting longer and longer.

The importance of underlining the category ’Methods restyling’ is that it can
be considered an intermediate form of POP. This property is in common with
comments modifications, as discussed in subsection 3.1.4.

3.1.4 Fragilities related to comments
The third most relevant type of change pertains comments. They are spread at
different scope levels, as shown in Figure 3.10.

Comments belong to the set of metadata of test files, like also code licenses. As
such, they do not affect the functionality of test cases and so they do not concur
directly in increasing fragility. However, since the present study treats test files as
text documents, comments become relevant in the testing ecosystem.

32

Conceptualization of the fragility issue

Figure 3.9: Example of methods that wrap more fine-grained functionalities.

Testers sometimes prefer commenting code rather than deleting it directly.
The deletion may be postponed to a future commit or it just works as a toggled
functionality that the tester activates at will.

Comments sometimes reflect the need to summarize the user behaviour behind
a certain snippet; this practice can be considered as a primitive POP (Page Object
Pattern), explained in subsection 2.6.4. Indeed, comments related to a code block
have the purpose to summarize the behaviour of that source code in order to speed
up reading.

3.1.5 Fragilities related to licenses

Another kind of modification that testers apply regards licenses. They establish
restrictions, terms and conditions to which the final user has to comply with [20].
License strategies depend upon organizational goals and, as such, they cannot
be controlled. Anyway, from the practical point of view, a license is a kind of
metadata that does not affect code in the flesh. Moreover, copyright declarations
are out-of-scope within the present study, beside the fact that they anyway involve
testers and test case files.

33

Conceptualization of the fragility issue

Figure 3.10: Comments are spread at different scopes.

3.1.6 Fragilities related to generalizations
As test cases become longer and longer, some snippets or literals repeat along
code. Developers tend to extract a function or a macro respectively from frequent
/ duplicated snippets and constants. Extracting a code snippet means creating
a function or constant that can be invoked or referenced by other statements
that require the same behaviour or information. Figure 3.11 shows an example of
extraction of a macro (that is constant) from a literal.

Figure 3.11: The literal 4444 gets generalized in the constant named ’port’. Now
the constant can be re-used everywhere in the same source file.

Figure 3.12 instead gives a flavour of the extraction of a function (that is a
method) from a duplicated snippet.

Figure 3.13 gives a quantitative overview on generalizations, grouped by target
object which can be either a function or a constant. The chart also underlines that
there are no other kinds of generalizations, within the sample recorded during the
collection step.

34

Conceptualization of the fragility issue

Figure 3.12: The tester, manually or through the IDE, replaces the duplicated
snippet with the invocation to a function called ’login’.

Figure 3.13: Testers apply two kinds of generalizations, especially when the test
case gets longer and longer.

3.1.7 Fragilities related to assertions
One typical kind of statement in test cases is the assertion. Asserting two values
means testing whether they satisfy a certain relation, often equality. The nature
of an assertion is determined by the type of values to compare. For instance, the
following instruction asserts that the current web page has the same appearance of

35

Conceptualization of the fragility issue

the ’login.png’ image:

1 Assert . a s se r tTrue (Se l en iumUt i l s . v e r i f y S c r e e n s h o t (dr ive r , " l o g i n .
png ")) ;

Instead, the assertion on text can take this form, where no image recognition is
employed:

1 Assert . a s se r tTrue (Se l en iumUt i l s . i sText InInput (dr ive r , " f i rst_name
" , "Amber")) ;

Figure 3.14 shows the frequency of modifications related to assertions.

Figure 3.14: The chart is the result of filtering and cleaning assertion modifications
recorded from diff files.

The two most modified kinds of assertions pertain screenshots and text. The
other attributes are instead typically used to locate an element rather than to
assert on themselves.

3.1.8 Fragilities related to wait strategies
Another traditionally-relevant issue that affect GUI test suites is synchronization.
The purpose of such feature is to coordinate the test case execution with the

36

Conceptualization of the fragility issue

pertinent state of the AUT, since it is not automatically enforced neither by the
AUT nor by the test tool. For instance, given the statement:

1 d r i v e r . getElementById (" nav ") . c l i c k ()

It doesn’t implicitly wait that the target element has been rendered or even
attached to the DOM, before clicking. This lack of synchronization make test cases
dependent upon the infrastructural delays, which are in turn affected by the load
of the host machine. As a consequence, testers add wait statements between visual
actions; the associated test case, therefore, consistently interact with web elements
that now are in place at the right moment.

As shown in Figure 3.15, there are several wait strategies that testers apply.

Figure 3.15: Testers can synchronize test statements with the AUT through
different kinds of strategies.

Here follows a description of the aforementioned wait strategies:

Fixed timeout means that the wait statement makes the execution of the test
case suspend for a certain number of milliseconds; Figure 3.15 ranks this policy
at first position, in accordance with successive results of this study. Here is
an example of fixed timeout statement in Java, where the timeout is 3000 ms:

1 Thread . s l e e p (3000) ;

37

Conceptualization of the fragility issue

On page loaded is useful to wait that the switch operation from the current tab
of the web page where the test case is working to another one has delivered.
This statement is an example, with timeout equal to 30000 ms:

1 se lenium . waitForPageToLoad (" 30000 ") ;

Implicit automatically adds a fixed timeout wait before each GUI test statement
starts acting, like an aspect of AOP programming. The following statement,
for instance, sets a default wait timeout of 10 seconds:

1 d r i v e r . manage () . t imeouts ()
2 . imp l i c i t l yWa i t (10 , TimeUnit .SECONDS) ;

On condition enables the test flow to sleep until a certain condition has been
met; this kind of wait policy will come up again in the second data collection
process of the present thesis (see subsection 3.2.2). Here is a common example,
where the test case does not continue until the element denoted by the XPath
has become visible:

1 wait . u n t i l (
2 ExpectedCondit ions . v i s i b i l i t yOfE l ementLoca t ed (
3 By . xpath (" // div [conta in s (t ex t () , ’COMPOSE ’)] ")
4)
5) ;

Custom snippet is a tailored wait approach, that the tester develops on purpose.
The following custom wait snippet polls every second if the element denoted
by the XPath has text equal to "3"; if after a minute the text has not appeared
yet, the test case fails:

1 f o r (i n t second = 0 ; ; second++) {
2 i f (second >= 60) Se leneseTestBase . f a i l (" t imeout ") ;
3 t ry {
4 i f (" 3 " . equa l s (se lenium . getText (" // tbody [@id=’ tab le −

management ’] / t r [2] / td [5] "))) break ;
5 } catch (Exception e) {
6 }
7 Thread . s l e e p (1000) ;
8 }
9

38

Conceptualization of the fragility issue

Recommendation R.D.0

This section establishes a recommendation that stemmed from subsection 3.1.8.
The meaning of ’recommendation’ is described later in subsection 3.2.2, since that
research phase has found many more recommendations.

Source: subsection 3.1.8
Waiting for a fixed timeout increases fragility of test cases. Developers typically

tune the timeout:

• By increasing it: the reason is that the last execution of the test case threw a
NotFound-like exception, because the waiting time for an element to appear
was too short;

• By decreasing it: the developer tries to gain execution time from tests; indeed,
GUI tests in general need much time to deliver.

The preceding two countermeasures are weak. As an alternative solution, the
developer can turn the target fixed-time wait into a condition-based wait. Indeed,
the latter kind of wait allows the test case to continue as soon as the condition
is met, without remaining idle until the timeout has expired. On the other hand,
waiting on a condition never fails due to lacking elements on the GUI, and this
fact is deterministic.

Skimming the diff files from GitHub, it turns out that a fixed-time wait typically
assumes the form of a ‘Thread.sleep‘ call in Java and ‘setTimeout‘ call in JavaScript.

Contract: Turn fixed-time waits into condition-based waits.
State: implemented

3.1.9 Discussion
Although performing data mining by collecting test cases modifications along their
history is a reasonable and direct source of information, other channels have been
considered. Indeed, developers feel the implicit need to establish rules that hopefully
guarantee stronger robustness and try to follow them. These rules can be still
found in the wild, but under the form of wikis (as called on GitHub) rather than
code. Additionally, authoritative organizations like Google, the Selenium team,
Node.js and so on have published guidelines on the Net with the same purpose over
the years. Taking into account what developers experienced about fragility so that
to write down their own guidelines enrich the range of rules that a tool is capable
to enforce or suggest; the developer would rely upon a tool that summarizes the
knowledge of hundreds of peers from the wild.

A more formal justification of the motivation that encouraged this study to
search for other sources of information is that data collection based on statistics is

39

Conceptualization of the fragility issue

a quantitative approach. Nowadays automating data analysis through algorithms
is catching on a wider and wider audience. Nevertheless, experts of big data
are at the same time more convinced that these techniques, like association rule
recognition, cannot reveal every facet of the truth starting only from numbers.
To prove this, it’s enough to observe that even firms that analyze data coming
from social networks or mobile cells still leverage the traditional focus groups to
shape their product, which in turn is a qualitative approach. Here going deep into
these topics is not of interest, but it is still important to highlight what are the
advantages of both quantitative and qualitative techniques: while the former gives
a general and objective overview, the latter obtains hands-on information directly
from end users. In fact, the number of recommendations found through wikis is
much greater than that stemmed up from diff files. As a consequence, combining
both techniques has been deemed more profitable for the purpose of this study.

3.2 Data collection from wikis
A wiki is here a statement or a group of statements, sourced by a member or a group
on the online community; a wiki is worded in plain language. The modern search
engines facilitate the work of finding pertinent wikis, both on GitHub through
vertical searching and on the wide Net through horizontal searching.

3.2.1 Methodology
Regarding the methodology that has been followed to find and record recommenda-
tions, it is identical to that one described in subsection 3.1.1, applied for diff files.
The only difference is that, rather than opening the ’Code’ tab, the selected tab
here is ’Wiki’. In this case, the search net has been widened to the whole Net.

No statistics have been gathered in this collection process, since it wants to get
in touch with practical findings about GUI testing. The result of the process is
indeed a series of recommendations, shown in subsection 3.2.2.

Cleaning and filtering wikis

Wikis, as found in the wild, appear in a raw format. Therefore, this section describes
the task of formalizing the wikis and normalizing them in a common format.

The language in which these wikis are written is not well-finished: there are
sentences with no independent clause. This issue triggers a work of textual analysis
to shed light on what is the real message of a wiki. Additionally, another essential
task have been carried out and that commonly goes by the name of internal
consistency check.

40

Conceptualization of the fragility issue

Since multiple rules may declare opposite statements to each other, they have
been checked also against external consistency.

Regarding the methodology, recommendations have been evaluated incrementally
in order to easier the process: given the corpus of already-scanned and consistent
recommendations, a further rule is compared with them and admitted in case of
coherence.

The intermediate result of the analysis process has been filtered out by fragility-
pertinent rules: guidelines that establish a recommendation just for the sake of
clearness, for instance, have been dropped. Instead, those good practices that
enforce clearness or other properties for the name of fragility have been kept.

The result of the collection and filtering process is presented in subsection 3.2.2.

3.2.2 Recommendations from the wikis
The final result of the process is a set of recommendations, as follows. Each
recommendation contains a summary of the source text which, in its original form,
normally covers more ample topics. The rule that the developer should follow is
labeled as the contract that the rule recommends. It may follow a further discussion
that solves or explains some issues stemming from the summary of the contract.
Finally, a couple of headers, ’state’ and ’reason’, summarize whether the rule has
been implemented and, eventually, why not.

First of all, the UML dictionary shown in Figure 3.16 establishes the definition
of recommendation within this study.

A recommendation may have multiple reasons (Motivation) to exist, each one
traced back to a more or less authoritative source. The more motivations, the
stronger is the recommendation. A recommendation may be related to another
one. A given code snippet (Snippet) may match a given pattern (Recommenda-
tion::pattern) for a certain reason (Diagnostic:reason). For instance, the reason
could be ’Use of setTimeout function’.

Table 3.1 lists the recommendations and, for each one, its state of implementation.
Indeed, as discussed in chapter 4, testers can follow these rules with the aid of a tool;
the tool do not implement all the rules, for different reasons like complex heuristics
or huge implementation effort. Out of 25 recommendations, 23 are eligible to be
implemented, since those labeled as ’Not needed’ are aggregations of other ones.
Among the 23 remaining recommendations, 15 are implemented (65%), excluding
those partially enforced.

Recommendations have ids that are not strictly incremental; for instance, the
possible id ’R.W.2’ is not used. The motivation is that the list of recommendations
is a living document, where each row may get merged with other rules or declared
part of another one; compacting ids would be confusing: keeping the same id for a
rule is clearer in the long run.

41

Conceptualization of the fragility issue

Figure 3.16: What a recommendation is within this study.

Recommendation R.W.0

Summary: the testing pyramid (Figure 3.17) [21] shows the recommended propor-
tion in the number of end-to-end test cases w.r.t. lower-level tests. The reason is
that, moving upwards in the pyramid test plan, there are issues like:

• Test fragility (tests that break easily and unexpectedly, even when changes
shouldn’t have influenced the test);

• Longer feedback time;

• Increased effort levels;

• Higher costs to implementation;

• More specialized knowledge required.

Contract: keep the number of unit tests greater than the number of end-to-end
tests.

State: non implemented.

42

Conceptualization of the fragility issue

Recommendation id State Type of faced fragility
R.D.0 Implemented Synchronization
R.W.0 Non implemented Effort
R.W.1 Implemented Data
R.W.3 Implemented Data
R.W.4 Non implemented Cognitive
R.W.5 Non implemented Cognitive
R.W.6 Implemented Cognitive
R.W.7 Implemented Effort
R.W.12 Not needed /
R.W.12.0 Non implemented Effort
R.W.12.1 Implemented Effort / psychological
R.W.12.2 Non implemented Effort / cognitive
R.W.12.3 Implicitly implemented Effort
R.W.12.4 Implemented Data
R.W.12.5 Partially implemented Data
R.W.12.6 Implemented Data
R.W.12.7 Implemented Execution plan
R.W.13 Not needed /
R.W.14 Implemented Effort / cognitive
R.W.15 Non implemented Effort
R.W.16 Implemented Effort
R.W.17 Non implemented Execution plan
R.W.19 Implemented Data
R.W.20 Implemented Data
R.W.21 Implemented Effort

Table 3.1: The table summarizes the list of recommendations formalized within
this study, along with their state of implementation.

Reason: projects typically store GUI tests in separate folders than other tests;
additionally, folders inside a project often does not follow a standard hierarchy, as
well as names of folders are arbitrary.

See also: R.W.12.0

Recommendation R.W.1

Summary: XPath locators relative to an element found by id come up to be more
robust than absolute ones: for instance, //*[@id="fox"]/a. [22]

Contract: use relative XPath locators in place of absolute XPath locators.

43

Conceptualization of the fragility issue

Figure 3.17: On the left, the ice-cream test plan. On the right, the pyramid test
plan.

State: implemented.

Recommendation R.W.3

Summary: Id locators lead to high readability. They are the fastest locators, since
they are implemented by calling the ’getElementById’ method, at browser level.
[22]

Additionally, predictable locators by id help in writing tests for dynamically-
populated lists, whose tests are typically hard to maintain.[23]

XPath locators are more vulnerable to UI changes than ids, fact that augments
test maintenance. XPath locators are slow and so they may break test cases that
make use of timeouts, increasing their fragility. [23]

Id locators are the most robust choice; when they are not available, CSS locators
should be selected; as last resort, XPaths can be chosen. [24]

Contract: prefer locators by id.
Discussion: it is natural wondering about why locators by id are more robust

than their XPath and CSS counterparts. A justification for this behaviour could be
that CSS identifiers, beside being placeholders, also encode a certain style attribute;
therefore, modifying them is more likely than ids which don’t carry any other
meaning for the AUT. The same reason subsists for XPaths: beside identifying an
element, they are bound to the structure of the DOM, whereas ids are transparent
to any structural and presentational change.

State: implemented.

44

Conceptualization of the fragility issue

Recommendation R.W.4

Summary: ids and names of elements should reflect their functional purpose so as
to lower the probability they get changed. Ids must be meaningful and should not
convey a presentational purpose. Additionally, they would be more readable. If an
element is not directly involved in a use case, like containers, their ids or names
should be generic.[25]

Contract: give to an element an id that mirrors its functional purpose. When
an element has no particular meaning, give it a generic id.

State: non implemented Reason: this rule requires natural language processing
to put in place some heuristics.

See also: R.W.5

Recommendation R.W.5

Summary: no discussion is present in the source wiki.[25]
Contract: give to elements a name that mirrors their functional purpose. When

an element has no particular meaning, give it a generic name.
State: non implemented Reason: this rule requires natural language processing

to put in place some heuristics.
See also: R.W.4

Recommendation R.W.6

Summary: variable names concur in filling up the working memory of the developer,
which is quite limited. As a consequence, their meaning must be immediate and
clear. [26]

Contract: keep names of variables clear to everyone.
State: implemented.

Recommendation R.W.7

Summary: do not concatenate words and abbreviations in selectors by any charac-
ters (including none at all) other than hyphens, in order to improve understanding
and skimming. [25]

Contract: separate words in ids and class names by a hyphen.
State: implemented.

Recommendation R.W.12

Discussion: Node.js recommendations are curated and edited by the respective
authors and by the Node community, so they did not require neither cleaning effort

45

Conceptualization of the fragility issue

nor additional analysis. Each Node.js best practice is sometimes further explained
in a web page apart, which is not reported here for the sake of brevity.

State: not needed Reason: this is an aggregation rule.

Recommendation R.W.12.0

Summary: integration tests must be developed before unit tests along the lifecycle
of a test suite, due to their wider coverage applying a given effort. Unit tests,
instead, due to their narrow coverage given the same effort, lead teams to abandon
automatic testing, especially at the beginning of the project. [27]

Contract: first write end-to-end tests, then unit tests.
Discussion: this rule seems to struggle with section 3.2.2, but it does not. The

reason is that section 3.2.2 comes into play when the project development is at
steady state; instead, the current rule acts at the very beginning of the project
development. This rule has to do with fragility because, if not respected, may cause
the test team to delete a subset of the test cases, which is a modification.

State: non implemented Reason: projects typically store GUI tests in separate
folders than other tests; additionally, folders inside a project often does not follow
a standard hierarchy, as well as names of folders are arbitrary.

See also: R.W.0

Recommendation R.W.12.1

Summary: if the name of a test case doesn’t describe the starting scenario, the
developer should infer it by reading the function’s body. Additionally, clearly stating
what’s the expected output in advance helps in overcoming the psychological bias
that may lead the tester to define by mistake an assertion so as to make the test
find no bugs. [27]

Contract: give test cases a name with three sections: what is being tested, under
which circumstances and what’s the expected result.

Discussion: when testers write a new test case or when the test suite is getting
big, they try to establish a rule to name test cases in a clear and consistent way;
this task implies modifications in the test cases and in particular in their name.
This recommendation establishes an effective naming rule from the very beginning,
avoiding subsequent changes.

State: implemented.

Recommendation R.W.12.2

Summary: arranging each test case in a uniform way saves effort since the devel-
oper’s mind recognizes the same pattern along the test suite. Saving effort, in turn,
decreases the probability that the test case gets abandoned. [27], [28]

46

Conceptualization of the fragility issue

Contract: arrange each test case in three successive sections: setup, act and
assert.

State: non implemented Reason: heuristics of this rule are numerous and none
of them is compulsory. This recommendation is therefore complex to recognize.

Recommendation R.W.12.3

Summary: linters help in recognizing anti-patterns early. Run them before any test
and before the commit so as to minimize the time needed to review code issues.
The recommendations of this document may be indirectly enforced by linting the
code against other types of good practices. [27]

Contract: run linters to detect any anti-pattern.
Discussion: the exact point in the build process where linters should be activated

is not established as part of the contract.
State: implicitly implemented Reason: this rule is implicitly enforced.

Recommendation R.W.12.4

Summary: test cases that rely upon global variables are fragile. Indeed, these
can be changed unexpectedly due to their wide scope. The issue is even worse in
JavaScript, where their scope may be the whole project. [29]

Contract: do not use global variables in test cases.
Discussion: the rule embraces also global constants, since they may be changed

statically by the programmer causing unexpected errors.
State: implemented

Recommendation R.W.12.5

Summary: test cases must not access the same data in the test DB. This avoids
that tests break because they share data. [27], [30]

Contract: devote separate DB data to each test case.
State: partially implemented Reason: the linter can indirectly recognize this

rule, but a complete heuristic recognition is possible only if the linter recognizes
databases, which is out of the scope of the linter.

Recommendation R.W.12.6

Summary: creating a new web driver instance per each test case ensures test
isolation and makes parallelization more easy. [30], [31]

Contract: create a separate web driver per each test case.

47

Conceptualization of the fragility issue

Discussion: creating and configuring a separate web driver instance per test
case surely leads a huge of duplicated code. However, this drawback is mitigated
thanks to a couple of observations:

• The linter is running on an IDE: as already done in other parts of the present
study, one hypothesis is that the developer is working with an IDE, which
in turn most likely has a replace feature to quickly modify snippets that are
identical;

• The recommendation forbids the test suite fixture methods, while those applied
around each test case are allowed: test frameworks typically offer a couple of
methods, like ’beforeEach’ and ’afterEach’, that act as fixture and cleanup
methods respectively, executed according to the Aspect Programming [32].

State: implemented

Recommendation R.W.12.7

Summary: running only a subset of the test cases save effort. Tagging tests having
a common attribute and running only those tests lower the test run time. [27]

Contract: tag related test cases in order to run just a subset of them.
State: implemented.

Recommendation R.W.13

Summary: a project is said rigid when a modification takes more and more effort to
be applied since it implies the correction of many other consequent issues. This is a
typical scenario when modules are strongly coupled. Fragility grows when a project
is rigid. A developer may choose to avoid applying the modification from the
start, but it is not always possible: in this situation test cases and the AUT break,
showing up a relevant set of bugs and errors. Keeping test cases decoupled from
each other and from the context reduces fragility against any type of modification.
[33]

Contract: keep test cases decoupled from each other, under every point of view.
Discussion: this rule is actually the general case of other recommendations, each

one taking care of a specific point of view.
State: not needed Reason: this is an aggregation rule.
See also: R.W.12.4, R.W.12.5, R.W.17

Recommendation R.W.14

Summary: sections on data setup, actions and assertions must be as short as
possible. This approach minimizes the fragility of test cases. Long test cases

48

Conceptualization of the fragility issue

instead are expensive to run and poorly debuggable since the fault is more difficult
to trace back. Moreover, the developer has difficulty to follow the whole plan of a
test case due to working memory limitations. [28], [26]

Contract: keep test cases as short as possible.
State: implemented
See also: R.W.12.2

Recommendation R.W.15

Summary: the test setup should not perform visual actions; the scenario must
instead be initialized by calling APIs and performing DB queries that the AUT
exposes. [28], [34]

Contract: do not perform visual actions to setup the test case scenario. Instead,
use APIs of the AUT and direct DB queries.

State: non implemented Reason: locating the setup phase of a test is complex
due to the wide range of possible statements, most of which are optional.

See also: R.W.12.2

Recommendation R.W.16

Summary: third-party libraries and services decrease the stability of tests. [35]
Contract: minimize the number of external libraries.
Discussion: external modules increase the wall-clock time of a test case to deliver,

which is a critical issue in GUI testing.
State: implemented

Recommendation R.W.17

Summary: no test case should continue the workflow of other tests; instead, when
the tester decides to split a use case in many test cases, each test case but the first
must rather stub the preceding scenario with a proper test setup. [36]

Contract: test cases must not directly continue the workflow of other test cases.
State: non implemented Reason: grasping whether a certain test case is the

continuation of a previous test is complex.
See also: R.W.13

Recommendation R.W.19

Summary: link locators only work on link elements. Moreover, they are translated
to XPath selectors under the hood, so they inherit all their drawbacks. [24]

Contract: do not use link locators.
State: implemented

49

Conceptualization of the fragility issue

See also: R.W.3

Recommendation R.W.20

Summary: locators by tag are unpredictable in case multiple elements are admissible
to be picked up but the target is just a specific one. They instead are useful when
the goal is selecting multiple elements. [24]

Contract: use tag locators to pick up multiple elements.
State: implemented.

Recommendation R.W.21

Test cases should adopt the Page Object Pattern, in order to decouple the test
behaviour from the underlying implementation. In most cases, one or two operations
per section (data setup, actions or assertion sections, n.d.r.) are enough. Test
cases compliant with the POP must not contain any visual statement; they should
contain assertions. Page objects should contain visual statements; they should not
contain any assertion, beside those for checking that the page has loaded. [28]

Contract: adopt the Page Object Pattern.
State: implemented

3.3 Data analysis
After having collected and formalized data from projects and wikis, it comes natural
to build a taxonomy on the different kinds of fragility encountered so far.

In terms of methodology, the taxonomy has therefore been built a-posteriori.
According to some studies, one approach to produce a taxonomy is to delay as much
as possible the act of reading the related and preceding works on the same subject.
[17]. The following taxonomy has been built straining for this methodology on the
basis of the collected data. However, for the sake of completeness, it is necessary
to draw fully from the results of other studies. In final analysis, the classification
stems both from a-priori considerations, data collections on the wild and other
studies.

Figure 3.18 summarizes the different natures of fragility.
Fragility can be classified according to its nature:

• Data fragility: test cases are run on some input test data, whose eventual
modification automatically affects tests;

• Execution plan fragility: the execution plan of a test case is the order and the
dependencies with which a certain subset of a test suite is run;

50

Conceptualization of the fragility issue

Figure 3.18: Mindmap that enumerates the various causes of fragility.

• Time fragility: the test may depend upon the circumstantial time it is executed.
Input data like time and dates may produce breakages, especially when
compared to the current timestamp;

• Effort fragility: the effort needed to read/correct/run a test case may induce
the programmer to remove or comment it. The more a test case is fragile, the
more breakages come out, which in turn imply a greater effort for fixing them;

• Infrastructural fragility: a breakage may occur due to random delays in the
network or in the host machine; the symptoms include unexpected test case
failure that typically disappears if the test case gets run multiple times. In

51

Conceptualization of the fragility issue

other words, test case execution is not idempotent;

• Psychological: anxiety leads testers to write test cases that work, rather than
trying to build tests that discover new bugs. GUI testing is a repetitive task
and therefore tedious, fact that lead developers to lose attention; as a result,
they unintentionally inject faults while writing test cases, for instance by
copying and pasting code snippets;

• Cognitive fragility: the developer has limitations in terms of working memory
[26]. This kind of fragility deals with physical limitations of human beings,
whereas psychological fragility interests feelings and thoughts;

• Synchronization fragility: test statements are not automatically coordinated
with the execution of the AUT, resulting in breakages due to statements that
seek for components not yet loaded.

52

Chapter 4

Tool design

As discussed in section 2.6, there are three kinds of countermeasures to reduce
fragility. Although their separate effectiveness is different, the three techniques
are not mutually-exclusive: a project can benefit from all them. For instance,
a robustness-like tool can suggest more sturdy developing patterns, whereas a
repairing tool can come into play whenever the same proposed pattern has broken;
at the same time, testers can adopt an antifragile business model to encourage
change and innovation. This observation is the justification that led the present
study to develop a robust-like tool rather than a repairing tool which is more
promising in terms of resulting quality. The tool is independent from other
techniques but, simultaneously, it still works with them.

The task adopted for data collection, discussed in chapter 3, suggests to develop
a static code analyzer that probes bad practices in test suites and propose more
robust patterns to testers.

The first architecture that has been evaluated for the development of the tool is
based on Maven plugins. Maven is a free product that organizes the different steps
of the build process in a coherent and complete lifecycle; it also allows programmers
to write plugins that extend the basic building features for precise build steps.
However, a Maven plugin would inform the tester about fragility issues and their
location in a separate file, like an XML report; the consultation of such a report
would force the test developer to continuously switch between the test sources and
the report.

Another infrastructure that has been evaluated to develop the code analyzer is
based on Sonar plugins. Sonar is a static code analyzer that, given a project, searches
for code smells, bugs and vulnerabilities; it additionally has extension capabilities
to customize the underlying rules matched against the code. Unfortunately, Sonar
doesn’t provide an immediate result, so the test developer typically runs it only
a-posteriori, when the code has already been written.

The alternative solution, which is also the adopted one, is writing an extension

53

Tool design

for an IDE. After all, most developers nowadays leverage an IDE to speed up
the editing tasks; these programs, however, are designed to be extended so as to
support a wider variety of activities. Indeed, IDEs already offer several utilities for
the most common actions within the development environment. The code analyzer
therefore takes the shape of a linter. The additional benefit of leveraging this kind
of infrastructure is that the linter acts while the developer is working and shows
clearly where the bad practice is located by highlighting it.

The choice about the infrastructure of the linter is summarized and modeled by
the deployment diagram shown in Figure 4.1.

Figure 4.1: UML deployment diagram

VSCode is a famous IDE at the moment, whose extension capabilities are
regularly upgraded and maintained by Microsoft. The related official documentation
is also well-finished and the community is active and participating. These factors
facilitate a lot the development of an extension, as chosen for this study. The tool,
called FragilityLinter, is written in Javascript on top of the Node.js framework, as
required by the VSCode IDE.

The tool can be further classified as a static predictor, since it suggests an
alternative to the choice of the developer based on past modifications happened
in a range of projects. It is not a dynamic predictor because it does not scan the
project’s GitHub history.

After having located the environment where FragilityLint works, here follows
the design thereof.

54

Tool design

As shown in the UML class diagram, the linter architecture is scattered along four
packages: a graphical tier, a logical tier, a data tier and the external dependencies.
The architecture follows the three-tier pattern due to the presence of the graphical,
logical and data tiers and their specific interconnection.

The data tier is in this case a simple static array of recommendations; additionally,
this makes the tool stateless, since no data is stored and retrieved dynamically.

There has been a strain to keep modules as decoupled as possible: the recom-
mendation module is not aware that it is called during a parsing process; however,
the way the core module probes bad practices is hardwired in the module itself, due
to parsing concerns. Indeed, the Java language is more constrained than Javascript
overall: for instance, a Java routine is never a function quite always a method
inside a class; this fact shaped the module interconnection.

The tool leverages two external free libraries, Acorn and Java-Parser, that can
be downloaded as node modules (see [37] for information about node modules).
They parse a given string in tree data structures, which are then traversed by the
Core module. Acorn accepts Javascript code and produces an Abstract Syntax Tree,
while JavaParser receives Java code as input and returns a Concrete Syntax Tree.
Formally, the Core module is a semantic analyzer, whereas Acorn and JavaParser
are parsers; in this study, however, the two concepts are interchangeable.

It has been chosen to leverage a separate parser for each language rather than
only one along with a Java-to-Javascript transpiler. The translation indeed distorts
information about the location of the bad practice.

Figure 4.3, Figure 4.4 and Figure 4.5 show the linter working in practice.
The design goals of the linter can be classified and summed up according to this

listing:

• Performance: the tool works while the developer is coding, unlike TestQ or,
overall, code-review tools. The latter ones indeed are well-known for the time
they need to deliver and, indeed, code review is a separate task. Moreover, since
the linter accesses the document to scan in read-only mode, it may diagnose
each recommendation in a parallel job in order to increase the performance
significantly. However, FragilityLint is written in JavaScript, a language that
is inherently single-threaded; as a consequence, parallel programming cannot
be fully exploited. Anyway, overall performance of the tool remain fast enough
when scanning a single file during development, if the host machine belongs to
a mid-range category price at the moment where the present study has been
written;

• Decoupling: this property is considered essential in software engineering, as
decoupled modules benefit from high maintainability and flexibility, along
with enhanced readability; the various modules are shown in Figure 4.2;

55

Tool design

Figure 4.2: UML class diagram

• Ready-to-use: no configuration is needed for the tool to work, so as to free
the tester from looking after another step in the build process; in future, the
linter may however expose properties to disable some rules from being probed;
for other possible future improvements, see chapter 6;

• Transparent to the test suite: the linter is linked to the development environ-
ment only, since it does not modify in any way the scanned test cases.

56

Tool design

Figure 4.3: The linter is analyzing the test case.

Figure 4.4: The linter underlines the code smells.

57

Tool design

Figure 4.5: Each code smell is enriched with an informational tooltip, shown as
soon as the mouse hover over it.

58

Chapter 5

Tool validation

This chapter first presents the validation of the linter by applying it on real test
cases. At the end, a more wide discussion analyzes the possible threats to validity
of the tool and, overall, of the whole study.

5.1 Methodology

The tool needs some validation, namely whether the rules gathered previously are
effectively enforced or not by developers in test suites.

The validation process has been split up in three stages:

1. Selection of the software artifacts, as discussed in section 5.2;

2. Implementation of a report feature: the linter can serialize the detected rule
violations into a JSON file; however, this is a kind of raw format which is hard
to read and understand. As a consequence, rule violations can be automatically
rendered in charts; indeed, graphs typically donate a wide and user-friendly
view on data, unlike tables and XML or JSON report files;

3. Generation of chart reports: the linter has been requested to build four chart
reports on the selected software artifacts.

In order to produce results that can be rendered in charts, the lint has been
enriched with a command in the context menu of a resource that dynamically
builds a chart based on the collected diagnostics. A resource can be either a local
file or a local folder. For a flavour about the feature, see images in section 5.3.

59

Tool validation

5.2 Selected Software Artifacts
The tool has been applied to a set of real test cases, so as to donate greater
industrial relevance to the present study [38]. Test cases have been selected from
the list built during data collection discussed in section 3.1, beside some extra in
order to reach the established threshold of 30 projects. This means that the lint has
been partially tested on the data collected from diff analysis, while the lint itself is
built on top of the rules gathered from wikis. This analysis therefore connects the
two collection processes.

In order to produce the results, the lint has been requested to generate a chart
report for a couple of folders. One folder is named ’Java’ and contains a set of 15
sub-folders, each one being a test suite of a project; the test files are written in
Java language. The other folder, ’Javascript’, has the same structure as the former
one, but the test files are written in Javascript language. Each sub-folder contain
an unspecified number of test files, depending on the project; this quantity ranges
from 1 to 20. It is worth to note that the linter only recognizes test files whose
name follows a certain pattern; Java test file names have to contain the word ’test’
or ’Test’; Javascript test file names have to contain the word ’test’ or ’spec’. Some
test files do not respect this pattern, so they are ignored by the linter.

5.3 Results
The figures beneath show the result of the linting process. The target resources are
the ’Java’ and the ’Javascript’ folders that contain the selected software artifacts.
The report of each folder shows occurrences grouped by either recommendation or
test file.

Each chart can be classified as a histogram. Data are sorted by decreasing
frequency, in order to help understand which are the most common issues in test
suites.

Overall, the charts demonstrate that the actual test cases differ from the
model established with the recommendations discussed in section 3.2. Comparing
Figure 5.1 and Figure 5.3, the recommendation which is more violated is about
global variables. This rule has actually a wide scope in software engineering: it is
well-known indeed that global variables have drawbacks and must be avoided as
much as possible. The recommendation about locators is one of the most violated.
This rule is historically important in the context of GUI testing, but developers for
some reason do not follow it. This result alone justifies the creation of the linter
as a tool to minimize the usage of bad practices in these kind of test cases. The
same comparison also points out that developers prefer to describe the behaviour
of a certain snippet (function, block, statement or whatever else) by commenting it

60

Tool validation

Figure 5.1: Chart report on Java folder, grouped by recommendation.

Figure 5.2: Chart report on Java folder, grouped by test file.

rather than adopting the POP (Page Object Pattern). Indeed, commenting can
be seen as a primitive and quick form of POP. Testers also do not tag their test
cases, fact that would enable them to run just a subset of the test cases in order to
decrease the overall execution time.

As expected, the results are essentially independent from the specific language
in which test suites are written. A corollary of this finding is that peculiarities of a
certain language does not help in writing more robust test cases.

Regarding the other two charts, Figure 5.2 and Figure 5.4, they have no relevance

61

Tool validation

Figure 5.3: Chart report on Javascript folder, grouped by recommendation.

Figure 5.4: Chart report on Javascript folder, grouped by test file.

here since what is shown is a mixture of violations coming from different projects.
The two images are anyway an example of what the linter can do. They are mostly
useful for the final user that may want to rank the test cases by number of violations
in order to select where to put effort.

The four charts above, from the theoretical point of view, also represent a
measurement of fragility of test cases. The way chart reports measure fragility is
compliant with the definition of fragility given in chapter 3.

62

Tool validation

5.4 Threats to Validity
The lint enforces rules that are as independent as possible from the testing tool
used. However, since most test cases from the selected ones exploit Selenium, it is
expected that the lint cannot actually recognize the same recommendations when
other testing frameworks like Cypress are used.

Some test cases are written for Protractor rather than Selenium, a test framework
developed specifically for AngularJS (for instance /ChosenRepos/JavaScript/Js-
Repo12/wkExclude/spectest3.js). They have been kept because the syntax for
locator-related statements is similar to those exposed by Selenium.

The application has been tested against a set of test cases. As known from
testing theory, grasping when software quality has achieved a good threshold is
hard. The lint can certainly be enhanced in terms of accuracy, precision, number
of recommendations, capability to be configured, number of supported IDEs and
so on. This fact certainly impacts the results with a degree that cannot be null.

Validation of empirical results is an important research step in software engi-
neering. [38] This paragraph discusses consequently the threats to validity of the
conducted study.

Here follows a list of threats to validity of the present study, grouped according
to a previous study that classified them into this taxonomy [38]:

1. Internal validity threats: threats which may have affected the results and have
not been properly taken into account. During test collection from test cases,
the project’s latest commit date has not been considered; in other words, no
speculation has been done upon how much the considered projects are old.
This may induct a gap between the target overview of the collection process
and the present one. In more detail, the selenium test suite may have not
been aligned to the current application version, which is sometimes still alive
or just maintained. However, the Selenium library that is available nowadays
expose the same essential methods, although they follow a more fancy code
style.

2. Construct validity threats: threats about the relationship between theory and
observation(s). According to ISO/IEC-25010, software quality can be external
(expressed at runtime), internal (expressed by the code structure) or in-use
(linked to the developer and the context); since a lint is formally a static
analyzer, it can only probe internal quality and quality in use. This last one
has been considered too during the present study, given the classification of
psychological fragility and the motivations of some recommendations;

3. Conclusion validity threats: possibility to derive inaccurate conclusions from
the observations. No significant threat belonging to this category has been
found;

63

Tool validation

4. External validity threats: threats that affect the generalization of results. Code
smells (bad practices) cannot be generalized by definition, indeed their formal
signature include the context under which they apply; some testers consider
a certain code smell as a design benefit, indeed [16]. Some teams keep test
cases deliberately fragile, so as to detect a certain type of modification. This
observation only partially harms the results of the proposed linter, since its
rules assume that the context regards visual testing of web applications.

64

Chapter 6

Conclusions

The following study has faced the problem of fragility in test cases, in the context
of DOM-based End-to-End Visual test suites.

1. The first step was studying the related background in order to figure out the
main observations and relationships between test cases, fragility and testers;

2. Secondly, the study concentrated on gathering actual data to outline the
hands-on behaviour of programmers toward their tests, along the lifetime
of projects. Data take the form of either modifications in the test code or
recommendations;

3. The results suggested to build a linter that could help testers in writing more
robust test cases by respecting the compliance with recommendations;

4. The linter has been tested against different real test cases;

5. The output of the linter has been redirected to generate report files, that
have been analyzed to provide an overview of the distance between what
programmers should do and what they actually do while writing test code.

The proposed linter aims to increase the robustness of test cases, which is one
of the possible countermeasures against fragility. In this way, programmers learn
how to write better test cases without inventing homemade personal practices.

The tool is currently compliant only with one IDE. In future, it is planned to
extend its compatibility with other editors, like IntelliJ Idea and Visual Studio. The
suggested method to accomplish this task is to migrate the current VSCodeAPI
module to a Language Server Protocol API, a standard intended for extensions
that enables the same back-end source code to be exploited by different IDEs on
client side.

65

Conclusions

The study has been conducted for Selenium test suites; although the recommen-
dations have a certain degree of tool-independence, further studies against other
tools would confirm this type of independence. The suggested tool as of today is
Cypress, briefly presented in subsection 2.4.2.

Rules currently have a uniform gravity. In future, the linter should manage with
rules having a different relevance. The suggested way to measure the importance of
a rule is given by the number of reasons behind the rule, where ’reason’ is defined
in the dictionary shown in Figure 3.16.

From the theoretical point of view, collecting data should remain a continuous
or at least periodical process. Since the present study has thoroughly specified the
source of each recommendation / diff analysis, further data mining doesn’t have to
start from scratch.

66

Appendix A

GitHub references

The GitHub URL of the thesis contains the spreadsheet about diff files: https:
//github.com/Thefolle/ThesisFragility

The linter root folder is located in the same URL of the thesis, inside the folder
’/Lint/testfragilitylint’.

67

https://github.com/Thefolle/ThesisFragility
https://github.com/Thefolle/ThesisFragility

Bibliography

[1] Selenium guidelines. url: http://www.selenium.dev/documentation/
test_practices/ (cit. on pp. 2, 7, 11, 22).

[2] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, Incorporated, 2011 (cit. on pp. 6, 7).

[3] Alex Ruiz and Yvonne Wang Price. «GUI Testing Made Easy». In: () (cit. on
pp. 7, 8).

[4] Yongjie Xu, Xiaodong Zhu, and Yigang Wang. «Towards GUI Test Based on
Interactive Event-Flow Model». In: () (cit. on pp. 9, 10).

[5] Testing tools used in software development worldwide in 2017. url: https:
//www.statista.com/statistics/673467/worldwide-software-develop
ment-survey-testing-tools/ (cit. on p. 11).

[6] Maurizio Leotta, Diego Clerissi, Filippo Ricca, and Cristiano Spadaro. «Im-
proving Test Suites Maintainability with the Page Object Pattern: An In-
dustrial Case Study». In: IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops (2013) (cit. on pp. 13, 23).

[7] The Good and the Bad of Selenium Test Automation Software. url: https:
//www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-
selenium-test-automation-tool/ (cit. on p. 14).

[8] Key Differences of Cypress. url: https://docs.cypress.io/guides/
overview/key-differences (cit. on p. 15).

[9] Andrea Stocco, Rahulkrishna Yandrapally, and Ali Mesbah. «Visual Web
Test Repair». In: () (cit. on pp. 15, 19).

[10] About Pyccuracy. url: https://github.com/heynemann/pyccuracy (cit. on
p. 15).

[11] M. Assem, A. Keshk2, N. Ismail3, and H. Nassar4. «Specification-Driven
Automated Testing of Java Swing GUIs Using XML». In: () (cit. on p. 16).

[12] Percy. url: https://percy.io/ (cit. on p. 16).
[13] Sikuli. url: http://doc.sikuli.org/ (cit. on p. 16).

68

http://www.selenium.dev/documentation/test_practices/
http://www.selenium.dev/documentation/test_practices/
https://www.statista.com/statistics/673467/worldwide-software-development-survey-testing-tools/
https://www.statista.com/statistics/673467/worldwide-software-development-survey-testing-tools/
https://www.statista.com/statistics/673467/worldwide-software-development-survey-testing-tools/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-selenium-test-automation-tool/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-selenium-test-automation-tool/
https://www.altexsoft.com/blog/engineering/the-good-and-the-bad-of-selenium-test-automation-tool/
https://docs.cypress.io/guides/overview/key-differences
https://docs.cypress.io/guides/overview/key-differences
https://github.com/heynemann/pyccuracy
https://percy.io/
http://doc.sikuli.org/

BIBLIOGRAPHY

[14] Vista. url: https://github.com/saltlab/vista (cit. on p. 16).
[15] Test Quality. url: https://www.testquality.com/ (cit. on p. 16).
[16] Manuel Breugelmans and Bart Van Rompaey. «TestQ. Exploring Structural

and Maintenance Characteristics of Unit Test Suites». In: Lab On REengi-
neering, University of Antwerp () (cit. on pp. 16, 64).

[17] Riccardo Coppola, Maurizio Morisio, Marco Torchiano, and Luca Ardito.
«Scripted GUI testing of Android open-source apps: evolution of test code
and fragility causes». In: Empirical Software Engineering (May 2019) (cit. on
pp. 17, 50).

[18] Martin Monperrus. «Principles of Antifragile Software». University of Lille
and Inria, France. Jan. 2017 (cit. on pp. 19–21).

[19] Russ Miles. «An Introduction to Designing and Building Antifragile Microser-
vices with Java». In: June 2014 (cit. on pp. 20, 21).

[20] Source Code License Definition. url: https : / / www . lawinsider . com /
dictionary/source-code-license (cit. on p. 33).

[21] Improving test quality. url: https://github.com/uselagoon/lagoon/
discussions/2613 (cit. on p. 42).

[22] Why would you use ID attributes. url: https://github.com/manoelcyreno/
test-samples/wiki/Why-would-you-use-ID-attributes (cit. on pp. 43,
44).

[23] Is adding ids to everything standard practice when using selenium. url:
https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-
everything-standard-practice-when-using-selenium (cit. on p. 44).

[24] Order of preference of selectors. url: https://www.selenium.dev/docu
mentation/webdriver/locating_elements/#tips-on-using-selectors
(cit. on pp. 44, 49, 50).

[25] HTML best practices. url: https://google.github.io/styleguide/
htmlcssguide.html#ID_and_Class_Naming (cit. on p. 45).

[26] Working memory limitations. url: https://github.com/howard8888/
pycon-ca-2018/wiki (cit. on pp. 45, 49, 52).

[27] The official Node best practices. url: https://github.com/goldbergyoni/
nodebestpractices (cit. on pp. 46–48).

[28] Overview of Test Automation. url: https://www.selenium.dev/document
ation/test_practices/overview/ (cit. on pp. 46, 49, 50).

[29] Global variables induce fragile tests. url: https://github.com/freudgroup/
freudcs/wiki/Javascript-Namespace-Declaration (cit. on p. 47).

69

https://github.com/saltlab/vista
https://www.testquality.com/
https://www.lawinsider.com/dictionary/source-code-license
https://www.lawinsider.com/dictionary/source-code-license
https://github.com/uselagoon/lagoon/discussions/2613
https://github.com/uselagoon/lagoon/discussions/2613
https://github.com/manoelcyreno/test-samples/wiki/Why-would-you-use-ID-attributes
https://github.com/manoelcyreno/test-samples/wiki/Why-would-you-use-ID-attributes
https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-everything-standard-practice-when-using-selenium
https://sqa.stackexchange.com/questions/6326/is-adding-ids-to-everything-standard-practice-when-using-selenium
https://www.selenium.dev/documentation/webdriver/locating_elements/#tips-on-using-selectors
https://www.selenium.dev/documentation/webdriver/locating_elements/#tips-on-using-selectors
https://google.github.io/styleguide/htmlcssguide.html#ID_and_Class_Naming
https://google.github.io/styleguide/htmlcssguide.html#ID_and_Class_Naming
https://github.com/howard8888/pycon-ca-2018/wiki
https://github.com/howard8888/pycon-ca-2018/wiki
https://github.com/goldbergyoni/nodebestpractices
https://github.com/goldbergyoni/nodebestpractices
https://www.selenium.dev/documentation/test_practices/overview/
https://www.selenium.dev/documentation/test_practices/overview/
https://github.com/freudgroup/freudcs/wiki/Javascript-Namespace-Declaration
https://github.com/freudgroup/freudcs/wiki/Javascript-Namespace-Declaration

BIBLIOGRAPHY

[30] Global state should not be used. url: https://www.selenium.dev/docum
entation/test_practices/encouraged/avoid_sharing_state/ (cit. on
p. 47).

[31] Start the webdriver per each test. url: https://www.selenium.dev/documen
tation/test_practices/encouraged/fresh_browser_per_test/ (cit. on
p. 47).

[32] A definition of Aspect-Oriented Programming. url: https://study.com/
academy/lesson/aspect-oriented-programming-definition-concepts.
html (cit. on p. 48).

[33] Signs your software project is rotting. url: https://github.com/jopheno/
CleanArchitecture/wiki/Signs-your-software-project-is-rotting
(cit. on p. 48).

[34] Test setup. url: https : / / www . selenium . dev / documentation / test _
practices/encouraged/generating_application_state/ (cit. on p. 49).

[35] Mocking external services. url: https://www.selenium.dev/documentatio
n/test_practices/encouraged/mock_external_services/ (cit. on p. 49).

[36] Test independency. url: https://www.selenium.dev/documentation/
test_practices/encouraged/test_independency/ (cit. on p. 49).

[37] About node modules. url: https://nodejs.org/api/modules.html (cit. on
p. 55).

[38] Serdar Dogan, Aysu Betin-Can, and Vahid Garousi. «Web application testing:
A systematic literature review». In: The Journal of Systems and Software 91
91 (2014), pp. 174–201 (cit. on pp. 60, 63).

70

https://www.selenium.dev/documentation/test_practices/encouraged/avoid_sharing_state/
https://www.selenium.dev/documentation/test_practices/encouraged/avoid_sharing_state/
https://www.selenium.dev/documentation/test_practices/encouraged/fresh_browser_per_test/
https://www.selenium.dev/documentation/test_practices/encouraged/fresh_browser_per_test/
https://study.com/academy/lesson/aspect-oriented-programming-definition-concepts.html
https://study.com/academy/lesson/aspect-oriented-programming-definition-concepts.html
https://study.com/academy/lesson/aspect-oriented-programming-definition-concepts.html
https://github.com/jopheno/CleanArchitecture/wiki/Signs-your-software-project-is-rotting
https://github.com/jopheno/CleanArchitecture/wiki/Signs-your-software-project-is-rotting
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://www.selenium.dev/documentation/test_practices/encouraged/generating_application_state/
https://www.selenium.dev/documentation/test_practices/encouraged/mock_external_services/
https://www.selenium.dev/documentation/test_practices/encouraged/mock_external_services/
https://www.selenium.dev/documentation/test_practices/encouraged/test_independency/
https://www.selenium.dev/documentation/test_practices/encouraged/test_independency/
https://nodejs.org/api/modules.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background and Related Work
	Software testing
	Testing of web applications
	GUI testing
	Technologies for web application testing
	Selenium
	Cypress
	Other tools

	Fragility of tests
	Approaches to reduce fragility
	Resiliency
	Antifragility: a new way to engineer errors
	Robustness, resiliency and antifragility in comparison
	A further countermeasure: the Page Object Pattern

	Conceptualization of the fragility issue
	Data collection from test suites history
	Design
	Fragilities related to locators
	Fragilities related to library restyling
	Fragilities related to comments
	Fragilities related to licenses
	Fragilities related to generalizations
	Fragilities related to assertions
	Fragilities related to wait strategies
	Discussion

	Data collection from wikis
	Methodology
	Recommendations from the wikis

	Data analysis

	Tool design
	Tool validation
	Methodology
	Selected Software Artifacts
	Results
	Threats to Validity

	Conclusions
	GitHub references
	Bibliography

