
POLITECNICO DI TORINO

Master’s Degree in Software Engineering

Master’s Degree Thesis

Gamification for Web Testing:
Development of a Browser Tool

Supervisors

Prof. Luca ARDITO

Doct. Riccardo COPPOLA

Doct. Tommaso FULCINI

Candidate

Giacomo GARACCIONE

Academic Year 2021/2022

Summary

In software engineering, testing is a vital part of the entire development cycle,
and Graphical User Interface Testing is a fundamental step of it, although often
neglected due to the fragility of test cases needed for automated testing tools and
the fact that such test cases have to be manually created by the testers, which is a
cumbersome and unappealing task.

The thesis work aims to find a possible solution to the problem of GUI testing
being a tiresome activity by adopting the use of Gamification (the use of elements
and strategies typically part of game design in non-recreational contexts).

This choice was made after hypothesizing that performing a testing session of
a website while having interesting game mechanics would make testing a more
pleasurable activity.

The idea was implemented through the development of a Google Chrome
extension that records actions performed by a tester on a website, keeps track of
scores and progresses and generates automatic test cases that are compatible with
tools that are usually used in GUI testing, aiming to solve the issue of test cases
being cumbersome to write manually.

The game mechanics adopted during the development of the extension were
selected in order to increase participation and competition; such mechanics are
some of the most commonly used ones and include: progress bars detailing page
coverage, leaderboards ranking all the users, avatars which can be unlocked and
shown, unlockable achievements after performing relevant milestones.

A preliminary usability evaluation has been conducted after development, in
order to assess the general usability of the system, to see if there’s room for
improvement or necessary fixes, as well as to evaluate the reception of gamification
elements: the main goal was to observe which of the adopted ones were effective in
increasing user participation and interest in the testing activity.

The results of the evaluation showed that the majority of the participants
appreciated the competitive aspect of the extension, explaining that the presence of
a leaderboard where they could see the scores of other users drove them to interact
more with the tested pages in order to increase their scores.

Many evaluators also revealed the usefulness of the progress bars and of a

ii

functionality that marked elements that could be interacted in order to understand
which were the missing components to interact with in order to fully test a single
web page.

Even though the sample size of the evaluation was too small to be considered
significant, it can be assumed that the use of gamified mechanics in the context
of GUI Testing can bring positive results, especially in terms of participation and
interest, the two main observable obstacles in said discipline.

These results are in line with the principal findings in related software engineering
literature and encourage further developments and evaluations of the proposed
tool.

iii

Acknowledgements

I would like to express my thanks to my Supervisors, professor Luca Ardito and
Doctors Riccardo Coppola and Tommaso Fulcini: their constant assistance and
support during the entire work process behind this thesis work has been a great
motivating force in my efforts. The amount of trust they showed in my work since
the early parts of development encouraged me and made me believe in myself and
in the quality of the software I was developing. Then, I would like to thank my
family, especially my mother, father and two sisters: thank you for your constant
support and presence during not just the thesis work but also during my entire
university career as well. Finally, I want to thank all my friends: I cannot list all of
you here, but I want to thank you for having given me many wonderful memories
during all these years, and I hope there will be a lot more of them in the future.

iv

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xii

1 Introduction 1

2 Background 3
2.1 Software Testing . 3

2.1.1 End to End Testing . 4
2.1.2 GUI Testing . 4

2.2 Web Testing Technologies . 5
2.2.1 SikuliX . 5
2.2.2 Selenium IDE . 7
2.2.3 Scout . 9

2.3 Gamification . 11
2.3.1 Gamification Mechanics . 11

2.4 Gamification in Teaching . 13
2.5 Gamification in Software Engineering 15
2.6 Gamification in Software Testing 17

3 Design and Architecture 20
3.1 Tools Used . 20

3.1.1 Google Chrome Extensions 20
3.1.2 Server . 24

3.2 Adopted Gamification Mechanics 27
3.2.1 Avatars . 27
3.2.2 Achievements . 29
3.2.3 Progress Bars . 29
3.2.4 Scores . 31

vi

3.2.5 Leaderboards . 31
3.2.6 Page Discovery . 32

3.3 Extension Architecture . 33
3.3.1 Action . 34
3.3.2 Homepage . 35
3.3.3 Content Scripts . 35
3.3.4 Page Scripts . 36
3.3.5 Service Worker . 37

3.4 Extension Functionalities . 37
3.4.1 Interaction Overlays . 38
3.4.2 Issue Signaling . 39
3.4.3 SikuliX Script Generation 40
3.4.4 Selenium . 43

3.5 Testing Session . 47

4 Evaluation 52
4.1 Participants . 52
4.2 Evaluation Script . 53
4.3 Evaluation Questionnaire . 55

4.3.1 GUI Testing Background . 55
4.3.2 Extension Functionalities . 56
4.3.3 System Usability Scale . 57
4.3.4 Opinion Gathering . 57

4.4 Results . 58
4.4.1 Usability Results . 58
4.4.2 Mechanics Results . 59
4.4.3 Considerations . 61

4.5 Final Reflections . 62

5 Conclusions 63
5.1 Limitations . 63
5.2 Future Plans . 65

Bibliography 66

vii

List of Tables

2.1 Scout conventions for widgets . 10

3.1 Mapping between widget type and border color 38

viii

List of Figures

2.1 SikuliX IDE containing a script for finding and clicking a link . . . 6
2.2 SikuliX cursor finding and clicking the specified link 6
2.3 SikuliX IDE section for setting an image’s similarity parameter . . . 8
2.4 Selenium IDE containing a script for opening a web page and clicking

a link . 9
2.5 Schema depicting the structure of a file read and written by the

Selenium IDE . 10

3.1 Database schema . 24
3.2 Diagram depicting the server structure 27
3.3 Default avatars selectable while creating a new user profile 28
3.4 Examples of unlockable avatars . 28
3.5 Homepage section dedicated to listing user achievements 30
3.6 Progress bar showing the percentage of interacted widgets in a page 30
3.7 Progress bars showing the percentage of interaction for each kind of

widgets present in a page . 31
3.8 Table showing the scores for widgets interacted with in the current

page . 31
3.9 Table showing the scores for pages visited in the current session . . 32
3.10 Recap screen detailing scores obtained during a testing session . . . 32
3.11 Menu section showing the current user’s records 33
3.12 Leaderboard of all users sorted by amount of highest new widgets

found . 33
3.13 Web page with the star signaling a page visited for the first time . . 34
3.14 Diagram representing the different components of the extension and

their relations . 34
3.15 Action used by the extension . 35
3.16 Files that make up the extension’s homepage 35
3.17 Content scripts used by the extension 36
3.18 Scripts called in a page currently being tested 37
3.19 Service worker used by the extension 38

ix

3.20 Web page with borders marking interacted elements 39
3.21 Dropdown menu changing style after user interaction 39
3.22 Procedure of reporting an issue on a link 40
3.23 Activity diagram representing a normal testing session 49
3.24 Activity diagram representing a testing session where issues can be

reported and solved . 51

4.1 Experience on GUI testing and knowledge of tools 53
4.2 SUS Questionnaire Results . 59
4.3 Functionality Questionnaire Results 60

x

Acronyms

API
Application Programming Interface

CSS
Cascading Style Sheets

DAO
Data Access Object

GUI
Graphical User Interface

href
hypertext reference

HTML
HyperText Markup Language

JSON
JavaScript Object Notation

PC
Personal Computer

SQL
Structured Query Language

UI
User Interface

xii

URL
Uniform Resource Locator

xiii

Chapter 1

Introduction

One of the most relevant parts, if not the most relevant, of Software Engineering
is the concept of software testing, which consists in the act of examining the
behavior of software by means of validation and verification. Testing is an activity
that should be performed at every step of the development process (requirements
definition, design, implementation, maintenance) but is actually often neglected
until the actual deployment of the system, where issues are found, causing losses
and problems such as program crashes due to unidentified bugs, constant need to
keep applications updated, economic damage and security risks (both informatic
security and also real-life security, i.e. planes, automatic vehicles). The reasoning
behind testing being usually ignored is that it is mainly a boring and repetitive
activity, and this makes it hard to approach by developers. One peculiar case of
testing is the concept of GUI testing, which consists in testing a product’s graphical
user interface to ensure it meets its specifications through a variety of test cases.
This work will focus on discussing the development of a browser plugin whose goal
is to improve GUI testing and make it more accessible and interesting through the
use of Gamification mechanics.

This thesis work will explain how the problem was faced and the solution that
was implemented, with the following structure:

• Chapter 2. A background research on the theory aspects behind the thesis,
touching the fields of Software Testing, with a focus on End-to-End and GUI
Testing, and Gamification, with an explanation of its most used mechanics
and a study on examples of its applications in software engineering, teaching
and software testing;

• Chapter 3. A description of the implemented solution, focusing on the
adopted technologies, the gamification elements implemented and the addi-
tional features offered by the plugin;

1

Introduction

• Chapter 4. A description of the preliminary usability evaluation conducted
on the plugin, with the goal of assessing how the gamification mechanics were
received by potential users, along with an analysis of the results inferred;

• Chapter 5. An analysis of the limitations found during development and
evaluation, as well as a reflection on possible changes that could be done in
future works.

2

Chapter 2

Background

This chapter will contain an explanation of the two main concepts behind the
choices made during the development of the plugin, those being Software Testing,
with a focus on End to End and GUI testing, and Gamification, with an analysis
on its possible mechanics and notable uses in the field of Software Engineering.

2.1 Software Testing

The concept of testing, as already mentioned back in chapter 1, is a vital part of the
software development process, as it aims to reduce the number of software failures
(execution events where the software behaves in a wrong and unexpected way) by
finding and correcting faults, which are the causes behind a software failure and can
be generated during the design phase (incorrect, misunderstood or badly explained
requirements) or the development phase (software bugs). Software testing, in
particular, is a dynamic activity that consists in operating a system/component
under specified conditions and observing the results to detect the differences between
the expected behavior, human-defined and based on software specifications and
requirements, and the one actually obtained; its goal is not demonstrating that
a system is perfect and without faults but actually reaching a good enough level
of confidence in the system. Software testing is performed many times during
development at different levels: unit testing of independent modules, integration
testing of interconnected modules, system testing of all modules, mutation testing
of program changes, GUI testing; in regards to web applications this chapter, as
well as the entire work, focuses mostly on End to End and GUI testing.

3

Background

2.1.1 End to End Testing
End to End testing consists in testing an entire software product from the beginning
to the end of its intended usage flow to ensure that the product behaves as expected
during the entire flow without having failures that ruin the user experience. E2E
testing’s main focus is not on the visible User Interface but on the underlying data
which allow the visible system to work and change (i.e. testing a sign-in form by
ensuring that the user exists and feedback is given accordingly); the goal is testing
how front-end and back-end interact with each other during the execution flow by
reproducing how an actual user of the system would behave while using it and
checking at every step that data is handled correctly.

2.1.2 GUI Testing
Graphical User Interface testing is the process of testing a software’s own GUI
in order to ensure it meets specifications and requirements; such process is done
through test cases that emulate the behavior a user would have when using the
system (i.e. clicking on a button, then waiting for an image to become visible, then
clicking on said image, then filling a text field). The creation of test cases is the
main problem of GUI testing, for the following reasons:

• The number of operations that can be performed by a GUI can be large
and reach unfeasible levels, making testing all possible operations a long and
strenuous task;

• GUI operations may also be performed in sequence, which in turn means that
defining test cases has to take into account such behavior, increasing the load
and challenge for the tester that has to manually define the test cases;

• Regression testing (the act of re-running tests after changes to ensure that
software tested previously still performs correctly) can prove to be quite
difficult, as a test case designed with a specific position and look of widgets
may fail after changes in the GUI.

GUI testing can adopt two possible strategies in order to define and execute test
cases:

• Capture and Replay. A system where the GUI screen (or part of it) is
captured as a screenshot at various times during system testing, with test cases
being used in order to replay in an automated sequence the actions executed
by finding a match with the screenshot and interacting with the actual screen.
Test validation can then be done easily by comparing the expected result
(the screenshot taken previously) with the actual content on screen, declaring
a passing case if the two are equal. Capture and Replay, however, suffers

4

Background

a limitation in the form of screens being different and mutable while the
underlying state and login remain the same (i.e. changing the position and the
color of a button while leaving its behavior untouched would cause a test case
built on the previous situation to fail); even something as small as a font or
color change in a text may cause a failing test case even though a user could
easily understand that the end result is the same. Another issue that comes
from test cases being based on screenshots is that different devices can have
different sizes and resolutions, causing a test case that is perfectly working as
intended on one device to fail on another simply because a widget has a size
difference while the logic underneath is the same, and already tested;

• Event Capture. A strategy where GUI interaction data is captured based
on events and thus disconnected from the actual appearance of the system
(i.e. record the click on the button with idButton=b1 rather than record the
click on the button with a specific look and position). Generation of test cases
takes into account this situation and performs actions by replaying the events
instead of directly replaying clicks.

2.2 Web Testing Technologies
When it comes to testing entire web applications there are some effective tools that
can be employed successfully: these tools follow the specifications and rules of GUI
testing by adopting Capture and Replay strategies.

2.2.1 SikuliX
SikuliX is a Capture & Replay GUI Testing tool based on image-recognition
features provided by the OpenCV library[1] designed in order to automate any
kinds of activities that can be performed on a PC, and is used as a tool that can
perform automated and visual testing, as its main feature is using image recognition
techniques in order to identify GUI elements and then the emulation of mouse
and keyboard to interact with the identified elements. SikuliX runs as a Java
based program that launches a dedicated IDE where users can write scripts in
Python that will then be run by the IDE and perform the actions executed. The
IDE employs a screen capture function that allows users to directly specify which
elements are to be found and then interacted with; an example of how the screen
capture works is shown in figure 2.1: images can be taken with the button Cattura
schermata or be chosen from ones already present in the user’s file system by using
Inserisci immagine. The script executes a simple operation by waiting 10 seconds
for the image shown to become visible through the wait command and then, after

5

Background

said image has been found, clicks on it by executing the click command, going to a
new page, as can be seen in figure 2.2.

Figure 2.1: SikuliX IDE containing a script for finding and clicking a link

Figure 2.2: SikuliX cursor finding and clicking the specified link

When using SikuliX, however, there are some issues that may come up related
to matching images in the script to the content shown on screen:

• multiple elements present in a page to test may match with the same image;

• an image taken through external means may not have a match on screen.

These issues are due to the fact that, by default, the find command behind the
aforementioned wait and click methods that looks for images on screen works with

6

Background

a default minimum similarity of 0.7 (in a range between 0.0 and 0.99), and such
value may need tinkering in order to find a match with only the required element.
A solution to this issue is given by the Pattern class, which provides two relevant
methods that can allow greater customization in handling images:

• similar(similarity), which overrides the default similarity with a user-specified
value which can be found by working around the IDE’s Pattern settings shown
in figure 2.3, where a lower similarity parameter brings up more elements
present in the page that match, although not exactly, the image embedded in
the script;

• targetOffset(dx, dy), which changes where the click on the found object
will take place, moving from the default position identified as the image’s
center.

The issue of similarity between an image inserted in a SikuliX script and the content
of the page where the screen was taken from will be discussed in detail in the
following sections, along with the solutions that have been tried.

2.2.2 Selenium IDE
The Selenium IDE[2] is a Chrome Extension used to record and playback in an
automated way operations on a web browser, intended to give users an easy way to
generate tests in Capture & Replay mode by being based on Selenium WebDriver,
a more powerful tool used in automated and distributed testing that allows the
creation of tests even in script mode but that also requires to have programming
knowledge, a relevant difference when compared to the IDE, which can be used
even with no programming ability whatsoever. The IDE can record actions on the
different elements of a web page, identifying them based on different characteristics
such as their HTML identifier, their CSS selector or their xpath, a list of nodes
that starts from the interacted element and goes all the way up through the HTML
document until an element possessing an identifier is found; many different actions
such as clicking, typing and hovering can be recorded, and the IDE can also perform
operations such as running JavaScript code directly in the page. Figure 2.4 shows
more in detail how said operation works: the first command in the script opens
a new Chrome tab with the URL specified as target, while the second command
looks for and then automatically performs a click on the only element in the
page document that verifies the condition linkText= Research. Finally, the target
dropdown menu displays the different criteria that Selenium adopts to decide which
element to interact with: these criteria may be based on position in the HTML
document related to an element with an identifier, being a link element with a
given text or a given href, which is the target page that the clicked link redirects to.

7

Background

Figure 2.3: SikuliX IDE section for setting an image’s similarity parameter

The IDE allows to download a .side file representing in a JSON format the entire
project, which makes a session easily portable and at the same time easily editable,
as the file can be opened with any text editor to view the different parameters; the
structure is depicted in figure 2.5, in which the commands array is presented twice
in order to ensure better readability of the figure. The structure of the file shows a
division in different elements:

• project, the root of the entire structure, identified by its name, has a list of
visited URLs with the starting one specified, of test cases and test suites used
and a list of optional plugins installed;

• suite, one test suite with specified rules such as the ability to run in parallel
to other suites, the ability to run multiple test cases with a single browser
instance, the timeout to wait for tests to complete before terminating the test
run and the identifier of the test case(s) used;

• test, a test case identified by a list of one or more commands;

8

Background

Figure 2.4: Selenium IDE containing a script for opening a web page and clicking
a link

• command, the most relevant part of the script file, requires specification
of the command (click, type, hover, execute script are some of the possible
options available, a target which identifies univocally one element on the page
(identifier, CSS selector, xpath, text of a link, destination page). An optional
value can also be specified for input fields, and multiple targets can also be
listed, with Selenium trying all of them until a correct one is found or all of
them fail.

The easy to understand and replicate structure of a .side file means that, as long
as one knows the HTML document structure when an element is interacted with,
finding out the selectors required requires low effort and the creation of a file that
can replicate actions, as will be discussed later, is a quick and simple process.

2.2.3 Scout
Scout[3] is a Capture & Replay tool that works differently compared to the previ-
ously mentioned tools, as it makes use of a recently developed technique known
as Augmented Testing[4]. Augmented testing performs testing by applying a new
visual layer between the tester and the system under test; this additional layer is
called Augmented Layer and retrieves information from the original GUI in order
to emulate it and merges it with additional information (actions to perform, results

9

Background

Figure 2.5: Schema depicting the structure of a file read and written by the
Selenium IDE

to check, identified issues, comments, statistics) to create the AL the tester can in-
teract with. Actions performed by the tester on the Augmented Layer are recorded
and relayed to the system, which then changes accordingly to the input received,
causing an update to the Augmented Layer and continuous interaction between it
and the tester. A testing session performed with Scout begins by having the tester
specify some settings such as the application name, whether it is a desktop or web
application, the type of browser for the latter type and the HomeLocator, an URL
in case of a website or a path to an executable file for a desktop application which
is launched when the session starts. The main action performed on the Augmented
Layer is the use of color-coded conventions to convey messages related to the state
of widgets by applying changes to them; such conventions are reported in table
2.1. The conventions employed by Scout have been a source of inspiration for some

Style Change Meaning
Purple circles Suggestions (scenarios to try to improve coverage)

Green rectangles Valid results to check
Red rectangles Issues

Yellow rectangles Invalid results or unconfirmed issues
Grey rectangles Unevaluated results or unevaluated issues

Table 2.1: Scout conventions for widgets

decision choices taken in the development phase of the plugin, as the concept of

10

Background

changing the style of interacted widgets was thought of as a good way to show
users which actions were taken in the past and which were still not undertaken;
the concept of issues and their signaling was also explored during development,
as it was perceived as a significant feature for a testing tool. Augmented testing
enables much faster communication between the tester and the system but has the
drawbacks of requiring an increased overhead due to the Augmented Layer being
placed between the user and the system and thus requiring additional resources by
having to constantly send information back and forth between the two and the risk
that interaction between the Augmented Layer may be different than when using
the actual system.

2.3 Gamification
Gamification is defined as "the use of elements and techniques typical of games and
game design in a non-recreational context". Its techniques are often used in working
contexts with the goal of trying to involve people in having more fun and feeling
more involved into daily activities which might be seen as boring or uninteresting
through gaming, its dynamics and mechanisms such as:

• Points to collect;

• Unlockable levels;

• Obtainable gifts or rewards;

• Badges to show.

These mechanics are used in order to stimulate some primary human instincts
and desires such as social status, rewards and achievements, spurred by natural
competitiveness, with the goal of creating and satiating human needs. A product
is gamified if it provides goals/milestones to reach, levels in which to progress,
competition with other users, sharing of one’s own achievements and earning of
goals.

2.3.1 Gamification Mechanics
The implementation of gamification mechanics is a very effective method to involve
people in the activities of an application or an offered service since the user quits
being just a simple passive consumer of information but becomes active by using
the gamified product. With active behavior also comes an improvement regarding
the conveyance of a message: by encouraging people to perform some specific action,
the message can be connected to the action itself, wrapping everything together in

11

Background

the same experience. Another advantage comes in the form of obtaining feedback
in the form of data, allowing to classify users and understand which are the tastes
of each user, allowing a more intensive focus on a specific target population and/or
an expansion of the potential user base. At the root of a gamified product stand
simple basic mechanics, used to ensure that users can have a stimulating and
satisfying experience thanks to effort, interest and participation; the root mechanics
are reported as follows:

• Points/Credits. Collecting points is a very effective tool in increasing user
participation, seeing as users are incentivized to perform specific actions in
order to increase their score, with no real value connected to it. At the end of
the experience the obtained score may be used to redeem prizes, giving users
the sensation of having invested well the time used to earn points;

• Levels. A way to classify users according to their earned score, usually
reflecting real-life contexts (workplaces, schools, social environments) where
people are divided into different classes with distinct hierarchies. A new level
always introduces a new goal to reach, generally by obtaining a predetermined
score, and access to new privileges which can be shown in the user’s profile.
This can make it so that the user experiences positive feedback regarding the
effort spent in completing the various levels, encouraging him in continuing
the experience in a more focused way, all in order to obtain more and more
new privileges;

• Virtual currencies. They can be won, traded or bought by users according
to their score, their role is to encourage users, who will increase their effort
in order to obtain a specific reward, which will then be used to customize an
optional avatar inside the system, building a well defined and exclusive identity
for the user. The rewards may also be obtained in exchange of real-world
currency through microtransactions, allowing the creators of the system to
earn a profit;

• Leaderboards. The most effective way to establish a competition between
users, ordering and dividing them into different groups, leaderboards may be
based on different kinds of criteria (score, time spent, level, performance).
Users are thus encouraged to spend more time interacting with the system,
putting more effort in order to increase their position in the leaderboard,
keeping track of their score as much as the ones obtained by other users.

These mechanics make up what is used in most cases of gamification applied to
different activities, the so-called PBL Triad, which is made up of:

1. Points. The different scores obtained by the various participants to the
gamified activity;

12

Background

2. Badges. Distinctive elements that are given to the participants whenever
they reach a certain amount of points or get to a specific, relevant milestone;

3. Leaderboards. An ordered list of all the participants based on their score,
it encourages competition by appealing to the human desire to prevail.

The PBL Triad has been thought of as a relevant starting point in terms of
gamification mechanics to implement, and all the three elements make up a part of
the extension in some way (i.e. badges have been implemented as a combination of
unlockable avatars that can be obtained by users and displayed to others).

2.4 Gamification in Teaching
Gamification has been adopted in some examples of teaching in fields related to
Software Engineering in order to increase student motivation and participation,
with hopes that such an approach would yield increased results and improve
performance by having students more involved with a more familiar and friendly
approach. This section will discuss some examples of gamification used in teaching
and its results. One of the first cases of gamification used in the field of teaching
is the case of a Software Engineering course[5], where teachers decided to apply
gamification to teaching in order to keep student interest and motivation high,
with the reasoning that interesting game mechanics drive players to always come
back and that such an approach could yield positive results. The teachers used as
the basis for their decisions concepts based on psychology, especially the fact that
humans are motivated to work on cognitively difficult tasks when they are granted:

• Autonomy. The course content was provided to students in a clear and
defined way, and students were given freedom in terms of order and speed
related to how they intended to approach the studying process;

• Purpose. The course had a clear and rewarding goal at its end;

• Mastery. Students were free to take exams that could be repeated in order
to validate their understanding of the material and keep track of their progress
towards the final exam evaluation.

The course was based around three different fields (Software Development, Project
Management, and Communication) and was focused on giving students the freedom
to choose which ones to tackle first; after having completed two of the three study
areas students were eligible to take part in what was called a Marketplace, where
they could form groups with which they were able to undertake the course projects.
Gamification mechanics used during the course were levels (for each separate field,
progress in one would unlock the next), points awarded for completing levels and

13

Background

for helping other students pass their levels, progress bars and leaderboards where
students could see their progress in relation to their peers. Unfortunately, results
were not as good as the teachers had expected, as the survey performed at the
end of the course revealed that the majority (around 70%) of students did not
view challenges, autonomy or reaching goals as motivation for playing games;
additionally, many students felt that a gamification platform needs, in order to be
successful and interesting, to give a good overview of tasks, to give feedback and
to have intuitive controls.

Another case of gamification being employed in the field of teaching has been
performed by Anderson et al.[6], where a Data Science course saw the use of
the Learn2Mine platform, an open-source, cloud-based gamified learning system
structured around incremental programming assignments in data science. The
platform works by splitting the problems offered to students in separate incremental
modules, which give immediate feedback, in the form of notifications and badges,
when completed; Learn2Mine is also a useful tool from the point of view of
instructors, as its immediate feedback allows students to understand easily their
errors, meaning that teachers can focus more on observing the general progress
rate of the class, with the presence of a dedicated section containing student
activities (tasks completed, time for tasks, progress). A strong point of the platform,
additionally, is the fact that the gamification mechanics adopted (badges, points,
leaderboards, progress bars, etc) are designed to be as less intrusive as possible,
in order to allow students that are not interested in gaming to use the system
while easily ignoring the gamified elements. The use of Learn2Mine was evaluated
at the end of the course through a questionnaire based on Likert scale questions:
the results showed that a gamified approach brought a general improvement in
terms of exercise submission, as well as an increase in understanding of the course
arguments; additionally, students indicated through free comments that both the
division of exercises into small sections and the immediate feedback were quite
favorable elements of the platform but, at the same time, few students notified
the gamification elements compared to the dividing approach; the latter reasoning
was attributed by the authors of the study to the unintrusiveness of the gamified
elements.

A more recent example of gamification applied to teaching is the case of a
Software Engineering course that saw the use of Code Defenders [7], a game
that employs a division of players in two different groups: attackers that introduce
faults over code and defenders that write test with the goal of identifying these
faults. Faults created by attackers are called mutants and award points to the
defending team if a test that passes normally fails in presence of a mutant, which
is thus considered detected, while an undetected mutant awards points to the
attacking team, creating an interaction loop where defenders write stronger tests
and attackers develop subtler mutants. The course saw the use of CodeDefenders

14

Background

in practical, weekly sessions of computer lab exercises with one Java class to test
for each session and the students alternating between roles each week (excluding
the first one, where all students played both roles), with all classes barring the
first one being taken from real-life open-source projects with all possible references
removed in order to avoid cheating; classes were selected in order to make writing
tests and mutants increasingly more difficult as the sessions went by and, in order
to prevent unfairness and grant equity in terms of challenge, students were divided
into groups based on the scores obtained during the previous session, so as to
avoid situations where a strong defender would dominate a session if put against
less skilled attackers. The experience was judged as overall positive as it yielded
positive and valuable results, according to the authors of the study, who evaluated
the experience through the following criteria:

• Student improvement. Measured in terms of code coverage and mutation
scores achieved during the semester, both values saw a general increase as the
course went on;

• Grades. An analysis performed by authors revealed a moderate correlation
between active participation in the experience and final exam scores, observing
that, generally, more active players got higher scores;

• Student feedback. Students undertook an optional anonymous survey at
the end of the experience, and the overall majority of the participants revealed
that playing the CodeDefenders game helped them improve and learn more
skills, especially when playing the defending role.

2.5 Gamification in Software Engineering
The gamification approach has been tried not only in the field of teaching, but
has also seen use in some cases in software engineering; more precisely, both the
general development process and the testing process saw the use of gamification
strategies in order to improve activities which are usually not viewed as interesting
or pleasurable to do, even though they are a relevant part of a development cycle
and their absence could cause issues.

One first example of gamification applied to the development process is the
case of CleanGame[8], a platform developed in order to assist the refactoring
process with gamification mechanics. The term refactoring refers to the process,
performed during software development, of changing the structure of internal code
without actually changing its behavior; in order to perform a correct refactoring
of code it is necessary, however, to identify and remove the so-called code smells,
instances of poor design and bad implementation choices which can undermine
code maintainability and understandability (first defined by Fowler et al.[9]), as

15

Background

the removal or correction of code smells is what causes the code improvements
expected to obtain when refactoring. The main issue is that refactoring, while
being addressed as one of the best practices when developing, is an activity that is
rarely taught and enforced, as it is a menial task that can be neglected in favor of
focusing more on design or implementation, which are perceived as more relevant
tasks. The CleanGame platform is divided into two main modules:

• Quiz module. A module that presents various quizzes about code smells
based on the definitions made by Fowler et al.[9], it also allows the definition of
new questions. Employs gamification mechanics such as player status, scores,
timing and ranking of the 10 best scores in a quiz, with a penalization system
that has players lose points if they skip a question or take too long to answer
it;

• Code smell identification module. This module employs a static cross-
language code analyzer, PMD[10], to create a list of identified code smells
found in the Java source code. It makes use of tasks to identify code smells and
uses the same mechanics as the Quiz module, including the penalty system,
which also takes into account the option to ask for hints, related to metrics
used to detect a code smell, refactoring aimed to address a code smell, or
short definition of a code smell; asking for hints will, however, cause a penalty
and reduce the score.

Another strong advantage of CleanGame is that it is fully integrated with the
GitHub API: when creating a room in the identification module, the user must
provide an URL corresponding to a Java GitHub repository containing the source
code to be analyzed; such code is cloned and transformed into an abstract syntax
tree in a fully automatic way to create an oracle of smells-related questions usable
by the module. Results of the experiment, noted by the authors as being the first
case of gamification applied to the process of refactoring, showed that CleanGame
brought a general improvement in performance: subjects were able to identify code
smells approximately half more effectively when using the platform, with the authors
hypothesizing that this was due to the definitions given by the tool, which are
absent when using a standard development IDE; additionally, participants remarked
the usefulness of some gamification mechanics, mainly the competitiveness, the
use of tips and the presence of dynamic leaderboards. The authors of the study,
however, remark the fact that the study has been performed only in a limited way,
with a small sample of participants, and limiting the analysis only to the Java
language; they conclude that further experimentation could be needed to safely
assume that gamification could bring benefits to the refactoring process.

A recent study, performed by Muñoz et al.[11], analyzed various cases of gamifi-
cation strategies applied to software engineering with a focus on teamwork, aiming

16

Background

to identify which mechanics, if any, can be applied to reinforce the creation of
highly effective teams for software development. The study revealed that the most
common gamification elements were as follows:

• Leaderboards;

• Points system;

• Badges;

• Levels;

• Progress bars.

The two most used elements, leaderboards and points-based systems, show that
elements that encourage participation, motivation and interest in people that use
a gamified system are quite common and effective; such benefits can be applied
in working environments, where the purpose of gamification should be to improve
social interaction and collaboration. The study is particularly useful in confirming
once again that leaderboards, points and, to a less extent, unlockable elements
that can distinguish participants are effective gamification elements that should be
considered as main parts of a gamified system.

2.6 Gamification in Software Testing
Reprising what was said back in section 2.1, software testing is, at the same time,
a vital part of software engineering but also the part that is most often neglected,
leading to problems down the line as software defects come out and affect negatively
the user experience. More specifically, the fact that both End-to-End and GUI
testing are neglected can cause huge issues, seeing as they consist in testing an
almost ready product, at a point in the development cycle where issues have to
be detected, as they can probably be connected to large parts of software that
have to be fixed. Many solutions could be tried in order to revitalize the testing
problem: in terms of GUI testing, for example, being able to go beyond the limits
of automated testing (manual generation of test cases is a boring and long activity,
test cases are extremely frail and can fail if the system under test sees changes
in its user interface) would bring to great improvements. Many studies have
tried the gamification approach, with the idea that making the testing activity
more interactive and appealing could bring various advantages: the simple use of
mechanics aimed at increasing interest and participation coupled with a neglected
and boring activity should create an effective combination, turning the testing
activity into something that can be done with ease and peace of mind.

17

Background

One example of gamification elements applied to testing is a study by Costa
and Oliveira[12], who theorized the use of gamification as a means to improve
the teaching of Exploratory Testing, in what is one of the first examples of game
techniques applied to the exploratory testing process. The strategy they theorized
consisted in using a pirate-themed setting, focused on treasure hunting, where
solving puzzles translated to finding treasure (bugs), increasing one’s score. The
study employed a vast amount of gamification mechanics, with the most relevant
being the following:

• Profile. All users involved in the experiment had a specific profile, with three
possible profile types:

– Tester. Students involved in the testing activity;
– Expert. Is the driver of the gamification aspect, solves the testers’ doubts
and analyzes the results;

– Judge. Observes if the testers are performing the correct activities that
will award points.

• Avatar. Assigned to each student, there are an Activity Avatar, obtained in
each activity step based on the activities performed by the student, and a
Participatory Action Avatar, which depends on how much the student actively
participates in the class activity. Each avatar is different for each step of the
gamified process, there are rewards for reaching the maximum score associated
to an avatar and a Final Avatar for each activity step is computed, based on
the scores of the two avatars; at the end of the entire experience a General
Avatar is computed, depending on the arithmetic mean of all the past Final
Avatars, which expresses the average performance of the student;

• Activity. The different actions that a student can take during the different
phases, they give rewards when completed. These rewards can be medals or
coins, named bitskulls, that can be used in order to purchase resources such
as cards;

• Cards. Special resources that can be equipped to an avatar in order to
give various kinds of advantages (defense cards to protect from attacks by
enemies, offense cards to attack enemies) or used for cosmetic purposes (avatar
customization).

The entire process of exploratory testing would divide students into groups and
take place over seven days, with the most relevant activity being an exploratory
analysis of the code under test in order to find as many defects as possible (called
the Treasure Hunt phase) and a definition of which defects had priority over
others, producing a defect report; teams then entered the Battle phase, where they

18

Background

exchanged their defect reports in order to analyze the reports made by other groups
in terms of prioritization of defects, clarity in the definition of the scripts associated
to defects and reproducibility of defects, producing an analysis report. An expert
would then analyze the reports in order to assign points to all the teams, giving
recognition to the teams that obtained particularly high scores: these teams were
also allowed to obtain an additional reward card after solving correctly a puzzle. At
the end of the entire testing endeavor teams that had obtained the highest possible
rank were given three riddles to solve, with the solutions pointing to physical
locations in the classroom where a treasure was hidden, with the assumption that
this would bring to higher immersion in the pirate setting and also an increase in
motivation due to the physical artifacts. The results of this kind of application of
gamification were defined by the organizers as to be evaluated by comparing the
forms taken by the students before the experience, data taken from the exercises and
feedback gathered at the end of the experience, all in order to understand whether
gamification could be a positive addition to an exploratory testing experience.

19

Chapter 3

Design and Architecture

The developed plugin runs based on many different kinds of technologies, connected
to the different parts that are required for a web-based tool (browser capabilities,
data storage); it can also generate scripts that are compatible with two already
existing automated testing frameworks, namely Sikuli and Selenium. What follows
is a detailed explanation of all the technologies that come together in order to
create the plugin.

3.1 Tools Used

3.1.1 Google Chrome Extensions
In order to develop a browser plugin, it is first necessary to understand exactly
what is a plugin used by a browser; in this case, the selected web browser was
Google Chrome, which defines its plugins as Chrome Extensions[13], which will be
the term used from this point on when referring to the plugin. Chrome Extensions
are small software programs that are used in order to customize the web browsing
experience, letting users tailor Chrome functionality and behavior in many ways,
by providing features such as:

• Productivity tools;

• Web page content enrichment;

• Information aggregation;

• Fun and games.

Extensions are built on web technologies such as the HTML, CSS and JavaScript
languages, run in a separate and sandboxed environment and interact with the

20

Design and Architecture

Chrome browser. Extensions operate by means of an end-user UI and a set of
developer APIs that can be used in order to allow the execution’s code to access
features of the browser such as activating tabs, modifying network requests, starting
file downloads and so on.

Manifest File

An extension is identified by a manifest file, a peculiar JSON file which specifies
information about the extension: the mandatory information to be included consists
of name, description and version of the extension, all displayed in Chrome’s
dedicated page used for the handling of extensions and the version number of the
manifest, which is used in order to specify the rules and the features that the
extension is able to implement. An example of such manifest file is reported below:

1 {
2 " d e s c r i p t i o n " : "A p lug in that enhances app t e s t i n g with

g a m i f i c a t i o n s t r a t e g i e s " ,
3 "name" : " Gami f i cat ion Plugin " ,
4 " v e r s i on " : " 1 . 0 " ,
5 " mani f e s t_vers ion " : 3
6 }

The manifest file is also used to list which are the files that make up all the logic
and behavior of an extension:

• service workers, dedicated scripts that listen for browser events exposed
by Chrome’s extension APIs in order to react accordingly and enhance the
user experience. The latest rules about extension development state that an
extension can only have one single service worker declared, with the following
format:

1 " background " : {
2 " serv ice_worker " : " background . j s "
3 }
4

• actions, elements located to the right of the access bar in the browser and
that can be divided into browser actions, valid for use on most pages, and
page actions, which are intended to be used only on a few, specific pages. The
declaration in the manifest file follows the schema:

21

Design and Architecture

1 " a c t i on " : {
2 " default_popup " : " popup . html "
3 }
4

• content scripts, files that run in the context of web pages and can be used
in order to implement the logic of the extension and how it can improve
the user experience; a relevant feature of content scripts is that they run
in an isolated world, a private execution environment that is not accessible
to the page or other extensions, making it so that a content script is able
to perform operations without conflicting with the page or other extensions’
content scripts, with the drawback of having variables and functions declared
in an extension’s content script be accessible only by that specific extension.
What follows is an example of content scripts’ declaration, where a mandatory
field is used in order to specify the URLs where different content scripts are
allowed to run.

1 " content_sc r ip t s " : [
2 {
3 " matches " : [" ∗ ://∗/∗ "] ,
4 " j s " : [
5 " content_sc r ip t s / cs1 . j s " ,
6 " content_sc r ip t s / cs2 . j s " ,
7 " l i b / l i b 1 . j s " ,
8 " l i b / l i b 2 . j s "
9]

10 } ,
11 {
12 " matches " : [" ∗ : // goog l e . i t /∗ "] ,
13 " j s " : [
14 " content_sc r ip t s / gcs . j s " ,
15 " l i b / g l i b . j s "
16]
17 }
18]
19

The first object in the array lists four different content scripts that can run
on all URLs, as specified by the matches array, while the same array in the
second one specifies two other content scripts that can only run when in a
page whose URL belongs to the domain google.it; such distinction can be
used in order to define different rules and behaviors for the different websites
supported by an extension.

22

Design and Architecture

The manifest file also has to list all permissions required by the extension, which
equates to listing which are the Chrome Extension APIs the extension is allowed
to use; some of these permissions allow the extension to access the browser’s tab
system, know which is the currently active tab, initiate and manipulate downloads
and show system notifications to users, as shown in the example below.

1 " pe rmi s s i ons " : [
2 " tabs " ,
3 " s t o rage " ,
4 " act iveTab " ,
5 " s c r i p t i n g " ,
6 " downloads " ,
7 " background " ,
8 " n o t i f i c a t i o n s " ,
9 "<a l l_ur l s >"

10] ,

Finally, since an extension may have some local resources (i.e. images, CSS style
files) which cannot be normally accessed by websites or content scripts, these
resources have to be declared in the manifest file in the following format:

1 " web_access ib le_resources " : [{
2 " r e s o u r c e s " : [" img/∗ "] ,
3 " matches " : ["<a l l_ur l s >"]
4 }]

Each object in the array specifies a list of resources and a list of URLs that can
access said resources without causing issues.

Chrome Storage

A relevant feature used by the extension in order to store data is the use of Chrome’s
Storage API, which provides powerful capabilities in terms of data storage, allowing
automatic synchronization through storage.sync and access to storage from both
content scripts and service workers, allowing for easy sharing of data between
different functionalities of an extension. Using storage.sync is particularly useful
as it allows data to be synced to any other Chrome browser where the user has
signed in, bringing to shared data even among browsers, and it also is used to sync
data after the browser goes offline and comes back online, with the guarantee that
data stored while offline is stored locally waiting for the connection to be restored.

23

Design and Architecture

3.1.2 Server
Most of the data used and needed by the extension (more specifically, all data
related to pages visited, users’ profile information and widgets interacted with in
pages) cannot simply be stored in Chrome’s storage, as the volume of information
can grow to extremely high levels as the number of users, pages and widgets increase.
An external server is thus deployed in order to have an easy way to access and
store the extension’s required data.

Database

Persistent data is stored inside an SQL database whose function is to keep track
of the evolution of everything that users perform while using the extension, with
different tables used to store the different information required. Figure 3.1 displays
a representation, using the Entity-Relationship model, of the different tables in
the database, the fields of each table and the relationships that interconnect the
different tables. The tables that make up the database all perform a specific

Figure 3.1: Database schema

function; in detail:

• Achievements. Contains all the different achievements that can be unlocked

24

Design and Architecture

by using the extension, with the text detailing the unlocking criteria and the
path to the image associated with each achievement;

• Avatars. Following the same reasoning as the Achievements table, this
table contains the list of all avatars, with a path to the image and a name as
parameters;

• PageActions. Contains the entire list of actions performed by users on the
different pages. Each row keeps track of which user performed an action and
on which page, with the action being identified by the type of interacted
widget and its index relative to all widgets of its kind in the page;

• PageInfo. Contains information about all pages visited at least once while
using the extension. Information stored consists of the amount of the different
widgets registered by the extension which are present in the page;

• PageIssues. Acts in a similar way to PageActions, with the difference
between the two tables being that this one stores issues reported rather than
actions performed and it additionally stores the description of the issue added
by the user when reporting;

• PageRecords. Stores, for each user, the records obtained in all pages visited
by said user during all sessions. Records are different for each page visited
and include coverage, both for the single page and for all kinds of widgets,
and the count, both for each kind of widget and overall, of the highest number
of widgets found in a single session;

• Records. A table used to store information about the highest scores obtained
by users (new pages found in a session, new widgets found in a session, page
coverage). Said scores are used in order to create the leaderboards offered by
the extension;

• UserAchievements. Stores a list of pairs idAch, username where each row
identifies the achievements unlocked by a specific user (i.e. a row 2, Giacomo
means that the user Giacomo has unlocked the achievement with idAch = 2
in the Achievements table;

• UserAvatars. This table follows the same exact logic asUserAchievements,
keeping track of the different avatars unlocked by each user;

• Users. A table used for keeping track of the different users who signed in to
the extension. Associates to each user the currently selected avatar, which is
shown to other users;

25

Design and Architecture

• WidgetCrops. Contains all the information needed for the generation of
the scripts used for replaying a past session. Such information includes the
dataURL used to generate the screenshot of a widget, the type of interacted
widget, the username of the user that interacted with the widget, optional
information such as selection index or text content of a field, CSS selector
and xpath. All information about widgets interacted with by a user during a
session is deleted when said user ends the current session, in order to keep
track of information about current sessions only.

Node.js Server

In order to have data easily accessible to the extension, a local server is run using
Node.js, an open-source, multi-platform runtime system used to run asynchronous
JavaScript code. The server is split into two different modules:

• DAO, a module which includes two JavaScript files that perform queries on
the database with the goal of inserting, updating, retrieving and deleting data
as users interact with the extension;

• server, whose functionality is to act as a bridge between the DAO module
and the extension, providing the URLs that are fetched by the extension and
calling the adequate method from a DAO file as a consequence.

1 app . get ("/api/pages/issues/:username" , (req , r e s) => { //
called when the extension makes a fetch request with an URL
that matches the listed one

2 i f (u t i l i t i e s . r e s o l v eExpre s sVa l i da to r (v a l i d a t i o n R e s u l t (req) ,
r e s)) { //checks if parameters passed are in correct format

3 pageDao . ge tPage I s sues () //call to function that performs
the query

4 . then ((i s s u e s) => r e s . j son (i s s u e s)) //returns queried
data

5 . catch ((e r r) => u t i l i t i e s . r e s o l v e E r r o r s (err , r e s)) //
error handling

6 }
7 })
8

Figure 3.2 represents how the server is structured by showing how the three main
components (database, DAOs and server) are connected

26

Design and Architecture

Figure 3.2: Diagram depicting the server structure

3.2 Adopted Gamification Mechanics
The selection of which mechanics to adapt has been based on the idea that users
would be more invested in a boring and unfun activity such as web testing if they
could perceive a tangible result as a consequence of their actions; another relevant
motivation behind the selection of some mechanics was the appeal of competition
and desire to prevail.

3.2.1 Avatars
The main gamification mechanic adopted by the extension is the use of personal
avatars, which can be unlocked by obtaining achievements and performing relevant
tasks for the first time while using the extension. After having unlocked a new
avatar, a user can view the entire list of unlocked avatars while in his/her profile
page and decide which one to show as current avatar, viewable by other users
in order to increase competition and also give a way to increase satisfaction, as
having unlocked a rare avatar which can be showed off can be viewed a source
of accomplishment for users that put a lot of effort in using the extension. The
extension has all users start up with three default avatars, one of which has to be
selected as active while creating a user profile, as shown in figure 3.3. All avatars
are made starting from the same base image, downloaded from a website that
provides free assets to be used for making videogames [14], and then edited through
software in order to create small variations of the default avatar; an example of

27

Design and Architecture

Figure 3.3: Default avatars selectable while creating a new user profile

such different avatars can be seen in figure 3.4. Users are then able to unlock

Figure 3.4: Examples of unlockable avatars

28

Design and Architecture

these different avatars by performing various tasks while testing: an avatar may
be unlocked by interacting with at least three different types of widgets during a
single session, by declaring a previously reported issue as solved or by obtaining
an adequate number of achievements, for example. A possible extension of the
avatar system, which is intended as a possible starting point for an expansion of
the current extension, would be a rework that substitutes the monolithic PNG files
that make up an avatar limited to just a single distinctive feature (i.e. a crown, a
wizard hat, a star decoration on its clothes) with a system where accessories are
unlocked rather than complete avatars; such accessories would then be able to be
combined onto the default avatar, greatly increasing the amount of customization
allowed. Such a reworked system could also see the creation of multiple possible
avatars, whose looks would greatly differ, with the goal of bringing future users
to increase their efforts, in order to have them unlock newer and rarer features to
show off.

3.2.2 Achievements
Achievements are one of the most important elements used in gamification, as they
provide a tangible way to reward users for their actions, and are thus used in the
extension in a relevant way. The achievement system adopted by the extension
works together with Chrome’s notification API by sending the user a system
notification after a significant event that has happened for the first time and is thus
worthy of being celebrated with an achievement. Achievements are also graded by
a rarity level where the harder to obtain ones (i.e. obtaining perfect coverage on
a page or a type of widget inside a page) are identified by a golden medal, while
easier achievements have a silver or bronze one; they are then shown, together with
the criteria for having unlocked them, in a section inside the extension’s homepage
dedicated to viewing the user’s profile, shown in figure 3.5.

3.2.3 Progress Bars
Another relevant mechanic adopted was selected after deciding that users would
need a way to easily see and understand their progress in terms of interactions
inside a page. Such progress is divided into two different sections:

• A global progress bar, present in each page tested by the extension, which
shows the percentage of widgets interacted with by the user in relation to
the total amount of widgets present in the page, with figure 3.6 showing an
example of how the progress bar looks in a tested page;

• A set of progress bars located in the extension menu, one for each different kind
of widget registered by the extension, detailing the percentage of interaction

29

Design and Architecture

Figure 3.5: Homepage section dedicated to listing user achievements

Figure 3.6: Progress bar showing the percentage of interacted widgets in a page

with each specific type for the current page. Figure 3.7 shows an example of
these progress bars, along with the message shown when a page does not have
a type of widget.

Whenever the user interacts with a new widget for the first time both the global
progress bar and the progress bar related to the type of interacted widget are
updated straight away, in order to give a sense of actual progress and fulfillment. A
limitation of these progress bars, however, is that they only compute the coverage
and give no actual information about which elements have actually been interacted
with in the page, meaning that their functionality is meant to be a simple indication
of progress done, rather than a guide of what remains untested in a page.

30

Design and Architecture

Figure 3.7: Progress bars showing the percentage of interaction for each kind of
widgets present in a page

3.2.4 Scores
Scores are intended as the count of widgets found in a page during a session and
the count of pages visited in a session. Both scores are also divided into new ones
found during the current session, the total amount found during the current session
including both new ones and previously found ones and the total amount found
during all sessions; scores for both widgets and pages are reported into tables that
can be easily viewed while in the extension menu, as seen in figures 3.8 and 3.9.

Figure 3.8: Table showing the scores for widgets interacted with in the current
page

Once the user ends a testing session the extension shows a recap screen detailing,
for all kinds of widgets, the count of total interactions with widgets made in all
pages and the total count of new widgets found during the session; a similar count
is also present in order to list the count of visited pages and of new pages, as can
be seen in figure 3.10. The extension also keeps track of the highest scores obtained
by a user during the entire history of his/her testing experience, and these records
are shown in a dedicated section in the extension’s menu, as seen in figure 3.11.

3.2.5 Leaderboards
One of the main elements used in gamification, leaderboards also make up a relevant
part of the extension, as they were selected in order to increase competition by
giving users a way to compare their standing and their scores with other users of
the extension. There are three different leaderboards, visible inside a dedicated
section of the extension homepage, and they rank users based on three different

31

Design and Architecture

Figure 3.9: Table showing the scores for pages visited in the current session

Figure 3.10: Recap screen detailing scores obtained during a testing session

metrics:

• highest amount of new pages found during a session;

• highest amount of new widgets interacted with during a session;

• highest page coverage obtained.

All of the three leaderboards show, as can be seen in figure 3.12, the username, the
score and also the current avatar selected by each user: such a decision was made in
order to both allow users that have made good progress and unlocked different and
rare avatars to show off the fruits of their endeavors and also to increase the feeling
of competition in users that have done fewer activities and have unlocked less rare
avatars. Another decision taken in order to increase competition between users was
to have, when a user’s rankings are updated at the end of a testing session, a check
on the entire set of rankings, followed by rewarding the user with a new rare avatar
connected to the new position: more in detail, placing on one of the top three
positions in a leaderboard for the first time will reward the user with an avatar
possessing a golden, silver or bronze medal, depending on the position obtained.

3.2.6 Page Discovery
The final gamification mechanic implemented by the extension consists in a special
way to signal, when a user reaches a page, whether that page has never been visited
before or not by the user during past sessions: a small star, visible in figure 3.13,
appears in the bottom-right part of the web page if it is a new one. This star
persists as long as the user remains on the web page, as it serves the purpose of
signaling whether a page has been visited for the first time or not, a statistic that is

32

Design and Architecture

Figure 3.11: Menu section showing the current user’s records

Figure 3.12: Leaderboard of all users sorted by amount of highest new widgets
found

kept track of during a session and is used to place users in leaderboards, as already
said in previous sections.

3.3 Extension Architecture

The relevant components that make up a Chrome extension have already been listed
back in section 3.1.1, what remains unexplained is both the structure of the different
components in terms of both interaction between them and functionalities performed
by each of them; a representation of how all components are interconnected is
depicted in figure 3.14. Section 3.4 will explain in detail how each component works
and which specific functionality it implements, while this section will report the
content of each node shown in figure 3.14.

33

Design and Architecture

Figure 3.13: Web page with the star signaling a page visited for the first time

Figure 3.14: Diagram representing the different components of the extension and
their relations

3.3.1 Action

The way the extension implements its action is through a simple popup button
embedded into Google Chrome’s action bar which, when clicked, redirects the user
to a new browser tab containing the homepage of the extension.

34

Design and Architecture

Figure 3.15: Action used by the extension

3.3.2 Homepage
A local web page made up of standard web language techniques, sends requests to
the Service Worker in order to retrieve user data and redirects to the web page
that is to be tested.

Figure 3.16: Files that make up the extension’s homepage

3.3.3 Content Scripts
As was previously mentioned back in section 3.1.1, content scripts make up a
fundamental part of a Chrome extension, as they contain functions and variables
that are available for the entire context of the extension, with figure 3.17 showing
which are the content scripts used by the extension and their structure. What the
figure shows is a division into two folders:

35

Design and Architecture

• lib, a folder containing external libraries used to download a folder compressed
in .zip format[15][16]. Such functionality is used at the end of a testing session
in order to download a script that can be used with SikuliX;

• content_scripts, which contains a file tasked with defining the listener to be
attached to each interactable element in a web page (i.e. links, buttons, forms)
to react to events such as clicks or submit operation, and a second file whose
role is to define functions that are used multiple times during a testing session
and thus have to be shared and easily accessible.

These content scripts are declared as runnable on all possible URLs, by using the
declaration:

1 " matches " : [" ∗ ://∗/∗ "] ,

seeing as the extension is supposed to run on all kinds of websites; this, however,
forces a distinction between these shared functions and the functions that perform
changes to the tested web page: the files that implement the logic behind these
changes are called Page Scripts.

Figure 3.17: Content scripts used by the extension

3.3.4 Page Scripts
Page scripts are peculiar files that act in a similar way to how content scripts
work, with the main difference being the fact that, while content scripts are always
available to all web pages while the extension is active, page scripts are launched
by the service worker if and only if the active tab’s URL belongs to the same
domain as the one specified by the user at the beginning of a testing session (for
example, if the user specifies https://softeng.polito.it as starting URL, page scripts

36

Design and Architecture

will be launched when the user visits the URL https://softeng.polito/theses.html).
A graphical representation of which are these page scripts with a short description
of their functionalities is depicted in figure 3.18. Another difference between page
scripts and content scripts lies in the fact that the latter ones’ contexts are available
to all other scripts, both page and content, running inside an extension, while page
scripts, by virtue of being launched by Chrome’s scripting API, which causes each
page script to have an enclosed context visible only by itself. This means that a
variable or function declared inside a page script is visible only inside said page
script, which allows for a division of duties among the different scripts.

Figure 3.18: Scripts called in a page currently being tested

3.3.5 Service Worker
The service worker can be seen as the most important part of the extension’s
architecture, as it is a perpetually running file that listens to events that happen
during the user’s browsing experience. The service worker performs two relevant
operations:

• Every time the current tab changes or is updated, it checks if the current URL
belongs to the same domain as the one of the URL selected as the starting
one and, if such condition is verified, launches the page scripts;

• It listens to messages sent by page scripts through Chrome’s runtime API in
order to send notifications, download files, capture screenshots of the currently
active tab or fetch data from the external server.

3.4 Extension Functionalities
Many of the functionalities offered by the extension have been presented in Section
3.2, but other generic augmented testing functionalities are also offered by the
extension. What follows is an explanation of the remaining functionalities.

37

Design and Architecture

Figure 3.19: Service worker used by the extension

3.4.1 Interaction Overlays
The extension offers a functionality that marks which widgets have already been
interacted with by the user: more in detail, all widgets have their style property
modified in order to have an additional border around them; such border specifies
that the element has been interacted with and has a different color depending
on the type of widget, with the mapping reported in table 3.1. The extension

Widget Type Border Color
Link Red
Form Green
Button Blue

Dropdown Menu Yellow

Table 3.1: Mapping between widget type and border color

menu offers three buttons that allow activating these overlays, with three different
possible modes:

• None. The default page behavior and styling. In this mode there are no
changes done at all to widgets, meaning that there is no distinction between
interacted and non-interacted widgets;

• Interact. This mode applies overlays to all the widgets that the user has
interacted with, and only those, making it easy to know which widgets the user
has interacted with in a given page and which ones are missing; an example
of how a page looks like while in this mode can be seen in figure 3.20

• All. This mode applies overlays to all widgets present in a page, regardless of
actual user interaction. Useful in order to highlight all elements in a page the
user can interact with.

38

Design and Architecture

Figure 3.20: Web page with borders marking interacted elements

If the interaction with a widget is performed while in Interact mode the border is
applied to the element after a delay of three seconds and, also, if the widget was
already interacted with in the past and already has a border applied such border is
removed before taking the screenshot and then reapplied; such measures are taken
in order to ensure that the screenshot of the widget is taken while the latter is
in its natural state, so that SikuliX script are able to run without issues on the
page. Once selected the mode remains set until it is changed again, meaning that
it persists after changing the web page through a link during a session or even after
ending a session and starting a new one. Figure 3.21 shows the change in style of a
dropdown menu after selecting one possible index.

Figure 3.21: Dropdown menu changing style after user interaction

3.4.2 Issue Signaling
Another relevant feature of the extension, which gives more focus to the concept of
testing rather than being based on gamification, is the existence of a second mode
of interaction with the web page where the user can report issues found during
a testing session. It may happen, for example, that the user is redirected to a
wrong page after clicking on a link, or that a button expected to have some effect

39

Design and Architecture

on the page content does not perform as intended, or many other cases of issues
that web testing aims to find; in this case, the second mode is expected to be used
in order to mark a widget as not working so that other users working with the
extension may see the issue. Issue reporting works as shown in figure 3.22: the
user clicks on the widget found not working correctly and a modal is opened asking
for input explaining what the issue actually is; after the issue is submitted the
modal is closed and the style of the signaled element is changed in order to have a
colored background that, while in reporting mode, signifies that the element has
an issue and is visible by other users of the extension; additionally, hovering with
the mouse over the widget shows a tooltip presenting the issue. Issues opened and
added to widgets can be seen even if they are reported by a user different than the
current one, with the catch that an opened issue can be marked as Solved only
by the same user that reported it; a small limitation of the issue system is that a
widget can have at most one issue attached to itself, even counting multiple users,
meaning that if a user reports an issue for a link in a page, for example, another
user will neither be able to report another issue for said element nor be able to
declare its resolution.

Figure 3.22: Procedure of reporting an issue on a link

3.4.3 SikuliX Script Generation
One relevant feature of the extension is the ability to generate scripts compatible
with the visual testing programs SikuliX and Selenium in order to have a represen-
tation of a testing session that can easily be replayed in an automated way. The
generation of a SikuliX script is done at the end of a session and consists of the
creation of a Python file that follows the SikuliX constraints and rules for replaying
a session; an example of such file is reported below:

40

Design and Architecture

1 popup (" Beginning rep lay o f past s e s s i o n ")
2 max = 20
3 wait (5)
4 whi le (max > 0)
5 i f (not e x i s t s (Pattern (" img1 . png ") . s i m i l a r (0 . 5 5) , 0) :
6 wheel (WHEEL_DOWN, 1)
7 max −= 1
8 e l s e
9 max = −1

10 break
11 c l i c k (Pattern (" img1 . png ") . s i m i l a r (0 . 5 5) , 0)
12 wheel (WHEEL_UP, 20−max)
13 max = 20
14 wait (5)
15 whi le (max > 0)
16 i f (not e x i s t s (Pattern (" img2 . png ") . s i m i l a r (0 . 5 5) , 0) :
17 wheel (WHEEL_DOWN, 1)
18 max −= 1
19 e l s e
20 max = −1
21 break
22 type (Pattern (" img2 . png ") . s i m i l a r (0 . 5 5) , " Torino " + Key .ENTER)
23 wheel (WHEEL_UP, 20−max)
24 popup (" Ending rep lay o f past s e s s i o n ")

The script emulates a session where the user first clicks on a widget identified by a
screen named img1.png and then types a keyword in a text field belonging to a
form identified by the screen img2.png in order to submit the content of a search
bar. Script generation adopts some techniques in order to ensure that a script can
run to the end and emulate as precisely as possible the actions performed by a
user; more in detail:

• wait(5). This command is used in order to ensure that the script waits 5
seconds before executing any action so that, for example after a page change,
the script does not start looking for an image before it is actually present on
the page and returns an error;

• while(max > 0). A conditional block repeated for each widget whose role
is looking for a match with the screenshot of the widget and the page content;
if there is no match the condition

1 not e x i s t s (Pattern (" img2 . png ") . s i m i l a r (0 . 5 5) , 0
2

is verified and the script scrolls down in order to find another match, assuming
that the widget is in a lower part of the web page and thus not currently

41

Design and Architecture

visible. This sequence of checking and eventually scrolling down is repeated
until a match is found, meaning that the script can then execute the action
on the identified widget;

• wheel(WHEEL_UP, 20-max). An action taken after the interaction with
an identified widget is performed, it is made in order to correct the scrolling
down made in order to find the previous widget so that the research of the
following one can be done from the beginning of the page. This solution
has been implemented as it is not possible to know, while interacting with a
web page, the absolute position of a widget in the page but just the position
relative to the part of the page that is currently visible, meaning that it is not
possible to tell SikuliX if a widget is above or below the one interacted with
before.

Issues

Being a program based on image recognition where images are assumed to be
captured without interaction, SikuliX struggles a bit in some cases since a screenshot
of a widget is taken when there is interaction with it; this causes the following
issues:

• clicking on a link causes it, generally, to change color, depending on the CSS
rules defined by the developer of the tested web page; for example, a page
may define the default colors of a link as

1 /∗ u n v i s i t e d l i n k ∗/
2 a : l i n k {
3 c o l o r : red ;
4 }
5 /∗ mouse over l i n k ∗/
6 a :hover {
7 c o l o r : b lue ;
8 }
9 /∗ s e l e c t e d l i n k ∗/

10 a : a c t i v e {
11 c o l o r : b lue ;
12 }
13

This definition means that the screenshot of a link, taken when the link
is clicked, has a blue colored link while said link has normally a red color,
meaning that when the SikuliX script is run finding a match may not be
possible, as the different colors can require a lower similarity value in order
to have a correct match, with the added risk of matching with other parts of

42

Design and Architecture

the page. In order to work around this issue and have correct matches with
links the extension does not just take a screenshot of the HTML document
element that identifies a clicked link but doubles the height and width of the
screenshot and changes offsets so that the link remains in the center of the
new, larger screenshot and matches are easier to find;

• writing text into a text field and then deciding to change said text can cause
an issue. An example of what causes the issue is explained as follows:

1. the text field is clicked, the extension takes a screenshot of the empty text
field;

2. the text field is filled, the extension stores information about the text
content associated with the text field;

3. the text field is clicked again with a new screenshot being taken;
4. the new value of the text field is registered and stored.

In case SikuliX has to replay such a sequence of operations it may not find a
match as it handles the sequence in this way:

1 type (Pattern (" img1 . png ") . s i m i l a r (0 . 5 5) , " a " , KeyModif ier .CTRL
) \n

2 type (Pattern (" img1 . png ") . s i m i l a r (0 . 5 5) , Key .BACKSPACE) \n
3

The first type command emulates selecting all the content of the text field as
if typing CTRL + A while the second command cancels all highlighted text;
the issue comes up when performing the second type command, as there is
no screenshot of the text field with all text selected and highlighted, meaning
that finding a match is not guaranteed;

• Using a wait(5) as a command performed after every operation may not be
enough, due to the fact that different devices may perform SikuliX scripts at
different speeds and connectivity issues may also affect page loading, causing
the script to wait too little and then fail because the page was not loaded
correctly.

3.4.4 Selenium
The extension also generates a Selenium script at the end of a testing session, in
order to have a second way to replay past sessions. The generation of a script is
made by creating a .side file with a format compatible with what the Selenium

43

Design and Architecture

IDE requires by creating an array of commands, one for each interaction with a
widget, with the following format:

1 " commands ":[
2 {
3 "id": " idCommand0 ",
4 " comment ": "",
5 " command ": "open",
6 " target ": "http :// softeng . polito .it/",
7 " targets ": [],
8 "value": ""
9 },{

10 "id":" idCommand1 ",
11 " comment ":"",
12 " command ":"click",
13 " target ":"css =# sidebar > TABLE:nth -child (1) >

↪→ TBODY:nth -child (1) > TR:nth -child (6) >
↪→ TD:nth -child (2) > A:nth -child (1)",

14 " targets ":[
15 [
16 "css =# sidebar > TABLE:nth -child (1) >

↪→ TBODY:nth -child (1) > TR:nth -child (6) >
↪→ TD:nth -child (2) > A:nth -child (1)",

17 "css: finder "
18],[
19 " linkText = Theses ",
20 " linkText "
21],[
22 "xpath =/ html/body/table [3]/ tbody/tr [1]/ td/
23 span/table/tbody/tr [6]/ td [2]/a",
24 "xpath: idRelative "
25]
26],
27 "value":""
28 }
29]

The first command of the array is always a command that opens the web page
selected by the user as the starting page of a testing session, while following
commands depend on the action performed and the type of widget; more in detail:

• Links and buttons are simply clicked, with no extra action being done to them,
through the click command;

44

Design and Architecture

• Form fields are handled differently depending on whether they are checkbox-
es/radios or other types; the former simply handle the action by using the click
command on the identified element while other types are handled through
the type command, with the value parameter being filled with the content
of the field rather than being empty as happens with other cases; finally, in
order to handle form submission, a special command is added right after the
command corresponding to the final field of the form in order to execute form
submission, with the following format:

1 {
2 id : `idCommandSendKeys ` ,
3 comment : " " ,
4 command : " sendKeys " ,
5 t a r g e t : " id=mod−search−searchword104 " ,
6 t a r g e t s : [" id=mod−search−searchword104 " , " id "] ,
7 value : " ${KEY_ENTER} "
8 }
9

The command sendKeys works by emulating the pressure of the ENTER key
on the last textual field of the form, causing the submission of the form;

• Dropdown menus make use of the select command, whose function is to select
one of the options, identified by its label, presented by the dropdown menu.

Identification of a widget depends on the value specified by the target parameter of
a command object: said parameter can have different values, as long as they are
ways to univocally identify an HTML document element; the extension employs,
where possible, the following values to identify widgets:

• CSS selector. Adopted as the default value used in order to identify widgets
as it can be computed for every element part of an HTML document; it is
computed with the following algorithm:

1 function s e l e c t o r (e l) {
2 l e t names = []
3 while (e l . parentNode) {
4 i f (e l . id) {
5 names . u n s h i f t ('#' + e l . id) ;
6 break ;
7 } else {
8 i f (e l === e l . ownerDocument . documentElement) {
9 names . u n s h i f t (e l . tagName)

10 } else {

45

Design and Architecture

11 l e t c , e
12 f o r (c = 1 , e = e l ; e . p rev iousE lementS ib l ing ; e =

e . prev iousElementS ib l ing , c++) ;
13 names . u n s h i f t (e l . tagName + ":nth-child(" + c + ")

")
14 }
15 e l = e l . parentNode
16 }
17 }
18 return names . j o i n (" > ")
19 }
20

The algorithm iterates, starting from the element whose selector is to be
computed and going up through the document until it finds an element with
an identifier or the root of the document; it also performs, before checking
the parent element of the current element, a count of how many siblings the
current element has before its position (i.e. the fourth row of a table with 6
rows will be the fourth child of its parent, the table body) in order to correctly
identify the position of the element in the document. Each step of the iteration
adds a new element to the names array through the unshift command, which
puts the new value at the first position of the array it is applied to and, at
the end of the loop, all elements of the array are made into a single string by
using the join function on the array, which returns a string that is suitable for
use by Selenium;

• xpath. The generation of an xpath starting from an element follows the same
logic and reasoning as the one behind a CSS selector (starting from the current
element and going up until an ancestor with an identifier is found); it is used
as an alternative way to identify widgets that is applicable to almost all cases
and is performed by the following algorithm:

1 function xpath (e l) {
2 i f (typeof e l == "string") return document . eva luate (e l ,

document , null , 0 , null)
3 i f (! e l | | e l . nodeType != 1) return ''
4 i f (e l . id && e l . tagName . toLowerCase () === "div") return "//

div[@id='" + e l . id + "']"
5 l e t sames = [] . f i l t e r . c a l l (e l . parentNode . ch i ld r en , function (

x) { return x . tagName == e l . tagName })
6 return xpath (e l . parentNode) + '/' + e l . tagName . toLowerCase ()

+ (sames . l ength > 1 ? '[' + ([] . indexOf . c a l l (sames , e l) + 1) +
']' : '')

7 }
8

46

Design and Architecture

The algorithm performs the iteration through recursion until it finds an
element with an identifier, at which point it returns, causing a series of return
operations that end up with the creation of a string that starts at the element
with an identifier found or the document root and goes all the way down to
the position of the element whose xpath is needed;

• identifier. If the element has an identifier then said identifier will also be
used as a possible target for Selenium to adopt in order to find the element;

• link text. Generally, links do not have identifiers in HTML documents, so
they need another way to be easily identifiable by Selenium as an alternative
to CSS selectors and xpaths; another possible identifier is the text content of
the link itself, as there should not be two links in the same page with the same
exact text (and even if there were, it would be logical to assume that they
redirect to the same page, so Selenium would still have no issue in finding the
link to interact with when emulating the session).

All the values used to give Selenium a way to identify which element to interact
with in each step of a session are computed at the same time as when the screenshot
is taken for SikuliX, meaning that they are computed just as the user interacts with
widgets and are then stored in the external database until the end of the session;
when the session ends and all files are downloaded all information related to which
widgets have been interacted with and in which order during the session that just
ended is deleted from the database so that future session can restart from zero.

3.5 Testing Session
A testing session performed by the extension is registered in terms of interactions
done by the user with the widgets present in a page: more specifically, it records, in
the order in which they are executed, clicks on links and buttons, selections made on
dropdown menus and values inserted in form fields, along with the submission of the
form itself. The registration of interactions is then elaborated at the end of a session
in order to generate script files that can be used by the visual testing programs
introduced before, SikuliX and Selenium IDE. An example of a session, whose aim
is to perform navigation on a website, navigate through its pages by clicking on
links and interacting with widgets, whenever they are found, is performed in the
following way:

1. The user opens up the extension’s home page by clicking on the popup button
that appears when clicking on the logo in Google Chrome’s action bar;

2. The user pastes in the text field the URL of the starting page to test and
presses the button that will change tab to one having said URL;

47

Design and Architecture

3. Once on the page the user can interact with the different widgets present
there, with the extension acting in different ways according to the type of
widget. More in detail, the extension registers, for all types, the index of the
clicked widget related to the total amount of widgets present in the page for
that type, the CSS selector, the xpath required for the creation of a Selenium
script and also takes a screenshot of the visible web page; said screenshot is
resized to contain only the specific widget so that SikuliX can properly know
where to act. In addition to this, there are specific actions taken based on the
different types:

• link: the redirection to a new page is delayed for 0.5 seconds before taking
the screenshot;

• form: the extension keeps track of the value inserted as content of the
form and also, when the form is submitted, it performs a check on whether
the form was submitted with a button click (registered as a normal button)
or with the use of the enter key, in which case the extension marks the
last field of the form as the one where the key will have to be submitted
from;

• button: the click is registered with no additional action made by the
extension;

• dropdown menu: the extension registers the index selected by the user,
to perform the same action with SikuliX and Selenium.

4. Each interaction with a widget can be performed as many times as the user
prefers, whether in the starting page or in one reached through interaction
with a widget. The extension, however, does not register actions such as
hovering over elements or scrolling up and down, with the scripts handling
these behaviors in their own way;

5. During the session the user can, by opening up the menu, check the progress
made in the current page and also view his/her records obtained during past
sessions;

6. When the user decides that the session is finished all he/she has to do is to
open up the side menu and end the session by clicking on the End Session
button; the extension will end the session by showing a modal containing a
recap of all interactions made in the session (widgets clicked and pages visited,
including a count of all the new ones). Along with showing the modal, the
extension also downloads a .zip folder containing the screenshots of all widgets
clicked and a Python script to be used by SikuliX and a .side script compatible
with the Selenium IDE.

48

Design and Architecture

Figure 3.23 represents in detail how a testing session works: the Page block is
repeated as long as the user remains in a page and consists in the user deciding, as
long as he/she still wants to interact with widgets in the page, to keep the session
going. The second example of session is made by using the feature of the extension

Figure 3.23: Activity diagram representing a normal testing session

that allows a user to report an issue connected to a widget; in this case, the session
goes as follows:

1. The user opens up the extension’s home page by clicking on the popup button
that appears when clicking on the logo in Google Chrome’s action bar;

2. The user pastes in the text field the URL of the starting page to test and
presses the button that will change tab to one having said URL;

3. The difference between the previously explained session is as follows: while

49

Design and Architecture

interacting with a widget the user can find that it does not have the expected
behavior and thus has to be reported as not working as intended;

4. Once the user has found a widget not working correctly he/she can report the
issue by changing the mode of the extension to Signal Issue: in this mode,
clicking on a widget does not have it execute its expected behavior but opens
up a modal where the user can write the issue found with the widget;

5. The user can also, while in this mode, mark issues he/she had reported in
the past as Solved, by clicking on widgets that were previously reported as
having an issue;

6. Just as was the fact in the previous example, the user can terminate a session
in the same way, with the extension downloading the scripts created based on
the actions made while in Interaction mode, as clicks and behaviors made
in Signal mode are not registered as actions to be emulated in such scripts.

An example of how the session just explained works can be seen in figure 3.24,
where Default behavior refers to how the extension acts, as seen in figure 3.23,
by registering clicks and actions.

50

Design and Architecture

Figure 3.24: Activity diagram representing a testing session where issues can be
reported and solved

51

Chapter 4

Evaluation

In order to assess whether the extension meets good enough standards in terms of
usability, as well as to see how gamification mechanics are actually received by users
and what are the benefits, if any, they bring, a preliminary usability evaluation has
been conducted. The goal of such evaluation was to gather feedback on how users
perform when using the extension and what could be improved upon with future
development plans.

4.1 Participants
Since the extension is developed for GUI testing it was decided that evaluators
had to be searched for among developers or generally people that would be close
to actual future users of the extension, being knowledgeable of the field. Selected
subjects were students enrolled in a Master’s degree in Computer Engineering,
one graduate of said Degree already working as a software developer and one
student in Game Design, whose input on the gamification elements was judged as
particularly relevant in order to understand if there was room for improvement in
their implementation. The graduating students also followed different orientations:

• One student followed the Software Engineering course;

• Two students followed the Cybersecurity course; additionally, one of them was
working part-time as a software developer and the other as an application
developer focused on Cybersecurity systems;

• One student followed the Data Analytics course and was already working
part-time as a software developer.

Of these participants, only three of them had experience in terms of GUI testing,
having followed a course on Software Engineering which presented the testing

52

Evaluation

approach, from basic unit testing to complete GUI testing of applications, as
reported in figure 4.1. All the participants that also had working experience added
that GUI testing was not performed in their line of work. It is also worth mentioning,
however, that all the participants with a Computer Engineering background also
had knowledge on web development, with two of them mentioning the usefulness
of a practical tool for easily generating scripts, remembering how unfeasible and
cumbersome it was to generate SikuliX scripts, citing that scripts were hard to
automate and that screenshot and command acquisition was a bother as examples
of critiques. Many participants, including also one that had no past experience on
GUI testing, also added that a tool that aimed to perform GUI testing would be
greatly improved if it was easy to use.

(a) Past experience with GUI Testing (b) GUI Testing tool knowledge

Figure 4.1: Experience on GUI testing and knowledge of tools

4.2 Evaluation Script
Evaluation sessions were intended to assess two main concepts: the general perceived
usability of the system and the reception of gamification mechanics: the latter
point was deemed as particularly important to evaluate, as a way to measure the
effectiveness had by the mechanics in incentivizing evaluators to test the different
behaviors of web pages. Evaluation sessions were all conducted by following a
detailed script, which is reported as follows:

1. Introduction. A brief explanation of the purpose of the extension, the
reasoning behind some choices and what GUI testing is about;

2. Setup. A guided setup of the extension on the evaluator’s PC: installation
of the Node.js local server, loading of the extension onto the Google Chrome
browser through enabling developer mode;

53

Evaluation

3. Session Presentation. After the extension has started correctly the evalua-
tor will create an account on the extension and access the homepage, where
he/she will be able to view the (still empty) list of achievements and the leader-
boards with other users. Said operation will be followed by an explanation of
how a testing session is structured:

• The link of the starting page to test is to be pasted in the adequate text
field in the extension homepage; clicking on the button close to the field
will redirect to said page;

• The evaluator will be able to interact freely with all the widgets present
in the page and encouraged to interact with as many kinds as possible in
order to perform different actions while keeping in mind that the extension
possesses two limitations: actions are recorded only on pages belonging to
the same domain of the starting one and page changes depending not on
widgets but browser actions (forward/back button, manual URL changes)
are not detected. These limitations do not mean that the extension does
not work, however, but that the generation of scripts does not keep track
of such events;

• The evaluator can also find issues with the page and decide, if no other
user has already done so, to report them by using the appropriate function;

• The evaluator can decide to end a session at any time he/she prefers, as
long as he/she feels that enough content on the website has been explored,
or that a significant enough milestone (i.e. reaching 100% coverage on
one page, obtaining a good amount of achievements) has been reached;

• After the end of a session the evaluator is encouraged to check back on
the homepage, where he/she can check whether his/her position in one or
more leaderboards has improved and observe avatars and achievements
eventually unlocked during the session.

4. First Session. The first testing session will be conducted on the
https://softeng.polito.it[17] website: here the evaluator will be asked to navigate
freely to get a feeling of how the extension works and how measures of actions
made are taken; this session will go on until one of the conditions for ending
are reached;

5. Second Session. After the end of the first session and the checking on the
evaluator’s standings in leaderboards a second testing session will start, this
time with the https://elite.polito.it[18] website. This other session performed
on a website that offers different organization rules and a different structure
compared to the previous one is intended to show the evaluator that the
extension can perform on different websites with relative ease. During this

54

Evaluation

session the evaluator will also be encouraged to try and obtain higher scores
compared to the past session; hints will also be given in order to guide him/her
towards unlocking avatars or achievements that were not obtained in the
previous session and towards which an interesting progress level had been
obtained;

6. Script Generation. After ending both sessions successfully, the evaluator
will be asked to check the files downloaded at the end: he/she would then
confirm whether the downloaded images used for the SikuliX script matched
with the interacted elements on the websites;

7. Evaluation Questionnaire. The final step of the evaluation procedure will
consist in having the evaluator fill a questionnaire through Google Forms
where his/her opinions will be gathered in order to gauge the usability of the
extension.

4.3 Evaluation Questionnaire
The questionnaire given to evaluators at the end of the sessions aimed to assess the
usability of the extension; questions asked included a section dedicated to asking
the evaluator about previous experience in GUI testing, a section based around the
System Usability Scale, which offers a quick way to measure the perceived usability
of a system with a numerical score in the range 0-100 (not to be interpreted as a
percentage, however); lastly, the questionnaire includes open-ended questions where
the evaluator can list what he/she felt was the most effective part of the extension,
eventual problems emerged while using the extension and suggestions about what
could be improved or expanded upon. The questions asked in the questionnaire,
along with their type, are reported in the following subsections.

4.3.1 GUI Testing Background
1. Q1.1 Did you already have experience on GUI testing before using this

extension? (Yes/No question);

2. Q1.2 In case you answered Yes to the previous question, did you already
know about tools used for GUI testing? (Multiple choices question);

3. Q1.3 In case you already knew about GUI testing tools, would you say they
have issues that make them difficult/unpleasant to use? (Open question);

4. Q1.4 What would a GUI testing tool need in order to convince you to use it?
(Open question).

55

Evaluation

4.3.2 Extension Functionalities
1. Q2.1 Did being able to unlock new avatars and achievements motivate you to

interact more with the visited pages? (Likert scale question);

2. Q2.2 Did having a progress bar showing the page coverage motivate you to
interact with the different elements present in pages? (Likert scale question);

3. Q2.3 Did having progress bars showing the coverage related to the different
types of elements present in a page motivate you to interact more with specific
types of elements? (Likert scale question);

4. Q2.4 Did having a leaderboard in the homepage motivate you to try and
obtain higher scores? (Likert scale question);

5. Q2.5 Did being able to see avatars unlocked by other users motivate you to
try and unlock more avatars? (Likert scale question);

6. Q2.6 Did the star shaped Easter egg shown when visiting a new page motivate
you to visit as many pages as possible? (Likert scale question);

7. Q2.7 Did you appreciate the functionality that marked the elements you had
already interacted with in a page? (Likert scale question);

8. Q2.8 Did having recap tables containing your scores in the side menu motivate
you to try and obtain higher scores? (Likert scale question);

9. Q2.9 Did having a section in the side menu dedicated to showing your records
motivate you to try and beat those records? (Likert scale question);

10. Q2.10 Do you believe that the recap screen at the end of a session had a
positive effect in motivating you to try and interact more with pages in future
sessions? (Likert scale question);

11. Q2.11 Do you believe that the automatic generation of GUI testing scripts
could be a useful functionality of the extension (even if you never used the
tools, SikuliX or Selenium) (Likert scale question);

12. Q2.12 During the testing sessions, did you happen to find issues in the pages
you were testing and report them with the appropriate functionality? (Yes/no
question).

56

Evaluation

4.3.3 System Usability Scale
1. Q3.1 How much do you agree with the phrase I think I would like to use this

extension frequently? (Likert scale question);

2. Q3.2 How much do you agree with the phrase I think this extension is
needlessly complex? (Likert scale question);

3. Q3.3 How much do you agree with the phrase I think this extension was easy
to use? (Likert scale question);

4. Q3.4 How much do you agree with the phrase I think I would need the help
of an expert in the field in order to be able to use this extension correctly?
(Likert scale question);

5. Q3.5 How much do you agree with the phrase I think the various functionalities
of this extension are well integrated? (Likert scale question);

6. Q3.6 How much do you agree with the phrase I think there is too much
inconsistency in this extension? (Likert scale question);

7. Q3.7 How much do you agree with the phrase I think many people would be
able to learn how to use this extension in a short time? (Likert scale question);

8. Q3.8 How much do you agree with the phrase I think this extension is
cumbersome to use? (Likert scale question);

9. Q3.9 How much do you agree with the phrase I felt confident in what I was
doing while using this extension? (Likert scale question);

10. Q3.10 How much do you agree with the phrase I had to learn many things
before being able to use this extension correctly? (Likert scale question).

4.3.4 Opinion Gathering
1. Q4.1 What is, in your opinion, the strongest asset of the extension, the thing

you feel you appreciated the most? (Open question);

2. Q4.2 Did you encounter any issues or problems while using the extension? If
you did, describe them. (Open question);

3. Q4.3 Do you have any suggestions on how to improve the extension? If you
do, write them. (Open question).

57

Evaluation

4.4 Results
After conducting the preliminary evaluation with all the participants, results were
then examined, with the goal of computing a score based on the System Usability
Scale and assessing the actual opinions on the gamification mechanics.

4.4.1 Usability Results
The metric selected to evaluate the usability of the extension is the System Usability
Score, defined by Brooke et al[19], a set of ten Likert-scale questions with answers
ranging from Strongly agree to Strongly disagree; even-numbered questions are
generally negative in spirit (i.e. question 2, I found the system unnecessary complex),
while odd-numbered ones are more positive. Computation of the score of a SUS
questionnaire is done as follows:

1. Each answer equals to a score, with Strongly Agree being equal to 5 and
Strongly Disagree to 1;

2. For negative questions, subtract 1 from each score;

3. For positive questions, subtract the score from 5;

4. Sum the scores computed from applying the previous points to all the questions,
then multiply the result by 2.5.

Since the questionnaire has been asked to multiple participants computing an
average score turned out to be not as straightforward as expected, as the sum of
points for each question should be a natural number. In order to reach a perceived
average SUS score the following measures have been taken:

• For each question the most common answer would be selected as the one used
to compute the score;

• In case of situations where there were two equally common answers then the
less extreme would be selected.

The end result score, computed after taking into account the aforementioned
measures, is reported below:

(4 + 3 + 3 + 3 + 4 + 3 + 4 + 3 + 3 + 3)× 2.5 = 82.5

Generally, a SUS score of 68 or higher can be considered as an indication of an
above-average usability level; it can thus be inferred that the extension has a
good enough usability level that it can be easily picked up and used with good
result, which is a relevant feature for a gamified system. A more detailed overview

58

Evaluation

of the answers is shown in figure 4.2: the split division of answers is due to the
positioning of questions in such an order that sees each positive question followed by
a negative one. Such positioning ensures that evaluators have no bias in answering
the questionnaire and can also act as an internal evaluation of the questionnaire.
The fact that answers follow the same trend (positive questions are generally agreed
upon and negative questions are also disagreed upon) confirms that evaluators
did not answer their questions randomly but actually believe that the extension is
sufficiently usable.

Figure 4.2: SUS Questionnaire Results

4.4.2 Mechanics Results
The second goal of the evaluation, observing the reception of gamified mechanics,
has been performed thanks to both the section on the questionnaire related to them
and the actual observation of the sessions performed by the evaluators. In terms
of actual appreciation, elements such as the leaderboards, the progress bars and
unlockable avatars/achievements were the most well received, as can be seen by the
results of questions Q2.1, Q2.2, Q2.3 and Q2.4 in figure 4.3. The effectiveness of
progress bars and leaderboards was also noted directly during the evaluations: of
the six participants, four of them decided to keep going in their first testing session
until they had reached 100% coverage in at least one page, motivated by either
the global progress bar or by the widget-specific ones, the reasoning for the latter

59

Evaluation

Figure 4.3: Functionality Questionnaire Results

case being that focusing on increasing coverage on the single types of elements is
automatically connected to an increase on global page coverage, and it is possible
to interact with all forms first, then all links and so on. Regarding leaderboards
participants had a positive approach due to competition: some wanted to get to
the top just for their own satisfaction, others wanted to at least beat evaluators
they knew and had already gotten good scores. On the other hand, however, other
mechanics such as the star-shaped Easter egg or the menu section containing records
were not met with the same appreciation: evaluators remarked that they paid
little attention to the star signaling new pages, which they felt did not have much
impact in their experience; the records section was not also much well-received,
as evaluators revealed that rather than improving their records they preferred
focusing on improving coverage, reasoning that records would improve following
their improvements. The non-gamified functionalities features were also generally
well received, as shown by answers Q2.7 and Q2.11 in figure 4.3. Question Q2.7
reports that an interesting majority of evaluators appreciated the functionality that
highlights widgets, and such appreciation was also noticed during the evaluations:
evaluators made intensive use of the functionality, alternating between the setting
that highlights all elements that can be interacted with and the one that marks
only the ones previously interacted with in order to identify which elements were
still missing to reach perfect coverage. An interesting majority of evaluators, as
seen in question Q2.11, also admitted the importance of script generation: more in

60

Evaluation

detail, three of the four participants that assigned the maximum value to the script
generation feature had already previous experience with SikuliX and remembered
how challenging it was to define automated scripts. Said feature was defined by
multiple participants as an extremely useful functionality, removing most of the
work required for a cumbersome activity such as GUI testing. An interesting result
visible in figure 4.2 is that shown by question Q2.6, related to the star-shaped
easter egg: said mechanic was the least well-received of all the gamified elements
implemented in the extension, with evaluators mentioning that it had little impact
and it was also hardly noticeable when navigating the various pages.

4.4.3 Considerations
The final section of the questionnaire aimed to understand the general opinions
of the evaluators, measuring what they appreciated the most, whether they had
encountered some issues during the experiences and what they felt could be improved
upon.

Evaluators reported they found the following issues:

• Achievements with a Silver rarity level appear as achievements to be unlocked,
rather than already obtained;

• Interacting with the extension menu is sometimes counter-intuitive, as well as
leaving the menu;

• A reload of the extension homepage is sometimes needed in order to view
updated stats and achievements after ending a session;

• It is not possible to know beforehand the criteria for unlocking achievements
and avatars, and it is also never mentioned how many achievements/avatars
remain to be unlocked;

• After interacting with a link element there is a small delay before reaching
the new page.

These issues, together with the following suggestions, will be taken into consideration
as possible starting points for future development plans of the extension. The
suggestions left by evaluators are as follows:

• Adding a loading icon or an animation during the delay after clicking a link
would be a nice improvement, making loading less frustrating and removing
the confusion of connection being slow;

• Adding a button in the menu that brings the tester to the page selected as
starting one would be a good addition, as it would give an easily reproducible
way to leave a page with no way out;

61

Evaluation

• It would be nice, in the leaderboard relative to page coverage, to know on
which page the highest score a user had obtained;

• Another way to unlock avatars, other than the predefined ones, would be
to have them be buyable; the currency needed for the purchases could be
obtained after unlocking achievements or reaching significative scores;

• It would be interesting if it was possible to share results or leaderboards with
friends, with a link or using social media;

• The profile section could be improved if it had a visible list of the goals to
reach in order to unlock avatars/achievements; this would increase a user’s
desire to work with the extension, as he/she would easily know what is still
not unlocked and how to unlock it.

4.5 Final Reflections
Overall, what can be gathered from the evaluations and the ending questionnaire
is that the more commonly used gamified mechanics (leaderboards, unlockable
achievements, progress bars, avatars) have a positive impact on GUI testing, making
users more motivated and involved in the testing activity. Such result is in line with
what previous studies about gamification have already demonstrated and can be
used to justify additional work on the extension, to improve what already exists and
refine even more the various features. It must also be remembered, however, that
these results come from a simple preliminary evaluation performed with a small
sample of participants: the conclusion reached cannot be considered an absolute
and immutable fact, meaning that more evaluation, adopting an empirical approach,
is going to be mandatory in the future. More in detail, other than observing with
more users the consequences of gamified mechanics, it will also be necessary to
define an actual testing experiment, where evaluators would be tasked with testing
pages containing actual bugs and issues, evaluating the issue-reporting functionality
of the extension as well as the effectiveness given by game elements in locating
said bugs. A more extensive evaluation on the support given to automated testing
tools would also be required, with different test cases being adopted to understand
whether the extension can generate a script that can faithfully reproduce a testing
session, removing what is one of the challenges that make up GUI testing, the
manual definition of script files. It is also important to note that the questionnaire
may be subject to the so-called Response Bias: evaluators expect that the questioner
is hoping to get positive answers and thus are led to answer more positively; the
effect this bias can have may have influenced the results, which however remain
positive, even if a bit influenced.

62

Chapter 5

Conclusions

It is important, after the results obtained during the preliminary evaluation and
their confirmation of gamified mechanics as a valuable addition to the software
testing process, to also assess the limitations found during both development and
evaluation, in order to delineate a possible starting point for future development
plans.

5.1 Limitations
The most concerning point of the extension, in terms of limitations found during
development, consists in the generation of scripts compatible with SikuliX and
Selenium. One concerning issue is the fact that it is not easy to distinguish page
changes performed with browser actions (URL changes, forward/backward arrows),
meaning that these actions cannot currently be identified and, as a consequence,
also cannot be emulated by automated scripts. Regarding SikuliX some issues arise
as a consequence of taking screenshots of widgets right after interaction:

• An element that appears only after hovering the mouse over another one (i.e.
a menu containing two links that appears when placing the mouse cursor
over the title of a web page) is screenshotted as-is, with no regards to the
parent element; this causes a situation where the SikuliX script is unable
to find the element to click since it does not appear unless the mouse has
hovered correctly. A solution would be to screenshot the entire parent element
and correctly place the offset, but it is unfeasible as there is no easy way
to understand whether an HTML element has the property to show other
elements when hovered on;

• When writing inside a text field the user might realize to have made an error,
and would then rewrite the text content: such behavior is registered correctly

63

Conclusions

but is also hard to emulate, as SikuliX may need to find a match with the
empty text field, with the text field with the wrong content and the text field
with the content highlighted (the only way to rewrite content is to select all
the content with the keyboard shortcut CTRL + A and then write the new
content). Usually, the text field with content highlighted cannot be identified
by SikuliX, leading to a failing test case;

• Clicking on a link does generally change its style, as links are intended to have
a standard color and a color they assume when hovered on; the screenshot of
a link is taken after a click, meaning that it is made with the hovering color
rather than the default one and that a SikuliX script may not find a match,
due to the different colors. To try and circumvent this issue, the extension
takes an enlarged screenshot of the link, in hopes that giving SikuliX a larger
area to find can reduce the chance of a script failing, but this solution is still
prone to errors.

Another limitation of the extension comes from the highly customizable nature
of web development: the fact that developers can choose to implement any kind
of strategy when designing a page can lead to them selecting unusual practices
(i.e. making a div element, usually used as a simple container, have a specific
behavior when clicked, emulating what could easily be done with a button element).
Such choices are obviously possible but cannot be predicted when defining the
extension behavior, leading to the extension being able to support only elements
that conventionally implement relevant actions (links, forms, buttons, dropdown
menus); elements of a different type are not, at the moment, supported by the
extension and thus are not included in the various game features (no progress bars,
no count of elements found, no highlighting). The unpredictable nature of web
development also means that elements with innate Javascript added (i.e. the use
of an Event Listener defined by developers) are hard to predict and handle, as
there is no way to know whether a given element actually has a listener attached
to it or not, meaning that there is no way to find out if elements perform some
specific code as a reaction to certain events. It is also possible that a page may
have a subsection for which it is not possible to access the DOM, meaning that
elements defined in the subsection cannot be detected by the extension, meaning
that interaction with them is not recorded. Lastly, the evaluation sessions revealed
that, if a website adopts a different layout for mobile viewing, the elements that
make up said layout are counted as intended for coverage and score computations
but, unfortunately, there is no easy way to understand which elements belong to
the mobile layout or the desktop one. As a consequence, if a user does not know
that the website under test has a mobile layout, the extension will show incomplete
coverage values with no indication of how to access the missing elements.

Another issue, unrelated to features but more general, is that portability to

64

Conclusions

other browsers is not granted, due to different browsers adopting different policies
in defining the APIs used for developing extensions. The browsers Microsoft Edge
and Opera are naturally compatible with Chrome extensions, although the latter
requires the installation of another plugin to ensure compatibility, but the same
cannot be said about Firefox and Safari, which both use a different set of APIs.
Making the extension compatible with Firefox would require a rewrite of the
code, following the guidelines defined by Mozilla[20] for developing cross-browser
extensions.

5.2 Future Plans
In light of the positive results obtained with the, albeit limited, evaluations, as well
as the limitations just reported, future work on the extension is to be expected, in
order to refine and solve the issues so as to create a useful gamified GUI testing
tool. Future development plans should, ideally, focus on:

• Deploying a non-local server which would allow users from any location to use
the extension, in case it would ever get published on the Google Chrome Web
Store;

• Defining a more extensive method for identifying interactable elements by
analyzing in detail the HTML document, to increase the support given to
action recording. The definition of a strategy for identifying elements shown
in mobile layouts, as well as a way to signal the existence of such elements,
would also be needed;

• Increasing support for script generation, both in terms of generating script for
more tools (eventually allowing users to choose for which tool(s) the scripts
would be generated) and in terms of handling better actions performed to be
replayed;

• Extending the gamified mechanics adopted: defining more achievements and
avatars, with new methods to unlock them; extending the leaderboards, with
the coverage one eventually being divided by different websites;

• Refactoring the code to be portable to other browsers without issues, increasing
the eventual future user base;

• Performing a new evaluation session, which will involve a statistically significant
amount of users, to formally evaluate the benefits that gamification can bring
to GUI testing.

65

Bibliography

[1] RaiMan. RaiMan’s SikuliX. url: http://sikulix.com/ (cit. on p. 5).
[2] SeleniumHQ. Selenium IDE · Open source record and playback test automa-

tion for the web. url: https://www.selenium.dev/selenium-ide/ (cit. on
p. 7).

[3] Inc Eclipse Foundation. Eclipse Scout - A one-stop framework to develop
professional business applications. url: https://www.eclipse.org/scout/
(cit. on p. 9).

[4] R. Feldt M. Nass E. Alégroth. «Augmented Testing: Industry Feedback To
Shape a New Testing Technology». In: 2019 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). 2019,
pp. 176–183 (cit. on p. 9).

[5] K. Berkling and C. Thomas. «Gamification of a Software Engineering Course
and a detailed analysis of the factors that lead to it’s failure». In: 2013
International Conference on Interactive Collaborative Learning (ICL), pp. 525–
530 (cit. on p. 13).

[6] T. Nash P. Anderson and R. McCauley. «Facilitating Programming Success
in Data Science Courses through Gamified Scaffolding and Learn2Mine». In:
pp. 99–104 (cit. on p. 14).

[7] A. Gambi G. Fraser M. Kreis and J. M. Rojas. «Gamifying a Software Testing
Course with Code Defenders». In: SIGCSE ’19, February 27–March 2, 2019,
Minneapolis, MN, USA, pp. 571–577 (cit. on p. 14).

[8] V. H. S. Durelli H. M. dos Santos et al. «CleanGame: Gamifying the Identifi-
cation of Code Smells». In: pp. 437–446 (cit. on p. 15).

[9] J. Brant M. Fowler K. Beck and W. Opdyke. Refactoring: Improving the
Design of Existing Code. Addison- Wesley Professional, 1999 (cit. on pp. 15,
16).

[10] PMD. PMD Source Code Analyzer. url: https://pmd.github.io/ (cit. on
p. 16).

66

http://sikulix.com/
https://www.selenium.dev/selenium-ide/
https://www.eclipse.org/scout/
https://pmd.github.io/

BIBLIOGRAPHY

[11] L. Hernandez M. Muñoz et al. «State of the Use of Gamification Elements in
Software Development Teams». In: pp. 249–256 (cit. on p. 16).

[12] I. E. Ferreira Costa and S. R. Bezerra Oliveira. «A Systematic Strategy to
Teaching of Exploratory Testing using Gamification». In: Proceedings of the
14th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2019), pp. 307–314 (cit. on p. 18).

[13] Google Chrome Developers. What are extensions? - Chrome Developers. url:
https://developer.chrome.com/docs/extensions/mv3/overview/ (cit.
on p. 20).

[14] gameart2d. The Boy - Free Sprites - Game Art 2D. url: https://www.
gameart2d.com/the-boy---free-sprites.html (cit. on p. 27).

[15] Stuk. JSZip. url: https://stuk.github.io/jszip/ (cit. on p. 36).
[16] Eli Grey. Saving generated files on the client-side — Eli Grey. url: https:

//eligrey.com/blog/saving-generated-files-on-the-client-side/
(cit. on p. 36).

[17] Software Engineering Research Group - Politecnico di Torino. Software En-
gineering Research Group. url: https://softeng.polito.it/ (cit. on
p. 54).

[18] e-Lite Research Group. e-Lite: Intelligent and Interactive Systems. url:
https://elite.polito.it/ (cit. on p. 54).

[19] B. A. Weerdmeester P. W. Jordan B. Thomas and I. L. McClelland. Usability
Evaluation in Industry. 1996 (cit. on p. 58).

[20] Mozilla Foundation. Building a cross-browser extension - Mozilla | MDN.
url: https : / / developer . mozilla . org / en - US / docs / Mozilla / Add -
ons/WebExtensions/Build_a_cross_browser_extension (cit. on p. 65).

67

https://developer.chrome.com/docs/extensions/mv3/overview/
https://www.gameart2d.com/the-boy---free-sprites.html
https://www.gameart2d.com/the-boy---free-sprites.html
https://stuk.github.io/jszip/
https://eligrey.com/blog/saving-generated-files-on-the-client-side/
https://eligrey.com/blog/saving-generated-files-on-the-client-side/
https://softeng.polito.it/
https://elite.polito.it/
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Build_a_cross_browser_extension
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions/Build_a_cross_browser_extension

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Background
	Software Testing
	End to End Testing
	GUI Testing

	Web Testing Technologies
	SikuliX
	Selenium IDE
	Scout

	Gamification
	Gamification Mechanics

	Gamification in Teaching
	Gamification in Software Engineering
	Gamification in Software Testing

	Design and Architecture
	Tools Used
	Google Chrome Extensions
	Server

	Adopted Gamification Mechanics
	Avatars
	Achievements
	Progress Bars
	Scores
	Leaderboards
	Page Discovery

	Extension Architecture
	Action
	Homepage
	Content Scripts
	Page Scripts
	Service Worker

	Extension Functionalities
	Interaction Overlays
	Issue Signaling
	SikuliX Script Generation
	Selenium

	Testing Session

	Evaluation
	Participants
	Evaluation Script
	Evaluation Questionnaire
	GUI Testing Background
	Extension Functionalities
	System Usability Scale
	Opinion Gathering

	Results
	Usability Results
	Mechanics Results
	Considerations

	Final Reflections

	Conclusions
	Limitations
	Future Plans

	Bibliography

