

Politecnico di Torino

Corso di Laurea Magistrale in Computer Engineering
Indirizzo Automation and Intelligent Cyber-Physical Systems

A.A. 2021/2022
Sessione di Laurea aprile 2022

An Innovative Strategy to Quickly
Grade Functional Test Programs

Relatori: Candidato:
Prof. Quer Stefano
Prof. Bernardi Paolo

Niccoletti Alessandro

1

Abstract

Testing implies the evaluation of a device or a software

against requirements gathered from the system specifications or

the users and it is conducted at different level during the design

process. This project presents a novel technique to quickly

provide a preliminary grade to functional test procedures of

various nature, ranging from Software-Based Self-Test to Burn-In

Functional Stress and System-level Test. The method is based on

the analysis of the functional program execution trace obtained

directly from the chip by using a debugger.

Starting from the basic theory of dependencies between

instructions inside an assembly code, this work aims to exploit

them on the execution trace to evaluate its connectivity.

When a piece is produced, it has to be tested to ensure its

reliability. Testing, in the case that is considered, means letting

execute a "gold" piece (a piece that has been already tested and

it can be considered working), extracting from it a register sign

depending on every register value at the moment in which the

sign is computed and, finally, using the "gold" sign as comparison

with all other signs belonging to the pieces to be tested. If the sign

of a normal piece does not match the "gold" sign, something

surely went wrong; but what if the two signs match? It cannot be

said that the piece is working only considering this result.

2

Whether the piece is working properly or not, depends also

on the program that has been used to perform testing. Here is

where instruction dependencies become useful. They are

exploited to understand how the data are propagated through a

particular execution of the "gold" piece: if the data propagation

is very high, we can say that, in a probabilistic way, if an error

occurs it should be propagated until the end (or until the sign is

computed); by the contrary, if the data propagation is low, in case

of something goes wrong the source of the problem could be lost.

A graph representation of the data flow is created and

visited to identify specific instructions that could impact the final

coverage.

The experimental results are carried out on an Automotive

device manufactured by STMicroelectronics to demonstrate the

effectiveness of the approach.

3

Contents

I. Introcuction ……………………………….......................... 5

II. Background ………………………………........................ 10

A. Software-Based Self-Test ………………………............. 10

B. Test during Burn-In ……………………………….............. 12

C. System Level Test ………………………………................. 13

III. The Proposed Methodology ……………………………. 14

A. Basic Algorithm ……………………………….................... 18

B. Optimized Algorithm ………………………………............ 23

C. Load and Store Instructions …………………………...... 25

D. Branch Instructions ……………………………….............. 28

E. Multiple Destination Instructions ………………......... 31

IV. The Tool ………………………………............................. 35

A. The Pipeline ………………………………......................... 36

B. Software Structure ………………………………............... 41

C. The Parser ………………………………............................ 48

D. Graph Analysis ………………………………..................... 56

E. Practical Use of the Tool 61

V. Experimental Results ……………………………….......... 70

A. Case Study .. 70

B. SBST Grading ... 71

C. Operating System Grading for System Level Test 73

4

VI. Conclusion ……………………………….......................... 73
VII. Acknowledgement .. 76

5

I. Introduction

 Complexity is absolutely characterizing the current testing

scenario. Very large heterogeneous systems-on-Chip (SoCs)

undergoes an extremely complex manufacturing test process and

are demanded to be absolutely reliable all along their useful life.

 To overcome the issues related to the huge size is a major

objective of the industry. While the structural methods like Built-

in Self-Test and other scan oriented techniques still looks

appropriate to screen out devices affected by coarse defect in the

early test stages, the adoption of functional approaches is

becoming recognized as an effective solution to catch residual

marginal behaviors.

 Nevertheless, Functional test strategies have become very

popular in the last decade to self-test the device while it is

working in its mission field.

 Despite the attractiveness of using functional methods, the

industry is often reluctant to explore this kind of test solution. In

fact, structural methods are well supported by EDA vendors. The

test set creation often requires just push-button effort to launch

parallel Automatic Test Pattern Generation (ATPG) processes that

quickly return patterns and achieved coverage at the same.

 Conversely, the functional technique development is based

on fault simulation. For example, a test engineer who develops

Software-Based Self-Test (SBST) first writes and run the

6

functional program to check if code works (i.e., not falling into

exceptions and reaching to the end). Then, he grades the

functional program by using fault simulation tools.

 Notoriously, a fault simulation process of a functional

procedure is extremely time consuming, therefore the results can

take from hours to days to be computed. This is a very strong

bottleneck. The test engineer in charge of creating functional test

libraries can wait lot of time and get unsatisfactory results: this

could happen, for instance, if they omitted to exercise some

functionality or if they have not propagated test results correctly

into signatures.

 Automated generation methods based on constrained

ATPG and randomization have been proposed to enlighten

functional test program production. Such methods autonomously

create functional programs which are often looking like a bunch

of operations sequentially executed. In this way, the generation

efforts are mitigated, but additional debug investigations are

introduced to find blocking issues that impact the coverage.

 The problematic of grading functional procedures becomes

insurmountable when moving at application level. Many

companies suggest to use real application as a final test before

shipping the component to market. This technique is called

System-level Test (SLT) and it relies on booting an Operating

System (OS) that then schedules application tasks to mimics the

in-field behavior. To grade a SLT functional program is simply

unfeasible due to the execution length of about tens of

7

milliseconds or more. Therefore, SLT is currently considered an

holistic technique, supported by an industrial evidence that

running an OS and some application still screen out some

components.

 In this project I propose a novel methodology that aims at

quickly feedback about the test quality of any functional

procedure. In particular, the illustrated strategy permits to

quickly grade any functional program and to provide indication

how the functional procedure is promising or not. If not, it helps

to identify weak instructions or blocks of code that may be

impacting on final coverage.

The proposed method takes very little time to provide results as

it is not based on simulation or fault simulation, but exploits the

silicon implementation of the chip. More in details, the method is

composed of two successive steps:

1) The functional program under evaluation is run on

silicon and the complete trace of the gold execution is

dumped on file (e.g., the unrolled list of the executed

ASM instructions);

2) The execution trace saved on file is analyzed by an

algorithm able to investigate on data flow

characteristics and dependencies (e.g., discriminating

how operands are used along the program execution).

8

 I have defined a new metric called "connectivity" which is

computed by the mentioned algorithm. This metric tells whether

the operands processed by the functional program are effectively

transported to diagnostic points or compressed into signature.

 The connectivity metric is a strong approximation of lower

level metrics like the fault and toggle coverage. My intentions is

not to replace the fault simulation as the vehicle to compute very

accurate figures. Conversely, I suggest to use the connectivity

metric to quickly get an early indication about the overall quality

of the functional program. A low connectivity value means that

some flaws may affect the program (i.e., previously computed

results are overwritten along the program flow without being

read or memory locations are not included in the signature).

 I have experimented the proposed technique on an

automotive device manufactured by STMicroelectronics, a

medium sized device belonging to the SPC58 family and used in

critical parts of the vehicle, like ABS and AIRBAG.

 Experiments encompasses three functional testing

contexts:

1) Development and analysis of Software-Based Self-Test

routines for in-field testing;

2) Generation of Functional programs able to properly

stress/test the device during the Burn-In (BI) phase;

3) Evaluation of System-Level Test functional applications

including OS boot and tasks distribution.

9

 In all cases, the connectivity metric is very useful to early

refine the functional routines avoiding repeatedly running

extremely long fault simulation process. Examples reported in the

experimental results demonstrate that a low connectivity is

always correlated to a low fault coverage value. Reference [1].

10

II. Background

 Reliability of Automotive Chips is based both on a excellent

manufacturing test and a powerful error detection ability in-field.

Traditionally, structural test methods have dominated the vast

majority of the manufacturing test process. Nevertheless, the

final test stages before market are currently more and more

oriented to functional methods, especially in the automotive

segment. The most desirable in-field self-test method to rely

today is running software test libraries.

 These routines can be preempted and are ideal to be run

at regular times (i.e., scheduled by the operating system). In this

background section, I briefly survey on:

1) Software-Based Self-Test (SBST) techniques;

2) Functional Stress/Test during Burn-In (BI);

3) System-Level Test (SLT) methods.

A. Software-Based Self-Test (SBST)

 The principle of software-based self-test (SBST) is to run

functional test patterns, based on the processor instruction set,

exploiting processor resources to test the processor itself and the

components around it [2][3]. SBST is one of the strategies firmly

included in the manufacturing flow of microprocessors. Industrial

experiences, such as [3] and [4] have confirmed the suitability of

11

the methodology. In [5] an interesting case targeting a multi-core

processor is presented. In that experience functional patterns are

loaded in cache and applied to each of the 8 Core Processing Units

belonging to a 4 GHz multi-core server in order to perform partial-

good device binning.

 SBST is also an emerging alternative for identifying faults

during normal operation of the product, by performing on-line

testing. Several reasons push this choice: SBST does not require

external test equipment, it has very little intrusiveness into

system design and it minimizes power consumption and

hardware cost with respect to other on-line techniques based on

circuit redundancy. It also allows at-speed testing, a feature

required to deal with some defects prompted by deep sub-micron

technology advent.

 Such procedures are designed to activate possible faults,

then compress and store the self-test results in an available

memory space, or raising a signal when the test has not ended

correctly. A test engineer working on the development of SBST

programs can follow guidelines given in [5] to reach high coverage

and mitigate fault simulation effort. Anyway, the job of writing

SBST programs is often considered a little boring due to the very

long fault simulation time as well as a bottleneck. The

disappointment is fueled by the total absence of tools helping

identify SBST program weaknesses that may prevent you to reach

a very high coverage.

12

B. Test during Burn-In

 Burn-In (BI) is mainly a stress phase designed to remove the

infant mortality of defective SoCs [6]. The BI provides external

stress such as the thermal stress, generated by a climatic

chamber or by socket-level local temperature forcing tools, aging

the circuit material [7]. Furthermore BI perorms and internal

stress such as the electrical one generated by scan-based

approaches [8], Built-In Self-Test (BIST) modules [9], or functional

test programs [10], driving circuit nodes to produce a high

internal activity.

 The creation of functional stress routines that produce the

proper electrical activity is easier than the creation of SBST

programs, which target the fault coverage. Furthermore, this

creation process is often automated. Randomize tools or

evolutionary engines are able to produce high quality stress

patterns with limited human efforts [11].

 Stressing a circuit by functional procedures is crucial and it

is the first objective of the generation process. Anyway, also

reaching a certain coverage is possible during BI and it is a

desirable side effect. Test During Burn-In (TDBI) permits to

retrieve information during the stress phase.

 To maximize the coverage of TDBI stress/test procedures,

the generation process is much more effective if the code

templates or macros (i.e., ASM or C/C++ code) is granting

propagation capabilities to check-points or signatures.

13

C. System Level Test

System-Level Test (SLT) has emerged as an important

additional test insertion in today’s semiconductor life-cycle.

It is run by the circuit manufacturer in the final stage of

production or by the buyer of the circuit, e.g., an automotive

Tier-1 supplier who will integrate the circuit into a product, as

part of incoming quality control. SLT can also be used during

the post-silicon characterization phase where a circuit’s extra-

functional properties are measured on a population of several

hundreds or thousands “first-silicon” circuits [12].

 Quite often, SLT consists in running functional applications

that would mimic the behavior of the device shows in field.

Booting an Operating System and running benchmark is

recognized SLT option. Despite the promising opportunity of

anticipating the next integration levels, a major concern of SLT is

how to measure the fault coverage it achieves. Very long

simulation times and prohibitive fault simulation campaign are

considerable blocking points when you want to grade a SLT

program.

14

III. The Proposed Methodology

 The proposed methodology addresses a common

weakness of the SBST, TDBI and SLT test procedure generation.

All of them share the weakness of very long evaluation times.

Simulations and fault simulations are the major bottleneck to the

creation of high-quality functional programs in short time.

Therefore, any help to reducing the number of fault simulations

is fundamental.

 The technique proposed in this project looks in this

direction. It permits to preliminary grade the test abilities of a

functional procedure without any simulation. Instead, the silicon

implementation of the device is used to extract a trace of the

functional execution using a debugger. In this way, we produce a

gold functional execution dump which can be further analyzed.

Figure 1: an high level view of our testing approach with its main flow phases

15

This dump phase takes very low time (up to seconds) compared

with a logic simulation (up to hours) of the same functional

behavior. The overall flow is illustrated in the following figure.

 The gold trace retrieved from chip by a hardware debugger

contains the linear execution of the functional program, e.g., the

list of executed instructions, with loops unrolled and real

register/memory values dumped instruction by instruction from

the chip. Once it is produced, the trace can be parsed for being

analyzed.

 In the proposed approach, the trace is organized as a graph

where every executed instructions constitutes a node. The graph

build phase and the following visits are oriented to feedback the

test engineer about the quality of the functional procedure. How

the quality definition is computed from the graph do stem from

the following theorem.

 Theorem: Write-after-Write (WAW) instruction sequences

occurring during the instruction flow over a shared addressable

location cause the previously computed values to be overwritten

and most likely lead to a loss of fault coverage. Conversely, Read-

after-Write (RAW) instruction sequences propagate values along

the execution flow, as they can reach

to an observation point, possibly leading to an increase of fault

coverage.

16

 The example that is presented next, can clarify the

situation that we could address analyzing the trace:

1 𝑎𝑑𝑑 𝑟19, 𝑟18,192
2 𝑠𝑢𝑏 𝑟6, 𝑟18,55
3 𝑎𝑑𝑑 𝑟6, 𝑟19,35

 If we take a look at the previous code, it appears that the

test contribution of instruction 2 is vanished by instruction 3, due

to the WAW sequence over register r6. Vice-versa, test contribute

of instruction 1 is preserved by the RAW of r19 by instruction 3.

Of course, the real fault coverage effectiveness of instruction 1

depends on the computed values (patterns) stored in source

registers and can be determined only by fault simulation. As well,

it is certain that the instruction 2 does not bring any benefit to

fault coverage and it could be purged

from program or the program need to be fixed to unblock it.

 Such a undesirable blocking situations due to WAW code

scenario should never appear when a test engineer works in ASM

language or he compiles C/C++ functional programs, while RAW

are desirable and should always exist. Anyway, there are some

case when WAW may appear in any case. To know about their

presence in advance would be crucial at least in the following

contexts:

example 1: WAW and RAW instruction sequences

17

• Randomization and evolutionary methods to

automatically generate functional program may

introduce WAW quite naturally. Therefore it would

be beneficial to tune the generation to minimize the

WAW and to reach a high coverage faster;

• To error is human and even typos may introduce

unwanted WAW sequences when low-level

programming in ASM language. To discover a

mistake after a fault simulation is a very frustrating

situation and a quick check before would greatly

help to avoid any waste of time;

• It is often unfeasible to grade the fault coverage

achieved by the very long program, such as the

execution of benchmarks directly compiled in C/C++

language or Operating System boot and tasks. In this

case, a check about testing ability potential

weaknesses could be the only feasible

measurement.

 The analysis performed on the gold trace dump aims at

determining whether a functional program includes any of these

blocking situations. As shown in the next subsection, every

instruction node of the graph is classified as blocked (black) or not

(green) if it propagates or not the result of its execution according

18

to theorem 1. I define the novel metric called program

connectivity computed as the fraction of blocked instructions

over the total number of investigated instructions. A program

showing very high or full connectivity can be considered as

promising under the point of view of the potential fault coverage

it could reach. Conversely, it is not a very good sign if the

functional program shows a lot of blocked instructions and a low

connectivity; such program need to be revised. The tool

computing the connectivity metric also pinpoints the blocked

instructions and can guide the test engineer to fix the proper

components of the development flow.

A. Basic Algorithm

 The proposed analysis flow is based on an algorithm able

to identify blocking situations from the executed gold instruction

trace, i.e., identify WAW which prevents information to

forwarded along the program data flow.

 Given that, the proposed algorithm elaborates the

complete sequence of instruction executed from the beginning to

the program end. It strongly differs from static and dynamic code

analysis techniques used for Formal Software Testing and security

assessment of functional programs [13]-[19]. These techniques

take the program source code as the input of their investigation.

Conversely, the proposed approach statically elaborates the real

sequence of instructions executed by the system CPU.

19

 As an example, a short loop based program may return a

very long trace if the loop is extensively repeated. By the trick

based on using the real silicon and a hardware Debugger, the

uncertainty of formal software testing approaches is overcome

and the gold instruction trace dump is obtained in very short time

compared to simulation.

 The following table reports a short snapshot of a gold

execution trace dump. The first column reports the order of

execution or cycle. Second and third columns report address and

mnemonic code of the relative instruction. Finally SRC and DST

columns pinpoint sources and destinations of every instruction in

the dump.

 Table 1: Basic Execution Trace Dump

Based on this information, a graph is first built and then visited to

compute the connectivity level of the analyzed functional

program. As well, it can extract a list of critical instructions out of

the executed code.

Cycles Address Intruction SRC DST

1 0x00000000 subfme r19,r6 r19, r6 r19

2 0x00000004 e_add16i r6,r19,35 r19 r6

3 0x00000008 e_add2i r6,r18,192 r18 r6

4 0x0000000C e_add2i r6,r6,r1 r6, r1 r6

5 0x00000010 subfme r19,r6 r19, r6 r19

6 0x00000014 subfze r6,r3 r6, r3 r6

7 0x00000018 e_add16i r6,r19,35 r19 r6

20

The base algorithm version is composed of three steps, as also

visualized in the Figure 2:

• A Build phase;

• A WAW oriented-visit;

• A RAW oriented-visit;

 The build phase, represented in Figure 3, is aimed at

adding two types of edge to each instruction in the dump. If we

look at the absolute left side of the next figure, there are two

types of edges in the graph.

 On the left part the RAW edges, that represent a read

action performed by the lower node to the upper one. On the

opposite side, the WAW edges: they are created if an instruction

destination register is overwritten by another one whose

instruction is placed in the dump after it.

Figure 2: Basic Version of Graph Build and Visits

 Graph Build WAW Visit RAW Visit

21

 Based on these two types of edge, the analysis continues

with two successive visits. Both of them has linear complexity.

 The first visit is not actually a visit: we are moving through

the graph traversing the central edges corresponding to the

sequential structure of the trace, but we call it visit for now to

make better the idea. We will see in the next section that this

function will be removed to optimize the process. During the visit,

which pseudo-code is reported in Figure 4, the nodes are labeled

red if they are WAW victim, green if not. Instruction 4 is red

because it has an aggressor in instruction 6. Instruction 5 is green

because the value it computes is never overwritten hence, it will

reach the end of the program.

 The second visit is based on traversing RAW edges to

confirm or not the WAW blocking situation that is present at the

moment on the red nodes. The pseudo-code of this visit is

reported in Figure 5. Along the visit, a red node can turn into

green if there is a RAW edge to connect it forward to a green

instruction, also passing by other nodes not directly connected to

Figure 3: Build graph function that elaborates the execution dump

22

it. Conversely, the blocking suspect is confirmed and color

updated to black. Instruction 4 is a case of red node evolving to

green, while instruction 6 is confirmed blocked and becomes

black.

 Once the graph nodes are colored, the connectivity grade

is measured. The illustrated scenario shows a 57.14\% of

connectivity, because 3 out of 7 instructions are labeled as

critical. In fact, the instruction 1, 2 and 6 will never contribute to

fault coverage since their computational results are overwritten

before being propagated anywhere else.

Figure 5: RAW visit

Figure 4: WAW visit

23

B. Optimized Algorithm

 As anticipated before, the WAW visit, in this phase, is

removed to optimize the overall process of analysis. The work

that was done, until now, by this visit, is now performed by the

graph build process.

 The reason of this change are multiple:

• The WAW edges were created only to verify their

presence, hence they were never traversed by a visit.

This was an unnecessary waste of memory;

• The set of nodes are scanned once by the graph build

process, indeed the WAW visit could be incorporated

inside the building process reducing the

computation overload. Instead of linking the two

nodes belonging to a WAW sequence the algorithm

sets directly the node to red.

 Looking at Figure 2, instruction 6 could be already set to

black during graph build, because the destination is overwritten

and none of the following nodes has a RAW dependency with it.

Due to this fact, another role occupied by the build phase, besides

the WAW visit inheritance, is to set black the nodes with the

characteristics mentioned before. Thanks to this, the final RAW

visit will have the probability to find more nodes that do not need

a call to the visit function (the green and black nodes) and can be

returned immediatly.

24

Figure 6 and 7 will better clarify the optimization performed.

 Figure 7: Optimized Version of Graph Build and Visits

Figure 6: Optimized Graph Build

25

In addition to what has been already said about instruction 6, also

instruction 2 is set to black during the first phase.

 First of all, comparing Figure 7 with Figure 2, we will notice

that the optimized one has to call at least 3 times the RAW visit

function on the three red nodes. Conversely, the basic version has

to call the visit at least 5 times, consuming unnecessary resources

and time to find out a blocking situation easily findable before.

 Then we can also see from the examples, that the results

of the two proposed version correspond.

 The RAW visit does not change, but could be also decided

to include the WAW visit inside it, instead of in the graph build.

C. Load and Store Instructions

 When a load or a store instruction is found in the code, the

algorithm needs to consider them in a alternative manner with

respect to the straightforward instructions that elaborate the

data from register to register.

 Therefore we propose slight a variation of the algorithm,

where the location in memory is treated as a virtual register. To

effectively implement this modification, the gold trace dump

needs to be modified and extended to get register values to be

used to compute the virtual register address in memory.

26

Table 2: Execution Trace Dump with Load and Store Instructions

 The code snippet reported in Table 2 includes load and

store instructions from and to memory locations, in addition to

arithmetic operations. For the sake of simplicity, all memory

locations have a size of 1 Byte.

 Figure 8 reports the corresponding graph build phase (left-

hand side) and the final result as returned by the RAW visit (right).

This example shows as memory addresses are handled the same

way as registers are. To be more specific, instruction 1 stores a

value in the location pointed by register r1. The same location is

accessed by a the load instruction at position 3, therefore store

instruction 1 is finally labelled as green. Also instruction 5 is

marked green, due to the fact that the value written in memory

is propagated until the end of the execution.

 The previous can be said if we decided to compute the

signature including also memory virtual registers. However, given

that is not an easy task to include them inside the signature, if we

decided to consider only real registers, the node 5 would be

Cycles Intruction SRC DST

1 e_stb r0, 0(r1) r0, 0, r1 mem(0+r1)

2 e_add16i r2,r0,35 r0 r2

3 e_ lbz r2, 0(r1) mem(0+r1), 0, r1 r2

4 e_add2i r2, r1, r2 r1, r2 r2

5 e_stb r2, 0(r1) r2, 0 , r1 mem(0+r1)

6 subfze r1,r3 r1, r3 r1

7 e_add16i r1,r0,35 r0 r1

27

colored as black. This is given by the fact that the information

about memory locations does no longer gives contribute to the

final coverage.

Figure 8: Optimized Version of Graph Build and
Visit considering also Load and Store Instructions

28

D. Branch Instructions

Another category of instructions that is not considered in the

basic version of the proposed algorithm is branch instructions.

These are quite difficult to elaborate, given that an issue

modifying a branch decision leads to a strong modification of the

gold flow.

 In order to classify branches as green or black, we modified

the algorithm in the following directions:

• During the regular visits, conditional branches are

left undecided and temporary colored orange;

• An additional visit is performed to possibly classify

them as green or black graph nodes.

In principle, the additional visit tries to understand if the incorrect

execution of a branch is leading to a different signature. Anyway,

just some cases can be resolved by exclusively looking at the gold

trace dump. The algorithm can color the branches in green or

black color only in the cases where the alternative address to the

one reached by correct execution of the branch is found among

the instructions that follow to the investigated branch in the

code.

 The code reported in Table 3 includes a branch

generated by a simple if--then-else construct, while in Figure 9 is

reported graphically the same example.

29

 Table 3: Execution Trace Dump with Branch Instructions

Cycles Address Intruction SRC DST

1 0x00000000 e_li r0,0 / r0

2 0x00000004 cmpl r0,1 r0, 1 CR

3 0x00000008 e_ beq jump CR /

4 0x0000000C cmpl r0,0 r0, 0 CR

5 0x00000010 e_add16i r1,r2,r3 r2, r3 r1

6 0x00000014 jump: e_add6i r1,r0,r1 r0, r1 r1

Figura 9: Example containing Branch Instructions Analysis

30

The previous figure reports the analysis in which our basic visit,

reported on the left-hand side, leaves the branch node

undecided. Once done that, the second visit evaluates the

signature under the hypothesis of taking the wrong branch path.

 In this specific case, the instruction that would be reached

if the branch decision is wrong is included within the set of

instructions that follow the branch itself. A new orange colored

edge is added in the figure to highlight this situation and it clearly

appears that some instructions will not be executed if the branch

is wrongly done (taken if it was not taken, and vice-versa).

 In the current scenario, the instructions that are skipped

are green, therefore it results that the final registers value may

change and the signature value potentially compromised. Indeed,

the branch node is labeled with green color.

 Conversely, if all skipped instruction were black, meaning

they are not contributing to the signature value, the branch

would be colored black as illustrated in Table 4 and Figure 10.

 Table 4: Execution Trace Dump with Branch Instructions Blocking Version

Cycles Address Intruction SRC DST

1 0x00000000 e_li r0,0 / r0

2 0x00000004 cmpl r0,1 r0, 1 CR

3 0x00000008 e_ beq jump CR /

4 0x0000000C e_add16i r1,r2,1 r2 r1

5 0x00000010 e_add16i r1,r0,1 r0 r1

6 0x00000014 jump: e_add6i r1,r0,r2 r0, r2 r1

31

E. Multiple Destination Instructions

 In this section, is presented a new version of the algorithm

that take into account also instructions that could have more than

only one destination. Now the main difference is that the color is

not anymore assigned to the node, but to the single destination.

The reason is that every destination belonging to a node could

have different colors, so they could bring different contributes to

the final coverage.

Figure 10: Example containing Branch Instructions Analysis Blocking Version

32

 In the next Table 5 and Figure 11 is reported an example

taking into account multiple destinations. To better approach for

the first time this new method of analysis, it is represented

without the optimization of the WAW visit.

 Table 5: Execution Trace Dump with Multiple Destination Analysis

Cycles Address Intruction SRC DST

1 0x00000000 subf r0,r1 r0, r1 CR, r0

2 0x00000004 e_add16i r1,r0,35 r0 r1

3 0x00000008 e_add2i r1,r0,192 r0 CR, r1

4 0x0000000C e_add2i r1,r1,r1 r1 CR, r1

5 0x00000010 subf r0,r1 r0, r1 CR, r0

6 0x00000014 subf r1,r2 r1, r2 r1

7 0x00000018 e_add16i r1,r0,35 r0 r1

Figure 11: Example containing Multiple Destination Analysis

33

 In the practice, also the analysis with multiple destination

is performed optimized without WAW visit and WAW edges. In

the next Figure 12 and Figure 13, indeed, are reported the two

pseudo algorithm of graph build and RAW visit, in the case of

multiple destination.

Figure 12: Multiple Destination Graph Build Optimized

34

 Multiple destination analysis could be considered the last

of the consecutive steps we have made until now. It is not an

isolated case of analysis, indeed most of the instructions

encountered in a real-life situation has more than one

destination, including some of the branch instructions and

load/store ones.

 This themes will be discussed better in the section

completely dedicated to the algorithms and software structure.

Figure 13: Multiple Destination RAW Visit

35

IV. The Tool

 Until now the focus has been put on the general method of

analysis, to have a first contact with this techniques, without

entering too much into details. This chapter is dedicated more on

technical aspects of the overall organization of the work, from the

extraction of the trace by the chip, using the debugger, passing

through the implementation and the algorithms, up to finally the

computation of connectivity.

 In this section we will deal with the following main point:

• The pipeline, representing the overall work-flow

from the beginning to the end of the analysis;

• The software structure, in which the main class are

presented and described, with all their attributes

and methods;

• The parser: this is the first macro part of the project.

It takes as input some file extracted, by debugging,

from the gold execution and produce a graph file;

• The second macro part of the project: the graph

analysis. It receives from the parser the graph file

just created and performs graph build, all the visits

and the final analysis to compute the connectivity;

• The algorithms. In this section the algoritms

presented in the chapter III "The Proposed

Methodology" will be seen more closely.

36

A. The Pipeline

 In the previous Figure 14 is represented the overall

organization of the work-flow. At the top right corner we can see

that the starting process, called parser, receives as input three

different files.

 Let's analyze them more closely:

• instructionInfo.txt: this file contains the lists of all

instructions needed by the analysis. For each line,

associated with one instruction, are reported, in the

following order and separated by a white space,

some essential information:

Figure 14: Overall Organization of the Work-Flow

37

1. A string representing the instruction type in

the set {A, B, BC, L, S, SP}, where A stands for

Arithmetical, B for Branch, BC for Branch

Conditional, L for Load, S for Store and SP for

Special;

2. A string representing the name of the

instruction;

3. A string composed by two part: the

destinations part and the sources part. Each of

them is separated by a comma and contains,

at the beginning, the number of

destinations/sources and then a list of string

of three possible types: a number if the

instruction has an explicit parameter in that

position, a string if the instruction has an

implicit parameter corresponding to that

string, a string, starting with "mem" if the

instruction performs an access in memory,

containing the indications to compute the

base address and the number of location to be

accessed.

• regFile.log: this files has been created during the

debug of the chip. It contains, for each line that is

associated with an instruction, the list of all registers

followed by their actual value in hexadecimal base.

It is predominantly exploited by Load and Store

38

instructions to compute the address of memory

locations to be read or written. This file could have

very large dimensions, depending on how many

instruction the gold device has executed.

• traceFile.csv: it is the execution trace dump

exctracted directly from the chip in a csv format. At

the very beginning it is given in a very rough form,

with a lot of unnecessary information inside to be

filtered and a structure that does not follow a very

straight shape. This is why when we have to deal

with trace of thousands or millions of instructions,

this file could be very large and tough to manage.

Therefore traceFile.csv has to be filtered and the

information extracted from it are the instruction

address, the instruction name and the explicit

operands, if they are present.

 In the next three figures (Figure 15, figure 16 and figure 17)

is given an example of all the three input files of the parser phase.

Figure 15: Piece of File instructionInfo.txt

39

 Looking more in details to Figure 15, the first line, for

example, tells to the parser that it could encounter, during its

execution, an arithmetical instruction named se_srawi. This kind

of instruction has two destinations, register XER and the first

explicit operand that appear in the instruction call, and two

sources corresponding to the first two operands. If, instead, we

Figure 16: One Line of regFile.log

Figure 17: Piece of traceFile.csv

40

take a look at the last line of the example, it is a store instruction

called se_stw and it has a memory destination, computed

considering as base address the sum of the content of the explicit

operands in position 2 and 3. Furthermore we have to consider

how many cells of memory are addressed: in this case the

instruction is storing a word, so it writes four location of memory,

as reported after the closed bracket. We notice also that there

are three sources, and they are the first three explicit operands.

 In Figure 17 it can be seen that the structure of the initial

trace file is not very linear. However, analyzing it better, can be

found very useful informations, like the SV field corresponding to

the instruction address. We moreover find the necessary

informations about the name and the operands of every

instruction inside the gold execution dump.

 After the parsing phase a file graph is produced, containing

informations to build properly the graph structure. At the very

beginning of this file, is reported the number of total nodes that

the final built graph will have. Immediatly after, is written one line

for each instruction inside the trace. The layout of every line is

not fixed: it can be different depending on the type of instruction.

In general, every line of graph file contains informations about

destinations and sources: they are the most crucial and important

informations of the overall analysis.

41

 At this point of the pipeline, the graph file is given as input

to a translator, that interpretes its content and store the

informations about every node in an array, that mantains the

sequentially order of instructions inside the trace.

 Finally, the array is passed to the graph analysis process

that builds the graph, perform RAW visit and, at the end, the

Branch visit. Te overall process is completed by the computation

of the connectivity metric in two different types:

• The AVG Connectivity: it is the average percentage

of green destinations inside a node.

• The Branc Connecticity: this is, instead, a

connecticity that take into account only the

information about conditional branches. Indeed, it is

the percentage of green conditional branches inside

all the graph.

B. Software Structure

 This section deals with the software structure organization

and, more in details, the main classes shape, their attributes and

their methods. The overall project is developed in C++ so, the

following declarations are reported in a C++ code style.

 I have defined three main classes to implement the

pipeline introduced in the previous section:

42

• Class Parser: this class represents the parsing

process, the first in the pipeline. It contains

attributes and methods with the purpose of

performing the parsing from traceCSV file to graph

file.

• Class Graph: this second class is the abstraction of

the graph analysis phase, including also the

connectivity computation. Graph class methods can

access both private method of Parser class and Node

class, presented in a while.

• Class Node: this class wants to be the abstraction of

every single node inside a graph. It stores important

informations about destinations and node colors.

 In the next Figure 18 these classes are presented in a

diagram form, with all their attributes and methods. The

connection between different classes means that, following the

arrow direction, a class can accede the private member of the

pointed one. In the diagram are not only reported classes, in a

continue-line box, but also the structures needed by some of

them, inside a fragmented-line box.

 In the discussion that follows, for sake of simplicity, every

getter and setter methods are not reported. Furthermore, the

considerations done are based on the hypothesis that the code

version is the one considering every possible situation: basic

version, Load and Store, Branches and multiple destinations.

43

 Graph class has three attributes: a string containing the

location of graph file to be read to build the graph, the number of

nodes inside the graph and a vector of Node object. Its methods

include two constructors, one of them a default one, a

read_graph method implementing the translator process (Figure

14), a serach_target_node and build_graph that together forms

the graph build process, a RAW_visit, branch_visit and visits that

make up the graph analysis phase and, finally, a

Figure18: Classes with their Attributes and Methods

44

compute_connectivity method that produce the two connectivity

index mentioned before. There is also a last method that is the

generate_graph, useful to generate automatically a trace file,

register file and graph file to test the functionalities of the tool,

but keeping in mind that being generated automatically we will

not have to take into account the connectivity evaluation.

 Graph class is connected to both Node class and Parser

class with an outgoing arrow, meaning that it can access private

member of them. This is why Graph class stores a vector of Node

object and it is very convenient to do it, to have more control.

Another reason is that to generate automatically a graph, it is

useful to easy access the parser methods and faster create trace,

reg and graph files.

 Node class give life to the most internal part of the graph.

It is a very important container of informations, due to the fact

that it stores the colors and conditional branches offset to

perform branch visit. It contains a node ID, an instance of the

structure representing every single instruction, a color

representing the general coloration of the node (if at least one

destination is green, this field is set to green) and an integer in

which is saved, in correspondence with a conditional branch, the

offset needed to jump to the alternative address and to peform

branch visit. Regarding the methods, this class implements only

one default constructor, one normal one and a copy contsructor.

As we can see, always referring to Figure 18, structure Instruction

is linked to the structure Dst. This is given by the the fact that

45

every destination inside an instruction, has its own color and its

own list of RAW edges.

 The last class to analyze is the Parser class. As it has been

already said, parser class implements the parsing process. This

brings a parser object to save, during its life, some information

useful to help performing this task. The first attribute is a map

that represents the instructionInfo file presented before. It stores

the informations about destinations and sources of all possible

instruction, avoiding that the reading of the file was done too

much times. This map receive its fields from the InstructionInfo

structure. Another attribute of the parser class is the

registerFilePosition map: it stores the position of each physical

register inside a single line of the register file, so that every access

to the file is direct and it does not need any research.

 The fields of the class that follow represent, in the order,

the names of the locations of the files tath are needed by the

parser: instructionFile, csvFile, registersFile, traceFile, graphFile,

registerFileFiltered. The first three locations contain files that

already exist while the others are locations that are going to be

written by the parser. Figure 14 shows that the parser has only

one output, that is the graph file. This is actually true, but

internally, parsing process, creates also other two files

corresponding to traceFile and registerFileFiltered. The last two

attributes are a vector containing the instruction addresses and

the number of instruction inside the trace of the gold execution.

 The methods of class Parser, are only listed next. However,

46

in the next section they will be discussed more in details. They

are: a constructor, buildInstructionMap, buildRegisterPosMap,

buildTypeMap, createTraceFile, createGraphFile, makeStats,

resolveAddress and createAddressesVector.

 Are represented below three pictures describing better the

structure, in C++, of the classes presented before. These images

include also methods and atrributes that do not appear in Figure

18, as setters, getters and printing functions, as well as could be

possible that some name has been changed, to better describe

Figure 18.

Figure 19: Graph Header File Figure 20: Node Header File

47

Figure 21: Parser Header File

48

C. The Parser

 This section is completely dedicated to the parsing process

description.

 The files, directly extraced by tracing the gold execution

and whose structures are shown in Figure 15, Figure 16 and

Figure 17, are directly fed to the parser. The first two operations

to be performed, are constructing the two maps needed for the

process : instructionMap and registerFilePosition. They are built

calling methods buildInstructionMap and buildRegisterPosMap.

 At this point, we are ready to switch on the parser and

analyze the csv file with the aim of creating, at the end, the graph

file. As it has been said before, this phase creates also two

internal files: traceFile and registersFileFiltered. They hold the

filtered version of csv file and registers file, initially given in a very

rough shape.

 The parser phase could be split into two main parts: the csv

filtering, that produces a trace file given in input to the second

part and the trace management, which in turn creates the final

graph file.

 The csv filtering takes as input csvFile and registersFile.

Then the method createTraceFile is called to produce the final

files traceFile and registersFileFiltered. In Figure 22 is reported a

chunk of traceFile. It is the linear version of the csv file, without

unnecessary fields and, for each line is reported an instruction of

49

the execution dump with all its explicit operands. Instead,

registersFileFiltered has the same structure of the initial

registersFile but contains precisely one line for each instruction in

traceFile. This filtering on registersFile is performed because

during the phase of debugging, some line of the register dump is

copied multiple times inside the initial file: if this fact is not

correctly managed, could be cause of some bad behavior of the

tool.

 Trace management phase, conversely, take as input the

just generated traceFile and registersFileFiltered and give them to

the createGraphFile method that is called with the aim of creating

the final graphFile. The next figure shows graphically the parser

phase, underlining the split into the two main parts of the

process.

Figure 22: Chunk of traceFile after csv filtering phase

50

 We have talked about the two methods that together form

almost the overall process of parsing: createTraceFile and

createGraphFile. Let us analyze them more closely:

1. createTraceFile: this method has two main

objectives. The first one is to fill the addresses vector

every time a valid instruction is found in the csv file

with the proper instruction address. This work will

result useful in the createGraph method to set the

conditional branch offset. The second main objective

of the method that we are analyzing, is to filter csv

file and register file to write the useful informations

into the trace file and the register fitered one.

Figure23: Parser Phase with its Main Division

51

2. createGraphFile: this procedure is definitely the

most crucial of the overall process of parsing. It

completely separates the trace dump from its initial

structure and create ad hoc file, already presented

as graph file, that is the only one needed to build

completely the graph and analyze the gold trace

execution. At the beginning of the file, the method

writes the number of total instructions inside the

trace. For each instruction in traceFile this method

controls if it appears in the instruction map. Then, if

the instruction is a conditional branch, is performed

a control on the existence of both possible addresses

to jump and, consequently to its result, there are

two possibilities: if it is positive, is computed the

distance from the current instruction to the

alternative address to jump and it is stored in the

graph file, otherwise the method writes a string

DANGER, to signal that the alternative does not exist.

At this point, the process continue writing on graph

file a capital letter D, meaning that the list of

destination is going to begin. The destinations are

computed based on the informations stored in the

instruction map, so every destination present in the

map is stored in the graph file, from explicit

operands to implicit ones. The memory operands are

treated specially by a method of the class Parser that

52

will be analyzed next: resolveAddress. Currently let

us consider that the memory operand will be

reported in the graph file in the form

mem(base_address)num_location. Now a comma

followed by a capital letter S, signals that the list of

sources in taking place. The proceedings used is the

same as for destinations, since instruction map

contains both informations about destinations and

sources. All the informations stored in the graph file

are separated by a white space.

 At this point graphFile has been generated. As said before,

it has a structure that completely separates the trace from its

initial condition. For example, from now on, the instruction name

is an information that is not anymore useful, reason for which it

is not included in the file. This separation is wanted also in the

sense of tool execution: the number of instructions at the

beginning of graph file, let a user in possession of a graph file to

execute the tool without calling the Parser methods and going

directly to the analysis phase.

 As we can see in the next Figure 24 the graph file carries

on only indispensable informations about analysis purposes:

branch offset (if needed), destinations and sources. This is all the

necessary to build the graph structure, perform the analysis and

compute the connectivity to reach the gol of grading the gold

execution trace dump.

53

 The first line describe an instruction with one destination,

corresponding to register r5, and three sources: an immediate

with value 0, register r3 and 4 consecutive locations of memory

starting at address 16669732. The third line is associated with a

conditional branch, due to the fact that it starts with a branch

alternative offset of value 3. This branch has no destinations and

two sources corresponding to Condition Register CR and the

immediate that represents the address jump of the instruction.

 To better understand the offset mechanism, the number 3

means that in case of an error in the third instruction, the

execution would jump directly to instruction 6. This, following the

reasoning of section III D. Branch Instructions, is useful to perform

branch visit, that controls if there is at least one green node

between the branch instruction and the target offset intruction.

For completeness, looking at the last line, this means that the

instruction linked to it does not have any operand.

Figure24: Chunk of Graph File

54

 It has been mentioned before a method named

resolveAddress. This method receives as input a memory

expression directly from the instruction map and compute the

base address and the number of consecutive location to be

considered. This method is essential for Load and Store

instructions, because it resolves all possible intruction involving

accesses in memory, from a single Byte to a multiple word

instruction.

 The last three methods remained to analyze are not useful

for the final computation of grading results. buildTypeMap

method is called during the automatic generation process and it

creates a map containing, for each type in the set mentioned

before, the list of all instruction of that type. In this way it is easier

to control the generation at different type percentage.

 createAddressesVector is a method used only in a very

particular condition: in the case in which the csv file is not given

and in some way it is available a trace file , if we want to call the

createGraphFile method we have to build the addresses vector

that, usually, is created by the createTraceFile method. In this

way the process can be continued also in the absence of one of

the files inside the chain.

 The last method is called makeStats and it performs a

statistic on the type of instruction inside the traceFile, returning

a percentage for each type on instruction. It also writes on a file,

for each distinct instruction found in the trace, how many times

they appear.

55

 The next two Figure 25 and Figure 26 contain the pseudo

code of the two main methods mentioned before:

createTraceFile and createGraphFile.

Figure 25: Pseudo Code of createTraceFile Method

Figure 26: Pseudo Code of createGraphFile Method

56

D. Graph Analysis

 After having performed the Parsing phase, we are in

possession of a very precious file: the graphFile. As previously

said, this file alone is sufficient to build the graph structure and to

do analysis to compute the connectivity metric needed to grade

the gold execution trace dump.

 This phase is diveded into three main parts:

• The translation part, in which graph file is taken as

input by the read_graph method. This process stores

in memory the informations about every Node in the

vector nodes that is an attribute of the Graph class.

In this phase the most important passes are basically

two: the first pass coincides with the management of

the attribute branchAlternativeOffset, set by the first

part of the method, in that the value needed is

situated at the very beginning of each graph file line

(if corresponding to a conditional branch

instruction). The second one, is the set up of all

destinations and sources iside the destinations map

of the class Node. Next, in Figure 27, is reported a

pseudo code of the read_graph method, the one

that could be considered as the main performer of

the overall translation part.

57

• The build part: in this second section of the graph

analysis phase, the main protagonist is the

build_graph method. This procedure has already

been analyzed in Figure 3 with a basic representation

of it and in Figure 12, in which the algorithm has its

final shape, considering also the multiple destination

mechanism.

• The visits part: this last segment of analysis is the real

part in which the graph is visited and the

informations elaborated to color every destination

and every node inside the graph. The first visit (RAW

one) performed, has been already commented in

Figure 5 (basic version) and in Figure 13 in which also

multiple destination are taken into account. The

second visit is represented by branch_visit method:

this method aims at visiting the graph, starting from

the end, and finding out if, in case of a conditional

branch instruction, the nodes bewteen it and the

target node have at least one green node. If this

happens the branch node will be colored as green

because, in case of something went wrong, the final

computed sign would be changed. If these nodes

analyzed are all completely black, the branch node

will be sign as black. Both RAW visit and branch visit

are called by the interface method visits. In Figure 28

is reporthed the branch_visit method.

58

Figure 27: Pseudo Code of read_graph Method

Figure 28: Pseudo Code of branch_visit Method

59

 The last two methods of the Graph class to be analyzed, are

the generate_graph and compute_connectivity. The first one is a

procedure that, as sais before, create a trace file and a registers

file in a completely random way. It receives, by the user, the total

number of instructions that he wants to put in the trace and the

percentage, for each type of instruction. Then the method

createGraphFile is called and a new graph file i created to let the

tool perform the final analysis.

 The compute_connectivity method, instead, is the final

procedure to be called at the end of the pipeline. It take as input

the vector nodes of the Graph class and computes the two,

mentioned before, metrics of the connectivity: the AVG

connectivity and the branch connectivity.

 The AVG metric is computed, for every node, as the

percentage of green destinations over the total number of them.

Then, is performed the average of the percentages just calculated

as the final result. This metric give us an idea of the total

connectivity of the gold execution trace: the higher is the average

obtained, the more is the goodness of the program associated

with the analyzed trace.

 The branch connectivity, conversely, is computed taking

into account only nodes that contain informations about

conditional branches. The final result is the percentage of green

conditional branches over the total number of them. The result

just obtained is an indication of how the branch mechanism is

60

working inside the specific execution of the gold device. The

higher is the percentage obtained at the end, the more the

process is spreading its informations, even in the case a possible

error on a conditional branch occurs.

 Next is reported a picture in which is shown the overall

process of graph analysis.

Figure 29: Graph Analysis Phase

61

E. Practical Use of the Tool

 From a user point of view, this section could be useful as a

guideline to understand better the overall process needed to

start the tool, from the building to the execution.

 First of all we have to build the executable file. I have

defined some make lables that are handy to quickly compile and

execute the program:

1. make or make build: they equally build the overall

project, from parsing to analysis. This commands

create also two directories: build and stats. The first

could be useful to store the results of parsing

analysis, passing the right path to the tool, and

contains by default the executable program. The

second one is used by Parser makeStats method to

store informations about the number of distinct

instructions inside the trace.

2. make parser: it is correspondent to the previous

commands but it only consider the parsing part of

the process. This could be useful to only test this part

without compilink and linking the whole project. This

time the directories created are parser and stats,

with the same goal of the previous described.

3. make debug: this command sets up a debug session

with lldb (can be changed modifying the type of

62

debugger in the makefile) of the whole project.

debug and stats_debug are two directories

automatically created.

4. make debug_parser: this is the corresponding

version of the previous command but related to the

parsing part of the tool. debug_parser and

stats_debug_parser directories are created.

5. make clean, clea_ parser, clean_debug,

clean_debug_parser: these are the commands to

cleanup the directories created by the

corresponding build lables.

6. make run, run_parser: these two commands start

the program inside the build directory and the parser

directory, respectively.

 Let us consider we are calling the make build command.

Once the tool is built, the make run command starts the tool. The

main file of this project is organized as a choice menu with eleven

different alternatives. The next Figure 30 will better clarify this

graphically. Subsequently, will be presented, command by

command, a description of the tool functionalities.

63

0. This command, as written in the previous figure, create a new

instance of the tool. More in detail, it asks the user to insert

the six file positions needed to create Parser and Graph

objects, as it can be seen in the next Figure 31. The first three

positions contain files already existing, while last three

locations correspond to the files that the parsing process will

generate: traceFile, registersFileFiltered and graphFile.

1. This second command, performs the building of the two main

maps inside the Parser class: instruction map and register file

position map. This execution has sense ony if called after an

Figure 30: Main Tool Menu

Figure 31: Option 0 Execution

64

instance of the tool has been generated but, even if it was

called before, nothing bad will happen.

2. This option will tell the tool that we want to analyze the csv

file and, consequently, the createTraceFile method will be

executed. The first two file positions that was empty before,

looking at Figure 31 the positions build/trace.txt and

build/reg.txt, are now occupied by the contents of traceFile

and registersFileFiltered. This option can be selected only if

the user is in possession of the csv file and the registers file.

Furthermore it has sense to select this choice only after having

created an instance of the tool and the two maps.

3. If this option is chosen, the toll will analyze trace file and

registers file filtered with the aim of creating the final graph

file: everything is done by the createGraphFile method. At the

end of the execution even the file position build/graph.txt is

not anymore empty: the content of graphFile has been copied

there. This command can be selected even if we are not in

possession of the csv file: only the trace file and the registers

file filtered are needed. As it has been said in the section C.

Parser, this particular case has the overload of the

createAddressesVector method that has to set up the

necessary structure to create the graph file. The only

necessary condition to run properly this option, is that exists

an instance of the tool and the maps are built.

4. At this point, there is an important change of role: the Parser

object has finished its job and the overall work is passed to the

65

Graph instance. This option can be selected even if none of the

previous commands has been already called before: the only

thing necessary, in this situation, is to have a valid graph file.

If we are in a situation in which we have used the Parser before

this moment, the command will call directly read_graph and

build_graph methods. Conversely, the tool will ask to insert

the position of the graph file to be used. Then, first calls a

constructor of the Graph class to setup a Graph object and

then calls the same methods mentioned a little while ago.

5. Now in memory is saved the built graph with all the RAW

edges set. If this command is selected, the visits interface

methods is called. It, in turn, calls the RAW visit for each node

in the graph and the branch visit for each contidional branch

that is colored has orange. This option can be chosen only if

the option 4 has been called before. This is given by the fact

that it has no sense to perform a RAW visit or a branch visit

without having built a graph before.

6. To this option is related an useful procedure to quickly change

the path of one of the six file positions stored in the Parser and

Graph instances. The tool will ask to insert one of the following

string to identify which file is going to be changed: instr, csv,

reg, trace, regFilt, graph. Then we have only to insert the new

file position and everything is set up.

66

7. This command prints on the terminal a list of informations

related to each node inside the graph structure. For each node

is reported the node color, the branch alternative offset, every

destinations with their colors and RAW edges, and every

sources. The layout of the printing is reported in the next

Figure 32.

8. This command is useful if we want to know more about the

types distribution of the instructions inside the trace file. The

method called is the makeStats belonging to the Parser class.

The next two Figure 33 and Figure 34 report the two output of

the process.

Figure 32: Option 7 Execution: Printing Graph

Figure 33: Terminal Output of makeStats Method

67

9. This option, if chosen, computes the two connectivity metrics

discussed before. Once the method compute_connecticity is

called, the two expected output are printed on the terminal

window. An expanded analysis of the graph is reported in a file

created by the method: connectivity.txt. It contains, for each

node inside the graph, the percentage of green destinations

over the total of them. These information will be then

compressed to create the AVG connectivity metric.

Furthermore, inside the new created file, are stored more

informations about the graph analysis just performed: for

each distinct destination that appear in the graph, is

computed the percentage of times that the single destination

has resulted green over the total number of time that the

Figure 34: File Output of makeStats Method

68

destination is encountered. In the next two figures are

reported a chunk of terminal window in which AVG and

branch connectivities are shown, and a piece of connectivity

file that shows some registers that has been found as

destinations inside the trace.

10. This command is selected to generate automatically a trace

file, a registers file and a graph file. The only things that the

tool asks to insert are: the file positions of instruction file,

trace file to be generated, registers file to be generated and

the graph file to be generated. Then the program wants to

know if the generation should be automatic or not: the reason

is that, at this moment, only the automatic generator has been

implemented but there is the possibility to write the code for

a guided version of the generator. Anyway, if we do not select

the automatic version, the execution will return to the main

Figure 35: AVG Connectivity and Branch Connecticity Printed on Terminal Window

Figure 36: Piece of Connectivity File in which Some Destination Register is Reported

69

menu. Now the tool asks how many instruction will be in the

trace and, for each type of instruction, what will be the

presence percentage.

11. This option closes the tool and free all the memory allocated

for the Graph, Parser and Node objects.

70

V. Experimental Results

 The experimental results section includes many scenarios

sharing the same automotive device. The common case of study

is a SPC58 family micro-controller manufactured by

STMicroelectronics. The chip characteristics are detailed in the

next section V. A.

 Section V. B illustrates how the methodology was used to

assess SBST programs belonging to a Core Selt-Test library.

 Section V. C reports about preliminary experiments for

grading a Real-Time Operating system bootstrap and workload

including SBST tasks.

A. Case Study

 The case study is an automotive microprocessor belonging

to the STMicroelectronics SPC58 family. The selected processor

features multiple cores, many modules such as timers and

communication modules. This device is used in critical parts of

vehicles. The circuit counts around 20 millions gates and each of

the CPU counts 1.5 million Stuck-at faults. Figure 37 shows the

experimental setup used to validate the proposed approach.

71

 The debugger in the previous figure is used to extract the

gold execution trace dump. Then, as we have widely said, the

dump is passed to the tool to compute the connectivity metrics.

B. SBST Grading

 The adoption of the proposed strategy is encouraged by

the results that we achieved when grading Software-based Self-

Test programs belonging to a Core Self Test library written by very

Figure 37: Experimental Setup including a Development Board and a Hardware Debugger

72

skilled test engineers. In particular we analyzed SBST programs

targeting many components of the CPU core.

 Table 6 reports about the investigated SBST programs,

putting in comparison the fault analysis times and results, with

our new method of preliminar grading.

 As we could expect, the first automatic generated trace has

a lower connectivity with respect to the others written by

qualified test engineers. The second has an high connectivity, but

it is a matter of probabilities: being randomly generated is

possibile that instruction has an actual high connectivity between

them only by chance.

 The previou table shows that, on average, our method

takes seconds to perform the analysis. Comparing this time with

the average fault simulation time, we obtain a very important

result. I want to remember that this method is not a substutution

of the fault analysis process: it is, instead, a quick way to decide

Program Name
Program size

[Bytes]

Connectivity

[%]

Grading

Time [s]

Stack-at

fault #

Stack-at fault

coverage [%]

Fault simulation

CPU time [m]

Automatic trace 1M / 38.5 50 / / /

Automatic trace 10M / 76 229 / / /

Arithmetical adder 1,635 58.5 40 19,760 92.6 1,463

Count-zeros unit 1,160 63.3 19 3,069 86.8 512

Bit-wise logical 680 97.9 11 2,828 95 339

Branch target buffer 4,476 40.6 / 19,990 71.2 4,009

Table 6: Results from the Execution of the Tool

73

if performing fault analysis could have sense or not. But, it is also

an indicator of which instructions and which destinations are

giving more problems. For this reason, the toolt becomes useful

to remove or correct them to better perform the testing phase.

C. Operating System Grading for System
Level Test

 Now we are going to try to grade some trace that are

exctracted during the execution of the gold device during some

task performed by operating system.

 Table 7 shows some result of the analysis performed by the

tool, this time with real time operating system trace. Also this

kind of analysis took some milliseconds that, compared with fault

simulation average times, is a very good results.

Program Name AVG Connectivity [%]

Real Time Operating System (RTOS) 79.8

RTOS with enhanced stack frame 100

Table 7: Results from the Execution of the Tool with Real Time Operating System Trace

74

VI. Conclusion

 Hardware testing needs to be thorough and precise

because if a bug is missed, the cost of fixing it later is huge.

Unfortunately, not even the world’s brightest hardware

manufacturers get their designs right the first time around.

Moreover, testing may require costly and domain-specific testing

devices and testing may be extremely time-consuming.

 Dynamic taint analysis and forward symbolic execution are

quickly becoming staple techniques in security analyses, such as

malware analysis and vulnerability discovery. Nevertherless,

there has been little effort to apply similar techniques to other

domains.

 In our work, we first run our functional program, we collect

its complete trace, and we dump it on file. Then, we visit such a

file and we build the data flow graph of our code. Finally, we visit

such a graph to understand how operands are manipulated by

the instruction flow. We present several possible versions of our

application, starting from the trivial implementation and moving

toward the most optimized one. We show how all these versions

have reasonable memory and time cost. Moreover, we prove

how the connectivity figures to tool return can indeed be used to

appropriately grade the coverage on the chip.

 This work demonstrates that, with the new metric we have

introduced, is possible to give a preliminar grade to a test

75

program without performing any king of fault simulation that, as

we have seen, is the strongest bottleneck for a testing process.

 I think that putting beside this technique with a fault

injection and other testing methods this work will result very

useful and fast to use, but, above all, it will bring very relevant

innovations.

 Especially, being this method a novel technique, i think that

a lot of improvements can be done, both in the performances and

in the reasoning that lies behind it, especially about all the part

related to the conditional branches and branch_visit.

76

VII. Acknowledgements

 In this section i want to thank all the people that have

worked with me during these months and are still involved in this

project: my supervisors Stefano Quer and Paolo Bernardi to have

chosen me to do this job and let me undesrstand better the

testing world; Francesco Angione, who has created for me traces

to be analyzed, extracted directly from the chip using the

debugger; i want to thank Francesco, also for the experimental

results related to fault analysis process; finally, Andrea Calabrese

and Lorenzo Cardone for the support and the useful advice given

in this time together.

References

 [1] D. Appello, P. Bernardi, A. Calabrese, S. Littardi, G. Pollaccia, S. Quer,
 V. Tancorre, and R. Ugioli, “Accelerated analysis of simulation dumps
 through parallelization on multicore architectures,” in 2021 24th Inter-
 national Symposium on Design and Diagnostics of Electronic Circuits
 Systems (DDECS), 2021, pp. 69–74.

 [2] A. Paschalis and D. Gizopoulos, “Effective software-based self-test
 strategies for on-line periodic testing of embedded processors,” IEEE
 Transactions on Computer-Aided Design of Integrated Circuits and
 Systems, vol. 24, no. 1, pp. 88–99, Jan 2005.

 [3] P. K. Parvathala, K. Maneparambil, and W. C. Lindsay, “Functional
 random instruction testing (frits) method for complex devices such as
 microprocessors,” United States Patent 6948096, 2005.

 [4] I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident functional
 microprocessor testing: Avoiding high speed io issues,” in 2006 IEEE
 International Test Conference, Oct 2006, pp. 1–7.

[5] P. Bernardi, R. Cantoro, S. De Luca, E. S ́anchez, and A. Sansonetti,
 “Development flow for on-line core self-test of automotive microcon-
 trollers,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 744–754,
 March 2016.

[6] T. Mak, “Infant mortality–the lesser known reliability issue,” in 13th
 IEEE International On-Line Testing Symposium (IOLTS 2007), 2007,
 pp. 122–122.

[7] M. Zakaria, Z. Kassim, M.-L. Ooi, and S. Demidenko, “Reducing burn-
 in time through high-voltage stress test and weibull statistical analysis,”
 IEEE Design Test of Computers, vol. 23, no. 2, pp. 88–98, 2006.

[8] A. Benso, A. Bosio, S. D. Carlo, G. D. Natale, and P. Prinetto, “Atpg
 for dynamic burn-in test in full-scan circuits,” in 2006 15th Asian Test
 Symposium, 2006, pp. 75–82.

[9] D. Appello, C. Bugeja, G. Pollaccia, P. Bernardi, R. Cantoro, M. Restifo,
 E. Sanchez, and F. Venini, “An optimized test during burn-in for
 automotive soc,” IEEE Design Test, vol. 35, no. 3, pp. 46–53, 2018.

[10] F. Almeida et al., “Effective screening of automotive socs by combining
 burn-in and system level test,” in IEEE International Symposium on
 Design and Diagnostics of Electronic Circuits Systems (DDECS), 2019.

[11] P. Bernardi, A. Bosio, G. Di Natale, A. Guerriero, E. Sanchez,
 and F. Venini, “Improving Stress Quality for SoC Using Faster-
 than-At-Speed Execution of Functional Programs,” in VLSI-SoC:
 System-on-Chip in the Nanoscale Era – Design, Verification and
 Reliability, ser. IFIP Advances in Information and Communication
 Technology, T. Hollstein, J. Raik, S. Kostin, A. Tˇsertov, I. O’Connor,
 and R. Reis, Eds., vol. AICT-508. Tallinn, Estonia: Springer
 International Publishing, Sep. 2016, pp. 130–151. [Online]. Available:
 https://hal.inria.fr/hal-01675205.

[12] I. Polian, J. Anders, S. Becker, P. Bernardi, K. Chakrabarty, N. El-
 Hamawy, M. Sauer, A. Singh, M. S. Reorda, and S. Wagner, “Exploring
 the mysteries of system-level test,” in 2020 IEEE 29th Asian Test
 Symposium (ATS), 2020, pp. 1–6.

[13] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying
 information flow properties of firmware using symbolic execution,” in
 Design, Automation Test in Europe Conference Exhibition (DATE), 2016,
 pp. 337–342.

[14] S. Malik and P. Subramanyan, “Specification and modeling for systems-
 on-chip security verification,” in Proceedings of the 53rd Annual Design
 Automation Conference, 2016, pp. 1–6.

[15] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Early
 soc security validation by vp-based static information flow analysis,” in
 2017 IEEE/ACM International Conference on Computer-Aided Design
 (ICCAD). IEEE, 2017, pp. 400–407.

[16] R. Drechlser and D. Große, “Ensuring correctness of next generation
 devices: From reconfigurable to self-learning systems,” in 2019 IEEE
 28th Asian Test Symposium (ATS). IEEE, 2019, pp. 159–1595.

[17] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li,
 “An overview of hardware security and trust: Threats, countermeasures,
 and design tools,” IEEE Transactions on Computer-Aided Design of
 Integrated Circuits and Systems, vol. 40, no. 6, pp. 1010–1038, 2020.

[18] K. M. Alatoun, S. M. Achyutha, and R. Vemuri, “Efficient methods for
 soc trust validation using information flow verification,” in 2021 IEEE
 39th International Conference on Computer Design (ICCD). IEEE,
 2021, pp. 608–616.

[19] T. Alam, Z. Yang, B. Chen, N. Armour, and S. Ray, “Firver: Concolic
 testing for systematic validation of firmware binaries,” in 27th Asian
 and South Pacific Design Automation Conference (ASP-DAC), 2022, pp.
 352–357.

