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Abstract 
 

Testing implies the evaluation of a device or a software 

against requirements gathered from the system specifications or 

the users and it is conducted at different level during the design 

process. This project presents a novel technique to quickly 

provide a preliminary grade to functional test procedures of 

various nature, ranging from Software-Based Self-Test to Burn-In 

Functional Stress and System-level Test. The method is based on 

the analysis of the functional program execution trace obtained 

directly from the chip by using a debugger. 

Starting from the basic theory of dependencies between 

instructions inside an assembly code, this work aims to exploit 

them on the execution trace to evaluate its connectivity. 

When a piece is produced, it has to be tested to ensure its 

reliability. Testing, in the case that is considered, means letting 

execute a "gold" piece (a piece that has been already tested and 

it can be considered working), extracting from it a register sign 

depending on every register value at the moment in which the 

sign is computed and, finally, using the "gold" sign as comparison 

with all other signs belonging to the pieces to be tested. If the sign 

of a normal piece does not match the "gold" sign, something 

surely went wrong; but what if the two signs match? It cannot be 

said that the piece is working only considering this result. 
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Whether the piece is working properly or not, depends also 

on the program that has been used to perform testing. Here is 

where instruction dependencies become useful. They are 

exploited to understand how the data are propagated through a 

particular execution of the "gold" piece: if the data propagation 

is very high, we can say that, in a probabilistic way, if an error 

occurs it should be propagated until the end (or until the sign is 

computed); by the contrary, if the data propagation is low, in case 

of something goes wrong the source of the problem could be lost.  

A graph representation of the data flow is created and 

visited to identify specific instructions that could impact the final 

coverage. 

The experimental results are carried out on an Automotive 

device manufactured by STMicroelectronics to demonstrate the 

effectiveness of the approach.  
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I. Introduction 

 
 Complexity is absolutely characterizing the current testing 

scenario. Very large heterogeneous systems-on-Chip (SoCs) 

undergoes an extremely complex manufacturing test process and 

are demanded to be absolutely reliable all along their useful life. 

 To overcome the issues related to the huge size is a major 

objective of the industry. While the structural methods like Built-

in Self-Test and other scan oriented techniques still looks 

appropriate to screen out devices affected by coarse defect in the 

early test stages, the adoption of functional approaches is 

becoming recognized as an effective solution to catch residual 

marginal behaviors. 

 Nevertheless, Functional test strategies have become very 

popular in the last decade to self-test the device while it is 

working in its mission field. 

 Despite the attractiveness of using functional methods, the 

industry is often reluctant to explore this kind of test solution. In 

fact, structural methods are well supported by EDA vendors. The 

test set creation often requires just push-button effort to launch 

parallel Automatic Test Pattern Generation (ATPG) processes that 

quickly return patterns and achieved coverage at the same.  

 Conversely, the functional technique development is based 

on fault simulation. For example, a test engineer who develops 

Software-Based Self-Test (SBST) first writes and run the 
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functional program to check if code works (i.e., not falling into 

exceptions and reaching to the end). Then, he grades the 

functional program by using fault simulation tools.  

 Notoriously, a fault simulation process of a functional 

procedure is extremely time consuming, therefore the results can 

take from hours to days to be computed. This is a very strong 

bottleneck. The test engineer in charge of creating functional test 

libraries can wait lot of time and get unsatisfactory results: this 

could happen, for instance, if they omitted to exercise some 

functionality or if they have not propagated test results correctly 

into signatures. 

 Automated generation methods based on constrained 

ATPG and randomization have been proposed to enlighten 

functional test program production. Such methods autonomously 

create functional programs which are often looking like a bunch 

of operations sequentially executed. In this way, the generation 

efforts are mitigated, but additional debug investigations are 

introduced to find blocking issues that impact the coverage. 

 The problematic of grading functional procedures becomes 

insurmountable when moving at application level. Many 

companies suggest to use real application as a final test before 

shipping the component to market. This technique is called 

System-level Test (SLT) and it relies on booting an Operating 

System (OS) that then schedules application tasks to mimics the 

in-field behavior. To grade a SLT functional program is simply 

unfeasible due to the execution length of about tens of 
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milliseconds or more. Therefore, SLT is currently considered an 

holistic technique, supported by an industrial evidence that 

running an OS and some application still screen out some 

components.  

 In this project I propose a novel methodology that aims at 

quickly feedback about the test quality of any functional 

procedure. In particular, the illustrated strategy permits to 

quickly grade any functional program and to provide indication 

how the functional procedure is promising or not. If not, it helps 

to identify weak instructions or blocks of code that may be 

impacting on final coverage. 

The proposed method takes very little time to provide results as 

it is not based on simulation or fault simulation, but exploits the 

silicon implementation of the chip. More in details, the method is 

composed of two successive steps: 

 

1) The functional program under evaluation is run on 

silicon and the complete trace of the gold execution is 

dumped on file (e.g., the unrolled list of the executed 

ASM instructions); 

2) The execution trace saved on file is analyzed by an 

algorithm able to investigate on data flow 

characteristics and dependencies (e.g., discriminating 

how operands are used along the program execution). 
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 I have defined a new metric called "connectivity" which is 

computed by the mentioned algorithm. This metric tells whether 

the operands processed by the functional program are effectively 

transported to diagnostic points or compressed into signature. 

 The connectivity metric is a strong approximation of lower 

level metrics like the fault and toggle coverage. My intentions is 

not to replace the fault simulation as the vehicle to compute very 

accurate figures. Conversely, I suggest to use the connectivity 

metric to quickly get an early indication about the overall quality 

of the functional program. A low connectivity value means that 

some flaws may affect the program (i.e., previously computed 

results are overwritten along the program flow without being 

read or memory locations are not included in the signature). 

 I have experimented the proposed technique on an 

automotive device manufactured by STMicroelectronics, a 

medium sized device belonging to the SPC58 family and used in 

critical parts of the vehicle, like ABS and AIRBAG. 

 Experiments encompasses three functional testing 

contexts: 

 

1) Development and analysis of Software-Based Self-Test 

routines for in-field testing; 

2) Generation of Functional programs able to properly 

stress/test the device during the Burn-In (BI) phase; 

3) Evaluation of System-Level Test functional applications 

including OS boot and tasks distribution. 
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 In all cases, the connectivity metric is very useful to early 

refine the functional routines avoiding repeatedly running 

extremely long fault simulation process. Examples reported in the 

experimental results demonstrate that a low connectivity is 

always correlated to a low fault coverage value. Reference [1]. 
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II. Background 
 
 Reliability of Automotive Chips is based both on a excellent 

manufacturing test and a powerful error detection ability in-field. 

Traditionally, structural test methods have dominated the vast 

majority of the manufacturing test process. Nevertheless, the 

final test stages before market are currently more and more 

oriented to functional methods, especially in the automotive 

segment. The most desirable in-field self-test method to rely 

today is running software test libraries.  

 These routines can be preempted and are ideal to be run 

at regular times (i.e., scheduled by the operating system). In this 

background section, I briefly survey on: 

 

1) Software-Based Self-Test (SBST) techniques; 

2) Functional Stress/Test during Burn-In (BI); 

3) System-Level Test (SLT) methods. 

 

A. Software-Based Self-Test (SBST) 
 
 The principle of software-based self-test (SBST) is to run 

functional test patterns, based on the processor instruction set, 

exploiting processor resources to test the processor itself and the 

components around it [2][3]. SBST is one of the strategies firmly 

included in the manufacturing flow of microprocessors. Industrial 

experiences, such as [3] and [4] have confirmed the suitability of 
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the methodology. In [5] an interesting case targeting a multi-core 

processor is presented. In that experience functional patterns are 

loaded in cache and applied to each of the 8 Core Processing Units 

belonging to a 4 GHz multi-core server in order to perform partial-

good device binning. 

 SBST is also an emerging alternative for identifying faults 

during normal operation of the product, by performing on-line 

testing. Several reasons push this choice: SBST does not require 

external test equipment, it has very little intrusiveness into 

system design and it minimizes power consumption and 

hardware cost with respect to other on-line techniques based on 

circuit redundancy. It also allows at-speed testing, a feature 

required to deal with some defects prompted by deep sub-micron 

technology advent. 

 Such procedures are designed to activate possible faults, 

then compress and store the self-test results in an available 

memory space, or raising a signal when the test has not ended 

correctly. A test engineer working on the development of SBST 

programs can follow guidelines given in [5] to reach high coverage 

and mitigate fault simulation effort. Anyway, the job of writing 

SBST programs is often considered a little boring due to the very 

long fault simulation time as well as a bottleneck. The 

disappointment is fueled by the total absence of tools helping 

identify SBST program weaknesses that may prevent you to reach 

a very high coverage. 
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B. Test during Burn-In 
 
 Burn-In (BI) is mainly a stress phase designed to remove the 

infant mortality of defective SoCs [6]. The BI provides external 

stress such as the thermal stress, generated by a climatic 

chamber or by socket-level local temperature forcing tools, aging 

the circuit material [7]. Furthermore BI perorms and internal 

stress such as the electrical one generated by scan-based 

approaches [8], Built-In Self-Test (BIST) modules [9], or functional 

test programs [10], driving circuit nodes to produce a high 

internal activity. 

 The creation of functional stress routines that produce the 

proper electrical activity is easier than the creation of SBST 

programs, which target the fault coverage. Furthermore, this 

creation process is often automated. Randomize tools or 

evolutionary engines are able to produce high quality stress 

patterns with limited human efforts [11]. 

 Stressing a circuit by functional procedures is crucial and it 

is the first objective of the generation process. Anyway, also 

reaching a certain coverage is possible during BI and it is a 

desirable side effect. Test During Burn-In (TDBI) permits to 

retrieve information during the stress phase. 

 To maximize the coverage of TDBI stress/test procedures, 

the generation process is much more effective if the code 

templates or macros (i.e., ASM or C/C++ code) is granting 

propagation capabilities to check-points or signatures. 
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C. System Level Test 
 
System-Level Test (SLT) has emerged as an important 

additional test insertion in today’s semiconductor life-cycle. 

It is run by the circuit manufacturer in the final stage of 

production or by the buyer of the circuit, e.g., an automotive 

Tier-1 supplier who will integrate the circuit into a product, as 

part of incoming quality control. SLT can also be used during 

the post-silicon characterization phase where a circuit’s extra- 

functional properties are measured on a population of several 

hundreds or thousands “first-silicon” circuits [12]. 

 Quite often, SLT consists in running functional applications 

that would mimic the behavior of the device shows in field. 

Booting an Operating System and running benchmark is 

recognized SLT option. Despite the promising opportunity of 

anticipating the next integration levels, a major concern of SLT is 

how to measure the fault coverage it achieves. Very long 

simulation times and prohibitive fault simulation campaign are 

considerable blocking points when you want to grade a SLT 

program. 
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III. The Proposed Methodology 
 
 The proposed methodology addresses a common 

weakness of the SBST, TDBI and SLT test procedure generation. 

All of them share the weakness of very long evaluation times. 

Simulations and fault simulations are the major bottleneck to the 

creation of high-quality functional programs in short time. 

Therefore, any help to reducing the number of fault simulations 

is fundamental. 

 The technique proposed in this project looks in this 

direction. It permits to preliminary grade the test abilities of a 

functional procedure without any simulation. Instead, the silicon 

implementation of the device is used to extract a trace of the 

functional execution using a debugger. In this way, we produce a 

gold functional execution dump which can be further analyzed.  

Figure 1: an high level view of our testing approach with its main flow phases 
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This dump phase takes very low time (up to seconds) compared 

with a logic simulation (up to hours) of the same functional 

behavior. The overall flow is illustrated in the following figure. 

 The gold trace retrieved from chip by a hardware debugger 

contains the linear execution of the  functional program, e.g., the 

list of executed instructions, with loops unrolled and real 

register/memory values dumped instruction by instruction from 

the chip. Once it is produced, the trace can be parsed for being 

analyzed.  

 In the proposed approach, the trace is organized as a graph 

where every executed instructions constitutes a node. The graph 

build phase and the following visits are oriented to feedback the 

test engineer about the quality of the functional procedure. How 

the quality definition is computed from the graph do stem from 

the following theorem. 

 

 Theorem: Write-after-Write (WAW) instruction sequences 

occurring during the instruction flow over a shared addressable 

location cause the previously computed values to be overwritten 

and most likely lead to a loss of fault coverage. Conversely, Read-

after-Write (RAW) instruction sequences propagate values along 

the execution flow, as they can reach 

to an observation point, possibly leading to an increase of fault 

coverage. 
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 The example that is presented next, can clarify the 

situation that we could address analyzing the trace: 

 

1 𝑎𝑑𝑑 𝑟19, 𝑟18,192
2 𝑠𝑢𝑏 𝑟6, 𝑟18,55
3 𝑎𝑑𝑑 𝑟6, 𝑟19,35

 

 

 If we take a look at the previous code, it appears that the 

test contribution of instruction 2 is vanished by instruction 3, due 

to the WAW sequence over register r6. Vice-versa, test contribute 

of instruction 1 is preserved by the RAW of r19 by instruction 3. 

Of course, the real fault coverage effectiveness of instruction 1 

depends on the computed values (patterns) stored in source 

registers and can be determined only by fault simulation. As well, 

it is certain that the instruction 2 does not bring any benefit to 

fault coverage and it could be purged 

from program or the program need to be fixed to unblock it. 

 Such a undesirable blocking situations due to WAW code 

scenario should never appear when a test engineer works in ASM 

language or he compiles C/C++ functional programs, while RAW 

are desirable and should always exist. Anyway, there are some 

case when WAW may appear in any case. To know about their 

presence in advance would be crucial at least in the following 

contexts: 

 

 

example 1: WAW and RAW instruction sequences 
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• Randomization and evolutionary methods to 

automatically generate functional program may 

introduce WAW quite naturally. Therefore it would 

be beneficial to tune the generation to minimize the 

WAW and to reach a high coverage faster; 

 

• To error is human and even typos may introduce 

unwanted WAW sequences when low-level 

programming in ASM language. To discover a 

mistake after a fault simulation is a very frustrating 

situation and a quick check before would greatly 

help to avoid any waste of time; 

 

• It is often unfeasible to grade the fault coverage 

achieved by the very long program, such as the 

execution of benchmarks directly compiled in C/C++ 

language or Operating System boot and tasks. In this 

case, a check about testing ability potential 

weaknesses could be the only feasible 

measurement. 

 

 The analysis performed on the gold trace dump aims at 

determining whether a functional program includes any of these 

blocking situations. As shown in the next subsection, every 

instruction node of the graph is classified as blocked (black) or not 

(green) if it propagates or not the result of its execution according 
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to theorem 1. I define the novel metric called program 

connectivity computed as the fraction of blocked instructions 

over the total number of investigated instructions. A program 

showing very high or full connectivity can be considered as 

promising under the point of view of the potential fault coverage 

it could reach. Conversely, it is not a very good sign if the 

functional program shows a lot of blocked instructions and a low 

connectivity; such program need to be revised. The tool 

computing the connectivity metric also pinpoints the blocked 

instructions and can guide the test engineer to fix the proper 

components of the development flow. 

 

A. Basic Algorithm 
 
 The proposed analysis flow is based on an algorithm able 

to identify blocking situations from the executed gold instruction 

trace, i.e., identify WAW which prevents information to 

forwarded along the program data flow. 

 Given that, the proposed algorithm elaborates the 

complete sequence of instruction executed from the beginning to 

the program end. It strongly differs from static and dynamic code 

analysis techniques used for Formal Software Testing and security 

assessment of functional programs [13]-[19]. These techniques 

take the program source code as the input of their investigation. 

Conversely, the proposed approach statically elaborates the real 

sequence of instructions executed by the system CPU. 
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 As an example, a short loop based program may return a 

very long trace if the loop is extensively repeated. By the trick 

based on using the real silicon and a hardware Debugger, the 

uncertainty of formal software testing approaches is overcome 

and the gold instruction trace dump is obtained in very short time 

compared to simulation. 

 The following table reports a short snapshot of a gold 

execution trace dump. The first column reports the order of 

execution or cycle. Second and third columns report address and 

mnemonic code of the relative instruction. Finally SRC and DST 

columns pinpoint sources and destinations of every instruction in 

the dump. 

 

   Table 1: Basic Execution Trace Dump 

 

Based on this information, a graph is first built and then visited to 

compute the connectivity level of the analyzed functional 

program. As well, it can extract a list of critical instructions out of 

the executed code.  

Cycles Address Intruction SRC DST 

1 0x00000000 subfme r19,r6 r19, r6 r19 

2 0x00000004 e_add16i r6,r19,35 r19 r6 

3 0x00000008 e_add2i r6,r18,192 r18 r6 

4 0x0000000C e_add2i r6,r6,r1 r6, r1 r6 

5 0x00000010 subfme r19,r6 r19, r6 r19 

6 0x00000014 subfze r6,r3 r6, r3 r6 

7 0x00000018 e_add16i r6,r19,35 r19 r6 
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The base algorithm version is composed of three steps, as also 

visualized in the Figure 2: 

• A Build phase; 

• A WAW oriented-visit; 

• A RAW oriented-visit; 

 The build phase, represented in Figure 3,  is aimed at 

adding two types of edge to each instruction in the dump. If we 

look at the absolute left side of the next figure, there are two 

types of edges in the graph. 

 On the left part the RAW edges, that represent a read 

action performed by the lower node to the upper one. On the 

opposite side, the WAW edges: they are created if an instruction 

destination register is overwritten by another one whose 

instruction is placed in the dump after it. 

  

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Basic Version of Graph Build and Visits 

            Graph Build           WAW Visit               RAW Visit 
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 Based on these two types of edge, the analysis continues 

with two successive visits. Both of them has linear complexity. 

 The first visit is not actually a visit: we are moving through 

the graph traversing the central edges corresponding to the 

sequential structure of the trace, but we call it visit for now to 

make better the idea. We will see in the next section that this 

function will be removed to optimize the process. During the visit, 

which pseudo-code is reported in Figure 4, the nodes are labeled 

red if they are WAW victim,  green if not. Instruction 4 is red 

because it has an aggressor in instruction 6. Instruction 5 is green 

because the value it computes is never overwritten hence, it will 

reach the end of the program. 

 The second visit is based on traversing RAW edges to 

confirm or not the WAW blocking situation that is present at the 

moment on the red nodes. The pseudo-code of this visit is 

reported in Figure 5. Along the visit, a red node can turn into 

green if there is a RAW edge to connect it forward to a green 

instruction, also passing by other nodes not directly connected to 

Figure 3: Build graph function that elaborates the execution dump 
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it. Conversely, the blocking suspect is confirmed and color 

updated to black. Instruction 4 is a case of red node evolving to 

green, while instruction 6 is confirmed blocked and becomes 

black. 

 Once the graph nodes are colored, the connectivity grade 

is measured. The illustrated scenario shows a 57.14\% of 

connectivity, because 3 out of 7 instructions are labeled as 

critical. In fact, the instruction 1, 2 and 6 will never contribute to 

fault coverage since their computational results are overwritten 

before being propagated anywhere else. 

Figure 5: RAW visit 

Figure 4: WAW visit 
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B. Optimized Algorithm 
 

 As anticipated before, the WAW visit, in this phase, is 

removed to optimize the overall process of analysis. The work 

that was done, until now, by this visit, is now performed by the 

graph build process. 

 The reason of this change are multiple: 

• The WAW edges were created only to verify their 

presence, hence they were never traversed by a visit. 

This was an unnecessary waste of memory; 

• The set of nodes are scanned once by the graph build 

process, indeed the WAW visit could be incorporated 

inside the building process reducing the 

computation overload. Instead of linking the two 

nodes belonging to a WAW sequence the algorithm 

sets directly the node to red. 

 

 Looking at Figure 2, instruction 6 could be already set to 

black during graph build, because the destination is overwritten 

and none of the following nodes has a RAW dependency with it. 

Due to this fact, another role occupied by the build phase, besides 

the WAW visit inheritance, is to set black the nodes with the 

characteristics mentioned before. Thanks to this, the final RAW 

visit will have the probability to find more nodes that do not need 

a call to the visit function (the green and black nodes) and can be 

returned immediatly. 
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Figure 6 and 7 will better clarify the optimization performed. 

   

 

  

 

 

 

 

 

 

 

 

  

 Figure 7: Optimized Version of Graph Build and Visits 

Figure 6: Optimized Graph Build 
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In addition to what has been already said about instruction 6, also 

instruction 2 is set to black during the first phase. 

 First of all, comparing Figure 7 with Figure 2, we will notice 

that the optimized one has to call at least 3 times the RAW visit 

function on the three red nodes. Conversely, the basic version has 

to call the visit at least 5 times, consuming unnecessary resources 

and time to find out a blocking situation easily findable before. 

 Then we can also see from the examples, that the results 

of the two proposed version correspond. 

 The RAW visit does not change, but could be also decided 

to include the WAW visit inside it, instead of in the graph build. 

 

C. Load and Store Instructions 
 
 When a load or a store instruction is found in the code, the 

algorithm needs to consider them in a alternative manner with 

respect to the straightforward instructions that elaborate the 

data from register to register.  

 Therefore we propose slight a variation of the algorithm, 

where the location in memory is treated as a virtual register. To 

effectively implement this modification, the gold trace dump 

needs to be modified and extended to get register values to be 

used to compute the virtual register address in memory. 
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Table 2: Execution Trace Dump with Load and Store Instructions 

 
 The code snippet reported in Table 2 includes load and 

store instructions from and to memory locations, in addition to 

arithmetic operations. For the sake of simplicity, all memory 

locations have a size of 1 Byte. 

 Figure 8 reports the corresponding graph build phase (left-

hand side) and the final result as returned by the RAW visit (right). 

This example shows as memory addresses are handled the same 

way as registers are. To be more specific, instruction 1 stores a 

value in the location pointed by register r1. The same location is 

accessed by a the load instruction at position 3, therefore store 

instruction 1 is finally labelled as green. Also instruction 5 is 

marked green, due to  the fact that the value written in memory 

is propagated until the end of the execution. 

 The previous can be said if we decided to compute the 

signature including also memory virtual registers. However, given 

that is not an easy task to include them inside the signature, if we 

decided to consider only real registers, the node 5 would be 

Cycles Intruction SRC DST 

1 e_stb r0, 0(r1) r0, 0,  r1 mem(0+r1) 

2 e_add16i r2,r0,35 r0 r2 

3 e_ lbz r2, 0(r1)  mem(0+r1), 0, r1 r2 

4 e_add2i r2, r1, r2 r1, r2 r2 

5 e_stb r2, 0(r1) r2, 0 , r1 mem(0+r1) 

6 subfze r1,r3 r1, r3 r1 

7 e_add16i r1,r0,35 r0 r1 
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colored as black. This is given by the fact that the information 

about memory locations does no longer gives contribute to the 

final coverage. 

 

 

 

 

 

 

 

Figure 8: Optimized Version of Graph Build and 
Visit considering also Load and Store Instructions 
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D. Branch Instructions 
 
Another category of instructions that is not considered in the 

basic version of the proposed algorithm is branch instructions. 

These are quite difficult to elaborate, given that an issue 

modifying a branch decision leads to a strong modification of the 

gold flow. 

 In order to classify branches as green or black, we modified 

the algorithm in the following directions: 

 

• During the regular visits, conditional branches are 

left undecided and temporary colored orange; 

• An additional visit is performed to possibly classify 

them as green or black graph nodes. 

 

In principle, the additional visit tries to understand if the incorrect 

execution of a branch is leading to a different signature. Anyway, 

just some cases can be resolved by exclusively looking at the gold 

trace dump. The algorithm can color the branches in green or 

black color only in the cases where the alternative address to the 

one reached by correct execution of the branch is found among 

the instructions that follow to the investigated branch in the 

code. 

 The code reported in Table 3 includes a branch 

generated by a simple if--then-else construct, while in Figure 9 is 

reported graphically the same example. 
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  Table 3: Execution Trace Dump with Branch  Instructions 

 

 

 

  

Cycles Address Intruction SRC DST 

1 0x00000000 e_li r0,0 / r0 

2 0x00000004 cmpl r0,1 r0, 1 CR 

3 0x00000008 e_ beq jump  CR / 

4 0x0000000C cmpl r0,0 r0, 0 CR 

5 0x00000010 e_add16i r1,r2,r3 r2, r3 r1 

6 0x00000014 jump: e_add6i r1,r0,r1 r0, r1 r1 

Figura 9: Example containing Branch Instructions Analysis 
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The previous figure reports the analysis in which our basic visit, 

reported on the left-hand side, leaves the branch node 

undecided. Once done that, the second visit evaluates the 

signature under the hypothesis of taking the wrong branch path.  

 In this specific case, the instruction that would be reached 

if the branch decision is wrong is included within the set of 

instructions that follow the branch itself. A new orange colored 

edge is added in the figure to highlight this situation and it clearly 

appears that some instructions will not be executed if the branch 

is wrongly done (taken if it was not taken, and vice-versa). 

 In the current scenario, the instructions that are skipped 

are green, therefore it results that the final registers value may 

change and the signature value potentially compromised. Indeed, 

the branch node is labeled with green color.  

 Conversely, if all skipped instruction were black, meaning 

they are not contributing to the signature value, the branch 

would be colored black as illustrated in Table 4 and Figure 10. 
 

    Table 4:  Execution Trace Dump with Branch  Instructions Blocking Version 

 

Cycles Address Intruction SRC DST 

1 0x00000000 e_li r0,0 / r0 

2 0x00000004 cmpl r0,1 r0, 1 CR 

3 0x00000008 e_ beq jump  CR / 

4 0x0000000C e_add16i r1,r2,1 r2 r1 

5 0x00000010 e_add16i r1,r0,1 r0 r1 

6 0x00000014 jump: e_add6i r1,r0,r2 r0, r2 r1 
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E. Multiple Destination Instructions 
 
 In this section, is presented a new version of the algorithm 

that take into account also instructions that could have more than 

only one destination. Now the main difference is that the color is 

not anymore assigned to the node, but to the single destination. 

The reason is that every destination belonging to a node could 

have different colors, so they could bring different contributes to 

the final coverage. 

 

Figure 10: Example containing Branch Instructions Analysis Blocking Version 
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 In the next Table 5 and Figure 11 is reported an example 

taking into account multiple destinations. To better approach for 

the first time this new method of analysis, it is represented 

without the optimization of the WAW visit. 
        

 

          Table 5:  Execution Trace Dump with Multiple Destination Analysis 

 

Cycles Address Intruction SRC DST 

1 0x00000000 subf r0,r1 r0, r1 CR, r0 

2 0x00000004 e_add16i r1,r0,35 r0 r1 

3 0x00000008 e_add2i r1,r0,192 r0 CR, r1 

4 0x0000000C e_add2i r1,r1,r1 r1 CR, r1 

5 0x00000010 subf r0,r1 r0, r1 CR, r0 

6 0x00000014 subf r1,r2 r1, r2 r1 

7 0x00000018 e_add16i r1,r0,35 r0 r1 

Figure 11: Example containing Multiple Destination Analysis  
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 In the practice, also the analysis with multiple destination 

is performed optimized without WAW visit and WAW edges. In 

the next Figure 12 and Figure 13, indeed, are reported the two 

pseudo algorithm of graph build and RAW visit, in the case of 

multiple destination.  

 

 

 

 

 

Figure 12: Multiple Destination Graph Build Optimized 
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 Multiple destination analysis could be considered the last 

of the consecutive steps we have made until now. It is not an 

isolated case of analysis, indeed most of the instructions 

encountered in a real-life situation has more than one 

destination, including some of the branch instructions and 

load/store ones. 

 This themes will be discussed better in the section 

completely dedicated to the algorithms and software structure. 

 

  

Figure 13: Multiple Destination RAW Visit 
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IV. The Tool 
 
 Until now the focus has been put on the general method of 

analysis, to have a first contact with this techniques, without 

entering too much into details. This chapter is dedicated more on 

technical aspects of the overall organization of the work, from the 

extraction of the trace by the chip, using the debugger, passing 

through the implementation and the algorithms, up to finally the 

computation of connectivity. 

 In this section we will deal with the following main point: 

• The pipeline, representing the overall work-flow 

from the beginning to the end of the analysis; 

• The software structure, in which the main class are 

presented and described, with all their attributes 

and methods; 

• The parser: this is the first macro part of the project. 

It takes as input some file extracted, by debugging, 

from the gold execution and produce a graph file; 

• The second macro part of the project: the graph 

analysis. It receives from the parser the graph file 

just created and performs graph build, all the visits 

and the final analysis to compute the connectivity; 

• The algorithms. In this section the algoritms 

presented in the chapter III "The Proposed 

Methodology" will be seen more closely. 
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A. The Pipeline 
 

 
 In the previous Figure 14 is represented the overall 

organization of the work-flow. At the top right corner we can see 

that the starting process, called parser, receives as input three 

different files. 

  Let's analyze them more closely: 

• instructionInfo.txt: this file contains the lists of all 

instructions needed by the analysis. For each line, 

associated with one instruction, are reported, in the 

following order and separated by a white space, 

some essential information:  

Figure 14: Overall Organization of the Work-Flow 
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1. A string representing the instruction type in 

the set {A, B, BC, L, S, SP}, where A stands for 

Arithmetical, B for Branch, BC for Branch 

Conditional, L for Load, S for Store and SP for 

Special; 

2. A string representing the name of the 

instruction; 

3. A string composed by two part: the 

destinations part and the sources part. Each of 

them is separated by a comma and contains, 

at the beginning, the number of 

destinations/sources and then a list of string 

of three possible types: a number if the 

instruction has an explicit parameter in that 

position, a string if the instruction has an 

implicit parameter corresponding to that 

string, a string, starting with "mem" if the 

instruction performs an access in memory, 

containing the indications to compute the 

base address and the number of location to be 

accessed. 

• regFile.log: this files has been created during the 

debug of the chip. It contains, for each line that is 

associated with an instruction, the list of all registers 

followed by their actual value in hexadecimal base. 

It is predominantly exploited by Load and Store 
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instructions to compute the address of memory 

locations to be read or written. This file could have 

very large dimensions, depending on how many 

instruction the gold device has executed. 

• traceFile.csv: it is the execution trace dump 

exctracted directly from the chip in a csv format. At 

the very beginning it is given in a very rough form, 

with a lot of unnecessary information inside to be 

filtered and a structure that does not follow a very 

straight shape. This is why when we have to deal 

with trace of thousands or millions of instructions, 

this file could be very large and tough to manage. 

Therefore traceFile.csv has to be filtered and the 

information extracted from it are the instruction 

address, the instruction name and the explicit 

operands, if they are present. 

 

 In the next three figures (Figure 15, figure 16 and figure 17) 

is given an example of all the three input files of the parser phase. 

 

Figure 15: Piece of File instructionInfo.txt 
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 Looking more in details to Figure 15, the first line, for 

example, tells to the parser that it could encounter, during its 

execution, an arithmetical instruction named se_srawi. This kind 

of instruction has two destinations, register XER and the first 

explicit operand that appear in the instruction call, and two 

sources corresponding to the first two operands. If, instead, we 

Figure 16: One Line of regFile.log 

Figure 17: Piece of traceFile.csv 
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take a look at the last line of the example, it is a store instruction 

called se_stw and it has a memory destination, computed 

considering as base address the sum of the content of the explicit 

operands in position 2 and 3. Furthermore we have to consider 

how many cells of memory are addressed: in this case the 

instruction is storing a word, so it writes four location of memory, 

as reported after the closed bracket. We notice also that there 

are three sources, and they are the first three explicit operands. 

 In Figure 17 it can be seen that the structure of the initial 

trace file is not very linear. However, analyzing it better, can be 

found very useful informations, like the SV field corresponding to 

the instruction address. We moreover find the necessary 

informations about the name and the operands of every 

instruction inside the gold execution dump. 

 After the parsing phase a file graph is produced, containing 

informations to build properly the graph structure. At the very 

beginning of this file, is reported the number of total nodes that 

the final built graph will have. Immediatly after, is written one line 

for each instruction inside the trace. The layout of every line is 

not fixed: it can be different depending on the type of instruction. 

In general, every line of graph file contains informations about 

destinations and sources: they are the most crucial and important 

informations of the overall analysis.  
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 At this point of the pipeline, the graph file is given as input 

to a translator, that interpretes its content and store the 

informations about every node in an array, that mantains the 

sequentially order of instructions inside the trace. 

 Finally, the array is passed to the graph analysis process 

that builds the graph, perform RAW visit and, at the end, the 

Branch visit. Te overall process is completed by the computation 

of the connectivity metric in two different types: 

• The AVG Connectivity: it is the average percentage 

of green destinations inside a node. 

• The Branc Connecticity: this is, instead, a 

connecticity that take into account only the 

information about conditional branches. Indeed, it is 

the percentage of green conditional branches inside 

all the graph. 

 

B. Software Structure 
 
 This section deals with the software structure organization 

and, more in details, the main classes shape, their attributes and 

their methods. The overall project is developed in C++ so, the 

following declarations are reported in a C++ code style.  

 I have defined three main classes to implement the 

pipeline introduced in the previous section: 
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• Class Parser: this class represents the parsing 

process, the first in the pipeline. It contains 

attributes and methods with the purpose of 

performing the parsing from traceCSV file to graph 

file. 

• Class Graph: this second class is the abstraction of 

the graph analysis phase, including also the 

connectivity computation. Graph class methods can 

access both private method of Parser class and Node 

class, presented in a while. 

• Class Node: this class wants to be the abstraction of 

every single node inside a graph. It stores important 

informations about destinations and node colors. 

 

 In the next Figure 18 these classes are presented in a 

diagram form, with all their attributes and methods. The 

connection between different classes means that, following the 

arrow direction, a class can accede the private member of the 

pointed one. In the diagram are not only reported classes, in a 

continue-line box, but also the structures needed by some of 

them, inside a fragmented-line box. 

 In the discussion that follows, for sake of simplicity, every 

getter and setter methods are not reported. Furthermore, the 

considerations done are based on the hypothesis that the code 

version is the one considering every possible situation: basic 

version, Load and Store, Branches and multiple destinations. 
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 Graph class has three attributes: a string containing the 

location of graph file to be read to build the graph, the number of 

nodes inside the graph and a vector of Node object. Its methods 

include two constructors, one of them a default one, a 

read_graph method implementing the translator process (Figure 

14), a serach_target_node and build_graph that together forms 

the graph build process, a RAW_visit, branch_visit and visits that 

make up the graph analysis phase and, finally, a 

Figure18: Classes with their Attributes and Methods 
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compute_connectivity method that produce the two connectivity 

index mentioned before. There is also a last method that is the 

generate_graph, useful to generate automatically a trace file, 

register file and graph file to test the functionalities of the tool, 

but keeping in mind that being generated automatically we will 

not have to take into account the connectivity evaluation.  

 Graph class is connected to both Node class and Parser 

class with an outgoing arrow, meaning that it can access private 

member of them. This is why Graph class stores a vector of Node 

object and it is very convenient to do it, to have more control. 

Another reason is that to generate automatically a graph, it is 

useful to easy access the parser methods and faster create trace, 

reg and graph files. 

 Node class give life to the most internal part of the graph. 

It is a very important container of informations, due to the fact 

that it stores the colors and conditional branches offset to 

perform branch visit. It contains a node ID, an instance of the 

structure representing every single instruction, a color 

representing the general coloration of the node (if at least one 

destination is green, this field is set to green) and an integer in 

which is saved, in correspondence with a conditional branch, the 

offset needed to jump to the alternative address and to peform 

branch visit. Regarding the methods, this class implements only 

one default constructor, one normal one and a copy contsructor. 

As we can see, always referring to Figure 18, structure Instruction 

is linked to the structure Dst.  This is given by the the fact that 
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every destination inside an instruction, has its own color and its 

own list of RAW edges. 

 The last class to analyze is the Parser class. As it has been 

already said, parser class implements the parsing process. This 

brings a parser object to save, during its life, some information 

useful to help performing this task. The first attribute is a map 

that represents the instructionInfo file presented before. It stores 

the informations about destinations and sources of all possible 

instruction, avoiding that the reading of the file was done too 

much times. This map receive its fields from the InstructionInfo 

structure. Another attribute of the parser class is the 

registerFilePosition map: it stores the position of each physical 

register inside a single line of the register file, so that every access 

to the file is direct and it does not need any research. 

 The fields of the class that follow represent, in the order, 

the names of the locations of the files tath are needed by the 

parser: instructionFile, csvFile, registersFile, traceFile, graphFile, 

registerFileFiltered. The first three locations contain files that 

already exist while the others are locations that are going to be 

written by the parser. Figure 14 shows that the parser has only 

one output, that is the graph file. This is actually true, but 

internally, parsing process, creates also other two files 

corresponding to traceFile and registerFileFiltered. The last two 

attributes are a vector containing the instruction addresses and 

the number of instruction inside the trace of the gold execution. 

 The methods of class Parser, are only listed next. However, 
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in the next section they will be discussed more in details. They 

are: a constructor, buildInstructionMap, buildRegisterPosMap, 

buildTypeMap, createTraceFile, createGraphFile, makeStats, 

resolveAddress and createAddressesVector. 

 Are represented below three pictures describing better the 

structure, in C++, of the classes presented before. These images 

include also methods and atrributes that do not appear in Figure 

18, as setters, getters and printing functions, as well as could be 

possible that some name has been changed, to better describe 

Figure 18. 

Figure 19: Graph Header File Figure 20: Node Header File 
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Figure 21: Parser Header File 
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C. The Parser 
 
 This section is completely dedicated to the parsing process 

description.  

 The files, directly extraced by tracing the gold execution 

and whose structures are shown in Figure 15, Figure 16 and 

Figure 17, are directly fed to the parser. The first two operations 

to be performed, are constructing the two maps needed for the 

process : instructionMap and registerFilePosition. They are built 

calling methods buildInstructionMap and buildRegisterPosMap. 

 At this point, we are ready to switch on the parser and 

analyze the csv file with the aim of creating, at the end, the graph 

file. As it has been said before, this phase creates also two 

internal files: traceFile and registersFileFiltered. They hold the 

filtered version of csv file and registers file, initially given in a very 

rough shape.  

 The parser phase could be split into two main parts: the csv 

filtering, that produces a trace file given in input to the second 

part and the trace management, which in turn creates the final 

graph file. 

  The csv filtering takes as input csvFile and registersFile. 

Then the method createTraceFile is called to produce the final 

files traceFile and registersFileFiltered. In Figure 22 is reported a 

chunk of traceFile. It is the linear version of the csv file, without 

unnecessary fields and, for each line is reported an instruction of  
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the execution dump with all its explicit operands. Instead, 

registersFileFiltered has the same structure of the initial 

registersFile but contains precisely one line for each instruction in 

traceFile. This filtering on registersFile is performed because 

during the phase of debugging, some line of the register dump is 

copied multiple times inside the initial file: if this fact is not 

correctly managed, could be cause of some bad behavior of the 

tool. 

 Trace management phase, conversely, take as input the 

just generated traceFile and registersFileFiltered and give them to 

the createGraphFile method that is called with the aim of creating 

the final graphFile. The next figure shows graphically the parser 

phase, underlining the split into the two main parts of the 

process. 

 

Figure 22: Chunk of traceFile after csv filtering phase 
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 We have talked about the two methods that together form 

almost the overall process of parsing: createTraceFile and 

createGraphFile. Let us analyze them more closely: 

 

1. createTraceFile: this method has two main 

objectives. The first one is to fill the addresses vector 

every time a valid instruction is found in the csv file 

with the proper instruction address. This work will 

result useful in the createGraph method to set the 

conditional branch offset. The second main objective 

of the method that we are analyzing, is to filter csv 

file and register file to write the useful informations 

into the trace file and the register fitered one.  

 

 

Figure23: Parser Phase with its Main Division 
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2. createGraphFile: this procedure is definitely the 

most crucial of the overall process of parsing. It 

completely separates the trace dump from its initial 

structure and create ad hoc file, already presented 

as graph file, that is the only one needed to build 

completely the graph and analyze the gold trace 

execution. At the beginning of the file, the method 

writes the number of total instructions inside the 

trace. For each instruction in traceFile this method 

controls if it appears in the instruction map. Then, if 

the instruction is a conditional branch, is performed 

a control on the existence of both possible addresses 

to jump and, consequently to its result, there are 

two possibilities: if it is positive, is computed the 

distance from the current instruction to the 

alternative address to jump and it is stored in the 

graph file, otherwise the method writes a string 

DANGER, to signal that the alternative does not exist. 

At this point, the process continue writing on graph 

file a capital letter D, meaning that the list of 

destination is going to begin. The destinations are 

computed based on the informations stored in the 

instruction map, so every destination present in the 

map is stored in the graph file, from explicit 

operands to implicit ones. The memory operands are 

treated specially by a method of the class Parser that 
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will be analyzed next: resolveAddress. Currently let 

us consider that the memory operand will be 

reported in the graph file in the form 

mem(base_address)num_location. Now a comma 

followed by a capital letter S, signals that the list of 

sources in taking place. The proceedings used is the 

same as for destinations, since instruction map 

contains both informations about destinations and 

sources. All the informations stored in the graph file 

are separated by a white space. 

 

 At this point graphFile has been generated. As said before, 

it has a structure that completely separates the trace from its 

initial condition. For example, from now on, the instruction name 

is an information that is not anymore useful, reason for which it 

is not included in the file. This separation is wanted also in the 

sense of tool execution: the number of instructions at the 

beginning of graph file, let a user in possession of a graph file to 

execute the tool without calling the Parser methods and going 

directly to the analysis phase.  

  As we can see in the next Figure 24 the graph file carries 

on only indispensable informations about analysis purposes: 

branch offset (if needed), destinations and sources. This is all the 

necessary to build the graph structure, perform the analysis and 

compute the connectivity to reach the gol of grading the gold 

execution trace dump. 
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 The first line describe an instruction with one destination, 

corresponding to register r5, and three sources: an immediate 

with value 0, register r3 and 4 consecutive locations of memory 

starting at address 16669732. The third line is associated with a 

conditional branch, due to the fact that it starts with a branch 

alternative offset of value 3. This branch has no destinations and 

two sources corresponding to Condition Register CR and the 

immediate that represents the address jump of the instruction. 

 To better understand the offset mechanism, the number 3 

means that in case of an error in the third instruction, the 

execution would jump directly to instruction 6. This, following the 

reasoning of section III D. Branch Instructions, is useful to perform 

branch visit, that controls if there is at least one green node 

between the branch instruction and the target offset intruction. 

For completeness, looking at the last line, this means that the 

instruction linked to it does not have any operand. 

Figure24: Chunk of Graph File 



 
 

54 

 It has been mentioned before a method named 

resolveAddress. This method receives as input a memory 

expression directly from the instruction map and compute the 

base address and the number of consecutive location to be 

considered. This method is essential for Load and Store 

instructions, because it resolves all possible intruction involving 

accesses in memory, from a single Byte to a multiple word 

instruction. 

 The last three methods remained to analyze are not useful 

for the final computation of grading results. buildTypeMap 

method is called during the automatic generation process and it 

creates a map containing, for each type in the set mentioned 

before, the list of all instruction of that type. In this way it is easier 

to control the generation at different type percentage. 

 createAddressesVector is a method used only in a very 

particular condition: in the case in which the csv file is not given 

and in some way it is available a trace file , if we want to call the 

createGraphFile method we have to build the addresses vector 

that, usually, is created by the createTraceFile method. In this 

way the process can be continued also in the absence of one of 

the files inside the chain.  

 The last method is called makeStats and it performs a 

statistic on the type of instruction inside the traceFile, returning 

a percentage for each type on instruction.  It also writes on a file, 

for each distinct instruction found in the trace, how many times 

they appear. 
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 The next two Figure 25 and Figure 26 contain the pseudo 

code of the two main methods mentioned before: 

createTraceFile and createGraphFile. 

 
Figure 25: Pseudo Code of createTraceFile Method 

Figure 26: Pseudo Code of createGraphFile Method 
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D. Graph Analysis 
 
 After having performed the Parsing phase, we are in 

possession of a very precious file: the graphFile. As previously 

said, this file alone is sufficient to build the graph structure and to 

do analysis to compute the connectivity metric needed to grade 

the gold execution trace dump. 

 This phase is diveded into three main parts:  

 

• The translation part, in which graph file is taken as 

input by the read_graph method. This process stores 

in memory the informations about every Node in the 

vector nodes that is an attribute of the Graph class. 

In this phase the most important passes are basically 

two: the first pass coincides with the management of 

the attribute branchAlternativeOffset, set by the first 

part of the method, in that the value needed is 

situated at the very beginning of each graph file line 

(if corresponding to a conditional branch 

instruction). The second one, is the set up of all 

destinations and sources iside the destinations map 

of the class Node. Next, in Figure 27, is reported a 

pseudo code of the read_graph method, the one 

that could be considered as the main performer of 

the overall translation part. 
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• The build part: in this second section of the graph 

analysis phase, the main protagonist is the 

build_graph method. This procedure has already 

been analyzed in Figure 3 with a basic representation 

of it and in Figure 12, in which the algorithm has its 

final shape, considering also the multiple destination 

mechanism. 

• The visits part: this last segment of analysis is the real 

part in which the graph is visited and the 

informations elaborated to color every destination 

and every node inside the graph. The first visit (RAW 

one) performed, has been already commented in 

Figure 5 (basic version) and in Figure 13 in which also 

multiple destination are taken into account. The 

second visit is represented by branch_visit method: 

this method aims at visiting the graph, starting from 

the end, and finding out if, in case of a conditional 

branch instruction, the nodes bewteen it and the 

target node have at least one green node. If this 

happens the branch node will be colored as green 

because, in case of something went wrong, the final 

computed sign would be changed. If these nodes 

analyzed are all completely black, the branch node 

will be sign as black. Both RAW visit and branch visit 

are called by the interface method visits. In Figure 28 

is reporthed the branch_visit method. 
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Figure 27: Pseudo Code of read_graph Method 

Figure 28: Pseudo Code of branch_visit Method 
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 The last two methods of the Graph class to be analyzed, are 

the generate_graph and compute_connectivity. The first one is a 

procedure that, as sais before, create a trace file and a registers 

file in a completely random way. It receives, by the user, the total 

number of instructions that he wants to put in the trace and the 

percentage, for each type of instruction. Then the method 

createGraphFile is called and a new graph file i created to let the 

tool perform the final analysis. 

 The compute_connectivity method, instead, is the final 

procedure to be called at the end of the pipeline. It take as input 

the vector nodes of the Graph class and computes the two, 

mentioned before, metrics of the connectivity: the AVG 

connectivity and the branch connectivity. 

 The AVG metric is computed, for every node, as the 

percentage of green destinations over the total number of them. 

Then, is performed the average of the percentages just calculated 

as the final result. This metric give us an idea of the total 

connectivity of the gold execution trace: the higher is the average 

obtained, the more is the goodness of the program associated 

with the analyzed trace. 

 The branch connectivity, conversely, is computed taking 

into account only nodes that contain informations about 

conditional branches. The final result is the percentage of green 

conditional branches over the total number of them. The result 

just obtained is an indication of how the branch mechanism is 
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working inside the specific execution of the gold device. The 

higher is the percentage obtained at the end, the more the 

process is spreading its informations, even in the case a possible 

error on a conditional branch occurs.  

 Next is reported a picture in which is shown the overall 

process of graph analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Graph Analysis Phase  



 
 

61 

E. Practical Use of the Tool 
 
 From a user point of view, this section could be useful as a 

guideline to understand better the overall process needed to 

start the tool, from the building to the execution. 

 First of all we have to build the executable file. I have 

defined some make lables that are handy to quickly compile and 

execute the program: 

 

1. make or make build: they equally build the overall 

project, from parsing to analysis. This commands 

create also two directories: build and stats. The first 

could be useful to store the results of parsing 

analysis, passing the right path to the tool, and 

contains by default the executable program. The 

second one is used by Parser makeStats method to 

store informations about the number of distinct 

instructions inside the trace. 

2. make parser: it is correspondent to the previous 

commands but it only consider the parsing part of 

the process. This could be useful to only test this part 

without compilink and linking the whole project. This 

time the directories created are parser and stats, 

with the same goal of the previous described. 

3. make debug: this command sets up a debug session 

with lldb (can be changed modifying the type of 
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debugger in the makefile) of the whole project. 

debug and stats_debug are two directories 

automatically created. 

4. make debug_parser: this is the corresponding 

version of the previous command but related to the 

parsing part of the tool. debug_parser and 

stats_debug_parser directories are created. 

5. make clean, clea_ parser, clean_debug, 

clean_debug_parser: these are the commands to 

cleanup the directories created by the 

corresponding build lables. 

6. make run, run_parser: these two commands start 

the program inside the build directory and the parser 

directory, respectively. 

 

  

 Let us consider we are calling the make build command. 

Once the tool is built,  the make run command starts the tool. The 

main file of this project is organized as a choice menu with eleven 

different alternatives. The next Figure 30 will better clarify this 

graphically. Subsequently, will be presented, command by 

command, a description of the tool functionalities. 
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0. This command, as written in the previous figure, create a new 

instance of the tool. More in detail, it asks the user to insert 

the six file positions needed to create Parser and Graph 

objects, as it can be seen in the next Figure 31. The first three 

positions contain files already existing, while last three 

locations correspond to the files that the parsing process will 

generate: traceFile, registersFileFiltered and graphFile.  

 

1. This second command, performs the building of the two main 

maps inside the Parser class: instruction map and register file 

position map. This execution has sense ony if called after an 

Figure 30: Main Tool Menu  

Figure 31: Option 0 Execution  
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instance of the tool has been generated but, even if it was 

called before, nothing bad will happen. 

2. This option will tell the tool that we want to analyze the csv 

file and, consequently, the createTraceFile method will be 

executed. The first two file positions that was empty before, 

looking at Figure 31 the positions build/trace.txt and 

build/reg.txt, are now occupied by the contents of traceFile 

and registersFileFiltered. This option can be selected only if 

the user is in possession of the csv file and the registers file. 

Furthermore it has sense to select this choice only after having 

created an instance of the tool and the two maps. 

3. If this option is chosen, the toll will analyze trace file and 

registers file filtered with the aim of creating the final graph 

file: everything is done by the createGraphFile method. At the 

end of the execution even the file position build/graph.txt is 

not anymore empty: the content of graphFile has been copied 

there. This command can be selected even if we are not in 

possession of the csv file: only the trace file and the registers 

file filtered are needed. As it has been said in the section C. 

Parser, this particular case has the overload of the 

createAddressesVector method that has to set up the 

necessary structure to create the graph file. The only 

necessary condition to run properly this option, is that exists 

an instance of the tool and the maps are built. 

4. At this point, there is an important change of role: the Parser 

object has finished its job and the overall work is passed to the 
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Graph instance. This option can be selected even if none of the 

previous commands has been already called before: the only 

thing necessary, in this situation, is to have a valid graph file. 

If we are in a situation in which we have used the Parser before 

this moment, the command will call directly read_graph and 

build_graph methods. Conversely, the tool will ask to insert 

the position of the graph file to be used. Then, first calls a 

constructor of the Graph class to setup a Graph object and 

then calls the same methods mentioned a little while ago. 

5. Now in memory is saved the built graph with all the RAW 

edges set. If this command is selected, the visits interface 

methods is called. It, in turn, calls the RAW visit for each node 

in the graph and the branch visit for each contidional branch 

that is colored has orange. This option can be chosen only if 

the option 4 has been called before. This is given by the fact 

that it has no sense to perform a RAW visit or a branch visit 

without having built a graph before. 

6. To this option is related an useful procedure to quickly change 

the path of one of the six file positions stored in the Parser and 

Graph instances. The tool will ask to insert one of the following 

string to identify which file is going to be changed: instr, csv, 

reg, trace, regFilt, graph. Then we have only to insert the new 

file position and everything is set up. 
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7. This command prints on the terminal a list of informations 

related to each node inside the graph structure. For each node 

is reported the node color, the branch alternative offset, every 

destinations with their colors and RAW edges, and every 

sources. The layout of the printing is reported in the next 

Figure 32. 

 

8. This command is useful if we want to know more about the 

types distribution of the instructions inside the trace file. The 

method called is the makeStats belonging to the Parser class. 

The next two Figure 33 and Figure 34 report the two output of 

the process. 

Figure 32: Option 7 Execution: Printing Graph  

Figure 33: Terminal Output of makeStats Method 
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9. This option, if chosen, computes the two connectivity metrics 

discussed before. Once the method compute_connecticity is 

called, the two expected output are printed on the terminal 

window. An expanded analysis of the graph is reported in a file 

created by the method: connectivity.txt. It contains, for each 

node inside the graph, the percentage of green destinations 

over the total of them. These information will be then 

compressed to create the AVG connectivity metric. 

Furthermore, inside the new created file, are stored more 

informations about the graph analysis just performed: for 

each distinct destination that appear in the graph, is 

computed the percentage of times that the single destination 

has resulted green over the total number of time that the 

Figure 34: File Output of makeStats Method 
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destination is encountered. In the next two figures are 

reported a chunk of terminal window in which AVG and 

branch connectivities are shown, and a piece of connectivity 

file that shows some registers that has been found as 

destinations inside the trace. 

 

 

10. This command is selected to generate automatically a trace 

file, a registers file and a graph file. The only things that the 

tool asks to insert are: the file positions of instruction file, 

trace file to be generated, registers file to be generated and 

the graph file to be generated. Then the program wants to 

know if the generation should be automatic or not: the reason 

is that, at this moment, only the automatic generator has been 

implemented but there is the possibility to write the code for 

a guided version of the generator. Anyway, if we do not select 

the automatic version, the execution will return to the main 

Figure 35: AVG Connectivity and Branch Connecticity Printed on Terminal Window 

Figure 36: Piece of Connectivity File in which Some Destination Register is Reported 
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menu. Now the tool asks how many instruction will be in the 

trace and, for each type of instruction, what will be the 

presence percentage. 

11. This option closes the tool and free all the memory allocated 

for the Graph, Parser and Node objects. 
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V. Experimental Results 
 
 The experimental results section includes many scenarios 

sharing the same automotive device. The common case of study 

is a SPC58 family micro-controller manufactured by 

STMicroelectronics. The chip characteristics are detailed in the 

next section V. A. 

 Section V. B illustrates how the methodology was used to 

assess SBST programs belonging to a Core Selt-Test library. 

 Section V. C reports about preliminary experiments for 

grading a Real-Time Operating system bootstrap and workload 

including SBST tasks. 

 

 

A. Case Study 
 
 The case study is an automotive microprocessor belonging 

to the STMicroelectronics SPC58 family. The selected processor 

features multiple cores, many modules such as timers and 

communication modules. This device is used in critical parts of 

vehicles. The circuit counts around 20 millions gates and each of 

the CPU counts 1.5 million Stuck-at faults. Figure 37 shows the 

experimental setup used to validate the proposed approach. 
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 The debugger in the previous figure is used to extract the 

gold execution trace dump. Then, as we have widely said, the 

dump is passed to the tool to compute the connectivity metrics. 

 

B. SBST Grading 
 
 The adoption of the proposed strategy is encouraged by 

the results that we achieved when grading Software-based Self-

Test programs belonging to a Core Self Test library written by very 

Figure 37: Experimental Setup including a Development Board and a Hardware Debugger 
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skilled test engineers. In particular we analyzed SBST programs 

targeting many components of the CPU core.  

 Table 6 reports about the investigated SBST programs, 

putting in comparison the fault analysis times and results, with 

our new method of preliminar grading. 

 

 

 As we could expect, the first automatic generated trace has 

a lower connectivity with respect to the others written by 

qualified test engineers. The second has an high connectivity, but 

it is a matter of probabilities: being randomly generated is 

possibile that instruction has an actual high connectivity between 

them only by chance. 

 The previou table shows that, on average, our method 

takes seconds to perform the analysis. Comparing this time with 

the average fault simulation time, we obtain a very important 

result. I want to remember that this method is not a substutution 

of the fault analysis process: it is, instead, a quick way to decide 

Program Name 
Program size 

[Bytes] 

Connectivity 

[%] 

Grading 

Time [s] 

Stack-at 

fault # 

Stack-at fault 

coverage [%] 

Fault simulation 

CPU time [m] 

Automatic trace 1M / 38.5 50 / / / 

Automatic trace 10M / 76 229 / / / 

Arithmetical adder 1,635 58.5 40 19,760 92.6 1,463 

Count-zeros unit 1,160 63.3 19 3,069 86.8 512 

Bit-wise logical 680 97.9 11 2,828 95 339 

Branch target buffer 4,476 40.6 / 19,990 71.2 4,009 

Table 6: Results from the Execution of the Tool 
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if performing fault analysis could have sense or not. But, it is also 

an indicator of which instructions and which destinations are 

giving more problems. For this reason, the toolt becomes useful 

to remove or correct them to better perform the testing phase. 

 

 
C. Operating System Grading for System 
Level Test  
 
 Now we are going to try to grade some trace that are 

exctracted during the execution of the gold device during some 

task performed by operating system. 

 
  

 

 

 

 Table 7 shows some result of the analysis performed by the 

tool, this time with real time operating system trace. Also this 

kind of analysis took some milliseconds that, compared with fault 

simulation average times, is a very good results. 

 

 

 

Program Name AVG Connectivity [%] 

Real Time Operating System (RTOS) 79.8 

RTOS with enhanced stack frame 100 

Table 7: Results from the Execution of the Tool with Real Time Operating System Trace 
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VI. Conclusion 
 
 Hardware testing needs to be thorough and precise 

because if a bug is missed, the cost of fixing it later is huge. 

Unfortunately, not even the world’s brightest hardware 

manufacturers get their designs right the first time around. 

Moreover, testing may require costly and domain-specific testing 

devices and testing may be extremely time-consuming. 

 Dynamic taint analysis and forward symbolic execution are 

quickly becoming staple techniques in security analyses, such as 

malware analysis and vulnerability discovery. Nevertherless, 

there has been little effort to apply similar techniques to other 

domains. 

 In our work, we first run our functional program, we collect 

its complete trace, and we dump it on file. Then, we visit such a 

file and we build the data flow graph of our code. Finally, we visit 

such a graph to understand how operands are manipulated by 

the instruction flow. We present several possible versions of our 

application, starting from the trivial implementation and moving 

toward the most optimized one. We show how all these versions 

have reasonable memory and time cost. Moreover, we prove 

how the connectivity figures to tool return can indeed be used to 

appropriately grade the coverage on the chip. 

  This work demonstrates that, with the new metric we have 

introduced, is possible to give a preliminar grade to a test 
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program without performing any king of fault simulation that, as 

we have seen, is the strongest bottleneck for a testing process. 

 I think that putting beside this technique with a fault 

injection and other testing methods this work will result very 

useful and fast to use, but, above all, it will bring very relevant 

innovations. 

 Especially, being this method a novel technique, i think that 

a lot of improvements can be done, both in the performances and 

in the reasoning that lies behind it, especially about all the part 

related to the conditional branches and branch_visit. 

  

 
 

 
 
 
 
 
 
 
 
 
 



 
 

76 

VII. Acknowledgements 
 
 In this section i want to thank all the people that have 

worked with me during these months and are still involved in this 

project: my supervisors Stefano Quer and Paolo Bernardi to have 

chosen me to do this job and let me undesrstand better the 

testing world; Francesco Angione, who has created for me traces 

to be analyzed, extracted directly from the chip using the 

debugger; i want to thank Francesco, also for the experimental 

results related to fault analysis process; finally, Andrea Calabrese 

and Lorenzo Cardone for the support and the useful advice given 

in this time together. 

 



References 
 

 
 [1]  D. Appello, P. Bernardi, A. Calabrese, S. Littardi, G. Pollaccia, S. Quer, 
  V. Tancorre, and R. Ugioli, “Accelerated analysis of simulation dumps 
  through parallelization on multicore architectures,” in 2021 24th Inter- 
  national Symposium on Design and Diagnostics of Electronic Circuits 
  Systems (DDECS), 2021, pp. 69–74. 
 
 [2] A. Paschalis and D. Gizopoulos, “Effective software-based self-test 
  strategies for on-line periodic testing of embedded processors,” IEEE 
  Transactions on Computer-Aided Design of Integrated Circuits and 
  Systems, vol. 24, no. 1, pp. 88–99, Jan 2005. 
 
 [3] P. K. Parvathala, K. Maneparambil, and W. C. Lindsay, “Functional 
  random instruction testing (frits) method for complex devices such as 
  microprocessors,” United States Patent 6948096, 2005. 
 
 [4] I. Bayraktaroglu, J. Hunt, and D. Watkins, “Cache resident functional 
  microprocessor testing: Avoiding high speed io issues,” in 2006 IEEE 
  International Test Conference, Oct 2006, pp. 1–7. 

 
[5] P. Bernardi, R. Cantoro, S. De Luca, E. S ́anchez, and A. Sansonetti, 
 “Development flow for on-line core self-test of automotive microcon- 
 trollers,” IEEE Transactions on Computers, vol. 65, no. 3, pp. 744–754, 
 March 2016. 
 
[6] T. Mak, “Infant mortality–the lesser known reliability issue,” in 13th 
 IEEE International On-Line Testing Symposium (IOLTS 2007), 2007, 
 pp. 122–122. 
 
[7] M. Zakaria, Z. Kassim, M.-L. Ooi, and S. Demidenko, “Reducing burn- 
 in time through high-voltage stress test and weibull statistical analysis,” 
 IEEE Design Test of Computers, vol. 23, no. 2, pp. 88–98, 2006. 
 
[8] A. Benso, A. Bosio, S. D. Carlo, G. D. Natale, and P. Prinetto, “Atpg 
 for dynamic burn-in test in full-scan circuits,” in 2006 15th Asian Test 
 Symposium, 2006, pp. 75–82. 
 
[9] D. Appello, C. Bugeja, G. Pollaccia, P. Bernardi, R. Cantoro, M. Restifo, 
 E. Sanchez, and F. Venini, “An optimized test during burn-in for 
 automotive soc,” IEEE Design Test, vol. 35, no. 3, pp. 46–53, 2018. 
 
[10] F. Almeida et al., “Effective screening of automotive socs by combining 
 burn-in and system level test,” in IEEE International Symposium on 
 Design and Diagnostics of Electronic Circuits Systems (DDECS), 2019. 



 
[11] P. Bernardi, A. Bosio, G. Di Natale, A. Guerriero, E. Sanchez, 
 and F. Venini, “Improving Stress Quality for SoC Using Faster- 
 than-At-Speed Execution of Functional Programs,” in VLSI-SoC: 
 System-on-Chip in the Nanoscale Era – Design, Verification and 
 Reliability, ser. IFIP Advances in Information and Communication 
 Technology, T. Hollstein, J. Raik, S. Kostin, A. Tˇsertov, I. O’Connor, 
 and R. Reis, Eds., vol. AICT-508. Tallinn, Estonia: Springer 
 International Publishing, Sep. 2016, pp. 130–151. [Online]. Available: 
 https://hal.inria.fr/hal-01675205. 
 
[12] I. Polian, J. Anders, S. Becker, P. Bernardi, K. Chakrabarty, N. El- 
 Hamawy, M. Sauer, A. Singh, M. S. Reorda, and S. Wagner, “Exploring 
 the mysteries of system-level test,” in 2020 IEEE 29th Asian Test 
 Symposium (ATS), 2020, pp. 1–6. 
 
[13] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung, “Verifying 
 information flow properties of firmware using symbolic execution,” in 
 Design, Automation Test in Europe Conference Exhibition (DATE), 2016, 
 pp. 337–342. 
 
[14] S. Malik and P. Subramanyan, “Specification and modeling for systems- 
 on-chip security verification,” in Proceedings of the 53rd Annual Design 
 Automation Conference, 2016, pp. 1–6. 
 
[15] M. Hassan, V. Herdt, H. M. Le, D. Große, and R. Drechsler, “Early 
 soc security validation by vp-based static information flow analysis,” in 
 2017 IEEE/ACM International Conference on Computer-Aided Design 
 (ICCAD). IEEE, 2017, pp. 400–407. 
 
[16] R. Drechlser and D. Große, “Ensuring correctness of next generation 
 devices: From reconfigurable to self-learning systems,” in 2019 IEEE 
 28th Asian Test Symposium (ATS). IEEE, 2019, pp. 159–1595. 
 
[17] W. Hu, C.-H. Chang, A. Sengupta, S. Bhunia, R. Kastner, and H. Li, 
 “An overview of hardware security and trust: Threats, countermeasures, 
 and design tools,” IEEE Transactions on Computer-Aided Design of 
 Integrated Circuits and Systems, vol. 40, no. 6, pp. 1010–1038, 2020. 
 
[18] K. M. Alatoun, S. M. Achyutha, and R. Vemuri, “Efficient methods for 
 soc trust validation using information flow verification,” in 2021 IEEE 
 39th International Conference on Computer Design (ICCD). IEEE, 
 2021, pp. 608–616. 
 
[19] T. Alam, Z. Yang, B. Chen, N. Armour, and S. Ray, “Firver: Concolic 
 testing for systematic validation of firmware binaries,” in 27th Asian 
 and South Pacific Design Automation Conference (ASP-DAC), 2022, pp. 
 352–357. 


