
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Accelerating Federating Learning via
In-Network Processing

Supervisors

Prof. Guido MARCHETTO

Prof. Alessio SACCO

Candidate

Vera ALTAMORE

April 2022





Abstract

The unceasing development of Machine Learning (ML) and the evolution of Deep
Learning have revolutionized many application domains, ranging from natural
language processing, to video analytics, to biology and medical predictions. The
most common approach for ML models training is cloud-centric, so data owners
transmit the training data to a public cloud server for processing, where resides
more powerful resources. However, this approach is often unfeasible due to privacy
laws and restrictions, as well as the burdening of network communications because
of the massive quantities of data that need to be transmitted to a distant cloud
server. To solve these problems, Google introduced in 2016 the concept of Federated
Learning (FL) with the objective of building machine learning models that takes
into account security and privacy of data. In FL, instead of transferring the data
to the central servers, the ML model itself is deployed to the individual devices to
train on the data, and only the parameters of the trained models are sent to the
central ML/DL model for global training. Thanks to this principle, FL is widely
used today in sales, financial, medical, and Internet of Things (IoT) fields, where
the privacy of data is essential. In particular, the underlying architecture can
include many devices, each one with its own dataset, and a central server, which is
responsible for the aggregation of data in order to build a global model. However,
despite the privacy and security benefits, this approach can lead to synchronization
issues, and the network and the server turn in bottlenecks and the load may become
unsustainable.

To this aim, this thesis proposes a novel FL model that uses programmable P4
switches to compute intermediate aggregations and reduce the traffic on the network.
The use of edge nodes for in-network model caching and gradient aggregating
alleviates the bottleneck effect of the central FL server and further accelerates the
entire training progress. In detail, we modified a traditional FL framework, as
Flower, to communicate with P4 switches using a custom protocol to carry the
model parameters. We also adapted the P4 switch behavior to support gradient
aggregation. In addition, in this work we compare the execution time of the
proposed model against current state-of-the-art models and verify the speedup of
the global training phase.
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Chapter 1

Introduction

In recent years, the number of connected IoT devices has grown exponentially, and
it is estimated that by 2025 it will reach the amount of 31 billion, which is two and
half times the amount of data produced in 2020 [1]. Moreover, these devices present
heterogeneous architectures and applications, ranging between smart industry,
healthcare, smart homes, and wearables, all of which require quality and speed.
The current cloud infrastructures are not able to provide services at the required
level of performance while managing massive, heterogeneous, and distributed IoT
data, therefore a new architecture is necessary.
Edge Computing (EC) is proposed as a solution to these problems: it is a new
architecture that leads network services closer to data sources, reducing latency
and bandwidth costs while improving network resilience and availability. IoT data
proliferation and the abundance of heterogeneous computing resources have made
EC a useful computing paradigm for handling IoT data. EC together with Deep
Learning (DL) and Machine Learning (ML) is a promising technology and is widely
applied in several areas. To mention a few examples, currently, existing smart
speakers use ML on Edges nodes to perform the training of speech recognition
and pattern recognition models. There are companies in the energy and industrial
sectors that are using machine learning systems to monitor their components and
alert technicians when maintenance is required, or monitor for emergencies like
machine malfunctions and meltdowns. There are studies and applications of Edge
ML-based systems in hospitals and assisted living facilities to monitor things like
patient heart rate, glucose levels, and falls by using cameras and motion sensors.
In this situation, a quick response is essential and could save lives: if the data is
processed locally and at the edge, the staff is notified in real-time and act promptly.
The most common approach for ML models training is cloud-centric, so data storage
and model training are performed on high-performance cloud servers. But with
the growth of model size and dataset, as well as the number of connected nodes,
the centralized approach becomes unfeasible. The main problems encountered
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concerns communication cost, reliability, data privacy, security, and administrative
policies. When large amounts of data are sent from EC nodes or edge devices to
a remote server, an appropriate network traffic encoding and transmission time
are required, and insufficient bandwidth can negatively affect the efficiency of data
transmission. Furthermore, cloud servers are often far from end-users, so in a
network with thousands of edge devices is difficult to obtain real-time, low-latency,
and high Quality of Service (QoS) requirements.

In the age of Big data, interest in privacy and security of data is increasing, to
such an extent that governments and organizations have responded by enacting
data privacy legislation. For example, the General Data Protection Regulation
(GDPR) in the European Union, California Consumer Privacy Act (CCPA) in the
USA, and the Personal Data Protection Act (PDPA) in Singapore have the aim
to restrict the collection of data to only those that are needed for processing and
consented to by consumers. Moreover, other domain-specific regulations, like the
Health Insurance Portability and Accountability Act (HIPAA) for medical data,
the American Gramm–Leach–Bliley Act (GLBA), and the Payment Card Industry
Data Security Standard (PCI DSS) for financial data have similar objectives.
Since raw data are used to train the model in the central server, to guarantee

Figure 1.1: Global regulation and enforcement in privacy.

the confidentiality and integrity of these resources, specific controls and techniques
must be implemented; traditional centralized training, however, is vulnerable to
sensitive data privacy breaches, intruders, hackers, and sniffers and cannot provide
the required security. Taking into account these requirements, Google researchers
presented in 2016 the concept of Federated Learning (FL), as a solution to cloud-
centric limitations. The FL approach is a distributed ML approach where models
are trained on end devices without sharing their local datasets to ensure privacy

14



Introduction

requirements.

Federated learning applications

Originally intended for mobile devices, FL has expanded rapidly into many other
applications, such as the Healthcare industry, the FinTech and insurance sector,
Industry 4.0, and blockchain fields, including the collaboration of many organiza-
tions to train a model. In Healthcare industry, for example, a prediction algorithm
for clinical purposes could be trained using vast and varied datasets, as in the
Pima diabetes and Covid 19 studies. In FinTech sector, ML models could be
trained to search for data breaches and Account Take Over (ATO) Fraud or to
prevent fraudulent activities. Also in Insurance sector, FL could be used to detect
individuals or businesses accountable for fraud and illicit activity, for example by
training a model that uses varied data ranging from health insurance to car to
mobile to business assets. Another important application domain is the IoT field, in
which federated learning can help to achieve the personalization of user experience
and increase the performance of devices. As an example, the first application of
Federated Learning was texts prediction in Google’s Android Keyboard and today
Apple utilizes federated learning to improve Siri’s voice recognition. [2] Because
data never leave client devices, in all these applications, where privacy and security
of data are essential, Federated Learning represents an excellent solution.

Federated Learning Process

A federated learning process can be summarised in five steps:

1. The FL server first determines an ML model to be trained on the clients’ local
database.

2. A subset of clients is chosen at random or using client selection algorithms
and the server sends the initial or updated global model to the selected clients.

3. The clients receive the global parameters and locally train the model.

4. Results of the local training are sent to the server.

5. The server receives the updated parameters and aggregates them using an ag-
gregation algorithm; then sends the aggregated parameters to the clients. Since
the server works only on model parameters, privacy and security requirements
could be achieved.

The entire process can be repeated until the desired level of accuracy is reached.
Compared to traditional centralized ML training, FL has several distinct ad-

vantages, first of all, training and inference require much less time and bandwidth
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Figure 1.2: Federated Learning process steps: initial Model, local training and
global update.

because the data remains local instead of being frequently sent over the network.
Moreover, distributed learning using FL is easy and consumes less power on the
central server as the models are trained on edge devices. There are three types of
FL structures based on how global learning is implemented and where the aggre-
gation is performed: cloud-enabled, edge-enabled, and hierarchical. Edge-enabled
FL presents the aggregation at the edge, so after the model is locally trained
on end devices, it is aggregated and updated on the edge server, and it is then
broadcasted to the end devices. In contrast, a cloud-enabled FL suits well for
model training on systems that are geographically distributed over vast areas, in
this case, the parameter server resides on the cloud. The main difference between
these two approaches is the proximity to clients that influences the communication
latency; it is possible to notice a significant reduction in latency with edge-enabled
FL compared to cloud-enabled FL. Despite this, edge servers often have limited
resources, which limits their efficiency, especially if we consider the huge number
of clients participating in FL and the size of used datasets. Another aspect to
assess is the network congestion: the connection with the cloud server is slow and
unpredictable, resulting in an inefficient training process. A hybrid approach that
seeks to achieve a tradeoff between communication efficiency and the aggregation
convergence rate, is hierarchical FL. This model makes use of a cloud server to
access the enormous training samples and use its local clients to update the model
quickly. By employing hierarchical FL, cloud communications will be significantly
reduced, combined with efficient updates on the client-side.

1.0.1 Edge Computing in Federated Learning
Over the past few years, computing has become more consistent, and cloud services
have moved to the edge. The next generation of Big Data will be based on dispersed
data sources equipped with advanced computing capabilities, which results in an
increase in edge computing devices. For different reasons, the current cloud-based
computing paradigm is becoming incapable of managing and analyzing the huge
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Figure 1.3: Federated Learning architectures, client-based, edge-based and hier-
archical FL.

amount of data collected and produced at the edge. With the increase in the
size of data and with the advent of new time-sensitive applications, such as aug-
mented reality, virtual reality, and autonomous vehicle network systems, traditional
cloud-based servers, typically located far from end nodes, are not able anymore
to be performing. Furthermore, with the explosive increase of participants, the
central FL server, which acts as the manager and aggregator of cross-device model
training, as well as network links, is getting overloaded. Besides the computing and
communication costs, IoT devices need to send raw data to the cloud for processing;
data transmissions can involve sensitive information, such as patient information,
which not only violates privacy but also poses a security risk due to frequent data
transmissions. For these reasons, it would be more efficient to process the data at
the edge of the network.

Edge computing (EC) makes it possible to bring compute power and storage
closer to the edge devices by utilizing distributed computing. This technology is a
solution to alleviate the bottlenecks of emerging technologies: data transmission
is reduced, services are provided quickly, cloud computing pressure is eased by
leveraging distributed computing, and security and privacy are enhanced. The
concept of EC does not exclude cloud computing but is a supplement and extension
of it; the edge is small, resource-constrained, and heterogeneous and exploits the
proximity to end devices to achieve faster results. The application of FL techniques
on edge networks has the following advantages over the traditional centralized
ML model. By sending update parameters instead of raw data to the FL server,
the number and size of communication data are reduced, which leads to a higher
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network bandwidth utilization. Moreover, advantages in latency are achieved
since edge devices are closer to the end devices, and the performance of real-time
applications, such as event detection, augmented reality, and medical applications
can be improved by processing them locally at the end user’s device.

Despite the great advantages of using edge computing in FL, there may still be
issues mainly caused by the limited resources of edge nodes that have to manage
an increasing amount of data. So both the cloud-based model and the edge-based
model can lead to various issues, in particular, the network and the server may
turn into bottlenecks and the load may become unsustainable. A solution to
these problems consists of the combination of cloud and edge computing in a
hierarchical approach. By this method, both the central server and edge nodes
perform aggregation and update of parameters reducing the traffic on the backbone.
Edge computing nodes can perform many computations without requiring data to
be exchanged with the cloud, furthermore, hosting services at the edge can reduce
data transmission delays and improve response times. Another important aspect is
privacy: using FL, client devices can collectively train a global model using their
combined data without revealing any personal information to the central server.

Until today, intermediate operations on edge nodes, have been performed by
computational devices, like smart objects, mobile phones, or servers placed at the
edge of the network, but with the advent of programmable switches, moving these
computations inside network devices is becoming a possibility. Following this, the
thesis proposes a novel FL model that uses programmable P4 switches to compute
intermediate aggregations and reduce the traffic in the network, hence alleviating
the bottleneck effect on the central FL server and further accelerating the entire
training progress. In detail, we modified a traditional FL framework, as Flower,
to communicate with P4 switches using a custom protocol to carry the model
parameters, moreover, we adapted the P4 switch behavior to support gradient
aggregation. The main advantage in using this kind of in-network computation,
compared to the traditional model, in which the model update is performed on a
central server, is first of all the ability to execute computation at line rate, hence
providing faster results to the clients.

In order to speed up the aggregation on switches, the model parameters were
encapsulated into BPP packets. BPP (NewIP/Big Packet Protocol) is a new
protocol and framework that allows defining the behavior of packets and flows
through information encoded in the packets themselves. The basic idea is to insert
a BPP header, between the traditional packet header and user payload, which con-
tains commands and metadata that inform network devices about how to process
the packet. In our thesis work, we used BPP commands to indicate the type of
operation to be performed, as well as metadata to store model parameters.

After the local training, the end-host creates and sends the packet containing
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the parameters, which is received by the intermediate switches performing the
aggregation. The behaviour of these switches has been defined using P4, a high-level
programming language for packet processing. P4 defines a device-independent
way of expressing how packets should be managed by programmable forwarding
elements, such as a programmable switch, but it can also refer to NICs, routers,
and many other devices. This introduces a lot of flexibility in the system compared
with a traditional one because the data plane can be changed in a programmatically
way, particularly it is possible to parse the packet header, extract information and
use them to process the packet. There are, however, some limitations of P4 that
have been addressed in this thesis: P4 language does not support the arithmetical
division operation and floating-point values. We used a modified version of BMV2,
the P4 standard architecture model, in order to support external functions, written
in C++, to overcome the division limitation, while we scaled parameters on end
nodes, by a factor of 108 to handle integer values.
On top runs the FL framework. Our implementation is a modified instance of
Flower, a framework for Federated Learning that supports experimentation with
both algorithmic and systems-related challenges in FL. The entire Flower training
process relies on the exchange of request-response messages between the central
server and the Clients involved in the training. We changed the communication
pattern without changing the behavior of the system.

Since the P4 switches need to extract model parameters to perform aggregation,
the original Protocol Buffer messages have been replaced with BPP packets contain-
ing both the action to be performed and the model parameters in metadata. Also,
the transport protocol has been replaced with UDP socket connections to make
the packet parsing smoother and enable the Multicast forwarding of the packet
directed to all Clients. The final change in the framework concerns the number
of connections with the Clients: in the traditional version, the server establishes
connections with each Client that joins the training process, in our version the
server, since receive just aggregated values from the switch, establishes connections
only with special elected hosts representing of the entire subnetwork.

To summarise, all clients participate in the Federated Learning process, but the
server will obtain an opaque vision of the topology as it sees just an aggregation of
them: this allows for better training process performance in terms of accuracy and
loss, with the same number of server connections.

We conducted experiments using a network topology composed of a central
server, three intermediate P4 switches performing aggregations, and eight clients
participating in the FL process. A significant result is the one about network
traffic: having eight clients registered to the server, it is possible to see that the
traffic registered in the network is much higher. Another notable result is the one
about accuracy that has been measured using a number of registered clients equal
to 3. When the aggregation occurs, the accuracy is slightly higher than in the
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case of no aggregation; this can be explained by the fact that, even if the number
of clients seen by the server is equal in both cases, using aggregation the real
number of participating clients, hidden by the elected, is higher, so it is possible to
better train the model. Lastly, considering the training time for both solutions,
we observed how the aggregation introduces some overhead brought by the P4
additional computation. However, this result is influenced by the virtualized nature
of the experimentation system, the specific implementation of BMv2 that we used,
the limited amount of parameters in the model, and the absence of challenging
network conditions. Despite these factors, the difference between the two solutions
is quite negligible, and, along with other metrics, demonstrates the validity of our
solution.

The thesis work is organized as follows. In Chapter 2, related works are de-
scribed with their pros and cons highlighting the innovation they bring. Chapter
3 introduces some necessary background about In-Network computation and P4
switches, in addition, it provides a brief introduction of used protocols and frame-
works like BPP and Flower. In Chapter 4, are analyzed the challenges of the thesis
work, the architecture, and the technologies used. The implementation details are
presented in chapter 5, followed by simulations results and a comparison with other
solutions in chapter 6. Finally, in chapter 7, are provided conclusions about the
work and points for reflection for future implementations.
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Chapter 2

Related work

This chapter presents previous related studies conducted in the field of FL and, in
particular, examines various solutions proposed to improve FL performance using
distributed architectures or the edge computing paradigm (EC). Variouse papers in
the field of programmable networks are presented to explore the possibilities and
applications of this technology. This introduction is intended to help the reader
understand the value of the solutions proposed in this work. In addition, the
presentation of other works is intended to point out possible similarities between
the different solutions and to suggest new challenging ideas to improve the current
work.

2.1 Federated Learning and Edge Computing
In the current literature, there are many studies on FL, which differ in terms
of application domain, technologies and protocols used, but all of them have
the common goal of reducing the bottleneck effect in the network, reducing the
computational overhead on the central server and speeding up the training process.
To achieve these goals, some of them try to use different aggregation algorithms on
the central server [3] [4], use other architectures, or move some computations to
the edge of the network.

Edge Computing refers to a processing performed at the location closest to the
data source in a system, or to the end user. Edge architecture enables faster pro-
cessing by reducing latency and bandwidth costs and improving network resilience
and availability. In particular, it is shown that moving computations to edge nodes
to process data closer to the point of origin can reduce model training time and
end-devices energy consumption compared to cloud-based Federated Learning. The
cloud-based and edge-based FL systems differ in communication and number of
participating clients, so it is possible to reduce the computational overhead. In
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addition, edge servers enable fast model updates with their local clients, which
accelerates the training process.
In some proposed solutions for edge-based FL, the central cloud server is replaced
by different edge servers [5] [6] [7], that collaborate to obtain the final global model;
in other cases, the edge servers or, in general, edge nodes, only perform intermediate
aggregation of model parameters before sending them to the central server for
global aggregation.
Many solutions rely on D2D (device-to-device) communication to speed up the
training process. For example, in [8], two timescales hybrid federated learning
(TT-HF) is proposed, a semi-decentralised learning architecture that combines the
traditional paradigm of device-to-server communication for federated learning with
device-to-device communication for model training. In this solution, clients are
divided into clusters and in each round, the central server elects one device from
each cluster. Once the clients finish the local training, a consensus procedure starts,
where an aggregation of the local training parameters is performed, and at the end,
the sampled devices send the final results to the server.
In [9] is proposed the introduction of intermediate edge servers to perform partial
aggregation of the model. This architecture is called hierarchical FL system, which
has one cloud server, L edge servers indexed by l, to which clients with distributed
datasets are connected. After each k1 local update on each client, each edge server
aggregates its clients’ models. Then after every k2 edge model aggregations, the
cloud server aggregates all the edge servers’ models; in this way, the communication
with the cloud happens every k1k2 local update, much smaller than the traditional
cloud FL. An application of this architecture is proposed in [10].
A similar strategy is proposed in [11]. The authors present a system model where
data owners, called workers, participate in FL model training under different cluster
heads, for example, base stations that support the intermediate aggregation of
model parameters and efficient relaying to the central server (model owner). It
is considered a two-level resource allocation and incentive design problem: a first
level, a lower level between workers and cluster heads, and a second level between
the cluster heads and the central server. At the first level, each worker can freely
choose which cluster to join. To encourage worker participation, cluster heads
offer reward pools that are shared among workers based on their data contribution
in the cluster. There can be multiple model owners in the network who want to
train a model, but at any point in time, each worker and cluster head can only
participate in the training process with a single model owner. A distinctive feature
of the work is the use of the evolutionary game theory to derive the equilibrium
solution for the cluster selection phase.
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2.2 In-Network computation

An interesting work on edge-based FL is discussed in [12]. The focus of this work
is on using edge nodes for In-Network model caching and gradient aggregation.
Specifically, the authors propose two new protocols, Model Download Protocol
(MDP) and Model Upload Protocol (MUP), which are based on UDP and break
the conventional end-to-end principles. These new protocols allow edge nodes to
download a single instance of the model from the FL server and pre-aggregate
the associated gradient upload requests. In this way, it is demonstrated that it
is possible to mitigate the bottleneck effect of the central FL server and further
significantly accelerate the overall training progress.
The proposed system consists of three elements: the FL server (FLS), end devices
(ED), and the edge box (EB) that provides cache function. To start a round of
training, the FLS selects a group of EDs to pull the model using the cache service
provided by the EBs. When the EDs complete the training, they send their local
gradients back to the FLS, which are aggregated by the EBs. Then the FLS
generates the new global model and moves on to the next round of training.
Figure 2.1 shows the workflow of the two proposed protocols with and without the
presence of an intermediate EB.

It should be noted that without the EB, any request from ED has a correspond-
ing response from the FL server, while with an intermediate EB it is possible to
exploit the cache service to obtain a response and perform intermediate aggregation.
In model download, the first time a ED sends a request, a cache miss occurs, so
the request is forwarded to the FLS. The response is cached in the EB so that the
next time some ED sends a new request, a cache hit occurs and the ED receives
the cached response without contacting the FLS. The same is true for upload: the
EB caches all model gradients received from the EDs and, once all has finished,
performs aggregation and sends the aggregated model to the FLS. Performing these
operations through the EB, which is closer to ED, reduces both the traffic to the
FLS and the average response time.
The great value of this work lies in the proposed innovative approach, which is
different from Hierarchical Federated Learning. Typically, edge servers run inside
VMs and require complicated synchronization protocols. As an alternative, the
authors propose In-Network processing, which can be implemented as an optional
edge service.
The authors of [13] follow a similar approach for generic data, performing aggrega-
tion along network paths instead of edge servers. In particular, they describe the
functioning of NETAGG, a software platform that supports on-path aggregation
for network-bound partition/aggregation applications. NETAGG uses software
middleboxes, agg boxes, to perform aggregation along the network path. This
allows us to minimize edge server bandwidth usage and congestion in the core of
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Figure 2.1: Workflow of MDP and MUP with and without EB.

the network, since the forwarded aggregated data is typically smaller than the
original one. NETAGG uses shim layers on edge servers to transparently redirect
application traffic to agg boxes connected to network switches via high-bandwidth
links. A spanning tree, called aggregation tree, is created in which the root is
the final master node that collects/consumes the final data, the leaves are the
workers that produce data, and the internal nodes are the agg boxes. Each agg
box aggregates the data coming from its children and forwards it to the parent.

2.3 Programmable switches and In-Network com-
putation

The concepts of Federated Learning and In-Network aggregation are summarized
in [14] and [15]. These two studies are, as far as known, the only ones that contain
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Figure 2.2: NetAgg system architecture.

the same initial idea, overall architecture, and functioning workflow as the proposed
thesis; the difference lies in the implementation details.

The work of Chen et al., aims to reduce the bottleneck in the network during
model synchronization, with special attention to the security of the transmitted
data; in particular, is performed In-Network aggregation of ciphered parameters in
programmable switches..

The solution in [14] focuses on cross-silo FL and emphasizes the need for privacy
not only in the training set but also in the training results. For this reason, the
training results leaving the clients are enciphered using homomorphic encryption.

The entire process can be divided into three main steps:

1. Local training. Each client, after being synchronized with the initial model,
performs a local training with its local data, then encodes the model parameters
into multiple batches, encrypts them, and sends encrypted packets to the
parameter server.

2. Packet forwarding and In-Network aggregation. When a packet containing
model parameters arrives at a switch, In-network aggregation of the parameters
is performed. The result of the aggregation is stored in the switch’s memory
and the packet is dropped. Thanks to the presence of the controller, the switch
knows which packets should be aggregated. After aggregating all packets,
the switch sends the aggregated result to the next-hop device to reach the
parameter server and send back a response to the clients.

25



Related work

3. Global aggregation. The aggregated and unaggregated parameters reach the
parameter server for global aggregation. The global, updated model is sent
back to the clients so they can proceed to the next round of training.

Figure 2.3: System architecture of cross-silo FL with privacy-protecting.

This article highlights the advantages of using programmable switches for In-
Network processing and especially for aggregation. Other studies, such as. [15],
use this approach and implement In-Network processing with P4 programmable
switches. P4 language allows the implementation of custom packet processing logic
in programmable switches and well suits for data aggregation.

Sapio et al., propose SwitchML as an approach to reduce the volume of exchanged
data during ML training by performing aggregation of model updates from multiple
workers in the network. In this way, it is possible to achieve the minimum possible
latency and communication cost, measured by the amount of data that each worker
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sends and receives. The main motivation for this idea is that the aggregation
operation is computationally cheap, taking about 100 ms, but is communication
intensive, since hundreds of megabytes can be transmitted at each iteration. For
this reason, SwitchML uses computations on the switch to aggregate model updates
on the network. This involves minimal communication so that each worker sends
its update model vector and receives the aggregated updates back. To achieve
this goal, they use programmable P4 switches to aggregate data and prove that
a programmable network device can perform in-network aggregation at line rate.
The training is an iterative process where each iteration consists of the following
steps:

1. Training on workers using local dataset. At the end of training, a gradient
vector is produced and sent to the switch.

2. Updating the model with aggregated values. The switch performs aggregation
by computing the mean of all received gradient vectors. Then it sends the
updated model back to the workers.

In their paper, they present the challenges and solutions of using P4 pro-
grammable switches for in-network aggregation and provide a complete imple-
mentation and evaluation on a hardware switch. First, per-packet processing
capabilities are limited, and so is on-chip memory. For this reason, they limit
resource usage and process data grouped into vectors separately using a streaming
approach. Specifically, workers send groups of data to the switch, which computes
the aggregation and sends the result back to the workers to update the model.
Second, the computational units in a programmable switch operate on integer
values, while the frameworks and models of ML work with floating-point values.
To solve this problem, the workers scale and convert floating-point values to fixed-
point numbers using an adaptive scaling factor with negligible approximation loss.
Moreover, operations can only be simple integer arithmetic/logic operations, so
neither floating-point nor integer division operations are possible. For this reason,
the P4 switch performs integer aggregation and only calculates the sum of values,
while the end hosts are responsible for managing reliability and performing more
complex calculations such as averaging. Third, in-network aggregation requires
mechanisms for worker synchronization and packet loss detection and recovery.

This thesis presents the same architecture and goals as [15], but additionally
aims to solve the computation problem of averages by attempting to compute
divisions within switches as well.

2.3.1 P4 programmable switches
In [16] the authors use P4 switches to implement DAIET, a system for In-Netowrk
data aggregation that allows reducing network traffic and computation overhead.
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Figure 2.4: SwitchML. Example of model updates in-network aggregation.

Similarly, Yang et al. [17] proposed SwitchAgg, a system that performs similar
functions but does not require a change in network architecture compared to DAIET
and provides better processing capabilities with significant data reduction rate.
Moreover, SwitchAgg is implemented on an FPGA, and experimental results show
that the entire job can be completed in less than 50% of the time.
Since IoT devices are constrained in terms of size and processing capabilities, they
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usually generate packets with small payloads but large headers. When a large
number of IoT devices transmit packets, a significant amount of network bandwidth
is wasted on transmitting these headers. To solve this problem, packet aggregation
can be performed to combine the payloads of small packets into a single larger
packet to reduce the bandwidth consumption by headers. An implementation of
this mechanism is contained in [18]: to reduce the number of messages transmitted
from sensor devices to the IoT server, P4 switches are used to aggregate several
small IoT messages into one large packet before transmitting them over the network.
The study shows that packet aggregation in a P4 switch can be achieved at its
line rate (without any additional packet processing cost). On the other hand,
the processing time to disaggregate a packet that combines N IoT messages, the
processing time is about the same as processing N individual IoT messages. The
same authors have extended this work to solve some constraints related to the
payload size and the number of aggregated packets [19]. When the P4 switch
receives a packet, it parses the headers and determines if it is an IoT packet. If it is,
parses and extracts the payload data. Then, the payload is stored in the switch’s
registers along with some other metadata, and the packet is dropped. Once the
packets are aggregated, the resulting packet is sent across the network to reach the
remote server. An important observation is that the aggregation/disaggregation
processes are transparent to both the IoT devices and the servers; therefore, no
changes are required on either side.
Finally, in [20],the authors use P4 switches used in Federated Learning not to
perform intermediate aggregations of model parameters, but to perform scheduling
of packets. In the article, they show that the scheduling of packets originating from
workers in a FL system, can reduce network blocking time and speed up the overall
training time.

Figure 2.5: Tensor express architecture.
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Background

3.1 Overview
Before delving into the details of the thesis, it is important to provide a brief
introduction of the tools and frameworks used in this thesis work. In this chapter,
it is introduced the concept of programmable switch and it is given an overview
of P4 language, then the Big Packet Protocol (BPP) is briefly introduced. The
chapter concludes with an overview of the Flower Framework and how it works.

3.2 Programmable switches
With traditional devices, networks are connected using protocols such as OSPF(Open
Shortest Path First) and BGP (Border Gateway Protocol), running in each device
and both control and data planes are under full control of vendors. With the
introduction of SDNs (Software Defined Network), a first step has been taken
toward network programmability: these kinds of networks mark a clear separation
between the control plane, implemented in software under the control of the network
owner, and the data plane, and consolidates the control plane so that a single
centralized controller can control multiple remote data planes.

While the introduction of SDNs (Software Defined Network) reduced network
complexity and brought the definition of the control plane to the speed of software
development, the packet processing functions, which make up the data plane, have
not been affected and remained in the hands of network vendors. Traditionally,
the data plane is designed with fixed functions to forward packets using a small
set of protocols (e.g., IP, Ethernet) and implemented with ASICs, the design and
production of which is lengthy, costly, and inflexible compared to the agility of the
software industry. For this reason, the introduction of programmable switches led
to a new era of innovation and experimentation by reducing the time for designing
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and testing, adopting new protocols, providing granular visibility of packet events
defined by the programmer, and much more. Specifically, programmable switches
enable customization to quickly innovate and differentiate, allow to scale of networks
for next-generation workloads, and give more visibility into the paths of the network
traffic [21].
Software-defined networking is now becoming a reality, and it is catching up with
other areas of information technology infrastructure. Applications of programmable
switches ranging from customizing the switch table size for efficient scalability to
enhancing existing networking functions and adding new features such as telemetry,
security and load balancing. Other use cases may concern DNS caching, firewalling,
network packet broker and tunnel gateway.

Figure 3.1: Traditional switch vs. P4 programmable switch.

The de-facto standard for defining the forwarding behavior in programmable
switches is the P4 language (Programming Protocol-independent Packet Proces-
sor)[22]. To understand the significance and resonance of this new technology is
possible to see how operators such as ATT [23], Comcast [24], NTT [25], KPN
[26], Turk Telekom [27], Deutsche Telekom [28], and China Unicom [27], are now
using P4-based platforms and applications to optimize their networks and how
big companies with large data centers such as Facebook [29], Alibaba [30], and
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Google [31] are operating on programmable platforms in contrast to the fully
proprietary implementations of just a few years ago. Also switch manufacturers
such as Edgecore [32], Stordis [33] and Cisco [34] have perceived the impact of
programmable switches and have started their dedicated production.

Demonstrating the great potential of programmable switches and the resonance
they are having in the market, we cite the Intel Tofino series, a P4 programmable
Ethernet switch ASIC offering better performance at lower power. Intel, KAUST
and Microsoft have developed a range of techniques to migrate the network-
communications bottleneck and accelerate the performance of distributed training
using P4-programmable Intel Tofino Intelligent Fabric Processors [21]. In addition
to improving performance, these techniques reduce infrastructure and power costs
for the network, because it is possible to turn off features that are not needed and
reduce power or use smaller tables. Moreover, it has been proved that programma-
bility does not involve a compromise on performance, for example, Intel® Tofino™
and Intel® Tofino™ 2 can be fully programmed by users using the P4 programming
language and are capable of processing up to 12.8 Tb/s.
Table 3.1 shows the main characteristics of traditional, SDN, and P4 programmable
devices [35]. In general, it is important to highlight the advantages of P4 pro-
grammable switches, the most important the user-defined forwarding behavior;
other advantages include the presence of protocol-independent primitives to pro-
cess packets, a more powerful computation model where the match-action stages
can be executed in parallel and the infield reprogrammability at runtime. A P4
implementation is more general and provides greater flexibility than OpenFlow,
usually used in SDN, as users can specify exactly how packets are processed in the
forwarding plane.

In summary, the main features of programmable switches [35] are :

• Agility. The design and testing time are shorter, and is possible to quickly
adopt new protocols and features.

• Visibility. Programmable switches provide greater visibility into the behavior
of the network without intervention of the control plane.

• Reduced complexity. Compared to traditional switches that incorporate a
large superset of protocols, programmable switches can integrate only those
protocols that are needed, reducing resource consumption and complexity.

• Differentiation. The protocols implemented by the user needs not to be shared
with the chip manufacturer.

• Enhanced performance. Programmable switches do not introduce performance
penalty, on the contrary it has been demonstrated that in some cases they
may produce better performance than fixed-function switches.
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Feature Traditional SDN P4switch
Control - data
plane separation No clear separation Well defined separa-

tion
Well defined separa-
tion

Control - data
plane interface Proprietary Standardized APIs

(OpenFlow)

Standardized
(OpenFlow,
P4Runtime)
and program-
dependent APIs

Control and data
plane program-
dependent APIs

NA/Proprietary NA/Proprietary Target independent

Functionality sepa-
ration at control
plane

No modular separa-
tion of functions

Modular separa-
tion: functions to
build topology view
and algorithms to
operate on network
state

Same as SDN

Customization of
control plane NO YES YES

Visibility of events
at data plane Low Low High

Flexibility to define
and parse new fields
and protocols

No flexible, fixed Subject to Open-
Flow extensions

Easy,programmable
by user

Customization of
data plane NO NO YES

ASICs packet pro-
cessing complexity High, hard coded High, hard coded Low, defined by

user’s source code

Data plane match-
action stages Proprietary

OpenFlow assumes
in series match-
action stages

In series and/or in
parallel

Data plane actions
Protocol-
dependent primi-
tives

Protocol-
dependent primi-
tives

Protocol-
INdependent
primitives

Infield runtime re-
programmability NO NO YES

Customer support High Medium LOW
Technology matu-
rity High Medium LOW

Table 3.1: Comparison between traditional networking, SDN and P4 switches [35]

Despite programmable switches providing many benefits, they also present lim-
itations. In particular, the field of programmable switches and in particular P4
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switches is not mature and the customer support, as well as the documentation,
is very sparse. Due to this, it is difficult to comprehend the language and users
have to be trained for a very long period of time. This is the major restriction
in approaching switch programming and has been the major restriction also in
tackling this thesis work.

3.2.1 P4 systems
In recent years, interest in programmable switches has increased greatly, both in
industry and in research; for this reason, it is possible to find in the literature
many studies that try to exploit the characteristics of such devices and explore
their application in various use cases. In 2 has been proposed some studies that use
programmable and P4 switches to perform In-network computations and aggregate
values but there are other fields in which programmable switches are used. [35].

• In-Band Network Telemetry (INT): Variations and collectors.

• Network performance: congestion control, measurements, AQMc(Active Queu-
ing Management), QoS (quality of service) and TMc(Traffic Management),
multicast.

• Middle-box functions: load balancing, caching, telecom services, content-
centric networking.

• Accelerated computations: consensus, machine learning. IoT (Internet of
Things): aggregation, service automation.

• Cybersecurity and attacks: heavy hitter, cryptography, access control, attacks
and defenses.

• Network and P4 testing: troubleshoot and verification

Network-accelerated computations

Traditional network devices are not capable of performing computations, so these
have to be performed at upper logical layers, but with the advent of programmable
switches, performing computations inside network devices is becoming a possibility.
Since switch ASICs are designed to process packets at terabits per second rates,
the computation inside them can be faster compared to applications implemented
in software, and for this reason network computations are becoming a trend in
data centers and backbone networks.

One field of application in which network-accelerated computation can have a
strong impact is Machine Learning (ML) and in particular Federated Learning
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(FL). Previous studies focused on methods to accelerate the computation process,
but it has been proven that the real bottleneck is in communication. Specifically,
communication times between workers and a central server could be tens of orders
of magnitude higher than computational times. Programmable switches emerge
as a solution to accelerate the overall FL training process through the network
and could be used in different modes; for instance, they could be used to perform
aggregation of model updates or to classify new samples. The main advantage in
using this kind of in-network computation, compared to the traditional model, in
which the model update is performed on a central server, is first of all the ability
to execute computation at line rate, hence providing faster results to the clients.
A more detailed comparison between switch-based computation and server-based
computation is reported in table 3.2.

Feature Training

Switch-based Server-based

Speed Faster: computation at line
rate

Slower: computation on
server

Complex compu-
tation support Lower Higher

Communication
overhead

Lower: switch is the cen-
tralized aggregator and is
closer to workers. Only the
aggregated values are sent to
the server

Higher: updates are ex-
changed with workers

Storage Lower: update is not stored
entirely at once Higher .

Encrypted traf-
fic Difficult Easy

Table 3.2: Comparison between Switch based and Server based ML model training.

3.2.2 P4 language
P4 (Programming Protocol-independent Packet Processor)[22] is a high-level pro-
gramming language for packet processing. It was first introduced in 2014 with the
specific purpose of expressing how packets have to be managed by a programmable
forwarding element, like a programmable switch but also a NIC, a router, and many
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other varieties of devices. This introduces a lot of flexibility in the system, compared
with a traditional one: in particular, in the former, the manufacturer defines all
the data plane functionalities that remain fixed for the entire life of the device,
with a P4 switch instead the data plane can be changed in a programmatically
way. In particular, the data plane is configured at initialization time to implement
the functionality described by the P4 program and has no built-in knowledge of
existing network protocols. Furthermore, the control plane communicates with the
data plane like in a fixed-function device, but the set of tables and other objects
in the data plane, are no longer fixed since they are defined by a P4 program.
Important to note that even if P4 partially define the interface between the control
plane and the data plane, through the generation of API by the P4 compiler, it is
specifically designed to manage just the data plane.

Other advantages in using P4 systems are:

• Expressiveness: P4 language can express sophisticated, hardware-independent
packet processing algorithms using only general-purpose operations and table
look-ups.

• Software engineering: P4 programs provide important benefits such as type
checking, information hiding, and software reuse.

• Component libraries: Manufacturers can supply component libraries to wrap
hardware-specific functions into portable high-level P4 constructs.

• Decoupling hardware and software evolution: Target manufacturers may use
abstract architectures to further decouple the evolution of low-level architec-
tural details from high-level processing.

Forwarding model

The P4 standard architecture model, named BMv2 (Behavioral Model v2), is based
on the following components: the Parser, the match-action pipeline containing the
Ingress and Egress processing, the verification and updating steps of checksum,
and the Deparser.

Following this model, a P4 program contains the key component:

• Headers: describe the sequence and structure of a series of fields. In general,
each header is provided by declaring a list of field names and their widths in
bit.

• Parser: specifies how to identify header sequences within packets.

• Tables: contains the fields to match in order to execute a specific action.
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• Actions: specify the behaviour of the switch when a match in tables occurs.

• Control program: expresses an imperative program that describes how packets
are processed.

When a packet arrives at the ingress port, the parser handles it: it recognizes and
extracts all the fields in the headers and defines the protocols supported by the
switch. The packet is then passed to the match-action pipeline, which is divided
into ingress and egress. Ingress match-action tables determine the egress port to
which the packet has to be forwarded, while the egress match-action tables perform
per-instance modifications of the packet headers.

Figure 3.2: P4 internal functioning.

3.3 BPP: Big Packet Protocol
BPP (NewIP/Big Packet Protocol) is a new protocol and framework that allows
defining the behavior of packets and flows through information encoded in the
packets themselves. The basic concept is to insert a BPP block between the
traditional packet header and the user payload, which contains commands and
metadata that provide indications to network nodes on how to handle packets and
flows, or what resources must be allocated. In this way the device will act just
on those commands and metadata to handle the packet, overriding any “regular”
packet processing logic that is deployed on the device. Commands can be used,
for example, to determine conditions when to drop a packet, which queues to use,
when to swap a label or to allocate a resource.

Because of these potentialities, BPP has been extended to a variety of application
domains, including the use of metadata for collaborative vehicular information
exchange [36], latency guarantees in multimedia streaming [37], semantic mashup
in the Internet of Things (IoT) [38], and computation offloading in Mobile Edge
Cloud (MEC) [39].
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3.3.1 BPP Block
A BPP Block starts with a BPP Block Header that describes the overall structure
of the BPP Block and includes several fields, such as the BPP version and block
length. Then is present a Command Block with commands, their conditions and
parameters, as well as a Metadata Block carrying additional metadata. A BPP

Figure 3.3: BPP Block structure.

Command Block can carry one or more BPP Commands. Each BPP Command
consists of three parts: a Command Header, a set of conditions, and a set of actions
to be applied when the conditions are met. Conditions and actions parameters
might be a reference to a node’s built-in data item, a reference to a metadata item
included in the BPP Block, or a data value. Action primitives in BPP Commands
can be classified into different types based on the command’s target: the packet,
the device, or the flow. Primitives that act on a packet include primitives to drop,
mark, buffer a packet, select a queue, direct the packet to a particular interface,
or interact with metadata. Primitives that act on the device include actions to
allocate and reserve resources, while primitives that act on a flow, for example to
reduplicate or reorder packets, are possible but require additional investigation.
BPP does not include primitives to interact with payload data: to avoid interfering
with application-level protocols and to maintain the confidentiality, privacy, and
integrity of user data, the packet content is fully opaque to BPP. A Metadata
Block can be used to transport extra metadata as part of BPP Blocks; these can
be accessed by conditions and instructions, or nodes along the route can act on
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them in various ways.

3.4 Federated Learning frameworks
The potential and applications of Federated Learning have led to its establishment
and many frameworks, both proprietary and open-source, are currently being used
to implement it.

• IBM Federated Learning Framework: a Python licensed framework for FL
in an enterprise environment. The main characteristic of this framework is
the variety and the number of contained ML algorithms: i.e. NN, linear
classification, decision trees (ID3 algorithm), K-means, naive Bayes, and
reinforcement learning algorithms.

• NVIDIA Federated Learning Framework: a licensed framework that uses
NVIDIA Clara Train SDK working with CUDA 6.0 or later. It supports
TensorFlow, TResNet, and AutoML.

• TensorFlow Federated (TFF): an open-source framework for decentralized ML
and other computations. TFF was developed by Google in order to foster
open research and experimentation with FL.

• PySyft: a MIT-licensed open-source Python library to perform encrypted,
secure, and private deep learning. The key techniques that are used in this
framework are Secured Multi-Party Computations (sMPC), differential privacy
and FL.

• Federated Learning and Differential Privacy framework (FL DP): a FL and DP
open-source framework that has been released under the Apache 2.0 license.
This framework uses TensorFlow Version 2.2 and the SciKit-Learn library to
train linear models and clusters.

• FATE : is another open-source FL framework developed by Webank’s AI
department. The main goal of this framework is to support big data collabora-
tion according to the regulations by integrating multiple secure computation
protocols like homomorphic encryption and multi-party computation. Fate
platform uses several features such as a flexible scheduling system, a modular,
scalable modeling pipeline, and clear visual interfaces to keep the scalability,
user-friendliness, and improved operational performance.

• Flower: A Friendly Federated Learning Research Framework: Flower is an
open-source platform-independent FL framework. It is specifically designed
to provide high scalability and support for heterogeneous clients.
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3.4.1 Flower: A Friendly Federated Learning Framework
Flower is a novel end-to-end federated learning framework that supports experi-
mentation with both algorithmic and systems-related challenges in FL[40]. The
main design goals of this framework are:

• Scalability: because real-world FL involves a large number of clients, Flower
should scale to a large number of concurrent clients to reflect a realistic
scenario. Thanks to its ability to scale even with large numbers of clients,
more than 10 000, it is used for many real-world applications.

• Client-agnosticism: given the heterogeneous environment on mobile clients,
Flower should be interoperable with different programming languages, operat-
ing systems, and hardware.

• Communication-agnosticism: because of heterogeneous connectivity settings,
Flower should allow different serialization and communication approaches.

• Privacy-agnosticism: different FL settings (cross-device, cross-silo) have differ-
ent privacy requirements hence Flower should support common approaches.

• Flexibility: it should be able to accommodate both experimental research
and rapid adoption of the recently proposed approaches with low engineering
overhead due to the rate of change in FL and the general ML ecosystem.

Federated Learning mechanism is based on the combination of global and local
computations: in Flower framework, global computations are executed on the
server-side that orchestrates the learning process over a set of available clients.
Local computations are executed on individual clients and consist of training, using
local data, or the evaluation of model parameters. All the global logic for client
selection, configuration, parameter update aggregation, and federated or centralized
model evaluation can be expressed through the Strategy abstraction; local logic
instead, focuses more on model training and evaluation on local data partitions.
In summarizing, on the server-side, there are three major components: the Client-
Manager, the FL loop, and a Strategy. Server samples clients from the ClientMan-
ager, which manages a set of ClientProxy objects, each representing a single client
connected to the server: they are responsible for sending and receiving Flower
Protocol messages to and from the actual client.
The main actor of the entire process is the FL loop: inside each round of the loop
the server communicates to the clients and aggregates the results: it requests the
Strategy to configure the round of FL, sends those configurations to the affected
clients, receives the resulting client updates (or failures) from the clients, and
engages the Strategy to aggregate the results. It takes the same approach for both
federated training and federated evaluation. The client-side is simpler: it only waits
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for messages from the server and reacts to them accordingly by calling training and
evaluation functions provided by the user. Figure 3.4 summarises the framework
behaviour.

Flower is designed to be open-source, extendable and, framework and device
agnostic. These features have been exploited in this thesis work to realize a new
FL model; in particular, starting from the original Flower framework, we replaced
the communication implementation to make the switch aggregation possible.

Figure 3.4: Flower core framework architecture.
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System model

4.1 Architecture

Figure 4.1: Network topology

The proposed system has been developed and tested using an emulated system
in Mininet, a network emulation orchestration system that uses lightweight virtu-
alization to run a collection of end-hosts, switches, routers, and links on a single
Linux kernel. Following this approach, it was possible to recreate a network with a
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behaviour resembling a real one, with certain link speeds and delays, and it was
also possible to send and process packets through what seems like a real Ethernet
interface.
Figure 4.1 shows the network topology in question. It consists of a server, four
P4 switches, which rely on BMv2 software switch, and eight clients belonging to
different networks accordingly to the switch they are connected to. The central
server is responsible for the aggregation of the parameters that are generated by
clients, who locally perform the model training. The P4 switches located at the
edge of the network perform intermediate aggregations of the parameters received
from the connected clients, while the switch S4 has just to forward packets from
and to the server.

4.2 Flower functioning and communication pro-
tocol

Flower framework is based on a message exchange between the central server
and the clients (workers) to train a Federated Learning model. For its design
and implementation, the framework is ML model agnostic so it is possible to
use whatever model for training. In this thesis work, we used the "Pima Indians
Diabet Dataset" [41] as data source and a custom Neural Network (NN), shown
in Figure 4.2, composed of 2 hidden layers. The objective of this NN is to use
certain diagnostic measurements contained in the dataset, originally compiled by
the National Institute of Diabetes and Digestive and Kidney Diseases, to predict
whether or not a patient has diabetes.
The choice of using this dataset and network was driven by the limited number
of entries and model weights that made the implementation, and especially the
verification and the analysis of the results, easier. It is certainly possible to enhance
the NN and obtain better results in terms of accuracy and loss and to use different
dataset in order to apply the proposed solution to various use cases.
In Figure 4.9 is shown an example of the message exchange between server and
clients in the standard version of Flower framework.

All the communications are made upon gRPC connections and messages types
are defined using protocol buffers. As the first operation, the server establishes a
gRPC server connection and waits until some client connects; then randomly selects
one of these and sends to it the first message requesting the initial parameters. Once
it obtains the initial parameters, it puts itself on hold until the minimum number
of clients for training has been reached. Each client is registered and managed by a
Client Proxy and all of them are orchestrated by a Client Manager. If the number
of registered clients reaches the minimum number, the FL loop starts and the Server
sends the first Fit request (FIT_INS) message. Each registered client, on receiving
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Figure 4.2: Neural network.

this message, starts the local training and at the end sends back to the Server a new
message (FIT_RES) containing the new model parameters. The server, once has
collected all the results, aggregates them using the selected Strategy; in our case,
we used the FedAvg strategy, which aggregates the parameters by computing their
average value. After each round of fit, the server sends also a message requesting
the evaluation of the model (EVALUATE_INS), to which each Client will react by
evaluating locally the model and sending back the results; the server will average
also these results. After the fit and the evaluation step, a new round of FL could
start and the new Fit request message will contain the aggregated parameters of
the previous round. For our study, we used a number of rounds equal to three, as
we saw that with this value the accuracy and loss of the model settle down.
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Figure 4.3: Flower communication protocol. Min_num_Clients = 2
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This thesis wanted to maintain the standard behavior of Flower, but changing
the protocol of communication. Even if in the BMv2 implementation is proposed a
switch version with gRPC capabilities, it is not complete and continuously updated;
for this reason, we used the stable simple_switch implementation and we replaced
the gRPC connections with UDP sockets that make easier the elaboration of
packets by the programmable switches. In connection with this, to make this
elaboration possible, the protobuf messages have been replaced with UDP/BPP
packets: specifically, end devices, both server and clients, creates BPP packets
containing in metadata the model parameters; then these packets are encapsulated in
UDP packets and transmitted through the socket. In conclusion, both on the client
and server-side we made changes in the code to support the new communication
protocol, the creation, and management of the UDP socket, and the creation of
the novel packet format.

4.3 Client
The main activities performed by the client are the communication with the server
and the reaction to the received messages performing local training and evaluation
of the model. The received BPP packet contains, in the Command header, the
type of action to be performed, hence the Client will react accordingly to this value.
The fit of the model and the evaluation are performed using the local dataset: in
our study, we assigned 80% of the data from the "Pima Indian Diabetes Dataset"
to perform the training and 20% to perform the testing. Moreover, the clients built
these sets randomly, to make sure that different values could be present.
The training and evaluation operations internally calls the Tensowrflow functions
train() and evaluate(). The choice of Tensorflow is just an implementational choice:
Flower is ML framework agnostic so it would be possible to use either Keras,
PyTorch or Numpy.

Algorithm 1 Flower algorithm - Client side
while round /= n_rounds do

Fit_Ins = receive(Server)
LocalTraining()
send_FIT_RES_packet(Server)
Eval_Ins = receive(Server)
LocalEvaluation()
send_EVAL_RES_packet(Server)

end while
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4.3.1 Elected Clients
The main focus of this thesis is the parameter aggregation in the intermediate
switch; following this concept each P4 switch will receive N messages from the
N-connected clients, perform the parameters aggregation and forward just one
message containing the computation results. Please note that with the term message
in this part, we mean the collection of parameters sent by a client, that in the real
implementation corresponds to multiple UDP/BPP packets.

The server, from its point of view, does not have any knowledge of the network
topology and the number of switches, but it bases the aggregation only on the
number of registered clients. If each client registers to the server, it will expect a
number of messages as the number of registered clients to perform the aggregation;
but since the intermediate switch performs the aggregation and forward just the
aggregated message, the server will receive fewer messages than expected, in
particular, it will receive one message from each switch, so from each subnetwork.
To solve this problem, the concept of Elected Client was introduced. A client,
named the elected, is selected from each subnetwork, and it will be the only
one that sends, at the beginning of the process, a registration message, a packet
with BPP_Command.a1Type equal to BPP_PUT, to the server. The switch will
perform on this message, and on all the following packets directed to the server,
an IP address translation (a sort of NAT). In this way, the server will obtain an
opaque vision of the topology as is depicted in Figure 4.4. To summarise, all
clients participate in the Federated Learning process, but the server will see just
an aggregation of them: this allows for a greater training process performance in
terms of accuracy and loss even with the same number of registered clients.
In our implementation the choice of elected clients was arbitrary: we choose as
elected the host with the lower hostname, belonging to a specific subnetwork, but
in a more general scenario an election process could be implemented. This process
should include all hosts involved in the training process and should restart each
time the current elected dies or disconnects.

4.4 Server
The central server is in charge of starting the FL process, initializing the Strategy,
configuring the round, sending requests to the clients and aggregating the responses.
To perform these tasks, it relies on three major components: the Client-Manager,
the FL loop, and a Strategy. As soon as the server is started, it creates N threads,
where N is the maximum number of workers and waits on them for the connection
to be established before registering clients. The framework’s standard version
makes use of gRPC connections, so the server registers the client once it is notified
that the RPC has been invoked; in our version, the server is waiting for a special
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Figure 4.4: Network topology seen by Server. NAT translation address is in the
form 10.0.x.250 where x represent the subnetwork number and correspond to the
id of the connected switch.

packet to register the client that consists in a BPP packet with command.a1type
set to BPP_PUT. Note that these packets are sent only by the elected clients. The
registration consists on the creation of a Client Proxy instance, representing the
client, and of a Server Bridge instance to manage the communication with the
specific worker. After at least one client has been registered, the server randomly
selects one from the Client Manager, who manages Client Proxies. FL will then
be started and the initial parameters are requested if they have not already been
specified. Message exchange with clients relies on a Server Bridge: this is in
charge of creating the message request, in the form of BPP packets, sending them
through the connection, that in our case is a UDP socket, and waits for responses.
Server messages include: initial parameters request (GET_PARAMS), Fit request
messages (FIT_INS), and Evaluate request messages (EVALUATE_INS). When
packet responses arrive, the Bridge parse the packets, extracts metadata from BPP
block, and collects the parameters in the proper form, then passes them to the
main process for the aggregation.
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Algorithm 2 Flower algorithm - Server side
while len(registered_Clients) <= 0 do

wait()
end while
randomClient = choose_random_Client()
send_GET_PARAMS_packet(randomClient)
receive(randomClient)
while round /= n_rounds do

send_FIT_INS_packet(allClients)
Fit_Res = receive(allClients)
aggregate(results)
send_EVAL_INS_packet(allClients)
Eval_Res = receive(allClients)
aggregate(results)

end while

4.4.1 Strategy
Flower allows full customization of the learning process using the Strategy abstrac-
tion: methods for sampling clients, configuring clients for training, aggregating
updates, and evaluating models depend on the strategy used. In our thesis work,
we used the simplest strategy, the FedAvg strategy, that performs the average of
collected parameters, but Flower framework provides the implementation of other
Strategies and optimization methods, like FedAdaGrad, FedYogi, and FedAdam.

In FedAvg [43] a subset of clients are selected, typically at random, and the

Algorithm 3 Simplified FEDAVG [42]
Input: x0
for t = 0, ..., T − 1 do

Sample subset S of Clients
xt

i = xt

for each client i ∈ S in parallel do
xt

i = SGDk(xt, ηl, fi)fori ∈ S (in parallel)
end for
xt+1 = 1

|S|
q

i∈S xt
i

end for

server broadcasts its global model to all of them, while the clients perform SGD on
their loss functions, and then transmit their model to the server. The server then
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Algorithm 4 FEDADAGRAD , FEDYOGI and FEDADAM [42]
Initialization: x0, v−1 ≥ τ 2, decay parameters β1, β2 ∈ [0, 1)
for t = 0, ..., T − 1 do

Sample subset S of Clients
xt

i,0 = xt

for each client i ∈ S in parallel do
for k = 0, ..., K − 1 do

Compute an unbiased estimate gt
i,kof∇Fi(xt

i,k)
xt

i,k+1 = xt
i,k − ηlg

t
i,k

end for
∆t

i = xt
i,K − xt

end for
∆t = β1∆t−1 + (1 − β1)( 1

|S|
q

i∈S ∆t
i)

vt = vt−1 + ∆2
t (FEDADAGRAD)

vt = vt−1 − (1 − β2)∆2
t sign(vt−1 − ∆2

t )(FEDYOGI)
vt = β2vt−1 + (1 − β2)∆2

t

xt+1 = xt + η ∆t√
vt+τ

end for

updates its global model as the average of these local models. For the FedAda-
Grad Algorithm, there are three steps: initialization, sampling subsets, compute
estimates. Other algorithms are based on the same structure, but have different
parameters; FedYogi and FedAdam rely on the degree of adaptivity, which refers
to how well the algorithms can respond to changes: having smaller values for their
parameters indicate high adaptivity. In [44], it has been proven that the use of
these other algorithms could lead to obtaining higher accuracy than the standard
FedAvg algorithm.

4.5 Programmable switches

This thesis investigates the use of P4 programmable switches for aggregating model
parameters, but they also used to perform other important functions: they perform
NAT translation on packets directed to the server, multicast forwarding on packets
directed to the clients, BPP Metadata extraction and manipulation, and checksum
updating.
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UDP sockets and port

Since communications are based on UDP sockets, BPP packets created on end
nodes are encapsulated into UDP packets. While clients use just one UDP socket
connection, bind on port 10000, both for sending and receiving packets, different
socket instances are used on the Server. For client registration, packets from elected
are all received on server port 6500, while a per-client dedicated port is used to
receive model parameters. The Server Bridge uses the UDP socket instances for
managing the communications. When the switch receives the packets, encapsulated
in UDP, parses them considering the internal and external headers: the internal one
is composed of the internal Ethernet and IPv4 headers, considered in the switch as
a unique header called "internal", and the BPP block, containing the Commands
and Metadata. Figure 4.5 shows the structure of UDP/BPP packets. Consideration

Figure 4.5: Encapsulation of BPP packet into UDP packet.

should be given to the choice of UDP sockets over TCP, which brings pros and
cons since it is a packet-based, connectionless, best-effort service. As the server
sees just one client per subnetwork, it sends just one request message, so the switch
must replicate this message to all connected clients. Using TCP connections would
make this impossible because it requires a one-to-one handshake to synchronize
counters (sequence numbers) to ensure reliable transport. In other words, the use
of TCP sockets requires the establishment of connections with all participating
clients, losing all the advantages of aggregation, but avoids handling the first packet
for registration, since the server registers the client when the TCP connection is
established. The only way to perform packet multicast (or broadcast) forwarding
is using UDP, compromising between the transmission reliability and aggregation
benefits.

Multicast forwarding

Differently from packets coming from clients, that have a single destination, packets
from Server need to be replicated and sent to all clients. In this operation, the role
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of the switch is fundamental because the server only knows the registered client
which, moreover has been registered with the fictional address. In fact, multicast
was chosen over broadcast as the technique to spread packets to all clients because
of its future applications; broadcasting is actually a technique that will disappear
in future applications like IPv6, replaced by multicast. In order that messages
could be received, a client needs to register to a specific multicast group: for this
reason, each client, as it starts, registers to the multicast group with IP address
224.0.0.191. Then, when the switch receives packets coming from the server,
changes the fictional destination IP address with the one of the multicast group
and replicates them on ports connected to clients.

Figure 4.6: Multicast forwarding in switch S1.

NAT translation

One of the most important tasks performed by programmable switches is NAT
translation: the switch changes the source IP address of all packets coming from the
connected clients and directed to the server. This operation is necessary because
in the FedAvg strategy, the global aggregation is based on the number of registered
clients, so in the number of server connections. As the server only receives the
aggregated results of training and evaluation, it has an opaque vision of the real
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network topology; the internal structure is hidden behind the switch that changes
the source IP address with a fictional one, of type 10.0.x.250/24 where x
represents the number of the subnetwork.

Packets coming from clients can belong to two groups, registration or FL packets,
and according to this, they are manipulated differently by the switch. The former
are sent by elected clients at the beginning of the entire process to register to the
server and, after the NAT translation, are always forwarded. The latter instead,
are sent during FL rounds for the transmission of model parameters and could be
dropped by the switch after the aggregation.

Parameter aggregation

Parameters aggregation inside the programmable switches is performed using data
contained in the BPP Command block and BPP Metadata. A specific field in
BPP Command, BPP_Command.c2p1Value, is used to instruct the switch on
how to handle the packet. Packets created by the cclients have this field set to
1, indicating that an aggregation needs to be performed, the same field in Server
packets is set to 0xbb, indicating that the packets need to be forwarded in multicast.

In order to perform aggregation, several limitations have been addressed, first
of all, the presence of floating-point values. P4 language support only integer and
bit operations, so it is not possible to directly perform aggregation on model param-
eters, which are usually floating-point values. To solve this limitation a scaling by a
factor 108 was performed both on client and server, obtaining an integer result with
an accuracy of 8 digits on one side and restoring the floating-point value on the other.

The second limitation we faced concerns the presence of parameters with a neg-
ative value. Although this might not be a problem, since such values might be
represented in a2 complement within the Metadata, it may be inconvenient during
aggregation in the switch. To overcome this problem, a specific value in the BPP
block, BPP_Command.c1p1Value, was used to contain a mask. Each bit in
the mask, corresponds to a specific metadata value, takes its value depending on
the positivity of the parameter. Using this solution, BPP Metadata contains the
parameters’ absolute values and then on end nodes, based on the bit value in the
mask, are eventually multiplied by -1.

Model parameters are organized in an N-dimensional array that in our specific
case is a 3D-array that contains 221 total values. Representation of this array
is given in Figure 4.7. The presence of BPP Metadata has been exploited to
transport these values, but since each BPP Metadata block could contain at least
ten values, the parameters have to be manipulated. In particular, on sending side,
the array is flattened to have a 1D-array, then parameters are grouped in blocks of
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10 elements, eventually padded with 0, and saved in BPP Metadata. On receiving
side, parameters are extracted from BPP block, and once all have been collected,
the initial 3D-array is rebuilt thanks to reshaping functions. It is important to
note that in this way both sides need to have knowledge of the model structure
since from this one depends the structure of the array.

Another reflection to be done is about metadata size: we used in our imple-
mentation the BPP standard definition that expects ten values of 64bit. It would
be possible to change this definition, using little values in bit and increasing their
number, for example using twenty values of 32bit. It is also possible to use multiple
Metadata blocks in a single packet, thereby reducing the number of packets while
increasing the number of parameters sent. Choosing the size of packets over the
number of transported metadata values, we decided to use one Metadata block
containing ten values. The last, but most important limitation that we addressed

Figure 4.7: Parameters array structure of implemented model.

concerns the actual aggregation of parameters, and in particular the computation
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of average.
P4 language does not support arithmetical division operations, so the average

calculation becomes challenging. To solve this problem we tried two different
approaches: since parameters in metadata are expressed in bit, we used registers to
sum and save values in switches and we implemented a binary division function in
order to compute average values. The algorithm used for binary division function
is reported in A. Limitations of this solution are imposed by the language itself
because of loops are not supported, so loop unrolling has been performed with
consequent limitations in scalability. Handling a huge amount of data, as in FL
applications, the solution is unfeasible so another solution has been proposed.
P4 systems support extern functions as a set of methods that are not already
implemented, but the programmer could provide custom implementations. We
used a modified version of BMv2 in order to use extern functions [45], and we
implemented a function for the collection and computation of parameters. In
particular, we used three support vectors to collect the sum of values (sumValues),
to keep track of received and processed packets (endedSum), and to index the next
averaging operation (indexSum).

Figure 4.8: Support vectors in extern function used for aggregation. K is the
number of model parameters, P is the number of packets and N is the number of
hosts.

The mode of operation consists of packet reception and parsing by the switch;
then metadata values are passed to the extern function where are summed and
stored in the vector. The sum occurs in parallel in the sense that all packets with
index p coming from different clients are summed together; each time a packet p
is processed, the correspondent value in endedSum vector is incremented, so it is
possible to know how many clients sent that specific packet. Once the value of
endedSum[p] is equal to the number of connected hosts, a division operation is
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performed and metadata in the packet are updated with the resulting values. It is
important to underline that only the last packet will be forwarded with updated
values, while others will be dropped after the sum operation.

Checksum updating

The version of BMv2 used in this thesis work, provides a function to update IPv4
checksum, but not the UDP checksum; to solve this lack, a custom implementation
for checksum calculation and updating has been implemented. Since the UDP
checksum takes into consideration a Pseudo-Header, the UDP header and the pay-
load, that in our case is the encapsulated BPP packet, the proposed implementation
adapts to the specific UDP/BPP format. Internal Ethernet and IPv4 header have
been considered as a single header called internal, while BPP blocks are considered
individually. The process, completely written in P4, performs additions and shifting
of packet fields and at the end updates the UDP checksum field.
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Figure 4.9: Flower communication protocol with UDP sockets. Registered Clients
= 2, Client participating in FL process = 3
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Chapter 5

Implementation details

In the chapter some implementation details are analyzed; particularly some code
extracts and details on packet format are provided to give a more comprehensive
treatment.

To achieve the goal of performing aggregation of model parameters in pro-
grammable switches, the main technologies used are: NewIP/BPP protocol, P4,
a technology for the implementation of networking functioning, and Flower, a
Federated learning framework. The proposed objective encountered a number of
P4 limitations that proved very challenging to overcome so this work tries also to
be an example for future implementations as well as for P4 evolution.

5.1 P4 Switch
The greatest challenge to overcome consisted of division operations, since P4 does
not support them. To solve this limitation, we used a BMv2 version [45] that
supports extern functions. Extern in P4 are objects, written in C++, with methods
and attributes that allow increasing the functionality of the switch.

In control BPPEgress, that is the P4 program part that manages egress
packets, the initialization of the extern is invoked.

Listing 5.1: P4 control Egress
1 c o n t r o l BPPEgress ( inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata ) {
2 [ . . . ]
3 @userextern @name( " custom_extern_instance " )
4 CustomExtern<bit <32>>(0x00 ) custom_extern_instance ;
5

6 // CLIENT REGISTRATION PACKET
7 i f ( hdr . bpp_cmd . i s V a l i d ( ) && hdr . bpp_cmd . a1Type == 0x2 ) {
8 topology_ed . apply ( ) ;
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9

10 n_ed . read ( nHosts , 0) ;
11 custom_extern_instance . i n i tNhos t s ( nHosts ) ;
12

13 bit <32> maskAddrMost = 0 x f f f f f f 0 0 ;
14 bit <32> nat = 0xFA;
15 // takes the subnet address
16 bit <32> addr = hdr . ipv4 . srcAddr & maskAddrMost ;
17 addr = addr | nat ;
18 hdr . ipv4 . srcAddr = addr ;
19 }
20

21 [ . . . ]
22 }

Specifically at line 4 and 5, there is the construction of an extern object called
"custom_extern_instance" and the initialization of one of its private attribute with
the bit value 0x00. At line x instead, it is possible to see the initialization of the
nHosts attribute: in order to compute the average value of model parameters, and
perform this operation only once all the clients have sent their packet, the number
of hosts is required. So when the elected client sends the registration packet, the
switch initializes the nHost attribute of the extern object, which will be used both
as a divisor in the average calculation and as a control to start the division. In
the reported code is possible to see also, how the NAT translation is performed: a
mask is applied to the source IP address to extract the network address, then the
8 least significant bit are replaced with the value 0xFA.

Listing 5.2: P4 control Egress
1 c o n t r o l BPPEgress ( inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata ) {
2 [ . . . ]
3

4 i f ( hdr . bpp_cmd . a1Type == BPP_EVALUATE_RES | | hdr . bpp_cmd . a1Type==
BPP_FIT_RES | | hdr . bpp_cmd . a1Type == BPP_PARAMS_RES) {

5 [ . . . ]
6

7 bit <1> drop_bit ;
8

9 // read and sum metadata in packet
10

11 custom_extern_instance . add10 ( hdr .bpp_md. data1 , hdr .bpp_md.
data2 , hdr .bpp_md. data3 , hdr .bpp_md. data4 , hdr .bpp_md. data5 , hdr .
bpp_md. data6 , hdr .bpp_md. data7 , hdr .bpp_md. data8 , hdr .bpp_md. data9
, hdr .bpp_md. data10 , id_host , drop_bit , hdr . bpp_cmd . c1p1Value ) ;

12

13 i f ( drop_bit == 0) { // not drop
14 // update address with NAT
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15 hdr . ipv4 . srcAddr = addr ;
16

17 // NO AGGREGATION ( in next hop )
18 hdr . bpp_cmd . c2p1Value = 0 ;
19 }
20 i f ( drop_bit == 1) { // DROP
21 _drop ( ) ;
22 }
23 }
24 }

Listing 5.2 shows the invocation of extern method add10 that represents the
core of the parameters aggregation. This method takes as input various parameters:
first of all the metadata values, then the host id, that corresponds to the least 8
significant bit of the source IP address, the drop_bit, used to discriminate if the
packet has to be dropped or not, and the c1p1Value, that is used as a mask to
identify negative numbers.

In listing 5.3 is reported the implementation of method add10 written in C++.

Listing 5.3: Extern function
1 void add10 ( Data& num1 , Data& num2 , Data& num3 , Data& num4 , Data& num5

, Data& num6 , Data& num7 , Data& num8 , Data& num9 , Data& num10 ,
Data& hostId , Data& drop , Data& mask) {

2

3 i n t host_id = host Id . get<std : : int64_t >() ;
4 i n t s t a r t e r = indexSum [ host_id −1] ;
5

6 i f ( sumValues . s i z e ( ) <= ( u int ) s t a r t e r ) {
7 std : : cout << " Res i z ing sumValues vec to r " << std : : endl ;
8 sumValues . r e s i z e ( ( sumValues . s i z e ( ) ∗2) , 0) ;
9 }

10

11 u int m = mask . get<std : : int64_t >() ;
12 int64_t n1 , n2 , n3 , n4 , n5 , n6 , n7 , n8 , n9 , n10 ;
13

14 n1 = num1 . get<std : : int64_t >() ;
15 // get other N va lue s
16 [ . . . ]
17

18 i f ( ( (m >> 0) & 1) == 1) {
19 n1 ∗= −1;
20 }
21 [ . . . ] // convert other N va lue s
22

23 sumValues [ s t a r t e r ] += n1 ;
24 sumValues [ s t a r t e r +1] += n2 ;
25 sumValues [ s t a r t e r +2] += n3 ;
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26 sumValues [ s t a r t e r +3] += n4 ;
27 sumValues [ s t a r t e r +4] += n5 ;
28 sumValues [ s t a r t e r +5] += n6 ;
29 sumValues [ s t a r t e r +6] += n7 ;
30 sumValues [ s t a r t e r +7] += n8 ;
31 sumValues [ s t a r t e r +8] += n9 ;
32 sumValues [ s t a r t e r +9] += n10 ;
33

34 indexSum [ host Id . get<std : : int64_t >() −1] += 10 ;
35 endedSum [ ( s t a r t e r /10) ]++;
36

37 i f ( endedSum [ ( s t a r t e r /10) ] == n_hosts ) {
38 i n t count_mask = 0 ;
39 uint new_mask = 0 ;
40 f o r ( i n t j = s t a r t e r ; j<s t a r t e r +10; j++) {
41 sumValues [ j ] /= n_hosts ;
42 i f ( sumValues [ j ] < 0) { // update mask
43 sumValues [ j ] ∗= −1;
44 new_mask = new_mask | (1 << count_mask ) ;
45 }
46 count_mask ++;
47 }
48

49 // OVERWRITE METADATA
50 num1 = Data{sumValues [ s t a r t e r ] } ;
51 num2 = Data{sumValues [ s t a r t e r +1]} ;
52 num3 = Data{sumValues [ s t a r t e r +2]} ;
53 num4 = Data{sumValues [ s t a r t e r +3]} ;
54 num5 = Data{sumValues [ s t a r t e r +4]} ;
55 num6 = Data{sumValues [ s t a r t e r +5]} ;
56 num7 = Data{sumValues [ s t a r t e r +6]} ;
57 num8 = Data{sumValues [ s t a r t e r +7]} ;
58 num9 = Data{sumValues [ s t a r t e r +8]} ;
59 num10 = Data{sumValues [ s t a r t e r +9]} ;
60

61 drop = Data {0} ; // FORWARD
62 mask = Data{new_mask } ;
63 }
64 e l s e {
65 drop = Data {1} ; // YES DROP
66 }
67 }

To perform the aggregation operation, three support vectors, with overestimated
sizes, are used. Considering the flattened vector of model parameters, vector
sumValues contains at each position the sum of correspondent elements. Vector
endedSum of size P equal to the number of total packets, contains at each position
the number of hosts that sent the specific packet p. Finally, vector indexSum
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of size equal to the number of clients N, contains at each position, the index in
sumValues vector in which the operation of sum, and eventually division, will be
performed for the host n.

At line 4, variable starter is initialized with the index in sum vector where
the aggregation starts from. Then metadata values are extracted, eventually
multiplied by -1 consistently to the mask passed in input and added to the vector.
Values in indexSum and endedSum are updated, subsequently check on processed
packets is executed. If the number of received packets is equal to the number of
hosts, so all hosts have sent that specific packet, the division has to be computed.
Final operations consist of metadata values update, and setting of drop bit: only
packets containing aggregation results must be forwarded, the others instead will
be dropped.

5.2 Client
Code on Client is quite simple and consists mainly on the definition of the model
and the functions for the training and evaluation.

1 # load the datase t
2 datase t = loadtx t ( ’ pima−ind ians −d iabe t e s . csv ’ , d e l i m i t e r=’ , ’ )
3

4 # s p l i t i n to input (X) and output ( y ) v a r i a b l e s
5 X = datase t [ : , 0 : 8 ]
6 y = datase t [ : , 8 ]
7

8 x_train , x_test , y_train , y_test = t r a i n _ t e s t _ s p l i t (X, y , t e s t _ s i z e
=0.2)

9

10 # d e f i n e the model
11 model = t f . keras . Sequent i a l ( )
12 model . add ( t f . ke ras . l a y e r s . Dense (8 , input_dim=8, a c t i v a t i o n=’ r e l u ’ ) )
13 model . add ( t f . ke ras . l a y e r s . Dense (12 , a c t i v a t i o n=’ r e l u ’ ) )
14 model . add ( t f . ke ras . l a y e r s . Dense (1 , a c t i v a t i o n=’ s igmoid ’ ) )
15

16 # compile the model
17 model . compi le ( l o s s=’ b inary_crossentropy ’ , opt imize r=’adam ’ , met r i c s=

[ ’ accuracy ’ ] )

The dataset we used for the system implementation is the "Pima Indians
Diabetes" [41]; the choice of this dataset is motivated only by its small dimensions
that make easier the monitoring and the analysis of the implementation. The
proposed solution is not constrained by either the model used or the dataset and
can be used in any ML application.
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Figure 5.1: Pima Indians Diabet Dataset feature distribution.

Each client locally defines the ML model and prepares the dataset; we decided
to use 80% of the dataset as training values, while the remaining 20% compose
the evaluation set. To have clients working on different values, the construction
of the sets was done randomly, but the model used is assumed to be the same for
everyone.

Listing 5.4: Model fit and evaluation functions on client
1 de f f i t ( s e l f , parameters , c o n f i g ) : # type : i gno r e
2 model . set_weights ( parameters )
3 # f i t the model on the t r a i n i n g s e t
4 h i s t o r y = model . f i t ( x_train , y_train , epochs=epochs , batch_size=

batch_size )
5 re turn model . get_weights ( ) , l en ( x_train ) , {}
6

7 de f eva luate ( s e l f , parameters , c o n f i g ) : # type : i gno re
8 model . set_weights ( parameters )
9 # eva luate the model on the t e s t s e t

10 l o s s , accuracy = model . eva luate ( x_test , y_test )
11 re turn l o s s , l en ( x_test ) , { " accuracy " : accuracy }
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5.3 Server
Implementations on server, mainly concern modification in client handling and
communication protocol; in particular, the standard communication protocol of
Flower framework was changed in order to support packet parsing and aggregation
on P4 switches.

As it starts, the server creates N thread, one for each client, and waits until
it receives a BPP packet for client registration. In this preparatory phase, also
the Strategy and other values are initialized; we used in our implementation the
FedAvg strategy, but others are possible. The strategy defines how the clients are
managed and how parameters are aggregated, in our case the aggregation consists
of the calculation of the mean.

Listing 5.5, 5.6 and 5.7 show the code in Flower server to perform parameters
collection and aggregation in a round of fit.

Different clients are managed separately using different threads and the concept
of future is exploited to gain results of computations. Each server thread takes
care of sending the request through the Socket Bridge, waiting for packet response,
extracting values from packet and reshaping parameters into the original vector.
Once all threads return, the union of results is computed through the aggregate
function defined in the strategy.
In FedAvg strategy the aggregate function calculates the number of examples used
during training, create a list of weighted weights and then computes the average
weights of each layer.

Listing 5.5: fit_clients function
1 de f f i t _ c l i e n t s ( c l i e n t _ i n s t r u c t i o n s : L i s t [ Tuple [ ClientProxy , F i t In s

] ] ) −> FitResu l t sAndFai lures :
2 " " " Ref ine parameters concur r en t ly on a l l s e l e c t e d c l i e n t s . " " "
3 with concurrent . f u t u r e s . ThreadPoolExecutor ( ) as executor :
4 f u t u r e s = [
5 executor . submit ( f i t _ c l i e n t , c , i n s ) f o r c , i n s in

c l i e n t _ i n s t r u c t i o n s
6 ]
7 concurrent . f u t u r e s . wait ( f u t u r e s )
8 [ . . . ]

Listing 5.6: fit_round function
1 [ . . . ]
2 aggregated_resu l t : Union [
3 Tuple [ Optional [ Parameters ] , Dict [ s t r , Sca l a r ] ] ,
4 Optional [ Weights ] ,
5 ] = s e l f . s t r a t e g y . agg r ega t e_ f i t ( rnd , r e s u l t s , f a i l u r e s )
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Listing 5.7: aggregate function
1 de f aggregate ( r e s u l t s : L i s t [ Tuple [ Weights , i n t ] ] ) −> Weights :
2 " " " Compute weighted average . " " "
3 # Calcu la te the t o t a l number o f examples used during t r a i n i n g
4 num_examples_total = sum ( [ num_examples f o r _, num_examples in

r e s u l t s ] )
5

6 # Create a l i s t o f weights , each m u l t i p l i e d by the r e l a t e d number
o f examples

7 weighted_weights = [
8 l a y e r ∗ num_examples f o r l a y e r in weights ] f o r weights ,

num_examples in r e s u l t s ]
9 # Compute average weights o f each l a y e r

10 weights_prime : Weights = [
11 reduce (np . add , layer_updates ) / num_examples_total
12 f o r layer_updates in z ip (∗ weighted_weights ) ]
13 re turn weights_prime

A special comment must be made on the number of clients set in the strategy.
FedAvg strategy takes as input the minimum number of clients participating in
initialization, training and evaluation and the server will remain in a waiting state
until the number of registered clients will reach this minimum value. This value
takes on a different meaning in the standard version of Flower and in our modified
version: in case of no aggregation, the minimum number of clients corresponds to
the number of effective clients participating in the FL process, while in case of
aggregation, this number corresponds to the number of P4 switches that perform
aggregations.

5.4 Communication protocol
The major change in Flower implementation concerns the communication protocol.
The standard version of the framework uses gRPC connections for client-server
communications and transmits model parameters inside protocol buffer messages.
At the time this thesis work began, the implementation of BMv2, the standard
behavioural model for P4 systems, did not fully support gRPC, so the communica-
tion protocol has been changed and UDP sockets replaced gRPC connections. It is
important to note that the development of BMv2 and P4 language is continuously
evolving and in the near future different implementations could arise.

5.4.1 Packet format
Figure 5.2 represents a condensed representation of the packet format used in
the proposed solution. Packets generated on end devices, both clients and server,
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Figure 5.2: Packet format.

consist of an Ethernet header, an IPv4 header, and a BPP block. The BPP block
is itself composed of a BPP header, a BPP Command block and a BPP Metadata
block. In order to perform switch aggregation, and instruct both intermediate
network nodes and end nodes on how to manage packets, fields in BPP command
assume specific values. For example, field c1p1Value contains a mask on ten bit
used to identify negative numbers. Representation in a2 complement is supported
in P4 language, but it makes more difficult the aggregation in switches, therefore
on end devices is created a mask of ten bits in which each bit indicates if the
correspondent parameter in metadata assumes a negative value or not. Another
BPP Command field used to transport useful information is c1p2Value that
contains the size of metrics; this value will be used by the strategy to calculate
aggregation of parameters and so the global model.
When an intermediate P4 switch receives a packet, it handles it according to
the destination: packets directed to the server must be aggregated, while packets
directed to clients need to be forwarded in multicast. To achieve this behaviour field
c1p1Value assumes different values: 0x1 for aggregation, and 0xbb for multicast.
It is important to note that in the proposed implementation, switches directly
connected to clients perform similar operations while the switch connected to the
server acts in a different way. More in detail, switch S4, presents the behaviour
of a traditional switch, since it does not perform any aggregation but has only to
forward packets from and to the server; for this reason, the value of c1p1Value
is changed along the path. In packets directed to the server, the initial value 0x1,
indicating that an aggregation has to be performed, is changed to 0x0 after the first
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hop, thus switch S4 will not perform aggregations. In packets directed to clients
instead, the initial value 0xbb, is changed inside S4 switch into 0xff, indicating that
forwarding has to be performed in multicast in the next hop.
BPP Command field a1Type is used to transport information about the type of
message, for example FIT_INS or FIT_RES. This values is used on end devices to
discriminate the stages and operation inside the FL process.
a1p1Value contains the number of remaining packets, used in while loop at
receiving. In conclusion, data values in Metadata Block, are used instead for
model parameters, while id is used to indicate the number of total number of
weights, used in the vector reshaping operations.

5.4.2 UDP socket
A final note concerns UDP sockets and port. Since packets directed to the clients,
need to be forwarded in multicast, UDP is the only possibilty, as TCP provides
connection only between two endpoints.
In the proposed solution, clients creates a UDP sockets bind on port 10000 both to
send and receive packets, while server uses different port for handling registration
and FL packets. Specifically, server creates a UDP socket bind on port 6500 to
receive registration packet: this socket keep tuned for new registrations that may
arrive at any time. When a new registration packet arrives, a dedicated novel socket
is created and bind on a port derived from the source IPv4 address of the received
packet; this per-user dedicated socket will be used for sending and receiving FL
packets.
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Experimental results

Simulations of the presented solution were performed in an emulated environment;
in particular we emulated the behaviour of the proposed network topology using
Mininet launching client and server scripts in different terminals. Because of the
virtualized nature of these simulations, results are influenced also by the hardware
equipment of the machine where they have been conducted. The machine in
question presented 20GB of RAM and 4 processors.

Table 6.1 shows a summary of obtained results in terms of training time, net-
work traffic, and final global accuracy and loss.
A special comment must be made about the obtained results. We conducted
different simulations in order to compare performances of the system with and
without aggregation but to have relevant values two cases have to be explored that
differ in the number of clients registered to the server.
The first case takes into consideration an equal number of clients registered to the
server. This value, set to three, in the case of aggregation performed in intermedi-
ate switches, corresponds to the number of programmable switches. Conducting
experiments with this hypothesis we obtained a notable result about accuracy: in
a system with aggregation performed in intermediate switches, the accuracy is
slightly higher than in the case without aggregation, as well as the loss that results
lower in the case with aggregation. This result can be explained by the fact that,
even if the number of Clients seen by the Server is equal in both cases, in the first
case the real number of participating clients, hidden by the switch, is higher, so
it is possible to better train the model. Results about network traffic, are similar
in both cases since the size of exchanged packets and their amount is fixed and
depends on their structure and the number of rounds.

The second case takes in consideration a equal number of client participating
in the FL process, which is equal to eight. In this scenario, a significant result is
the one about network traffic: having eight Clients registered to the Server, it is
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(a) Round 1 (b) Round 1

(c) Round 2 (d) Round 2

(e) Round 3 (f) Round 3

Figure 6.1: Accuracy trend on host H1, H4, H7 in system with (on left) and
without (on right) aggregation. Rounds set to 3 and epochs set to 150.
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possible to see that in the case without aggregation, the traffic through the link
connected to the Server is much higher than in the case with aggregation. This is
because, in the former each client will communicate directly with the Server, instead
in the latter, only one connection per switch is present. This allows reducing the
traffic by a factor of S/N where S is the number of switches and N is the number
of Clients in the process. Results about accuracy and loss are quite similar in both
cases and are respectively 81.35% and 0.41 in the case of aggregation, and 79.2%
and 0.45 in the case without aggregation.

The final measurement concerns the training time that is quite similar in both
cases and differs from our expectation, in which with the switch aggregation should
be smaller. The term training time is intended for the time spent for the entire FL
process, so consists of both training and evaluation time during different rounds.
In particular, we obtained a training time of 280.76 in case of aggregation and
273.45 in the case without aggregation. This result may be influenced by the
virtualized nature of the experimentation system, the specific implementation of
BMv2 that we used, and the limited amount of parameters in the model. In order

Metric Flower without Aggrega-
tion Flower with Aggregation

Training time [s] 273.453** 280.761*
Network traffic [B] 423 072** 163 984*

Global Loss * 0.4776 0.4105
Global Accuracy * [%] 75.97 81.35

Table 6.1: Comparison between experimental results. Number of rounds=3.
*Number of registered clients = 3; **Number of registered clients = 8.

to better represent a real scenario, we performed also measurements changing the
parameters of the link. Specifically, changes in the link between S4 and the server
have been performed in order to have a bandwidth equal to 50Mbps and a delay
of 20ms. Measurements of training and evaluation times during rounds and in
different clients are reported in table 6.2.

Measures have been made also on server; in particular we obtained accuracy and
loss values of global model in order to show how aggregation in switches changes
results. In table 6.3 and figure 6.2 are reported values during ten rounds of FL.

Comments about model settings

The proposed system uses on clients a custom model composed of 2 hidden layers
and that allows to achieve a maximum value of accuracy of around 82%. Analyzing
the measured values, it is possible to notice how the value of accuracy increases
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Host
Round 1
(TR)

Round 1
(EV)

Round 2
(TR)

Round 2
(EV)

Round 3
(TR)

Round 3
(EV)

H1 50.07 1.13 39.80 2.18 42.52 40.43

H2 49.85 1.36 41.52 0.47 38.41 44.56

H3 50.47 0.74 38.62 3.33 42.73 40.22

H4 44.15 1.46 41.12 0.94 42.19 40.66

H5 53.33 1.78 41.13 0.83 82.50 0.47

H6 53.67 1.09 39.93 1.97 40.29 42.76

H7 44.45 0.74 41.68 0.38 41.35 41.52

H8 55.18 0.65 34.78 7.21 40.40 42.33

Table 6.2: Times on Clients with delay=20ms and bandwidth=50Mbps on link
between server and S4. (TR): training time equals to the time between the reception
of one server fit request message and the transmission of client response. (EV):
evaluation time equals to the time between the reception of one server evaluate
request message and the transmission of client response.

Round Loss Accuracy [%]

1 0.478444 77.09
2 0.498709 79.83
3 0.422688 79.94
4 0.406568 80.59
5 0.397436 81.56
6 0.389746 81.71
7 0.389897 81.17
8 0.385915 81.93
9 0.378216 83.15
10 0.376298 82.43

Table 6.3: Aggregated Accuracy and Loss values on Server in 10 rounds.

as the number of clients participating in the training increases. Results show also
how model settings can influence network traffic and training time. Most of the
simulations have been performed using an epoch value equal to 150 and a batch
size of 10. Epochs represent the number of times when an entire dataset is passed
forward and backward through the neural network only once, while the batch size
is the total number of training examples present in a single batch.
We conducted experiments changing the epoch setting and number of rounds to
analyze how accuracy and training time changes. Results of these experiments are
reported in table 6.4 and represented in figure 6.3.
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Figure 6.2: Aggregated Accuracy and Loss trend on Server in 10 rounds.

The number of rounds was chosen proportionally to the number of epochs. It is
possible to see how increasing the number of epochs the total FL process time
decreases, while the average round time increases. Another reflection has to be
made about network traffic: increasing the number of epochs and decreasing the
number of rounds, the message exchange between clients and server decreases, thus
the bottleneck effect. This behaviour can be seen from the results in which with
epochs equal to 50, rounds equal to 20, and considering a number of registered
clients equal to 3, the amount of traffic is equal to 665.440KB, while setting epochs
equal to 500 and rounds equal to 2 we obtain a total amount of traffic equal to
66.54KB. From this point of view, is preferable to have a larger value of epochs
and a little value of rounds.
Another consideration has to be made about accuracy and loss of model at the
epochs change. Figure 6.3 shows the accuracy trend at epochs change in the first
round. With epochs equal to 50, at the end of the first round, the accuracy value
reaches the value of 74.3% while at the end of the same round, but with epochs set
to 500, an accuracy value of 79.8% is reached. This result leads to the choice of
using bigger values of epochs and fewer rounds.
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Epochs Rounds Total FL time [s]
Average
round time
[s]

50 20 427.20 21.36

100 10 387.99 38.79

150 7 552.98 78.99

200 5 395.5 79.1

250 4 341.0 85.25

300 3 254.84 84.94

500 2 292.91 146.45

Table 6.4: Total and average times measured in clients at the variance of epochs.

Comments about virtualization

All simulations were performed in an emulated system and this may introduce
some latency and resource limitations. Experiments performed on other machines,
equipped with fewer resources, led to delays in the training process and more
important to packet loss caused by switch resource saturation.
Possible future experimentation might be to try the proposed solution with more
complex ML models, and if possible try the solution with a real network and
programmable switches.
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(a) 50 epochs (b) 100 epochs

(c) 150 epochs (d) 200 epochs

(e) 250 epochs (f) 300 epochs

(g) 500 epochs

Figure 6.3: Sensitivity analysis of accuracy on host H1 at the variance of epochs.
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Conclusions

The aim of this thesis work was to exploit the potentialities of programmable
switches to accelerate the model training in Federated Learning processes. Specif-
ically, we used P4 switches to compute intermediate aggregations and reduce
network traffic, thus alleviating the bottleneck effect on the central FL Server and
further accelerating the entire training process. Practically, the standard behaviour
of network switches has been modified in order to support gradient aggregation,
moreover, extern function support and UDP packet handling have been added to
the system.
We conducted experiments using a Mininet emulated network topology, composed
of a central server, intermediate P4 switches performing aggregations, and different
clients participating in the FL process. With the proposed solution we obtained
that the network traffic was reduced by a factor of S/N where S is the number of
switches and N is the number of clients in the process. Another notable result is
the one about accuracy that is slightly higher than in the traditional FL approach;
this can be explained by the fact that the real number of participating clients,
hidden by the switches, is higher, so it is possible to better train the model. Lastly,
considering the training time for both solutions, we can observe how the aggregation
introduces some overhead brought by the P4 additional computation. However, this
result is influenced by the virtualized nature of the experimentation system, the
specific implementation of BMv2 that we used, the limited amount of parameters
in the model, and the absence of challenging network conditions. Despite these
factors, the difference between the two solutions is quite negligible, and, along with
other metrics, demonstrates the validity of our solution.
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7.1 Alternative implementations and enhance-
ments

The proposed solution relies on some hypotheses and implementation details that
influenced the final results. In this section, we want to give some ideas for future
implementations and improvements.

Dataset size and model

In order to have a testable system, both in terms of times and size of parameters,
we choose the "Pima Indians Diabetes Dataset" and a neural network composed
only of two hidden layers. Definitely, possible improvements could consist in the
enhancement of the training process, for example using EarlyStopping callbacks,
in order to reduce the training time, or to increase the number of epochs, since
it has been seen that with a large number of epochs, it is possible to achieve a
similar number of accuracy working on few FL rounds and to reduce the amount
of network traffic.
It would be interesting also to try this solution with different datasets, consisting of
many more entries and with more features; possible examples may be CIFAR10[46]
and MNIST dataset [47] that have been used in other studies so that comparisons
of results can be made.
Because model parameters are sent flattened in BPP Metadata, in order to use
other datasets, reshape and flat functions in the custom Flower framework must
be adapted to fit the shape of the array parameters.

BPP block structure

An interesting variation concerns the size of BPP blocks that could influence
both the FL process time and the amount of network traffic. More in detail, in
our implementation we used the standard definition of BPP protocol and block
structure, which consists in different headers with fixed size. In particular the
Metadata block, contains ten 64B values, thus the number of transmitted packet at
each round is equal to the number of parameters divided by ten. Changing the size
of metadata values, make it possible to encapsulate more values inside the block
and so reduce the amount of packet sent.
Further improvement consist on the queuing of multiple metadata blocks to create
larger packets and reducing the amount of Ethernet and IPv4 headers with a
consequent reduction in total network traffic.
All these improvements would be possible because the definition of the BPP
protocol is all in software: using P4 language in switches and in python inside
Flower framework.
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Division operations and extern

To perform divisions inside P4 switches, we used extern objects written in C++.
We did not perform measures about latencies introduced by this technology but it
might be an interesting study. Certainly, the virtualized environment in which we
tested the solution introduced some delay but we have reason to believe that the
presence of externals also impacts in performance.
Future studies may focus on researching an alternative solution to perform division
in P4 systems, as well as on performing these operations using specialized hardware
implementations.

Simple switch and gRPC

The stable version of BMv2, at the time this thesis work began, did not fully
support gRPC connections, so we opted for implementing the system using the
simple_switch target and using UDP socket connections for communications.
The use of UDP, necessary because of the presence of multicast traffic, brings
synchronization and reliability problems since it provides best-effort behaviour and
does not offer support for packet loss. Possible future enhancement of the proposed
solution could concern the implementation of reliability mechanisms in order to
reduce the quantity of packet loss that proved tragic in our experiments: if one
packet is lost in transmission, the end device cannot rebuild the original message,
so the entire process stops.
During these months, new implementations and changes in behavioural model arisen
so it would be interesting to change the current implementation of the proposed
solution trying to use gRPC connections and the standard Flower framework.

Figure 7.1: Barefoot networks: computational fabrics

Virtualized system vs Real system

In conclusion, since all experiments have been performed in a virtualized Mininet
environment, it should be interesting to measure training time and especially
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communication time in a real network, using programmable switches. For example,
it may be used programmable switches equipped with Intel Tofino, an ASIC switch
Ethernet specifically created to be programmed with P4.

7.2 Future prospects in In-network computations
The field of programmable switches and In-Network computations is constantly
evolving and proposes different challenges.

Figure 7.2: Challenges and future trends in programmable switches.

Memory capacity

Programmable data planes benefit greatly from stateful processing, as it allows
applications to store and retrieve data across packet boundaries. This facilitates a
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wide range of new applications (e.g., in-network caching, fine-grained measurements,
stateful load balancing, etc.) that were not previously possible in non-programmable
networks.
The amount of data stored in the switch is limited by the size of the on-chip memory
which ranges from tens to hundreds of megabytes at most. Consequently, the
majority of stateful-based applications suffer have trade-offs between performance
and memory usage. The size of the on-chip memory of the switch, which ranges
from tens to hundreds of megabytes at most, limits the amount of data that can
be stored. Because of this, most stateful-based applications suffer from memory
and performance trade-offs. Current and future initiatives focus on expanding the
available memory on the switch for example using external DRAM.

Resource accessibility

In addition to the on-chip memory size limitation, the data plane developer should
be aware of other limitations. First, since the table memory belongs to each
stage in the pipeline, the other stages cannot reclaim unused memory from the
previous stage. Therefore, memory and match/action processing are fuzzed, which
makes placing tables difficult; additionally, sequentially executing operations in the
pipeline results in less efficient utilization of resources, particularly when matches
and actions are imbalanced.
Interesting researches are exploring centralizing memory into a pool accessed by
a crossbar, as well as creating a cluster of processors that can perform arbitrary
operations in any order. The disaggregation model should be implemented on
hardware targets and analyzed in the future.

Arithmetic Computations

The implementation of arithmetic computations in the data plane poses several
challenges. First, there are only a few simple arithmetic computations that can
be implemented using programmable switches.vSecondly, only a limited number
of operations are supported per packet so line rate execution can be guaranteed;
usually, a packet will spend only a few nanoseconds in this pipeline. As a third
problem, computations in the data plane consume a number of hardware resources,
making it impossible for other applications to run concurrently. This affects a wide
variety of applications due to the lack of complex computations in the data plane.
For instance, some operations required by AQMs (e.g., square root function in
the CoDel algorithm) are complex to be implemented with P4. Additionally, the
majority of machine learning frameworks and models work on floating-point values,
as well as In-network model updates aggregation requires calculating the average
over a set of floating-point vectors, whereas the arithmetic operations on the switch
are intended to work with integer values. The current method for overcoming
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computation limitations are approximation and pre-computation. In the former,
the designer attempts to approximate the desired value by using the few set of
supported operations, at the expense of precision; the pre-computation method
stores values in match-action tables or registers using computations performed at
the control plane (e.g., switch CPU).
Future work can focus on identifying the computations that can be pre-evaluated in
the control plane and for creating data plane code and APIs for the control plane
based on these identifications. Moreover, P4 developers would be beneficial if they
had access to a community-maintained library, which contains P4 code emulating
various complex functions.

Control plane intervention

When users delegate tasks to the control plane, the latency and performance of the
application are affected. For instance, rerouting-based schemes often use tables to
store alternatives routes in congestion control. Because the data plane cannot alter
table entries directly, control plane intervention, is required but it would be ideal to
minimize this intervention whenever possible, for example, to synchronize the state
among switches. Developers have full control over the design of the interaction
between the control plane and the data plane and have to try to minimize it.
Research should be carried out on designing algorithms and tools for identifying ex-
cessive interactions between the control and data planes and suggesting alternatives
(ideally as generated code) to minimize such interactions.

Security

An attacker can intelligently craft a traffic pattern to cause a system to behave
unexpectedly, so designers of data plane systems must anticipate the kind of traffic
that might damage the system. If, for example, a load balancer is configured
to balance traffic through packet header hashing without cryptographic support,
it can be tricked by an attacker by creating skewed traffic patterns; another
example is attacks against in-network caching. As long as reads dominate data
plane requests, caching performs well. If a constant stream of write requests is
continuously generated, the load on the storage servers would be imbalanced. A
random failure in the switch can cause data to be lost if the system is designed to
handle write queries on hot items. Additionally, an attacker can also exploit the
memory limitation of the switch and request diverse values, leading to the eviction
of pre-cached values.
Recent researches aimed at automatically discovering sensitivity attacks in the data
plane trying to derive traffic patterns that would drive the program away from
common case behavior as much as possible. Work in this direction should focus
on formalized verification of the codes to achieve high assurance. Moreover, the
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stability of the data plane should be managed carefully with fast mode changes;
future work might integrate self-stabilizing systems for this purpose. Finally, future
work should provide security interfaces for collaborating switches that belong to
different domains. Lastly, it would be helpful if future work provided security
interfaces for collaborating switches that belong to different domains, furthermore,
it would be useful to expose different attack patterns for different application types
so that data plane developers can avoid the vulnerabilities.

Interoperability

It has been shown that applications that offload their processing logic to the network
can achieve significant improvements in performance. Programmable switches, in
particular, are especially useful for in-network applications but n spite of such facts,
it is very unlikely that mobile operators will replace their current infrastructure in
one shot with programmable switches due to significant operational and budgeting
costs.
The best approach is that network operators deploy programmable switches in an
incremental fashion, which means that P4 switches will be added to the network
alongside the existing legacy devices.
In the future, P4 switches could be positioned to support applications such as
in-network caching, accelerated consensus, and in-network defense, taking into
account the current topology that has legacy devices. Additionally, recent research
is considering the use of network taps as a means to replicate production network
traffic to programmable switches for analysis; by tapping on legacy devices and
processing on P4 switches, operators can benefit from the capabilities of P4 switches
without the need to fully replace their current infrastructure. This method can be
used in a variety of in-network applications like network-wide telemetry and DDoS
detection/mitigation.

Programming simplicity

The P4 programming language is not easy to learn; recent studies have shown many
of the existing programs have several bugs that may cause the network to go down
completely. Furthermore, since programmable switches have many restrictions on
memory and the availability of resources, developers must take into account the
low-level hardware limitations when writing the programs. It is known that this
process is based on trial and error; developers are rarely sure if their program will
"fit" into the ASIC, so they keep compiling and adjusting their codes accordingly.
Such problem makes evident when the complexity of the in-network application
increases, or when multiple functions are executed concurrently in the same P4
program. Additionally, code modularity is not simple in P4 and the programmers
typically rewrite existing functions adjusting them for their own purposes. All
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these factors affect the network’s cost, stability, and correctness in the long run.
Until now, the networking industry operated on switches equipped with fixed-
function ASICs, so few programming skills were needed by network operators, but
with the advent of programmable switches, operators are now expected to have
experience in ASIC programming. In view of the fact that this is a challenging task,
future research efforts should consider simplifying the programming workflow for
the operators and generating code, for example, graphical tools could be developed
to translate workflows into P4 programs.

Modularity and virtualization

It’s evident that today’s networks require operators to run multiple network func-
tions simultaneously on a single physical switch, despite programmable data planes
originally intended to execute a single program at a time.
With the increase in demand for on-switch networking functions, cloud providers
are trying to offer them as services. To do this several challenges must be ad-
dressed including resource isolation, performance isolation, and security isolation.
Programming for P4 programs and functions should be made more modular so
that developers can easily integrate multiple hardware services into the hardware
pipeline. There are currently attempts to implement data plane virtualization in
the literature. Among the challenges that can be explored further is performance
degradation from packet recirculation, inflexibility of live reconfiguration, frequent
recompilations, and loss of state during data plane reconfiguration.

Practical testing

Verifying the correctness of novel protocols and applications in real production net-
works is of utmost importance for engineers and researchers. Due to the ossification
of production networks (which cannot run untested systems), engineers typically
rely on modeling and mimicking the network behavior in a smaller scale to test
their proof-of-concepts. One way to model the network is through simulations;
while simulations offer flexibility in customizing the scenarios, they cannot achieve
the performance of real networks since they typically run on CPUs. Another way
to model the network is through emulations. Emulators run the same software
of production networks on CPU and offer flexibility in customization; however,
they produce inaccurate measurements with high traffic rates and are bound to
the CPU of the machine. Finally, emulating testbeds on a smaller scale might
produce results different than production networks. Future Initiatives could focus
on finding tools that emulate production networks at scale while achieving line-rate
performance.
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After all these considerations and having analyzed future prospects and possi-
ble improvements, the proposed solution proves valid and wants to encourage
researchers to extend and develop this work. It has been demonstrated how FL
is highly suited for EC applications, as it can take advantage of the processing
in intermediate programmable switches and the highly distributed edge devices
generating data. Moreover, this thesis work represents an example that can be
followed in the implementation of P4 programs, since contains solutions to various
challenges proposed by the system.
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Appendix A

Division in P4

During the development of this thesis work, different approach has been explored in
order to make possible the arithmetic division operation inside the programmable
switches. Before implementing these operations using extern functions, we tried
to implement division using binary operations. Due to P4 language and resource
limitations, this solution works well only if applied on few numbers but by increasing
the amount of numbers, the compilation time becomes untenable. The main cause
lies in the lack of support of loops in P4 language, so the implementation of multiple
division operations relies on loop unrolling technique.
Figure A.1 shows the algorithm used for bit division operations and consists in binary
shift and sum, while listing A.1 shows an extract of the P4 code implementation.
For our purpose, the implemented solution works on 32 bit values, but the support
of larger number could be possible with some modifications in code.

Listing A.1: Binary division implementation
1 bit <32> d iv id e ( in bit <32> dividend , in bit <32> d i v i s o r ) {
2 [ . . . ]
3 // con s t ru c t i on o f in t e rmed ia t e r e s u l t AQ
4 AQ = AQ | ( bit <64>)Q;
5 Ash i f t = shi f tLeft32ByN ( n1 , A) ;
6 AQ = AQ | Ash i f t ;
7

8 Ba2 = complementA2 ( n1 , d i v i s o r ) ;
9

10 // #STEP 1
11 i f ( Ncycle > 0) {
12 AQ = AQ<<1; // SHIFT
13 AQtmp = AQ;
14 // new A
15 Ash i f t = AQtmp & maskA64 ;
16 Ash i f t = shiftRight64ByN ( n1 , Ash i f t ) ;
17 Atmp = ( bit <(32+1)>) Ash i f t ;
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18 A = ( bit <32>) AQtmp;
19 Atmp = ( bit <(32+1)>)Atmp + Ba2 ; // A−B
20 Atmp = Atmp & ( bit <(32+1)>)maskA32 ;
21

22 check = checkBit1 ( ( n1+1) , Atmp) ;
23

24 i f ( check == 1) {
25 AQ[ 0 : 0 ] = 0 ;
26 Atmp = ( bit <(32+1)>)A; // A+B. Restore prev ious

value o f A
27 }
28 e l s e {
29 AQ[ 0 : 0 ] = 1 ;
30 // put new value o f A in AQ
31 A = ( bit <32>) Atmp ;
32 A = A & maskA32 ;
33 Ash i f t = ( bit <64>) shi f tLeft32ByN ( n1 , A) ;
34 AQ = AQ & maskQ ;
35 AQ = AQ | Ash i f t ;
36 }
37 Ncycle = Ncycle −1;
38 }
39 [ . . . ]
40 }
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Figure A.1: Division flow chart
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