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Abstract 

Nowadays, Precision Agriculture (PA) and Digital Agriculture (DA) are becoming fundamental 

instruments to oppose and prevent the upcoming agricultural sector crisis due to fertile soils scarcity, 

climate change, famine, lack of water and demographic expansion. Conventional individuation of crops 

pandemic clusters and pathological status rely on manual inspection, affected by high subjectivity as 

well as being costly and time wasting. Furthermore, intensive spraying of Plant Protection Products 

(PPP) has been for decades the unique method to ensure large-scale productions, with dramatic 

consequences in terms of eutrophication, soil toxicity and resources wasting. The combination of 

automated health status detection and automated precision spray allows to increase the soil productivity, 

to use fertilizer and pesticides only where is needed and drastically cut down the costs. This thesis 

presents an Unmanned Aerial Vehicles (UAV) implementation in disease recognition and precision 

aerial spraying of grapevines. A diseases recognition algorithm has been proposed, based on leaves 

images in the visible spectrum. Moreover, this algorithm is based on the transfer learning of MobileNet2, 

a Convolutional Neural Network (CNN), that has been pre-trained on the big image database ImageNet 

to classify one-thousand objects. The CNN is proposed as features extractor, then Linear Support Vector 

Machine (LSVM) and Logistic Regression (LR) are used for the final classification of grapevine leaves 

presenting black rot, esca, and leaf blight (Isariopsis leaf spot) symptoms. The outcome of the algorithm 

is a cartesian map providing information about the individual request of PPP and the relative plant 

position, called waypoints. A path planning routine, aimed at maximizing the autonomy of the quadrotor, 

was designed to solve a modified Travelling Salesman Problem finding the optimal sequence of 

waypoints, using Artificial Intelligence (AI). The solver minimizes both the travel distance and the time-

averaged carried payload, by means of a Genetic Algorithm (GA). A Linear Quadratic Regulator (LQR) 

has been proposed, with yaw-gain scheduling to control a 25 kg quadrotor with a tank of 10 L, and an 

Extended Kalman Filter (EKF) as state estimator. A sensor-free wind estimation algorithm was 

developed, allowing a local estimate of wind magnitude and direction. Furthermore, experimental 

relations between nozzle pressure, rotors downwash, air-UAV relative velocity and the drift entity of a 

hollow-cone nozzle were retrieved by image analysis. Intersecting wind data with drift experimental 

curves, was then developed an algorithm to correct the UAV path in presence of wind to maximize some 

irroration quality factors. 
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1 Introduction 

Automation and mechanization of repetitive tasks has been the foundation of industrial and 

agricultural revolutions. Recent advances in artificial intelligence (AI), Internet of Things (IoT), 

Big data Analysis and robotics made possible to push forward the automation horizons enabling 

an increase of productivity of subjective and cognitive tasks, too. The so-called “Agriculture 4.0” 

introduced, in recent years, a novel way to organize, extract and process data allowing modern 

farmers gain enhancements in monitoring and treatment of the field. Climate changes are 

affecting, just now, different areas of the global agricultural sector and the scenario is forecasted 

to become worst.  [1] discussed parasites diffusion, unpredictable and fast variation of the 

culture’s productions, desertification and other cataclysmic events that will lead to a contraction 

of the agricultural supply chain. Furthermore, the world population growth was 1 % in 2020 and 

is predicted to reach 9 billion in 2043 [2].Food and Agriculture Organization (FAO), as well as 

the European Parliament's Committee on Agriculture and Rural Development, have estimated [3] 

an increase in food needs of around 60 %, compared to the numbers collected between 2005 and 

2007. At the same time, estimates have shown a negligible increase in arable land in the coming 

decades. In addition, the increase in the middle class in emerging economies will increase the 

demand for varied products and will exert greater pressure on the issuance of guarantees of 

provenance, quality, and healthiness of production. The goal of agriculture in the coming decades 

will therefore be to produce more and more sustainably. To minimize the use of inputs and 

consequently increase farmers' incomes and reduce environmental impact, the agriculture of the 

future will have to increase yields compared to inputs such as water, fertilizers, plant protection 

products and manual labor. In this ever-changing context, precision agriculture comes into play. 

On 1 September 2015, the Italian Ministry of Agriculture appointed a special Working Group to 

draw up the National Guidelines for the development of precision agriculture. It was declared that 

it wanted to apply precision management to 10% of the national UAA (Utilized Agricultural Area) 

by 2021, compared to 1% in 2015, and the objectives have only been partially achieved, to date, 

especially in the implementation of autonomous driving systems in agricultural vehicles. 

Productivity increments are the unique response to the reduction of fertile soils and demographic 

expansion, and the agriculture 4.0 paradigm points in this direction. In particular, it is becoming 

prominent the utilization of Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles 

(UGVs) in crop monitoring, remote sensing, mapping and, most recently, in precision 

spraying[4]. There are single UAVs applications, swarm UAVs logics and UGVs-UAVs 

cooperation [5]. Exist different types of UAVs, classified by weight, type of take-off, number of 

rotors ad power source. In this thesis was considered a Vertical Take Off and Landing (VTOL) 

with 4 brushless DC motors UAV. Vineyards are of particular interest for the use of UAVs 

because of the rugged terrain that makes difficult the autonomous guidance of terrestrial robots, 

both for sensing and treatments purposes. UAVs are still strictly normed in urban areas and less 

in rural environment, where the human risk is lower because of less population density. However, 

as suggested in [6], there is a lack of normative codification for aerial spraying. UASs spray 

missions fall in the “Specific” category of the regulative text redacted by the European Aviation 

Safety Agency (EASA). It imposes to have a Maximum Take-Off Weight (MTOW) of 25 kg, so 

it is reduced the transportable Plant Production Product (PPP). This thesis focuses on the use of 

UAV for recognition of grapevines diseases and subsequent precision spray control of the 

vineyard. Although in this thesis only some of the argument are treated in depth, the entire UASs 

application in vineyard, thought in [6], consist of three stages. In the first and second phases small 

drones (under 5 kg MTOW) should perform an accurate 3D mapping of the field to collocate the 

rows and the plants relatively to the used reference frame. Then, the system should annotate 

information about the soil and the crops geometries. Subsequently, plant-by-plant, UAVs will 

capture images of leaves and trunks, and associate them with the previously stored map. A 
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description, filtering and classification of those images provides the pathological status of each 

plant, producing a prescription map in which PPP differentiate demands should be derived by 

image analysis itself. Once the map is produced, a larger quadrotor (25 Kg MTOW) should leave 

the charging station at the border of the field and start a precision spray mission. The rationale of 

the work, overall, was to obtain predictions on the performance of the spray system and the 

autonomy of the drone using a model-based approach. Based on the present literature, a 

simulation environment was developed on MATLAB and Simulink capable of producing 

predictive results on the final implementation of the project. The simulator takes in a 2D map of 

the vineyard consisting of a matrix whose elements correspond to the positions of the individual 

grapevines, which are associated with photographs of the foliage or a single leaf, and returns in 

output parameters of quality of spraying, the consumption of the mission and the spatial 

distribution of the sprayed product.  

 

Figure 1 Simulation environment block scheme 

Therefore, the application developed consist of several stages. In chapter 2 are revisited the most 

used Machine Learning (ML) techniques for characterizing, describing, and classifying plant 

diseases on the base of visible spectrum leaves symptoms. Taking inspiration by the work in [7], 

the pre-learned Convolutional Neural Network (CNN) MobileNet2 was used as a feature extractor 

of 4 different grapevines status (3 pathologic class and the healthy class), namely capable to 

provide a vectorized form of the image (the descriptor) containing all the relevant information 

linked to the specific disease. Then, L-SVM, Logisitc Regression and a re-trained MobileNet2 

were used as tail-ender multinomial classifiers trained with a One-vs-All approach that permits to 

turn the network in a binary classifier, at the occurrence. Through the segmentation technique of 

Edge Boxes[8] was tried to push forward the performances of the classifier, providing it, in a test 

phase, a leaves detection of the generic input image whose acquisition scene could in general 

contain an entire plant and not only a first-plane of the leaf, as most of the available training 

dataset images. In chapters 3 and 4 we are studied the dynamical model of a 25 Kg quadrotor, the 

spray system, and their relative controls. The non-linear dynamics of the drone was linearized 

around the hovering conditions and a yaw gain-scheduling Linear Quadratic Optimal control was 

applied to the model in Simulink environment. The lack of directly measurable states with low-

cost MEMS-based Inertial Measurement Units, the conflict between low updating frequency of 

conventional GPS signals and sensor drift problem caused by gyroscope and accelerometer dead-

reckoning were discussed, and an Extended Kalman Filter was developed to get an estimate of 

the quadrotor attitude. Using experimental data provided by the study in [9] was retrieved 

geometrical properties of the spray flux in function of air-UAV relative velocity, nozzle pressure 

and rotors velocities, through image analysis. In chapter 4 is also presented an exhaustive 

discussion about different spray strategies and optimal path planning searching. A modified 
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Travelling Salesman Problem (TSP) was studied to get the UAV path planning whose tries to 

minimize the charge consumption of the system and increase the time horizon of the spray 

mission. The path scheduling was solved by means of Artificial Intelligence algorithms, such as 

the Genetic Algorithm (GA) and Nearest Neighborhood (NN). Merging together flux 

experimental curves and a sensor-free wind estimation mechanism[10], [11], an onboard path 

correction algorithm aimed at minimizing the spray drift problem and save PPP in different ways 

and scenarios was developed.  

2 Grapevine leaf diseases detection 

2.1 Vineyard pathologies 
There are several pathologies and pathogens affecting grapevines in the world. Three of the most 

treated in literature and mostly present in the European region were used as specimens for the 

disease recognition algorithm. Esca disease, caused by attacks of Phaeoacremonium 

aleophilum, Phaeomoniella chlamydospora or Fomitiporia mediterranea, is one of the most 

widespread grapevine disease. Foliar symptoms, if present, form a peculiar shape consisting of 

leaf veins following strips, with yellow, red or green colors and intensities depending on species 

and other factors[7]. Until 2001, year in which was banned for its toxicity, the unique treatment 

was Sodium Arsenide based. There are recent alternative biocontrol products (as the Esquive 

WP), but the common, recent, way to contrast those fungi is prevention and manual inspection 

[7]. Black rot, another fungal disease (Guignardia bidwelli), appears in spring and summer. Its 

foliar symptoms appear as a cloud of black spots relatively very smaller than the leaf dimension. 

Also in this case, mainly manual and visual inspection are used for the identification. This is a 

time and cost-spending practice surely, but also affected by subjectiveness and low repeatability 

[12]. Pseudocercospora vitis causes the last analyzed disease, the leaf blight (Isariopsis leaf spot). 

As the black rot, all the leaf surface (if foliar symptoms appear) contains small black dots. 

Adjunctively a bleaching of the leaf occurs, becoming gradually a defoliation[13]. 

2.2 Image acquisition analysis and data augmentation 

Two distinct datasets were available: 

1. Plant Village Dataset (PVD): Freely downloaded from Kaggle, it contains 4062 

leaves images captured in a closed environment by the top of a grey desk. The 

dataset is divided in 1383 “Esca”, 423 “Healthy”, 1180 “Black Rot” and 1076 

“Leaf Blight” images. All the images have the same resolution (256x256 pixels), 

and similar lighting, position, and leaf sizes. 

2. Università delle Marche Dataset[14](UMD): Freely available through the cited 

article, it contains 1768 images on-field. The dataset is divided in 887 “Esca” 

images and 881 “Healthy” images. Images have the same resolutions with 

grapevine crops captured in different sizes, number, and positions, furthermore 

backgrounds and confounding objects are present. 

 

Figure 2 Plant Village Dataset images, from left to right: “Black Rot”, “Leaf Blight”, “Healthy”, “Esca” 
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Figure 3 Images of Esca leaf (left) and healthy leaf (Right), from Università di Ancona Dataset 

Plant Village dataset takes advantage by its regularity and specificity with respect to leaves shape, 

color histograms and boundaries, clearly defined and insulated in each image. On the other hand, 

a classifier trained on this dataset may suffer of biasing knowledge, lowly capable to recognize 

the same features when an arbitrary on-field image is presented. On the contrary, a classifier 

trained on the second dataset difficultly could be able to learn about single leaf features, since 

many leaves are overlapped at different depths of the field. Many out-of-class objects should lead 

to associate wrong information to de final descriptors, so the result probably will be a variance 

suffering classifier, but with higher robustness facing real on field images. 

2.2.1 Dataset 1, 2-classes “artificial grapevines” augmentation 

A solution could be the fusion of the two datasets, but it is not completely possible. Unfortunately, 

UMD contains data only for “Esca” and “Healthy”. The issue can be tackled with the artificial 

constructions of many images for “Black Rot” and “Leaf Blight” classes simulating a sort of 

artificial grapevine. This construction can be faced at different scales of sophistications, merging 

different overlapped leaves at different angular positions with a previous extraction from their 

backgrounds, but for our study a simple demonstration is done, picking four random leaves 

(previously augmented) and positioning them in the four corners of the new image. Starting by 

the images of PVD a data augmentation algorithm is used to multiply by 5 the data size, 

performing, for each image: 

• Transposing of the image matrix 

• Mirroring of the image matrix along horizontal and vertical axis 

• Random changing of the image light intensity 

Then, in “Esca” and “Healthy” classes are added the UMD images, instead a number of artificial 

grapevines, with a similar percentage with respect to the classes’ sizes, are inserted in “Leaf 

Blight” and “Black Rot”. The resulting sizes are shown below: 

Table 1 Classes sizes of the Dataset 1 

“Leaf Blight” “Black Rot” “Esca” “Healthy” Entropy H Total 

5729 6267 7807 3001 1,9273 22804 

where the entropy was computed in this way 

� = � −����	
����   �
���       � 2.00 � 

And �� is the frequency of the i-th class over the entire dataset, so upper bounding the sum of the 

probabilities to 1 the entropy results constrained between 0 (if the whole dataset is composed by 

only one class) and 2 (if each �� = 0.25). 
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Figure 4 Dataset 1 images for the training set, obtained uniformly splitting dividing the original dataset in 70 % for 

training and 30% for testing 

2.2.2 Dataset 2, 4-classes “artificial grapevines” augmentation with dataset balancing 

Another possibility was to use PMD images only. Dataset 2 is proposed for two reasons: 

• Class balancing: although the entropy of the Dataset1 was acceptable, “Healthy” class, 

mainly, has a too low frequency that makes a future classifier prone to a high False 

Negative Rate (FNR) for this class, and/or high False Positive Rate (FPR) for the other. 

However, a class balancing passes through an augmentation of already existing images 

to compensate the class size difference, so, after the process, smaller classes will contain 

the highest percentage of augmented images, and, unavoidably, the smallest variance, 

since a consistent number of attributes of the original images propagates necessarily also 

in the augmented ones. Since these trade-offs was needed in Dataset2 a class balancing 

is proposed, contrary to Dataset1. 

• Uniform bias error of the artificial grapevines: whatever the complexity and 

randomness of the artificial grapevine algorithm is, it always carries several attributes 

shared by all its output images, because strongly dependent by the algorithm structure 

itself (for the simplified version proposed, for example, all the artificial grapevines 

images contain a visible cross dividing the four corners). Dataset2 proposed an exclusion 

of the UMD dataset for the training, allocating for each class a set of artificial grapevine 

images. This dataset will lose the robustness with respect to on-field crop images, so a 

further leaves-detector algorithm will be necessary down-stream to restrict the 

classification step to an image as much as possible comparable with the single leaves used 

in training. 

Starting from the PVD the same four geometrical augmentation steps presented above are 

performed, obtaining a x5 factor of the images’ number. 

Table 2 Classes size of the augmented Dataset2 

“Leaf Blight” “Black Rot” “Esca” “Healthy” Entropy H Total 

5380 5900 6920 2115 1,8947 20315 

Taking “Esca” class size as reference the dataset is balanced generating, for each class, a number 

of new images equal to the gap between the class size and the reference size. Those images are 
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constructed randomly extracting 2 already existing images in the class and doing a randomly 

weighted average of the two images. ���	���� = �����	��  � �
���	�
               ��,�
   ∈  0,1" � 2.01 �

 

Figure 5 image constructed for dataset balancing 

There are many other ways to do a balancing dataset, all image augmentation techniques. We 

could also balance them with the same image augmentation algorithm used initially, for example 

by rotating the leaves at different angles. The balancing described was chosen because the result 

is both geometrically and morphologically different from the originals. After the balancing is 

ultimate, 6920 images for each class are present. The final step is the composition of a further 

20% of images as artificial grapevine, randomly picking images by the last augmented and 

balanced dataset. The result is a dataset with 33216 images and entropy exactly equals 2. 

 

Figure 6 Dataset 2 images for the training set, obtained uniformly splitting dividing the original dataset in 70 % for 

training and 30% for testing 

2.2.3 Principal Components Analysis 

A principal component analysis is a dimension reduction technique capable to extract from the 

features matrix axes along which is seen the highest variance of its feature vectors. Employing a 

feature extractor explained below, an image is compressed in a 1D vector #� of 1280 elements, so 

an image could be seen as a point in a 1280 dimensions vector space. Packing the vectors in 

columns a features matrix is obtained, from which a covariance matrix S can be extracted. $ =  #�; … … #�; … . . #'()*)+,*" � 2.02 � 

#- = 1./�0�1�0 � #�'23435�4
��� � 2.03 � 
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$7 = $ − #-89 � 2.04 � ; = $7$7< � 2.05 � 

The i-th eigenvector of the covariance matrix S is the i-th principal component of the feature 

matrix X, in other words the i-th eigenvalue associated with the i-th eigenvector is the i-th greatest 

standard deviation of whole set of images features in the 1280-dimension space. Both for dataset 

1 and dataset 2 the first 3 eigenvectors contain about the 25 % of the total variance. This result 

suggests that a graphical representation in 3 dimensions of the images features vector could be a 

suitable way to analyze them. For the two dataset is seen a significant separability for “Leaf 

Blight” images by the other classes, while a more complex superimposition is present for the other 

3 classes. In the dataset 1, however, a well separable cluster of “Healthy” and “Esca” images is 

present. They are the features vectors belonging the UMD dataset, with very different attributes. 

 

Figure 7 Dataset1 Principal Component Analysis 
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Figure 8 Explained variance of Dataset 1 

 

 

Figure 9 Dataset2 Principal Component Ananlysis 
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Figure 10 Explained variance of Dataset 2 

 

 

2.3 Plant features extraction (Dog and SiFt/CNN) 

Starting from 8 bit codified 3 channel image, a matrix can be obtain, where each element 

represents a vector of 3 values (Red,Green and Blue intensity) spacing between 0 and 255. 

Description phase of such data aims to reduce the number of elements to classify, leaving only 

containing relevant information being, simultaneously, mutually independent. Traditionally 

Computer Vision Feature Detection Techniques (CVFDT) are a group of engineered techniques 

used to extract features vectors from images based on their textures, colors, and shapes properties. 

The modern known CVFDT are:  

• SIFT (Scale Invariant Features Transform)  

• SURF (Speed-up Robust Features) and FAST (Features from Acelerated Segment 

Test), faster versions of SIFT 

• ORB (Oriented FAST and Rotated Brief), is a free alternative of FAST and Brief 

descriptor algorithm developed by OpenCV labs 

• CNN (convolutional Neural Networks) features extraction.[15] 

There are also corner and edge detection algorithms (Harris detector, angular grids etc) that are, 

instead, not rotation and scale invariant. Since our application needs to recognize leaves, pictures 

taken from arbitrary distance and angular positions those techniques will be avoided. 

2.3.1 Scale Invariant Features Transform (SIFT) 

Sift methods accept as input images and returns a 1D descriptor vector, ensuring that such a 

descriptor will be scale invariant with the respect to object token with different angular and 

proximity positions. The image is scan and a variable size set of key-points coordinates in the 

image returns by the action of Difference of Gaussian (DoG) methods. Each key-point is 

surrounded by a grid of dimension dependent on the strategy chosen: 
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• Dense Sift: grids sizes are fixed and chosen based on preliminary optimal parameters 

searching. 

• Phow Sift: as the Dense Sift fixed sizes are chosen but they are more than one. 

• DoG Sift: grids size is outputted by the DoG algorithm. 

 

Figure 11 SIFT, image by [5] 

For each key point is computed and stored the grid maximum increasing direction of the grid 

gradient and then for each element of the grid a local gradient is computed in 8 (e.g.) directions. 

The resultant descriptor is obtained forming a matrix whose columns are vector that enlist the 

modules of the resultant local gradient of the i-th key-point ordered in a fixed way using as 

reference the i-th key-point grid gradient maximum increasing direction. If the key points are N, 

the grids scales are 4, and the number of directions for local gradient is 8 then the descriptor will 

be a matrix N x (4x4x8=128). But the number N of key points differs, in general, among different 

images so at the end of the descriptor extraction a normalization of the final feature vector length 

must be performed, to make them comparable by a classifier[7]. In the learning dataset 

unsupervised learning approach (k-means) is applied in the features space: it means that all the N 

(variable) 128x1 vectors owned by each learning image are put together to evaluate the dominant 

k clusters, and so key-points, that better descript the images. Once the clustering is done, k new 

cluster centers are available and so new, compressed, and homogeneous features vectors can be 

obtained. For example, the feature vector can be obtained by an image computing the frequencies, 

for each cluster, of the original image key-points appearance in that specific cluster, the output 

(for a generic image) is a descriptor of size k (Bag of Words encoding). Otherwise exploiting 

VLAD (Vector of Locally Aggregated Descriptors) a more sophisticated descriptor could be 

generated computing, for each cluster, a 128-dimension vector resulted by averaging the distances 

between vectors belonging to the cluster and its center[7]. For VLAD the final feature vector has 

size k x 128. 

2.3.2 Convolutional Neural Network (CNN) 

Artificial Neural Network are used in machine learning for supervised classifiers and/or 

regressors. As many machines learning methods, they accept as input vectors or matrices then 

passes it throughout several perturbations compute as output binary, categorical or scalar 

predictors. The main difference with the respect to other machine learning mechanisms is that 

each element of the input feature vector can be partially or fully connected with neurons 

(elements) of the consecutive layer. Indeed, for example, in a traditional classifier (SVM, Logistic 

Regression, Naïve-Bayes, etc.) are learned a bias = and number of weights �� equal to the size of 

the feature vector. The resultant hyperplane, described by the equation = � �> <#̅ = 0, is the result 

of the minimization of certain loss function engaged to maximize the number of right-labeled 
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train feature vectors, then, often, it passes through an activation function (e.g. sigmoid) the returns 

the affiliation percentage of the corresponding data to a given class. 

 

Figure 12 Boundary hyperplane in 3D case, taken from [16] 

Instead, the peculiarity of neural networks is their complexity. A neural network is composed by 

a certain number N of layers, and in each of them there are n neurons. A single neuron can have 

its own bias and weights to learn and an activation function that outputs its specific confidence 

parameter. This structure results in a more sophisticated way to represent a generic Data 

Generation Mechanism than other machine learning methods, but the number of variables and 

non-linearities in the optimization problem causes the ANN to be also more prone to overfitting 

and higher computational costs. 

 

Figure 13 Non-deep Neural Network, image taken from [15] 
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Especially for image recognition tasks fully connected ANN are prohibitive by a computational 

point of view since the very high dimensionality of features in input. For these reasons recent 

development in ANN, and in particular Deep Neural Networks (ANN with more than one hidden 

layer), showed a dramatic increasing in the affordability-computation effort ratio in Deep Neural 

Networks constructed by means of several filtering convolution layers, ReLu activation functions 

and pooling layers aimed to construct a light-weight feature vector downwards fully or partially 

connected to the final classification layers[17]. The strength of CNN, as the name suggests, stays 

in the convolution matrix used to recursively filtering the original image matrix. Convolution 

matrix is a well-known strategy used in image recognition: once the matrix size and the step 

parameter are chosen the convolution acts as a scan that compute for each target element of the 

original input a strictly local property through a stencil that imposes a certain scalar 

transformation of the elements surrounding the target. Then the convolutional matrix moves 

toward other targets whose distances are codified in the step parameter. The result is a filtered 

version of the original image matrix. As biological analogies with optic nerve and visual cortex 

suggests [17], the most efficient way to connect the new convolutional layer to the next is not a 

fully connection, but a local connection. In other words, if we have an image of 32x32x3 and we 

want to fully connect it with the next layer will results 32x32x3 by the number of neurons of the 

next layer but applying a convolution filtering of scale 5 and step 1, supposing that the next layer 

is exactly a 31x31 grid (similar to the previous one). Each neuron is connected only with the 

corresponding previous neuron/features, will results a number of weights quals to only 31x31 by 

feature dimensionality. Often, for each neuron the bias and weights are equal, so the number of 

unknowns for the specific layer is only the feature dimensionality. This approach shows 

astonishing computation effort reduction mixed with very excellent performance in image 

recognition[17]. 

 

Figure 14 RGB adaptation of the input image taken from different convolutional layers, image from [17] 

Convolutional layers can be used as filtering maintaining the same dimension of the input matrix, 

or reducing it. To maintain the same dimension of the input often is performed a padding operation 

adding an external frame of zero values, since the convolution always takes away at least 1 row 

and 1 column. When high dimension contraction is required, a pooling strategy is used: it may 

use maximum pooling, or statistic function pooling. After a suitable number of hidden 

convolutional, ReLu and Pooling layers a feature vector, hopefully containing the most relevant 

information of the image, is passed to few and dense fully connected layers to perform the final 

classification. 

2.3.3 Comparison between CNN and SIFT 

As mentioned in [7], CNN features extraction presents better performance both in terms of final 

accuracy on the test set and computational effort being MobileNet the network used for feature 

extraction. Furthermore, considering the number of phases in the Sift (DoG, Global Gradients, 
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Local sub-Gradients, row matrix features ordering, clustering, encoding) and the unique phase of 

the pre-trained CNN, the seconds seems the best also from a project time spent point of view. 

 

Figure 15 SIFT and transfer learning comparison, image from [5] 

Considering that in the final classification layers are the densest in terms of weights content, for 

less complex classification tasks a pre-trained convolutional network can be used only to extract 

the feature vector, simply pruning the final classification block. Then a more lightweight classifier 

(Svm or Logistic Regression) will be used starting from the resulting descriptor. 

2.3.4 Pre-trained Convolutional Neural Networks: MobileNetV2 

There are many CNNs freely available online interesting for this work. All of them can be used 

as pre-trained nets, since bias and weights of the entire net were trained over huge databases of 

images such as ImageNet in many cases being able to classify among one thousand objects. Pre-

trained network offers a unseen before opportunity to design own machine learning project with 

a robustness achievable only with such a huge training stages, indeed, although their neurons are 

trained for a specific set of object recognition, the capability of features extraction remain enough 

constant across other object classes. These techniques are called Transfer Learning. As a matter 

of fact, for the proposed application, the choice of the suitable CNN must follow the requirement 

of real-time acquisition and classification activity on hardware supports and CPUs with 

characteristics of mobile devices. So, the better choice could be picking up the network with the 

less number of weights (excluding the fully connected layers) that traduces in less number of 

operations and less time per classification, compared to its declared performances. Is worth notice 

that the computational cost is not only linked to the amounts of weights, but it’s also related to 

the specific structure of the convolutional layer[18], [19]. In the following table are enlisted some 

of the most interesting CNN available on MATLAB Deep Learning Toolbox studied for Mobile 

applications, and their whole and reduced numbers of weights. 

Table 3 Structures of Convolutional Neural Networks available on the MATLAB Deep Learning Toolbox 

Network Name No. of total 

weights 

No. of feature 

extractor 
weights 

Depth of the 

Network 

Input image 

resolution 

AlexNet 61 M  8 227x227x3 

VGG-16 138 M  16 224x224x3 

VGG-19 144 M  19 224x224x3 

ResNet-101 44,6 M  101 224x224x3 
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DenseNet-201 20 M  201 224x224x3 

MobileNet-v2 3,5 M 2,219 M 53 224x224x3 

Places365-GNet 7 M 6,625 M 22 224x224x3 

NasNet Mobile 5,3 M 4,243 M n/a 224x224x3 

ShuffleNet 1,4 M 0,855 M 501 224x224x3 

SqueezeNet 1,24 M 0,727 M 18 227x227x3 

For the purpose MobileNet-v2, ShuffleNet and SqueezeNet shown the lowest number of 

parameters, and are also in the same order of magnitude. In this work MobileNetv2 is chosen for 

its proved accuracy on the ImageNet database, on which it reached Top-5 accuracy of about 87 

%, and its CPU time spent of 75 ms when run on a single large core of the Google Pixel 1 phone 

as feature extractor and classifier (using TF-Lite).[18]. Input image resized to 224x224x3 

resolution enters MobileNet and a feature map can be extract at any depth of the CNN. Deeper 

extraction means higher level information such as shapes and space relationships but increasing 

in Multiple-Adds operations, while upward extraction returns lower-level information such as 

colors and intensities at a lower computational cost. Furthermore, at any extraction depth a 

clustering method (PCA, k-means, gaussian mixtures) can be applied in order to decrease the 

number of features and consequently training and test time. 

 

Figure 16 Visual representation of feature maps at different depths 

2.4 Leaves level Classifier  
For the final classification a comparison between two classical method and the full learning of 

MobileNet is proposed. The main differences between the three methods are: 

• Logistic Regression:  Only 5124 weights (1281 for each class) are learned, and the 

learning process is performed by a personally handwritten function based on Newton-

Rapson gradient-descent algorithm since a closed form solution is not available (could be 

reached global minima). 

• Supported Vector Machine: 5124 weights (1281 for each class) and 4-by-N_dataset 

relaxation factors @� are learned, and the learning process is performed by the tool cvx 

(similar to QuadProg of MATLAB) based on the solution of a Convex Quadratic Program 

minimization with linear constraints (global minima could be reached). 

• CNN Mobile Net Full Learning: 2,219 + 0,005124 millions of weights are learned 

(feature extraction block plus classification block), and the learning process is performed 

by an embedded algorithm based on Backpropagation, in this case the loss function is a 

Not-Convex function (ensured only local minima). 

2.4.1 Logistic Regression and L-SVM probabilistic posterior models 

Both Logistic Regression and L-SVM are linear classifiers based on the computation of the 

posterior probability of a feature vector #̅ being in a certain class y=k, following the equation: 
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AB�=�C = D|$ = #� = �FGHI�>HJK̅L1 � ∑ �FGNI�>NJK̅L�O���� ;          AB�=�C = P|$ = #� = 11 � ∑ �FGNI�>NJK̅L�O����       � 2.06 � 

where #̅ is the feature vector,while =R and �>R< are the bias and weights describing the k-th 

hyperplane dividing the class k features by all the others, and K is the total number of classes, in 

our case K=5, since we have to classify among “Esca”, “Black Rot”, “Leaf Blight”, “Healthy” 

and confused classes, because the leaves can be naturally affected by other symptoms not 

encoded. From that follows that: 

� AB�=�C = D|$ = #� = 1�
���   � 2.07 � 

1 − AB�=�C = D|$ = #� = AB�=�C ≠ D|$ = #�  � 2.08 � D = P V1 0ℎ� "Y�Z[\1�/" Y��11  � 2.09 � 

While the order of the other classes is not relevant. To simply employ the probabilistic model can 

be assumed a binary classification for which y can assume only the values 0 and 1, so K=2: 

AB�=�C = 1|$ = #� = ^1 � �OFGI�> JK̅L_O� = 1V	��= � �> <#̅�    � 2.10 � 

AB�=�C = 0|$ = #� = 1 − AB�=�C = 1|$ = #� = ^1 � �FGI�> JK̅L_O� = 1 − 1V	��= � �> <#̅�� 2.11 � 

 

Figure 17 sigmoid function 

This posterior probability model can be used for all 4 classes (3 diseases and “Healthy”), such 

that each class, independently from the others, can have a probability spacing in [0,1]: 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ AB�=�C = 1|$ = #� = �FGdI�>dJK̅L1 � �FGdI�>dJK̅L

AB�=�C = 2|$ = #� = �FGeI�>eJK̅L1 � �FGeI�>eJK̅L
AB�=�C = 3|$ = #� = �FGfI�>fJK̅L1 � �FGfI�>fJK̅L
AB�=�C = 4|$ = #� = �FGgI�>gJK̅L1 � �FGgI�>gJK̅L1 = ����0ℎC;   2 = h1Y�;   3 = i��YD B�0;   4 = j��[ i�V	ℎ0

� 2.12 � 

So the classification algorithm assesses the decision y as the class with the maximum posterior 

probability that, simultaneously, equals or exceed a threshold k ∈   0,1": 
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C = �B	R maxoAB�=�C = D|$ = #�|AB�=�C = D|$ = #� ≥ kq    D = 1,2,3,4 � 2.13 � 

And so, “Confused” class probability can be computed and y is set to Confused if there are no 

class posteriors exceeding the threshold: C = 5 = r�Z[\1�/           V[   AB�=�C = D|$ = #� < k   ∀D = 1,2,3,4 � 2.14 � 

This model will be useful in the test stage of both Logistic Regression and L-SVM, but in the 

training stage only for the Logistic Regression, since its loss function is based on the Bayesian 

approach, while the SVM one on geometric assumptions. 

2.4.2 Logistic Regression Learning 

Starting from (2.12), for each class, the Bernoulli model can be written: 

AB�=�C|$ = #� = ^1 � �OuFGI�> JK̅L_O� =
⎩⎪⎨
⎪⎧ �FGI�> JK̅L1 � ��GI�> JK̅� , C = 111 � ��GI�> JK̅� , C = −1 � 2.15 � 

where, for simplicity, the negative label was assigned to -1 and not 0. Then considering the i-th 

training image producing the #̅� feature vector and labeled with C�. The couple �#̅�  ;  C�� is an 

observation, and the simultaneous appearance of its 2 element is: AB�=�#̅� ;  C�� = AB�=�C�|#̅�  �AB�=�#̅�� � 2.16 � 

Assuming the observations (the images of the dataset) mutually independent and independently 

distributed, the cross probability of all of them, establishing the probability of the entire dataset 

is: 

AB�=�#̅ ;  C� = v AB�=�C�|#̅� �AB�=�#̅��'
��� � 2.17 � 

where N is the number of images of the considered class. But, since the model itself depends on 

the parameter w =  = �>", the cross probability of the observations is nothing, but the likelihood 

of the observation conditioned to the parameter w. 

AB�=�#̅ ;  C|w � = v AB�=�C�|#̅�;  w�AB�=�#̅��'
��� = j � 2.18� 

 

Since we don’t have any prior model on the weighting parameters ��w�, we can base our study 

only on the dataset, so applying Bayesian inference can be shown that a good point estimator w7 

results by the maximization of the likelihood (2.17): 

   w7 = �B	x�G,� max AB�=�#̅ ;  C|w � = �B	x�G,� max v AB�=�C�|#̅�;  w�'
��� � 2.19� 

where AB�=�#̅�� is neglected because does not depend on parameters unknown. Substituting the 

(2.15) in (2.18), we obtain: 

  w7 = �B	x�G,� max v ^1 � �OuNFGI�> JK̅NL_O� ='
��� �B	x�G,� max j � 2.20� 
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To have not to deal with products, the maximization of the likelihood j equals the minimization 

of the negative log likelihood NLL. 

w7 = �B	x�G,� min .jj = �B	x�G,� min � log �1 � �OuNFGI�> JK̅NL�'
��� � 2.21� 

This is the Loss function to be minimized, a closed form solution does not exist, so a gradient 

descent algorithm must be set to find the global minima. Now, restoring the previous labeling, the 

(2.15) could be written as: 

AB�=�C|$ = #� = ^1 � �O�O�I
u�FGI�> JK̅L_O� =
⎩⎪⎨
⎪⎧ �FGI�> JK̅L1 � ��GI�> JK̅� , C = 111 � ��GI�> JK̅� , C = 0 � 2.22� 

And so the (2.21) becomes: 

w7 = �B	x�G,� min .jj = �B	x�G,� min � log �1 � �O�O�I
uN�FGI�> JK̅NL�'
��� � 2.23� 

The NLL gradient is: 

∇G,�NLL =   � #̅� �C� − �FGI�> JK̅NL1 � ��GI�> JK̅N��'
��� � 2.24� 

While, the Hessian matrix is: 

∇
G,�NLL =  − � #̅�#̅�< �1 − �FGI�> JK̅NL1 � ��GI�> JK̅N��'
��� � �FGI�> JK̅NL1 � ��GI�> JK̅N�� � 2.25� 

The hessian matrix is negative semidefinite, since the two-bracket expression are two probabilities 

greater or equal to zero, while the #̅�#̅�< factor is also positive semidefinite, then follows that the 

loss function is concave and a global minima can be found efficiently through Newton-Rapson 

numerical method. The algorithm is a gradient descent way to find the minima, and conists simply 

in the iteration of: 

 =, �>"5I� =  w75I� =  w75 − F∇
G,�NLL�w75�LO�∇G,�NLL�w75� � 2.26� 

Dataset was randomly split in 2 subgroups, 70 % for the training set, and 30 % for the test set, 

without cross-validation. Setting a Tolerance and a starting point w7�, the algorithm recursively 

performs (2.25), until the loss function NLL start to become an asymptote, so the stop condition 

is: �.jjFw75I�L − .jjFw75L� �.jjFw75L��  < Tol � 2.27� 

w7� was set to 0�, and k�� = 10O�. 
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Figure 18 Logistic regression loss function optimization, dataset 1  

The total time spent was 6608,7 seconds, so about 110 minutes to reach the optimum. 

 

Figure 19 Logistic regression loss function optimization, dataset 2 

The total time spent was 5066,4 seconds, so about 84 minutes to reach the optimum. 

 

2.4.3 L-SVM learning  

Linear Support Vector Machine follows the same fundamentals of Logistic Regression but with 

a geometrical model. The aim is, again, to find a boundary hyperplane who better approximates 

the n-dimensional surface exactly dividing two classes’ points. There is also a Not Linear SVM 

capable to compute a not planar boundary surface for more intricate cases, however for this study 

is not reputed necessary. 

�:  = � �> <#̅ = 0�      
⎩⎪⎨
⎪⎧  / = − = � �> <#̅‖�>‖/� = − =‖�>‖ � 2.28� 
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� is the hyperplane definition, while / and /� are the signed distance of a generic point #̅ and of 

the origin from the hyperplane. Conventionally the “positive” side of the space is described by 

the region toward which vector �>  is pointed. Another useful parameter is the labeled signed 

distance: 

/� = C/ = −C = � �> <#̅‖�>‖�  C = 1       ,              ��10V�� Y��11 C = −1    ,          Z�	�0V�� Y��11 � 2.29� 

/� is positive if and only if the features vector #̅ is right labeled, negative otherwise. Target of the 

optimization could be to find � maximizing each /� in the training set obtaining a well-defined 

separation between classes: 

 

  � max �1. 0.  /�� = −C� = � �> <#̅�‖�>‖ ≥ �       V = 1, … . .� ≥ 0 � 2.30� 

This optimization problem could result unfeasible if the classes, in the training set, are not linearly 

separable because, in such a case, there will be always at least one point mislabeled which /�� is 

negative. To circumvent the problem a relaxation is applied: 

    ⎩⎨
⎧ min 12 ‖�>‖


1. 0.  /�� = −C��= � �> <#̅�� ≥ 1 − @�        V = 1, … . .@� ≥ 0 � 2.31� 

where @� is the relaxation factor, and, since the holonomic constraints, was assumed M=1/‖�>‖ 

so the maximization of the margin M became the minimization of ‖�>‖, turned in the minimization 

of 0,5‖�>‖
 leading to the same result. (2.31) is the final form of the L-SVM model. It is a convex 

quadratic function with linear constraints and could be efficiently solve by means of “QuadProg” 

or “Cvx” on MATLAB. For the study “Cvx” toolbox was used, exploiting the penalty form of 

(2.31): 

j�115�� = min �Y � ���# 0; 1 − C��= � �> <#̅��"� � 0,5'
��� ‖�>‖
� ;       Y = 10 � 2.32� 
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Figure 20 Hinge Loss, image from[20] 

Dataset was randomly split in 2 subgroups, 70 % for the training set, and 30 % for the test set, 

without cross-validation. In the proposed L-SVM optimization, for each class, variables are not 

only the weights and biases but also a number N of relax parameters @�, where N is the training 

dataset size, equals to 22804. So, there will be, in total, the usual 5124 variables plus 4 by N 

relaxation factors, resulting in 96340 unknowns. Differently by the logistic regression algorithm, 

real time loss computation, in training stage, is not available, but brief relevant information were 

extracted: 

Table 4 L SVM training, dataset 1 

Avg Optimal 
Loss Function 

Avg CPU time 
(min) 

Total CPU time 
(min) 

Loss variation 
Tolerance 

CPU time per 
iteration (sec) 

10,67 330,8 1323,53 min 1,49 � 10O� 296,33 

Can be noticed an astonishing 12x factor CPU time spent between L-SVM and logistic regression 

algorithm, against the 18x factor between SVM and logistic regression variables number. 

2.4.4 MobileNetv2 learning  

For the full learning of the CNN, all the 151 layers used in the feature extractor was reunified 

with the tail layers:  

• Fully connected layer: takes in input the feature vector (1280 x 1 dimension), each 

element is connected with four neurons. The layer has 4 activations, simply equals to: �R = =R � �>R<#̅     D = 1,2,3,4 � 2.33� 

• Soft max layer: takes the four �R as input and outputs 4 softmax functions: 

AB�=�C = D|$ = #� = �FGHI�>HJK̅L1 � ∑ �FGNI�>NJK̅L�O����        D = 1,2,3,4 � 2.34� 

• Classification layer: takes the soft-max of each class and outputs a final classification 

“k” based on an optimal thresholding. 

Also, in this case the dataset was randomly split in two subgroups, 70 % for the training set, and 

30 % for the test set, without cross-validation. The back-propagation algorithm, with step of mini-

batch size fixed to 124, updates all the weights, and when all the dataset is explored a next Epoch 

is started. Each 50 iteration was updated also the validation Loss and validation accuracy, and the 
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process was stopped after 411 minutes due to the constantans of the loss function for dataset1 and 

after 190 minutes for dataset2. For the training following parameters was set: 

• Learn Rate=0,01 with Drop Factor of 0,1 each 10 iterations 

• Solver: Sgdm 

• Gradient threshold Method= l2norm 

• Loss function: cross entropy 

 

Figure 21 Training Mobilenetv2 database 2  

2.4.5 Results and performances 

Performances were evaluated on the augmented test set of 6841 images for the dataset1 and 9964 

for the dataset2. Being the dataset1 quite unbalanced, in the performances was added also the 

balanced accuracy that considers the average between the specificity (True negative rate) and the 

recall (True positive rate) and the Roc curve. All the performances parameters were obtained in 

relation to the threshold T used to impose a percentage, over which, in the specific classifier, the 

sample is considered positive (y=1) or negative (y=0). Doing this the optimal value of T can be 

used as good trade-off for the specific task objective. For each classifier was computed the total 

number of: 

• TN: True Negatives 

• TP: True Positives 

• FP: False Positives 

• FN: False Negatives 

If is supposed that � is the right label for the generic sample in the test set, and being y the 

assigned label, then can be computed, for each class: 

AB�=�� = D|C = D� = �B�YV1V�Z = B AB�=�� = D� AB�=�C = D�� � 2.35� 

AB�=�C = D|� = D� = B�Y��� �B� = kB\� A�1V0V�� ��0� �kA�� = kA�. � kA � 2.36� 

 

AB�=�C ≠ D|� ≠ D� = ;��YV[VYV0C�1� = kB\� .�	�0V�� ��0� �k.�� = k.�A � k. � 2.37� 
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And so: 

����1� .�	�0V�� ��0� ��.�� = �Ak. � �A = 1 − k.�
���1� A�1V0V�� ��0� ��A�� = �.�. � kA = 1 − kA� � � 2.38� 

ROC curve is made as function of TPR and FPR leaving varying the parameter T, the smaller is 

T the easier is the appearance of False Positive and True Positive, the higher it is the more specific 

the classifier becomes leaving only True positive, but then also more false negatives. The right 

choice of T is then the best trade-off between TPR and FPR, while the Area Under ROC (AUROC) 

is a good performance parameter because is strictly linked on how the classifier structure is able 

to divide the clusters in the probabilistic space (since if it tends to one means that the roc is a 

perfect square and so there is the possibility that there is FPR=0 when TPR=1, this means that 1-

AUROC is related to the overlapping area in the aliasing of the two pdf below). The balanced 

accuracy is: 

���Z�kA� � k.�� = � kA�. � kA � k.�A � k.� 2� � 2.39� 

2.4.5.2 Logistic Regression Dataset1 

 

 

Figure 22 ROC curve, logistic regression, Dataset 1 
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Table 5 Logistic regression performances, Dataset 1 

Avg AUROC “Esca” 
AUROC 

“Leaf Blight” 
AUROC 

“Healthy” 
AUROC 

“Black Rot” 
AUROC 

0,9965 0,9936 0,9997 0,9987 0,9941 

As the graph suggests (figure 22) a good compromise between FPR and TPR can be obtained 

picking up a T value in the up-left elbow. This is confirmed by the 3D view, since when the 

threshold increases its slope leaving constant TPR and FPR means that T is varying in a range 

where probability density functions of the two classes are quite negligible. Since the mentioned 

elbow is preceded and, also, succeeded by two threshold plateaus, it means that that range contains 

the optima threshold to split the classes. This argument will be implicitly used also in the other 

classifiers analysis. The Logistic Regression presents very small variance in the 4 classifiers, and 

the above-mentioned range is roughly comprised in 0,17 ≤ k ≤ 0,22. 

 

 

Figure 23 Balanced accuracy (Top) and accuracy (bottom), Logistic regression, dataset 1 

That is predictable that, in an unbalanced dataset, the lowest appearing class (“Healthy”) tends to 

have the highest accuracy (equals the frequency of its absence over the entire dataset) when the 

classifier becomes more specific and the lowest when it turns in more sensible (equals the 

frequency of its presence over the entire dataset), and vice versa for the highest appearing one 

(“Esca”). For those reasons the balanced accuracy tackles the issue. Generally, for the interesting 

range of T, “Leaf Blight” presents the highest accuracies, while “Esca” and “Healthy” the lowest 
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(figure 23). Averaging the 4 classifiers performances, in the logistic regression the maximum 

balanced accuracy reached is 97,57 % at a common threshold of 13,51%. 

 

 

 

 

 

 

 

2.4.5.3 L-SVM Dataset1 

 

 

Figure 24 ROC curves, L-SVM, dataset 1 

Table 6 LSVM performances, Dataset 1 

Avg AUROC “Esca” 
AUROC 

“Leaf Blight” 
AUROC 

“Healthy” 
AUROC 

“Black Rot” 
AUROC 

0,9966 0,9935 0,9996 0,9992 0,9940 
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Also, in this case the variance between classifiers is negligible, but the optimum threshold range 

is wider than the logistic regression, with 0,08 ≤ k ≤ 0,99. This homogeneous behavior is caused 

by the geometric fashion employed to develop the model (figure 24). 

 

 

Figure 25 Balanced accuracy (Top) and accuracy (bottom), L-SVM, dataset 1 

The general behaviors are like those of logistic regression, although in this case the lowest 

accuracies are for “Esca” and “Black Rot” classes across all the thresholding. Averaging the 4 

classifiers performances, in the Linear Supported Vector Machine the maximum balanced 

accuracy reached is 97,71 % at a common threshold of 32,63% (figure 25). 
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2.4.5.4 MobileNet-v2 Dataset 1 

 

 

Figure 26 ROC, fully trained MobNet2, dataset 1 

Table 7 MobNet2 performances, Dataset 1 

Avg AUROC “Esca” 
AUROC 

“Leaf Blight” 
AUROC 

“Healthy” 
AUROC 

“Black Rot” 
AUROC 

0,9901 0,9947 0,9997 0,9664 0,9993 

For the full training of MobileNetv2 the results are quite different with the respect to the other 

two. First of all, can be noticed a high variance between the 4 classifiers, in particular “Esca” and 

“Healthy” curves slightly enlarge the average behavior (figure 26). Then is clear that for 

“Healthy” classifier the elbow point has not the fast slope seen until now, this means that was 

result difficult, in the training stage, to find a hyperplane able to strongly distinguish the positive 

and negative labels for this class, leading to a strong overlapping between the two probability 

density functions. This last anomaly results in the lowest AUROC index seen until now: 0,9664 

for “Healthy”. 
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Figure 27 Balanced accuracy (Top) and accuracy (bottom), fully trained MobNet2, dataset 1 

In this case the choice of threshold is not immediate because, although the average balanced 

accuracy has a constant behavior, it’s not true for the individual classes. Indeed, can be seen that 

“Healthy” balanced accuracy has a dramatical falling around T=0,2, but the highest balanced 

accuracy, equals to 91,27 %, is for T=49,45 % (figure 27). For this reason, in this case, and, less 

urgently, in the other classifiers, the choice for the threshold could be better explained not only 

seeing the averaged balanced accuracy parameter, but also the individuals’ balanced accuracies. 

Furthermore, the choice of T can be done individually for the 4 classes in order to tune the 

classifier for the specific needs. For example, is obvious that, in economic terms, false diseases 

detection is less dispendious than false “Healthy” detection in some cases. For the “Esca” disease 

a false negative means that a plant is left without future human prevention that has a fixed cost 

but taking the risk of the disease spreading over the neighborhood whose costs are arbitrary. In 

the case of the curable diseases “Black Rot” and “Leaf Blight” is not so obvious, because other 

factors, such as drugs consumptions for unit surface, and in that case an optimization function, 

dependent by the threshold T, can be minimized in order to achieve the wanted trade-off. 
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2.4.5.5 Logistic Regression Dataset2 

 

 

Figure 28 ROC, Logistic regression, dataset 2 

Table 8 Logistic Regression performances, Dataset 2 

Avg AUROC “Esca” 

AUROC 

“Leaf Blight” 

AUROC 

“Healthy” 

AUROC 

“Black Rot” 

AUROC 

0,9973 0,9963 0,9996 0,9999 0,9935 
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Figure 29 Balanced accuracy (Top) and accuracy (bottom), Logistic regression, dataset 2 

Differently by the unbalanced case of Dataset1, now the Accuracy is comprised between 0,25 (for 

an extremely sensible classifier the accuracy is nk/N) and 0,75 (for an extremely sensitive 

classifier the accuracy is (N-nk)/N), as seen in figure 29. 

2.4.5.6 L-SVM Dataset 2 

 

 

Figure 30 ROC, LSVM, dataset 2 
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Table 9 LSVM performances, Dataset 2 

Avg AUROC “Esca” 
AUROC 

“Leaf Blight” 
AUROC 

“Healthy” 
AUROC 

“Black Rot” 
AUROC 

0,9961 0,9958 0,9987 0,9998 0,9903 

 

 

Figure 31 Balanced accuracy (Top) and accuracy (bottom), LSVM, dataset 2 
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2.4.5.7 MobileNet-v2 Dataset 2 

 

 

Figure 32 ROC, fully trained MobNet2, dataset 2 

Table 10 MobNet2 performances, Dataset 2 

Avg AUROC “Esca” 
AUROC 

“Leaf Blight” 
AUROC 

“Healthy” 
AUROC 

“Black Rot” 
AUROC 

0,9998 0,9998 0,9999 0,9999 0,9994 
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Figure 33 Balanced accuracy (Top) and accuracy (bottom), fully trained MobNet2, dataset 2 

MobileNet2 for Dataset2 shows the best performances ever seen in this study, both in terms of 

accuracies and variances between classes. Indeed, it significatively overcomes the performances 

of the previous dataset, showing a quiet constant behavior among the classes, without anomalies. 

2.4.5.8 Multi-Level accuracy 

Previous analyses on single binary classifiers performances are very useful to visualize optimal 

thresholding in cases for which only one or few diseases are interesting to be recognized and 

insulated from other confounding classes. The fully exploiting of a one-vs-all multinomial 

classifier, instead, consist in the application of the algorithm discussed above in chapter 2.4.1. An 

image enters as input of the classifier, 4 distances are computed, one from each class hyperplane, 

then if none of them is higher than a threshold T (converted in percentage) the classification 

outputs “Confused”, otherwise outputs the class for which the distance is the highest. With this 

approach multinomial thresholding assumes a new meaning. threshold must be set with a trial-

and-error fashion based on some on field experiment, since its scope is to reject or allows potential 

other out-of-class diseases to increasing or decreasing specificity of the whole classifier. In our 

case there is a closed set on which analyses are done, without labeled confounding classes, so 

increasing the threshold has the only effect of start decreasing the Multilevel accuracy at some 

point (figures 34,35). That threshold corresponds with the minimum image posterior computed 

as sigmoid of the distance from the correct class of that image. In other words when the general 

threshold increases all the hyperplanes are shift forward (to positive regions), so the hyperplane 

“k” with the nearest image/point belonging to its class k starts to approach the clouds of points of 
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its class then the accuracy starts to fall. Before that critical threshold the multilevel accuracies are 

always the same, and the maxima, equal about the maximum average balanced accuracies 

computed before and critical thresholds about equal thresholds 9∗,as experimentally seen. The 

Multilevel accuracy is computed dividing the correct classifications Z� ¡�k� over the entire 

dataset size . and can assume all values between zero (all Confused prediction) and 1. 
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Figure 34 Multilevel accuracy and predictor density distributions of Test set of Mobilenetv2(top), Logistic Regression 

(central), LSvm (bottom) trained on Dataset1 
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Figure 35 Multilevel accuracy and predictor density distributions of Test set of Mobilenetv2(top), Logistic Regression 

(central), LSvm (bottom) trained on Dataset2 

Distributions are obtained computing, for each hyperplane, distances of images labeled with the 

class of that plane, then such distances are converted in percentage passing by a sigmoid and are 

plotted their frequencies over the sub-dataset, with size .R, containing only their class in intervals 

of 0,0025 between 0 and 1.  

¢ £YY\B�YC�¤�4��k� = Z� ¡�k� .�           ; Z� ¡�k�  ≡ Y�BB�Y0 Y��11V[VY�0V�Z1 �V0ℎ 0ℎB�1ℎ��/ k       ¦V10BV=\0V�ZR�k� = ZR�k� .R�              ; ZR�k�  ≡ V��	�1 V ∈ D5¤G5�4 �V0ℎ:  1V	�F=R � �>R<#̅�L = k § � 2.40� 

For Logistic regression distributions a 40x factor was applies to highlight the curve, showing a 

large hell centered in 0,5. LSVM and MobileNet2 instead shows a dramatic increasing number of 

correctly classified images toward 95-100%, indeed a nonlinear vertical stretching of the density 

distribution was applied in order to empathize the behavior. All the original density function had 

integral equal to for T between 0 and 1. This confirms that logistic regression hyperplane is over 
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its right position of about 30-40%, while LSVM and mobile net are shifted forward, with respect 

to this test set.  

2.4.5.9 Results summary 

The following table summarizes performances in terms of averaged Auroc, Auroc variance, 

maximum averaged balanced accuracy and balanced accuracy standard deviation at that optimum, 

threshold of maximum averaged balanced accuracy, total training time and single classification 

test time. 

Table 11 Training and Validation summary, Dataset 1 

Dataset1 Avg 
AUROC 

AUROC 
variance 

Max avg 
balanced 
Accuracy %�©ª 9∗� 

Balanced 
Accuracy 

std dev %(©ª 9∗� 

Optimal 
threshold   9∗  % 

Training 
time 

(mins) 

Avg 
Test 
time 

(secs) 

Logistic 
Regression 

0,9965 9,7 10-6 97,57 1,31 13,51 110,14 0,3 

L-SVM 0,9966 1,07 10-5 97,71 1,41 32,63 1323,53 0,3 

MobileNetv2 
Full 

Training 

0,9901 2,52 10-4 91,27 8,36 49,45 412 0,3 

Table 12 Training and Validation summary, Dataset 2 

Dataset2 Avg 
AUROC 

AUROC 
variance 

Max avg 
balanced 
Accuracy %�©ª 9∗� 

Balanced 
Accuracy 

std dev %(©ª 9∗� 

Optimal 
threshold   9∗  % 

Training 
time 

(mins) 

Avg 
Test 
time 

(secs) 

Logistic 
Regression 

0,9973 9,17 10-6 98,21 0,3 13,81 84 0,3 

L-SVM 0,9961 1,79 10-5 97,72 1,7 43,34 5760 0,3 

MobileNetv2 
Full 

Training 

0,9998 7,1 10-8 99,45 0,4 93,39 190 0,3 

Both training and test time referrer to a MATLAB script timing ran on an Acer Nitro AN515-51 

with 16 GB Ram, intel core i7-7700HQ with 2,81 GHz of clock and 8Mb cache, furthermore, test 

time concerns only the feature extraction and the prediction phase, being the Network weights yet 

pre-allocated in memory. Is worth noticing that, comparing the 3 methods in a new test stage, 

Logistic Regression was also the more robust to recognize the Confused class both for a 

randomized out-of-classes leaf and for a completely random image, but, on the other hand, seems 

also to be too much specific and prone to false “confused”. However, a numeric evaluation was 

not performed since a control dataset of out-of-classes leaves was not enough for a reasonable 

analysis. 

2.5 Plant level leaves detection 
Pictures shot by the UAV acquisition system are not necessarily leaves in foreground, but there 

is also the possibility to capture whole vinegars comprising trunks, sky and other objects. In order 

to make the above classifier robust with respect to so complex images, a leaves detector algorithm 

is necessary. Main possibilities are: 

• Segmentation of the image, using computer vision features 

• Convolutional Neural Networks for object detection  
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CNN can be used as regressors to output a set of boxes that are likely to contain an object or 

taking in input a set of Region of Interest (RoI) from another block. There are many networks 

implementing these approaches.  

• Sliding-Window is the slower approach since each candidate box is sent to the feature 

extractor and then classified. 

• Two-Step Detectors is used a mechanism that infers a certain number of boxes, then they 

are sent to the backbone CNN (R-CNN, Fast and Faster R-CNN). 

• One-step Detectors, the above two steps are done simultaneously (RetinaNet, 

YOLO)[7]. 

An implementation of Fast/Faster RCNN can be easily performed altering MobileNet and 

inserting a Region Proposal network at an empirically chosen feature extraction layer. Then, 

splitting the final subnetworks in classification and regression, the output should represent the 

extracted boxes and their relative classification scores. This technique can be very efficient 

because many layers of the CNN are shared by the classifier and the regressor. The main problem 

of this technique is that it needed a training on the specific dataset used. Do such a training meant 

prepare the dataset of thousands of images with a labeler software, marking, for each image, a 

reasonable number of leaves in a semi-automatic way and then fed all the result in the final 

training of the network. Being the classifier learned on datasets where appears both single leaves 

that natural and artificial set of leaves for each class, the priority is to filter the on-field image 

leaving to pass only boxes that contains a reasonable high number of leaves with respect to other 

confounding objects and backgrounds. Such an aim can be obtained also with an algorithm that 

is agnostic on the dataset and objects type. Many segmentation algorithms are based on an edge 

detection phase and then on local or global object researching phase. Edge detection is performed 

applying Gradient and/or Laplacian to the image (or Canny methods etc..), then thresholding it a 

good representation of low-level information of the original image is obtained[8]. This resulting 

image goes into the detection stage, where edges are grouped following certain affinity functions 

(Hough transformation, thresholding etc..). Then, often, a sliding window approach is performed, 

scanning all the image with a sub-sized matrix and scoring each of them on the base of their 

objectiveness. The objects detection stage must increase the efficiency of the classification stage, 

so to have a detector slower than the backward classifier has no meaning. Many segmentation 

techniques are far to be suitable for real time applications, while the Edge Boxes segmentation 

technique shown a possible real time application, reaching speed of one detection in a quarter of 

a second with the right parameters[21]. This technique uses the online available Structured Forest 

for Edge detection to construct in a cost-effective way the initial edges map (figure 36). 

 

Figure 36 Edge Boxes segmentation 

Then a set of boxes are proposed with different sizes, aspect ratios and positions. The worth 

observation of the authors is the correlation between the number of edges wholly enclosed in a 

certain box and the likelihood of that box to contain a complete object. 
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Figure 37 Edge Boxes implementation, object detection 

To ensure real time computation is advice a set of parameters, also used in this study. They are: 

• «= 0,65 is the step size of sliding window search 

• ¬= 0,75; is the Non-Maximal Suppression threshold for object proposals 

• Minimum Score = 0,01; is the minimum score of boxes to detect 

• Max number of Boxes proposed = 106 

With this set of parameters, the algorithm is able to perform object detection in about 0,04 seconds 

with a tested image of 224x224 resolution and about 0,8 seconds with a 640 x 960. Among the 

outputted boxes (i.e., with a score greater than the imposed threshold) a manual extraction of firsts 

k scored boxes is performed in order to reduce the number of final images to be classified, 

furthermore is inserted the parameter s who excludes, in the set of the k elements, the firsts s. The 

last parameter was inserted after having noticed that, for a typical on-field image, greatest scores 

were given to boxes of size comparable to the original image. The correct trade-off chosen is: 

• s=4 

• k=6 

So, for each image, the whole algorithm spends a time equal to: 

 0V��4 43� = �D − 1 � 1� 0V����355�­��¡ � 0V��2�4��4 ¡ � 2.41� 

For example, to classify a 640x960 input image a total time of 1,73 seconds is needed (on the 

machine used). Structured edge detector and EdgeBoxes algorithms are available on GitHub.  

2.5.1 Validation on an external dataset 

Both on dataset1 and dataset2 classifiers a further validation on on-field images coming form an 

external dataset was required, in order to evaluate the robustness and weakness points. The 

external dataset contains online available images from Google with different sizes and sources. 

“Black Rot”, “Esca” and “Healthy” class contains 49 images each one, while resulted very 

difficult to find Isariopsis Leaf Spot (the specific “Leaf Blight” case examined here) images for 

grapevine leaves. So was decided to exclude “Leaf Blight” class by the 2nd Validation stage. This 

choice can be considered negligible in Dataset2 classifier, since is probable that with same 

conditions the behavior is homogenous for the 4 classes, but not in Dataset1 classifiers where the 

unique class trained on similar condition of “Leaf Blight” is “Black Rot”. Obliged by available 

online images, properties of images were not very homogeneous among the 3 classes. “Black 

Rot” and “Esca” folders contain images nearer to crown than “Healthy” class, and this could be 

the reason for which “Healthy” class performances dramatically drop for some conditions. 
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The validation was performed with and without the Object Detector. 

 
Figure 38 Maximum Averaged Balanced Accuracy; Maximum Averaged Balanced accuracy variance; Maximum 

Averaged balanced accuracy threshold 

Logistic Regression and MobileNet2 classifiers improve their balanced accuracy in Dataset2 with 

respect Dataset1 without object detection, instead the implementation of the object detector in 

Dataset1 substantially does not affect Logistic Regression and strongly improves MobileNet2 

performances of about 7%, while, surprisingly, in Dataset2 the object Detector reduces of 4% 

balanced accuracy of Logistic regression, leaving unvaried the MobileNet2 one. L-Svm classifier 

is in general more accurate in Dataset1 and reduces its performances with object detector in both 

datasets. 

In Dataset2 the variance of the maximum balanced accuracy is much higher than in Dataset1 

touching about the 10% for all the classes but MobileNet2 for which is observed the opposite 

behavior. Furthermore, for all the datasets, introducing the object detector L-Svm and Logistic 

Regression deeply increase their variance, while MobileNet2 variance seems unresponsive to 

object detection. 
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Figure 39 Area Under the ROC for each class and averages 

The strong effect of object detection can be shown through Auroc coefficients. The introduction 

of Object detection does not affect Average Auroc of Logistic Regression but increases it mildly 

(5-6%) for L-Svm and highly (10-11 %) for MobileNet2, showing that object detectors not only 

have importance for a correct classification, but also for the good tradeoff between sensitivity and 

specificity, allowing to better recognize Confused prediction also. Auroc in Dataset1 are generally 

significatively higher than in Dataset2, but not for MobileNet2, who seems to be invariant with 

respect the dataset employed for its training. “Esca” is the most accurately classified class and, 

excluding wholly MobileNet2 and L-Svm without object detection in Datset2, is followed by 

“Healthy” and “Black Rot” in Dataset1 or by “Black Rot” and “Healthy” in Dataset2. “Healthy” 

Auroc dramatically drop in Dataset2 for Logistic Regression reaching so low values to become 

useless. For the exception cited the behavior of 2nd and 3rd positions are inverted. 

 

Figure 40  Maximum balanced accuracy reached by each class, given a classifier, with and without object detection 

In figure 40 are represented the maximum balanced accuracies for each class, independently by 

the average balanced accuracies. That implies different optimal thresholds for each class in the 
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generic classifier. This threshold values are quite different by case, but in general “Esca” threshold 

are higher than “Black Rot” and “Healthy” thresholds. For Logistic Regression “Esca” optimal 

thresholds are always between 20% and 30%, while “Black Rot” and “Healthy” thresholds 

between 1% and 10 %. For L-Svm “Esca” optimal thresholds are between 30% and 60% and 

between 1% and 20% the other two. Finally, in MobileNet2 “Esca” optimal thresholds are around 

80-90%, while between 15% and 50% the other two. For what concerns relationships with object 

detection and Datasets this graph suggests the same seen for Auroc graph. 

2.6 Conclusions and suggestions 
There is not a unique best choice among all the possible configurations explored. Fully trained 

MobileNet2 classifier shows the better performances in terms of balanced accuracy, Auroc and 

variance when an object detector is set upped in both datasets, but if the choice falls on a faster 

algorithm then, without object detector, the three classifiers becomes affordable about in the same 

way (in particular best overall performances are seen in dataset 1 although the high false positives 

linked to “Esca” for the unbalanced training) and at that point the right choice could be done based 

on the specific weight assigned to different diseases depending on the application. “Esca” and 

“Healthy” classification are often the bests. This behavior seems to be not related with the richer 

information provided by UMD Dataset for those classes, because the same, at least for “Esca”, 

happens in the second Dataset where on field images were not employed for the training. A 

reasonable argument could be the manifest detectable symptoms of “Esca” disease, clearer and 

more distinguishable also by human eyes. Moreover, often exceeding the 80% balanced accuracy 

“Esca” classification can be already thought for an implementation, while the others are less 

affordable and need a more accurate dataset to be improved. In that sense, this work is flexible. 

Starting by a not-binary categorical classification training, the recognition phase can be focused 

only on a binary fashion, simply deactivating the recognition of other classes and classifying them 

as “Confused” class depending on the scope. These are not only possibilities, but also necessity 

in some cases. 

 

Figure 41 MobileNet2 Dataset1 with object detection balanced accuracy vs Threshold 

Supposing the choice falls on a classifier where all the classes reach high balanced accuracies, for 

example MobileNet2 with object detection in Dataset1 (figure 41). If the aim is the maximum 

robustness in recognizing “Esca” by other generic things, the threshold must be set to about 86% 

where the balanced accuracy reaches 82% for “Esca”, but for “Black Rot” and “Healthy” at the 

same threshold the balanced accuracy is about 52%, making their classifier substantially a useless 
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toss of coins if used as binary classifiers. Vice versa exploiting the maximum robustness for 

“Black Rot” and “Healthy” means moving the threshold around the 30-40% where “Esca” 

balanced accuracy drastically drop. This asymmetric behavior between “Esca” and other classes 

is constant among all the classifier studied and it is simply due to the dataset-specific behavior 

putting “Esca” images points far by the hyper plane. So, if the aim is to give the maximum priority 

to highlight specifically one class versus all the other the right choice is to move the threshold 

toward its maximum balanced accuracy and classify eventual non-Positive as “confused”. 

However, if one wants to fully exploit the classifier, assigning a specific name to possibly all the 

images in input, must leaves some specific class accuracy to reduce the variance among all class 

accuracies using a Multinomial thresholding obtained by other reasonings. In each classifier the 

maximum theoretical multilevel accuracy is substantially the maximum averaged balanced 

accuracy, as discussed in 1.4.5.8. With no prior knowledge about the dataset the prediction 

threshold must be tuned necessarily with trial-and-error in order to ensure recall/specificity 

wanted. If, as in the second validation example, a sample of the grapes, on which the classifier 

will work, is present then some adjustments can be done. For example, again in the MobileNet2 

Dataset1 with object detection, can be noticed that “Black Rot” and “Esca” images have larger 

signed distances (higher posteriors) from all the hyperplanes than “Healthy” images, although the 

separation quality is similar. This fact well explains the different peaks of balanced accuracy for 

the classes (peaks positions are strictly dependent on the dataset chosen). In the algorithm 

proposed for prediction this behavior will result often in high false negatives for “Healthy” class, 

since often “Healthy” points are more distant from “Black Rot” and “Esca” planes than their own 

plane. A solution is to move “Healthy” and “Esca” planes toward their cluster’s centers, 

increasing the relative biases. A fast way to do so is simply normalizing all the posteriors 

computed for each image to the highest medium posterior. In this case, for example, after 

computing 3 posteriors for all the images are obtained 3 posterior vectors �G�3�R ¡ 4 , �®5�3 and  �¯��4°u of 147 elements. Computing the averages for each posterior vector 3 values are obtained: 1147 � 1V	�F=±�3�R ¡ 4 � �>±�3�R ¡ 4< #̅�L�²³
��� = �G�3�R ¡ 4´ = 0,53 � 2.42� 

1147 � 1V	�F=®5�3 � �>®5�3< #̅�L�²³
� =  �®5�3́ = 0,35 � 2.43� 

1147 � 1V	�F=¯�3�4°u � �>¯�3�4°u< #̅�L�²³
� = �¯�3�4°u´ = 0,1 � 2.44� 

 

Is not surprising that “Esca” medium posterior, computed in this way, is not greater than “Black 

Rot” medium posterior as expected by the balanced accuracies curves. The magnitudes order of 

max balanced accuracies thresholds indices not the medium threshold (and so distance) of all the 

images from the class hyperplane, as in the previous calculations, but represent the medium 

threshold of the only real “Esca” images of the dataset, approaching to which the FPR decreases 

and overcoming which the FNR increases. In this reinforcing learning, instead, is important to 

include all the images distances/posteriors in order to have an idea of how much images of other 

classes are distant from a hyperplane they do not belong to, in order to compensate the effect over 

all classes. Normalizing for �G�3�R ¡ 4´  the other two posteriors are obtained 2 multiplication 

factors. Then multiplying them with all “Esca” and “Healthy” image posteriors in the 

classification process the Multilevel accuracy is increased of about 15 %, moving toward the 

maximum theoretical of about 69%. 
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Figure 42 MobileNet2 classifier Hyperplanes in firsts 3 Principal components; Dataset2   �G�3�R ¡ 4´  �®5�3́� = 1,514 � 2.45� 

�G�3�R ¡ 4´ �¯�3�4°u´� = 5,3 � 2.46� 

 

Figure 43 MobileNet2 in Dataset1 with object detection Multilevel accuracy versus multilevel threshold * 

* although "Healthy" and "Esca" planes have been moved forward the critical threshold always remains the same at 0.705, this is because probably the 

point, correctly classified, closest to a hyperplane at the beginning was a black rot point, and continues to be so 

This type of assisted learning can be applied only if a reasonable sized sample of the grapevines 

on which the classifier will work permanently is available. The main assumption making 

consistent these tricks is the strictly dependance of the medium distances from hyperplanes on the 

site’s grapevine whom, in general, is different by the medium distance trained in the training 

dataset. Many other ways can be followed to power the algorithm. Some of them insist to do 

reinforcing learning, pushing the algorithm toward its maximum theoretical possibilities. For 

example, fast color and/or shape filters can be used downwards the object recognition phase to 

priorly reject all the images, or sub-images, with characteristics strongly different by any known 
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leaf. Additionally, each posterior can be weighted with the base-risk related to the registered 

occurrence of the linked disease. Other, stronger, reinforcements unavoidably pass by the 

acquisition of a more suitable dataset overcomes difficulties and limits encountered here. All 

classes should contain an equal number of real grapevines captured in same conditions of 

lightening, angular position and distances, possibly by the vinegar specie, in the same period of 

the year. Furthermore, for an excellent tuning of the thresholds a consistent dataset of out-of-class 

leaves must be captured, including insect diseases, hydric stresses and other confounding 

symptoms. In general, a cross-linking of this study with specific agronomical studies is necessary. 

3 UAV dynamics and control system 

The second stage of the mission consist in the autonomous spray of the crops by means of a 25 

Kg quadrotor, with 10 Kg of PPP payload. In the first part of this chapter the quadrotor and 

actuators structures, kinematics and dynamic models will be discussed. At the resulting dynamics 

a set of control strategies in continuous and discrete time will be applied evaluating the 

performances of the whole control loop supposing known and perfectly measurable states. Then 

will be discussed the lack of fully measurable states and presented the problem of observability 

of the nonlinear UAV system and the Data Fusion approach through the Extended Kalman Filter. 

An experimental test will play the role of validator of the Simulink sensors and EKF model 

providing a locus of control parameters that makes the model coherent with reality.   

3.1 Dynamic Model 

3.1.1 Kinematics 

Was considered a right-handed inertial frame attached to the earth surface and a right-handed 

body frame fixed in the quadrotor CoG with y axis passing from the rotor CoG and x axis passing 

from rotor 4 CoG. Using the z-y’-x’’ Euler angle triad was then extracted the relative rotation 

matrices between the two reference frames and between angle rates and twist. Rotation matrix 

from body frame to Inertial frame following the euler triad  z-y’-x’’ (from inertial to body frame): ��= =  �#�ϕ��C�γ��·�φ�"k = �=�k � 3.001� 

= Y�φ� ∗ Y�γ� 1�ϕ̇ � ∗ 1�γ� ∗ Y�φ� − Y�ϕ̇ � ∗ 1�φ� Y�ϕ̇ � ∗ 1�γ� ∗ Y�φ� � 1�ϕ̇ � ∗ 1�φ�Y�γ� ∗ 1�φ� 1�ϕ̇ � ∗ 1�γ� ∗ 1�φ� � Y�ϕ̇ � ∗ Y�φ� Y�ϕ̇ � ∗ 1�γ� ∗ 1�φ� − 1�ϕ̇ � ∗ Y�φ�−1�γ�  1�ϕ̇ � ∗ Y�γ� Y�ϕ̇ � ∗ Y�γ�
 

Transfotmation matrix from analitical angular rates to phisycal angular velocities in z-y’-x’’ triad: 

k»�A = 1 0 −1�γ�0 Y�ϕ̇ � 1�ϕ̇ � ∗ Y�γ�0 −1�ϕ̇ � Y�ϕ̇ � ∗ Y�γ� � 3.002� 

(Singular for γ=pi/2) 

Transformation matrices from analytical angular accelerations to physical angular accelerations 

in z-y’-x’’ triad: 

«� =  ϕ̇ , γ,  φ]  ¼> = k»�A «>½ � 3.003� 

¼>½ = k»�A «>¾ � k»�A «>½½ � 3.004� 
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k»�A =½
0 0 −γ½ Y�γ�0 −ϕ½ 1�ϕ̇ � −γ½ 1 �ϕ̇ � ∗ 1�γ� � ϕ½ Y �ϕ̇ � ∗ Y�γ�
0 −ϕ½ Y�ϕ̇ � −γ½ Y �ϕ̇ � ∗ 1�γ� � ϕ½ 1 �ϕ̇ � ∗ Y�γ� � 3.005� 

 

                

 

Figure 44 Quadrotor free-body diagram 

                                                         

3.1.2 UAV dynamics equations 

1° Newton Law for translational and angular degrees of freedom (d.o.f.s.) in Inertial frame: 

¢ [�Z = ��0 A> = �  #¾ , C,¾ ·¾ "�i = �j��0 = �F¼>½ L � ¼> � ��¼>� � 3.006�
The inertial frame, attached to the ground, was considered ideally inertial with negligible 

contribution of centrifugal force due to the earth rotation and negligible Coriolis effect since for 

the application the latitude variation of the drone will be negligible. Inertia matrix I is considered 

to be diagonal since the body reference frame is oriented along the 3 principal axes of inertia. 

Substituting angular velocities with YPR angular rates one obtains: 

¿ [i = �  #¾ , C,¾ ·¾ "�i = � k»�A«>¾ � � k»�A«>½½ � k»�A «>½ � F� k»�A «>½ L � 3.007�
To allow a manageable non-linear state space representation the gyroscopic term can be rewritten 

as: k»�A «>½ � F� k»�A «>½ L = ÀÁÂÃÄÅFÆ> , Æ>½ L«>½ � 3.008� 

With ÀÁÂÃÄÅFÆ>, Æ>½ L equal to: 
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⎣⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎡ �ÊË − ÊÌ� �Í̇ ÎÏÐ�Ñ� ÐÒÓ�Í�Ô − Ñ̇ ÎÏÐ�Í� ÐÒÓ�Ñ�Ô � Õ̇ ÎÏÐ�Í� ÐÒÓ�Í� ÐÒÓ�Ñ��                          − �ÊË − ÊÌ� ÖÑ̇ ÎÏÐ�Ñ�Ô − Õ̇ ÎÏÐ�Ñ� ÐÒÓ�Í�Ô ×

�ÊØ − ÊÌ� �Ñ̇ ÎÏÐ�Í� ÎÏÐ�Ñ�Ô � Í̇ ÐÒÓ�Í� ÐÒÓ�Ñ�Ô − Õ̇ ÎÏÐ�Í� ÎÏÐ�Ñ� ÐÒÓ�Í��                          − �ÊØ − ÊÌ� ÖÑ̇ ÐÒÓ�Ñ�Ô − Õ̇ ÐÒÓ�Í� ÐÒÓ�Ñ�Ô ×               − �ÊË − ÊÌ� ÖÍ̇ ÎÏÐ�Ñ�Ô � Õ̇ ÎÏÐ�Í� ÐÒÓ�Ñ�Ô ×
           − �ÊØ − ÊÌ� ÖÍ̇ ÐÒÓ�Ñ�Ô − Õ̇ ÎÏÐ�Í� ÎÏÐ�Ñ�Ô ×

                       �Í̇ ÎÏÐ�Í� �ÎÏÐ�Ñ��Ô − ÐÒÓ�Ñ�Ô�Ô − Õ̇ ÎÏÐ�Í�Ô ÎÏÐ�Ñ� ÐÒÓ�Ñ�� �ÊØ − ÊË�             �ÊØ − ÊË� ÖÍ̇ ÎÏÐ�Ñ� ÐÒÓ�Ñ� � Õ̇ ÎÏÐ�Í��ÎÏÐ�Ñ��Ô − ÐÒÓ�Ñ�Ô�Ô ×                         Ù                                            ⎦⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎤
  

And the model becomes     

¿ [i = �  #¾ , C,¾ ·¾ "�� k»�A�−1�i − �� k»�A�−1�;ÝCB�¦F«>, «>½ L � � k»�A�½ «>½ = «>¾ � 3.009� 

 

Forces applied to the system are in general the sum of the controlled forces, disturbances, and 

viscous air-body friction.   [�Z���� = [Y�Z0B��_�Z������������� � [¦V10_�Z��������� � [/_VZ������ � 3.010� 

where the control force is the thrust vector, always aligned with the z axis of body frame rotated 

in the Inertial frame. Here, for each rotor a static correlation KF is considered between the thrust 

force exerted and the rotors’ squared speeds.    [Y�Z0B��_�Z������������� = ��= [Y�Z0B��_=������������ = ��=  0 0 0ℎB\10"k � 3.011� 

  0ℎB\10 = P� �ß1 2 � ß22 � ß32 � ß42� � 3.012� 

The disturbances are in general the sum of the deterministic gravity force and other aleatory 

disturbances (e.g wind) in Inertial coordinates. The last term expresses the eventual viscous air 

friction with a diagonal uncoupled matrix. 

 [¦V10_�Z��������� = �	 0 0 1"k � /V10�Z  ���������                        [/_VZ������ =  à P/# 00 P/C    00     0     0 P/·á #�½ = P/ #�½ � 3.013� 

The torque can be expressed as the sum of the control torques, eventual disturbance torques and 

the gyroscopic torque in x_body and y_body frame due to the rotors and propellers, all expressed 

in the body frame: �=���� = �Y�Z0B��_=������������� � �¦V10_=��������� � �	CB��_=������������ � 3.014� 

�Y�Z0B��_=������������� = P� �ß32 − ß12��P� �ß22 − ß42��Pâ �ß1 2 − ß22 � ß32 − ß42� � 3.015� 

where the static correlation between propeller torques and propelled squared speeds is expressed 

by KQ and � is the distance between the center of gravity of the rotors and the UAV center of 

gravity. 

�	CB��_=������������ = �ãB· − ãBC� ¼C�ß1 − ß2 � ß3 − ß4 ��ãB# − ãB·� ¼#�ß1 − ß2 � ß3 − ß4 �0 � 3.016� 

Jrx, Jry and Jrz are the time-averaged inertias of the whole rotor/propeller block seen by the axis 

x,y,z in the body frame. Since their difference is supposed to be negligible this torque component 

is considered as a simple disturbance. 
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3.1.3 Actuator’s dynamics 
Excluding the motor/propeller dynamics (supposed to have a characteristic frequency larger than 

those of the mechanical plant) remains to be defined the transformation between \äªÃå������ and the 

four propeller velocities. Rewriting the equations of control input and torques in matrix form one 

obtains: 

 

ææ = ç P� P�−P� � 0     P� P�P� � 0       0 P� �      Pâ −Pâ    0 −P� �Pâ −Pâ è � 3.017� 

ææ
⎣⎢⎢
⎢⎡ß1 2ß2 2ß3 2ß4 2 ⎦⎥⎥

⎥⎤ = ç0ℎB\10r#rCr· è = \Y0B�������            
⎣⎢⎢
⎢⎡ß1 2ß2 2ß3 2ß4 2 ⎦⎥⎥

⎥⎤ = ææ−8 \Y0B������� � 3.018� 

éV0ℎ det�ææ� = 8 Pâ P�í�
 ≠ 0         
So, the matrix is always invertible, but a low/up saturation is inserted to take into account the 

nonlinear behavior of the actuators. 

 

Figure 45 Rotor velocities command generation block scheme 

In between command input desired rotors speed and actual rotor speed a simplified model of the 

motor is added. The motor chosen is a brushless P80 T-Motor with characteristics reported below. 

 

Figure 46 T-motor technical datasheet P80 

The manufacturer specified a maximum thrust of 17 kg and considering 4 rotors the maximum 

thrust is 68 kg, enough higher than the maximum takeoff weight to be ensured of 25 kg (15 kg 

structure and a maximum of 10 kg payload PPP). Generally, an electronic controlled brushless 

motor consists of an applied single phase DC voltage, a DC/AC inverter that provides 120° 

delayed three phase square wave voltages to the windings of the stator and a permanent magnet 

rotor. Three phase switching ensures orthogonality between the rotor magnetic field and the stator 

magnetic field. Finally, an Electronic Speed Controller (ESC) acts as speed/torque controller 

variating the average voltage applied to the windings though PWM signal, increasing the power 
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when a load is applied. In the brushless only two phases have simultaneously non-zero voltage 

applied, and the third is often used to sense the back electromotive voltage to derive the rotor 

velocity. However, for modeling purposes, a single phase only and the Pulse width modulation of 

the applied voltage could be considered, remember to scale the applied voltage by 
√íí  to extract 

the specific phase voltage. Equations governing the simplified brushless motor in their general 

form includes the internal friction between rotor and stator, rotor inertia, generated torque and 

load torque. For the electrical domain a Kirchhoff equilibrium equation is performed. 

¢�¼½ � ï¼ = r� − r���/ð� = j /V/0 � �V � P�¼ � 3.019� 

where ï is the viscous friction coefficient in . ∙ � ∙ B�/O�1, � is the rotor inertia moment in P	 ∙�
, j the inductance of the windings in �, R the resistance in ß and P� the time averaged 

electromotive force constant in ð ∙ B�/O�1. T. The traction torque r� = P4  V , where P4  is 

expressed in . ∙ � ∙ £O� and can be posed numerically equal to P� for an ideal motor. The 

datasheet reports the idle current when is applied an equivalent ð3=10 V in steady state conditions 

with no load. Furthermore, the manufacturer provides the “KV” constant equal to 100 rpm/V that 

relates the rotor velocity and the applied voltage in steady state condition with no load. Therefore, 

supposing the parameters independent by motor state and temperature and neglecting the 

transient, results: 

� ï¼ = P0 V0ð� = �V0 � P�¼¼ð� = Pð ∙ 2ò 60�   B�/ 1−1 ð−1 � 3.020� 

So that  

⎩⎪⎨
⎪⎧ ï = P0 V0ð� ∙ Pð ∙ 2ò 60�P� = ð� − �V0ð� ∙ Pð ∙ 2ò 60�

� 3.021� 

Substituting all the values an estimate of ï, P� and P4 is obtained: 

� ï = 0,0013        . ∙ � ∙ B�/−11 P� = 0,0948               ð ∙ B�/−11P0 = 0,0948               . ∙ � ∙ £−1 � 3.022� 

These values will be considered constant for simplicity. The inductance value is not reported by 

the manufacturer, so for simplicity, the input power will be considered coincident with the active 

input power since for a detailed characterization of the phase factor an experimentation with a 

power analyzer is required [22]. Furthermore, the electric time constant is often several order of 

magnitude smaller than the mechanical time constant of the rotor, so also in the dynamics the 

inductive effect can be neglect. Are also neglected the power leakages due to the MOSFETs of 

the ESC, by the way their efficiency is often higher than 90% [23]. 

� AVZ =  ð� ∙  VA�\0 =  r� ∙ ¼ � 3.023� 

Starting from these definitions a model of the motor efficiency in time domain is obtained. It will 

be important to justify some control strategies with respect to other, considering that the motor is 
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prone to have lower efficiency in transient phases. In condition of no load, and neglecting the 

inductance, the development the above system of equations in Laplace domain is: 

�1�¼ � ï¼ = P0 Vð� = �V � P�¼ � 3.024� 

where ð3 is the medium PWM voltage imposed and can be seen as a step function ð3 = ð3,�/1. 

Follows that: 

⎩⎪⎪
⎨
⎪⎪⎧V�1� = ð�,0� 1 � ï ��

1 Ö1 � ï � P�2 ��� ×
¼�1� = V�1�1� �  ï

� 3.025� 

And in time domain results: 

⎩⎪
⎪⎪
⎨
⎪⎪
⎪⎧V�0� = ð�,0� �−0óï�P�2 ��� ô � ï ð�,0ï� � P�2 ⎝⎜

⎛1 − �−0óï�P�2 ��� ô

⎠⎟
⎞

¼�0� = P� ð�,0ï� � P�2 ⎝⎜
⎛1 − �−0óï�P�2 ��� ô

⎠⎟
⎞

� 3.026� 

Considering that r� = P4  V = P� V  the time variant efficiency results: 

�[[�0� = A�\0AVZ = r� ∙ ¼ð�,0 ∙ V = P� ∙ V ∙ ¼ð�,0 ∙ V = P�2ï� � P�2 ⎝⎜
⎛1 − �−0óï�P�2 ��� ô

⎠⎟
⎞ � 3.027� 

 

Figure 47 motor efficiency for different viscous coefficient, R=50 mOhms 

The time constant of the motor is about 260 ms, but with ESC controller inserted in the dynamics 

it is further reduced at the order of milliseconds. Was chosen G28”x9,2” propellers produced by 
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T-Motor with a reference thrust level of about 5 Kg (with 50-60 % of throttle and 12S voltage) 

for which was available a table containing the current, rpm and thrust obtained in function of the 

P80 motor throttle that spaces between 50 and 100%. Considering a quadratic relation between 

the propeller velocity and thrust produced and considering this relation independent from the 

temperature and pressure condition, an estimate of this coefficient is extracted by experimental 

data: r� = Pâ ∙ ¼2 � 3.028� kℎB\10 = P� ∙ ¼2 � 3.029� 

Data was collected with 17 °C ambient temperature, air density û = 1,225 Rü�f , and 52 °C on 

recorded on the external motor surface: 

⎩⎪⎨
⎪⎧ V = �6   7.9    9.8   12   17.2   23.3   35�  £1. 0.  r� = P0 V  0ℎ�Z r� = �0.56    0.75    0.93    1.15    1.63    2.21    3.29�  .�kℎB\10 = �31   39   45   51   66   82  106�  .¼ = �138  153  165  188  199  221  253� B�//1

� 3.030� 

Results a KQ/KF vector for the seven data point: KQ = �0.2980    0.3189    0.3394    0.3235    0.4097    0.4505    0.5128� ∙ 10−4 = Y � 3.031� P� = �0.0017    0.0017    0.0017    0.0014    0.0017    0.0017    0.0017� = / � 3.032� 

For the motor models the fitting curves were used to recreate closely realistic conditions, so that  r� = Pâ�¼� ∙ ¼2 � 3.033� kℎB\10 = P��¼� ∙ ¼2 � 3.034� 

While, in the actuation matrix ææ their mean value is inserted: KQ = 3.7898 ∙ 10−5     P� = 0,0016 � 3.035� 

Is worth noticed that the rotors velocities under propulsion load condition are always lower than 

those one obtainable in steady state condition and related to the voltage by the KV constant: ¼ð�,0 < Pð ∙ 2ò 60� = P� ï� � P�2 � 3.036� 

For this reason, the ESC act as a speed controller reading the rotor velocity through back-EMF 

and increases the applied voltage accordingly. In the model in the speed feedback control loop 

was inserted a transfer function that ensures a rising time of few milliseconds. 
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Figure 48 Curve fitting of the 7 datasheet points 

Rotor and propeller inertia was modelled as a combination of a cylinder with height ℎ¡ and radius B¡ and a slab of length � and width � (the propeller), considering the measures reported by the 

manufacturer drawings.  

�B�0�B,· = 0,5 ∙ �B ∙ BB2 � 112 ∙ ��B������B ∙ F�2 � �2L = 0,0472 D	�2 � 3.037� 

With                                      
⎩⎪⎨
⎪⎧�¡ = 0,6 D	            ��0�B ��11, �#Y�\/VZ	 Y�=��1��¡ �����¡ = 0,082 D	        �B������B Y�\��� ��11B¡ = 0,045 �� = 0,48 �   � = 0,14 �  

 

 

Figure 49 P80 motor 
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Finally, the battery used was the same batteries used in the DJI matrix 600 [24], namely TB47S 

battery with 22,2 V output, a capacity of 7500 mAh, a weight of 595 g. Are used in a configuration 

of three parallel of 2 batteries in series, i.e., with a 44,4 V output voltage and a total capacity of 

22500 mAh. The resultant total weight is of 3,57 kg, that is the 23,8 % of the structural weight of 

the drone. The ESC controller a reference velocity input from the MCU controller, and after 

having computed the error with the actual motor velocity produces a control voltage PWM with 

0-5V scale that is amplified by the internal MOSFETs to the battery output voltage of 44,4 V. 

The final Simulink model was the following: 

 

Figure 50 Single motor dynamic model and control, with propeller torque applied, SIMULINK model 

At the above scheme (figure 50) two saturation blocks are applied. The first one limits the 

maximum ð3,� to +/- 44,4 V (assuming ideally that the battery voltage remains constant with 

charge consumption) and the maximum current peaks to 3 times the maximum nominal 

continuous current of the ESC-motor of 60 A, so 180 Amperes. 180 Amperes can be maintained 

for few seconds, then the Esc or the motor could be damaged. Using the maximum continuous 

current can be also imposed the maximum roll and pitch angle over which the thrust vertical 

component of the propulsion system cannot compensate the gravity force. To the maximum 

current corresponds a maximum torque and a maximum rotor speed: ��,�©� = P0 ∙ V��# = �,��� �� � 3.038� 

	�©� = 
r�,��# Pâ� = ��� Ã©
/� � 3.039� 

9�Ã��ª�©�,ªÄª©å = 4 ∙ P� ∙ ¼��#2 = ��� � � 3.040� 

Considering the rotation matrix between body frame and inertial body frame the vertical 

component of the maximum thrust in the inertial z axis is: 

kℎB\10��# ∙ Y�ϕ̇ � ∙ Y�γ� � 3.041� 

And in the most conservative situation, when the payload is maximum, it must satisfy: kℎB\10��# ∙ Y�ϕ � ∙ Y�γ� ≥ 15 ∙ 9,81 . = 245,25 . = �é � 3.042� 

where MW is the maximum weight. Results: 

⎩⎨
⎧ϕ < ± acos MWThrustmax ∙  Y�γ�γ < ± acos MWThrustmax ∙  Y�ϕ� � 3.043� 

If one of the two angle is zero, then the condition on the maximum tilt angle is: 



 

58 

 

�Í Ï� Õ��©� = �� ° � 3.044�
Well distant from the linear control variables contour. However, this maximum angle is further 

decreased if are considered also the maximum thrust that the propellers can exert dealing with 

deeper fluid dynamic analysis. 

3.1.4 State space model 

The state chosen is the pose and its derivative, so of dimension 12 

$ = �#   C   ·   ϕ̇   γ   φ   #½   C½     ·½   ϕ½     γ½    φ½  � � 3.045� 

£ = �  Ù���  Â ���Ù���   !
 ; Ù���   Ù��� �" 9#$%�−8�ÀÁÂÃÄÅFÆ> , Æ>½ L � " 9#$% ½ �& � 3.046� 

i�Y0 = ⎣⎢⎢
⎡  Ù��' $"(�: ,���  ;     Ù��'                 Ù��8           ;          �" 9#$%�−8⎦⎥⎥

⎤ � 3.047� 

i/V10 = ç  Ù���  Â ����   ;    Ù���                 Ù���           ;          �" 9#$%�−8è � 3.048� 

The state space representation is: $½ = )$ � *©äª \äªÃå������ � *
+�ª \
+�ª������� =  [�$,  \äªÃå������� � 3.049� 

With: 

\äªÃå������ =  ,[Y�Z0B��=�����������,  ,  �Y�Z0B��=������������"k � 3.050� 

\
+�ª������� =  [¦V10_�Z���������  ,  �¦V10_=��������� � �	CB��_=������������"k � 3.051� 

3.2 Control architecture 
From now the UAV will be considered inspired to the Matrix 600 DJI used in experimental phases 

by our research group to make spray analysis in a vineyard situated at the Agronomical center of 

the Turin University. Starting from the manufacturer datasheet several component choices will be 

inspired by it in the next sessions. Concerning about the mechanical quantities and dimensions 

the following one will be used: 

⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧ � = 25 P	   �0�0�� ��11��Z� ��C���/ = 15 P	 = �Y�Z0B�� =�/C � �1�B�C 1C10�� � 4 ∙ �1VZ	�� �B� � �B�0�B1���C���/ = 10 P	 �10 j �[ AAA��1�B�C 1C10�� = 3 D	�Y�Z0B�� =�/C = 6 P	  �VZY�\/VZ	 =�00�BC ��YD��1VZ	�� �B� = 1,5 P	 �B�0�B1 = 4 ∗ 0,6 P	 = 2,4 P	�1�B�C 1C10�� = 0,6 P	�B�0�B,· = 0,0472 P	�2� = 0,65 ���#V�\� ���� B�0� = 2,4 j/�VZℎ = 0,3  �=�/C ℎ�V	0ℎ�

� 3.052�

Motors and propellers masses and dimension derive from the actuator dynamics choices in the 
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next session. Starting from these masses and considering the simplified geometry of the 

quadrotors with 90° angular distance between each arm, the other useful quantities are computed. 

Approximating the UAV shape as 4 cylindric arms connected with the cylindric rotor at one side 

and with the cylindric central body at the other side, the first approximation of the 3 components 

of the diagonal inertia matrix, where the payload is not considered, is: 

¢�# = 1,6068  P	�2�C = 1,6068  P	�2�· = 2,9984  P	�2 � 3.053� 

where �# and �C was computed approximating the inertia moment of the motors equals in each 

axis. 

�#, �C = 14 �Y�Z0B�� =�/C - �2.2 � 112 �Y�Z0B�� =�/C - �4.2 � 2�B�0�B,· � 2��B�0�B,· � �B�0�B ∙ �2 �
� 112 �Y�Z0B�� =�/C - �2.2 �  �1VZ	�� �B� -3�4.2� � 3.054� 

��· = 0,5�Y�Z0B�� =�/C  - �2.2  � 
� ��B�0�B,· � �B�0�B ∙ �2  � 112 �1VZ	�� �B� - �2.2 � �1VZ	�� �B� -3�4.2� ∙ 4 � 3.055� 

Here the central body cylinder is considered to have radius equals the half of the rotor-CoG 

distance �. 
 

 

Figure 51 UAV cylindrical bodies approximation 

Inertias computed including the tank payload of 10 L, supposing it as a rigid body totally included 

in the central body, are bigger of about the 14% than the inertia computed with no load, while the 

mass variation is of 40% of the initial weight. Since the maximum mass variation, after spraying, 

is slightly bigger than the inertia variation and the non-full tank inertia estimation cannot be 

reduced to a cylindrical body, because of the oscillating behavior of the contained liquid, in this 
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thesis the UAV will be considered with constant inertia and variable mass. Furthermore, these 

inertia values, computed before neglecting the payload mass, are the minimum that the UAV 

should encounter. From a system stability point of view under estimations generate a bigger B 

matrix in the linearized system, at which follows a smaller control gain matrix, so a slower 

response. Therefore, since in our application stability of the UAV is preferable to its agility, an 

underestimation of the inertia matrix is better than an overestimation. Various control strategies 

have been applied to the quadrotor. In literature, as the best as I know, nonlinear controls, such as 

sliding mode, appears to have reasonable robustness and wider operativity ranges than linear 

techniques because of the last one keeps reliability only around some equilibrium points. 

However, for non-aggressive maneuvers and/or without severe environmental turbulences linear 

techniques have shown reasonable results, considering the easier mathematical background 

required to theorize and implement the control algorithm. Some studies have compared PID 

control and LQR control [25] , other studies have implemented more sophisticated modern linear 

techniques to ensure stability margin and robustness of the control, such has Hinf control. In 

general, excluding robustness and optimization problems, differences and equivalences between 

linear control strategies are mainly dependent on the gain tuning techniques. In this thesis a 

modified LQR control will be implemented.  

3.2.1 Linearized model, LQR with yaw gain-scheduling 

To perform a linear control the UAV model is linearized around the hovering operating locus. 

The motor model was neglected by the control construction since its bandwidth can be considered 

several orders of magnitude larger than the mechanical one. That is posing \äªÃå������ / =  �	 0 0 0 "< 

having only the gravity disturbance \
0�ª������ =  0 0 − �	 0 0 0"< . Imposing the stationary 

condition: [F$,  \äªÃå������ / L = 0 � 3.056� 

According to the state space definition above, immediately results: 

¢    #½   C½     ·½   ϕ½     γ½    φ"½ = 01$6  1�*
+�ª  0 0 − �	 0 0 0"k � *©äª �	 0 0 0 "k  = 012$1 � 3.057� 

Substituting the matrices of the second equations and leaving only the non-null values implies 

that the vertical component of the thrust, in inertial frame, must equate the gravity force: $"(�: ,�� �	 =  0 0 − �	 "k � 3.058� 

i.e. 

¢�cos�ϕ� cos�φ� sin�γ � � sin�ϕ� sin�φ�� �	 = 0�cos�ϕ� sin�φ� sin�γ � − sin�ϕ� cos�φ���	 = 0cos�ϕ� cos�γ� �	 = �	 � 3.059� 

And the solution is: ϕ, γ = 0  ;   ∀φ � 3.060� 

A first clear effect of the linearization is the complete neglection of the gyroscopic torques, 

because in hovering condition the angle rates are null. This means that  

This leads to the operating surface: 

$1 = �#   C   ·   0̇   0   φ   0   0   0   0    0    0� � 3.061�
This means that the UAV keeps its hovering equilibrium for each value of x,y,z, and yaw. 
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Anyway, in general the 1° order Taylor series expansion of the Nonlinear system depends on all 

the states equilibrium points: 

$½ = [�$,  \äªÃå�������~[�$,1 \äªÃå������ / � � �[�$3#4 ,\5 F$ − $1L � �[�\3#4 ,\5 �\ − \5� � 3.062�
With: �[�$6#4 ,\5 = £7�Y       �[�\6#4 ,\5 = i�Y07�Y � 3.063� 

£7�Y =

⎣⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎡0 0 0 0 0 0 1 0 0 0 0 00 0 0 0 0 0 0 1 0 0 0 00 0 0 0 0 0 0 0 1 0 0 00 0 0 0 0 0 0 0 0 1 0 00 0 0 0 0 0 0 0 0 0 1 00 0 0 0 0 0 0 0 0 0 0 10 0 0 	  sin�φ� 	  cos�φ� 0 0 0 0 0 0 00 0 0 −	  cos�φ� 	  sin�φ� 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 0 0⎦⎥

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎤

� 3.064� 

i�Y07�Y =

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢
⎡ 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 01� 0 0 0

0 1Ix 0 0
0 0 1Iy 0
0 0 0 1Iz⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥
⎤

=

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎡ 0 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00 0 0 00.04 0 0 00 0.6223 0 00 0 0.6223 00 0 0 0.3335⎦⎥

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎤

� 3.065� 

The controllability property of a linear system is the ability to directly, or indirectly, impact the 

time evolution of the whole set of states. For large order systems this can be check easily 

computing the controllability matrix: r = ;i £i £2i ⋯£Z−1i = � 3.066� 

where “n” is the state dimension. The system is controllable if: B�ZD�r� = Z = 12 � 3.067� 

In this case the above equivalence is valid for all the φ values. The controllability of the linearized 

system ensures a small-time local controllability of the non-linear system around the equilibrium 

points, namely a linear control around them is possible [26]. The important result obtained here 

is the independence of the system controllability by the cartesian position and the yaw angle of 

the drone. The linearized system can be seen equivalently as the dynamics of the UAV seen by a 

fixed frame rotating with the same attitude of the body, where the x and y accelerations are 

proportional respectively to pitch and roll. Furthermore, in the linearized system angular rates 



 

62 

 

coupling, due to the gyroscopic effect, is completely neglected. Turns out, also, that the jacobians 

\ depend on the position x,y,z ,but still depends on the yaw. Since is kept the overall hovering 

equilibrium for each yaw value, and we need to control the heading of the UAV in a wide range, 

the optimal solution is to use a real time Gain Scheduling in order to adjust (i.e. rotated around z) 

the control gain matrix to follow the actual yaw value[27]. Full state feedback is applied to an 

augmented system containing also the tracking errors of position and yaw. Can be shown that the 

UAV dynamic model obeys to the property of differential flatness of x,y,z,> in the studied 

equilibrium point, that is the whole UAV could be theoretically controlled only controlling x,y,z,> 

[28]. Full state feedback control is, anyway, a reasonable choice because creates redundancy that 

absorbs eventual imprecisions in the various sensors. Furthermore x,y,z,> sensing is often the less 

accurate, so a control based exclusive on their tracking error is not suitable. Considering as output 

x,y,z,> the augmented system is written as: 

� = � Â ��� Ù��� Ù8�� 1 ,  Ù��� � � 3.068� 

)©�? = �)@©ä   Ù8Ô�' −� Ù'�' � � 3.069� 

*©�? = �*_©äª@©äÙ'�' � � 3.070� 

$�\	 = �#   C   ·   ϕ̇   γ   φ   #½   C½     ·½   ϕ½     γ½    φ½    A#  AC  A·  Aφ� � 3.071� 

A� = B;�#B − #�   FCB − CL   �·B − ·�  �φB − φ�= /0 � 3.072� 

Final gain matrix !©�? is chosen in order to place the wanted eigenvalues to the matrix:  )©�? − *©�?!©�?�φ = 0�" � 3.073� 

Gain scheduling of the control matrix will consist in the yaw (counterclockwise) rotation of the 

submatrices involved in the control of Cx and Cy inputs given the sensing of  #, C,  #½ , C½ ,  AK ,  Au   

where the matrix to be rotated is that one computed for zero yaw rotation. That is:  

P3¤ü�φ� = ç D11 D12−1�φ�D22 Y�φ�D22     D13 D14D23 D24    D15 D16D25 D26    D17 D18−1�φ�D28  Y�φ�D28      D19 D110D29 D210    D111 D112D211 D212    D113 D114 − 1�φ�D214 Y�φ�D214     D115 D116 D215 D216Y�φ�D31    1�φ�D31D41 D42      D33  D34D43 D44   D35 D36D45 D46      Y�φ�D37   1�φ�D37D47 D48      D39 D310D49 D410    D311 D312D411 D412       Y�φ�D313    1�φ�D313D413 D414     D315 D316D415 D416 è � 3.017� 

where DV7 are the element of the zero yaw Gain matrix P3¤ü�0�. P3¤ü�0� matrix is computed 

minimizing the cost function, that leads to solve the static Ricatti equation in continuous time: 

\∗ = arg �VZ\ B �$�\	k  â $�\	 �  \k� \�0
0 � 3.074� 

The controller is in discrete time, so the above optimization problem can be seen equivalently in 

discrete time: 

\∗ = arg �VZ\ � �$�\	k �0� â $�\	�0� �  \�0�k� \�0��0=D∙k1
0 � 3.075� 

\∗�0� = − P�\	�φ = 0� $�\	�0� � 3.076� 

where k is number of samples when the sampling time is k5. P3¤ü is: 

P�\	 = �−1 ∙ i�\	k ∙ A � 3.077� 

And P the solution of the Ricatti equation in discrete time: 
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A = £�\	k ∙ A ∙ £�\	 − F£�\	k ∙ A ∙ i�\	LF� � i�\	k ∙ A ∙ i�\	L−1 ∙ i�\	k ∙ A ∙ £�\	 � â� 3.078� 

Where the state space matrices are considered in their discretized fashion, considering the first 

order approximation of the Taylor expansion with respect to the time exponential they are: 

¿£�\	 → ��/�Z0V0C12�12 � k1� ∙ £�\	i�\	 → k1 ∙ i�\	 � 3.079� 

3.2.2 Analysis of the feedback control loop 

The model of UAV and motors was then inserted in the closed loop with LQR gain matrices 

divided in PK and PD, respectively the output tracking error and state gain matrices.  

¿ P#�φ� = P�\	�φ��1: 4 , 1: 12�  PA�φ� =  P�\	�φ��1: 4, 13: 16� � 3.080� 

 

Figure 52 continuous time control loop block scheme 

Since the cartesian position equilibrium point does not affect the linearized matrices values, and 

the yaw feeds the gain matrices, but does not influence its own dynamics was chosen to put the 

equilibrium state vector equaling zero, so that: F$ − $1L = $      ;      F» − »1L = » � 3.081� 

The control output produced is the command input variation, indeed the constant equilibrium 

control input is added \äªÃå������ / =  �	 0 0 0 "<, although, in order to avoid too fast rotors 

acceleration, the hovering thrust reference passes from zero to �	 smoothly, once requested. In 

order to evaluate the feedback control loop in Laplace domain the output control and the stabilized 

plant was converted into transfer function matrices, neglecting actuator dynamics, in the 

following way: 

¢ r�1� =  PA�0� 1�A�1� = rF�C�12�12 ∙ 1 − £7�Y � i�Y07�YP#�0�L−1i�Y07�Y � 3.082� 

And the loop function is: j�1� = A�1�r�1� � 3.083� 

where: 



 

64 

 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ j11 = # �#B�[�� = −7,7981s �s2  �  3,814s �  4,131� �s2  �  1,813s �  4,916�j22 = C �CB�[�� =  −9.6125s �s2  �  3,938s �  4,182� �s2  �  2,126s �  5,989� 

      j33 =  · �·B�[�� =     −0,072061s �s2  �  0,8334s �  0,3468�j44 = φ �φB�[�� =    −0,54627s �s2  �  1,636s �  1,341�
� 3.084� 

The loop function is a diagonal matrix. j�E is the feedforward transfer function between the j-th 

output reference and the i-th output. Exploiting the Nyquist Theorem j�1� can be used to evaluate 

the stability of the whole feedback loop transfer function, since all the Input-Output relationships 

in the system have the common denominator: �C�4�4/��C�4�4 � j�1�� � 3.085� 

In this phase, the research of Q and R matrices consisted of leaving � = �C�²�² ∙ 110 while â 

was differentially tuned in its own elements in order to reach a good enough time domain response 

and a suitable gain and phase margin in frequency domain. After a trial and error resulted:  â = /V�	�10,  10 ,  10 ,  1 ,  1 ,  10 ,  400 , 760 , 120 ,  0.1 ,  0.1 ,  0.1 ,  190 ,  290 ,  360 ,  300� � 3.086� � = /V�	�110 ,  110 ,  110 ,  110� � 3.087� 

Note: Although the translational control (in #F��¡4�3� and CF��¡4�3� ) should be theoretically identical, is not the case for our application because the 

geometry of the vineyard imposes more fast and aggressive tracking along the rows than in the orthogonal direction. Conventionally will be always 

considered x aligned with the rows and y orthogonal to them. For those reasons the elements of the Q matrix associated with #F��¡4�3� , CF��¡4�3� and 

their integral or derivatives are in general different. 

 

Figure 53 Bode diagram of L(s) 

Gain margin is defined as the ratio of the unity and the loop transfer function magnitude at the 

frequency where the phase is the crossover phase of 180°. Dually the phase margin is defined as 

the difference between the phase at the frequency where the magnitude is 1 and -180°. In the table 

below are summarized the two quantities and the crossover frequency ¼� for which the 

magnitude equals 1: 
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Table 13 Loop functions characteristics 

 G88 GÔÔ G�� G'' 

Phase margin 
[°] 

240 240 242 240 

Gain Margin 
[dB] 

41 41 / / 

	ä [Hz] 0,06 0,06 0,02 0,06 

Always supposing a linear system, form the table can be noticed that the z position and the yaw 

don’t have a computable gain margin because their phases never reach -180°. This guarantees the 

stability of z and yaw whatever are the control constant gain values. Another important transfer 

function to evaluate is the whole feedback loop transfer function which correlates the reference 

and the output: ��1� = j�1�/��C�4�4 � j�1�� � 3.088� 

Significative frequencies of this transfer function could be a first estimate of the loop bandwidth, 

useful to give an idea of the digital control sampling time order of magnitude.  

 

Figure 54 F(s) bode diagram 

For each one of the outputs signals the cut-off frequency is in the range of 3-30 Hz, and this can 

be seen as the bandwidth of the whole continuous time feedback control loop, namely the 

minimum frequency the control system must be able to operate. The control was also tested in 4 

principal movements: 

• Latitudinal translation along x 

• Longitudinal translation along y 

• Vertical take off 

• Yawing 

These 4 principal operations are tested in a decoupled way, namely ensuring that when the pitch 

angle is increased to move latitudinally roll, yaw, roll rate and yaw rate are null and the same 

applies for roll and yaw tests. Step input is the most aggressive reference input since at the step 



 

66 

 

starting time the derivative is infinite, and this traduces in an infinite velocity reference. For this 

reason, the time response of the four output has large overshoots. However, in the path planning 

the variables indirectly controlled are the velocity of the outputs. They will be controlled changing 

the slope of the reference time history for each controlled variable and, at that point, overshoot 

becomes less evident or absent. In the z response can be seen a larger time delay between the step 

activation (at time zero) and the first output variation (about 7 seconds) than other 3 outputs. This 

happens because in the model was inserted a realistic UAV-ground-gravity interaction that causes 

the drone to be subjected to ground reaction and gravity when z=0, and only gravity when takes 

off, so that the takeoff starts when the rotors reach a velocity that produce enough thrust to lift the 

body (this happens not immediately because of the limitation on the equilibrium command input 

discussed before). 

 

 

Figure 55 Unitary step responses 

3.2.3 Rows-following simulation 

Controller was tested on about 60 seconds path planning in which a series of distances, trajectories 

and velocities tries to simulate the future operations of the drone in this specific application. Was 

simulated a 20 meters long vineyard with 2 meters in between each row. The UAV take off and 

reach 5 meters altitude, while starts to follow the row with 2 m/s and zero yaw. Once overflights 

the whole row turns with a 1-meter radius and simultaneously inverts the heading reaching 180° 

of yaw. Once the half of each row is reached the UAV stopped, keeps hovering condition for 2 

seconds and then restarts. The same is repeated 3 times in a time window of about 56 second. The 

same path planning will be used in the rest of this chapter. 
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Figure 56 State tracking and command inputs in time 

 

Figure 57 State tracking in space 

Two error sources are present: 

• The single integration action does not allow a zero steady state error when the input 

reference is more than linear, so a constant error due to a delay between ramp inputs and 

actual state is always present. However, this can be corrected simply anticipating the 

reference of a complementary amount of time if necessary. 

• In the turning phase the x deceleration is about 5 m/s2 against a 2 m/s2 acceleration in y. 

This asymmetry causes the not perfect tracking of the semicircle but is only due to the 

aggressive deceleration imposed in x direction, thoughted to test the control. In the real 

application there will be no reasons to adopt such high accelerations. 

The sampling time of the controller was 1 millisecond. However, a control parameter finer tuning 

will be done once the state estimation block and other nonlinearities will be introduced. In the rest 
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of the chapter will be supposed that the whole mass of the drone does not change with time, then 

the problem of the payload tank emptying will be discussed. 

3.3 State estimation 
State estimation in aerial vehicles is crucial because some states are not directly measurable, or 

their direct measure has a too low Signal to Noise Ratio (SNR). Linear state observer, such as the 

Luenberger observer or the Kalman Filter can be extended to the nonlinear dynamics of aerial 

vehicles or nonlinear techniques as the sliding mode, particle filter or Unscendent Kalman FIlter 

could be adopted if there are too severe nonlinearities. Linear techniques are well known, 

computational lighter and of easier implementation, however if their convergence to the actual 

state is mathematical guaranteed for linear systems this is not true for nonlinear systems. The 

commonly used sensors equipment in aerospace industry includes an inertial unit, composed by 

an accelerometer and a gyroscope, a magnetometer and a RTK-GPS or a ground triangulation 

system, such as Ultra-Wide Band (UWB). With these sensors the quantities directly measured are 

the body frame accelerations with the accelerometer, the body frame twist with the gyroscope, 

the inertial attitude with the magnetometer and the inertial position with GPS or other equivalent 

solutions. However, the attitude measured by a commercial magnetometer is affected by severe 

electromagnetic interference coming from the environment and the on-board electronic itself and 

the position accuracy ensured by common GPS systems is in the order of meters (10-30 cm if is 

added an RTK system) and the GPs signal reliability depends on the climatic conditions. These 

factors make unappropriated the solely use of magnetometer and GPs for autonomous guidance. 

On the other hand accelerometer and gyroscope gives a short-term accurate measure of velocity, 

position and attitude simply integrating acceleration and angle rates sensed (Dead Reckoning), 

but this method suffer the drift of the estimated quantities due to biases and noises in the original 

signals[29]. Ground positioning systems such as the UWB have demonstrated accuracy in the 

order of centimeters. It exploits nanosecond time window radiofrequency pulses sent by ground 

fixed stations and an on-board receiver that receives these signals. With a ToF (time of flight) 

technique the system retrieves the receiver position  [30]. UWB technology seems to overcome 

some of the main problems linked to the GPS system (signal leakage, low accuracy range ecc..), 

but will be not covered in this thesis. 

3.3.1 State observer applied to the sensor models: AHRS approach 

Classical state observers use the dynamic model of the controlled system to give an estimate of 

the actual unmeasurable states. If the system is linear, it can be written in state space form  

�#½ = £# � i\C = r# � 3.089� 

Exploiting this model is designed an observer dynamic that emulates the original system taking 

in input the (known) system command input with the same B matrix and the difference between 

the measured and the estimate output, multiplied by a tunable gain: 

�#½7 = £#- � i\ − j�C − CH� = £#- � i\ � j�r# − r#-�CH = r#- � 3.090� 

So that the estimation error becomes #½ − #½7 = �£ − jr��#½ − #½7� � 3.091� 

If the system is observable the L matrix can be computed through pole placement (Luenberger 

observer) or as result of a cost function identical to that one used for the LQR, but where Q and 

R are the covariance matrices of noise applied to the output measures y and to the input measures 

u respectively (Kalman Filter, Linear Quadratic Gaussian). However, in our case, there are many 

problems to apply these strategies: 
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• The UAV model is not linear. Extended Luenberger observer or Extended Kalman filter 

could circumvent the problem computing the L gain in real time for all the equilibrium 

points, but the system is in general not observable for all the equilibrium points. 

• Disturbances and model uncertainties could lead to a failure of this approach. 

• Measuring the command input u means to evaluate in real time thrusts of each rotor 

trusting only on their experimental relation with propellers velocities. 

To overcome the problem the same approach can, however, be applied to the sensors dynamical 

models and it leads to the Data Fusion solved by of the AHRS (attitude-heading reference 

systems) to estimate the attitude of the drone and the fusion of INS (inertial navigation system) 

and GPS to estimate the cartesian coordinates. In this chapter is studied the AHRS only, since the 

IMU+GPS data fusion follows the same principal logics[29]. 

3.3.2 Sensors models  

Since the aim is the estimation of the attitude the only dynamics is the relation between the body 

frame twist à¼K¼u¼Iá directly sensed by the gyroscope and the Euler angles rates �ϕ½γ½  φ½ &. The kinematic 

relationship is expressed by the inverse of the transformation matrix  9#$%�«�O8.  At the twist 

must be subtracted the, supposed, white gaussian noise vector and the constant bias vector of the 

sensor. As output are selected the body frame acceleration and magnetic field components 

computed rotating the inertial gravity vector and the inertial magnetic field components through $"(9 �«�. Also, to them must be added a vector that includes white gaussian noises and biases of 

the accelerometer and magnetometer signals. Is worth to notice that the outputs of this dynamical 

system are the body frame accelerations and magnetic field components computed based on the 

sensor model attitude. The magnetometer is fundamental to correct the yaw prior estimate because 

the rotation of the gravity vector from inertial to body frame depends only by pitch and roll. 

Supposing this model for the sensor, an observer must compute the time evolution of the attitude 

based on the model and subtract to it the difference between the prior estimate of the output, 

computed linearizing ℎ�«, �̅ � =3,�������) through the assumed attitude, and the actual measured 

output derived from accelerometer and magnetometer. Then, similarly to the linear case, the K 

matrix will derive from the choice of Q and R matrices, solving the Ricatti equation. 
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Figure 58 AHRS Extended Kalman filter blocks scheme 

3.3.3 Extended Kalman Filter algorithm 

 

Figure 59 NEU reference frame 

Magnetometer, accelerometer and gyroscope models[31]: 

«½ = �ϕ½γ½  φ½ & =  9#$%�«�−8 à¼#¼C¼·á −  9#$%�«�−8 óà�#�C�·á � ç =#Ý=CÝ=·Ý
èô � 3.092� 
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Mx, My and Mz are the earth magnetic field components along the inertial axes, if y Inertial is 

aligned with north the magnetometer measures about (N-E-Up config):  
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Mx = −1 uT    My =  26 uT   Mz = −44 uT � 3.094�
The measure was effectuated in a closed environment in Turin (To), Italy, without filtering and 

compensation of environment (inertial) electromagnetic interference and body frame (MCU an 

electronics) electromagnetic interference.  

where    �>~.�0, â�    ï̅ ~.�0, ��  white gaussian noises and =�E constant biases. 

Expressing the system as nonlinear state space model: 

«½ = [�«, �> � =Ý���� � 3.095� 

C = ℎ�«, �> � =�,�������� � 3.096� 

Given a current state «4, with: 

£ =  L­LM3M�M5 ,   �> �GN������      ; i = L­L��> IGN�����3M�M5 ,   �> �GN������  ; r =  L°LM3M�M5 ,   ���G),O���������      ; ¦ = L­L���IG),O��������3M�M5 ,   ���G),O��������� � 3.097�
Results: 

i = −9#$%�«�−8                             ¦ = − �$"(9 �«� Ù��� Ù��� $"(9 �«�& � 3.098�
The discretized sensor model is: 

«D�1 = «D � k1P-Æ,Q��� �(Á�����.     ≅     S"
� k1 )FÆTLU  «D � k1 *�ÆT� ����� � =Ý����� � 3.099� 

CVD�1 = � �Æ,W> �(©,����������     ≅     �FÆTL«D �  Å�ÆT� ��> � =�,��������� � 3.100� 

The discrete time Extended Kalman Filter algorithm (EKF) is the following: 

Initialization: 

• Set Q, R analyzing the sensors covariance 

• Set  «� knowing the initial YPR downstream a calibration 

• Set A� (state covariance matrix) as larger as the uncertainty on the initial state 

Prediction: 

Use only the model to predict the a priori knowledge about state dynamics and solve the difference 

Ricatti equation to update the covariance matrix. «D�1�−� = «D��� � k1PFÆ, ¼#, ¼C, ¼·L � 3.101� 

%T�8�−� = %T��� � k1  )FÆTL%TF�L)FÆTL′ �   *FÆTLæ*FÆTL′" � 3.102� 

Update: Compute the Kalman observer gain solving the static Ricatti equation at current time 

step, i.e., scaling the prior state covariance matrix and the observation covariance matrix by the 

weight matrices of the state space model. Then obtain a posteriori prediction of the state adjusting 

it to the current measurement, and finally reupdate the a posteriori state covariance matrix: 

!T�8 = %T�8�−�  �FÆTL′  �FÆTL%T�8�−� �FÆTL′ �   ÅFÆTL$ ÅFÆTL′"−8 � 3.103� 

«D�1��� = «D�1�−� �  !T�8�;�# �C �· �# �C �·=9 −�FÆTL«D�1�−� � � 3.104� 

%T�8��� = %T�8�−� �  !T�8�FÆTL%T�8�−� � 3.105� 
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The algorithm generates a Kalman gain of dimension 3x6 since 3 magnetometer and 3 

accelerometer measures produce the so-called innovation factor to correct the 3 angles. Is well-

known that [29]: 

• Magnetometers suffers wider sources of interference than the inertial sensors because of 

lower Signal-to-Noise ratio caused by the small magnitude of the earth magnetic field 

(micro-Tesla) and potentially high field distortion caused by external electromagnetic 

fields or ferromagnetic materials.  

• At least MEMS magnetometer, have higher internal noise levels than gyroscope and 

accelerometer. 

• Pitch and Roll angle estimation precision needs to be relatively higher than yaw 

estimation since also small errors could cause the system to become unstable. 

For those reasons is decided to nullify the submatrix of K responsible of Pitch and roll a posteriori 

correction through magnetometers reading, namely: PF;1, 2=, ;4, 5, 6=L = ÙÔ�� � 3.106�
However, pitch and roll correction by means of accelerometer only is theoretically correct in 

translational stationary condition of the UAV, but, if not the case, any acceleration is recorded 

and added to the gravity vector. Anyway, for small accelerations this issue can be neglected, as 

seen later. 
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3.3.4 Validation of the sensor model through real implementation 

 

Figure 60 Sensor models validation conceptual scheme 

For the experimentation was used the MPU-9250 Inertial Measurement Unit by InveSense. It is 

a 9-dof IMU containing 3 axis gyroscope, 3 axis magnetometer and 3 axis accelerometer and a 

temperature sensor in addition. Under the assumption of uncorrelated gaussian noises with 

constant biases and assuming negligible the influence of temperature on the sensor electronics, 

values of interest was extracted experimentally reading the sensor values over time. The 

manufacturer provided the noise amplitude spectral density of the gyroscope noise (squared root 

of the power spectral density (PSD)), expressed in °/s/√Hz, and an estimate of its rms value when 

the sampling time is 94 Hertz. In the same way noise spectral densities are provided also for 

gyroscope and magnetometer. These values are obtained: 

Table 14 MPU-9250 IMU tecnical sheet 

 Noise Rms 
@92Hz 

Noise ASD Full Scale 
Range 

Sensitivity 

Gyroscope 1,7301e-03 rad/s 1,7301e-04 

rad/s/√Hz 
±8,6505 rad/s 3.7859e+03 

LSB/rad/s 

Accelerometer 8 mg 300 µg/√Hz ±8 g 4,096 LSB/g 

Magnetometer / / ±4800 µT 1,7 LSB/ µT 
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Figure 61 MPU 9050 Imu and AtMega 2056 in I2C interface 

For sake of precision the estimation of noise variance and bias was extracted reading directly the 

sensors, then use them in the simulation to model the sensors with realistic quantities. To simulate 

the zero-mean noise, a band-limited white gaussian noise block is inserted with the chosen sample 

time and the reported PSD for accelerometer and gyroscope. Biases and variances are estimated 

living stationary and flat the IMU and measuring the offsets. The update frequency of the MCU 

used (AT Mega 2056) with the running routine was about 20 Hz against a maximum frequency 

update of 250 Hz for the IMU. Routine was written in Arduino Ide environment using a 

precompiled library for MPU 9050 with already incorporated scale factors and signal/axles 

correlation. The communication protocol used was I2C. The records span over about 5 minutes: 
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Figure 62 Accelerometer (top), gyroscope (center) and magnetometer (bottom) records 

The gyroscope is the only sensor for which the measurements in stationary conditions always give 

zero values since it measures angular rates. Accelerometer and magnetometer measure the 

absolute orientation of the IMU relative to the gravitational field and the magnetic field. Thus, 

although the IMU is oriented with y-axis pointing North, x-axis pointing East and Z pointing up 

there will be always a tolerance in orientation shared by the three components. This means that, 

for the gyroscope, biases can be obtained individually for the 3 components directly by the mean 

of their samples, instead was assumed equal the 3 biases component for accelerometer and for 

magnetometer obtained computing a single vector magnitude bias and retrieving by it the 3 equal 

components. Is worth noticing that differently for the gyroscope, whose biases will be estimated 

and compensated by the filter, a good calibration of magnetometer and accelerometer is essential 

to compute a coherent a posteriori estimate. 

For the gyroscope results: 



 

76 

 

�Y2Ý = ;0,2524 0,2909 0,4700= 10−6   B�/2 12� " =Ý    =  0,1146 −0,1002 0,0138" 10−3    B�/ 1� " � 3.107� 

For the accelerometer and magnetometer: 

⎩⎪⎪
⎨
⎪⎪⎧ Y2£  = ;0,1539 0,0943 0,1788= 10−3   ��2 14� �=£     = − 0,283 0,283 0,283"                   �� 12� �Y2�  =   ;0,6801 0,6979 0,5942=                Zk2" =�     =    0,3304 0,3304 0,3304"                  Zk" 

� 3.108�
The computations shows that noises standard deviations are generally an order of magnitude 

lower than RMS values specified by the manufacturer, so the sensor was properly working. 

Magnetometer and accelerometer biases were computed decomposing the differences between 

the measured magnetic vector and gravity vector magnitudes and the supposed magnetic vector 

and gravity vector magnitude at the current location. The bias components are then multiplied by 

the sign of the averages of their corresponding measurements. (in this way if the bias is positive 

it goes to increase the modulus of the component, if negative it reduces it). 

=£  = [33 ⎝⎛ � 
S�#,D2 � �C,D2 � �·,D2 U2 .1�����
.1�����

D=1 − Ý⎠⎞ ;1V	Z��#\ � 1V	Z��C\ � 1V	Z��·\�=       �� 12� � � 3.109� 

=�  = [33 ⎝⎛ � 
S�#,D2 � �C,D2 � �·,D2 U2 .1�����
.1�����

D=1 − �⎠⎞ ;1V	Z��#\ � 1V	Z��C\ � 1V	Z��·\ �=     Zk"� 3.110� 

where: Ý = 9,81   �� 12� �           ;              � = 47,26    Zk" � 3.111� 

These last 2 computations can be used both to further calibrate the sensors and increase the 

consistence of the a posteriori estimation and to validate an eventual EKF the estimate the 

cartesian position fusing IMU and GPS signals [29]. Furthermore, all those values can be 

implemented in the simulation, adding a bandwidth limited white noise block running at the same 

sampling time of the microcontroller with a noise power A� �5� = Y
 k53�����ü. Adding, also, 

relative biases and a 12 bits quantization, as for the used real MCU, the sensor model is complete. 

The EKF algorithm was developed directly in a MATLAB function block in the Simulink 

environment containing all the models developed until now, that are UAV dynamic model, motors 

model and sensors model. The next step is to compare the behavior of the standalone EKF in 

simulation with the experimental test bench, in static conditions. After that, more complicated 

state tracking of the drone will be proposed in the simulation environment. For the comparison a  k53�����ü = 35 �1 was chosen to reduce the computational burden on the MCU. Both in the 

simulation and in the reality the initial condition of the Kalman filter are set aleatory to 1 radiant 

(57.8 °) in order to evaluate the convergence speed. Instead, the real values to be tracked are 

perfectly set to zero in the simulation and near to zero in the experimental phase since was 

impossible to calibrate the IMU on a perfectly horizontal position and to orient the y axis toward 

north, taking also into account that each time the routine is started the magnetometer read sensibly 

different magnetic field components, both for the electronic noise and for the unavoidable and 

unpredictable indoor interference. For those reasons the value to be tracked in the experimental 

EKF was chosen as the steady state value reached by each angle after several minutes of 

recording. Since the purpose is to evaluate the convergence time in the transient the above 

approximation is sufficient. Each of the next graphs shows an angle estimation in Simulink and 
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its respective in the test bench experimentation. The algorithms were identical as also the main 

EKF parameters: � = /V�	F1, 1, 1, 100, 100, 100L10−3 � 3.112� 

â = /V�	F1, 1, 1L10−4 � 3.113� 

A0 = /V�	F1, 1, 40L10−5 � 3.114� 

The test was repeated 3 times, alternating the 1 radiant initial condition to each angle. 

�A»VZV0V�� Y�Z/V0V�Z1 = ;1 0 0=;0 1 0=;0 0 1=   B�/ � 3.115� 

 

Figure 63 Kalman error in simulation and experimetation 

The graphs are practically coincident, measuring a convergence speed of about 110°/s. Is worth 

noticing that the parameters chosen was obtained by a trial-and-error approach trying to go as 

close as possible to the instability region of the EKF. Speed up the convergence means increasing 

the initial covariance A� and the gyroscope noise covariance matrix â or, equivalently, reducing 

the accelerometer and magnetometer covariance matrix R. Follows that doing some of such 

operations leads to an unstable EKF, for the sampling time chosen. Was also analyzed, in a time 

window of 2000 seconds, the comparison between the EKF estimate of the three angles and the 

Dead Reckoning estimate of the same, namely the simple discrete integration of the gyroscope 

crude measurements (after being rotated though the k]^_ matrix). 
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Figure 64 Experimental Dead Reckoning vs EKF 

 

Figure 65 Simulative Dead Reckoning vs EKF 

The initial condition of the two EKF are now elaborated outside the loop in the setup phase. 

Collecting the average of the firsts 1000 measurements (gyroscope, accelerometer and 

magnetometer) and inverting the trigonometric relationships between the 9 measurements and the 

RPY angles an initial condition estimate is performed. Both for simulation and experimentation 

the algorithm shows a good rejection of the Gyroscope drift (dashed lines), but some observations 

must be done: 

• The drift of the simulation expresses the propagation of the integration of the previously 

computed constant bias through the transformation from body twist to rpy angular rates, 

and in the random walk resulted by the integration of a white noise. 

• The drift of the experimentation results by the integration of the real noise and its bias, 

that, respectively, are non-Gaussian and non-constant and maybe cross-correlated. 
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Considering these two observations is clear that in the real Dead-Reckoning the drifts are non-

linear because of the non-linearity of the real biases. Can be seen the roll angle drifting more 

rapidly than in the simulation, the pitch angle in the same magnitude but with an opposite sign, 

while the yaw angle gain about -10° in the real test bench when is quite constant in the simulation. 

Although these evident differences the overall behavior of the two EKF is quite similar, and, 

mostly, the principal EKF aim for data fusion in navigation is the estimate and compensation of 

the gyroscope bias, and the experimentation shows this robustness also against real and time 

variant biases. This makes the simulation model enough accurate to be applied in the control loop 

of the UAV. Since the EKF convergence is not theoretically guaranteed, due to the non-linearities 

of the sensor models, it was tested also directly to track the states under Path-Planning-Transverse 

reference imposed to evaluate the performances in about one minute time window in a rapidly 

angles variation situation. The aim of this simulation is to show the reliability of the model 

developed when is inserted in the loop control under the already presented path planning 

reference. The following simulation was ran using the optimal parameters found in the next 

session, namely a sampling frequency of 100 Hz and an R scale factor equal to 3. As discussed 

before also the EKF parameters was relaxed when it is inserted in the control loop simply reducing 

the third component (related to the yaw rate noise variance) of the zero-covariance matrix and 

setting the angles initial conditions to zero. A0 = /V�	F1, 1, 1L10−5 � 3.116� 

 

Figure 66  Extended Kalman filter attitude estimation and errors 

The path planning time window is about of 1 minute. In the graphs can be seen a good 

superposition of the estimated states and actual states. The error for pitch and roll converges 

rapidly to zero or oscillates around it, while for the yaw a small drift of about 0,5° is present 

because its convergence was set to be slower both in term of R covariance matrix and A� since 

the magnetometer high noise caused the filter to be unstable if too much reliability was given to 

it. Pitch and roll errors are attributed to the approximation of discrete time process, noises of the 

sensors and, mainly, translational accelerations. For sake of simulation was also inserted a 

position error source in the form of white gaussian noise with a standard deviation in the order of 

some centimeters. Was supposed to use a Real Time Kinematic (RTK) system in combination 

with GPS to estimate the cartesian position of the UAV in the space. RTK is a novel technology 

aided to the common GPS system, it computes the relative distance between a body and a fixed 

station whom coordinates are known. The RTK-GPS system improves the common GPS accuracy 
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by meters to centimeters level [32], but some problems related to temporary such as signal 

absence and ionosphere interference remain, so a data fusion with the Inertial Navigation System 

is required. In the following session is presented an integration of the EKF in the control loop 

studied above, are tested the performances of the whole system for certain parameters setting and 

then the same performances behaviors are related to the variation of the main control settings, 

namely sampling time, LQR matrices and sensor noise. 

3.4 Simulation Results 

3.4.1 Exploitation of the UAS model in scenario analysis 

Nonlinearities in the whole model developed make difficult to extract analytically the quantity of 

interest such as charge consumption, tracking errors, estimation errors and safety regions to ensure 

UAV stability as function of the principal control parameters. The following study shows relations 

between such quantities of interest and sampling time.  Theoretically the sampling frequency 

should be chosen at least 2 times the bandwidth of the feedback control loop, in order to well 

describe the transient phase and avoiding aliasing effect. However, this frequency can be extracted 

only for the linearized system that does not considers gyroscope effect and rotation matrices and 

so the coupling between states and between inputs. On the other hand, is not possible to increase 

too much the sampling frequency because it  

• Improves destabilizing effects due to conversion accuracy 

• Increases the negative quantization effects 

• Increases the cost of A/D D/A devices, more than linearly 

For those reasons a tradeoff is convenient. The most significant frequency of the ideal control 

loop in continuous domain developed in (3.2) is about 500 Hz and starting from it was chosen a 

range of sampling time spacing between  0,002 1 ≤ k5 ≤ 0,1 1 . Performing a sweep, on the 

interval, 300 simulations data on the simulative environment developed until now was collected 

and elaborated. All the quantities plotted are MAE (mean absolute error), averages or maximum 

values across the timeseries. 

 

Figure 67 Estimated angles errors (Left) and estimated angles rates errors in function of the sampling time 

As predictable, the estimation error increases with the sampling time. However, is noticeable that 

grows more than linearly, and a rapidly decreasing yaw error in k5 = 0,02 1. Exceeding 9� =Ù, Ù'� � the system became unstable, so this last  k5 value can be used also to give an idea of 

what combination of states make the UAV unstable. In this case a plot of the maximum roll, pitch, 

roll rate and pitch rate reached is presented. 
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Figure 68 Stability evaluation based on tilting angles (Top) and tilting angle rates (bottom) in function of the 

sampling time 

Given a certain reference velocity imposed to the ESC of the motors, the more time is spent in 

transient phase the less the efficiency is, since it reaches its theoretical maximum in steady state. 

When the sampling time is increased, the control, in combination with EKF, start to have 

difficulties to follow fast transients leading the motor a delayed steady state rotor velocity. This 

could be one of the main reasons for which the charge consumption goes from the 1440 mAh (6,4 

% of the total charge) for Ts=2 ms to about 1550 mAh for the maximum stable Ts of 48 ms. 

 

Figure 69 Charge consumption (left) and mean currents (right) in function of the sampling time 

For what concerns the tracking errors behavior, there is a growth related to the increasing 

sampling time, but it is has a small slope compared with the minimum error level (for Ts=2 ms). 

This may be misleading, because the errors reported in the graph are the averages over time and 

consider the error due to time delay the dynamic response against an abrupt ramp reference, but 

the corresponding way point are always reached. Indeed, as can be seen in the next sub-section, 
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plotting the output states and comparing it with the reference in the 3D space the errors in space 

are highly less. 

 

 

Figure 70 Output errors in function of the sampling time 

Unifying the results, the close-optimal sampling time choice was 9� = Ù, Ù8 �, since it permits a 

low/medium cost MCU system simultaneously intercepting minimum charge consumptions, 

currents, estimation and tracking errors and it keeps angles and angles rate enough distant by the 

unstable region. Is also important to quantify the response of the system in relation to the 

aggressivity of the control command inputs. In the presentation of the LQR control, after a tuning, 

the relative weights in the Q matrix were chosen in order to give the right emphasis to the generic 

controlled state with respect to another. The R matrix, that complementary adjust the integral in 

time of the squared command input was left equals to an identity matrix, multiplied by 110. In 

the following, leaving invariant Q, the same R matrix is multiplied by a scalar factor range of 300 

points and, again, is computed a sweep of the parameter in the simulation to evaluate the system 

related behavior. The sampling time is set to 0,01 seconds. 

¢� = ;Y���[�Y0�B ∙ "
 `ª+ªÂ'�' ∙ 1100,01 ≤ ;Y���[�Y0�B ≤ 100 � 3.117� 

 



 

83 

 

 

Figure 71 Charge consumption (top-left), mean currents (top-right), output tracking errors (bottom-left) and control 

input tracking error (bottom-right) in function of the scale factor 

It’s evident that a decrement of the factor enhances the reference tracking while dramatically 

increases the energy cost (about 2100 mAh are discharged in one minute) and mean currents 

flows, as the theory suggests. A less intuitive consequence of the scale factor decrement is the 

augmenting difference between the instantaneous command input request and the actual, delayed, 

actuation that, for more aggressive maneuvers, encounters more difficulties in following the 

control reference of torques and thrust due to motor dynamics characteristic time. Another 

interesting consequence found analyzing the R matrix sweeping was the gyroscopic torque/angles 

rate characteristic curve. The gyroscopic torque is one of the principals non linearities in the whole 

system and cause instabilities; indeed, catastrophic failures often appears when there are 

simultaneous high body frame angular velocities. In the graph are shown the maximum angular 

rates versus the 3 maximum gyroscopic torques reached for different values of the scale factor. Is 

interesting that for a large spectrum of the scale factor (about between 1 and 100) angles rates are 

under 1 rad/s and the gyroscopic torques under 0,5 Nm, while the last simulation before the 

instability region shows angular rates between 1 and 1,5 rad/s, 1,4 Nm x-gyroscopic torque and 
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1,8 Nm y-gyroscopic torque. The gyroscopic torque around the z body frame axis is always zero 

because in the model were supposed ideally equal inertial momentum components around x and 

y axle. 

 

Figure 72 Stability evaluation through gyroscopic X torque (top), Y torque (central) and Z torque (bottom) and angle 

rates relationships 

A heuristic optimal value of the scale factor was  Àä©å P©äªÄÃ = �. The following table resumes 

the parameters chosen for the control model that will be used from now on: 

Table 15 Discrete controller optimal parameters 

9�©�aå+`? æGæ$ $Gæ$ 

10 ms Diagonal (10, 10, 10, 1, 1, 10, 

400, 760, 120, 0.1, 0.1, 0.1, 

190, 290, 360, 300) 

Diagonal (330, 330, 330, 330) 

 

3.4.2 Rows-following with optimal tuning, ideal scenario 

Starting from the optimal control parameters chosen, a simulation of all the merged models was 

performed. The path planning was always the same (path_planning_transverse) chosen for this 

chapter. The discretization of the control algorithm, the motors models and the online state 

estimation introduce delays and noises in the control loop. 
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Figure 73 State tracking in time (top), in space (bottom) and commands in time (central) 

” g” is the thrust-to-weight ratio 

As expected, the steady state tracking error of ramp or parabolic reference input cannot be zero 

due to the choice of a single integrator in the control. This leads, as seen before, to a delay of 1-2 

seconds between the reference input and state behavior. However, delays are not cumulative so 

in the tridimensional space the UAV follows the reference in a manner precise enough to approach 

the way points that will be send by the prescription map presented in the next chapters. As can be 

seen the rotors velocities is well confined in the highest efficiency region specified by the 

propellers manufacturer explained in 3.1.3. In the table below are specified the main quantities of 

interest related to this simulation. 

Table 16 Simulation, quantities of interest 1 

Avg mean RPY angles 
Kalman errors [rad] 

Avg of the 4 mean currents 
[A] 

Charge consumption [mAh] 

0,0024 21,4 1438 
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Table 17 Simulation, quantities of interest 2 

max Gyroscopic 
Torque X [Nm] 

max Gyroscopic 
Torque Y [Nm] 

max Pitch angle 
[rad] 

max Roll angle [rad] 

0.564 0.630 0.154 0.172 

 In this simulation nozzles flux and ground footprint modification due to the UAV velocity, 

altitude and wind disturbance is not considered, so in the next paragraph is discussed the addition 

of a wind model, a wind estimation algorithm, and a real-time path planning refinement. 

4 Spray System 

One of the strategies thoughted to overflight the vineyard rows is the one depicted in figure 74. It 

was called cross configuration and consists in following the row directly on the top utilizing the 

nozzles mounted under rotor 1 and 3 to continuously spraying the crops indicated by the 

prescription map and switch off them when the UAV overflights “Healthy” crops. A more 

exhaustive explanation of the spraying system will be presented in this chapters.  

 

Figure 74 Cross configuration, image from[9] 

One challenge associated with the spraying control system is its robustness to guarantee the 

irroration of the grapevines against wind disturbance and, in general, air-UAV relative velocity 

(velocity of air seen by the UAV). In cross configuration, in absence of wind, the drone follows 

the row, and the spray flux axle is deflected in the same plane of the row and UAV velocity, but 

in opposite direction so that there is only a time delay between the moment in which the vehicle 

reaches a point and that one in which it is reached by the spray. In presence of wind instead, the 

plane of deflection becomes another and without some sort of wind estimation is impossible to 

ensure the correct irroration. In this section we discussed path corrections and spray system 

mechanisms act to maximize the effective volume delivered to the plants. From now on the path 

planning used is a modified version of that one used until now, then in chapter 5 a more exhaustive 

description of the possible spray strategy is present.  



 

87 

 

4.1 Ceramic hollowcone 80° nozzle model 
The study in [9] consist of an experimental validation of  CFD analysis thoughted to predict 

droplets distribution and sizes knowing the 3D profile of the blades, rotors velocity, 

environmental conditions and impact air speed. The system UAV/spray was tested in a wind 

tunnel in different conditions of rotors velocity, nozzles upward pressures, nozzle-rotors relative 

positions and air-nozzles relative velocities. Were utilized 2 types of nozzles. The first one is an 

anti-derive fan nozzle with 80-110° wingspan, the other a hollow-cone nozzle with 80° wingspan. 

Nozzles was mounted under six-rotors Matrix 600 drone by DJI.  

 

Figure 75 From ARAG datasheet 

From now on the nozzle, in the simulation, a model of the hollow-cone will be used. The frontal 

and lateral profile of the nozzle flux was backlighting and gray scale images (figure 76) for 

different conditions was collected [9]. The resulting data was used to extract, by image processing, 

analytic relations between the flux shape and the above-mentioned quantities. The experience was 

done in SEASTAR (Sustainable Energy Applied Sciences, Technology, and Advanced Research) 

Wind Tunnel at the Environment Park in Turin, Italy. The drone was positioned in a test section 

of 6.4x2.4 meters that takes air from the outside of the building through a convergent intake and 

expels it through ten fans toward a divergent outlet. A high-speed camera (6016x4016 pixels) was 

used to extract lateral (wind direction from left to right) and frontal (wind direction from behind 

to forward) images of the nozzle stream illuminated by 532 nm laser (1st methodology) and 

backlighting by LED (2nd methodology) from a 1.5x1 meters scene. 

 

Figure 76 Hollow Cone flux for increasing air relative velocity (Wrotors= 2000 rpm) 

Matrix600 was fixed to the structure. The mounted blade was a T-motor 15”x5” of which a 3d 

scan was generated by an Optical Precision Measuring Machine (OPMM) to be insert in the CFD 

analysis.  
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Figure 77 Matrix600 fixed to the structure, image from[9] 

The spray system used consists of a DC 12V membrane pump with a maximum flow rate of 6 

L/min, TB48S batteries of the drone, an ON/Off switch, a pressure control system composed of a 

pressure regulator and a pressure gauge aimed at optimizing the pressure values to those optimal 

specified by the nozzle manufacturer. In the analysis were used four nozzle positioning. The first 

two was 10 cm and 20 cm far by the blades horizontal plane (under the drone body) in the vertical 

direction and at a horizontal distance of 0% and 50% of the blade radius by the rotor centers in a 

direction aligned with the wind velocity. The wind velocities tested was 0, 2 and 3 m/s. No rotors 

correspond to 0 rpm, Idle to 1000 rpm and Throttle to 5100 rpm. In general, 72 measures were 

extracted and in the following table only a fraction of those is collected. 

 

Figure 78 measurements combinations of the wind tunnel test, [9] 

From the study emerged that the position 1 (50% radius radial position and 10 cm vertical) was 

the best choice to minimize the drift, then only measurement in this position will be evaluated.  
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Figure 79 Lateral view, Nozzle in position 1 subjected to 3 different air velocities and 3 different rotor velocities 

(p=2 bar) 

 

Figure 80 Idle, v=2 m/s 

 

Figure 81 No Rotor, v=0 m/s 

Concerning the lateral images (the most important from a wind-caused drift point of view) were 

collected the 9 cases, reported in the figure 79. Images was 3 channels codified in 8 bit, so 256 

possible values for each pixel per-channel. Each RGB image matrix was subjected to sequential 

filtering intended to ponder outliers and integrated droplets/pixels and exclude intrusive objects 

or disturbing illuminations. First, after having increased uniformly the image lighting by factor 

10, all the pixels smaller than 70 was put to zero and was inserted a triangular mask to exclude 

the intruder object (top-right). To reduce the number of outliers pixels a 5x60 (h x w) grid was 

left analyze each image pixel, computing the mean of all the elements belonging to the grid and 

comparing the value with a threshold. The lower is the mean of the pixel contour, the higher the 

probability of ling in an insulated area. The threshold was set, after several trial and errors, to 60 

and all the elements with a grid mean lower than this threshold were set equal to the minimum 

value of the entire grid, invariant otherwise. Finally, the edge recognition consisted in picking up, 

for each horizontal line, the first and the last pixel greater than 100 representing C5K and C2K edge 
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points of the ith row, respectively. Other, smaller, refinement were necessary to ensure the edge 

lines follow the real flux boundaries (e.g. in No Rotor and Idle with 2 and 3 m/s air velocity the 

flux shape is cut by the right frame border, so to avoid the curve to fit the artifact vertical line of 

the border only a limited number of C2K points which position was greater than the 95% of the 

image width were sent to the regression solver). Doing so, were available 2 edge analytical 

quadratic curves for each of the 9-case study. Passing by pixels to meters (with the conversion of 

940 pixels each 1,5 meters) was then collected 9 couples of the type: C/# = �/#·2 � =/#·C1# = �1#·2 � =1#· � 4.01� 

Then, each case study flux “k” is represented by the coefficients vector: 

;�/# , =/# , �1# , =1# =D � 4.02� 

And by the UAV variables: 

;b�Bccccc⃗ b      éB�0�B=D � 4.03�
The problem is to find a relation �2K  , =2K , �5K  , =5K  �‖�¡ccc⃗ ‖, é¡ 4 ¡�, hence a simple Ridge 

regression could be enough. Was supposed that the relation is affine in ‖�¡ccc⃗ ‖, é¡ 4 ¡. The problem 

can be solved simply in matrixial form. AB is a 9x4 matrix containing in each row “i” the 

coefficients of the case study “i”, in the specified order. Vrpm is a 9x3 matrix which “i” row 

contains the air velocity and rotor velocity of the case study “i” (the first 3 are 0 rpm and 0/2/3 

m/s of air velocity, the second 1000 rpm and 0/2/3 m/s and the third 5100 rpm and 0/2/3 m/s) and 

1 to consider the constant term of the relation. W is the unknown matrix. It is a 3x4 matrix 

containing for each column the 3 weight values to be used to extract one of the four edge curve 

coefficients, knowing ‖�¡ccc⃗ ‖, é¡ 4 ¡. 

)* =
⎣⎢⎢
⎢⎡�/#,1 =/#,1�/#,2 =/#,2 �1#,1 =1#,1�1#,2 =1#,2: :�/#,9 =/#,9 : :�1#,9 =1#,9⎦⎥⎥

⎥⎤ � 4.04� 

eÃa� = à 1 0 0: : :1 3 5100á � 4.05� 

f = ç �0,�/# �0,=/# �0,�1# �ð,�/# �ð,=/# �ð,�1# �B��,�/# �B��,=/# �B��,�1#     
�0,=1# �ð,=1# �B��,11#  è � 4.06� 

The problem is then formulated as: )* = eÃa� ∙f � 4.07� 

So, the solution can be found computing the Moore-Penrose pseudo-inverse of eÃa�: 

f = SeÃa�9 ∙eÃa�U−8 ∙eÃa�9 ∙)* � 4.08� 

From which the 2 curves with the complete dependency on nozzle distance, air velocity and rotor velocity 

were extracted: ©
�FéB�0�B,b�Bccccc⃗ b L = −éB�0�B ∙ 1,56 ∙ 10−4 � b�Bccccc⃗ b ∙ 3,67 ∙ 10−1 � 4,05 ∙ 10−1 � 4.09� 

(
�FéB�0�B, �, b�Bccccc⃗ b L = −éB�0�B ∙ 8,53 ∙ 10−5 � b�Bccccc⃗ b ∙ 4,60 ∙ 10−2 � 5,54 ∙ 10−1 � 4.11� 

©��FéB�0�B,b�Bccccc⃗ b L = −éB�0�B ∙ 10−4 � b�Bccccc⃗ b ∙ 1,36 ∙ 10−1 � 2,93 ∙ 10−1 � 4.12� 

(��FéB�0�B, �, b�Bccccc⃗ b L = −éB�0�B ∙ 5,19 ∙ 10−5 � b�Bccccc⃗ b ∙ 5 ∙ 10−3 − 5,25 ∙ 10−1 � 4.13� 
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⎩⎪⎨
⎪⎧éB�0�B ;B��= ∶ ����YV0C �[ 0ℎ� B�0�B1 �Z 0�� 0ℎ� Y�Z1V/�B�/ Z�··��� ;=�B=: VZ0�BZ�� �B�11\B� �[ 0ℎ� Z�··��b�Bccccc⃗ b  ��1 � : �VB −h£ð B���0V�� ����YV0C ��/\�� ⎭⎪⎬

⎪⎫ � 4.14� 

From which derives the flux axis deflection curve, used in next sections: 

B = �C/# � C1#�2 = ©
� � ©��2 ·2 �(
� �(��2 · � 4.15� 

 

Figure 82 deflection curve for Wrotor=2000 rpm 

Analyzing this case can be seen that the wind velocity increases significatively the drift, but 

simultaneously the downwash effect of the rotors dominates the air velocity reducing the drift and 

reduces the opening angle of the nozzle flux.  

 

Figure 83 Frontal view of spray angle with no rotor - 2 bar (Blue), full throttle - 2 bar (Red) and full throttle - 3 bar 

from left to right (Yellow) 

The first 4 delimiting curves can be used to extract the two semi-axes of an, supposed, elliptical 

shape of the flux, subtracting C5K − C2K . In particular, the frontal axis was obtained identically 

as done for the lateral, namely extracting the flux edges and fit them with a variable coefficient 

quadratic function, although for the frontal axes the coefficients depended solely on pressure and 

rotor velocity. Frontal axis computation was useful only to get an estimate of the opening angle 

of the nozzle with respect to the rotor’s velocities and pressure. 

�©�+�lÃÄ`ª©å�éB�0�B, � , ·� = 12 Fm2�0.0000052  � � 0.00000026  éB�0�B − 0.000843� � m�1.39  � 0.0732 �   − 0.000153  éB�0�B�L � 4.16� 

Is noticed that, in the acquisition phase, frontal images were considered invariant with respect to 

wind velocity, while lateral images invariant with respect to nozzle pressure. From the frontal 
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semiaxis was then extracted the opening angle of the nozzle by trigonometric relationship between 

the nozzle height “z” and the frontal semiaxis at distance “z” from the nozzle. The opening angle 

was computed at · = 10 Y�. 

na `+`?FéB�0�B,b�Bccccc⃗ b, · = 0,1L = atan-�©�+�lÃÄ`ª©åFéB�0�B,b�Bccccc⃗ b, · = 0,1L 0,1� . � 4.17�
Observing the hovering rotors velocity of about 200 rad/s the opening angle can be considered 

oscillating in the range 30-35°, depending on the applied pressure. 

 

Figure 84 Frontal nozzle opening angle 

The blade supposed to be used in this thesis have bigger length and width than those used in the 

experimentation, therefore the effects of the rotor downwash described by the above relations 

should be considered underestimated. To evaluate the PPP distribution in liters and validate all 

the model and algorithms performed until now a 3D model of the flow rate distribution of the 

hollow-cone nozzle was studied. To not complicated too much the formulation, the distribution 

model was thought to fit a scenario in which air velocity due to wind, nozzle-ground relative 

velocity and rotor velocities are null, pressure and flow rate have reached a stable value and 

therefore the atomization process and the downward averaged droplets trajectories are stable. In 

this condition is reasonable consider the geometry of the hollow cone as a conic wall with constant 

and a center-symmetric geometries.  The cone produced by the nozzle has a lateral wall thickness 

in the order of centimeters in proximity of the nozzle outlet, and it is supposed to gradually 

increase the thickness moving away from the nozzle [33]. The thickness is, here, considered as 

the thickness of the circular crown containing all the droplets at a given nozzle distance. Air 

viscosity and gravity are neglected so the direction of the generic droplet remains the same, once 

exits the nozzle. Following these assumptions, for a given distance from the nozzle, the droplets 

(and so the flow rate) could be imagined as deposited in great quantities along the circumference 

with radius equal to the mean of the maximum and minimum radius of the crown, and with lower 

quantities for higher and lower radius.  
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Figure 85 Schematic representation of the droplet spatial distribution 2D cross section 

This behavior is also presented in the datasheet of the used hollow cone nozzle as reported in 

figure 86. 

 

Figure 86 From ARAG website 

This behavior was modeled as a revolute gaussian with a variance quadratically increasing with 

the distance from the nozzle and a mean equal to the mean radius of the crown, i.e.: Y2 = FY0 �Y� ∙ ·L2 � 4.18� 

¿Y0 = 0,001Y� = 0,1 � 4.19� 

Z = · ∙ tan �o��ZVZ	� � 4.20� Y� and Y� was chosen to have a wall thickness of about 3 cm close to the nozzle and 50 cm at 5 

meters. 

 

The radial gaussian was then formulated: 
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. SZ,Y2U = 1[2òY ∙ �−12FB−ZL2Y2 2òp � 4.21� 

The expression is normalized by 2ò to have: 

B B . SZ,Y2U ∙ /B ∙ /w2ò0�∞−∞ = 1 � 4.22� 

 

Figure 87 Flow Rate distribution in function of nozzle distance, Wrotors=2000 rpm, p=2 bar  ( PDF values are 

qualitatively represented) 

From the code point of view the model is inserted as an appendix to the simulation environment 

to compute the actual amount of PPP released by the quadrotor when overflies a region. A 

MATLAB function block accepts as input the footprint center position at time step k �#, C�5�34,R, 

in general different by the UAV current position, and uses it as the center of the footprint circular 

crown. Also knowing the real time nozzle height, left equal to the drone height, ·R it computes 

the gaussian expected value ZR and the variance Y
R. Passing by polar to cartesian coordinates 

the bi-dimensional Probability Density Function (PDF) is discretely integrated into the plane grid 

and multiplied by the instantaneous flow rate and the simulation sampling time to obtain finally 

the released liters for each grid element. The process is repeated for the whole simulation time 

resulting in a complete map of the PPP sprayed in the virtual vineyard. 

• The simulation floor is coded as a n-dimensional 2D grid �$, »��K� . 

• The time series of interest enters the code; they have sampling time k55�� with length .4���:  

⎩⎪
⎨⎪
⎧ F#, CL1��0�����������������·>éB�0�B1AB�11\B�����������������������������������

����������������� � 4.23� 

 

• Variance and mean values are computed each time-step as: 

¢ Y2D = FY0 �Y� ∙ ·L2ZD = ·D ∙ tan �o��ZVZ	FéB�0�B1D, AB�11\B�DL� � 4.24� 

 

• For each k, each point in the grid is associated with a radius, expressing the 

distance from �#, C�5�34R: 

BDV,7 = rS#V − #1��0,DU2 � SC7 − C1��0,DU2 � 4.25� 
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• The radius integration steps is defined as the length of the diagonal of a single 

element in the grid, while the angle integration as a fraction of 360° that increases if the BR�,E
 decreases, in order to take into account the discrete domain of the angular integration: 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧/B = s-$��# − $�VZZ .2 � -»��# − »�VZZ .2

/wDV,7 = ò 2�
Ö1 � BDV,7/B [2×

� 4.26� 

 

• Finally, the PPP deliver map is computed as: 

jV0�B1V,7 =∙ �
⎝⎜
⎛ 12ò
2òY2D ∙

⎝⎜
⎛�−12�BDV,7−ZD�2

Y2D � �−12�BDV,7�ZD�2
Y2D

⎠⎟
⎞ ∙ /B ∙ /wDV,7

⎠⎟
⎞.0V��

D=1 ∙ ��D ∙ k11V� � 4.27� 

where the second exponential is inserted to sum up the tail of the diametrically opposite gaussian. To 

consider the height of the grapevine (1,5 meters) the height of the nozzle with respect to the target was 

considered as the UAV height subtract by the grapevine height. This assumption will be further developed 

later. An example of the PPP distribution is in figure 88. Here, the simple path planning tracking without 

wind disturbances is considered. The flow rate is 0.8 L/min when the drone is on the rows and 0 L/min 

during the inversion; this last feature was added manually, but in the next paragraphs will be presented an 

automized version of it. The altitude of the drone is kept to 2 meters. 

 

Figure 88 PPP volume distribution, grid thick of 5 cm 
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Figure 89 PPP volume distribution, grid thick of 69 cm 

In a squared control surface with base of about 140 centimeters are mediumly released 0,045 

Liters. This is coherent with the formulation of the volume density provided by the nozzle 

manufacturer, that gives about 0,048 Liters in the same control surface inserting our operation 

parameters. The computation was done considering one single nozzle (n=1), a flow rate of 0,8 

L/min, an inter-row distance of 2 meters and a velocity of 3,6 km/h. The result is a per-hectare 

released product of 67 Liters. Considering the surface of the simulation path containing 4 rows in 

between 1 � ≤ C ≤ 9 � and −10 � ≤ # ≤ 10 �  (8x20=160 m2), in order to take into account 

the half inter-row distance as offset, and knowing the total released PPP volume of the simulation 

of 1,06 L the proportion leads to a per-hectare released product of  
����� �e�t� �e ∙ 1,06 j = 66,25 j, 

which substantially matches the manufacturer formulation. 

 

Figure 90 ARAG HOLLOWCONE CERAMIC ISO 80° - HCI 80° datasheet 

Since the nozzle is studied for in-motion spraying the empty surface of the hollow cone surface 

is filled with the shift of the footprint released each time step. However, trusting on the model, 

the central zone of the shifted footprint is depressed relatively to the lateral distribution that 

reaches higher densities. Considering the opening angle of the hollow-cone nozzle the UAV flight 

altitude was seen optimal at 50 centimeters distant from the plant crown. The more this distance 

increases the more PPP waste due to drift and opening angle increases, while the more the distance 

decreases the more increases the risk of quadrotor impact with the plants. Further studies could 

integrate the study in [34] with the autonomous guidance in order to locally extrapolate plants 

geometry data in-flight allowing to fly at optimal distance with respect to their crown. In the study 

[34] the average crop surface was estimated to be 0,2 m2 so with a square side of about 45 cm. 

Since in our study all the PPP sprayed outside the plant region will be considered wasted, we have 

increased the square side to 90 cm to include a wider area in which the product could realistically 

enters in contact with the leaves.  To extract a first approximated performance index of the 

delivered PPP, along the reference path, in correspondence of the rows only, was inserted an 

“active grid” with thickness of about 2 times the supposed plant radius, of 45 cm. This grid 
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represents the plant projected surface in the horizontal plane positioned at 1,5 meters height. Liters 

will be considered delivered to the plant if lie in this area, wasted otherwise. 

 

 

Figure 91 Grapevine, active surface 

The Delivered/Sprayed ratio expresses how much the delivering PPP process is efficient, because 

expresses how much of the total sprayed product contacts the plant. The Delivered/Requested 

Volume ratio expresses how much of the total volume required in the operating area, namely the 

sum of all the prescription map elements, has been released on the plants, so expresses how much 

the spray system is sensible to the presence of target plants. Both ratios can be expressed as global 

ratios (i.e. the three volumes comprise the sum of the single plants volumes) or as per-plant ratios. 

Sprayed and Requested volumes can be different: 

• If is introduced a safety factor that increases the commanded Requested volume 

release with respect to the original requested volume (conservative approach). 

• If there is not a closed loop control of the sprayed volume (per-plant or global) 

such as in intensive continuous spray. 

• If the spray circuit presents leakages (also with a closed loop control of the 

sprayed volume) 
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Figure 92 Height of the single plants in function of the distance from the row origin. Data collected in two different 

period in[34] province of Lleida, Northeastern Spain, from Merlot, Albarino and Chardonnay fields [34] 

4.2 Pump model and relative control 
The pump used in the experimentation was a Cybernova 12V DC 131 PSI (figure 93). Data 

reported by the manufacturer are limited to maximum pressure and flow rate values and relative 

maximum voltage and current. Furthermore, no experimental data of the time response of the 

pump was recorded, so a simplified model will be developed and controlled in open loop, although 

having a precise dynamic characteristic of the pump would allow to insert a PID control law. As 

specified by the manufacturer, the pump can be controlled though an external valve or modulating 

the input voltage. Our choice has been to use a PWM signal of duty cicle ¬ to control the pump.  ð = ¬ ∙ 12  ð" � 4.28� 

The PWM signal is obtained after an amplification of the 5V dynamic of the MCU though a 

MOSFET, plugged the system directly to the drone battery pack with a voltage regulator. 

 

Figure 93 Diaphragm pump, Cybernova 12V DC 131 PSI 
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To develop the model, the maximum flow rate is considered of 4 L/min and maximum pressure 

of 9 bar (figure 94). These two values are considered as the open circuit flow rate (when no 

pressure load is inserted) and the stall-pressure (pressure produced when the flow rate is zero) 

respectively, when the source voltage is amplified at 100% of 12 V.  The hypotheses needed are: 

1. â�  � 32 and �543�� are proportional, at steady state, to the voltage input (in Volts) 

with a slope computed by the provided data: âZ� ���/FðL = 13ð     j�VZ" � 4.29� �10��� FðL = 34 ð     =�B" � 4.30� 

2. The pressure, in each operating point, is proportional to the current flow, 

expressed in Amperes: � FVL = 32V     =�B" � 4.31� 

3. At a given voltage, the characteristic curve of the pump, expressed as �u�â) is an 

affine function of the type â� � �� with � ≠ ��ð�, namely for each voltage V the 

characteristics are all parallel to each other. � Fâ, ðL = − 94 â � 34 ð � 4.32� 

4. Following the nozzle manufacturer indications, the ideal pressure for a good 

droplet diameters distribution is in between 3 and 6 bar, so that a saturation block will 

play the role of pressure gauge and regulator. 

5. The pressure required by the nozzle to reach a given flow rate is a linear function 

in the operating region. Using the ARAG datasheet values the relationship is: �.�··��Fâ.�··��L ≅ 9 ∙ â.�··�� − 4.2  =�B" � 4.33� 

 

Figure 94 80° hollow cone nozzle Q-p characteristics, from ARAG datasheet 

With Q expressed in L/min. 

 

Figure 95 Thoric Q-p characteristic curves of pump and hollow cone 80° nozzle 

Equaling � �â, ð� and �' II���â' II��� the emerges the relation between the requested flow rate 

and the duty cycle: 
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â.�··��F¬L = 345 ∙ 12 ∙ ¬ � 445 ∙ 4,2 ≅ 0,8 ∙ ¬ � 0,37 � 4.34� 

And in the same way is found the relation between the duty cycle and the current: 

VF¬L = 23 �.�··��F¬L = 23 F9 ∙ â.�··��F¬L − 4.2L � 4.35� 

So, results: 

VF¬L = 23-35 ∙ 12 ∙ ¬ − 15 ∙ 4,2.≅ 4.8 ∙ ¬ − 0,56 � 4.36� 

To keep the optimal pressure region, the duty cycle is saturated by the ideal pressure regulator: ��,�� % ≤ v ≤ �� % � 4.37� 

If the requested flowrate is exactly zero, then the duty cycle is not computed anymore and the 

current equals zero too. So, the current: 

¢ 2,02 £ ≤ V ≤ 4 £        V[ â.�··��_B�A\�10�/ > 0 V = 0                                    V[ â.�··��_B�A\�10�/ = 0 � 4.38� 

And the actual flow rate: 

�0,8 j�VZ ≤ â.�··�� ≤ 1,13  j�VZ        V[ â.�··��_B�A\�10�/ > 0â.�··�� = 0                                    V[ â.�··��_B�A\�10�/ = 0 � 4.39� 

This is a conservative strategy, because ensures that also the plants requiring very low PPP 

volume are sprayed. 

 

Figure 96 Spray system scheme, modified by [9] 

An experimental test bench should be use to retrieve a relationship between the duty ratio and 

steady state flow rate of the pump-nozzle system, as done in [35].  An open loop control of the 

pump has many limitations. First, the pump flow rate response to an applied voltage encounters 

delays due to the inertia of the mechanical components of the pump and of the fluid. Furthermore, 

trusting on the look up table of the pump characteristics becomes reasonable only if an 

experimental data collection is performed. A closed loop control of the pump should consist in 

the real time sensing of the flow rate with a relative adjustment of the PWM frequency through a 

PID signal of the error.  To add some dynamics the pump was modeled as a 1st order transfer 

function with a delay. The time constants values t1 and t2 was  retrieved by experimental results 

in [35], where a PLD1206 diaphragm pump with similar characteristics of  Cybernova 12V DC 

131 PSI connected to a Lechler 110-01 fan-shaped nozzle were tested. 
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â.�··���0� = j−1
⎩⎪⎨
⎪⎧ - 102.1 � 102 ∙ -�−1∙010,8 ∙ ð�1�12 � 0,371  . 

⎭⎪⎬
⎪⎫           V[ j−1 x¬ ∙ �−1∙01y> 0 � 4.40� 

â.�··���0� = j−1
⎩⎪⎨
⎪⎧ - 102.1 � 102 ∙ -�−1∙010,8 ∙ ð�1�12  . 

⎭⎪⎬
⎪⎫                         V[ j−1 x¬ ∙ �−1∙01y = 0 � 4.41� 

where t1=0,53 represents the stabilization time of the pump and t2=0,16 the startup/shutdown 

time delay. The mechanical inertia of the diaphragm pump determines the delay characteristics 

of the spray startup and shutdown, while the mechanical structure and manufacturing process of 

the nozzle determine the spray stabilization time[35]. In the Simulink model this dynamic was 

added considering the non-linear and discontinuous characteristic deduced before: â.�··��F¬L = 0,8 ∙ ¬ � 0,37      V[ ¬ > 0 � 4.42� â.�··��F¬L = 0,8 ∙ ¬                    V[ ¬ = 0 � 4.43� 

From the results below is clearly seen that using the chosen MCU sampling time of 10 

milliseconds the shattered behavior of the steady state response has a magnitude of about 0,02 

L/min. The response of the pump is the composition of pump delay and nozzle dynamic. 

 

 

Figure 97 Pump step response, 53% Duty Ratio, 10 ms PWM sampling time 

5 Spray strategies and adaptive path planning  

In chapter 2 have been discussed some Convolutional Neural Network approaches to recognize 

diseases at a plant and leaf level and simultaneously distinguish “Healthy” plants; in chapter 3 

has been developed a mechanical model of a 25 Kg quadrotor and designed an LQR control on 

the linearized system dynamics and, finally, in chapter 4 has been presented the spray system, 

including hollow-cone nozzle flux profile and deviation experimental relationships with nozzle 

pressure, air speed and rotors speed, an analytical model of the footprint distribution and its 

interaction with the grapevines geometries. The objective of this chapter is to merge all together 

the previous achievements, proposing a realistic scenario in which the disease recognition phase 
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provides a 2D coordinates prescription map containing the PPP needy plants positions and relative 

volume demands. This prescription map, in general, is a points cloud, then, considering some 

case-specific constraints, an algorithm to search for an optimal sequence of waypoints is needed. 

The resulting optimal sequence is then converted offline in a path planning. Two different spray 

strategies are studied, one suitable for intensive spray purpose and another more focused to 

precision spray missions. The offline computed path planning can be handled with one of the two 

strategies, following the application requirements, and a wind estimation algorithm is studied to 

obtain information about the flux deposition area and distribution in function of UAV-air relative 

velocity, through which an online correction of the path planning is possible. The footprint 

coordinates estimation has been exploited both to compensate the spray drift (path correction 

mechanism) and to preserve PPP if the footprint is deviated enough, from the plant barycenter, to 

justify the pump shutdown (proximity check). 

5.1 Spray strategies 
 

5.1.1 Continuous spray  

With continuous spraying is intended the spray strategy in which the UAV releases PPP without 

stop in hovering over the target plant. The immediate implementation of this strategy is in 

intensive spraying of all the plants in a certain area. To have a so large coverage the UAV should 

follows the rows in a parallel way (Cross-Configuration) or orthogonally (X-configuration, not 

considered in this thesis) setting offline a constant nominal flow rate that ensure to be in 60/120 

L/hectare, as explain in 3.1. However, if needed, the strategy can be also adapted to precision 

spray intents, regulating flow rate and drone velocity to indirect control the released volume per 

plant.  Under the hypothesis that the single vineyard can be contained in a 90 cm side square, the 

leaves crown are comprised in between 1-1.5 meters height [34] , with n number of nozzles, and 

the UAV flies at 2 meters altitude, the PPP distribution covers a reasonable portion of the plant 

crown and released a maximum quantity of product, per plant, that follows this approximated 

formula: 

AAA���Z0 = 0,015 ∙ �� ∙ Z�h£ð � 5.01� 

⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ �� ∶     k�0�� [��� B�0� �[ 0ℎ� ������Y�Z�1 1C10��   j�VZ"�h£ð ∶   /B�Z� ����YV0C ���B 0ℎ� B��   �1 "�V0ℎ 0ℎ� ℎC��01�1:;VZ	�� 	B����VZ� Y���BV1�/ VZ � 1A\�B� �V0ℎ 1V/� �[ 90 Y� ÝB����VZ� YB��Z �����1 �[ 1,5 � ℎ�V	ℎ0h£ð [�V	ℎ0 ℎ�V	ℎ0 �[ 2 ��0�B1

� 5.02� 

*The formula comes simply from considering how long it takes the drone to travel the plant (t = 0.9/v secs = 0.9/60/v = 0.015/v). 

Multiplying this time by the flow rate [L/min] gives the volume deposited on the plant (PPP_plant = 0.015*FR/v).This formula 

considers the minimum travel time of the plant, that is when the trajectory of the drone is aligned to the row; in all other cases the 

distance to be covered on the plant tends to 0.9*sqrt(2), consequently the above formula offers the condition that maximizes the flow 

rate so it is to be considered conservative because it maximizes the liter per plant). 

In continuous spraying, while drone overflights the plants crown the flow rate is adjusted in real 

time based on the drone velocity, supposing its trajectory is aligned with the row, as explained in 

(5.01). When the requested flow rate overcomes the upper or lower limit that the pump can 

manage or to have an optimal droplet size, the UAV velocity must be changed. If, at velocity �z{u∗ the requested flow rate ��¡�D is greater than the maximum (1,13 L/min) of ∆�� , than: 

��B�A = ����# �∆�� = AAA���Z00,015 �h£ð∗ � 5.03� 
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To lower ��¡�D than �z{u∗ must be reduced with a gain P = }_O)~}_O)~I∆}_ to reestablish a request 

flow rate within its limits. If the requested flow rate is under ����� the reasoning is 

complementary: 

⎩⎪⎨
⎪⎧P = ����#����# �∆��,   ∆�� = ��B�A − ����#       V[ ��B�A > ����#P = ���VZ���VZ �∆��,     ∆�� = ��B�A − ���VZ       V[ ��B�A < ���VZ � 5.04� 

This spraying mode has 3 main limits if applied in precision spraying: 

• If the requested volume is too great K 0, and it means the UAV should remain 

stationary to accomplish the delivering. It basically collapses to a Point-to-Point strategy.  

• When the proximity check is too strict (i.e the threshold radius is too small) the 

continuous spray risks to spray less volume than needed at the end of the mission. For 

this reason, unless the prescription map is particularly heterogeneous, is better to relax or 

deactivate the proximity check, but this could lead to larger amounts of weak PPP. 

Adjunctively a safety factor can be insert in the effective PPP sprayed volume, leaving 

enabled the proximity check, but increasing the requested volume. 

• When the velocity must be changed to keep the pump operative range the control response 

must be fast enough to ensure that velocity before exiting the target plant area. Since the 

steady state velocity of the UAV is within 2-3 m/s and the characteristic length (aligned 

with the row) of the grapevine is 90 cm the UAV spent about 300 milliseconds over each 

plant, so the control must respond in a fraction of this time. 

• As will be seen in the next sections the wind estimator performs better while the UAV is 

stationary, making the continuous spraying mode less reliable for path correction 

purposes. 

Although those criticalities, the continuous spraying mode is the first choice when the request an 

intensive spraying session of all the plants in field and the velocity of the mission worth more 

than precision. 

5.1.2 Point-To-Point spray 

Differently by the continuous spraying, the point-to-point (PTP) is studied to ensure that each 

plant receive its own product demand volume, as far as the delivered volume estimation 

mechanism is reliable. To do this the PTP strategy consists of sequentially visiting each to-be-

treated plant, overflight them, correct its position trusting on estimated wind and the consequent 

footprint center coordinates, and spraying when the footprint center is within the radius imposed 

by the proximity check. This mechanism permits a greater control of the per plant sprayed product 

than in continuous case. Not considering the error introduced by the flowmeter and eventual 

leakages, at the end of the mission the total sprayed volume will be exactly equal to the total 

requested volume, differently by the continuous spraying mode. This implies higher 

Delivered/Requested (equal in this case to Delivered/Sprayed) ratios for PTP than the continuous 

spraying mode, although the more is reduced the proximity threshold radius the more time is 

required to complete the mission. PTP is more suitable for chirurgical spraying purposes, while 

can become too much slow for substitute the continuous spraying when there is not an evident 

heterogeneous PPP demand among the plants, and most of the plants in the field must be treated. 

Is important to notice that, both for the continuous and PTP cases, the Requested volume does 

referment simply to the volume prescribed to be delivered but is not necessarily the same of the 

volume that the plant requests. Indeed, whatever is the way in which the quantity of product 

needed is computed, the analysis of the next session will provide the Delivered/Requested ratios 

in different cases to compensate them with, for example, a correspondent over estimation of the 

Volume demand in the prescription map computing in the PTP case, or in an under estimation of 
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the drone velocity or over estimation of the PPP-plant volume in the continuous spray mode. 

When a waypoints sequence is ready to be used, the UAV changes its trajectory in real time, 

stationing on the target plant until its mission is computed. PtP introduces a time delay in the 

offline computed path who is essentially a time-out of the path tracking active until the desired 

PPP volume is sprayed. As explained, the prescription map can provide a 2xN matrix PMxy 

containing the (x,y) coordinates of the N waypoints sequence and a N-dimensional vector PMp 

containing the prescribed volume for each waypoint. Given a constant inter-waypoints velocity � 

(set to 3 m/s in all the PtP simulations), when the GPS recognizes the drone approaches a waypoint 

f within a certain tolerance distance, the system follows the following steps: 

• The drone is stopped in hovering over the waypoint. �#, C�B�[,D = �#, C�B�[,D−1 � 5.05� 

• Estimates the wind and correct the position to allow the footprint center coincides 

with the target plant barycenter. 

• If the footprint center is within the proximity radius threshold the flow rate goes 

to its nominal value (1,13 L/min) otherwise the pump shuts off. Simultaneously the 

flowmeter signal starts to be integrated only when the pump is active (to avoid eventual 

bias integration during the quiescent phases) obtaining the estimated volume delivered to 

plant f. 

• When the delivered volume reaches the requested volume PMp(f) of the target 

the counter f is increased (f=f+1) and each time step Ts the reference is computed as: �#, C�B�[,D = �#, C�B�[,D−1 � � ∙ ;cosFwD−1L ,sinFwD−1L= � 5.06� 

where wR is the orientation angle in the inertial plane (x,y) of the line connecting �#, C�¡�­,RO� and A�#­: wD = �0�Z2 SA�#CF2, [L − CB�[,D−1, A�#CF1, [L − #B�[,D−1   U � 5.07� 

Once the drone position (x,y) passes in the neighborhood of PMxy(:,f) the path is kept 

constantly to the current value. �#, C�B�[,D = �#, C�B�[,D−1 � 5.08� 

And the routine is repeated. 

 

• When the UAV reaches for the second time the starting point the simulation is 

automatically stopped. 
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Figure 98 PtP strategy, state tracking 

In figure 98 is presented a typical too sensible proximity check situation in which for each 

waypoint the drone overflight the plant in presence of 4 m/s wind mean and rapidly On/Off the 

pump at a nominal flow rate of 1,13 L/min. This happens because in this case the proximity radius 

was set to 22,5 centimeters, and the footprint center is continuously deviated by the variable wind 

intensity and by the UAV control intrinsic errors.  

5.2 Offline path planning 
In a first stage, small UAVs should diagnosticate diseases capturing images of all the plants, 

extract images features and use them to classify the pathological status of the plants. Fusing those 

data with a 3D map of the field, the system should be able to produce a prescription map whom 

elements correspond to each plant position in the axes of referment and the relative product 

demand of the plant in that position. From the prescription map a disordered set of waypoints is 

extracted under the form of a 2xN matrix in which each column contains the (x,y) N coordinates 

of waypoints with respect to the inertial reference frame. Adjunctively a 1xN vector associates to 

each waypoint a prescribed PPP volume demand, e.g., extracted by the pathological status of each 

target plant by some continuous relations, or simply set to a constant value for all the positives 

targets. In 4.2 prescription maps was obtained posing non-zero a certain number of randomly 

picked elements of a matrix with dimension Z¡ �5 � Z��3�45. The number of rows and plants is 

strictly linked to width and length of the operating area considered, since in chapter 4 has been 

fixed geometrical properties of plants, plant dimension (90x90 cm) and inter-row distance (2 

meters). The 2D prescription map obtained is often normalized to have a maximum volume 

demand less than the tank capacity of 10 Liters. At the end of the chapter, where a complete 

simulation of all the mission stages will be presented, the prescription map will be derived from 

the use of dataset and CNN algorithms seen in chapter 2. 

5.2.1 Modified Traveling Salesman Problem 

Once the prescription map is submitted, the subsequent task is to find the visiting sequence of 

waypoints which minimize the charge consumption of the quadrotor. Concerning about the 

distance minimization only, the problem is the well-known Travelling Salesman Problem (TSP). 

The historical origin of the problem is unclear, but was formulated as: 
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“Given a list of cities and the distances between each pair of cities, what is the shortest possible route 

that visits each city exactly once and returns to the origin city?” (Wikipedia) 

The problem belongs to the class of Non-deterministic Polynomial-time Hardness problems (NP-

Hardness) and does not exist an exact analytical solution.  If the number of “cities” is low enough an 

exact brute force algorithm can be applied, however the number of permutations is  �n − 1�!/2 , where 

n is the number of cities. This means that if the number of ill plants is 100/hectare a brute force 

approach would requires 46663∙10151 permutations per hectare to find the global minima. In recent 

years have been developed many heuristics algorithms to tackle the problem. The most present in 

literature are genetic algorithms (GA), ant colony optimization (ACO), artificial neural networks 

(ANN), learning-based (LB) methods, particle swarm optimization (PSO), fuzzy logic (FL) and 

many others, as suggested in the survey [36]. The most used is the genetic algorithm, that shows 

high performance, in terms of computation time needed to find a local minimum of the problem, 

so for a higher presence of references and studies this has been our choice. The fundamental idea 

of the genetic algorithm is to generate an initial generation of individuals (in our case an initial 

bunch of waypoints sequence vectors). Then the individuals who best fit a certain cost function 

survive and parts of their genes (in our case sequence vectors elements) are combined and 

exchanged or permuted forming a new set of individuals who belong to the subsequent 

generation. The gene combinations follow different probabilistic logics that varies in function of 

the complexity of the algorithm. This work is based on the algorithm developed by Maxim 

Vedenyov in 2022 (Travelling salesman problem with Genetic algorithm; 

https://www.mathworks.com/matlabcentral/fileexchange/31818-travelling-salesman-problem-

with-genetic-algorithm, MATLAB Central File Exchange. Retrieved January 26, 2022.). The 

algorithm presents three kinds of recombination, each one associated with its probability of 

occurrence per generation: 

• Probability �� of mutation of exchange 2 random cities of the same path. 

• Probability ��,
 of mutation of exchange 2 random pieces of the same path. 

• Probability ��,­ of mutation of flip random pieces of the same path. 

We have used the value suggested by the author, namely �� = 0,01; ��,
 = 0,02; ��,­ = 0,08. 
A first test of the algorithm was done comparing the optimal distances found by the GA with the 

actual global minimum searched with a brute force.  In the comparison were inserted 10 sequences 

with a number of waypoints spacing between 4 and 12. For the first sequence the brute force 

needed 3 permutations to find the optimal, while for the last one 19 958 400. In all the cases the 

GA was able to find the optimal solution within few seconds. The number of generations was 

3000 and the population size was of 30 individuals. Waypoints were generated randomly in a 

squared area of 30x30 m2. 

 

Figure 99 12 Waypoints, optimal solution found by GA (Left) and the Brute force method (Right) 
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Table 18 BF/GA comparison 

 4 5 6 7 8 9 10 11 12 
waypoints 

GA 
solution[m] 

63,08 43,47 77.75 95,9 75,58 91,91 98,129 91,551 102,64 

BF 
solution[m] 

63,08 43,47 77.75 95,9 75,58 91,91 98,129 91,551 102,64 

To test the algorithm on higher number of waypoints the GA solutions were compared with a 

Nearest Neighborhood (NN) algorithm and with a modified version of the same which considers 

the vineyard geometry (modified NN). The NN found the optimal path choosing as next waypoint 

the next among all the others, without repetitions. NN is a simple algorithm widely used to solve 

rapidly the TSP in literature for its simplicity, speed, and reasonable results. The modified NN 

algorithm, as shown in the flow chart below, considers the discrete nature of the space in which 

waypoints can appear. Indeed, waypoints can be present only each row (each 2 meters in y 

direction) and each plant are distant by 90 cm. Before to pass to next row the algorithm chooses 

the nearest waypoint present in the row. Once the last waypoint in the last row is visited the 

algorithm chooses as successor the nearest tailender waypoint present in the nearest row. Both 

NN and modified NN chooses as last waypoint the starting point. 

 

Figure 100 Modified Nearest Neighborhood algorithm for vineyard geometry 

Is worth noticing the modified NN is substantially an optimized version of the path planning used 

in the continuous spray mode, where each row is completely visited. This is the distance that the 

UAV should cover if travels following the entire rows lengths and then come back to the starting 

point, covering all the plants. This distance, in 30x30 m2 area is constantly equal to: 

/B�[,   ;;=30 �  = ;; ∙ ;;jVZ0�B−B�� � ;; � ;;2 � [52 ∙ ;; = 523,4348 � � 5.09� 

where has been considered the sum of the length of all the rows containable in a ;� square side 

(;� ∙ ���N�*,������, the summation of all the inter-row turnings (;��, the half row that has to be travel 



 

109 

 

at the beginning, since the origin is define at the 15-th meter of the bottom first row, (
��
 � and the 

minimum comeback length that the drone has to travel once overflight the last top row (
√�
 ∙ ;��. 

In figure 101 can be seen that when the number of waypoints approaches the total number of 

plants in the area it starts to coincide with the referment path planning studied in the previous 

chapters. 

 

Figure 101 modified NN solution with 240 waypoints (Left) and 513 (100% filled map) (Right) 

A 30x30 m2 map was generated and 20 different waypoints sequences with a progressively 

increasing of their size were obtained. For each sequence each algorithm provided the sequence 

of the minimum distance path and their computation time. The GA was running with population 

and generation size proportional with the number of waypoints to leave the algorithm to adapt 

combinations and iterations with the increasingly complexity of the problem. ���\��0V�Z 1V·� = 2. 	�Z�B�0V�Z1 = 800. 

 

Figure 102 Genetic Algorithm, NN and modified NN best distances (Left) and computational time (Right) in function 

of the number of waypoints to be connected (the total number of plants in the 30x30 m2 area is 513) 

As can be noticed in figure 102, GA provides the minimal distance among the alternatives under 

300 waypoints, then continuous to increasing someway linearly with the number of waypoints. 

Under 250 waypoints the conventional NN is able to find the second minimum distance over 
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which is overcame by the modified NN. As expected, the modified NN converges to the referment 

distance as the waypoints increase. In the table below are collected the rankings of the three 

algorithms, in referment with the solution found against the optimal, in different intervals of map 

filling density. 

Table 19 GA, NN and modified NN ranking in function of map density, where / = '��í 100 

 
 < '�% '�% ≤ 
 < �Ù% �Ù% < 
 ≤ ��% 
 > �� % 

 
GA 

 

1st 

 

1st 

 

2nd 

 

3rd 

 
NN 

 

2nd 

 

3rd 

 

3rd 

 

2nd 

 
Modified NN 

 

3rd 

 

2nd 

 

1st 

 

1st 
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Figure 103 NN, modified NN and GA optimal sequences for different number of waypoints 

It is possible to see that the GA solutions become rougher as the waypoints increase, suggesting 

that the number of generations and/or population size should increase more than linearly with the 

number of waypoints to reach similar optimality for increasing sizes of the problem. However, 

the computational time needed to solve for example the 240 waypoints TSP was about 4 hours, 

reaching up to 10 hours for the fully filled map against the almost constant few seconds needed 

by NN and modified NN (time was measured with the function tic-toc in MATLAB on Acer Nitro 

AN5N5 laptop). From those reasonings emerges that, when the prescription map starts to become 

too dense, the time needed to get a travel with distance less than /¡�­   could overcomes the 

reasonable amount of time that could passes between the missions, and the better choice could be 

to use the straight-forward path planning of referment, namely the modified NN. In this thesis is 
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supposed that  the UAV covers an area of 900 m2 in a single mission, where about the 10-30% of 

the plants can be diseased (i.e. about 50-150 plants) and several hours (or days) can passes 

between two missions. In this way, the ability of GA to find the best solution among the three 

algorithms is preferred to the extremely faster solutions provided by the NNs. However, a hybrid 

solution could be thought. For example, the map density check could be also applied at a lower 

scale, i.e., to face too dense sub-areas of the prescription map their barycenter can be treated as 

single waypoint by the genetic algorithm to find the global optimal sequence, then be interpolated 

with a continuous line that follows the rows between the first and the last point of the cluster. 

Since this problem implies many other questions, such as the use of continuous or discrete 

movement and spraying and how to define a mechanism to automatically distinguish between 

clusters and insulated plants, this topic has been left for future works and developments. By the 

way a possible scheme of the algorithm is proposed in figure 104. 

 

Figure 104 General purpose path planning optimization algorithm block scheme 

Although these criticalities, can be seen that for a number of way points less than 50% of the total 

number of plants in 30x30 m2 squared area, GA offers the opportunity to reduce the referment 

travel distance running for maximum few minutes, showing its suitability for low-medium density 

ill plants spraying purposes. This is the analyzed case. So, considering the simpler problem of 

reaching a certain number of insulated target plants, the Traveling Salesman Problem cost 

function, namely the travel distance, has been modified to further increase the UAV autonomy, 

keeping the same number of plants sprayed. Minimizing only the distance does not consider the 

emptying history of the PPP tank. During its travel the UAV loses weight and pushes its flight 

time horizon forward, so the earlier it reduces the payload the more is the gain in autonomy. In 

other word must be minimized the time integral of the yet on-board PPP volume, or, since in this 

case study the UAV is programmed to have always the same inter-waypoints velocity, the space 

integral of the same quantity. Supposing the UAV being in hover the thrust must be proportional 

to the total mass. Since the mechanical power is A = P ∙ ¼í = r¼ = �J�� ∙ kℎB\10 ∙ ¼, then results 

the power to be proportional to ð �± 3¡2,R�,�. Given N number of waypoints, counting the starting 

point two times as first and last waypoint, ð �± 3¡2,R the PPP volume, in Liters, still present in 

the drone tank between the waypoint k and k-1, and  /R the distance between the waypoints k and 

k-1, the cost function is: 
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ã = � ð�Zi��B/,D1,5 ∙ /D.
D=2 � 5.10� 

Theoretically, minimizing this cost function means to prefer spraying first the subset of highest 

demanding plants that simultaneously require to cover the lowest distance to be reached. This 

means that minimizing only ã�3u� 32 can also lead to the minimization of the total travel distance. 

Anyway, simulations show that passing only ã�3u� 32 as a cost function to the GA the optimal 

travel distance found is typically higher than that one found passing as cost only the total distance. 

The third option is the definition of a coupled cost function weighting the two terms: ã��C���/ = �1 ∙ /V10�ZY� � �2 ∙ ã � 5.11� 

Wight values was tested fixing �
 = 1  and leaving ��varying between 0 and 10. Has been 

noticed that for �� ≫ 1 and �� ≪ 1 the GA behaved too similarly the only distance approach or 

the only weight time integral, respectively. Therefore, in the coupled cost function the two weight 

was posed equal to 1, values at which the algorithm have shown a significant difference in the 

solution search with respect the two extreme cases. To demonstrate the performance of the 

algorithm of Maxim Vedenyov with the modified cost, two scenario was analyzed, using the 

Simulink model discussed in previous sections provided with all the designed features 

implemented, in absence of wind or other disturbances. In both scenarios there were 56 cities, 

300 individuals per generations and 30000 generations. The simulation stops when the starting 

point is reached for the second time. The first scenario is the optimization of waypoints sequence 

in presence of a strongly heterogenous PPP volume demand. In this case few waypoints (that in 

general could indicate the barycenter of plant clusters) need most of the total volume. As can be 

seen in the three figures below (figure 105,106,107), the traditional only distance solver is able to 

find the shortest path, but not considering the payload history consumes the most. The only weight 

time integral case saves 1040 mAh but follows the longer path. Surprisingly the best is the 

coupled solution with the best J value, the 2nd shorter path (about 110 meters longer than the 

optimal) and the lower charge consumption, namely 15836 mAh, against 16022 mAh of the only 

weight time integral and 17062 mAh of the only distance. 

 

Figure 105 Charge consumption (Motors+Pump), optimal distance and optimal J value for different weights of the 

cost function, Heterogeneous volume demand 
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Figure 106 Charge consumption histories for the different cost function results, Heterogeneous volume demand 
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Figure 107 On board volume history, Only distance (Top-left), Coupled (top-right), Only weight (bottom), 

Heterogenous volume demand, 56 cities 

The 2nd scenario consisted in a uniform distribution of PPP demand across waypoints. In this case 

the sequence of waypoint almost does not influence the J value anymore. Seeing the three graphs 

below, can be noticed that the worst option is the only weight time integral case, with 17157 mAh 

consumption, followed by the coupled case with 16274 mAh and the only distance case, with 

16206 mAh. As in the previous case the coupled const function reveals able to reach shorter path 

and lower J values than the only weight. Since, in general, the coupled cost function seems to be 

able to find a short path and, simultaneously, shows great robustness against heterogeneous 

volume demands there are two options: 

• Use always the coupled cost function; this could lead to often have the minimization of 

the autonomy unless the PPP demand is strongly uniform. In the last case, although for a 

small gap, the only distance, i.e., the traditional Salesman Problem sub-solution should 

be the best choice. 
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• Analyze, before the application of the solver, the PPP demand distribution and set the 

cost function weights following some relation found between them and the statistichal 

modes of the distribution (e.g. a monotonically increasing relation between the PPP 

distribution variance and the weight w2 ). 

Since the second option is laboriousness, and the gain in autonomy seemed to be not so large, 

we’ve opted to always use the coupled cost function.  

 

Figure 108 Charge consumption (Motors+Pump), optimal distance and optimal J value for different weights of the 

cost function, Uniform volume demand, 56 cities 

 

Figure 109 Charge consumption histories for the different cost function results, Uniform volume demand 

The TSP studied here was developed in 2D, but the 3D case is simply obtainable with small 

modifications. As discussed in [6] the path finding task cannot be focused solely on the optimal 

waypoints sequence. In the working space there are fixed obstacles and moving objects that could 

intercept the straight lines connecting two subsequent waypoints. The A* algorithm and the Theta 

algorithm are two ways perform an offline/online path finding act to adjust the original path 

planning to find the minimum distance to connect two waypoints when the Line of Sight (LoS) is 

compromised. The offline path finding should be based on previous 3D mapping of the working 
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area, while an online path finding can be actuated through on-board sensors that perform a LoS 

checking in real time, such as Lidars and ultrasound proximity sensors. Adjunctively a 

Capacitated Vehicle Routing Problem (CVRP) solver should be used upward the TSP in order to 

consider the limited tank capacity of the UAV and thereby choose to visit only the waypoints who 

ensure the not exceeding of the tank volume, but those themes were not in the scope of this thesis 

and was left for feature works. 

 

Figure 110 On board volume history, Only distance (Top-left), Coupled (top-right), Only weight (bottom), Uniform 

volume demand, 56 cities 

5.3 Online adaptive path planning in wind environment 

5.3.1 Footprint center coordinates estimation 

Given a path, the UAS must be able to recognize the footprint center position to accomplish better 

the spray mission. A real time correction of the offline computed path planning can be used to 

increases the PPP effectively released on top the plants (so the D/S ratio) and knowing the relative 

position of flux and plants barycenter makes possible to shut off the pump when the footprint is 

out-of-target following a certain threshold distance. In this section will be analyzed the “proximity 

check” and the “path correction” mechanism and their influence on the spray system performance. 
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Figure 111 Online adaptive path planning, blocks scheme 

For what concerns the path correction on the base of the wind speed we will assume that the 

spraying is optimal only if the center of the elliptic section, obtained intersecting the ground plane 

with the 3D profile of the flux, coincides with the plant position. The last sentence can be 

considered a good first approximation, although more specific requirements for the plant-flux 

interaction exist. The curve used is a quadratic relation between the altitude ·  of the nozzle and 

the deflection of the swath axis at the ground footprint, where the last is the Euclidian distance 

between the center of the spray cone and the vertical axis passing from the nozzle and orthogonal 

to the ground plane; the curve is obtained as average between inner and outer lateral profile curves 

discussed in chapter 4. This curve is defined in the same plane of the relative air-UAV velocity 

vector �¡ccc⃗  , and the B axis is directed in the same versus as �¡ccc⃗ . BFéB�0�B,b�Bccccc⃗ b L = ©FéB�0�B,b�Bccccc⃗ b L ∙ ·2  �(FéB�0�B,b�Bccccc⃗ b L ∙ · � 5.12� 

5.3.2 Footprint-plant center proximity check 

Once is available the coordinates of the to-be-treated plants, the UAS can easily compute the 

distance between the estimated footprint center and the target barycenter, as far as EKF 

positioning and wind/footprint estimation mechanism are reliable. Whatever is the modality in 

which the UAS approaches the plants and the spray strategy used, this is what happens in real 

time: 

• Computing the minimum Euclidian distance between the footprint center and the 

target plants positions. 

• If the distance is under a certain threshold the flow rate is the one computed, 

otherwise is zero. 

The proximity check can be set in terms of threshold radius. The more the radius is short the more 

the mechanism is specific, namely unlocks the pump only if the UAS is almost over the target. 

To evaluate the proximity check in continuous spray was prepared a simulation in which the drone 

follows 5 20-meters-length rows starting from the half of the first and stopping at half of the last. 

The pump worked at the constant flow rate of 0,98 L/min. The UAS moved, over the rows, at the 

constant velocity of 1 m/s at 2 meters altitude. The UAS-crown distance was 50 cm (see 4.1). The 

path in which the drone overflight the active surface was 80 meters length, therefore the UAS 

overflight the grapevines in 80 seconds and the maximum sprayable volume was 1,32 L, that was 

set equal to the Requested volume. In one case the threshold was set to one half of the plant side, 
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namely 0,45 cm, and all the plants are seen as target plants with a needing of 0,015 L (1,32L/88 

plants). The result of these reasonings is in figure 112: 

 

Figure 112 From top to bottom: Delivered PPP distribution in the plane, Delivered PPP per plant, first simulation 

with Threshold= 45 cm 

In the bottom graph plants are enumerated by 1 to 22 for each row. Can be see, as expected a 

medium release of 0,015 Liters per plant. In this case the total released volume is of 1,21 L and 

the delivered volume of 1,149 L.  

Table 20 Spray quality indexes with proximity threshold at 45 cm, Cross-configuration 

Threshold Request
ed 

Volume 

Spraye
d 

Volume 

Delivere
d 

Volume 

Delivered/Requeste
d Volume 

Delivered/Spraye
d Volume 

45 cm 1,32 L 1,21 L 1,149 L 1,149/1,32=0,87 1,148/1,21=0,95 

In a second simulation the threshold was set to 0,9 m: 

Table 21 Spray quality indexes with proximity threshold at 90 cm, Cross-configuration 

Threshold Request
ed 

Volume 

Spraye
d 

Volume 

Delivere
d 

Volume 

Delivered/Requeste
d Volume 

Delivered/Spraye
d Volume 

90 cm 1,32 L 1,31 L 1,19 L 1,19/1,32=0,91 1,19/1,31=0,91 

It can be deduced that if the characteristic length threshold is reduced the spraying process 

increases its spray efficiency, so the Delivered/Sprayed ratio, while becomes energetically less 

efficient, i.e., less liters are released for unit time and so for charge consumption unit, and 

consequently decreases the Delivered/Requested ratio. As can be seen, increasing the threshold 

also leads to a more uniformity in the per plant delivered volume. In this case the process is fast 

and highly efficient because of no wind is introduced. 
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Figure 113 From top to bottom: Delivered PPP distribution in the plane, Delivered PPP per plant, first simulation 

with Threshold=90 cm 

The comparison, in same environmental condition, was done between low and high threshold in 

Point-To-Point strategy applied to a random path, with the same total requested volume as before 

(1,32 L) uniformly divided by 22 targets. What can be seen is that the sprayed volume always 

equals the requested because of the closed loop control of the sprayed PPP amount. What changes 

with threshold is the time spent to accomplish the mission, indeed lower thresholds constrict the 

UAS to be in hover on the target for more time than with higher thresholds. 
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Figure 114 Delivered PPP liters, threshold=45 cm 

With a too sensible proximity check for each waypoint the drone overflight the plant and rapidly 

startups/shutdowns the pump at a nominal flow rate of 1,13 L/min. This happens because in this 

case the proximity radius was set to 45 centimeters, and the footprint center is continuously 

deviated by the variable wind intensity and by the UAV control intrinsic errors. With this 

threshold the Delivered/Sprayed ratio reaches a mean of 0,75, as can be seen in figure 115. In a 

second simulation the threshold radius, in the same conditions of the first simulation, was doubled.  

The relaxation of the threshold leads to a Delivered/Requested ratio lower than the 12 % of the 

low threshold case but reduces also the time needed to complete the mission. 
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Figure 115 Per plant Delivered/Requested ratios, Proximity radius threshold=45 cm 

 

Figure 116 Per plant Delivered/Requested ratios, Proximity radius threshold=90 cm 

Table 22 Spray quality indexes with proximity threshold at 45 cm, PtP 

Threshold Requested 
Volume 

Sprayed 
Volume 

Delivered 
Volume 

D/R D/S time 
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45 cm 1,32 L 1,32 L 0,99 L 0,75 0,75 210 s 

In a second simulation the threshold was set to 0,9 m: 

Table 23 Spray quality indexes with proximity threshold at 90 cm, PtP 

Threshold Requested 

Volume 

Sprayed 

Volume 

Delivered 

Volume 

D/R D/S time 

90 cm 1,32 L 1,32 L 0,83 L 0,63 0,63 194 s 

Decreasing too much the proximity threshold could be not suitable for the continuous spraying 

mode, because plants could receive less volume then needed, because if the footprint exits the 

active zone for a time longer than that needed to overflight a plant then the plant will remain 

unsprayed. A way to circumvent the problem is to command a higher PPP demand than the really 

requested or to slow the drone more than theoretically needed. However, if the prescription map 

is uniform and the aim is to spray all the plants in an intensive manner the proximity check should 

be shut off, since in those cases is more important to ensure a large-scale PPP coverage and less 

important the single plant spray precision. Another idea could be to return on the unsprayed plant 

controlling the delivered volume per plant, but this implies to station over the crop and 

substantially becomes a PtP strategy. Both in continuous and PtP strategies the flow rate command 

could become frenetic, especially if the proximity check is low. If the switch-off and the 

successive startup of the pump is commanded to happen in less than 1 second the response 

decreases its capacity to track the reference signal, producing artifacts as in figure 117: 

 

Figure 117 PtP strategy, too fast flow rate command variation 
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Figure 118 Continuous strategy, too fast flow rate command variation 

5.3.3 Path planning correction and wind estimation 

5.3.3.1 Swath deflection compensator 

The air-UAV relative velocity in the inertial frame is the vectorial sum of the wind inertial vector 

and the opposite of the UAV velocity inertial vector: �Bccccc⃗ = −�h£ðccccccccccccc⃗ � ��VZ/cccccccccccccc⃗ � 5.13� 

The following assumptions are done, some of those come from chapter 4: 

1. Inertial properties of flux droplets are neglected. 

2. The vertical component of the wind vector is considered null. 

3. The nozzle is considered positioned in the barycenter of the UAV. 

4. The hollow-cone nozzle has a perfectly axial-symmetric flux in stationary condition with 

no wind. 

5. The effect of the air velocity on the frontal section flux axis (axis on the plane orthogonal 

to the air-UAV relative velocity) is negligible. 

6. The upward nozzle pressure does not modify the deflection/altitude (r/z) relationship 

7. The wind acts as disturbance for the spray but no drag is exerted to the drone (drag force 

will be introduced in the next simulations) 

The first assumptions lead to consider the drift instantaneous and neglect any adjunctive 

deflections due to the acceleration of the UAV, since the flux, given an air-UAV relative velocity, 

solidly follows the drone. Furthermore, the same assumption, allows to neglect the contribution 

of the drone velocity for computing the path correction factors in the algorithm since the flux 

deformation due to the static relationship with drone velocity �z{uccccccccc⃗  is always pointing in the same 

direction of motion, but shifted of a certain quantity and this means that the flux always will reach 

the waypoints reached by the drone, but with a delay. For this reason, the algorithm will only 

focus on the deflection caused by the wind, that is a good approximation for small UAV 

accelerations. The second assumption literally reduces the problem to a 2D problem. This 

assumption simplifies the computations and can be consider reliable because of the small effect 

that vertical component of the relative velocity can have on the spray and the, typically, low 

vertical wind magnitude at low altitudes. The third assumption is a bit weak because is quite 

distant by the conditions for which the experimental curve was tested, since there are important 

relations between the spray profile and the turbulence introduced by the rotating propellers and 
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in the wind tunnel nozzle there were many nozzles, and all were mounted near the respective 

rotor. However, this assumption relaxes the computation leaving independent the flux deflection 

by the yaw movement of the UAV and leaves to further studies the analysis of the nozzle 

positioning effects on the path correction mechanism. The fourth and fifth assumptions ensures 

that the deflection effect of the air relative velocity is independent by the yaw orientation of the 

nozzle itself. The deflection B is positive in the direction and versus of �¡ccc⃗  in inertial frame, so the 

x and y inertial components of the deflections are: 

�B# �Z = B ∙ cos ���BC �Z = B ∙ 1VZ ��� � 5.14� 

where � is the the yaw angle in inertial frame of �¡ccc⃗  . Then for the consideration done until now: 

� �Bccccc⃗ ≅ ���VZ/,# , ��VZ/,C , 0�� = �0�Z2���VZ/,C , ��VZ/,#�  � 5.15� 

Once BK F� and Bu F� are computed, in real time, the path planning reference signal can be updated 

and corrected with those quantities: 

� #∗B�[ = #B�[ − B# �ZC∗B�[ = CB�[ − BC �Z  � 5.16� 
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Figure 119 state tracking without path correction 

These graphs present the comparison between the control without the real time path planning 

correction and with it when a wind directed at 45° in direction N-O (considering y aligned with 

north) with a constant magnitude of 8,48 m/s is applied: ��VZ/cccccccccccccc⃗ = F−6,6,0L �/1 � 5.17� 

Is worth to notice that, while the algorithm supposes zero UAV velocity in computing the 

correction, in the graph the footprint centers orange line is the ground footprint deflection 

considering a closely complete relative velocity: �Bccccc⃗ ≅ S−#½ � ��VZ/,# , −C½ � ��VZ/,C , 0U � 5.18� 
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Figure 120 state tracking with path correction 

5.3.3.2 Wind model and estimation 

The proposed path correction algorithm is now used downstream a wind direction and magnitude 

estimation. In agricultural field wind measurement is typically executed by means of fixed 

meteorological stations equipped with anemometers. In slowly spatial wind variation, the station 

could be enough to provide an estimate of the local wind speed and direction in each point of the 

field. This is closely never the case if are present obstacles or wind spatial turbulences and the 

requested accuracy in wind estimation is within the m/s in magnitude and ten degrees in direction, 

as in our case study. Many efforts have been focused on localized wind estimation using UAV. 

Many of them consist in onboard sensor that directly measure air-speed, while indirect 

measurement strategies are present in literature, too [10]. 

1. Flow sensors 

Typically, a flow sensor estimates air speed measuring the difference between internal static 

pressure and external dynamic pressure. The typical flow sensor used in large aerial vehicles and 

small fixed-wing UAV is the Pitot tube. The working principle of the Pitot tube is based on the 

pressure drop, due to air speed, between internal chamber and the external environment. The air 
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speed velocity is related to the pressure drop exploiting the Bernoulli equation. Pitot tube is 

considered light and cost-effective sensor, widely used in aerial vehicles. However, it measures 

pressure and air speed in the direction in which the tube is pointing. This means that a real time 

3D air speed estimation would requires several sensors mounted, thereby increasing structure 

complexity and body weight. Furthermore, multirotor UAVs rotors blades generates constantly 

turbulences which could lead to a total misbehavior of the sensor unless it is mounted in specific 

optimal points which minimize the rotor wash. However, finding those points is a difficult task 

which requires CFD analysis and many experimentations to be effective. 

 

Figure 121 Pitot Tube, images from [37] and [38], modified 

2. Ultrasonic anemometers 

Two pairs of ultrasonic Transmitter-Receiver are mounted one facing the other. Is used a Time 

Of Flight approach consisting in the evaluation of the travel velocities of the wave produced by 

TX1 and sensed by RX2 and the second wave produced by TX2 and sensed by RX1. In static air 

condition the velocities are one equal the other. If the air speed is non-zero waves travelling in 

direction opposite to the air speed are slowed and the other are carried. Computing this difference, 

the air speed is estimated.  

 

Figure 122 TOF based Ultrasonic Anemometer, image from [39](left)  and [40](right) , modified 

Another typology of ultrasonic anemometer is based on the acoustic resonance. They have a 

transmitter and two receivers mounted on the same plate. This plate is collocated on top a 

reflection plate at a known distance in order to create a cavity. The transmitter emits waves at the 

eigen frequency of the cavity, and an acoustic resonance is produced which increases the wave 

amplitude in time making it sensible enough when a good Signal to Noise ratio is reached. The 

phase shift between the emitted wave and the received one is proportional to the air velocity in 

the cavity and does not depend on airs temperature and pressure. The composition of two different 

sensors, allows to reconstruct the air speed vector components. 
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Figure 123 Acoustic resonance Ultrasonic Anemometer: DM50 FT7 series from FT Technology [41](Left), image 

taken from [42](Right), modified 

As the flow sensors this anemometer are widely used as cost-effective solution for local wind 

estimation, but their size and structure increase the multirotor weight and complexity and suffers 

of rotor wash. Differently by flow sensors these sensors can measure magnitude and direction 

simultaneously.  The main limit of the ultrasonic anemometers is their sensibility to rain drop and 

pressure/temperature changes because change the speed of sound. Some studies proposes to auto-

calibrate sensors matching data with those one coming from a meteorological tower[10].  

3. IMU and GPS based air speed estimation, Tilt angle approach 

This kind of wind estimation is based only on data provided by the on-board electronics of the 

UAV. Trusting on the dynamical model of the quadrotor and on the control strategy a relation 

between the quadrotor state and the air speed can be deduced, from which wind magnitude and 

direction can be extracted. This method, compared to the other, has no need of external sensors. 

The on-board state estimation can provide enough information to estimate the wind speed. This 

method, as ultrasonic anemometers, can provides wind magnitude and direction simultaneously. 

However, 3D ultrasonic anemometers can measure the vertical component of the wind speed, 

while the IMU based tilt angle approach does not. The tilt angle approach can provide wind 

measurements only in the hovering condition; however, the problem could be circumvented 

through a correction phase based on the accelerometer measurements. Using no external sensors 

completely surpasses the accurate and laborious positioning phase needed by direct air flow 

sensors, while mass and structure complexity kept the same. As mentioned in [10] many studies 

have tried the experimentation of the Tilt angle approach, obtaining results and accuracies in the 

order of magnitude of our interest. For example [11] AirRobot AR100-B quadrotor in a study for 

gas source localization and mapping found an RMSE of 0.6ms-1 and 14,2° and [43] use a DJI 550 

hexacopter with Pix-hawk 3DR in wind and meteorological study, obtaining a wind magnitude 

RMSE of 0.71ms-1 and 14,5° in direction. These studies validate the Tilt angle approach logging 

the quadrotor estimation while is in hovering near a meteorological tower provided by 

anemometer. The following wind estimation algorithm is based on the work in [10] at which a 

correction phase is added to improve the results, as suggested in[44]. Neglecting the vertical wind 

component and rotors mounting tolerances, the only two reasons for which the quadrotor is tilted 

are: 

• Quadrotor acceleration in x,y plane. 

• Air-UAV velocity induced drag force compensation. 
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The main problem, and so the main limitation of the following algorithm, is that while the 

quadrotor acceleration and the tilt angle are linked by a deterministic mechanical relationship, 

Air-UAV velocity drag force compensation produces a constant tilt angle at steady state, but its 

transient adjustment depends on angles control and positioning estimator responsiveness. 

However, the assumption of “instantaneous” drag force compensation produced enough good 

results to be accepted, although some regression techniques could be used to describe a posteriori 

the transient phase. The above limitation is evident when the quadrotor estimates the wind in 

motion operations, as will be shown later. The horizontal thrust component is the vectorial sum 

of the drag force compensation ����� and x-y acceleration �3�������. 

 

Figure 124 vectorial relationships of the wind estimation, image inspired and modified by [10] 

The vertical thrust component magnitude, when the takeoff is done, is equal to: 

3kℎB\10ð�B������������������3 = ��	 � ·�Z¾ � � 5.19� 

And the horizontal: 

3kℎB\10��B������������������3 = ��	 � ·�Z¾ �tan ��� � 5.20� 

The tilt angle � is estimated inverting the relation of the scalar product between ·F� and ·G 2u: 

·=�/C�Z = ��=;0 0 1=k = çcF�Lc��� YF>L � sF�LsF>LcF�Ls��� 1F>L − sF�LcF>LcF�Lc��� è � 5.21� 

·=�/C�Zk ∙ ·�Z = ;0 0 1=k��=k;0 0 1= = cosF�Lcos��� = cos ��� � 5.22� ��� = �acos �cosF�Lcos����� � 5.23� 

While the heading angle � of kℎB\10¯ ¡�������������� is computed as the arctangent of the ·G 2uF� components 

on the inertial horizontal plane: 

� = �0�Z2-cF�Ls��� 1F>L − sF�LcF>LcF�Lc��� YF>L � sF�LsF>L. � 5.24� 

At this point angle and magnitude of kℎB\10¯ ¡�������������� are known and the ����� vector can be derived from 

the vectorial relationship: 
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�¦����� = −��YY������� � kℎB\10��B������������������ � 5.25� 

where �3������� can be directly measured rotating the accelerometer measurements in the inertial 

reference frame plane, multiplying resulted vector by the UAV mass. Results: �¦����� = ^−�#�Z¾ � �F	 � ·�Z¾ L tanF�LcosF�L  , −�C�Z¾ � �F	 � ·�Z¾ L tanF�LsinF�L   ,       0_ � 5.26� ����/VZ	 ðB = �0�Z2SC�Z¾ � �F	 � ·�Z¾ L tanF�LsinF�L,   −#�Z¾ � �F	 � ·�Z¾ L tanF�LcosF�L U � 5.27� 

At the best the control system can do, the ����� force is equal and opposite to the drag force exerted 

by air velocity relative the UAV.  

3�¦�����3 = 12 û ∙ r¦F�L ∙ £�B�7F�L ∙ |�B����|2 � 5.28� 

where: 

⎩⎪⎪
⎨⎪
⎪⎧û = 1,225 P	 �3�       �VB /�Z1V0C VZ 10�Z/�B/ Y�Z/V0V�Zr¦F�L              £VB [��� /B�	 Y��[[VYV�Z0£�B�7F�L                     h£ð �#��1�/ 1\B[�Y� �B�7�Y0V�Z�B����                      �VB −h£ð B���0V�� ����YV0C

� 5.29� 

So �¡>  is estimated in magnitude and angle: 

⎩⎪⎨
⎪⎧|�B����| = s 2 3�¦�����3û ∙ r¦F�L ∙ £�B�7F�L∠�B���� = ����/VZ	 ðB � ò � 5.30� 

Knowing the horizontal UAV inertial velocity outputted by the Kalman filter the wind velocity 

vector is finally estimated: 

��VZ/ccccccccccc⃗ = �h£ðcccccccccc⃗ � �Bcccc⃗ = �r 2��¦�����û ∙ r¦��� ∙ £�B�7��� ∙ cos�∠�B���� � #�Z½ ,     r 2��¦�����û ∙ r¦��� ∙ £�B�7��� ∙ sin�∠�B���� � C�Z½ ,    0  & � 5.31� 

Knowing ����� can be computed the portion of the tilt angle engaged to contrast the air drag force, 

i.e. the angle between the projection of the ·G 2uF�  axle on the vertical plane containing ����� and 

the ·F� axis. It simply results in: 

��¦ = �0�Z2���¦�����, 3kℎB\10ð�B������������������3� � 5.32� 

As suggested in [10] to compute r���� in a reliable way CFD analysis fused with wind tunnel 

tests are needed. The drag coefficient is derived measuring the drag force exerted by a controlled 

air speed for different tilt angles and different rotors velocities (to considering the effects of blades 

induced turbulence). To compute £�¡ E��� a 3D design of the UAV body could be used to project 

the exposed area in the vertical plane toward which the quadrotor is facing. However, to give a 

first estimate of those two crucial parameters the simplified geometry of the UAV, supposed at 

the beginning of chapter 3, is used to model them. Modeling the quadrotor as a cylinder of radius �/2  and height ℎ the tilt angle is used to orient the 3D shape in the space. For small 2D 

accelerations the corrected tilt angle �}�  can be confused with the tilt angle �, so the tilting 

direction of the cylinder is the same direction of  �����. The projected surface is limited between the 

maximum projected surface, namely the base circle surface of the cylinder, and the minimum 

given by the rectangular surface projected by the semi-lateral surface.  

�£�B�7�90°� = ò - �2.2 = £�B�7,��#£�B�7�0°� = ℎ� = £�B�7,�VZ � 5.33� 
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In between this interval the circle is projected as an ellipse with major semi-axis equal to � and 

minor semi-axis equal to � ∙ sin���, while the lateral semi-surface is approximated a rotated 

rectangle projection. 

£�B�7F�L = ℎ� 3cos S��¦U3� 3sin S��¦U3ò- �2.2 � 5.34� 

For the drag coefficient function was used the theoretical drag coefficient for Reynolds numbers 

in the range (10² − 10t� of three extreme cases: 

• For �}� = 0° the lateral surface of a cylinder is exposed at the laminar flux, the r��0°� =1,17 . 

• For �}� = 90° the flat base surface is exposed so r��90°� = 1,17. 

• For �}� = 45° the prism assumes a configuration not presented in the table, so was 

assimilated to a cuboid tilted of 45°, with r��45°� = 0,8. 

Heuristically: r¦ S��¦U = 0,985 � 0,185cos S4 ��¦U � 5.35� 

 

Figure 125 Drag coefficient (top) and projected area (bottom) varying the tilt angle 
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Figure 126 Table of drag coefficients of assorted prisms (right column) and rounded shapes (left column) at 

Reynolds numbers between 10000 and 1000000 with flow from the left, from Fluid Dynamic Drag by Sighard 

Hoerner [45], redrawn and reordered by CMG Lee.   

To simulate the wind was firstly defined the actual drag force exerted on the quadrotor, coherently 

with the model used by the algorithm. The drag force vector is in general independent by the tilt 

direction w (the direction toward the drone is facing to), but if its angle exactly equals  w � Dò  

the drag coefficient and the projected area are the same computed before. That is because it sees 

the elliptical surface and the rectangle projected with the tilt angle and the same 3D geometry, so 

the same drag coefficient, as far the model is good. Leaving the w � Dò  direction, the ellipse and 

the rectangle projected over the plane orthogonal to the air flux field (parallel to the ground) start 

to be compressed in their major axis direction and with an angle equal to the difference between 

the drag force vector angle and  w. In the same way increasing the angle the air flux continues to 

see a rhomboidal geometry with the frontal edge the inclines as more as the angle increases, until 

reaches a flat rectangle when the drag force is orthogonal to w. 

 

Figure 127 Schematic representation of projected area seen by wind coming from different directions while the tilt 

angle is non-null 
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Analytically, the drag force model written in this form: �¦����� = ��VZ/��������� − ��h£ð���������� � 5.36� 

3�¦�����3 = 12 û ∙ |�B����|2 ∙ �r¦F�L ∙ £�B�7F�L ∙ cosF∠�B��� − wL2 � r¦F0L ∙ £�B�7F0L ∙ sinF∠�B��� − wL2� � 5.37� �¦����� = 3�¦�����3 ∙ ;cos�∠�B���� ,sin�∠�B���� , 0= � 5.38� 

Is not pretended to have a right model of the drag force, both because there is a lack of 

experimental data for infer r� and £�¡ E, and, mainly, because it was used only to validate the 

wind estimation mechanism. Therefore, the priority was to make ����� values and its tilt angle 

dependencies coherent with those inserted in the wind estimation algorithm model. To compute �¡> = ����2������� − �z{u������ a probabilistic model of  ����2������� in direction and magnitude is proposed. There 

are in general 2 possible approaches[46]: 

• Probabilistic micro-approach: different regions of the UAV could be subjected to 

different wind direction and magnitude. 

• Probabilistic macro-approach: the quadrotor is seen collapsed in its CoG, namely affected 

by the same wind in the whole structure. 

It will be used the micro-approach for simplicity and stability of the simulation environment. As 

discussed in [10] the wind simulation consists in a random vectors generation, representing the 

wind velocity at a specific point in the space, composed by a constant term and a variation term 

representing the gust. The gust can be modeled following the continuous gust model or a discrete 

gust model. The continuous gust model makes use of suitable shaping functions (Karman, etc..) 

that output the Power Spectral Density (PSD) of the wind velocity taking in input a white gaussian 

noise. The discrete gust approach, used in this thesis, models the gust as a step following certain 

time characteristics that gives randomness to the wind magnitude and direction. The proposed 

model of the wind will consist of a slowly variable systematic 2D vector summed with a fast 

variable gust vector: ð�0� = ð1�0� � ð	�0� � 5.39� 

In the same way the direction ¬�0� of the wind (the wind vector angle) in the x-y plane is modeled 

as a random vector in the range -180°, 180°.  The three variables were simulated through three 

random number generators in Simulink, with the following characteristics: 

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧  h�ð1�0�� = 4 �1Y�ð1�0�� = 2 �1h�ð	�0�� = 0 �1Y�ð	�0�� = 0,33�1h� ¬�0�� = − ò2Y� ¬�0�� = 6,5°

� 5.40� 

The random number generator of ð5�0� updates with a sampling time of 10 seconds, that one of ðü�0� with a sampling time of 0,1 seconds and a sampling each 6 seconds for ¬�0�. Downward 

these three random generators were inserted a low pass filter to smoothy the instantaneous 

changing in the values. The cutting frequency was of 0,1 rad/s for ð5�0� and ¬�0� and 1 rad/s for ðü�0�.  

5.3.3.3 Path correction through wind estimation 

Unifying the swath deflection compensator described in 5.3.3.1 and the wind estimator of 5.3.3.2, 

a set of simulations were prepared to evaluate the global performance of the mechanism in 

different conditions. The in-motion spray mode and the static spray mode were analyzed, to 
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highlight different responses that the algorithm could give in the two individuated spray strategies, 

continuous and point-to-point respectively. To show the stand-alone performance of the 

algorithm, the input Euler angles were taken from the model in the next simulations, then at the 

end of the demonstration the wind estimation was based on the Euler angles estimated by the 

EKF. A first simulation was performed with an ideal constant-magnitude/constant-direction wind 

of 4 m/s coming from north, so with a wind vector angle of -ò/2, while a second simulation with 

a wind mean of 4 m/s, a wind standard deviation of 2 m/s, a gust with zero mean and 0,3 m/s 

standard deviation, a direction with mean 270° and a variance of 40°. In the simulations is 

implemented also the path correction that tries to keep the footprint position at the plant position 

(-0,45,0) in the plane. As done in the proximity check section, the continuous spray is tested 

considering 0,015 L per-plant demand, so a total of 1,32 L in the 88 plants of the 80 meters path, 

and for the PtP the requested volume was left coincided with the total sprayed, while the proximity 

check was disabled in both the strategies to highlight the autonomous capacity of the path 

correction algorithm to deliver liters on top of the plants. The wind estimation starts to be reliable 

after the take-off because the drag force estimation is based on the equilibrium thrust, reached in 

hovering, so also the footprint estimation starts after take-off. Is worth noticing a variance in the 

quadrotor and footprint position in S-W/N-E directions. It could be misleading; indeed, this 

oscillation is not due to the path correction algorithm but is the UAV control reaction to the small 

but constant EKF estimation error of pitch, roll and yaw. As can be seen in figure 128 the two 

errors are quite similar in magnitude, while the pitch is negative and roll is positive, causing an 

inclination toward S-W shifted clockwise by the yaw error. 

 

Figure 128 EKF Euler angles estimation and errors 
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Figure 129 Static case, path correction based on the estimated ideal constant wind, directed from N to S 

Coherently with the previous swath analyses the deviation is about of 40 cm; the drone adjusts its 

position to track the footprint at the plant position. In figure 130, is represented the wind 

estimation in magnitude and direction, and relative errors: 
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Figure 130 Wind estimation in magnitude and direction, static case, constant wind 

Using, instead the wind model presented above the footprint distribution is quite more chaotic, 

but the path correction algorithm performed as well as in the constant wind case, correctly 

estimating the wind and adjusting consequently the drone position. The wind direction estimation 

has some spikes caused by the arctan domain comprised between 360° and -360°, so those spikes 

are not considered as errors, since they exactly equal 2ò. 
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Figure 131 UAV State tracking, static case, variable wind 
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Figure 132 Wind estimation in magnitude and direction, static case, variable wind 

In this case starts to emerge the main limit of the algorithm. The fast-varying wind leads the drone 

to accelerate in few seconds in different directions to keep the position. This situation causes the 

increasing in number of transients affecting the capacity of the attitude to reach a stationary 

condition, namely the principal requirements to obtain a precise estimation of the wind. In the 

following graphs are shown the footprint center position in inertial frame overlapped by the 

estimated footprint center position, and the footprint centers distribution in real and estimated 
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case. Can be seen that, despite the increased error in wind estimation, the footprint center 

estimation tracks the real in a reasonable way, with errors in the order of few centimeters: 

 

Figure 133 Footprint center coordinates, Estimated vs Real, static case, variable wind 

Finally, with the same last wind statistics, the path correction algorithm was also tested when the 

quadrotor followed the Cross-configuration path planning:  

 

Figure 134 Footprint center coordinates, Estimated vs Real, cross-configuration case, variable wind 
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Figure 135 UAV State tracking, cross-configuration case, variable wind 
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Figure 136 Wind estimation in magnitude and direction, cross-configuration case, variable wind 
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Table 24 Wind estimation algorithm performance in simulative environment, model aided 

UAV model aided Wind magnitude 
estimation RMSE [m/s] 

Wind direction estimation 
RMSE [°] 

Static/Constant wind 0,21 4,5 

Static/Variable wind 0,23 12,7 

Dynamic/Variable wind 0,51 8,61 

In cross-configuration movements the wind estimation root mean squared error increases both in 

terms of magnitude, passing by 0,2 m/s of the static case to about 0.5 m/s, and in terms of 

direction, passing by 4° at about 9°. Main error’s peaks are in correspondence of the driving 

inversion of the drone at 35,60, 85 and 110 seconds and in correspondence of the principal wind 

direction variations. Also, in this case the magnitude estimation error does not affect so much the 

footprint estimation because the input wind velocity is low relatively the deflection that can be 

produced, and, mainly, the UAV height is low (the deviations are computed at 50 cm from the 

UAV, as discussed in previous sections). However, the deflections are in the order of 60 

centimeters and the compensation of this quantity does the difference if the target is the 

maximization of the delivered PPP liters. To validate the indispensability of the wind estimation 

and path correction algorithm another simulation of the cross-configuration was performed with 

the same wind condition and the same prescription map, always leaving the pump neighborhood 

control disactivated.  

 

Figure 137 Actual PPP volume distribution with path correction (Top) and without (bottom) 

As can be seen by figure 137, the absence of path correction in ordinary wind conditions (around 

4 m/s) can strongly affect the delivering of the PPP product also flying as near as possible to the 

plants. The product released in active surface in the “blind” condition decreases of about the 40%. 

As seen before, in cross-configuration the sprayed volume is always greater than the requested if 

there is not a proximity check of the pump, because the needed flow rate is computed, for each 

plant, as the flow rate needed to reach the prescribed volume, at a given UAV velocity, when the 
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time over flighting the plant is the minimum possible, i.e., the time needed to cross the side of the 

square modeling the plant surface. 

Table 25 Spray quality indexes with and without path correction, representative of Continuous (Dynamic) strategy 

 Cross-configuration 

with path correction 

Cross-configuration 

without path correction 

PPP volume requested [L] 1,32 1,32 

PPP volume sprayed [L] 1,5 1,5 

Delivered/Sprayed ratio 0,73 0,46 

Delivered/Requested ratio 0,83 0,52 

Another simulation was done with the UAV spraying continuously while tries to keep the plant 

position (-0,45, 0) against the same wind, with and without wind estimation and path correction. 

As in the cross-configuration case the result is a strong optimization of the delivered volume in 

the target surface. 

Table 26 Spray quality indexes with and without path correction, representative of PtP (Static) strategy 

 Static configuration 

with path correction 

Static configuration 

without path correction 

Delivered/Sprayed ratio 0,87 0,44 

 

Figure 138 PPP Volume distribution and Active surface in static case, variable wind, With path correction 
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Figure 139 Volume distribution and Active surface in static case, variable wind, Without path correction 

As anticipated, the wind estimation algorithm musts take in input the estimated Roll pitch and 

yaw in order to compute the tilt angle and the heading angles. In figure 140, is presented the wind 

estimation in static configuration with a variable wind where the wind estimation is based on the 

estimated EKF quantities. The error increases, both in magnitude and direction, but continues to 

be limited in a reasonable range. From now the algorithm will always uses the estimated 

quantities. 
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Figure 140 Wind estimation in hovering, EKF aided 
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Table 27 Wind estimation performance in simulative enviromenr, EKF aided 

EKF aided Wind magnitude 
estimation RMSE [m/s] 

Wind direction estimation 
RMSE [°] 

Static/Variable wind 0,75 22 ° 

 

 

5.3.4 Variable mass estimation 

The mass estimation problem becomes crucial for 3 reasons: 

• The update of the control gain matrix to its optimal value 

• The correct execution of the wind estimation algorithm 

• To keep track of the volume delivered to the plant. 

As considered in the beginning of chapter 3, inertia matrix is considered independent by the mass 

variation and posed equal to the approximated cylindrical body inertia matrix computed when the 

tank is empty. Instead for what concerns the mass its variation estimation is of paramount 

importance because can decreases up to the 40% of its initial value. This decrement also causes 

the wind drag force to accelerate more the UAV, being the geometry invariant. The idea is to 

make a gain scheduling of the estimated new mass to update the control gain matrix solving a 

new LQR problem each second, so ten times the MCU sampling time, in order to decrease the 

latency due to the heavy computation of the LQR matrix. Another option is to compute the gain 

only when the UAV is in nearly stationary condition, simply by reading the accelerometer, 

because of the latency that the matrix computation could cause to the control system stability. For 

what concern the wind estimation algorithm the mass estimation is essential to get the thrust 

vector and rotate it obtaining the drag force.  

 

Figure 141 Block scheme of whole adaptive control 

The mass variation was introduced in the simulation of the static-configuration seen until now. 

The results with and without mass estimation and mass gain scheduling were collected. The wind 

was of 5 m/s and directed toward N-O, the threshold distance 90 cm and the target plant in position 

(-0,45 0). Data were collected for 600 seconds in order to empty totally the tank. The PPP density 

was set to 1 Kg/L.  
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Figure 142 Sprayed mass with a constant flow rate of 0,8 L/min 

 

Figure 143 UAV state during the emptying, without mass estimation 

 

Figure 144 Wind Magnitude and angle error (Right) without mass estimation 
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In the second simulation all the parameters were left unchanged, while mass estimation and mass 

gain scheduling were activated. 

 

Figure 145 UAV state during the emptying, with mass estimation 

 

Figure 146 Wind Magnitude and angle error (Right), with mass estimation 

The advantage introduced by the mass correction in wind estimation is clear, since without it the 

error continuously increases reaching 2 m/s and the same does the respective footprint center 

estimation. The advantage apported to the control system is less evident. Although the mass 

correction provides to the control system the optimal gain matrix, the control system clearly 

absorbs the mass variation reducing the thrust when the altitude starts to increase and augmenting 

it when the wind force causes greater accelerations in the plane caused by the mass decrement. 

However, this control processes, without mass gain scheduling, must wait the mass variation 

induced error to start. Indeed, seeing the z of the first simulation can be seen that it oscillates 

around a value greater than the reference value of 2 meters, while in the second simulation the z 

oscillates around 2 meters. The altitude error in the first case is about of 15 cm and is enough to 

has a lower Delivered/Actual ratio than in the second simulation. Is important to noticing that 

bigger flow rates could empathize this behavior, so the mass estimation is fundamental to have a 

good spray control system.  
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Table 28 D/R ratio with and without mass estimation 

Delivered/Sprayed ratio without mass 
estimation 

Delivered/Sprayed ratio with mass 
estimation 

0,88 0,93 

This is because the positive altitude tracking error, together with the increasing footprint center 

estimation error, causes to spray a larger area. The mass variation can be easily evaluated trusting 

on the on-board flow meter signal. Since the volume can be extracted by the flowmeter integrating 

its signal the drift problem can occur with dead reckoning. For these reasons should be adopted a 

flow meter with a bias under a certain limit that makes the drift error negligible with respect the 

total tank volume in the operation time wind (about 20 minutes). In addition, an extended Kalman 

filter can be used to estimate and correct the flow meter bias through a long-term stable signal 

able to correct the short-term reliability of the flowmeter, such as the thrust estimated knowing 

rotors velocities.  

 

Figure 147 Rotor’s velocities during the emptying 

 

Figure 148 Footprint area with mass estimation (Left) and without (Right) 

5.4 Main results 
A final simulation was ran highlighting all the stages of the mission and evaluate how the whole 

mechanism is capable to ensure precision spray against wind, autonomy constraints, control and 

state estimation imprecisions. First, was generated a 2D squared map of 900 m2 containing 513 

plants (16 rows and 32 plants per row). Plants were represented by leaves picked up by the Plant 

Village dataset studied in chapter 2. The map was produced once for all, then all the subsequent 

simulations share the same leaves images in the same positions. For simplicity was considered 

only “Healthy” plants (94% of the total) and “Black Rot” deseeded plants (6%), therefore 

producing a low-density prescription map with 30 real targets, easily manageable by the GA, 

solving the modified Travelling Salesman Problem. To introduce randomness in the per plant 

volume demand, each plant PPP need was computed as its CNN posterior outcome subtracted by 

the chosen boundary threshold, then all the volumes of the prescription ma was normalized to 
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obtain a total volume request of 10 Liters, leaving their mutual ratios. To extract the waypoints 

from the images map was used the full trained MobileNetv2 without object recognition. 

 

 

 

Figure 149 Generic prescription map waypoints with too sensible disease recognition 

It is preferable to have a low FNR than a high FPR to conservatively spray the largest possible 

number of to be treated plants. For this reason, 3 thresholds have been tested. In fact, although in 

chapter 2 the optimal thresholding for mobnet2 was reported, that had been tested on a large 

database (about 4000 validation photos) and the photos that we will use here are the same but 

recombined (Flip, transpose, 180 ° rotation and lighting), a new rapid validity has been made with 

these 3 thresholds: 

• Boundary threshold 0,93: the number of recognized plants is less than those actually sick, 

even if with the very high TNR all the recognized are actually sick (low waste of PPP, 

high risk of leaving plants without treatment) 
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• Boundary threshold 0.33: the number of recognized plants is greater than those sick, even 

if with the very high TPR all the diseased plants have actually been recognized (waste of 

PPP, low risk of leaving plants without treatment) 

 

 

• Boundary threshold 0,43: is a good compromise. There are no false negatives and false 

positives are few. This threshold will be used in future simulations. 
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The last prescription map, sent to the GA with coupled cost function, provided a path planning 

on which 240 simulations were run. For each simulation was set a different wind statistic and a 

different proximity threshold. The wind sweep went from a systemic wind mean of 0 m/s to 6 

m/s, from a wind systemic variance of 0 m/s2 to 1,2 m/s2, a fixed gust variance of 0,1 m/s2 and 

north direction with 20° standard deviation. The proximity threshold values went from 23 cm to 

270 cm (basically the same of a disabled proximity check) for a total of 7 values.   

 

Figure 150 optimal distance=195.6 meters, J optimal=694,5 L1,5 m, found in 200 000 generations and 200 

individuals 
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Figure 151 Definitive prescription map 

As a result, interesting relationships between wind, proximity check sensibility, autonomy and 

spray performances were deduced:  

• When the proximity threshold decreases, the average D/R, even in the absence of wind, 

rises but reaches a maximum limit, lower than 1, that depends on the combined quality 

of control and estimation of the wind. In addition, as the threshold decreases, the D / R 

begins to be less dependent on the wind speed remaining almost constant, while for larger 

thresholds the average starting D / R is monotonic decrescent with respect the wind speed. 

For a given wind velocity D/R ratio, in function of the proximity threshold, experiences 

a plateau over 1,5 meters, suggesting that threshold higher than that basically are 

equivalent to a disabled proximity check. 

• At the same time to ensure such a high spray efficiency (high D/R=D/S) and robustness 

against the wind, the pump must turn off too frequently and the time of the PtP mission 

becomes so high as to exceed the maximum autonomy of the drone in the case 22.5 cm 

even in this mission low-density Prescription Map. 

• In this case between 0.25 and 0.63 cm there is a proximity threshold that guarantees 

excellent wind resistance, a D / R between 0.7 and 0.8 and a consumption within the limits 

of 22500 mAh even up to 6 m/s (which can be considered already well beyond the 

maximum wind to take off). 

• Path correction increases D/R by 15% (no wind) up to 150% in presence of windy 

environment. 

• Proximity threshold further increase the D/R up to about 10 % in combination with path 

correction.   
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Figure 152 Delivered/Requested ratio and charge consumption in function of different wind magnitudes, for different 

proximity thresholds 

 

Figure 153 Delivered/Requested ratio in function of proximity threshold, at different systematic wind means 

In the charts below is shown example mission with 90 cm proximity threshold, and 4 m/s 

systematic wind mean. 
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Figure 154 3D state tracking representation of the example mission 

 

Figure 155 Delivered PPP distribution of the example mission 
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Figure 156 Wind rose of the example mission 

 

Figure 157 Per plant D/R distribution of the example mission 
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6 Conclusions 

In any case, the mechanism of path correction and proximity control leads to a sharp increase in 

spray performance, compared to the total absence of the same, making this study useful in the 

actual implementation in-field of the precision spray via UAV. The ideal, in the application, 

would be to use these simulation curves, together with other experimental ones, to find the right 

trade-off between consumption and precision, knowing an estimate of the expected wind. 

Beyond the case-specific considerations already discussed for each technique developed, can be 

said that the main factors that affect the spray precision and UAV autonomy has been: 

• The accuracy of disease recognition, because of the presence of false positive increase 

the product waste, while false negatives leave diseased plants uncovered. 

• The maximum distance of the proximity check above which the pump must be turned off 

to avoid waste. Over 1,5 meters of proximity threshold the delivered/requested ratio is 

not improved by the proximity check, while under about 25 centimeters the mission 

duration increased so much that overcomes the UAV autonomy, in presence of wind 

higher than about 4 m/s (in a map with 41 detected target plants, total PPP demand of 10 

L and 196 meters path length). 

• The quality of wind estimation in direction and amplitude, which in turn achieves 

maximum accuracy for low accelerations of the drone. 

• The combination of control quality and state estimation, because of their influence to the 

drone ability to maintain the position over the target plant. 

• The type of algorithm used for the optimization of path planning. The right solver leads 

to a minimization of the distance function in a reasonable amount of computational time. 

• The parameters used in the path planning optimization algorithm. The preliminary 

examination of the prescription map demands distribution is essential to understand 

which cost function should be used. 

Furthermore, collecting reasonings and results obtain until now emerges that the optimal spray 

strategy must be deduced across three dimensions: 

• Per-plant precision: In applications in which is prominent the intensive spray of an entire 

field (e.g., seasonal pesticide treatments, preventive PPP spray etc..), is important to 

guarantee a specific volume released per hectare and to minimize the time spent to do so. 

Such intensive operations can be accomplished over flighting rows without stopping the 

drone (continuous spray) since the per-plant demand simply derives by the requested per-

hectare volume and the number of plants contained in one hectare, but not so high 

emphasis is given to the individual plant pathological status. Although the rougher control 

of single targets PPP delivering, the path correction is always present because it only 

could improve the spray mission efficacy, while the proximity check can go in contrast 

with the priority of ensuring a certain amount of sprayed product (nevertheless if enabled 

it tends to reduce wastes). Instead, if the mission consists in precision spray, with a strictly 

correct PPP quantity, single plants, or pandemic clusters, then a closed loop control of 

the delivered volume is requested, and the priority becomes more the sureness of ill plants 

treatments than mission speed and area coverages. In the last case the combination of path 

correction and proximity check is fundamental. 

• Prescription map density:  In presence of a recognition of greatly sparse insurgence of ill 

plants in the area, the optimal obtained path often appears shattered and does not follow 

the field rows, since under a certain density the Modified NN does not offers the minimal 

distance solution. The lack of row-following path makes impossible to apply the cross-

configuration. X-configuration (following the path lines and spray only while passing 

over the target) is however possible but, since this strategy does not implies drone 
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stopping if the estimated delivered volume is less than requested, does not ensure the 

precise PPP deliver and, furthermore, if the overflight velocity is high makes difficult to 

precisely track the optimal path at its elbows. As a result, is convenient and simpler to 

stop the UAV over the waypoint, spray the necessary, and restart toward the successive 

waypoint (PtP). When the prescription map starts to become so dense that the Modified 

NN solution is comparable or better than GA (found in reasonable computational time) 

continuous or PtP strategies can be both used based on precision levels specifications. 

• Prescription map distribution: The more the volume demand is heterogeneously 

distributed among targets, the more the modified Salesman problem must be solved with 

the coupled cost function. The Genetic algorithm studied supports the coupled cost 

function, while NN and modified NN not. This implies that in sparse prescription maps 

the GA is enough to tackle both distance minimization and average mass transportation, 

while in presence of heterogeneous and dense prescription map the unique solution is to 

minimize the coupled cost function with GA and compare its expected charge 

consumption with the modified NN solution, although reasonable results of GA algorithm 

in this scenario have shown to appear after tens of hours computational time. 

 

Figure 158 Flow chart of the spray strategy choice 

Adjunctively, as seen in the path correction simulations, the wind estimation (and so the footprint 

center estimation) works better if the UAV is in hovering, leading to make furtherly precise the 

PtP strategy with respect the Continuous spray. 

7 Future works 

Future developments of the presented study will have to focus on the extension of disease 

recognition datasets to multi or hyperspectral images, so as to bring out non-extractable patterns 

in the visible spectrum. A more accurate and field imaging campaign should also be carried out, 

perhaps providing additional metadata to individual images, such as plant placement, weather, 

and lighting conditions. Once will be available a design and a prototype of the quadrotor, should 

be implemented the control algorithm in a micro-controller unit and calibrated the main 

parameters of the LQR. The state estimation should be extended putting in communication the 

IMU with an external positioning signal, such as the GPS. Wind tunnel tests are necessary to 

extract relations between the UAV tilt angle and the drag force, and the 3D CAD model of the 

drone should be used to define the projected area in function of the tilt angle. More accurate 
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models and validation could be carried out for the pump system, providing also a Proportional 

Integrative Derivative (PID) control to manage the pump delay and dynamics. An effective 

correlation between the output of the disease’s classifiers and the real needs of the plant will have 

to be studied. Path planning should be enriched with real-time corrections related to the presence 

of obstacles not recorded in the one-time 3D mapping, using path finding algorithms. A 

Capacitated Vehicle Routing Problem (CVRP) could also be studied to select only the waypoints 

that guarantee not to exceed the capacity of the tank. Finally, the models and controls studied will 

have to be analyzed and validated experimentally. 
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