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Abstract

This thesis aims at modelling an On Board Charger for an electric vehicle following
the Model Based Design. This method allows to address complex problems, while
making use of system models throughout the design, by means of their simulations it
leads to a rapid prototyping, software testing and verification. The aforementioned
task saw the realization and simulation of more than one system model, based on the
provided requirements by Teoresi. The latter ones in turn were designed following
the customer requests to implement a Charging Process Management solution.
MATLAB and Simulink were used throughout the whole project, moreover, within
each step of the Model Based Design workflow, it was made use of additional tools of
the MATLAB environment. In particular the modelling phase hinged on Stateflow,
whose graphical language allowed carrying out the logic of the Charger by way of a
state transition diagram.
As for the final one for each realised model at least one test harness was implemented,
hence a group of properly designed inputs stimulated the Device Under Test (DUT)
to take down a collection of outputs. By means of Simulink Test and the creation
of test suites, running these ones against the model made possible to measure the
model coverage thus performing the MIL testing.
Meeting satisfactory results led up to SIL testing, that is to say running the same
suites of tests against the auto-generated code of the model in order to measure the
coverage of the code. Therefore the SIL and MIL testings were executed choosing
three different coverage metrics, i.e. decision, condition and MCDC. Simultaneously
with the testings, Simulink Check was employed to verify if the model complied with
the ISO 26262 and to make the right adjustments for the purpose of being consistent
with the safety standards related to an automotive application.
Once ISO 26262 requisites were achieved, linking what follows with the previous
statements, MIL and SIL testings coverage were compared to illustrate the missing
coverage objectives for the auto-generated code and to eventually find a strategy to
fill them.
In the end the generated code was tested by exploiting its functions with the aim of
programming a micro-controller where the code was loaded into.
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Chapter 1

Introduction to Model Based
Design

1.1 The need of a new approach

The importance of Model Based Design is highlighted by the fact that intelligence
systems, powered by trends like electrification, connectivity, autonomy and artifi-
cial intelligence, drive the technology of daily life. As these systems get smarter,
the software embedded in them incorporates ever more powerful algorithms hence
increasing the lines of embedded code.[5]
Taking into account a car as a system to be analysed, it’s on-topic to remark the
growth of electronic components overtaking the mechanical parts. Paying particular
attention on the electronic control units present on board, some collected data shows
that from 2005 the lines of code increased on average of five times within ten years,
thus reaching around 16 million.[4]
Following this trend, nowadays the goal is to achieve autonomous vehicles. Com-
pared to traditional ones where computers are necessary to manage every subsystem,
here they are responsible for driving too, ergo it is possible to foresee that the num-
ber of code lines is outstanding and more important safety must be assured. Just
to give some background information, an autonomous electric car with its advanced
propulsion, perception, navigation, and safety features will run on an estimated 250
million lines of embedded code.[5]
The increase of software complexity is therefore a matter of significant relevance,
moreover its rising leads the software development to become one of the dominant
cost items in noteworthy sectors as automotive, avionic and industrial markets. Fur-
thermore to stress its importance, in the automotive field, the shortening of time
to market is a reality that all companies must face to be competitive. This can be
explained by the shortening of automobiles life cycle.
The aforesaid aim of automotive industry is a fully connected and self-driving car,
consequently cars and in general vehicles will rely more and more on electronic com-
ponents. The latter ones have a life span of thirteen years but mostly tend to last
for four or five years, a life cycle considerably shorter than traditional automotive.
Nonetheless, for sake of completeness, the reduction of go to market timelines is not
only due to the convergence of consumer electronics with automotive technologies
but also to several other factors such as the technologies progresses and the need to
meet consumers request[3], however they will not be discussed anymore.
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Introduction to Model Based Design

What was set forth previously states more demanding product development time-
lines and the trend shows they will be shortened even further in the future, thereupon
it is straightforward the necessity to tackle software complexity, keeping in mind that
safety standards must always be respected. On account of this it is possible to cope
with complexity making use of a structured process, a more efficient code develop-
ment, an efficacious validation and a constructive way of reusing the code.
Model Based Design guarantees each of the illustrated points since it follows a ref-
erence workflow defined by the IEC, which stands for International Electrotechnical
Commission, an organisation that together with the ISO, acronym of International
Organization for Standardization, is responsible for standards definition in the elec-
tronic field and the ones related to this, while the latter takes up a broader appli-
cation spectrum.
Based on the ISO 26262, for the automotive safety standards, and on the aforemen-
tioned reference workflow a systematic validation and verification process is set out
for models and generated code. To go through the whole process it is made use of
proper qualification and certification tools.
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Introduction to Model Based Design

1.2 Reference workflow

The reference workflow in the Model Based Design approach, adopted in the design
process, starts from system requirements, through which software requirements are
extracted and used to define the software architecture.

Figure 1.1: Traditional workflow

From this point on the main differences with the traditional workflow are visible.

Figure 1.2: Model Based Design reference workflow

By means of suitable tools, carrying through with the system model leads to an
executable specification, namely it is possible to simulate the model thereby to find
and fix bugs in the course of the design process, against the traditional workflow
where errors can be observed only in the final phase of the process. This huge im-
provement cut costs and contemporaneously saves time.
Moreover, through the inclusion of additional information, the code, that will af-
terwards be integrated into the target hardware, is generated automatically by a
specific tool. Thanks to this step the errors made by hand coding, as in the tradi-
tional workflow, are avoided and the design timeline is shortened even more.
In conclusion, only by the usage of the reference workflow, throughout the whole
process each step undergoes a continuous verification and validation in order to be
compliant to the safety standards (ISO 26262 for the automotive field), requirements
traceablility is guaranteed, thus linking requirements to the model and the gener-
ated code, and it eases going back to the steps of the whole workflow. What was
stated above makes the Model Based Design reference workflow certifiable to de-
velop critical embedded software and it was approved by the certification authority
TÜV SÜD.
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Chapter 2

Requirements

This chapter is a preamble of the system requirements acquisition and conversion
into software requisites. A system overview is presented below, following the strategy
for modeling the signals sent via E-CAN bus by nodes.

2.1 System overview

The system analysed in this document is an On Board Charger.
This was commissioned to Teoresi, which, based on the customer requests, decided
to adopt a strategy to tackle the Charging Process Management grounded in E-CAN
communication. It will be gradually described below.

Figure 2.1: Nodes connected through the E-CAN with some of their related messages

As displayed in Figure 2.1, the nodes connected through the E-CAN are the Charger,
the Vehicle Control Unit (VCU), the Battery Management System (BMS) and the
Gateway (GTW), that is missing. By means of messages a node sends over a com-
mand to the E-CAN, subsequently read by the other nodes listening to the E-CAN.
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The node which the command was directed to in turn replies through a feedback.
Now the Charger is responsible for managing the charging process, but the commu-
nication mostly with the Vehicle Control Unit lets the process evolve. This is to say
that in the design course it was important to have it clear in mind in order to bring
the logic behind the Charger to fulfillment.
MATLAB and Simulink are the software employed to carry out each step of the ref-
erence workflow along with other related tools of the MathWorks environment. The
latter will be described in more detail at a later stage, supported by an exhaustive
analysis of the utilisation that was made of them.

2.1.1 Reference signals

The given specifications follow a division in chapters, centered on different issues,
making it possible to adopt a structured path to bring to completion the final project.
At first it was mandatory to address how to handle and arrange reference signals,
indeed every node has its associated messages made up by various signals.
Every single signal copes with a diverse task, which is why signals are listed in tables
where all the essential information are collected to properly face the design process.

Figure 2.2: This table contains CHARGER COMMAND message information

The table above displays the signals details of the message CHARGER COMMAND,
sent over the E-CAN by the Vehicle Control Unit to the Charger.
Dissimilarities are present among the tables included in the documents, such as the
usage of range value instead of minimum and maximum or the absence of one or
both of the last two mentioned. This issue is usually due to the fact that more
than one person takes care of putting down the specifications. As a matter of fact
while going throughout them it occurred to find other inconsistencies. Nonetheless
the presence of the fundamental characteristics led to move forward to the signals
representation in the software environment.
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Requirements

Signals representation in Simulink

To accomplish this task it was decided to make use of the Bus Editor in Simulink,
hence to get together all signals belonging to a message as elements of a Bus type.
A naming convention was established and consists of the message name followed
by the word type. Therefore the Bus type named after CHARGER COMMAND
message is CHARGER COMMANDtype.
Based on the categories at the top of every column of the table, each element of the
bus was updated following those instructions. For instance in Figure 2.2 the third
element of CHARGER COMMANDtype is called after Duty Cycle, the length bit
implies that 8 bits are mandatory to represent the signal. Furthermore in conjunc-
tion with the absence of negative values, as its maximum is 100 and its minimum
implicit value is 0, the uint8 DataType was selected.
As previously mentioned, the specifications writing was a task accomplished not
only by a single person, in fact for a few amount of signals their description was
ambiguous. Consequently their software representation in terms of DataType came
from a designer decision.

Figure 2.3: Bus Editor window from Simulink

The purpose of the other categories are out of the Simulink description, except for
the value description which is inserted in the dedicated section.
Figure 2.3 shows on the left the complete list of the buses, in this way the signals
are utterly extracted from the specifications and translated in Bus Objects. At the
top list it is noteworthy to highlight the file path, in other words every Bus Object
is stored in the data dictionary OBC DD.
The benefits connected to data dictionary will be thoroughly discussed in the next
chapters, so far it is a persistent repository. It allows to store and share data, types
(an example is the Bus Object) and configuration sets between Simulink projects.
This came with great usefulness, and this matter was touched upon in the previous
sections, since the Charger was modeled more than once, coming out each time with
an improved version of it.
Moving to the centre the set of elements of the selected bus is listed, thus the signals
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belonging to the message, while on the right the details of the selected element.
Figure 2.3 shows the Inlet command signal whose DataType is the Enumerated
named InletCMD. This choice comes out with the possibility to have a clearer de-
sign and thereupon simulation of the model, since an Enumerated signal can be
equal only to the words defined in its class file in MATLAB, to which an integer
value is linked.

Figure 2.4: The MATLAB file IntelCMD defines the class of the same name

For a better understanding, Figure 2.4 depicts the class definiton named InletCMD
as a Simulink Integer Enumerated type. A signal whose DataType is IntelCMD
assumes the integer value 1 if equal to Unlocked.
A bus element can also be another bus, selecting the relative bus type as DataType.
To support this, CHARGER COMMAND is grouped along with other two buses in
a single bus called VCU whose DataType is VCUtype, listed in Figure 2.3.
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Chapter 3

Design

First part of the specifications was meant to define the reference signals, extensively
discussed in the previous chapter, while the ones that come after hinge on explaining
the charging process.
What follows is indeed the implementation of an executable model. The completion
of this purpose entailed the extensively use of Stateflow, essential to finely design
the Charger logic and properly cope with bugs thus optimising time management.
Particular care was taken of the Inlet lock management and the SOC recalibration
procedure, each one having a dedicated section.

Stateflow

Stateflow is a graphical programming environment based on finite state machines.
With Stateflow the user can test and debug the design, consider different simulation
scenarios, and generate code from the state machine. Finite state machines are
representations of dynamic systems that transition from one mode of operation
(state) to another. State machines:

• Serve as a high-level starting point for a complex software design process.

• Enable to focus on the operating modes and the conditions required to pass
from one mode to the next mode.

• Help to design models that remain clear and concise even as the level of model
complexity increases.

Control systems design relies heavily on state machines to manage complex logic.
Applications include designing aircraft, automobiles, and robotics control systems.[7]
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3.1 Inlet lock management

The modeling process started focusing on the inlet lock management, hence building
up a chart able to provide a graphical description of the logic required to handle
this task and the charging manual stop.
A model of the Vehicle Control Unit was developed and enhanced over time in order
to simplify the design of the Charger. Connecting the two charts improved the time
management. It led indeed to the correct logic flow quicker and to less use of input
signals for testing the model, thus creating tests harness easier to manage.
Following a top down strategy the problem was divided into three parts: start of
charging, charging process and end of charging.

Start of charging

In this step, the inlet shall switch its status, from unlocked to locked. It happens
when the plug is inserted in the socket. The Charger can read the plug presence,
therefore once inserted it wakes up and sends feedback to the Vehicle Control Unit.
The latter answers to the Charger through a command to close the inlet, which in
turn instructs the plug lock actuator to lock the plug and sets a feedback signal.
The Control Unit reads the signal on the CAN and sends a request to the Battery
Management System in order to close the main switches. Thereupon the BMS
answers with the main switches feedback state and if closed the VCU sends the
command to start the charging process to the Charger.

Charging process

During the charging process, the plug shall remain locked. The Vehicle Control Unit
constantly reads the E-CAN to check feedback messages sent by the Charger.
In normal condition the Charger notifies the presence of the plug and its lock by the
plug lock actuator, while the VCU renews the order to close the inlet.
In case of fault the Charger communicates the warning state through a proper
message and the Control Unit gives the Charger a dedicated instruction.

End of charging due to manual stop

At the end of the charging process the plug shall remain locked until a manual
unlocking occurs due to electrical doors unlocking. The user can stop the charging
process using an external command.
Two new frames were added in order to manage this function. The Gateway node
mirrors the Body Control Module, from the B-CAN (Body Controller Area Network)
to the E-CAN, consequently two signals are used for this task. A signal to identify
the electrical locking/unlocking state of the doors and another one to represent the
unlock button pressing, which, together with the remote control or physical key,
changes the value of the first one.
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3.1.1 Manual stop procedure

To interrupt the charging process two cases are considered depending on the value
of the doors lock. If the vehicle doors are unlocked, pressing the unlock button once
causes the transition to the manual stop procedure in the state machines. If the
vehicle doors are locked, their unlocking is necessary to impel the state machines to
start the manual stop procedure.
The Vehicle Control Unit sets the procedure, shown in Figure 3.1, and drives the
Charger to follow the commands in order to unlock the plug and put in standby or
end the charging process.

Figure 3.1: Vehicle Control Unit manual stop procedure

The VCU sends on the CAN the command to stop the charging process. The Charger
reads it and shortly after sets the charging current set-point to zero. The Control
Unit awaits the current to reach zero checking for its value, periodically updated by
the Battery Management System. Subsequently it waits for a set threshold before
sending the request to the BMS to open its main switches. The latter answers
with positive feedback thereupon the VCU commands the Gateway to discharge the
capacitors and the Charger to unlock the plug.
The Charger is responsible for the detection of the plug, whose status is updated
through the CAN by a feedback signal. The VCU answers to the Charger issuing
the order to transit to the idle state if the plug is removed. If not, it broadcasts the
instruction to relock the plug after a set threshold is expired or if the electrically
locking external command is executed by the Gateway.
In the second case the VCU sends the request to close the main switches to the
Battery Management System. Once the closure is actuated, the signal to restart the
charging process follows the feedback sent by the BMS.

3.1. INLET LOCK MANAGEMENT 17
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3.1.2 First implemented solution

This section provides a first attempt in representing the aforementioned process,
however a quick observation is mandatory on MATLAB configuration parameters.
The outcome of the design is a model, which, after a testing and debugging phase,
will be used for code generation by means of Embedded Coder. This tool of the
Simulink environment requires discrete, fixed step models and a target, i.e. the kind
of code, must be selected to generate code for micro-controllers or DSP.

Figure 3.2: Configuration Parameters window from Simulink

In the Solver selection of the Figure 3.2, shown above, Fixed-step and discrete are
chosen respectively as type and solver, while the system target file is ert.tlc for Em-
bedded Coder, visible after clicking on Code Generation, listed on the left.
The fixed step size is equivalent to the fundamental sample time, which is the lowest
if working with multi-rate systems. In this case the fundamental sample time is 1ms,
value of Ts, a variable stored in the data dictionary OBC DD whose DataType is
double. The sample time is the same for each block of the Simulink model, in other
words the model is single-rate.
Some words need to be dedicated to the signals representation, thoroughly discussed
in the previous chapter. The utilization of Bus Objects came from the need of defin-
ing the interfaces as structures, due to the boundaries introduced by Stateflow and
model referenced blocks, which will be more profoundly analysed afterwards.
For this reason non-virtual buses were used instead of virtual ones.
The big difference between the two is how Simulink treats memory allocation. Vir-
tual buses compile a collection of individual elements, with each passing separately
to the system. A non-virtual bus forces the memory to be a contiguous structure
passed into the system.
The main reason that comes out for the latter ones is the control of memory alloca-
tion in code generation, an important step in the model based design workflow.[1]
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The first solution to the problem consists of connecting the two charts, Charger
and VCU, and using dashboards to control the input signals to move forward in the
simulation. The simulation speed justifies this approach, not compliant with the
reference workflow, since it leads to a rapid inspection of system working operation.

Figure 3.3: Initial top-level model implementation with dashboards

In addition to the Stateflow charts three other subsystems make up the model, i.e.
Delay, Routing VCU and Routing BMS. The Delay subsystem is placed between
the two state machines to introduce a delay in the communication, thus having
a model more similar to reality and a remedy to the algebraic loop problem. It
consists of a group of unit delay blocks, whose number is equivalent to the number
of signals composing the bus CHG MSG, data type conversion blocks, bus selectors
and creators.

Figure 3.4: Delay subsystem
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This block is employed due to the limitation introduced by the bus structure, since
some of its signals have different ranges, specifically minimum, and incompatible
DataType with the unit delay block, i.e. enumerated.
The other two subsystems allow to control the value of the displayed signals while
simulating through the slider switches, the combo box and the push button.

Figure 3.5: Routing VCU subsystem

It is interesting to explore the Routing VCU subsystem, Figure 3.5, to have an
overview of the VCU bus structure, as it is for the CHG MSG bus opening the
Delay subsystem. The majority of the signals of the VCU bus are out of interest for
the inlet lock management and manual stop procedure, which is why they are set
to a constant value.
The two input ports are Charging Enabled and Inlet command, both signals of
one of the three buses composing VCU named CHARGER COMMAND, whose
DataType is respectively boolean and InletCMD (enumerated). As shown in the
figure, each arrow connects two blocks. An arrow is a graphical representation of
the propagation of a signal whose DataType is displayed above and below it. This
function is useful to check and quickly find a DataType mismatch and it is available
with other useful features in the debug section of Simulink ribbon menu, listed in
information overlays, improving the model readability and debug.
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Charger chart

Similar to the VCU, a small part of the charger signals is responsible for the manual
stop operation and the inlet lock management.
Keeping in mind that the aforementioned procedure is at the moment the only im-
plemented task, the state machine of the Charger is displayed below in Figure 3.6.

Figure 3.6: First implementation of Charger state machine

It is noteworthy to focus on the signal hierarchy, the choice of using buses led to
a structured graphical representation which, despite the names length, guarantees
readability. Moreover it speeds up signals management when working with a con-
siderable amount of them, since it is immediate to detect which bus they belong to.
The equivalence shown next to a transition, i.e. beside the arrow, expresses the
condition to be met to make the state machine evolve. Referring to Figure 3.5 the
VCU bus structure appears clear as also its signals position and properties.
The start and the end of charging coincide, indeed END CHARGING, the default
state, corresponds to the charger idling. Charger wakes up after the plug insertion,
its presence is communicated on the E-CAN, and it returns to idling after the plug
is removed. Its removal can be actuated only after the inlet unlocking.
Subsequent to transition from idle state to PLUG IN DETECTED, the state ma-
chine entrance in this state forces Proximity detection and Inlet feedback respec-
tively to true and false. The first one communicates the plug presence into the inlet,
while the latter the inlet status, in this case unlocked thus charging process can not
be started. Signals belonging to buses have an extensive name length, to enhance
text clarity only the final part is shown to refer to them.
Charger evolves to the next state once hearing from the Vehicle Control Unit the
command to lock the inlet. This event corresponds to Inlet command being equiv-
alent to Locked, an enumerated InletCMD variable whose value is the integer two.
It is reminded InletCMD class definition is displayed in Figure 2.4.
This is another perfect example of how an higher complexity in structures definition
allows to speed up even more the chart understanding. Employing the integer value
in the transition condition would have sorted the same effect, but it would have not
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shown the significance carried by the number which is quite explanatory through
the correct term selection.
The command reception pushes the state machine to move into PLUG LOCKED,
thereupon giving a feedback on the inlet locking. The conditions to start the charg-
ing process have been respected and it will begin once, while listening to the E-CAN,
Charging Enable assumes the true value. Together with Inlet command, they are
the only signals employed by the VCU in this procedure. The confirmation to start
the charging process leads to a check on the errors presence. The transition is con-
nected to a junction where the value of the input Error is evaluated. This input
is a way of representing the detection of a fault by the Charger, e.g. the battery
absence. Opting for this design is a modelling choice due to a lack of information
in the requirements document. It is only mentioned that Charger communicates
its warning or alarm state through the Exception signal transmission, respectively
assuming 40 and 80. For simplicity the latter value is used to flag up an error. The
battery presence is stated setting Exception to 1.
The state machine evolves in the superstate CHARGING PROCESS, specifically in
FAULT whether an error is detected or in NORMAL CONDITION. The Charger
transits towards STOP CHARGING independently on which substate is into. How-
ever if in FAULT transition happens when the Vehicle Control Unit broadcasts
the command to keep the plug locked, otherwise it changes to false the value of
Charging Enabled if the user wants to interrupt the current supply while in NOR-
MAL CONDITION. This chart does not actually handle the charging process man-
agement in line with the assumptions made at the beginning of the paragraph.
When in STOP CHARGING the Charger next step is to unlock the plug thus it
waits for the VCU issuing the order through changing Inlet command to Unlocked.
This leads the state machine to evolve into PLUG UNLOCKING where it is possi-
ble to restart the charging operation, by locking again the plug after the instruction
reception sent by the Control Unit, or terminate the process.
The first option occurs once the VCU changes Inlet command value to Locked, mir-
roring the user will to restart the charging process, while the latter takes place when
the plug is removed.

Vehicle Control Unit chart

A parallel analysis of the Vehicle Control Unit finite state machine helps to have
a clearer view of the whole process. It was necessary to project and link the user
will to the VCU which has to translate and communicate to the other nodes talking
to the CAN. It is important to point out that what is requested is the modelling
of the Charger. The VCU was designed for the specific reason of having a deeper
understanding, thus dispelling several doubts on Charger design. It then becomes
clear that its examination will not be as meticulous as the Charger one.
The state machine displayed in Figure 3.7 progresses by means of the feedback ex-
changed with not only the Charger but, in addition to it, the Battery Management
System and the Gateway, which mirrors the Body Control Module. The BCM sig-
nals are useful to the manual stop process only, while the information provided
by the BMS is essential for different tasks. Last ones will be examined at a later
stage. From the default and idle state, END CHARGING, to PLUG INSERTED
the machine evolves thanks to a feedback exchange with the Charger. Even if the
Charger communicates that the inlet status is locked, the BMS main switches clo-

22 3.1. INLET LOCK MANAGEMENT



Design

Figure 3.7: First implementation of the VCU state machine

sure precedes the order to start the charging process. A request to accomplish the
aforementioned task is sent to the BMS. Its positive reply leads the VCU to enter
into ENABLE CHARGING where it changes the Charging Enabled value to true.
It awaits a set delay to ensure that the Charger checks for possible errors, thus set-
ting the proper Exception value. In normal condition, i.e. Exception equal to 1, it
moves into one of the two substates depending on the value of DriverDoorLockSts
representing the door lock status. Afterwards the chart evolves as it is thoroughly
explained at the beginning of section 3.1.1. Alternately, in fault condition, the VCU
commands the Charger to keep the plug locked.
Whether in presence of an error or not, the machine transits into the superstate
MANUAL STOP CHARGING, where it firstly sends the order to stop the charging
process. Initially it waits for the current to zero, information provided by the Bat-
tery Management System, thereafter a set time interval. The request to open the
main switches to the BMS, as before for the closure, precedes the inlet unlocking,
whose order is sent over the E-CAN right after the main switches opening confir-
mation by the BMS. Section 3.1.1 conclusion goes through the steps that follow the
VCU being in INLET UNLOCK exhaustively.
It is rather curious that both transitions to INLET RELOCKED due to doors lock-
ing and to default state, END CHARGING, are designed to occur, in any substate
of MANUAL STOP CHARGING, whenever their conditions are satisfied, but only
the first one can do so. The VCU transits to idling when the plug is removed, whose
presence is detected by the Charger, in other words once Proximity detection states
its absence. However the plug removal can be actuated exclusively after the inlet
unlocking, namely not before the VCU being in INLET UNLOCK.
This issue is further discussed while analysing the MIL coverage of the final system.
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3.1.3 Model testing

This section presents the creation of a test harness for the first implementation of
the Charger, examined in an exhaustive way in the previous stage. Furthermore a
short coverage analysis will follow to give a preview of the MIL testing.

Model reference

A model can be included in another, called parent model, through a Model block.
Each instance of a Model block is a model reference. Employing referenced models
comes with several advantages, most of them related to its compiling. It allows to
update the model independently from the parent models where it is instanced; to
obscure its content to protect intellectual property and, depending on the granted
protected-model permissions, it permits to view, simulate, and generate code.
It improves the model loading, simulation speed and code generation. Code is gen-
erated only if the referenced model has changed after last code generation. Simulink
converts the model to code and runs it to speed up simulation.[11]
To employ an existing model as a referenced one a conversion procedure was followed.
It consists of including the first one into a subsystem, which needs to be treated as
an atomic system and finally launching the conversion. A set of operations exists
and is suggested to prepare the subsystem in order to reduce the possible issues
while converting, however they will not be discussed. Nonetheless a check phase
is requested by the Model Reference Conversion Advisor, where all the necessary
adjustments are listed and could be automatically executed without any control.

Test harness

A testing phase follows the component design. The first step is the generation of a
set of stimuli used to derive a collection of output from the device under test.
Simulink handles the construction of a test harness, linked to the model and saved
within the project file.

Figure 3.8: Charger test harness
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A test harness consists of one or more source blocks that drive the component under
test, which, in turn, drives one or more sink blocks.[8]
The two blocks, one preceding and the other one following the DUT, are signal
conversion subsystems. These subsystems adapt the signal interface of the source
and sink blocks to the graphical interface of the component. The graphical interface
of the component includes input signals, output signals, and action, trigger, or enable
inputs. The test harness compiles the main model to determine signal attributes,
i.e. data type, dimensions and complexity.[8]
The group of input signals is modelled through a signal builder, while the sink is
a simple outport which is enough for the task purpose. The component under test
is a model reference to Charger.slx, the simulink project file where the finite state
machine is connected only to inports and outports.

Figure 3.9: Signal builder groups. In order Charging and Fault tests

Figure 3.9 shows two signal groups, each one composing a test to stimulate the
component and recreate the working conditions. Both tests last for 10 seconds.
Starting from the left, the first group is named after simulating a charging process.
Recalling Figure 3.6, the test begins by the plug insertion at 0.5s and it simulates
the communication through the E-CAN with the Vehicle Control Unit. At 2s the
VCU issues the order to lock the plug, while at 3s the one to start charging.
After three seconds the process is interrupted and at 7s the state machine evolves
by means of the command to unlock the plug. The plug is re-locked one second later
and the charging process starts again at 8.5s.
Tests are meant to be as close as possible to the real, however a tolerance margin
was set on the scheduling timing. The achievement of a complete chart coverage
has been imposed as main goal.
The second group recreates a fault condition. The input signals sequence, except
for Error whose value switches to true at 2s, is equivalent to the first test until 4.5s
where the VCU changes Charging Enable to false, according to its chart in Figure
3.7. Nevertheless the state machine moves to the next state at 5s through the
command to keep the plug locked and after two seconds by means of the unlocking
one. The plug removal at 9s takes the Charger back to idling.
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Coverage analysis

The importance of coverage analysis is stated by the possible issues coming from code
generation. It is necessary at this stage to remind that the outcome of the Model
Based workflow is the integration into the target hardware of the code, whose gen-
eration is linked to the designed system. The testing phase is conceived to take into
account for both intended and unintended behavior before generating code.
Coverage Analyzer was employed to launch the analysis and therefore produce an
exhaustive report. Here every transition is examined in an extensive way, providing
coverage details such as the percentage related to the adopted metric.
Three different metrics have been used to evaluate the tests effectiveness, Modified
Condition/Decision Coverage, Decision Coverage and Condition Coverage.
Following a coverage criteria subsumption hierarchy, the multiple condition is the
strongest criterion. Stating that a decision is a boolean expression comprising con-
ditions and zero or more boolean operators, the aforementioned criteria requires test
cases that cover all the conditions combinations in a decision. Therefore to satisfy
it a decision containing n conditions needs at least 2n test cases, which increases
the cost of this criterion, resulting unpractical for large and complex systems. In
addition to it some conditions combinations may be unfeasible and filtering them
out further increases the cost.[2]
MC/DC on the other hand is a more practical criterion and hence usually a testing
requirement for critical systems such as those developed in the avionics domain.
It is satisfied when, in a program, every condition in a decision has taken all pos-
sible outcomes at least once, and each condition has been shown to independently
affect the decision’s outcome. A condition is shown to independently affect a deci-
sion’s outcome by varying just that condition while holding fixed all other possible
conditions. Therefore the MC/DC criterion is satisfied for a decision, containing n
conditions, by a minimal set of n+ 1 test cases.[2]
Condition and Decision Coverage have no subsumption relationship. To satisfy the
first one it is required that each condition takes on both values, while for the latter
it is mandatory that every decision has assumed all possible outcomes. It is note-
worthy that if a decision contains a single condition they are equivalent.

Figure 3.10: Coverage analysis results of the Charger

Since the program in question is a Stateflow chart a transition from a state to an-
other indicates a decision, whose single or more conditions need to be fulfilled in
order to be executed. It then becomes clear that the chart in Figure 3.6 can be
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evaluated through the Decision Coverage criterion only, which in this case coincides
with the Condition Coverage one. Every transition in the state machine is indeed
characterised by a single condition.
Coverage Analyzer results show a full coverage, meaning the MIL testing has been
performed successfully. The generated report is linked to and ensures traceability
with the examined chart. Its states and transitions are denoted by the green colour
in Figure 3.10, which demonstrates coverage criterion fulfillment. The uncovered
parts would appear in red and by clicking on one of them Simulink traces back to
the report page dedicated to that part.
The step following the achievement of full coverage while performing the MIL is the
code generation and its coverage analysis. In other words the SIL testing requires to
be performed and its results to be compared with the MIL ones. A complete code
coverage indicates an accurate description of the model through it, thus ensuring
the modeled behaviour. This procedure has been applied to the complete model,
thoroughly examined in the following section.
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3.2 Complete model

Previously the inlet lock management and the manual stop procedure were exam-
ined, followed by an exhaustive study of their representations in the model. In
addition to it an introduction to the model testing was provided, together with the
explanations of model reference, test harness and coverage analysis.
In this section the Charger model will be updated by the integration of the SOC
recalibration procedure, which includes the charging process management. A testing
phase comes after with an in-depth focus of the extra parts which finalise the model.
At this stage the tool Simulink Test was used to perform MIL and SIL testings. The
customisation of the code preceded the conclusion of the code generation process.

SOC recalibration procedure

As previously mentioned, the system designed up to now lacks in a charging process
management. The first part of the updated model consists of the execution of a
recalibration procedure during the charging phase.
The Vehicle Control Unit node sends over a message to the Enhanced Controller
Area Network, addressed to the Battery Management System, in order to start the
process, during and at the end of the charging phase. In the first case, discussed
in this paragraph, the request is renewed with a set periodicity, which if compliant
with the requirements is much longer than the selected time interval of five seconds.
The purpose of this choice is to reduce the simulation time, therefore increasing the
number of simulations and the quickness in retrieving results.
Each time the VCU requires the recalibration procedure execution, it initially issues
the order to stop the charging process to the Charger. The latter assigns the null
value to the current set-point and responds to the VCU with a feedback message
notifying its standby status.
It waits for a fixed delay to update the VCU with a feedback message, thereupon
the VCU sends a request over to the E-CAN to start the recalibration process right
after the current reaches the zero value. This information is provided by the BMS.
The same node commences the procedure under consideration lasting for a hundred
milliseconds.
At this point the requirements document lacks in accuracy, as a matter of fact it does
not supply information on how the VCU handles the BMS recalibration. Specifically
it is not precised how it proceeds to the next command. To achieve the process the
BMS needs a certain time window, therefore, considering the latter as a delay, an
option for the Control Unit could have been to move forward once it expires. It was
rather opted for an handshake mechanism, namely a feedback sent by the Battery
Management System successive to the recalibration completion. BMS recalibrated
is the feedback signal in question.
Subsequently the VCU checks the battery minimum cell temperature, data shared
by the BMS, and if above a certain threshold, the charging process can restart issuing
the related command. The requirements paper lacks again in precision, indeed it is
not described which behaviour has the component if the temperature is below the
threshold. In order to fill this lacuna, in case the aforementioned condition occurs
the VCU machine enters into a state where it can not exit until the cell temperature
overcomes the lower limit. No logic on how to handle a heating process was modeled
since it is out of interest.
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If the cell temperature is above the lower bound, the Charger reads the VCU order
over the CAN, it assigns a value provided by the BMS to the current set-point and
it communicates its status, i.e. battery on charge. In this way the charging process
can restart.

Full charge

A State Of Charge final recalibration is further required when the Control Unit
senses the completion of battery charging, by means of the information supplied by
the BMS bus. Within the bus two signals are carrying data, respectively the SOC
percentage and the maximum cell tension value.
Given an upper bound for both, whenever one of the two is surpassed, the VCU is-
sues the order to stop the current flow. The Charger listens to it, zeroes the current
set-point and transmits a feedback message containing its status. It further notifies
the VCU through another feedback message after a fixed delay expiration.
The Battery Management System constantly renews the battery supply current on
the E CAN, whose value reaching zero is the input to the Control Unit for sending
the recalibration request to the BMS. As previously specified the process goes on
for a hundred milliseconds after which, following a design choice, the BMS commu-
nicates the recalibration conclusion.
Next step is a check on minimum cell temperature and if lower than a fixed limit,
it was opted for the already presented measure in the antecedent paragraph. Alter-
nately another check is run on the same BMS signals that started the last recalibra-
tion process. If the SOC percentage or the maximum cell tension is below a certain
level the VCU issues to restart charging. Otherwise the latter sends a request to the
BMS to open its main switches.
This action, as already stated in the inlet lock management process, always precedes
the plug unlocking that comes before its removal, thereupon the machine idling.

3.2. COMPLETE MODEL 29



Design

3.2.1 Charger chart

In this stage, the ultimate finite state machine is examined. It consists of the model
shown in Figure 3.6 enriched by a charging management process alongside the part
dealing with the SOC recalibration procedure and the end of charging.

Figure 3.11: Complete Charger finite state machine

Hierarchy in the state-chart development is used to enhance readability by means of
a structured layout. In this regard, from a comparison with the initial model, MAN-
UAL STOP includes two substates which were previously independent. The upper
half of Figure 3.11 displays what was analysed in the inlet locking management sec-
tion, except for FAULT, here excluded from CHARGING PROCESS, and STOP
states. Reminding that the main focus is on the additional part, Charger wakes up
from idling after detecting the plug and issues the information to the Vehicle Con-
trol Unit changing Proximity detection value to true, together with Inlet feedback
to false. The latter shares the unlocked plug status.
Once VCU replies by means of the command to lock the plug, i.e. Inlet command
to Locked, the state machine evolves into PLUG LOCKED where, while instructing
the actuator to lock the plug, it updates its status. Subsequent to the Charger
feedback reception the VCU orders to start the charging process.
In case of fault, therefore once Charging Enabled is true and Error is high, the ma-
chine evolution from FAULT state on is equivalent to the one presented in the first
implemented solution (refer to section 3.1.2).
In case of normal condition Charger transits into a loop in CHARGING PROCESS,
starting from NORMAL CONDITION where it sets Exception to 1 and Termina-
tion code to 27, meaning respectively battery present and battery on charge.
A hundred milliseconds later Charger evolves to the next state and sends over to
the CAN, addressed to the VCU, the feedback message CHG3, namely the same
feedback it sends every time the charging process is stopped for periodical and fi-
nal SOC recalibration. Before transition to CHECK BAT INFO the state machine
waits for a fixed delay, after which reads over the CAN the information provided
by the BMS to check the charging process. Indeed if BMS SOC or U Cell max are
above their threshold, Charger stops the process because battery is fully charged
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and, once the VCU commands it, it moves into END CHARGING, substate of
FULL CHARGE. Otherwise the state machine evolves into UPDATE CURRENT
where fixes the current set-point to the value supplied by the BMS, thereupon goes
back to NORMAL CONDITION.
There exist other conditions to make the machine exits from the loop, that are inde-
pendent on which child state of CHARGING PROCESS the machine is. The loop
is interrupted firstly if the time interval to start the periodic recalibration expires,
secondly if the user actuates the manual stop procedure. The two cases are intro-
duced in the same order Charger evaluates them.
It is noteworthy to underline that Charger can interrupts the charging process only
if the Control Unit issues the order to do so, therefore changing Charging Enabled
to false. Moreover this command is too general, thus it is not sufficient to differ-
entiate where the machine should move to. To overcome this problem, additional
conditions are considered along with the aforementioned one.
Each time the state machine enters into CHARGING PROCESS a timer begins
counting, whose end determines the need of a SOC recalibration. The same happens
in parallel in the VCU machine and once it reaches the end it sends the command to
make Charger transit to SOC RECALIBRATION, into CHARGING STANDBY.
In this state the machine updates its standby status by way of Termination code
and zeroes the current set-point to stop the charging. After a hundred milliseconds
it sends CHG3 and it awaits the VCU command to restart the charging.
The second condition, only evaluated if the first one is not satisfied, is the man-
ual stop command issued by the user. The Control Unit sends Charging Enabled
equal to false as for the other transitions intended to stop the charging, however
it is related to the manual stop whenever the battery is not fully charged. Then
if both BMS SOC and U Cell max are below their threshold, once VCU issues the
command Charger exits from CHARGING PROCESS, regardless of any substate it
is into, and transits to MANUAL STOP. Section 3.1.1 deeply illustrates its routine,
whose final step is the plug unlocking. The latter is a necessary measure that always
precedes the plug removal, indeed it is a possible outcome leading Charger to idling.
The other possible transition is the plug relocking to restart the charging process.
The fulfillment of battery charge is the last condition that leads the state machine
to interrupt the charging process. Briefly introduced before, Charger reads the mes-
sage sent by the Battery Management System, i.e. mBMS.Bat Info whose signals
provide information on the battery, each time it transits from CHECK BAT INFO.
Charger evaluates if either BMS SOC or U Cell max is above its threshold. This
condition is contemporaneously evaluated by the Control Unit. As a matter of facts
it follows the reception of Charging Enable change to false by Charger, consequently
moving towards FULL CHARGE, specifically into END CHARGING.
Subsequently the machine communicates the completion of the charging process by
the transmission of Termination code equal to 1, moreover it zeroes the current
set-point compliant with the end of charging. The feedback CHG3 sending fol-
lows always the charging suspension or end, therefore a hundred milliseconds after
Charger evolves into FINAL RECALIBRATION. Two possible branches are evalu-
ated. The first one leads to restart the charging process, when Error is low, by the
reception of Charging Enabled to true. If false the machine moves into STOP only
after the VCU commands to unlock the plug, Inlet command equal to Unlocked.
After the plug removal, i.e. Plug inserted changes to false, Charger returns to IDLE.
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3.2.2 VCU Chart

The Vehicle Control Unit has been modeled in order to verify the validity of Charger
and to simplify its design. Connecting the two in a feedback loop provides indeed
a practical way of simulating, moreover gives evidence of the right timing for tests
generation and eases tracking the simulation progress. An higher view of the sys-
tems network is shown and shortly examined further in this document.

Figure 3.12: Vehicle Control Unit final chart

The chart above presents no changes compared to the one in the upper half of Figure
3.7, except for the extraction of FAULT state from CHARGING PROCESS as for
the Charger state machine. Moreover an additional condition is considered moving
from CLOSE BMS MAIN SWITCHES REQUEST to ENABLE CHARGING.
The VCU stops idling once Charger informs it about the presence of the plug in
the inlet through Proximity detection signal to true. The Control Unit moves into
PLUG INSERTED where, by means of Inlet command equal to Locked, instructs
for the plug locking the Charger, whose reply is changing Inlet feedback to true. Its
reception makes the VCU evolve into next state where it sends the BMS the request
to close its main switches, whose positive feedback was previously enough for next
state transition. At this stage it is necessary that the minimum battery cell tem-
perature is above or equal to the lower limit. The fulfillment of this condition leads
the state machine to issue Charging Enable to true to start the charging process.
Next transition happens after a delay of two system ticks. The chart updates with
a fixed step equal to the sample time which is set to 1ms. In other words the state
machine is delayed of 2ms before evaluating the error presence communicated by the
Charger feedback, i.e. Exception. The value 80 indicates an error detection causing
a transition to FAULT. A fault event is handled through the already discussed man-
ual stop procedure, similarly to the supertransitions occurrence in both substates of
CHARGING PROCESS, possible only in normal condition.
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The communication by the Charger of errors absence pushes the VCU into CHARG-
ING PROCESS. Regardless of which child state, whose examination is given in sec-
tion 3.1.2, the machine exits from the parent state if the battery completed the
charge or the timer for the periodical SOC recalibration expires.
The first circumstance occurs when either one or both thresholds linked to BMS SOC
and U Cell max are overcome. In this case VCU evolves into FULL CHARGE,
specifically in FINAL RECALIBRATION, commanding the charging interruption.
It further moves to the next state once it acknowledges the Charger reception of
the order by its feedback Termination code. The transition that follows is towards
a junction which is shared with the alternative branch taken by the machine if the
timer expires. This condition is met every ten minutes, shortened to five seconds for
simulations enhancements, where VCU transits into START RECALIBRATION,
in SOC RECALIBRATION, issuing Charging Enable to false. The same feedback,
with different value, is supplied by the Charger to communicate the command re-
ception and execution, therefore the machine is into CHARGER IN STANDBY and
reaches the aforementioned junction after one sample time interval.
Independently on the followed branch, the VCU moves into WAIT FOR CHG3,
where CHG3 is the feedback message sent by the Charger each time the charging
process is paused or completed. It is opted for not modeling this part since unnec-
essary for the state chart evolution. The addition of this part, likewise the heating
routine mentioned in the SOC recalibration procedure description, is left to who will
terminate the customer request.
The BMS recalibration can start only when the charging is interrupted, namely once
the current reaches zero. This occurrence, stated by a BMS signal, leads VCU to
REQUEST state, into BMS RECALIBRATION. The machine requires to the Bat-
tery Management System to accomplish the recalibration, which on the other side
according to a design choice replies through a feedback. Its reception makes the
Control Unit transit into DONE where it changes the request signal value to false.
In this state dependently on the covered branch different path can be taken. The
first evaluated condition is a check on the minimum battery cell temperature, whose
outcome in case of value lower than the threshold was discussed previously. This
event may occur regardless of the covered path by the machine.
The second evaluated condition verifies the value of Terminaiton code sent by the
Charger. It assumes zero every time the periodic recalibration must be performed,
while one in case of the final one. In other words it is active only for one of the two
possible paths covered by the state machine. The third condition is nearly always
satisfied whenever the previous one is, however it is designed considering another
circumstance. Once the battery is fully charged, hence one of the two BMS signals
surpassed its relative threshold, if in the meantime it discharges enough to bring one
of those signals below its lower bound, the charging process restarts.
The last transition occurs if none of the other conditions is met. The state chart
evolves into MSW OPEN REQUEST, whose parent state is STOP. It is requested
to the BMS to open its main switches, always preceding the command to unlock
the plug, mandatory before its removal. The feedback of the Battery Management
System states the request reception and accomplishment, moreover triggers the tran-
sition towards INLET UNLOCKED.
As mentioned before the events sequence is the issuing of the plug unlocking by
the VCU to the Charger. The latter provides to instruct the electrical actuator to
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perform the unlocking. At the time that the plug is removed the Charger flags it up
through changing Proximity detection to false. It follows the Vehicle Control Unit
transition to idling.

3.2.3 Top-level model

A brief analysis is dedicated to the system made up of the two examined charts
connected in a loop. Input signals consist of the external ones, Plug and Error,
and the ones sent by the remaining nodes in the E-CAN, BMS and Gateway. It is
reminded that the latter mirrors the Body Control Module behaviour.

Figure 3.13: Top-level model

The unit delay block and Delay subsystem, whose content is displayed in Figure
3.4, introduce a delay equal to the sample time. It coincides with the fixed step, i.e.
1ms, employed by the solver to perform the simulation. The discrete solver with
fixed step selection is mandatory to generate code through Embedded Coder.
While running the model the displays show the evolution of the signals extracted
by the BMS bus. Specifically in order, the state of charge indicated in percentage,
the supplied current, the maximum tension and minimum temperature among the
battery cells.
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Testing and coverage

Two signal groups have been used to test the model. An higher number is declared,
compliant with the buses definition, however only the ones necessary to stimulate
the model are shown in Figure 3.14.
PP I chrg is omitted to improve the visibility. Its value, provided by the BMS,
is indicative and refers to the maximum current the Charger is able to supply.
BMS I Batt is modeled taking into account the aforementioned value.
For simplicity a linear trend has been chosen, in addition to the SOC, maximum
tension and minimum temperature ones.

Figure 3.14: In order full charge and fault-relock-manual stop tests

The first test, starting from the left, is a charging process completion. No errors are
detected, SOC recalibrations are performed periodically and battery cell minimum
temperature goes below the lower bound for a short interval. The test concludes
with the full charge achievement, stated by the SOC value surpassing the threshold,
and the plug removal.
The second test begins with an error detection, thereupon the plug relock procedure
which follows the same steps of the manual stop. The simulation continues through
the beginning of the charging process, a heating routine follows a SOC recalibration,
and it ends with a manual stop operation.
The combination of the two tests leads to an almost complete coverage of the Charger
by means of the Decision Coverage criterion, afterward fulfilled by the addition of
coverage filters, further examined at a later stage. A full coverage is reached choosing
the remaining metrics for the Charger, while it is not for the VCU. However the
accomplishment of this goal is out of the purpose of this activity.
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3.2.4 Charger model

The top-level model includes a model reference to the Charger. The latter consists
entirely of the state chart shown in Figure 3.11. This section provides the test har-
ness created to stimulate the model and to perform the coverage analysis. In other
words the MIL and SIL testings are in-depth examined here and they have been
performed by making use of Simulink Test Manager.

Figure 3.15: Charger model

Clarifications will be provided on details that are useful to accomplish code gener-
ation, at a later stage. An introduction to Simulink Check is required since it is
mandatory to conform the model to the safety standards ISO 26262, therefore this
tool has been employed to acknowledge the proper adjustments to fulfill this task.

MIL testing

The testing phase starts by the definition of a number of signal groups. The created
tests are similar to the top-level model ones, indeed the simulation time is the same
and they follow the same trend. Specifically the first test simulates a full charging
process while the second one consists of a fault detection, followed by a partial
charging and ends through a manual stop operation. The missing signals have been
adapted to the others previously modeled.

Figure 3.16: Groups of the Charger test harness

36 3.2. COMPLETE MODEL



Design

This phase has been carried out by means of Simulink Test Manager. Starting from
the creation of a test file, a container of test suites, it is possible to choose a test
case template. Two simulation test templates have been added.
This test is used to simulate the model, which is inserted in the System Under Test
entry along with the test harness. The input of iterations in the dedicated entry
follows in case of multiple signal groups. The test harness in question has a signal
builder as input, however various inputs are provided while creating a new one.
An item commits to the coverage settings and belongs to the test file, therefore
includes all the contained test cases. At this point coverage metrics can be checked,
e.g. MCDC, together with recording options and filters can be added.
The filters are applied whenever uncovered links emerge from the analysis. The
insertion of a rule lets to justify this event which can be due to a lack of stimuli,
which in turn may be linked to the complexity in modeling them.
The last circumstance has been encountered while performing the coverage analysis
through the inclusion of the previously presented test harness. In Figure 3.11,
the uncovered links refer to CHARGING PROCESS, specifically to the child states
exited when the parent exits. The tests outcomes show NORMAL CONDITION as
the only substate where exits are experienced. A possible explanation is that the
machine remains in this state for a longer time when in the loop, due to the set
delay. The filter rule addition justifies this lack and leads to a complete coverage of
the model. The simulation test allowed to perform the MIL testing.

Figure 3.17: Coverage filter application
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SIL testing

A full coverage during the MIL testing implies that the model is almost ready for
code generation. The last operation is performed once the system is compliant with
the ISO 26262 standards. Simulink Check is employed to fulfill this task by running
guideline checks and providing the measures to be adopted. At this stage all the
suggested adjustments have been applied. Further in this document the aforemen-
tioned routine is examined in more detail.
The Software-in-the-Loop testing follows the automatic code generation by Embed-
ded Coder, whose outcome is an object file. Specifically the same inputs, set in
the signal builder and employed in the MIL, are used to execute the object code
instead of the Simulink model. This phase is preceded by a procedure to prepare
and customize the code generation. The next chapter hinges on the aforementioned
procedure, while it is now considered a model where these measures have been al-
ready taken. Hence the examination focuses on the SIL testing.
By means of the listed signal groups, the test showed the lowest coverage, i.e.
83%, following the MC/DC criterion and did not reach the full coverage follow-
ing the others. The generated report highlighted the need of an additional test to
cope with this issue. The uncovered links are related to the branch connecting FI-
NAL RECALIBRATION to FAULT and CHECK BAT INFO to END CHARGING.
In the previous tests after the charging process completion and the reception of the
command to restart it, due to a sufficient decrease of SOC or battery cell tension,
an error detection has never been experienced. Moreover every full charge event has
been stated by the SOC signal and never by the one monitoring the cell tension.

Figure 3.18: Additional test to maximise the code coverage

The test describes a circumstance where the user decides to charge the battery albeit
its state of charge is above 70%. Consequently the process ends before the timer
to begin the periodic SOC recalibration expires. As a matter of fact, the maxi-
mum battery cell tension surpasses its threshold and makes the machine transit to
FULL CHARGE, where it awaits the end of the final BMS’ recalibration.
During this time window the charge experiences a decrease and an error is detected.
The first one between BMS SOC and U Cell max to go below its threshold triggers
the VCU to issue the order to restart the charging process. Due to Error high state,
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Charger moves into FAULT and the simulation continues with the stop process lead-
ing to a plug relock and, considering that Error returns low, the beginning of a new
charging phase. This phase is interrupted by the request to accomplish a manual
stop operation after which the plug removal follows and marks the simulation end.
The addition of this test to the two already present maximise the code coverage,
thus achieving a full coverage when it is opted for the MC/DC criteria.

Figure 3.19: SIL results before and after test addition

On the other hand Decision coverage is never fulfilled. The right side of Figure 3.19,
related to the SIL testing performed after the test addition, shows a percentage close
to the maximum.
The use of the temporal logic operator after in the Stateflow chart implies the pres-
ence in the generated code of indexes, named temporal counters. Their function is
keeping track of the events number that triggers the transition guarded by after,
once the threshold is overtaken.
Two temporal counters are set by Embedded Coder. The first one ending with i1
takes into account the transitions between two child states, while the second one,
i.e. ending with i2, is related to the transitions whose start point is a parent state.
The definition of these two indexes comes along with a condition, one for each of
them, that imposes a maximum value that they can assume. In particular the latter
is fixed to the maximum unsigned 32 bit integer.
The machine sample time, namely the fixed step after which Charger updates itself,
is set to 1ms. At this rate the time needed to overcome the upper limit is more than
a thousand hours. It then becomes clear that it is not feasible or rather convenient
to set a simulation to cover these two conditions.
The results of the SIL testing can be compared with the MIL ones. This procedure
verifies the code behaviour by collecting the outputs, consequences of a set of stim-
uli. Since the latter is the same employed in the MIL testing the expected results
must be equivalent. The equivalence test performs the presented routine, indeed it
compares the output of two simulations. The SIL is compared with the MIL, to
identify and correct the differences aiming at maximizing the code coverage. The
two simulations must be configured in two different entries in the test manager.
Simulation 1 addresses the MIL testing, equivalent to the first set simulation test.
Simulation 2 is configured copying the settings from the first one and selecting as
simulation mode the Software-in-the-Loop. An additional item is the equivalence
criteria, where a tolerance can be selected for each output, i.e. signals of the bus
CHG MSG and current setpoint.
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Figure 3.20: Fulfillment of the equivalence criteria for every test

The tolerance is fixed to 0% because the analysed signals are digital.
Figure 3.20 provides a proof of the equivalence criteria accomplishment. It shows for
both simulations the trend of current setpoint on the upper plot and the difference
of the two on the lower one, which is zero indeed they are superimposed. The green
checks demonstrate the fulfillment of equivalence criteria for every signal of each
test, therefore the results of MIL and SIL coincide, implying that the code follows
the model behaviour.
Furthermore the SIL testing provides a complete code coverage, stating that the
code is valid and can be integrated in the target hardware to execute the tasks it
was designed for.
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Simulink Check

Simulink Check is employed to prove the safety standards compliance of the model,
from which code is generated. Thus adjustments on the model configuration param-
eters have been applied to conform it, and consequently the code, to the ISO 26262.
Specifically this stage may provoke a coverage reduction due to the modifications
introduced on the model by the adopted measures. As a matter of fact this oper-
ation implied to repeat the testing phase in order to prepare the model for code
generation. However the examined model is the final one employed to accomplish
this task. A copy of the original configuration set was made, before confirming any
change in the parameters, and saved in the data dictionary.

Figure 3.21: Model Advisor window

The guidelines application increases the restrictions and strictness of the model anal-
yser, which flags up any possible cause of non compliance. Above is the result of
the examination together with an overview of some checks run over the model.
The picture shows an almost totality of passed checks and few warnings. It is de-
cided to ignore the warnings since some of them are unfeasible and the others are
not compromising the model safety. For instance Figure 3.21 lists as last check a
warning on the missing range definition for root inports. No range can be defined
considering the inports since a part of them consists of buses made up of signals
with different ranges. This consideration extends to the outports which represents
another warning. By selecting a warning this tool provides the link to the part of the
system that needs adjustments, leading to speed up the compliance achievement.
This step is just a part of the verification and validation phase. Its completion allows
to obtain a final product whose probability to have faults is minimised. The previ-
ously mentioned phase is part of every step of the Model Based Design workflow, e.g
the requirements conversion or the testing and coverage analysis. This feature leads
to identify bugs and errors and to make modifications while being in the process and
not at the conclusion, bringing many advantages like cost decrease and time saving.
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Chapter 4

Code generation and integration

The final stage of the workflow consists of integrating the generated code into the
target hardware. At the end of the previous chapter, the result of the testings
proves the code behaves the same way the designed model does and validates it to
proceed with its integration. Taking a step back, code generation and some measures
adopted before this process will be illustrated.

4.1 Code generation

Embedded Coder is the tool of the Simulink environment employed to achieve the
automatic development of the code, thereupon compiled by the PC compiler into an
object file. The SIL was performed by making use of the latter to collect the results
by means of the same stimuli used in the MIL.
In the model configuration parameters an entry called Code Generation has various
subentries, whose names give an idea of their purpose in the process under question.

Figure 4.1: Code Generation entry of the model settings

The target selection and build process options are shown above. The first choice is
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linked to the solver, in other words to build a model, the model configuration must
specify a solver that is compatible with code generation for the system target file.
The latter is ert.tlc that supports only fixed-step solver, set in the initial phase of
the design process.

TLC files

The file extension refers to Target Language Compiler (TLC). It works with the
Simulink software to generate code. A TLC program is a collection of ASCII files
called scripts. Because TLC is an interpreted language, there are no object files.
The single target file, that calls (with the %include directive) other target files used
for the program, is called the entry point.
TLC interprets the set of target files to transform the partial representation of the
Simulink model (model.rtw) into target-specific code. Target files provide the user
with the flexibility to customize the code generated by the compiler. Using the avail-
able system target files allows to produce generic C or C++ code from the Simulink
model. This executable code is not platform-specific.
System target files determine the overall framework of code generation. They de-
termine when blocks are executed, how data is logged, and so on. The entire code
generation process starts with the single system target file specified in the Configu-
ration Parameters dialog box, on the Code Generation pane.[12]

In the Build process section it is possible to disable the code build, add artifacts
specifying a zip file by the subsequent check and change below the Toolchain set-
tings. No build happens thus no executable file is generated. Excluding the details,
two entries allow to select the compiler, in this case MinGW64, and choose a build
configuration.
In the Code generation objectives section one or more goals can be set and priori-
tised while generating code, for instance aiming at improving RAM efficiency. The
subitems of Code Generation are entirely dedicated to code customisation.
Referring to Figure 3.15 a symbol similar to a trident stands beside each signal
name. It indicates that the signal name must resolve to a Simulink signal object.
Simulink signals have been defined in the data dictionary, namely in its design data.
Their characteristics, as DataType or dimensions, must coincide with the signals
they are linked to.
Within their definition in the data dictionary at the Code Generation section it is
further possible to select the storage class. The presented choices instruct the code
on the definition of the variable that mirrors the signal under question. Indeed these
variables will be declared with the same name used in the Simulink model, due to
resolution. Moreover ExportedGlobal is the storage class to define a variable as
global in the code, in order to access to its value from any point of the program.
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Generated files

The code generation process produces five relevant files, needed at a later stage deal-
ing with the target hardware. Precisely four header and a source file. An additional
source file is generated but solely useful for build process.

Figure 4.2: Partial header file Charger.h linked to the model

Above is an example of traceability between the code and the model. Figure 4.2
shows Charger.h file partially. The signal VCU is selected in the model and its
representation is highlighted in the code. The opposite is possible as well.
The keyword extern in the signal definition implies that it is a global variable. Its
name coincides with the one of the signal, while its type is VCUtype, related to the
bus created and stored in the data dictionary. VCUtype, together with the remain-
ing signal types, is defined in Charger types.h, included in Charger.h. In the first
header file, the buses have been converted into struct type definitions. Similarly a
type is defined for each Enumerated class and called enum.

Figure 4.3: Charger.h without comments
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The comments improve the readability of the code, on the other hand they decrease
its density. For a more compact code a feature exists to disable the comments, fur-
thermore it is possible to fold the lines of code (LOCs) within the curly brackets.
Specifically Charger.h declares model data structures and a public interface to the
model entry-points and data structures.[10] The model entry point functions are
Charger initialize, Charger step and Charger terminate. Each one is implemented
in the source file Charger.c.
The first one is used for model initialization, generally once. The step function im-
plements the model algorithm, therefore it is usually called every cycle of the while
infinite loop. The last one specifies the operations to be done before terminating
the program. Its generation has been disabled since it is not needed.
Charger types.h is included within Charger.h, together with rtwtypes.h. It provides
forward declarations for the real-time model data structure and the parameters data
structure. It further provides type definitions for user-defined types that the model
uses.[10]
The header file rtwtypes.h defines data types, structures, and macros required by
the generated code. Often, the generated code requires that integer operations over-
flow or underflow at specific values. For example, when the code expects a 16-bit
integer, the code does not accept an 8-bit or a 32-bit integer type.
The C language does not set a standard for the number of bits in types such as
char, int, and others. So, there is no universally accepted data type in C to use
for sized-integers. To accommodate this feature of the C language, the generated
code uses sized integer types, such as int8 T, uint32 T, and others, which are not
standard C types.
In rtwtypes.h, the generated code maps these sized-integer types to the correspond-
ing C keyword base type using information in the Hardware Implementation pane
of the configuration parameters.[9]
Every header file has an include statement of this file, as also Charger private.h. The
latter contains local macros and local data that the model and subsystems require
[10] therefore it is included in the source file. However in this case it has no content
useful for the implemented algorithm.

Figure 4.4: Charger initialize function in Charger.c
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Figure 4.4 provides the implementation of function Charger initialize. Both inputs
and outputs are set to their initial value, which is zero if not differently specified.
At the beginning three constant struct variables are defined and used to initialize
the output CHG MSG bus and the two input buses, VCU and mBMS. The naming
convention is imposed on the Identifiers pane, entry of Code Generation in the con-
figuration parameters.
Charger DW is a struct variable, defined in Charger.h and visible in Figure 4.2,
used in the algorithm to keep track of the evolution of the state machine, while the
program is running. The finite state machine is converted into code by making use
of two switch-case statements and multiple if-else statements.

Figure 4.5: First LOC of the Charger step function implementation in Charger.c

When the program reaches the LOC where Charger step is called, it enters into it
and declare two boolean T local variables. This type is defined in rtwtypes.h and it
refers to an unsigned char, thus 8 bits are used for boolean T variables. The first
one, guard1, accounts for the program being in the CHARGING PROCESS loop,
in other words for transitions among its child states guard1 is true. This variable is
the guard condition to activate the if branch where the aforementioned transitions
happen. The latter, tmp, is used to improve code compactness in the branch active
when guard1 is true.
Two checks follow from line 120 to 126, previously examined in the code coverage
analysis. Upper limits are set on the indexes used to track the time intervals to wait
for some transitions. Refer to SIL testing paragraph for detailed information.
The next if statement evaluates a condition that is true only for the first function
call. Namely it checks for state machine status, if inactive the program changes
the status of the machine to active. Furthermore it assigns to the member (called
position during code examination) of Charger DW, responsible for tracking which
state, excluding child ones, the machine is into, the value linked to the default state,
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i.e. IDLE. Subsequently the program executes the assignments declared in IDLE.
In case the condition within the if statement in line 128 is not verified, in other words
the function call rate is higher than one, the program enters into the else branch.
After setting guard1 to false, the switch construct is used to move within the state
diagram. The program evaluates position value to find out which case statement it
has to go into, depending on the state the machine is into.
Supposing the program was in FINAL RECALIBRATION or PLUG LOCKED case
and the conditions guarding the transitions to enter into CHARGING PROCESS
are satisfied, position will assume the value to make the program move to line 137.
The if statement at this LOC checks if the timer after which starting the periodic
SOC recalibration has expired, namely the first prioritized transition when Charger
is in CHARGING PROCESS.
Once the counter i2 reached the value on the right hand of the expression, Charg-
ing Enabled value is assessed. The expression passed to the if function is true in
case the aforementioned value is false, thus the program moves forward to the de-
activation of the parent state the machine was into, by changing the member of
Charger DW struct which is tracking its status. For each parent state there is a
dedicated member of the struct. An update of position follows together with the
member value linked to SOC RECALIBRATION parent state, specifying the child
state the machine is into. Subsequently the counter i1 is zeroed, used for the next
transition that happens after a fixed time interval, moreover the assignments de-
clared in this state are executed.
Whenever the program assesses Charging Enable at line 139 while its value is true,
it jumps at line 148 where the else statement is executed and the true value is allo-
cated in guard1. The same happens while evaluating the expression at line 137, if
not verified the timer has not expired yet thus the program goes at line 151, enters
into the else branch and assigns true to guard1. The following instruction is a break,
which leads the program to exit from the switch and to execute the next instruction.

Figure 4.6: If statement to deal with the CHARGING PROCESS loop
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The latter corresponds to an if statement whose passed expression is checking if
guard1 is true. The condition of having guard1 high is equivalent in the state di-
agram to evaluate the second prioritized transition, namely a check on the manual
stop request. If conditions are not met the consecutive transition depends on which
child state of the loop the machine is into. The switch construct is employed again
passing the member of Charger DW struct that tracks the machine position into the
charging loop, different from position that does not track any child state. CHARG-
ING PROCESS is the parent state with the highest number of child ones. The others
have only two substates, leading the code generator to opt for an if-else construct
instead of the switch-case. Considering the main switch function, inside the cases
related to the aforementioned parent states, i.e. SOC RECALIBRATION, MAN-
UAL STOP and FULL CHARGE, the if-else statements are used to evaluate which
one of the two child states the machine is into. Depending on that, the program
executes the assigned instructions.

4.2 Code integration

This last stage is additional indeed it was not initially planned. Nevertheless it has
been accomplished because of a favourable time management. This test is purely
demonstrative, hence no standard or certified methods have been followed. The goal
is to implement an operating routine mostly compliant with the one presented in
this document.
The model entry point functions have been exploited to test the generated files on
a STM32 Nucleo-144 board. The board provides a STM32 microcontroller (MCU)
whose core is an ARM Cortex-M4 at 180MHz, three user LEDs, two user and reset
push-buttons, an USB with Micro-AB as board connector and power supply, a 32.768
kHz crystal oscillator, and an on-board ST-LINK debugger/programmer.
Furthermore it provides a comprehensive free software libraries and support of a wide
choice of Integrated Development Environments (IDEs), including STM32CubeIDE
[6] employed to program the MCU.

Figure 4.7: STM32F439ZIT6 Nucleo-144 board
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The handwritten code aims at calling Charger step function, defined in Charger.c, at
a fixed rate. Therefore since between two different function calls there is a defined
pace the state machine evolves in a fixed-step way. It is noteworthy to precise
that the highest frequency is limited by the time needed by the MCU to execute
every instruction between a Charger step call and the following one, including the
execution time of the function itself. If an higher frequency is set the program
assumes an unwanted behaviour.
The idea is to simulate a charging process, thus sending inputs to the model, making
use of the available General Purpose Input/Output (GPIO) of the board and coding
the remaining ones. The LEDs have been used for a debug purpose, in order to keep
track of the machine evolution. It has been earmarked the user button for simulating
the plug insertion and removal, to flag up a manual stop request and to address when
the path followed by the machine branches out.
Namely in PLUG UNLOCKING and in FINAL RECALIBRATION Charger can,
generally restart the charging process or move to an idling state.
A single pressure of the user button instructs the code in the first case simulating the
plug removal, in the second issuing the command to unlock the plug. Subsequently,
since machine is in STOP, another pressure simulates the plug removal.
Multiple pressures within an established time window respectively commands to
relock the plug and, if in FINAL RECALIBRATION, to restart the charging process.
The other inputs, precisely the ones sent by the Vehicle Control Unit and the Battery
Management System, are programmed to be automatically set depending on Charger
machine evolution. No fault condition is evaluated in the test due to the complexity
of finding a strategy to employ the same user button or to code an error detection.

STM32CubeIDE

The first step is the creation of a new project that comes along with the target
selection. The device in question is a STM32F439ZIT6 in LQFP144 package. The
project setup, consisting of options selection as target language (C), follows with
the target’s firmware setup.

Figure 4.8: Device configuration file window
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Next step is the device configuration. A separate file having the same name of the
project but different extension, i.e. IOC, provides the target pinout view. From this
pane it is possible to choose directly the state of a particular pin or to activate a
peripheral, by selecting a working mode. In this case the configuration tool deals
with the state of the related pins automatically.
In Figure 4.8 on the left all the components are listed in categories or alphabetic
order. For instance GPIO is picked up from the System Core list and the Model and
Configuration pane shows the pins connected to the LEDs and the user button. The
toolbar allows to visualise the other configured pins relative to different categories,
e.g. the reset and clock controller, system, usart or interrupts controller.
Above is the main toolbar to switch to clock configuration, code generation settings
within project manager, and more advanced tools. System clock is set to 16MHz.
At the end of the configuration code is generated providing a source file, named
main.c, where peripherals initialization, clock configuration and error handling func-
tions are already implemented and most of them placed in the main function.

Figure 4.9: STM32CubeIDE code perspective window

The IDE provides an explorer located on the left in Figure 4.9 to access to any file
within the project. The Charger folder has been added to the project since some of
the generated files are included in main.c. However to access to them it is mandatory
to include the directory path within the project. The outcome is the path presence
in the Includes section, second entry below the project name in the explorer.
Surrounding the code editor, three windows display information depending on the
selected pane in the relative toolbar. The one at the bottom prompts errors and
warnings in the Problem pane, while in Console it prints the logs if the global con-
sole is selected. In the figure a command shell shows the data transmitted by the
MCU to the PC received at the serial port by which the connection is established.
At the top right the listed items are linked to the code and they ease the navigation
through the code. At the bottom right a tool to monitor the stack filling.
The supplied template includes comments which make the code more readable and
mark areas within the user should add lines. The latter is mandatory in case mod-
ifications are applied to the configuration file. Indeed to apply the changes, the
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code must be generated again and the IDE is instructed to not overwrite the LOCs
included in the aforementioned areas.
The main.c file begins with the include commands of the header files plus Charger.c,
where model entry functions are developed. A global variable is subsequently de-
clared, whose type is a struct defined in a built-in library which refers to the hardware
abstraction layer (HAL). This library hosts variables and functions to interface the
algorithm with peripherals, e.g. to manage the LEDs routine.
The declarations of the initializing functions prototypes follow along with the im-
plementation of a function to transmit over the configured UART. A pointer to a
string and the length of the string are passed to this function.
Next lines consist of the main function development. It begins with local variables
declaration, followed by the initialisation and clock configuration functions call along
with sending a string of blank spaces over to the UART.

Figure 4.10: Beginning of the while loop

Successively the infinite while loop starts. The implemented routine is active only
when condition within the if statement at line 149 is verified. It requires execTask

52 4.2. CODE INTEGRATION



Code generation and integration

to be true and its value is forced to one each two milliseconds. This check is made in
the first if construct by means of HAL GetTick function which retrieves the system
tick. It is not put equal to one millisecond because two is the lowest value below
which the program assumes an unwanted behaviour. Furthermore a flag is used to
ensure the execution frequency is respected.
Every two milliseconds the program sets execTask to zero, reads and stores the
state of the pin connected to the user button into usrBtnState and forwardly calls
Charger step. No arguments are passed to this function since the variables declared
within it are global, thus it is possible to access to them even outside the function.
Line 154 checks Plug Inserted input value, depending on the user button pressure.

Figure 4.11: User button pressures counter routine

After the closing curly bracket, line 327, of the aforementioned if statement, the
program inspects the user button pin state and compares its current value to the
old one. Last measure prevents to count multiple times within a single pressure.
Meeting these conditions allows to change Plug Inserted to high value and to switch
on the blue LED, stating that plug insertion occurred, only if Charger is in IDLE
state. In any case the program increments usrBtnPressCnt, i.e. the counter that
keeps track of the number of pressures, and it updates the old value of user button
pin state, once out of the external if construct.
The counter usrBtnPressCnt is zeroed whenever a transition requiring the user but-
ton pressure occurs. For instance at the top part of Figure 4.11, at line 298 the
program executes a reset of the counter, along with the preceding instructions. The
sum of the last ones with the reset makes up the contents of an if statement, which
in turn is into the case construct active when Charger is in STOP. While in this state
a pressure detection makes the program move forward to switch off the blue and red
LEDs, bring down Plug Inserted and reset usrBtnPressCnt. The break instructs the
program to exit from the switch-case construct.
An increment to a different counter, namely cntRATEms, follows as a consequence
of user button pressure, precisely of its counter update therefore bigger than one.
This counter makes up for setting a time window in which multiple pressures are
taken into account. Once reaching the upper limit endCNT the counter is reset.
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The transmission of the SOC level over the UART follows. It runs only as an update,
in other words the same SOC value is not sent twice in a row thus a transmission
takes places in case the next value is different from the old one. An example is
provided at the top right of Figure 4.10.
Back to line 156 the program executes the switch command evaluating the value of
Charger DW struct member, called position in the previous analysis, which tracks
which state, that is not a child one, Charger is into. The inputs management is
coded following the same fashion that Embedder Coder opts for converting the
state diagram to code. The required input by Charger to proceed through the con-
trol algorithm, i.e. the state diagram, is sent automatically in accordance with the
conditions to be met. The latter depend on the transition.
A LEDs management routine has been added to ease the debugging phase and mon-
itor the charging process. In particular the green LED states a charging activity
when blinking and its completion when still. The blue LED is on when plug is
inserted, otherwise off. The red LED blinks when a manual stop operation is being
performed. It blinks faster during SOC recalibration procedure and it is on when
Charger is in STOP, after the reception of the command to unlock the plug.
When Charger stays in CHARGING PROCESS a linear increment of the maximum
battery cell tension, whose value is used to calculate the SOC which consequently
follows the same trend, has been modeled. A similar behaviour is opted for the dis-
charge, albeit with a flatter and clearly negative slope. A discharging process occurs
whenever Charger is in standby or stop. Namely while it awaits the command issued
by the user button pressure in STOP, MANUAL STOP and FULL CHARGE.
For the last case Figure 4.10 provides the discharging process implementation from
line 201 to 212. The counter tmpCNT sets a reduction rate twenty times smaller
than the increasing one. The decrease takes place if the charge is bigger than zero,
thereupon the counter is reset and the tension is calculated. The out of charge cir-
cumstance is tackled separately in the ensuing else if statement. The SOC value is
derived by the tension. Both are assigned to their relative BMS signal responsible
to update the Charger.
The charging routine is implemented at lines 194-195-196 and occurs if the condi-
tions guarding transitions with higher priority are not met. Indeed the first evaluated
condition is to perform the SOC recalibration. The check on charging process com-
pletion follows and finally a verification on the user button pressures counter that if
fulfilled leads Charger to carry out a manual stop operation.
To complete Figure 4.11 analysis starting at line 214 an example on how the branch-
ing out of the code has been handled. Within a time interval set by the values of
cntRATEms and endCNT, usrBtnPressCnt is updated. Once the first counter equals
the second, depending on the number of user button pressures a proper value is as-
signed to the related input. The final LOCs deal with the two counters reset and an
increment of cntRATEms, which will be zeroed at a subsequent line after the switch
construct.
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Chapter 5

Conclusion

The initial goal of the thesis differed from the achieved one. The activity aimed
at the modeling, verification and validation of an On Board Charger algorithm ac-
cording to MIL and SIL technologies. The code integration and charging routine
development into a STM board has been considered at a later stage. While setting
the activity objective the Model Based Design training had to be taken into account,
as this topic has not previously been addressed during the course of university.
This document describes the internship project carried out on behalf of Teoresi
S.p.A. and it starts with the system requirements reception furnished by the latter
and a system overview. It proceeds with their conversion into software requisites,
accounting for signals representation into non-virtual bus objects and including their
characterization.
Once the signal framework is complete the next step hinges on the charging process
design. For this phase Stateflow was used as the main tool to develop the Charger
logic along with the Vehicle Control Unit logic opting for finite state machines. The
strategy consisted of facing the modeling in two processes, namely the Inlet lock
management and the SOC recalibration. The latter development is contempora-
neous to its conjunction with the first one, leading to the final model. Both have
been initially analysed, tackling them through a further division, thereupon a solu-
tion has been implemented and undergone a testing procedure. The MIL has been
performed explaining the sequence of operations making it up. The realised test
harness for each model, together with simulations, and the coverage analysis are
provided including a strategy to maximise the latter.
The SIL is addressed only to the final model and performed employing Simulink Test
Manager, as for the MIL, through a simulation test and an equivalence one which
compares its outcome with the MIL result. A strategy to equal the SIL coverage
to the MIL one is further supplied. Evidences of the equivalence criteria fulfillment
are supplied, proving the code behaves as the model. Checks on the ISO 26262
have been run on the final model before the testing phase, followed by the adopted
measures to conform the model to the safety standards.
The last chapter is dedicated to the code generation and integration. An operations
sequence is mandatory on the model settings to prepare it to generate code from
it and some measures are presented to customize the process and the outcome. An
examination of the generated files content follows pointing out the variables charac-
terization, such as type and name which are consequences of the customization, the
code structure and the model entry functions, successively employed in the imple-
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mented charging routine on the board microcontroller in the last stage.
The final section indeed illustrates the code integration and the aforementioned
handwritten code. Starting with presenting the target hardware, i.e. STM32F439ZI
Nucleo-144 including its features, the aim of the routine has been thoroughly ex-
plained. After an introduction to the IDE and the device setup procedure, the
code structure has been analysed. Moreover the LEDs routine was explained, to be
able to track the charging progress, together with the user button management to
interact with the algorithm.
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