
POLITECNICO DI TORINO

Corso di Laurea in Computer engineering

Tesi di Laurea

FIDO2 Authentication for Embedded
Systems

Relatore
prof. Antonio Lioy

Gianluca Moliteo

Anno accademico 2021-2022

To my dad, who gave me his

strength.

To my mum, who gave me

her love.

To my brother, who gave me

his support.

To my grandmothers, who

have hoped, until the last, to

see me in time of success.

Summary

Nowadays, the number of cybercrimes performed against companies, associations and entities is
increasing drastically: organisations, from the smallest to the biggest ones, must protect them-
selves from all kinds of attacks. In this risky context, information systems must rely on dependable
security mechanisms which have to accompany all their functional processes.

Security is composed of different concepts and properties. The authentication is among the
most important ones: having the proof the user is who or what it says to be is crucial, since the
whole security architecture is based on this information. Therefore, a reliable security system
needs a strong authentication phase.

The riskier the context is, the more reliable the security must be, and the more impenetrable
the authentication phase should be. Within a company, employees differ by their role, their
position, and their responsibilities. A cyber-attack could cause more damage whether it was
performed against a labourer at the top of the organisation hierarchy. Therefore, important
workers such as CEOs should provide a strong proof when doing crucial processes or authorizing
critical transactions.

A solution based on an embedded system is provided by this thesis to address these situations;
FIDO2 has been chosen as the authentication mechanism due to its reliability and functionalities.
It is resistant thanks to the usage of asymmetric techniques and algorithms, which are implemented
transparently for the user: he can access to the system just by remembering a simple password or
by using his fingerprint. Consequently, the experience of this system is user-friendly, independently
of the complexity of the utilised techniques.

Within FIDO2, the provision of the user’s identity proof is performed with the usage of digital
signatures, independently of the executed task (registration, authentication, or authorisation).
Offering the proof in this way is particularly crucial in authorisation tasks: the newly approved
transaction could be verified in the future to assert its integrity and to check that it has been
authorised by that specific user, satisfying the non-repudiation property.

The architecture of this project is logically composed of:

❼ a FIDO2-enable Web Application: the Relying Party (RP), the entity having the resource
the user wants to access;

❼ a Web Application Database: storing non-secret data about users and transactions;

❼ a FIDO2-aware Platform: running the client side of the Relying Party;

❼ a FIDO Certified FIDO2 Authenticator: producing the proof of user’s identity on his behalf;

❼ a FIDO Certified FIDO2 Server: verifying the user’s identity on behalf of the Relying Party;

❼ a FIDO2 Server Database: storing registered users’ public keys and information.

RP client, RP server and FIDO2 server need to be published into the network, which, within
the built prototype, is a private one.

This logical architecture has been physically implemented using the following components:

❼ a Server Machine: running the FIDO Certified FIDO2 Server and the FIDO2 Server Database;

❼ a Raspberry Pi4: the embedded system representing the RP, which executes FIDO2-enabled
Web Application, the Web Application Database, and offers the client side of RP;

❼ a Client Machine: running the RP client on the FIDO2-aware Platform;

4

❼ an Authenticator: it can be implemented inside the Client Machine or it can be external to
it.

This system can perform different kinds of tasks, such as:

❼ registration of new users,

❼ deletion of registered users,

❼ authentication of registered users,

❼ logout of authenticated users,

❼ authorisation of new transactions,

❼ view of executed transactions,

❼ confirmation of executed transactions in case the algorithm used for their computation is
supported by the RP.

Even though the network is the same for every component, FIDO2 server would not con-
sider requests directly made by the RP client due to its authentication system: only the RP
server, which is associated to an authentication profile within the FIDO2 server, is allowed to
communicate with it.

To satisfy the confidentiality property, all the traffic passing through the network must be
enciphered. Therefore, TLS is used in communication between components: the second version
of this protocol is used between RP server and FIDO2 server, whilst the third version is used
between RP client and server. Moreover, TLS builds a secure context required by WebAuthn
APIs.

The system has been tested in several ways. First, a log system has been implemented in
the RP server: all the calls performed to FIDO2 server APIs are stored in a log file with details
regarding data exchanged, as well as all requested pages and logouts. This system allows the
testers to see parameters and details about input and output data of the Relying Party.

Secondly, all the traffic within the network has been sniffed during the execution of all the
defined tasks. Even though every packet was enciphered due to the usage of TLS, this test was
anyway useful to associate messages to their senders and receivers, so that to generate logical
maps among components.

Finally, a testing tool verifying the signature of transactions has been implemented: data to be
checked must be manually provided. The tester could obtain information about the transaction
to be verified from the log file, so that to be sure to process the actual values exchanged between
components of the system: this makes this test crucial.

5

Acknowledgements

Thanks to professor Cataldo Basile, who has supported me in time of need.

6

Contents

1 Introduction 9

1.1 The role of Computer Science . 9

1.1.1 Cybersecurity . 9

1.1.2 Cybersecurity pyramid . 9

1.2 The aim of this project . 10

1.2.1 Kinds of solutions . 11

1.2.2 Techniques and mechanisms to use . 11

2 State of the art 12

2.1 The authentication property . 12

2.1.1 Authentication factors . 12

2.1.2 Authentication model . 13

2.2 User authentication . 13

2.2.1 Password-based authentication . 13

2.3 Challenge-response authentication . 14

2.3.1 Symmetric CRA . 16

2.3.2 Asymmetric CRA . 18

2.4 One-time password . 18

2.4.1 HMAC-based OTP . 19

2.4.2 Time-based OTP . 20

2.5 Fast Identity Online . 21

2.5.1 Authenticators and multi-factor authentication 21

2.5.2 Asymmetric techniques . 22

2.5.3 Protocols . 22

2.5.4 User view . 24

2.5.5 FIDO2 . 26

2.5.6 Conclusions . 27

3 Project design 29

3.1 Network design . 29

3.2 Implementation choices . 29

3.3 FIDO2 server . 31

3.3.1 StrongKey . 32

3.4 Web application . 39

3.4.1 Implementation of the service . 39

3.5 Client device . 40

3.6 How this project works . 40

3.6.1 Registration . 40

3.6.2 Authentication . 41

3.6.3 Authorisation . 43

3.6.4 Deletion . 45

7

4 Web application 50
4.1 Application design . 50

4.1.1 Interactions with users . 50
4.1.2 Interactions with authenticators . 51
4.1.3 Interactions with web application database 53
4.1.4 Interactions with FIDO2 server . 55
4.1.5 Interaction between web client and web server 55

4.2 Developer manual . 56
4.2.1 Certificate . 56
4.2.2 Css . 56
4.2.3 Images . 56
4.2.4 JS . 57
4.2.5 PHP . 57
4.2.6 Utils . 58

4.3 Installation . 58
4.3.1 SKFS . 59
4.3.2 Web application . 64

4.4 Interfaces and how to use the application . 69
4.4.1 Homepage . 69
4.4.2 Registration . 70
4.4.3 Login . 70
4.4.4 Resource . 70
4.4.5 Transactions . 71
4.4.6 Admin . 72
4.4.7 session, redirect and loading . 73

5 Tests 83
5.1 Connection to the web application . 83
5.2 Registration . 83
5.3 Login . 85
5.4 Authorisation . 87
5.5 Transactions and Admin . 90
5.6 Logout . 91
5.7 Deregistration . 91

6 Conclusions 96
6.1 Production . 96
6.2 Improvements and other functionalities . 96
6.3 Connection with other projects . 97

Bibliography 98

8

Chapter 1

Introduction

1.1 The role of Computer Science

Information technology is one of the most crucial sciences in Human history; its relevance has
crossed the boundaries of the scientific scope and has started to get involved in general human
mind processes. During its still initial evolution, computer science has let humanity to reach aims
and targets that it could have never considered or imagined. It has not even been a century since
1936, year in which the mathematician and philosopher Alan Turing has built his machine, the
first computer in history, opening the way to actual information technology; nevertheless, the
mentality of generations living this phenomenon has grown swiftly and is now growing even more
quickly.

1.1.1 Cybersecurity

This context of quick technological evolution has nowadays let computer science reach people in
both professional and private spheres. In a world where technologies are accessible to everyone,
the gates to cyber-crimes are opened to any computer fan with some knowledge and skills. In
this dangerous environment, individuals, companies, organisations, and institutions must protect
themselves against criminals. The presence of a stable and reliable security system is now crucial
in every technology ambience since crimes are increasing in number, types, and ease of execution.
If protection of private data is essential for individuals, preservation of safety, integrity, and
confidentiality of crucial data is mandatory for companies, which must deal with a big amount of
data which could be critical or secret.

Since a secure system should prevent all the possible attacks, which are a lot, building a
protection system is not simple; at the same time, building an attack to a known system is quite
easier. Therefore, over the years, the problem of cyber-crimes is increasing considerably: in a
study conducted by Accenture Security [1], for instance, it is possible to note that in 2019 the
number of breaches in IT systems is increased as well as the annual cost of cybercrime, respectively
by 11% and 12% in one year and 67% and 72% in five years (figures 1.1 and 1.2).

1.1.2 Cybersecurity pyramid

The security of a system can be reached building a shield which must cover all the different aspects
of protection. Some of the main properties of a security system are:

❼ Authentication of users: making sure that the user is who or what it has said to be;

❼ Authentication of data: making sure that specific data have been created by a specific
user;

❼ Authorisation: defining what a specific user could do and which resources it could access
to;

❼ Integrity: detecting if some data has been illegitimately modified;

❼ Confidentiality: maintaining data secret;

9

Introduction

Figure 1.1. The increase in security breaches (source: Accenture Security [1])

Figure 1.2. The increase in the annual cost of cybercrime (source: Accenture Security [1])

❼ Non repudiation: binding an action to who has performed it, even in front of a court of
justice.

Considering all these features while designing a security system is superb, but not enough:
the designer should prioritize properties based on their attack surface, the space of contact with
potential attackers. The most exposed property, the one the whole system is based on, is au-
thentication; solution architects could plan the best possible project using the most sophisticated
techniques and technologies, but if the authentication phase is neglected or not secure enough,
attackers could violate the security system easily.

1.2 The aim of this project

The aim of this project is to build a strong authentication system to deal with high critical contexts
in which security is the principal issue to address. It is easy to find this kind of situations in the
ambience of companies, from smallest to biggest: critical data of various type, from private data
of employers to secrets of companies or customers, is often exchanged between high level workers.

The ideal contexts where to adopt functionalities offered by this project are offices of managers
or workers with serious responsibilities such as CEOs. The project uses an electronic embedded
system as the only gate between the office and the external world. The authentication system
protagonist of this work considers this board as the Relying Party, the entity which wants to
have the authentication proof. This card is logically put between the authentication server, the
entity performing authentication, which can be located inside or outside the private network, and
the worker’s personal computer, the client side which, with the help of an additional security

10

Introduction

hardware, can provide an authentication proof thereby letting the user to be authenticated. Once
the authentication process has been successfully executed, the user can access to the RP and to
its resources and services: now, the user can even authorise critical transactions.

1.2.1 Kinds of solutions

If the design of a security system can be bearable for IT companies, it could not be for all other
kinds of businesses, in which there could be less than a few employees specialized in computer
systems. Moreover, building the own internal security system can be very difficult even for an IT
company, both for the huge amount of effort needed and for the risk of making errors: internal
employees working at designing security systems may be negligent, malicious or may just not have
enough knowledge in cybersecurity field.

On the other side, a business can use third parties’ systems, which could reduce risks in errors
and effort of internal workers; nevertheless, big companies, in which security should have a crucial
role, could not give trust to others.

One of the aims of this project is to address this kind of issues offering a system which, even
though developed by a third party, shows its whole functioning thereby letting anyone search
for vulnerabilities and threats; moreover, potential companies can verify the security level of this
project by their own, checking its validity and deciding more consciously.

1.2.2 Techniques and mechanisms to use

This project has the goal to build a system in which a Relying Party can offer its services and
resources to a high level worker delegating the authentication task to an external server thereby
having a strong authentication mechanism. Many mechanisms have been evaluated and FIDO2
has been chosen, as it is possible to see in the next chapter, for its strength, reliability, and
advantages.

Once authenticated through the help of the authentication server, the user can gain the access
to the service offered by the Relying Party, which is an embedded system. This thesis has been
developed so that it could be possible to have security-safe functionalities inside a simple but
secure board to be put in a worker office: just by adding this card, the security level of the whole
office system would increase, allowing the worker to perform different types of actions, after the
authentication phase, which can be different from office to office.

In practise, finally, this project wants to offer a user-friendly strong authentication mechanism
for boards and embedded systems which can be used in high-risk places.

11

Chapter 2

State of the art

Thereby choosing the most adapted authentication algorithm to use in this project, the first need
is to analyse and confront different techniques. In this section, some of them are listed, explained
and compared.

2.1 The authentication property

NIST (National Institute of Standards and Technology), in “Glossary of Key Information Security
Terms” [2], gives various definitions of authentication. The principal is:

“Verifying the identity of a user, process, or device, often as a prerequisite to allowing
access to resources in an information system”.

This definition does not refer only to people: the protagonist of the authentication process,
said “actor”, can also be a device or a process, software or hardware. However, this concept can
be extended to something even more general. According to “Internet Security Glossary” [3], the
authentication does not only concern the identity of someone or something, but it is:

“The process of verifying a claim that a system entity or system resource has a certain
attribute value”.

The common point between these two definitions is the verification step: the authentication
process must execute a verification action to a proof provided by the actor.

2.1.1 Authentication factors

The authentication proof, provided by the actor, can be of different types, called factors:

Knowledge it is supposed that each user, process, or system knowing a specific secret can
be authenticated as the actor; an instance of this factor is the usage of a password, a
combination of digits only known by the actor.

Ownership the actor provides something it owns; it can be a software element, such as a token,
or a hardware component, such as a security card.

Inherence the proof is something the actor is; the most famous example of this factor is the
fingerprint.

Through one or more of these factors, an actor can produce the proof attesting it is what it
says to be; nevertheless, each one of these authentication elements has weaknesses. The usage of a
password is surely comfortable for users, but it is rarely secure, since it can be forgotten, stolen or
even guessed. A criminal can also steal a security card, if the ownership factor is used; moreover,
an hardware component can be easily lost or cloned. Finally, the usage of a fingerprint or other
inherence factors can be highly insecure, since the authentication process must approximate the
measure thereby working properly; furthermore, a criminal succeeding in simulating this factor
could be very dangerous, since the user cannot easily change its inheritance element.

12

State of the art

2.1.2 Authentication model

Usually, different entities are involved in an authentication system. The general schema is com-
posed of an actor and a RP, Relying Party: the first is willing to prove its identity to build an
authenticated session with the second, which can fulfil actor’s requests only if authenticated.

First, the actor and the CSP, Credential Service Provider, execute an enrolment protocol; in
this phase, the actor is called applicant. When successfully ended, CSP stores actor’s attributes,
crucial properties to verify its identity, and associate them to it. Sometimes, an authenticator,
such as a X.509 certificate, is provided to the applicant thereby having a formal identity proof: in
this case, the presence of a reliable CSP binds the authenticator to that specific user. Once the
credentials are given to the actor, it can perform an authentication protocol with the Verifier: this
entity communicates with the CSP asking for user’s attributes; in this phase, the actor is named
claimant. If the authentication phase is executed with a positive result, the claimant becomes
subscriber, an authenticated actor, and the Verifier exchanges with RP authentication assertions
which assure that the subscriber has specific properties.

2.2 User authentication

The user authentication is a model of authentication in which an actor, in possession of an identity
ID and the associated secret S, wants to be authenticated on a server, knowing the user’s ID
and an associated value obtainable from the user’s secret S using the function g. When the actor
starts the authentication phase, it sends its ID to the server; as a consequence, the server asks for
a proof. Then, the user sends a value, result of a function f which takes the secret S as input: once
this proof is received by the server, it compares this value with the one it has stored previously
as result of g(S), sometimes after having performed some algorithms taking the proof as input.
If the comparison succeeds, the proof is valid; otherwise, the proof is rejected (figure 2.1).

ACTOR SERVER

TI
M
E

ID of the actor

proof request

• Identity ID
• Secret S
• function f

• function g
• ID g(S)

proof = f(S)

Authentication result

Is proof equal to stored
g(S)?

Figure 2.1. User authentication model

2.2.1 Password-based authentication

The most iconic way to perform the user authentication is the password-based authentication. In
this technique, the secret S is a sequence of digits and it is sent by the actor to the server in clear;
therefore, the function f used in the transmission phase is the identity function I(x) = x

13

State of the art

On the server side, the secret is sometimes stored in clear, using the identity function I again
as the store function g: once the proof arrives to the server, it compares the stored value with the
received one (figure 2.2). Although it is simple and intuitive, this storage technique is insecure
and offers vulnerabilities which can be exploited by criminals: a malicious hacker can access to the
database and easily see the secret. To avoid this vulnerability, the server can store the information
regarding the password as the result of a hash function which takes S as input, thereby allowing
a stronger protection from malicious database accesses: even if this value is disclosed, it would
be unfeasible to invert the hash function thereby extracting the secret. In this case, when the
proof is received by the server, it first applies the hash function on the received value and then
compares the result with the stored one (figure 2.3).

Even though the system is now more secure than before, the server can still be victim of
hackers performing dictionary attacks, eventually using rainbow tables. The core of this kind
of attacks is the pre-computation: the hacker performs the known hash function on foreseeable
passwords thereby building a table that binds them to their associated digests. Once the table is
built, the attacker can compare these digest values with the ones present in the attacked database:
if it finds equal values, then the associated passwords are the actual used ones. The existence
of this type of attacks makes the server vulnerable again: to avoid this threat, the server should
store a salt, a sequence of random digits which is used to perform the hash function: the password
is first concatenated to this salt and then put as input of the hash algorithm (figure 2.4). Now,
the dictionary attack becomes unfeasible.

Although an issue is solved, the password-based authentication could have other weaknesses.
First, the password is not only stored at the server side: the storage of the user should be secure
and inaccessible by others; moreover, the transmission of the password in clear is highly insecure,
since a hacker could sniff the channel of transmission accessing directly to the secret, or it can
build a fake server and perform a MITM, Man In The Middle, attack. In case the password is
simple, attackers can simply guess it and use it; finally, a password can be easily stolen with the
usage of social engineering.

ACTOR SERVER

TI
M
E

ID of the actor

password request

• Identity ID
• Secret S = password

• ID I(S)=S

proof = I(S) = S

Authentication result

Is proof equal to stored
S?

Figure 2.2. Password-based authentication model

2.3 Challenge-response authentication

The CRA, Challenge-Response Authentication, allows to limit attacks exploiting the transmission
phase. In this system, the actor, in possession of a secret S, sends its identity ID to the server,

14

State of the art

ACTOR SERVER
TI
M
E

ID of the actor

password request

• Identity ID
• Secret S = password

• Hash function H
• ID H(S)

proof = I(S) = S

Authentication result

P = H(proof);
Is P equal to stored

H(S)?

Figure 2.3. Password-based authentication model with the usage of a hash function on server side

ACTOR SERVER

TI
M
E

ID of the actor

password request

• Identity ID
• Secret S = password

• Hash function H
• Salt Sa
• ID H(S||Sa)

proof = I(S) = S

Authentication result

P = H(proof || Sa);
Is P equal to stored

H(S||Sa)?

Figure 2.4. Password-based authentication model with the usage of a hash function and
a salt value on server side

which knows a value K, secret or not, associated to that specific actor. The server now generates
a challenge C, which must be non-repeatable to avoid replay attacks, stores it and sends it to
the claimant; once this nonce (number used once) is received by the user, it computes a value R,
result of a function f that takes as input the received challenge and the secret S; then, it sends
R back to the server. Thereby resisting to sniff attacks, the algorithm f used here needs to be
non-invertible; otherwise, an attacker sniffing the net and accessing to R and C can easily perform
the inverse function obtaining the secret S. Afterwards, the server can perform another function g
that takes as input the challenge C, previously stored, and the secret K associated to that actor;

15

State of the art

the result P of this function is now compared to the received value R: the authentication ends
successfully if they are equal; otherwise, the user is not accepted (figure 2.5).

ACTOR SERVER

TI
M
E

ID of the actor

Challenge = C

• Identity ID
• Secret S
• Function f

• ID K
• Function g

proof = f(S, C)

Authentication result

Is proof equal to g(K, C)?

Computation of the
nonce C,

Storage of C

Figure 2.5. Challenge-response authentication model

2.3.1 Symmetric CRA

The first application of the challenge-response authentication model is the symmetric one. In this
system, server and claimant know the same secret S: the actor performs a function f , for instance
a hash function, taking as input S and the received challenge C; afterwards, it sends the result
back to the server, which will perform the same function using the challenge previously sent to
the client and the stored secret; finally, it will be able to compare the result with the received
value (figure 2.6). This technique can be also used to implement mutual authentication, a system
in which the client authenticates the server and vice versa: server and client share the same secret
and, therefore, also the actor can verify that the interlocutor knows S. In this case, let’s have two
peers, A and B, willing to authenticate each other. A sends to B its ID and a challenge Ca; on
response, B sends to A both the proof Rb, result of the execution of the function f using Ca and
the secret S, and a new challenge Cb. Now, A computes its proof Ra using the same function and
sends it to B. Finally, both actors can verify the received proof executing themselves the function
again (figure 2.7).

Here, storing the secret S in clear on the server is mandatory for the system to work. However,
this is a huge weakness: if an attacker obtains the access to server databases, then the secret
could be stolen. SCRAM, Salted Challenge Response Authentication Mechanism, solves this
vulnerability [4]: here, the server stores the digest of the client secret thereby being more resistant
to hackers accessing to its database, as explained before.

Nevertheless, even symmetric SCRAM is not immune to risks, especially if using mutual
authentication. The mutual authentication model, indeed, is vulnerable: an attacker could be
authenticated as someone else, even without knowing the secret. This weakness is based on the
fact that A and B are logically identical and share the same secret: the key of this attack is to
make the victim to compute the requested proof on behalf of the attacker, which then will send
it to the victim itself (figure 2.8). The hacker, first, starts a connection, sending a false ID and
a challenge Ch; then, the victim will perform the function and send back the result as proof,
with a challenge Cv. Now, the attacker could not compute its proof because it misses the secret
S; nevertheless, it can induce the victim to compute it for it: the malicious user opens another
different connection and sends to the interlocutor a false ID as before, but choosing as challenge

16

State of the art

Cv, the same challenge previously received in the first connection. As answer, the victim will
compute its proof using Cv and S as input and will send it back to the hacker, which now knows
the result of the computation. It can now close this second connection, go back to the first one
and send here the value just received. After this operation, the victim will be convinced to talk
with the actor whose ID is the one received before.

ACTOR SERVER

TI
M
E

ID of the actor

Challenge = C

• Identity ID
• Secret S
• Function f

• ID S
• Function f

proof = f(S, C)

Authentication result

Is the received value
equal to f(S, C)?

Computation of the
nonce C,

Storage of C

Figure 2.6. Symmetric challenge-response authentication model

A B

TI
M
E

Ida, challenge of a = Ca

Challenge of b = Cb, proofb = Rb

• Identity IDa
• Secret S
• Function f

• Identity of A IDa
• Secret S
• Function f

proofa = Ra

Authentication result

Computation of the nonce
Cb, Storage of Cb;

Computation of Rb = f(S, Ca)

Computation of the nonce Ca,
Storage of Ca

Is Rb equal to f(S, Ca)?
Computation of Ra = f(S, Cb)

Is Ra equal to f(S, Cb)?

Figure 2.7. Mutual authentication between two peers using symmetric CRA

17

State of the art

Hacker
Conn. 1

TI
M

E

Ida, challenge of h = Ch

Challenge of b = Cb, proofb = Rb

Computation of the nonce Cb, Storage of Cb;
Computation of Rb = f(S, Ch)

Computation of the
nonce Ch

Hacker
Conn. 2

Victim

Cb

Computation of the nonce Cc, Storage of Cc;
Computation of Ra = f(S, Cb)

Ida, challenge of b = Cb

Challenge of c = Cb, proofa = Ra = f(S, Cb)

Ra

proofa = Ra

Figure 2.8. Attack against a mutual authentication architecture that uses a symmetric CRA model

2.3.2 Asymmetric CRA

The asymmetric challenge-response authentication mechanism employs the CRA technique using
asymmetric algorithms: the actor has a private key Kpr and an associated public key Kpu, which
can be shared with others as a certificate, usually with x.509 format; through certificates and PKI
system, it is possible to bind identities and public keys.

The claimant sends to the server its certificate with the aim to prove the ownership of the
private key associated to the public one inside the certificate it has sent. Thereby verifying
the identity of the interlocutor, the server first checks whether the certificate received is valid
downloading CRL, Certificate Revocation List, or using OCSP, Online Certificate Status Protocol.
Once the verifier has checked the certificate validity, it computes a nonce N , stores it, and ciphers
it using an asymmetric algorithm taking Kpu as input: the result will be sent to the actor as
challenge C. The claimant can now decipher the arrived value using its private key Kpr, obtaining
the result R: this value can only be computed by the actor whose id is the one put inside the
certificate, as it is the only entity possessing Kpr. Afterwards, the claimant sends back R to the
server, which, comparing this value with the nonce N previously stored, can verify if the actor is
who or what it has said to be (figure 2.9).

This system has several advantages. First, nothing except the user ID is stored on server side,
which makes the verifier immune to some kinds of attacks. Moreover, the transmission phase is
resistant to sniff attacks, since challenges and responses are results of cipher algorithms which
take as input nonces, so numbers that cannot be repeated.

The main weakness of this system is that, since it uses asymmetric algorithms, it is quite
slower than other mechanisms. Furthermore, the claimant should pay attention on the format of
the received challenge: in some cases, if the challenge is similar to a file instead of being composed
of random digits, the actor, deciphering the file with its private key, following the process, could
involuntary sign the file. Finally, the usage of a X.509 certificate brings all the vulnerabilities
related to PKI, Public Key Infrastructure.

2.4 One-time password

OTP, or One-Time Password, is an authentication mechanism in which the authentication proof
is a password, a sequence of digits, which is used only once and never again. This system must
have an initial phase in which passwords are precomputed and given to the actor, which stores

18

State of the art

ACTOR SERVER
TI
M
E

Certificate containing ID and Kpu

Challenge = C

• Identity ID
• Private key Kpr
• Public key Kpu
• Function dec

• ID
• Function enc

proof = R

Authentication result

Is the received value
equal to N?

Verification of validity of the certificate,
Computation of the nonce N,

Storage of N,
Computation of C = enc(Kpu, N)

Verification of the format of the nonce N,
Computation of R = dec(Kpr, C)

Figure 2.9. Asymmetric challenge-response authentication model

them in order. When the claimant ID is sent to the server, it sends back the request of a specific
password in the list which was not requested yet. Then, the user can look at its passwords list,
select the correct password and give it to the server, with the awareness that the specific password
will never be used anymore. To work, these passwords cannot be random: there exists a root S
which is used to perform a function f that takes S and the index of the specific password as input
and gives as result the value of that password; this root S is the actual secret of this system and
must be stored at server side: once the password requested, sent in clear, is received, it will be
compared with the result of the function explained before (figure 2.10).

The more relevant characteristic of this method of authentication is the precomputation. When
a root is chosen, a number n of passwords is computed; each time the actor wants to be authen-
ticated, a password of these is used and then discarded. After n authentications, the number of
remaining passwords will be equal to zero and another secret will be chosen and used to compute
another passwords list.

Even though passwords are sent in clear, this technique is immune to sniffing, since an attacker
accessing to one password cannot use it in any way. Nevertheless, a hacker can impersonate the
server requesting the next password in the list and then using it with an actual connection with
the real server, performing a MITM attack. For this reason, the authentication of the server is
mandatory in this kind of systems. Moreover, another disadvantage of this method is the difficulty
of the secret storage of the entire list of passwords in client side: they could be a lot and very
difficult to remember, then it could be difficult to build OTP if the client has untrusted or obsolete
devices without specific cryptographic hardware components that store the list in their behaviour.

2.4.1 HMAC-based OTP

HMAC-based one-time password authentication system, HOTP, is an application of the authen-
tication mechanism explained as OTP [5]. In this method, the passwords list is not precomputed
since all the passwords used are calculated in run-time as

PC = Trunc(HMACH(S,C))

where

Trunc is a function truncating the result of the HMAC function,

19

State of the art

ACTOR SERVER
TI
M
E

ID of the actor

nth password request

• Identity ID
• Password list PL

Password = PL at position n

Authentication result

Is the received password
equal to f(S, n)?

• ID S
• Function f

Figure 2.10. One-time password model

H is the hash function used to compute HMAC,

S is the secret shared between client and server,

C is a counter that starts from zero and is incremented each time the authentication succeeds.

Since server and client know the same secret S, it is possible to perform a mutual authentication
using HOTP (figure 2.11).

One of the most common weaknesses of this authentication system is the desynchronization:
since HMAC is computed on a counter, if the server and the client have different values of C, then
the authentication process fails regardless of whether they share the same secret S. This method
has, then, to offer a strategy to adopt if this happens.

Moreover, MITM is a possible attack that a hacker can perform. The attacker, impersonating
the server, can send a malicious request of OTP obtaining the actual OTP value, which can then
be used to have an authenticated session with the real server. This vulnerability is not patched
even in the mutual authentication case.

2.4.2 Time-based OTP

The Time-based one-time password authentication system is a mechanism of authentication that
uses the OTP model modifying it in such a way to use the actual time t and a shared secret S
to compute, through a function f , the ephemeral password, valid only for brief slots of time [6].
TOTP is in practice a special case of HMAC-based OTP in which, rather than using a counter
which can be problematic for synchronization problems, it uses the value

CT = (T − T0)/TS

where

To is the Unix epoch, a fixed and standardised time equal to 1/1/1970;

T is the current time, expressed in the format of seconds passed since the Unix epoch;

Ts is the slot of time, a fixed interval of time expressed in seconds.

20

State of the art

A B
TI
M
E

ID of A, password Ra

Rb

• Identity ID
• Secret S, counter Ca
• Function H

Authentication result

Is the received password equal to HMAC-H(S, Cb)?
If it is, increase of Cb and computation of Rb=HMAC-H(S, Cb)

• Secret S, Counter Cb
• Function H

Computation of Ra=HMAC-H(S, Ca)

Increase of Ca,
Is the received password equal to HMAC-H(S, Ca)?

Figure 2.11. Mutual authentication using HMAC-based one-time password model

TOTP computes every password locally in run time and, therefore, it requires computational
power in the actor’s device; moreover, since password computation is based on the time, it is
mandatory to have clock synchronization between client and server. Even in this case, however,
a packet can be sent at a time close to the end of a slot and arrive at the beginning of the next
slot, inducing a forced desynchronization. Thereby avoiding this issue, the verifier must compare
the received password P to the ones computed in the actual slot f(IDu, T), in the previous one
f(IDu, T − 1) and in the next one f(IDu, T + 1).

2.5 Fast Identity Online

FIDO, or Fast Identity Online, is one of the most sophisticated authentication mechanisms used
nowadays. FIDO allows users to be registered to a service and to be authenticated gaining access
to it; the actor can also authorise transactions.

Fast Identity Online was created to address common weaknesses associated to other authen-
tication techniques. The usage of a password is dangerous, for instance, due to the great number
of online accounts a single user owns: this leads actors to reuse their passwords many times
and, when one is compromised for one service, also the others will be damaged. As a result, the
percentage of data breaches caused by passwords, for this and other weaknesses, is over 80% [7].

Thereby addressing this vulnerability, FIDO could not use passwords to perform the authen-
tication phase, as it can be passwordless.

2.5.1 Authenticators and multi-factor authentication

Fast Identity Online, to perform authentication, registration and authorisation phases, uses au-
thenticators, objects giving some sort of evidence to the server: they can be software, such as
the ones installed in many smartphone or computer operating systems, or hardware, like security
keys and devices. Thereby gaining the access to these authenticators, it is possible to use different
methods: the user can have a knowledge factor, like a password, or can configure an inherence fac-
tor, such as facial or voice recognition or fingerprint. This kind of factors are in general dangerous
to use, since a password is guessable or easy to steal, while inherence factors are not precise and,
if compromised, cannot be changed. Nevertheless, in FIDO these factors are used locally just to
gain access to authenticators: actual protocols are performed with asymmetric techniques, which

21

State of the art

are more secure. For this reason, the usage of this type of authentication elements is not bad and
can contribute to build a mechanism easy to employ for final users, who are only supposed, in the
worst case, to remember a simple password.

The usage of these authenticators makes possible the increasing of security performances of
FIDO mechanism due to Multi-Factor Authentication, or MFA. MFA is an authentication tech-
nique in which more factors of different types are used at the same time to perform the same
authentication process. Through the usage of multi-factor authentication, it is possible to im-
plement a so said “strong” authentication technique. To properly work, all the factors chosen
need to be mutually independent: the validity of one must be independent of the validity of the
others; in this way, even though one element is compromised, the validity of the others, remain-
ing undamaged, would not allow attackers to be authenticated and perform malicious actions.
Moreover, thereby increasing the effectiveness of the security technique, it is mandatory to have
at least one of the factors to be non-reusable and non-replicable.

FIDO can use two factors to perform authentication. U2F, Universal 2nd Factor, can be
implemented due to the usage of authenticators: the user must first possess the authenticator
and, in addition, must have the possession of the right factor used to gain access to it. In other
words, let the user have a hardware key as authenticator and a password as access factor. In this
case, an attacker can act in two ways.

❼ The attacker is a hacker and steals the password from the user: the criminal cannot be
authenticated since it does not have the secret key in its hands;

❼ the attacker is a thief and steals the security key from the user: the criminal cannot be
authenticated because it does not know the password.

As it is possible to ascertain, the only way the criminal has to properly attack its victim is to
steal both the authenticator and the other factor used, which is very unlikely.

2.5.2 Asymmetric techniques

Authenticators are used to perform asymmetric functions which are mandatory to make the
authentication process with the server. At registration phase, a new asymmetric key pair is
computed locally and stored in the authenticator; then, the public key is shared with the server,
which can use it later to perform authentication and authorisation phases. The usage of this
technique makes possible the server to not store any secret in any way, which makes this mechanism
immune to some kinds of attacks that have as victim the server database, such as the dictionary
attack.

Every user can have more than one account and each of these can have more than one key
pair. Moreover, every key pair is associated to one specific RP that uses FIDO mechanism and
cannot be used for other RP or services. This makes the security stronger and the user experience
easier, since it is not bound to one single key pair.

2.5.3 Protocols

FIDO mechanism allows users to be registered, authenticated, and let them to authorise and
confirm transactions. Thereby offering all these features, Fast Identity Online uses protocols
which have as protagonists:

❼ final user;

❼ user’s device, divided in

– FIDO authenticator, the authenticator which manages user’s asymmetric keys;

– FIDO Client, the client side of the FIDO mechanism;

– User Agent, the client side of the web application which can be an application or a
program, often run in a browser;

❼ relying party, divided in

– FIDO server, the server side of the FIDO mechanism, which can also be located outside
the RP;

22

State of the art

– web application, the server side of the web application, the actual RP that manages
the service or the resource the user wants to access.

Registration Protocol

To be registered to a relying party, it is mandatory to perform the registration protocol graphically
described in figure 2.12. First, the user agent, on behalf of the user, sends the registration request
to the web application, which will forward it to the FIDO server (step 1). This request only
contains user’s information such as first name, last name, username, display name. The server
now generates a registration request and sends it to the client with a specific policy: this is what
FIDO server accepts as valid in terms of, for instance, algorithm and key types used (step 2).
Then, FIDO client, receiving this request due to the user agent, starts a protocol with the user
through the authenticator; at the end of this protocol, the user will be enrolled and a new key
pair, associated to the user and to the RP, will be generated and stored in the authenticator
(step 3). Once this protocol is terminated, the registration attestation is computed and sent to
the server with the registration response, while the public key calculated in the preceding step is
shared (step 4). Finally, the FIDO server has now all the data needed to verify the response and
the attestation received and, in case of success, it stores the public key (step 5).

Figure 2.12. Graphical description of FIDO registration protocol (source: FIDO Alliance [7])

Authentication Protocol

Once the user is registered to the relying party, it can be authenticated thereby performing login
and accessing to resources and services offered by RP (figure 2.13). In step 1, the authentication
request is generated by the user agent using few user data like just username and user identifier.
In the following step, the second, a request is created and sent to the client with a defined policy;
in addition, a challenge is computed and sent to the user agent: this is some non-repeatable
value which is temporally stored in the server and it is needed to verify the identity of the user.
Now, the user offers an authentication proof to the authenticator thereby unlocking its secret key
associated to the RP; after the computation of the authentication response, the private key is used
to calculate the signature of the response to be sent to the FIDO server (step 3-4), which can now
verify the signature received using the public key associated to the user that it has previously
stored, in the registration phase, and the challenge stored just before, in step 2 (step 5).

23

State of the art

Figure 2.13. Graphical description of FIDO authentication protocol (source: FIDO Alliance [7])

Authorisation Protocol

As written above, FIDO allows users to confirm transactions in a way that permits the non-
repudiation property. The authorisation protocol, described in figure 2.14, starts with a transac-
tion confirmation request, which contains information about the user and about the transaction
to be confirmed (step 1). As in the authentication protocol, the second step wants the server to
send an authentication request; in addition, a transaction text, a description of the transaction
to be confirmed, is sent in order to be visualized by the user agent to the user: once the user has
checked the validity of the transaction text, it can confirm it after the authentication protocol with
the authenticator. Now, the user can use its unlocked private key thereby signing the hash value
of the transaction text viewed (step 3). This signature is the confirm that only that specific user
can have allowed the transaction and, thanks to this, it is possible to have the non-repudiation
property for this transaction, which means that the user cannot deny having confirmed the trans-
action in front of a court of justice. So, this signature is sent with the authentication response to
the server (step 4), which can now validate both response and signature (step 5).

2.5.4 User view

So far, it is described how FIDO protocols work and what happens beyond user’s eyes. Fast
Identity Online, however, is not only efficacious, but it is also a great user-friendly mechanism.

Registration phase

Let the user have as authenticator its smartphone (figure 2.15). If user wants to access to a
relying party which uses FIDO mechanism, it has first to register a new key pair associated to
the specific RP. To perform the registration phase, the user has to contact the relying party and
approve the registration using a password or, even better, a biometric factor such as fingerprint.
Once its smartphone has authenticated it, the system generates the key pair, stores the private
key in user’s smartphone and the public key in the FIDO server database.

Authentication phase

As in the registration one, the authentication phase is very simple for the user (figure 2.16). Once
it wants to perform the login to the relying party in which it is registered, the user contacts

24

State of the art

Figure 2.14. Graphical description of FIDO authorisation protocol (source: FIDO Alliance [7])

Figure 2.15. Registration phase from the user point of view (source: FIDO Alliance [7])

the RP and performs the login challenge simply approving it accessing to its authenticator with
the fingerprint or the password used in registration phase. Once the approval phase is complete,

25

State of the art

its smartphone chooses the right private key, the one associated to that specific RP, and use it
thereby performing asymmetric functions to continue the authentication; if user wants to authorise
a transaction, the steps are the same.

Figure 2.16. Authentication phase from the user point of view (source: FIDO Alliance [7])

User experience

For both the registration and authentication phases, such as for the authorisation phase, the user
experience is put as priority: from its point of view, the entire FIDO mechanism is based on simple
passwords or, even more user-friendly, fingerprint, which makes this technique very simple to use
once implemented. In Fast Identity Online there is a complete separation between the actual
secure mechanism, which uses strong asymmetric algorithms and multi-factor authentication, and
the user perception of something very simple, usually related to weak authentication techniques.

2.5.5 FIDO2

The second version of FIDO, FIDO2, is the standardised one. It uses FIDO protocols and has
the same characteristics of the first version, but with some additions. First, the specifications of
web authentication had been standardised in W3C, World Wide Web Consortium’s, WebAuthn
specification. WebAuthn defines a specific set of web APIs needed for FIDO2: it is supported by
most of web browsers and operating systems, as figure 2.17 shows.

Secondly, FIDO2 supports Client To Authenticator Protocol, or CTAP, a protocol needed to
let the user to use not only authenticators embedded in the system used, such as the smartphone
or personal computer, but also external hardware security keys. As FIDO Alliance specifies [7],

“CTAP is complementary to the W3C’s Web Authentication (WebAuthn) specifi-
cation; together, they are known as FIDO2”.

26

State of the art

In general, then, a FIDO system sees a client device, which is running the web application
client side in a browser, and the server, which is composed on the relying party application server
and an internal or external FIDO server (figure 2.18). FIDO protocols are executed between FIDO
client and FIDO server, through the RP application. Inside the user’s device, the client side of the
RP application calls W3C WebAuthn APIs using the browser, if it supports them. These APIs
want to communicate with an authenticator and the user can choose between platform, embedded
authenticators, such as Windows Hello, or external authenticators through CTAP, such as USB
or NFC secret keys.

Figure 2.17. View of technologies which support WebAuthn (source: FIDO Alliance [7])

Figure 2.18. Architecture of FIDO and FIDO2 mechanism (source: FIDO Alliance [7])

2.5.6 Conclusions

FIDO2 is one of the most secure and sophisticated authentication mechanisms nowadays avail-
able. Since it uses protocols which employ asymmetric algorithms and non-repeatable challenges,
Fast Identity Online is resistant to sniffing. FIDO2 supports external security keys through
CTAP, it supports password-less authentication though UAF (figure 2.19), or Universal Authen-
tication Framework, and it supports second-factor and multi-factor user experience through U2F
(figure 2.20). FIDO2 has many security features and supports non-repudiation of transactions
confirmation and, despite its security performances, it is very user-friendly: users can utilise FIDO
protocols just with fingerprint or very simple passwords without making the mechanism weak, as
they are used only locally to unlock their private keys. Moreover, Fast Identity Online is versatile,
as the same user can have multiple accounts, each having multiple key pairs. FIDO does not use
third party entities in protocols and the server does not store user’s secrets and this, as said above,
increases the security of the entire mechanism.

27

State of the art

For all these reasons and pros, the usage of FIDO2 authentication technique is widely recom-
mended in a critical system such as the one treated in this thesis.

Figure 2.19. UAF standards scheme (source: FIDO Alliance [7])

Figure 2.20. U2F standards scheme (source: FIDO Alliance [7])

28

Chapter 3

Project design

The aim of this project is to implement the FIDO2 authentication mechanism to be used in
an embedded system, a system having a weak computational power and few resources. In this
chapter, the system design and implementation are shown.

3.1 Network design

As specified before, the FIDO2 technique needs different components:

❼ a FIDO2 server,

❼ the web application server,

❼ the web application client.

Because of the small power and resources of the embedded system, it has been chosen to
run the FIDO2 server externally; it stays, using a static IP address, in the same network of the
embedded system, which is using another static IP address and running a service capable to offer
the web application. Therefore, this board has the logical role of the Relying Party, something
owning the service or resource the final client wants to access. Thereby executing the whole
authentication mechanism, the client device must be put in communication with the embedded
system; for the final client, the usage of an external FIDO2 server is transparent. The figure 3.1
shows this context.

Since the presence of an external FIDO2 server is not seen by the client device, it is possible
to use only one network in which all three nodes are present. In this type of design, security is not
compromised because FIDO2 server requires an authentication proof by FIDO2 client to allow
requests: even if an attacker stands within the net, it cannot access to FIDO2 server (figure 3.2).
Thereby making this project simpler, it has been chosen this kind of solution: the network is
private and it is the same for all nodes.

For more complex situations, it is also possible to implement more than one FIDO2 server; in
this case, all these components need to be synchronised. This type of solution needs the usage
of a proxy which guides requests to one of the available servers. In this way, first, the downfall
of one server does not interrupt the service; moreover, if many clients are connected at the same
time, the proxy can have the role of load balancer, sending, for instance, half of the requests
to one server and the other half to the other. Some proxies, furthermore, support also different
authentication mechanisms to be used to add more security. Nevertheless, one of the principles of
security is the simplicity of system design: a more complex system can show more vulnerabilities
to an attacker. Figures 3.3 and 3.4 graphically describes this solution.

3.2 Implementation choices

The implementation choices have been made with awareness of working with an embedded sys-
tem. In particular, the web application has been built using only PHP and JavaScript, with no
framework. Since the final client willing to be authenticated will be a user with a device with

29

Project design

User’s device FIDO2 serverWeb application

Figure 3.1. Design of a possible project network

User’s device FIDO2 serverWeb application

Figure 3.2. Design of the network chosen for this project

much more resources, such as a PC or a smartphone, it will not be a problem to let it execute
instructions requiring a big amount of computational power. Then, as the usage of FIDO2 re-
quires, the client side of the web application uses WebAuthn APIs thereby running cryptographic
functions, like generating keys and signing challenges.

30

Project design

User’s device

FIDO2 server 1

Web application Proxy

FIDO2 server 2

Figure 3.3. Design of a possible project network in which two FIDO2 servers are managed by one
proxy. In this case, one network is used for all the components

User’s device

FIDO2 server 1

Web application Proxy

FIDO2 server 2

Figure 3.4. Design of a possible project network in which two FIDO2 servers are managed by one
proxy. In this case, different networks are used

3.3 FIDO2 server

FIDO2 server runs in another device; for this project, it has been chosen to execute it in a
virtual machine running in a personal computer with Windows11, eight gigabytes of RAM and
a i5 10400F as processor. This server needs a big and stable amount of power since it has the
role to offer different endpoints, manage many RPs at the same time, and execute cryptographic
functions, such as verifying the challenges signed and sent by clients.

The virtual machine is equipped with four gigabytes of RAM and forty gigabytes of disk; it

31

Project design

can use one processor and a network adapter which is set in such a way to access to the external
physical network. This virtual system runs CentOS 7.

There are many different solutions to implement a FIDO2 server: among the others, the one
offered by StrongKey [8] has been chosen.

3.3.1 StrongKey

Strongkey is a company which offers security solutions. Besides other products, they developed
SKFS, or StrongKey Fido Server, which is an open source FIDO2 server being constantly updated.
This solution is the one chosen for this project because of the importance StrongKey has and the
assurance it gives.

To install SKFS, official instructions have been followed [8]. In this project, this server runs
in port 8181 and it has been chosen to let it stand directly inside the network: for this reason, it
has been mandatory to open that port.

It is possible to implement more than one SKFS using a proxy as guide for requests. This
solution has been evaluated for this project using one single SKFS and a proxy on the same ma-
chine, with the port 8181 closed and the 443 one opened and used by the proxy; as recommended
by Strongkey, it has been chosen to use HAProxy Load Balancer [9]. In this case, after having
installed the proxy software, client authentication has been added using TLS and installing the
RP certificate.

StrongKey Fido Server implements an authentication system which can be based on username
and password or HMAC. Thereby using a new RP, it is mandatory to register it and assign to it all
the privileges it needs. Within the SKFS, RP credentials are named SCID, or Service Credentials
Identifiers; in order to manage SCIDs, StrongKey has developed a tool: “manageSKFSCred.sh”.
Due to it, it is possible first to deal with the initial admin user, which has the same username
and password for all the instances of the server when initially installed. This user is dangerous
to keep unchanged, since it has every possible privilege; to deal with this SCID, three options are
available:

❼ delete it,

❼ change its password,

❼ change the groups it joins, so that to limit its privileges.

For this project, the second option has been chosen.
After having patched this user, it is needed to create a SCID for the RP to be installed.

Afterwards, SKFS requires that every API called by the web application carries also the credentials
obtained after the SCID registration, so that none can access to these endpoints but the registered
RPs.

RP privileges

After SKFS executes the authentication of a RP, it must know what kind of endpoints this web
application is allowed to call. To enable and implement access control, SKFS makes use of “roles”.
Each role is a sort of group in which a RP can be enrolled; if a web application joins a role, then
it acquires the permission to call all the APIs associated to that specific group. Roles are

FidoRegistrationService-AuthorizedServiceCredentials this role enables access to the pre-
register and register APIs.

FidoAuthenticationService-AuthorizedServiceCredentials this role enables access to the
preauthenticate and authenticate endpoints.

FidoAuthorizationService-AuthorizedServiceCredentials this role enables access to the
preauthorize and authorize APIs.

FidoAdministrationService-AuthorizedServiceCredentials this role enables applications
to access the getKeys, updateKeys, deleteKeys, viewPolicy, addConfig, updateConfig, delete-
Config, viewConfig, ping, and updateUsername endpoints.

32

Project design

FidoCredentialService-AuthorizedServiceCredentials this role enables access to the getKeys,
updateKeys, and the deleteKeys APIs.

FidoPolicyManagementService-AuthorizedServiceCredentials this role enables applica-
tions to access the addPolicy, updatePolicy, deletePolicy, and viewPolicy endpoints.

FidoMonitoringService-AuthorizedServiceCredentials this role enables applications to ac-
cess the viewPolicy, viewConfig, and ping APIs.

These names of roles are the default ones; if willing, the designer of the system can change
them or even add or remove roles. Figure 3.5 shows the matrix of roles with endpoints associated.

Figure 3.5. Matrix of StrongKey Fido Server roles in association with endpoints they
unlock (Source: Strongkey [8])

SKFS does not make usage of this mechanism just to implement simple access control: due to
roles, it is possible to implement a more complex system in which the web application is not just
one and each application is delegated to offer a single service. For instance, it could be possible to
dedicate a web application implementing the registration service and another for authentication
and authorisation tasks.

More information about this can be found in StrongKey web site [8].

Endpoints

SKFS offers different endpoints to be used in protocols such as registration, authentication, au-
thorisation and deletion of accounts. These APIs are protected with the server authentication so
that only registered RPs can use them; the information regarding RP authentication is sent every
time as input of every endpoint as value of “svcinfo” attribute. Endpoints are:

preregister it is the first endpoint component of the registration task and, as figure 3.6 shows,
wants as input

username the name associated to the user account registering the FIDO credential,

33

Project design

displayName a label assigned to the unique authenticator used by the user,

options a JSON object containing an optional list of features the web application may
request to SKFS to associate with this registration request,

extensions a JSON object containing an optional list of extensions the web application
may request to SKFS to associate with this registration request;

while returns as output

rp a JSON object containing information about the RP sending the request,

user a JSON object containing information about the user account willing to be registered,

challenge a Base64Url encoded random nonce generated by the SKFS to challenge the
Authenticator to sign it with the newly generated Private Key of the FIDO credential,

pubKeyCredParam array of JSON objects each of which describes the Public Key algo-
rithm from the set of algorithms the SKFS will accept as valid for generated keys;

Figure 3.6. Input of StrongKey Preregister endpoint (source: StrongKey [8])

register it is the endpoint representing the second phase of the registration task and, as figure 3.7
shows, wants as input

strongkeyMetadata a JSON object describing metadata about the RP, such as the origin
and the location,

publicKeyCredential a JSON object containing details of the response, composed as
following

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

response a JSON object containing the response to the challenge received, public key
credential, and some details about the authenticator,

type the type of FIDO credential, always “public-key” if using FIDO;

while returns as output

response a string containing the result of the registration task;

preauthenticate as the preregister API, this one is the first part of a task, in this case the
authentication task, and, as figure 3.8 shows, wants as input

username the name associated to the user account willing to perform authentication,

options a JSON object containing an optional list of features the web application may
request to SKFS to associate with this authentication request;

34

Project design

Figure 3.7. Input of StrongKey Register endpoint (source: StrongKey [8])

while returns as output

challenge a Base64Url encoded random nonce generated by the SKFS to challenge the
Authenticator to sign it with the Private Key of the FIDO credential,

rpId a string containing the origin representing RP’s domain,

allowCredentials array of JSON objects each of which shows details about credentials
allowed;

Figure 3.8. Input of StrongKey Preauthenticate endpoint (source: StrongKey [8])

35

Project design

authenticate it is the final step for authentication task and, as figure 3.9 shows, wants as input

strongkeyMetadata a JSON object describing metadata about the RP, such as the origin
and the location,

publicKeyCredential a JSON object containing details of the response, composed as
following

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

response a JSON object containing the response to the challenge received and some
details about the authenticator,

type the type of FIDO credential, always “public-key” if using FIDO;

while returns as output

response a string containing the result of the authentication task;

jwt a JSON Web Token that provides an RP with the ability to establish SKFS as an
Identity Provider to enable single sign-on for users with other web applications within
their domain

Figure 3.9. Input of StrongKey Authenticate endpoint (source: StrongKey [8])

preauthorize this endpoint composes, with the authorize one, the task of authorisation of trans-
actions and, as figure 3.10 shows, wants as input

username the name associated to the user account willing to perform authorisation of a
transaction,

txid the unique transaction identifier,

36

Project design

txpayload the transaction payload describing details about the transaction authorised,

options a JSON object containing an optional list of features the web application may
request to SKFS to associate with this authorisation request;

while returns as output

challenge a Base64Url encoded random nonce generated by the SKFS to challenge the
Authenticator to sign it with the Private Key of the FIDO credential,

rpId a string containing the origin representing RP’s domain,

txid the unique transaction identifier,

txpayload the transaction payload describing details about the transaction authorised,

allowCredentials array of JSON objects each of which shows details about credentials
allowed;

Figure 3.10. Input of StrongKey Preauthorize endpoint (source: StrongKey [8])

authorize it is the endpoint representing the second step for transactions authorisation and, as
figure 3.11 shows, wants as input

txid the unique transaction identifier,

txpayload the transaction payload describing details about the transaction authorised,

strongkeyMetadata a JSON object describing metadata about the RP, such as the origin
and the location,

publicKeyCredential a JSON object containing details of the response, composed as
following

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

response a JSON object containing the response to the challenge received and some
details about the authenticator,

type the type of FIDO credential, always “public-key” if using FIDO;

while returns as output

response a string containing the result of the authorisation task;

txdetail a JSON object containing details of the transaction authorised such as txid, tx-
payload, the nonce used and the challenge, the time of authorisation,

FIDOAuthenticatorReferences an array of JSON objects each of which gives details
about the authenticator used: the most important data are

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

37

Project design

rpId a string containing the origin representing RP’s domain,

authenticatorData details about the authenticator used which, with clientDataJ-
SON, can be used to implement transaction confirmation,

clientDataJSON a serialised representation of a JSON object containing platform
data which, with authenticatorData, can be used to implement transaction confir-
mation,

signerPublicKey the base64-encoded public key associated to the private key used
for the authorisation task,

signature the base64-encoded digital signature confirming this transaction,

signingKeyAlgorithm the algorithm used to confirm this transaction;

Figure 3.11. Input of StrongKey Authorize endpoint (source: StrongKey [8])

getkeysinfo this API is used to gain information about all the registered keys belonging to a
specific user and, as figure 3.12 shows, wants as input

username the name associated to the user account;

while returns as output

keys an array of JSON objects each of which gives details about one key, the most important
data it shows are

keyid a string identifying a unique key,

fidoProtocol the protocol the key uses,

credentialId FIDO credential identifier,

status it represents the actual status of the key, whether the key is active or inactive;

38

Project design

Figure 3.12. Input of StrongKey Getkeysinfo endpoint (source: StrongKey [8])

deregister endpoint which allows to delete a user key and, as figure 3.13 shows, it wants as input

keyid a string identifying a unique key;

while returns as output

response a string describing the result of this operation;

Figure 3.13. Input of StrongKey Deregister endpoint (source: StrongKey [8])

Details of the information described are available on the website of StrongKey [8].

3.4 Web application

As already specified, the web application must be executed inside a small embedded system and,
for this reason, it needs to be the lightest possible: for this project, PHP and JavaScript are the
programming languages chosen. The web application is logically divided in what the embedded
system executes, the web application server, and what is run by the browser standing in the client
device, the web application client.

3.4.1 Implementation of the service

First, the system needs to execute a service offering the web application to clients: for this project,
Apache has had this role. WebAuthn APIs require the usage of TLS and the protocol https: to
use them, first Apache must be configured to support TLS and to open the port 443; then, a
certificate should be requested to a Certificate Authority. For this project, a self-signed certificate
has been generated using openssl software.

To use the application, the system must have PHP installed. Moreover, the application will
need a database: for this project MariaDB has been used.

Finally, since the embedded system must execute a server, this service must have a static IP
address in such a way that every client willing to access the server can easily contact it.

39

Project design

In case the FIDO2 server or the proxy server needs TLS client authentication, if the certificate
is self-signed, as in this project, it is mandatory to add this RP certificate in the server list of
allowed certificates.

3.5 Client device

A client willing to be authenticated with the mechanism built in this project must be connected
in the same network of the embedded system. It is possible to have a DNS server in the network
which can guide the client to the actual web application; however, for this prototype it has
been chosen to configure the device thereby automatically associating the web application server
domain name to its static IP address.

3.6 How this project works

In this section is shown how the tasks are implemented: registration, authentication, authori-
sation, and deletion of accounts. The project design with all the logical actors is graphically
explained in figure 3.14.

Figure 3.14. Scheme of all the actors of the project design (source: StrongKey [8])

3.6.1 Registration

The registration task can be schematised in seventeen steps. First, figure 3.15, the user chooses
his username which must be unique; it is also possible to let him insert other personal data needed
by the RP. Then, step 2, the platform will send to the web application this information and it will
check if that username can be used, step 3. After having checked this, the preregister endpoint is
called, step 4.

FIDO2 server can now elaborate the request and compute the challenge to be sent to the RP,
step 5 (figure 3.16); then, this challenge is immediately sent to the platform, step 6, which can
now use the authenticator to solve the challenge, step 7. If FIDO2 is used, the authenticator
can also be external and CTAP can be used. During this phase, it is possible the mechanism to
require the presence of the user, step 8.

As figure 3.17 shows, at the end of the verification phase, the authenticator can answer back
to the platform with the challenge response, step 9, which is forwarded to the web application
server, step 10. It now possesses all the needed data to call the register API of the FIDO2 server,
step 11, which elaborates the request: if this challenge response is valid, the user’s key counter is
increased, step 12, and the new key is store, as figure 3.18 describes graphically as step 13.

FIDO2 server gives, then, the register response to the web application, step 14, which, in case
of success, will update its databases thereby adding the new user, step 15. Then, it will forward
the register response to the platform which can finally show to the human user the result of the
task, step 16 and 17.

40

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Username, user’s
personal data1 2

Web Application
Database

Is username
available?

3

Preregister4

FIDO2 Server
Database

Username, user’s
personal data

Figure 3.15. Scheme of the first part of registration task

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Challenge6

Web Application
Database

Challenge7

Preregister
response

(challenge)

5

User
verification

8

FIDO2 Server
Database

Figure 3.16. Scheme of the second part of registration task

3.6.2 Authentication

Once the user has been registered, he can be authenticated thereby accessing to the willing resource
or service. To do this, first, as figure 3.19 shows, the user has just to provide his username to
the platform, step 1. It is now possible to note that neither in the registration task nor in the
authentication one the user needs to use passwords. Then, the username is forwarded to the web
application server, step 2, which checks whether the username exists or not in its databases, step
3. In case of success, the preauthenticate endpoint is called, step 4.

The FIDO2 server computes and sends a challenge to the web application, step 5, to be

41

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Challenge
response

9

Challenge
response

10 Register11

FIDO2 Server
Database

Update user’s
key counter

12

Figure 3.17. Scheme of the third part of registration task

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Register
response14

FIDO2 Server
Database

Store user’s
registered key

13
Register new

user
15

Register
response16

Register
response17

Figure 3.18. Scheme of the fourth part of registration task

forwarded to the platform, step 6; it is possible to follow these phases in figure 3.20. As for
the registration task, the platform can now execute a protocol to solve the challenge with the
authenticator, step 7, which can also require user verification, step 8.

Figure 3.21 explains that, at the end of the resolution of the challenge, the response obtained is
given to the platform, step 9, and then sent directly to the web application server, step 10. With
the information received, the web application builds data needed for the authenticate endpoint
and calls it, step 11. FIDO2 server uses data arrived to check and verify the challenge response,
step 12.

As figure 3.22 shows, the authenticate response is then generated and sent by the FIDO2

42

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Username1 Username2

Web Application
Database

Is username
valid?

3

Preauthenticate4

FIDO2 Server
Database

Figure 3.19. Scheme of the first part of authentication task

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Challenge6

Web Application
Database

Challenge7

Preauthenticate
response

(challenge)
5

User
verification

8

FIDO2 Server
Database

Figure 3.20. Scheme of the second part of authentication task

server to the web application server, step 13, which can use it to perform additional processing
tasks, such as establishing sessions or following access control rules, step 14. Afterwards, the
authenticate response is forwarded to the platform, step 15, which will then show it to the user,
step 16.

3.6.3 Authorisation

After the authentication, a user obtains access to the resource or service wanted. Let the resource
be the possibility of starting a transaction such as, for instance, buying an object. FIDO2 offers the

43

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Challenge
response

9

Challenge
response

10 Authenticate11

FIDO2 Server
Database

Verification of
challenge

12

Figure 3.21. Scheme of the third part of authentication task

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Authenticate
response13

FIDO2 Server
Database

Elaborate the
authentication

14

Authenticate
response15

Authenticate
response16

Figure 3.22. Scheme of the fourth part of authentication task

possibility of making the authorisation task, which is an authentication task with the transaction
details associated.

First, the user tells the platform that it is willing to start a transaction (figure 3.23), step 1;
then, the client of the web application sends to the server transaction details, such as transaction
identifier and a transaction summary, step 2. It is mandatory that these details are the exact
copy of what the user has seen when starting the transaction. When the server receives this
information, it can use it to build data in the format expected by the FIDO2 server, step 3, and
it calls the preauthorize API, step 4. The web application server does not need here to receive
the username from the platform because the user has been authenticated before and, therefore, a

44

Project design

session has been established and it is now carrying all the most important information about the
user such as its username. This is very important since, as consequence, different things happen.
First, the user is the only one that can have rights of making transactions in his behalf; moreover,
he cannot choose to send a different username and to start a transaction for another user. Finally,
since the authentication phase has been executed, the web application server has the assurance
that the user exists and it can avoid making checks in this sense.

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Transaction
request1

Transaction
details2

Web Application
Database

Preauthorize4

FIDO2 Server
Database

3
Username of
the session

Figure 3.23. Scheme of the first part of authorisation task

FIDO2 server has to make itself sure the user is who he is saying to be; for this reason, as
described in figure 3.24, it computes a challenge which is first sent to the web application server,
step 5, and then forwarded to the web application client, step 6, which, as in the authentication
phase, executes WebAuthn APIs to solve the challenge with the authenticator, step 7. Even in
this case, depending on how the user has been registered, it is possible that this phase requires
his verification, step 8.

Figure 3.25 shows that, in step 9, the challenge response is sent to the platform which will
provide it to the web application server in step 10; the server now calls the authorize API of the
FIDO2 server, step 11, which can finally verify the signature made by the user, step 12.

Once the result of the verification is computed, the authorize response is built and sent back
to the web application, step 13 of figure 3.26. So far, this task is very similar to the authentication
phase, but the authorize response is one of the main differences between the two tasks, since it
contains all the details about the transaction authorised, the user public key used to make the
authorisation and the signature made by the authenticator. This is crucial because, in this way,
it will be later possible to have the confirm that that specific user has authorised that specific
transaction with those details in that specific time, even in front of a court of justice.

When the response arrives to the web application, it can now process it, step 14: in the
example done, the object is now officially bought by the user. Thereby showing the result to the
end user, this authorize response is forwarded to the platform and to the user in steps 15 and 16.

3.6.4 Deletion

In case the user wants to delete his account or the RP wants to expel a user, the deletion task is
executed. This task can be executed also to delete a single user key instead of the user account;
this project prototype, nevertheless, does not support multiple keys for the same user account.

45

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Challenge6

Web Application
Database

Challenge7

Preauthorise
response

(challenge)
5

User
verification

8

FIDO2 Server
Database

Figure 3.24. Scheme of the second part of authorisation task

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Challenge
response

9

Challenge
response

10 Authorize11

FIDO2 Server
Database

Verification of
challenge

12

Figure 3.25. Scheme of the third part of authorisation task

As said, this task can be started on behalf of a user, as it is possible to see in figure 3.27, or
directly by the web application server, as figure 3.28 shows. In the first case, the authenticated
user, who has an active session, tells to the platform that he is willing to delete his account, step
1; the web application client sends this decision to the web application server, step 2, which now
takes the actual username used from the active session, step 3. It is important to notice that the
user has the authority to cancel its account because, since it has an active session, it has been
authenticated first; moreover, neither the user nor the platform chooses the user to delete: the
only account a user can delete is his own. In case the entity willing to delete a user account is the
web application server, it can choose the username to delete, step 1 of the figure 3.28. For both

46

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Authorize
response13

FIDO2 Server
Database

Elaborate the
transaction

authorisation
14

Authorize
response15

Authorize
response16

Figure 3.26. Scheme of the fourth part of authorisation task

the scenarios, the step 4 shows the web application calling the getkeysinfo API.

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Delete account1 Delete account2

Web Application
Database

3

getkeysinfo4

FIDO2 Server
Database

Username of
the session

Figure 3.27. Scheme of the first part of deletion task

In this project, only the first case is supported so that not to give web application server
managers the rights to delete users.

Figure 3.29 describes graphically that FIDO2 server answers, in step 5, with a getkeysinfo
response, which contains an array of all the keys associated to that specific user. Now, the web
application server can choose the identifier of the user’s key, step 6, and calls the deregister
endpoint sending the keyid chosen, step 7. As already said, this project does not support multiple
keys and, therefore, the list contained in the getkeysinfo response will only have one key and the

47

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

1

getkeysinfo4

FIDO2 Server
Database

Username

Figure 3.28. Scheme of the second version of the first part of deletion task

web application will choose every time that specific key.

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

getkeysinfo
response

5

FIDO2 Server
Database

Selection of
the user keyid

6

deregister7

Figure 3.29. Scheme of the second part of deletion task

The third phase of the deletion task is shown in figure 3.30. After the reception of a request
in the deregister endpoint, FIDO2 server will decrease the key counter and delete the chosen key,
step 8. Then, the deregister response is built and sent to the web application server, step 9, which
can now delete from its databases the key and, in case, the user account, step 10; afterwards, it
will send the deregister response to the platform, step 11, which will show it to the user, step 12.

48

Project design

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

Deregister
response

9

FIDO2 Server
Database

Deletion of the
user key from

database
10

Deregister
response11

Deregister
response12

Update user’s
key counter
and delete

user key

8

Figure 3.30. Scheme of the third part of deletion task

49

Chapter 4

Web application

The web application has been built to be executed by the embedded system, the security card.
It is a crucial component of the system since it has the actual resource the user wants to access
and uses FIDO2 server thereby implementing a secure authentication system. This RP stands,
as already described, between the FIDO2 server and the authenticator and, therefore, the human
user.

The web application is composed of two different parts: the client and the server. The first
one is requested and executed by a FIDO-aware platform such as the most updated versions of
the most used browsers, while the other is run directly by the embedded system.

4.1 Application design

The client and the server sides of the web application communicate each other whenever a task
has to be performed. The server side is the part the user does not see and it has the role
of communicating with the FIDO2 server using the endpoints described before; the client side,
on the contrary, shows options and results to the user and executes protocols with the FIDO2
authenticator, independently of the fact that it is internal or external. The web application client
makes use of WebAuthn APIs, as FIDO2 requires, to manage keys and the communication with
the authenticator.

4.1.1 Interactions with users

As FIDO2 is a password-less authentication technique, the interaction with users is simple and
easy to learn. Basically, every time the user wants to execute a task, it must interact with
the client, sometimes using its authenticator. For this project, the authenticator tested are the
Windows Hello, which is the internal embedded authenticator of Windows Operating System, and
the security authenticator key developed by SoloKeys [10], which is an external authenticator.

Registration

When the user wants to be registered to the service, he contacts the web application and commu-
nicates his willing; then, he provides:

❼ first name,

❼ last name,

❼ username,

❼ display name.

After the web application elaborates the request, it is needed the user to choose the kind of
authenticator to use. During the elaboration, the web application server and the FIDO2 server
work together but in a transparent way, so that the user does not see them or their effects. Now,
the user uses Windows Hello or the hardware authenticator to solve the challenge just by choosing
the favourite authenticator; in this phase, user does not have to do anything else or give other

50

Web application

information. The authenticator used here will be needed to perform the other tasks. Once this
phase ends, the web application elaborates the response sent by the platform and the task is
completed.

Authentication

After the end of the registration task, the user is automatically redirected to the login interface,
which can be used to gain access to the service. Thereby doing that, the input the web application
client expects is:

❼ username.

The only information the user must remember, therefore, is his username. Moreover, since no
other data is needed, the login phase is easy and fast from the user’s point of view. Afterwards,
the web application will ask the user to utilise the exact authenticator he used in the registration
phase to prove his identity; once this is done, the whole login phase ends and the user is redirected
to the resource page.

Authorisation

The web application allows authenticated users to perform transactions. In this project, the
application pretends to offer a personal computer the user can buy as an example of transaction.
To do that, the final user, if willing, can simply click to one button to start the transaction
without inserting any information: indeed, the username data is unnecessary, since it is stored
within the session, and dangerous, since a user can pretend to be another one which, possibly,
can have different privileges.

Then, the web application requires a proof of identity which can be provided using the same
authenticator chosen in the registration phase and used in the authentication one. Afterwards,
the web application client will show the result of the authorisation phase.

Deregister

As the authorisation task, neither the deregister task requires the user to provide some particular
data. For this task, the only interaction between the user and the platform is a button to be
clicked. This is possible, obviously, only after the user has been authenticated: due to the session
created, the user’s identifier is already known by the web application. So, after brief time spent
by the server to elaborate the request, the platform shows the results of this task.

Transaction confirmation

It is possible within the web application to see all the transactions done by the user and their
details; in Transactions interface there is the history of transactions authorised. Here, the user
can see details about transactions and he can check their validity just by clicking a button. After
a while, the result of the verification is shown and even more details are shown.

A particular user, the admin, has an additional privilege: he can see the list of users and, for
each one, the list of transactions authorised. In this other interface, this user can have the confirm
of the validity of transactions in the same way explained before, just by pressing buttons.

4.1.2 Interactions with authenticators

The authenticator is needed whenever the web application must make itself sure about the identity
of the user; therefore, the authenticator is required for registration, authentication and authori-
sation steps. The interactions with authenticators are based on WebAuthn APIs, as described in
the official documentation ([7] and [11]).

Registration

In registration phase, the authenticator and the platform are needed to create credentials. In this
task, a new secret key and the associated public key need to be generated; the public key and

51

Web application

the proof of the association with the secret one are then given before to the web application and
then, through it, to the FIDO2 server.

For this purpose, createCredentials WebAuthn API has been used. As input, this function
expects

challenge computed by FIDO2 server,

rp details,

user details,

pubKeyCredParams which describes parameters and details about the key to generate, such
as the algorithm to use and the type of key,

authenticatorSelection which is an optional object which describes the type of authenticators
allowed,

timeout the amount of time the user can spend to respond to the prompt for registration,

attestation which describes how the web application will track the user.

The output this API sends back after the computation of the key pair is composed as following

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

response a JSON object containing the response to the challenge received, public key credential,
and some details about the authenticator,

type the type of FIDO credential, always “public-key” if using FIDO.

In this task, the user chooses which authenticator to use: once chosen, the authenticator needs
to be the same for all the other tasks which require the authentication proof.

Authentication

In the authentication task, the authenticator is obviously needed to generate the proof of the
user’s identity. In this phase, the communication with the web application client is required
to gain access to the secret key stored inside the authenticator: without disclosing its key, the
authenticator uses it to compute the signature on the challenge sent by the web application server
and then answers with its proof. Using the getCredentials WebAuthn API, the web application
provides to the authenticator

challenge computed by FIDO2 server,

allowCredentials which is an array of objects each of which describes a type of credential
allowed,

timeout the amount of time the user can spend to respond to the prompt.

After the user responds to the prompt popped up to communicate with the authenticator, the
API will return

id FIDO credential identifier,

rawid raw byte sequence of the id, often equal to it,

response a JSON object containing the response to the challenge received, public key credential,
signature computed, and some details about the authenticator,

type the type of FIDO credential, always “public-key” if using FIDO.

The difference between the output of this API and the output of the createCredentials one
stands inside the response, which is now carrying directly the signature used as identification
proof and optionally a parameter called userHandle, which can be used by the server to associate
this assertion to a specific registered user.

52

Web application

Authorisation

Since the authorisation task is an authentication task with a different purpose, the interaction
with the authenticator remains the same as the authentication one. Basically, the design wants
the user to authenticate again when checking details of a specific transaction in such a way to
give his permission to start the transaction.

4.1.3 Interactions with web application database

The web application has its own database needed for authentication. For this project, it has
been used a MySQL database with two tables: users and transactions. The first is mandatory
to implement the authentication and, if the system needs it, authorisation; the second, on the
contrary, depends on the actual RP and on resources and services it provides.

The users table has

id an autoincrement integer which has the role of identifier of the user and, therefore, it is the
primary key,

username text representing the name associated to the user, chosen at registration time,

firstName text representing the user’s first name,

lastName text representing the user’s last name,

displayName text representing the name which will be displayed within the application referring
to the user.

This table contains user’s first name and last name as example of user’s personal information.
The table transactions contains information about transactions:

txid integer primary key, which is the transaction identifier,

txpayload integer representing the transaction payload describing details about this specific
transaction,

username text representing the username of the user who has authorised this transaction,

signature text representing the digital signature computed at authorisation phase,

signerPublicKey text representing the public key associated to the user’s secret key used to
compute the signature,

signingKeyAlgorithm text representing the algorithm used to compute signature,

signingKeyType text representing the type of the key used to compute signature,

authenticatorData text representing data about the authenticator,

clientDataJson text representing data about the platform.

A schematized representation of this database is the following:

Users

(

id,

username,

first_name,

last_name,

display_name

);

PRIMARY_KEY(id);

Transactions

(

53

Web application

txid,

txpayload,

username,

signature,

signerPublicKey,

signingKeyAlgorithm,

signingKeyType,

authenticatorData,

clientDataJson

);

PRIMARY_KEY(txid);

FK(username) -> Users(username);

The web application interacts with its database whenever a task is executed.

Registration

At registration phase, the database is consulted twice. First, before calling any endpoint, the
web application server needs to be sure that the username the platform has sent to it is not
used by other users. Once it has this assurance, the web application calls preregister and register
endpoints. If this phase successfully ends, the server adds to the users table the new entry with
the new information.

Authentication

When an authentication request arrives to the web application, it first checks whether the user-
name is registered or not looking up at its database. If an entry is found, then the whole authen-
tication task can start.

Authorisation

After the user has been authenticated, it can authorise transactions. For this task, the database
is not used for checking the presence of the username since a session has been established and,
therefore, an instance of the authentication phase has been successfully performed. After the
authorisation endpoints are called, the FIDO2 server will return the response: if it is valid, a new
transaction must be added in the transactions table: for this purpose, the output of the authorise
endpoint is enough to provide all the needed information.

Deregister

When a user requests to be deregistered, the database is needed. As the authorisation task,
neither for this task it is needed to check the validity of the request. If the whole deregister task
successfully ends, the web application has the assurance that the user has been deregistered from
the FIDO2 server and, therefore, it can continue the task deleting the entry corresponding to the
user from the users table.

Transactions and admin

When a user goes in the transactions interface, it can see all the transactions it has authorised
within the web application. Thereby doing this, the application needs to look up into the trans-
actions table searching for all the transactions having as username parameter the one standing
in the session.

The same happens when the admin user accesses to the admin interface, so that to see the list
of users with their list of transactions. To do that, the web application searches for all the entries
of both the users and the transactions tables.

54

Web application

4.1.4 Interactions with FIDO2 server

On the other side of the system, the web application server must communicate with FIDO2 server.
This external server has the role to assure the web application, the RP, that the user is who he
says to be; therefore, every time a task is called, RP has the need to interact with it.

Registration

When the web application server receives a registration request from a new user, it needs first to
elaborate this request building the right data and calling the preregister API. As it will happen
every time, with the actual task data, RP must send svcinfo data, needed by FIDO2 server to
recognize the RP and to let it use its endpoints. After the call, web application server waits for
the API output and sends it to the user, so that it can answer to the challenge.

After the user has responded to the registration prompt using its authenticator, the web
application obtains all the necessary data to compute input for the register endpoint. Then, the
RP uses this information and, appending it with its SCID credentials to be authenticated to
FIDO2 server, calls the API and waits for the answer. Depending on the result, then, the web
application may register the user and ends the task.

Authentication

The authentication task needs FIDO2 server to grant for the user. In this phase, RP receives the
name of the user to authenticate and sends it to the FIDO2 server through the preauthenticate
endpoint. As in the registration phase, the response of this API contains a challenge to be solved
by the user: it needs to be sent to the platform.

This is the moment in which the authenticator is called. After the protocol, the web appli-
cation server will have the response of the challenge previously sent and it is now ready to call
authenticate API. If the result of this call is positive, then the user is authenticated and redirected
to the service or resource wanted; if not, he is blocked.

Authorisation

As said above, the authorisation task is a more particular and less general type of authentication:
an authentication associated to the willing of starting a transaction. For this reason, even the
interaction with FIDO2 server, in the authorisation task, is quite similar to the one described
before, in the authentication task. First, RP sends username and some details about the trans-
action using preauthorise API and waits for the response, a challenge to send to the user. Once
the authenticator has solved the challenge, the information is sent to FIDO2 server thereby let-
ting it authenticate the user and authorise the specific transaction: this phase is done calling the
authorise endpoint. As before, the result of this function is used by the web application to let the
transaction start or block it.

Deregister

When a user wants its account to be deleted, he needs to be authenticated first. For this reason,
the web application already knows his credentials and can use them to make the entire deregister
task without interacting with the user’s authenticator.

Nevertheless, even though the RP knows the username, it is not enough to deregister directly
the user. Since the entire authentication and registration engine is managed by the FIDO2 server,
RP does not use user’s keys and cannot have the knowledge about their identifiers, needed by the
FIDO2 server to deregister the user. Therefore, an intermediate step is required for this task: the
web application server has first to call getkeysinfo endpoint using the username already known
to obtain the list of keys owned by the user. With this information, the RP can now use the
key identifier to call the deregister API in order to delete that specific key. If the whole task
successfully ends, also the RP deletes the user from its database.

4.1.5 Interaction between web client and web server

The role of the client side of the web application is mainly to gather information about the user
and his willing and to send them to the server side; the web application server, instead, is in

55

Web application

charge of using the information received by the platform thereby building data in the format
requested by the FIDO2 server endpoints and calling the right API. Moreover, when an answer is
sent by the FIDO2 server, the web application server has the role of forwarding the result to the
platform in such a way it can understand it and show it to the user. In practice, the interaction
between client and server is mainly of conversion of data, both from users to the FIDO2 server
and from the FIDO2 server to users.

4.2 Developer manual

The web application has been built using PHP and Javascript. The application folder contains
different subfolders in which files are classified based on their type.

In the root folder there are

fido2service.sql the database file, a file containing a summary of tables and data structures,

index.php the starting file representing the homepage of the web application, containing only
some information about the author of the project,

constants.php a file containing all important constant values needed for many things, such as
instantiate calls for APIs, authenticate the RP, identify all endpoints, and enable or disable
logs,

server.log a log file needed to test the system.

In following sections, all the subfolders are described.

4.2.1 Certificate

This subfolder, initially empty, is needed to store and install the FIDO2 server certificate. The
FIDO2 server chosen, StrongKey, accepts only requests done with TLS; nevertheless, in this
prototype, the server certificate is auto-signed and not requested to a Certificate Authority: for
this reason, the installation of its certificate is needed to avoid issues in communication with it.

If client authentication is somehow enabled in FIDO2 server side, as happens for instance in
the case in which a proxy stands between RP and StrongKey Fido Server, the RP certificate needs
to be installed at server side since it is, in this case, self-signed.

4.2.2 Css

This subfolder contains all the .css files. These files are needed to personalize the style of the
application and there is one for each interface plus one, layout.css, that is common for every page.
They are

❼ admin.css,

❼ index.css,

❼ layout.css,

❼ login.css,

❼ registration.css,

❼ resource.css,

❼ transactions.css.

4.2.3 Images

Inside this folder, the web application stores all the images used within its client side. In particular,
among background and application icon images, there are icons which are used in transaction
confirmation phases to give a user-friendly output of the result of the computation.

56

Web application

4.2.4 JS

This subfolder contains all the Javascript files used in the web application. This folder is one of
the most important ones since in these files are built all the algorithms at the client side. Among
utilities files, here is one file per interface but the homepage:

constants.js this is a file containing constants about the web application server endpoints and
locations and utilities functions,

login.js in this file the submission of the login form is handled as previously described,

registration.js this file contains algorithms used in the registration phase,

resource.js in this file there are functions which handle authorisation of new transactions and
deletion of users,

transactions.js this file handles transaction confirmation phases building keys and performing
verification of signatures.

The transaction.js file is particularly important since it performs the confirmation of trans-
actions step: in here, the computation of data, the import of public keys and the verification
steps are performed. These actions are executed differently basing on the algorithm used in the
computation of the transaction signature; therefore, a manager willing to add support for other
algorithms must modify this file in particular. The project, at present, supports only RSA.

Every file which communicates with the web application server side has at least two func-
tions, used to handle the two steps of each task. For instance, in registration.js file there is
handleSubmit, a function used to send values inserted in the registration form to server, and
callFIDO2RegistrationToken, a function used after the reception of the challenge to communicate
with the authenticator.

In these algorithms, it is usual to find asynchronous functions calls and promises; the commu-
nication with web application server is performed using the asynchronous fetch function.

4.2.5 PHP

This folder contains all PHP files and, therefore, all the interfaces and the web application server.
Besides the homepage, which is described by the file index.php standing in the root folder, in this
folder there are

❼ admin.php,

❼ login.php,

❼ registration.php,

❼ resource.php,

❼ transactions.php.

All these files build a particular interface.

API

This folder, standing inside the PHP one, contains all the files used to describe all the endpoints
offered by the web application server to the web application platform. Then, here are

preauthenticate.php here first it is checked if the username is present within the database and
then calls the preauthenticate endpoint of the FIDO2 server,

authenticate.php here the authenticate endpoint of the FIDO2 server is called and, in case of
success, the session is created,

preauthorize.php here the preauthorize endpoint of the FIDO2 server is called,

authorize.php here the authorize endpoint of the FIDO2 server is called and, in case of success,
the transaction details are stored in the database,

57

Web application

preregister.php here first the server makes sure the username chosen does not exist in its
database yet and then it calls the preregister endpoint of the FIDO2 server,

register.php here the register endpoint of the FIDO2 server is called and, in case of success, the
user information is memorized in the database,

logout.php here the session is destroyed,

deregister.php here getkeysinfo and deregister endpoints of the FIDO2 server are called using
information stored in the session and, in case of success, the entry corresponding to the user
is deleted from the database and the current session is destroyed.

In all the endpoints communicating with FIDO2 server, the communication has always been
built using curl functions.

4.2.6 Utils

In this directory, two subfolders containing utility tools are present: database utils and verifysig-
nature.

The first contains useful files of a quick database installation:

configuration.sql defining how the database and the user utilising it within the web application
are created,

create.txt summary file pointing to the other ones thereby configuring the database with only
one single command,

transactions.sql defining the transactions table,

users.sql defining the users table.

The second subfolder contains a tool used to test the system by manually verifying transactions
signatures using parameters the tester can find in the log file. This tool is composed of:

verifySignature.css defining the style of the interface of the tool,

verifySignature.html defining the structure of the interface of the tool,

verifySignature.js defining the behaviour of the tool.

4.3 Installation

Thereby using this system, the manager should first install all the components needed. First, a
network should be created and all components should be attached to it. As already explained,
different designs are here possible, but in this project a single network has been used for all
components.

To install the whole system, the manager should acquire a Raspberry Pi4 [14], the embedded
system used in this thesis, and another machine, which can be a server or a simple personal
computer, as happens in this prototype; to communicate with the server part of the system, the
manager needs a machine to have the role of client.

It is now possible to map the logical components to the physical ones. FIDO2 server is running
in the physical server, as well as FIDO2 server database. The embedded system will execute the
web application database and server, while offering the RP client to the client machine, which
will run it through a FIDO2-aware platform such as the most updated and famous browsers.
This client machine, moreover, will communicate with the user and the authenticator, which,
depending on its being internal or external, will be run inside or outside the machine. Figure 4.1
describes graphically the association between logical and physical components.

58

Web application

Human User

FIDO Certified
FIDO2 Server

FIDO2-enabled
Web Application

FIDO Certified
FIDO2 Authenticator

FIDO2-aware
Platform

Web Application
Database

FIDO2 Server
Database

Server MachineRaspberry Pi4Client Machine

Offers

Figure 4.1. Association between logical and physical components. The authenticator component
can be part of the client machine or can be external. The RP client is offered by the Raspberry
board but it is executed by the client device.

4.3.1 SKFS

SKFS should be the first system to be installed in the server machine. To do that, it is possible to
follow official StrongKey instructions [8]; these instructions can be followed whether the manager
wants to build this system using virtualisation, as in this project, using dockerisation or even
as a standalone server. In any case, this server must have the access to this network thereby
communicating with the embedded system.

All the steps executed in this project to install SKFS are shown below.

Creation of the virtual machine

First, it is mandatory to download CentOS 7 iso file [12]: CentOS 7 is one of the operating
systems used in testing StrongKey Fido Server by StrongKey and it has been chosen to be the OS
of the virtual machine which will run the FIDO2 server. For the creation of the VM, VMWare
Workstation 16 Player has been used [13]; to create the VM, it is possible to use the wizard offered
by the software (figure 4.2).

The next step consists in the generation of a username, as figure 4.3 shows. For this virtual
machine, I used username as username and password as password; as it is obvious, someone who
wants to create his own server must change these parameters. After this screen, it is possible to
choose the virtual machine name and the location where to store it.

In the next window the manages chooses the disk size, which is 20GB according to the instruc-
tions provided officially by StrongKey. Moreover, it has been chosen to store the virtual disk as a
single file (figure 4.4). Afterwards, since a few changes must be done in the virtual hardware, the
“Customize Hardware” button must be clicked. Here it is needed to change the network adapter,
which is set in NAT by default: since the server must be connected directly to the network, its
adapter must be set as bridged, as it is possible to see in figure 4.5. Furthermore, at least 4GB of
RAM are needed (figure 4.6).

Once the virtual machine has been correctly created, it must be powered on.

Installation of SKFS

For the installation of the actual FIDO2 server, it is first needed the machine to have the right
hostname. To set the hostname, the manager should open a terminal window and run:

$ su

59

Web application

Figure 4.2. The first step of the installation of SKFS: setting the iso file

Figure 4.3. The second step of the installation of SKFS: creating the user

hostnamectl set-hostname fido2server.strongkey.com

exit

This hostname has to be the same as in the x.509 certification; as already explained, since
this is a prototype, the certification is self-signed and generated by StrongKey software: for this
reason, fido2server.strongkey.com has been chosen to be the hostname of the machine. In case the
manager of the system wants to request a valid certificate, it can choose the hostname it wants.

Now, the archive containing the whole SKFS software must be downloaded. To do this, the
manager can simply go to the StrongKey website [8] and go to the fido2 GitHub page by clicking
on Developer menu item and, then, on the link pointing to the GitHub website. From here, it

60

Web application

Figure 4.4. The third step of the installation of SKFS: setting disk parameters

is possible to download the zip file containing the project by clicking on Code button and on
Download ZIP in the menu which appears (figure 4.7). Afterwards, the manager can go to the
terminal and run:

$ cd ~

$ mkdir ./temporary

$ mkdir ./fido2server

$ unzip ./Downloads/fido2-master.zip -d ./temporary/

$ mv ./temporary/fido2-master/fido2server-v4.4.3-dist.tgz ./fido2server/

$ rm -r ./temporary/

$ cd ./fido2server/

$ tar xvzf ./fido2server-v4.4.3-dist.tgz

$ su

sudo ./install-skfs.sh

exit

The aim of these instruction is to download and extract the .tgz file present in the fido2 folder
of the GitHub page of StrongKey. This file, which is of the version 4.4.3 in the case of this project,
can change and be updated and contains all the files needed for the installation of SKFS. At the
end of the extraction, it is possible to run the installer script; afterwards, the FIDO2 server is
completely installed and working.

General settings

Once the server has been correctly set up, the manager must check whether the network adapter
is properly working. To do that, it is possible to go to settings, then search for network and click
on the gear icon in the wired section. Here, the manager can see all the network parameters of
the server, such as the IP address, the DNS server, and the default route.

Since this virtual machine must be a server, it needs to have a static IP address. To set it, it
is possible to go to IPv4 settings and select the manual method of assignment of addresses. Now,
the manager can choose the address, the netmask, the default gateway, and the DNS server of the
machine; in the case of this project, they are respectively 192.168.1.17, 255.255.255.0, 192.168.1.1,
and 192.168.1.1, as figure 4.8 shows. Afterwards, the manager must apply these changes, turn off
the network adapter and turn it on again.

61

Web application

Figure 4.5. The fourth step of the installation of SKFS: setting network adapter parameters

Furthermore, to let the virtual machine reachable from the net in the port 8181, the port used
by SKFS, the manager must open it using firewalld command. To do that, first the software needs
to be updated: the manager must open the terminal and run the instructions

$ su

yum update -y

Afterwards, the manager must insert the port 8181 in the public zone of the firewall and reload
it:

firewall-cmd --zone=public --add-port=8181/tcp --permanent

firewall-cmd --complete-reload

exit

Management of SCIDs

To let the RP communicate with SKFS, it is possible to use the default SCID present initially in
the instance of the server; nevertheless, this solution is not secure. In this project, another SCID
has been configured using the tool offered by SKFS:

$ su

sudo ./manageSKFSCreds.sh addUser 1 fido2service

62

Web application

Figure 4.6. The fifth step of the installation of SKFS: setting RAM parameters

sudo ./manageSKFSCreds.sh addUserToGroup 1 fido2service

FidoRegistrationService-AuthorizedServiceCredentials,FidoAuthenticationService-

AuthorizedServiceCredentials,FidoAuthorizationService-

AuthorizedServiceCredentials,FidoAdministrationService-

AuthorizedServiceCredentials

The first instruction allows the creation of the user and associates it to a password, which
in the case of this project is F1d02s3rv1c3 p4ssw0rd! ; the manager needs here to pay attention:
the password it chooses here must be, then, statically added in the software executed as RP.
The second instruction, instead, is needed to add the user to roles thereby letting it to access to
different SKFS endpoints.

Once the SCID which will be used by the RP is created, it is mandatory to deal with the
initial default user present by default in the FIDO2 server. In this project, as already explained,
it has been chosen to change its password:

sudo ./manageSKFSCreds.sh changeUserPassword 1 svcfidouser

sudo service slapd restart

The password chosen for this superuser is, for this prototype, Adm1np4ssw0rd!.
Once all these things have been done, the FIDO2 server can finally be considered as successfully

installed.

63

Web application

Figure 4.7. GitHub page of StrongKey [8], from which it is possible to download SKFS project

Figure 4.8. Settings of the static IP address

exit

$ exit

4.3.2 Web application

To build the system, the manager should first obtain the hardware; in this project it has been
used Raspberry Pi 4 (figure 4.9). Besides of this card, the manager should have a keyboard,
mandatory to correctly configure the hardware, a monitor, and a cable used to connect the card

64

Web application

to it, and optionally an ethernet cable. This hardware supports also Wi-Fi mechanism, so it is
also possible to use it in substitution to the connection cable. Raspberry Pi 4 is provided with two
micro-HDMI ports, which allow it to be connected to monitors through some special cables. In
this project, the monitor was provided with an HDMI port and, therefore, a HDMI - micro-HDMI
cable has been purchased.

Figure 4.9. Raspberry Pi 4

This hardware uses a SD card as disk; in this project, Raspbian [15] has been flashed in that
card: this OS is a particular version of Debian Linux properly built for Raspberry Pi cards.

Once the SD card is inserted and the embedded system is turned on, it is possible to be logged
in and enter in the system by using the default username and password, which are respectively pi
and raspberry.

Preliminary actions

There are few things to do before starting the installation of the web application: the software
must be updated, the initial authentication must be changed in order not to let attackers to enter
in the system, the hostname of the system must be changed, and the IP address of the card must
be put static. The first three actions can be executed just running these commands and following
their instructions:

$ sudo apt-get update -y

$ passwd

$ sudo hostnamectl set-hostname fido2service.strongkey.com

To avoid issues regarding the modification of the hostname, the manager should check the file
/etc/hosts to be sure that the new hostname is put near raspberrypi ; if it is not, then it should
add it manually:

$ sudo nano /etc/hosts

Thereby setting a static IP address in the card, it is possible to follow these instructions:

$ ip -c link show

$ ip -c addr show eth0

$ cat /etc/network/interfaces

$ sudo nano /etc/network/interfaces.d/fido2service

65

Web application

First it is mandatory to be aware about the card network interfaces; once the right one has
been found by running the first command, it is possible to view details of the interface using
the second one: for this prototype, the interface used was eth0, but it may be different for other
projects. Afterwards, a new network configuration file can be created and set; thereby doing
this, the manager should first check that /etc/network/interfaces.d/ folder is included as source-
directory in /etc/network/interfaces file, through the third instruction. Then, a new file can be
created in the configuration folder: for this project, the name of the file is fido2service; its content
must be the following:

auto eth0

iface eth0 inet static

address 192.168.1.16

netmask 255.255.255.0

gateway 192.168.1.1

dns-nameservers 192.168.1.1

The parameters viewable in the previous example have been chosen for this prototype, but
might be modified basing on the needs of the manager and the parameters of the network. After
the execution of these instructions, the network service must be restarted and its status must be
checked:

$ sudo systemctl restart networking.service

$ sudo systemctl status networking.service

Installation of the environment

Once the preliminary actions are executed, the first thing to install is Apache2, the system which
will offer the web application service [16].

$ sudo apt-get install apache2 -y

Now, the manager can choose whether to offer web application services using another new
virtual host or to use the one initially set; anyway, the configuration file of the web application
must be created or modified. For this project, the default space has been used:

$ sudo nano /etc/apache2/sites-available/default-ssl.conf

Inside this configuration file, manager should insert information about the RP such as the
server admin mail, if one exists, the server name, the document root of the application. For this
prototype, the only lines which have been modified, added, or which are needed to be checked are
the following:

ServerName fido2service.strongkey.com

ServerAlias www.fido2service.strongkey.com

DocumentRoot /var/www/html

ErrorLog ${APACHE_LOG_DIR}/error.log

CustomLog ${APACHE_LOG_DIR}/access.log combined

SSLEngine on

SSLCertificateFile /etc/apache2/ssl/apache.pem

SSLCertificateKeyFile /etc/apache2/ssl/apache.key

Even in this case, the manager should set his own parameters.
After this phase, it is mandatory to add TLS to the system. Thereby doing this, the manager

should first enable ssl modality for apache; then, it should generate RP certificate or request it
to a certificate authority. In this project, a self-signed certificate has been created using openssl
tool:

$ sudo a2enmod ssl

$ sudo mkdir /etc/apache2/ssl

$ sudo openssl req -new -x509 -days 365 -nodes -out /etc/apache2/ssl/apache.pem

-keyout /etc/apache2/ssl/apache.key

$ sudo chmod 644 /etc/apache2/ssl/apache.key

$ sudo chmod 644 /etc/apache2/ssl/apache.pem

66

Web application

Here are parameters used for this prototype in the creation of the certificate:

Country Name: IT

State of Province Name: Catania

Locality Name: Catania

Organization Name: fido2service

Organization Unit Name: Development

Common Name: fido2service.strongkey.com

The final step to configure Apache2 is to set the right server name in the Apache configuration
file:

$ sudo nano /etc/apache2/apache2.conf

In the file just opened, the manager should append the following line, choosing as parameter
the fully qualified domain name chosen for the server:

ServerName fido2service.strongkey.com

Now that configuration of Apache is set, the manager should first check if it is correct and,
in case of positive result, it should enable the right site, disable the default one, and restart the
service to let all the changes available:

$ apachectl configtest

$ sudo a2ensite default-ssl.conf

$ sudo a2dissite 000-default.conf

$ sudo systemctl restart apache2

After the complete installation of Apache, the manager must install a database in which RP
will store information about users, transactions and other data needed. In this project, the
database chosen has been an oracle one: since the operating system is a version of Debian, then
MySQL is available only through the installation of MariaDB.

$ sudo apt-get install mariadb-server -y

$ sudo mysql_secure_installation

Afterwards, a user named fido2service should be created within the database using fido as
password; then, the manager must create a database with fido2service name and he should grant
to the newly created user all privileges on the newly created database. To automatically execute
this entire process, the manager could run the configuration.sql file present in the software folder:

$ sudo su

mysql

> source PATH_TO_SOFTWARE_FOLDER/utils/database_utils/configuration.sql

> exit

exit

where PATH TO SOFTWARE FOLDER is the path he has chosen where to mount the soft-
ware directory.

As an alternative or in error cases, the manager can manually execute the commands:

$ sudo su

mysql

> CREATE USER ’fido2service’@’localhost’ IDENTIFIED BY ’fido’;

> CREATE DATABASE fido2service;

> GRANT ALL PRIVILEGES ON fido2service.* TO ’fido2service’@’localhost’;

> exit

exit

All the parameters chosen here can be modified, but the manager should pay attention in this
since these parameters are also used statically in the software of the web application. Once the
database and its user have been created, the manager should create all the tables needed. As
before, he can simply let the machine execute a configuration file:

67

Web application

$ cd PATH_TO_SOFTWARE_FOLDER/utils/database_utils

$ sudo mysql -u fido2service -p -h localhost fido2service < ./create.txt

If the manager wants to configure the database manually, he can do it following the instructions
below:

$ sudo mysql -u fido2service -p -h localhost fido2service

> CREATE TABLE users(

> id int PRIMARY KEY,

> username text,

> first_name text,

> last_name text,

> display_name text);

> CREATE TABLE transactions(

> txid int PRIMARY KEY,

> txpayload text,

> username text,

> signature text,

> signerPublicKey text,

> signingKeyAlgorithm text,

> signingKeyType text,

> authenticatorData text,

> clientDataJson text);

> exit

Finally, PHP must be installed to let the application work, since it requires this software with
all the needed modules, such as php-curl and php-mysql.

$ sudo apt-get install php libapache2-mod-php php-mcrypt php-mysql php-curl -y

Afterwards, the application files can be put in the document root folder so that the service
can start to work, in the path:

/var/www/html/

DNS, certificates, and prototype issues solving

Now that all the components have been installed, there is the need to let them communicate each
other. In this project, SKFS, web application and the user’s device are put in the same private
network and should obtain the IP addresses of the others. To let the system work, therefore, the
implementation of a DNS server is recommended; nevertheless, since this project is a prototype,
the DNS server has not been built. In substitution, the IP addresses of the FIDO2 server, which
is static, as already described, is statically written in the hosts file of the operating system of
Raspberry Pi card, so that to allow the communication between web application and SKFS.

$ sudo nano /etc/hosts

In the file just opened, the manager should append the following line, modifying the parameters
basing on the actual IP address and the name of SKFS:

192.168.1.17 fido2server.strongkey.com

Since also the RP must be reachable, it has been needed to write its IP static address in
the hosts file inside the operating system of the user’s device used as test. In Windows 10 and
Windows 11, this file can be found in the path

C:\Windows\System32\drivers\etc\

Another issue to be solved is the problem related to self-signed certificates. Since a TLS session
is required by SKFS to work, it is mandatory for the web application to explicit the certificate
it expects. To do this, the FIDO2 server certificate must be downloaded and inserted in the
certificate folder of the web application as fidoserver.pem. After having done it, curl tool will

68

Web application

know that, even though the certificate is self-signed, it must consider it a valid one. To download
the server certificate, the manager can simply start a browser instance and go to the SKFS. For
this process, Mozilla Firefox has been used: once within FIDO2 server, it is possible to click in
the padlock icon near the URL and select to view additional information about the certificate.
In the window which will appear, it is possible to click the button view certificate and a new tab
will open; here, in the Download section, the manage can download the certificate in the PEM
format. Once this procedure has been completed, this file must be put as fidoserver.pem in the
card, in the path:

/var/www/html/certificate/

Moreover, the same must be done on the contrary in case the FIDO2 server needs TLS client
authentication: in this case, which is not the case of this project, the manager should obtain the
certificate generated before and put it in the configuration folder of the FIDO2 server.

4.4 Interfaces and how to use the application

But the first homepage interface, all the interfaces expect the user to interact with them. The web
application built in this project is not complex from the user’s point of view, so this interaction
is intuitive and simple.

4.4.1 Homepage

The Homepage interface (figure 4.10) shows some details about this project, such as the author’s
and supervisor’s name and the title of the project.

Figure 4.10. Interface of the Homepage of the web application, showing information about this project

69

Web application

In this first page, it is possible to note many things. First, the browser used to access to the
web application has been Mozilla Firefox. Since the certificate is self-signed, a security warning
should appear; thereby avoiding this, it has been necessary to change some settings of the browser.
To do it, the manager should first write in the address bar

about:config

Once in the settings page, the manager should set the following flags:

security.insecure_field_warning.contextual.enabled = false

security.certerrors.permanentOverride = false

network.stricttransportsecurity.preloadlist = false

security.enterprise_roots.enabled = true

Afterwards, a restart of the browser is required. An important note is that this settings change
is dangerous and has only been performed to show the prototype interfaces.

In case the certificate was requested to a Certificate Authority, this procedure is not needed.
The page shows three buttons in the top of the screen: Register, Login, and Home. They

compose menu, links to other interfaces of the application, but the Home one that points to itself.
Register button links to the registration interface, the page in which a user can register a new
account. Login button points to the authentication interface, where a registered user can gain
access to the web application.

4.4.2 Registration

In the Registration interface, figure 4.11, four input texts appear: a user willing to create his own
account can fulfil them, entering his first name, last name, username, and display name, and then
press the Sign Up button.

After the button has been clicked, the user has to wait a while for a prompt to appear, as
figure 4.12 shows; this prompt is popped up thanks to WebAuthn APIs calls: it is the standardised
way to communicate with authenticators. In the figure 4.12, the prompt asks for the embedded
authenticator, in this case Windows Hello. If the user wants to be authenticated with a hardware
key, he can click on the x top right of the prompt or press the ESC key in the keyboard so that
to close the prompt; now, another window will appear asking to insert the key and to configure
it (figure 4.13). Notice that this kinds of prompt, since they are the way the browser has to talk
with authenticators, appear also in the Login interface and the Resource one; nevertheless, in
those cases, the user cannot change between types of authenticators: the prompt will only be the
one used in the registration phase.

4.4.3 Login

The Login page is shown in figure 4.14. Thanks to this page, registered users can gain the access
to web application just by entering the username chosen in the registration phase and clicking on
Login. Afterwards, a prompt appears and the user can utilise his authenticator thereby proving
his identity. Then, if the right authenticator is used and the authentication task ends successfully,
the user is automatically redirected to the Resource page.

4.4.4 Resource

As figure 4.15 shows, the Resource interface describes an example of resource the web application
can provide to authenticated users. In this example, the unlocked service is the permission to buy
a personal computer: this transaction can be started due to the Buy button. After having clicked
it, the prompt used in the communication with the authenticator will appear and the transaction
authentication can be performed.

In this interface, the user can also perform the deregister task, if willing to delete his own
account. Thereby doing this, the user can click on Deregister button and nothing more: for this
task, the authentication with the prompt does not happen. At the end, the session is destroyed,
the account deleted and the user redirected to the Login page.

It is important to notice that here the menu items are changed. This happens because the
user is now authenticated and can access to other pages. With this menu, the user can perform
the logout, simply destroying the session, or go to Transactions interface.

70

Web application

Figure 4.11. Interface of the Registration page of the web application, which can be
used to create new accounts

4.4.5 Transactions

In the Transactions interface, an authenticated user can see the list of all the transactions he
has approved (figure 4.16) or a simple string, in case no transaction has been authorised yet
(figure 4.17). Every transaction is shown with some details:

txid the transaction identifier,

txpayload the summary of the transaction details,

key type the type of key and algorithm used to perform all the cryptographic functions needed
for the transaction.

Near this information, the View details button is present: if the user presses it, a modal page
will appear (figure 4.18) and the web application will show further details about the transaction,
such as:

Signature the base64-encoded signature done at transaction authorisation phase,

Public key the base64-encoded public key associated to the secret one used to compute the
signature,

Algorithm the algorithm used for the computation of the signature,

AuthenticatorData some base64-encoded data about the authenticator,

ClientDataJson some base64-encoded data about the platform.

71

Web application

Figure 4.12. Figure showing the prompt popped up to permit the communication with Windows Hello

The user can go back to the list of transactions just by clicking anywhere. Moreover, if
the transaction confirmation feature of the web application supports the algorithm used in the
computation of the signature of this transaction, then a Verify signature” button will be present
in this page: the user can press it thereby verifying the signature and, therefore, the validity of
that transaction. Once the button has been clicked, an icon will appear: it will be a green check
mark if the result is positive; it will be a red x if the result is negative, instead. In addition, as
it is possible to see in figure 4.19, additional information about the validation will be shown. In
particular,

data base64-encoded data used to compute the signature at authorisation phase,

challenge the base64-encoded challenge used by FIDO2 server to authenticate the user at au-
thorisation phase,

crossOrigin boolean value representing if the platform has enabled cross origin authentication
for this transaction authorisation,

origin the RP origin associated to the transaction,

type the WebAuthn API used to create “clientDataJSON” value, which contains some of these
attributes and which is used to compute “data” attribute.

4.4.6 Admin

If the user is the admin, he will also have the authorisation to access to the Admin interface,
figure 4.20. In this page, the admin can see the whole list of users and all the lists of transactions
they have authorised. For each user, the whole information is reported:

72

Web application

Figure 4.13. Figure showing the prompt popped up to permit the communication
with hardware security keys

❼ id,

❼ username,

❼ first name,

❼ last name,

❼ display name.

As well as the Transactions interface, this page allows the user, that in this case is the admin,
to access to transactions details by clicking View details buttons, as figure 4.21 shows; here, if the
algorithm is supported, the admin can check the validity of the transaction even though it has
been authorised by other users (figure 4.22).

Notice that if the user is the admin, menu changes again thereby adding the Admin button
linking to this interface.

4.4.7 session, redirect and loading

As it is possible to notice, two types of users can navigate in the web application: authenticated
users and non-authenticated ones. The difference, from the web application point of view, is the
presence of the authentication session: a user who has performed the login phase obtains this
session and, thanks to it, he can be recognized within the application server.

These two different kinds of users can access to two different groups of pages, which have in
common only the Homepage, viewable by both authenticated and non-authenticated users. In
practice, a user who does not have an active session can only access to the Registration and Login
pages, which are needed to obtain the session it does not have yet. On the contrary, a user who

73

Web application

Figure 4.14. Interface of the Login page of the web application, which can be used to gain access
to the resource of the web application

has been provided with a session can access to the Resource and the Transactions pages and, if
he is the admin, also to the Admin interface.

If a kind of user tries to access to a page of the other group, the request is rejected. This
happens even with an authenticated user: if he tries to access to the Login page, for instance, the
request is not valid since he cannot be authenticated twice and cannot have two sessions. As a
result, in these cases, the user is redirected to the Resource page if he is an authenticated user or
to the Login interface if he is a non-authenticated one.

It is also possible to notice that every time the web application calls an asymmetric function
and, therefore, can make the user wait for the answer, the interface is hidden and a small and
moving loading icon appears.

74

Web application

Figure 4.15. Interface of the Resource page of the web application, which can be used to start
transactions and delete the account

75

Web application

Figure 4.16. Interface of the Transactions page of the web application, which shows the
list of the transactions approved

76

Web application

Figure 4.17. Interface of the Transactions page of the web application whether no
transaction has been approved

77

Web application

Figure 4.18. The modal view of details of a transaction in the Transactions page

78

Web application

Figure 4.19. The modal view of details of a transaction in the Transactions page once
the validity has been checked

79

Web application

Figure 4.20. Interface of the Admin page of the web application, which is accessible only by the
admin and shows the list of users and their transactions

80

Web application

Figure 4.21. The modal view of details of a transaction in the Admin page

81

Web application

Figure 4.22. The modal view of details of a transaction in the Admin page once the
validity has been checked

82

Chapter 5

Tests

Thereby testing this project, it is possible to see and analyse packets sent and received by the
web application. To do this, Wireshark software [17] has been used. To clean the test, the IP
address filter has been applied, as well as the one regarding the packets protocol, put as TLS.

Moreover, a simple log system has been implemented in the software of the web application:
every FIDO2 Server API call is stored in a log file, such as every other action like requesting the
access to a page or logging out. This system is useful since it easily tracks the process flow as well
as the data flow.

5.1 Connection to the web application

Initially, the user connects to the web application using a browser. In this step, it is possible to
assure the usage of TLS protocol. In this case, as figure 5.1 shows, the version 1.3 of TLS has
been used by apache. In this figure, TLS messages like Client Hello, Server hello, Change Cipher
Spec are shown: these messages are used to perform TLS handshake.

Figure 5.1. Messages in initial connection phase

The static IP address owned by the web application is 192.168.1.16, while the IP address
192.168.1.44 is used by the user’s device; finally, 192.168.1.17 is the address of SKFS.

It is possible to have the assurance the Homepage has been requested through the log file,
which is showing:

Page viewed at 05/03/2022 15:09:48, path: /var/www/html/index.php,

page: Homepage, username: Not authenticated

5.2 Registration

In this phase, it is possible to see web application and FIDO2 server communicating. First,
platform sends to the web application server messages containing information entered by the user
in the registration form, as figure 5.2 shows; then the preregister endpoint is called. The TLS
version used between the two servers is 1.2, since SKFS does not support TLS 1.3 (figure 5.3).
After the handshake has been performed, different Application Data messages are exchanged
between the two actors to perform the preregister task. At the end of this step, some messages
are then sent from the web application to the user’s device, representing the response of the
endpoint, as it is possible to see in figure 5.4.

In the platform, now, the browser will perform the createCredentials WebAuthn API, asking
the user to use an authenticator. At the end of this step, data is sent as response from the

83

Tests

Figure 5.2. Messages in first step of registration phase

Figure 5.3. Messages in second step of registration phase

browser to the web application server (figure 5.5). It can now use this information to call the
register SKFS endpoint, as figure 5.6 shows. Here, many messages are exchanged between the
two servers. When the web application server receives the complete response, it sends the result
to the browser, figure 5.7.

Even though this task ends here, the messages exchanged between client and server continue,
since the user is automatically redirected to the Login page: all the data needed to load this page
is here requested.

Opening the log file now, it is possible to see the appended actions performed by the web
application system:

Page viewed at 05/03/2022 15:10:02, path: /var/www/html/php/registration.php,

page: Registration, username: Not authenticated

Curl executed at 05/03/2022 15:10:10,

path: https://fido2server.strongkey.com/skfs/rest/preregister

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{

"username":"user2","displayname":"user2_dn",

"options":{"attestation":"direct"},"extensions":"{}"}}

Response: {

"Response":{

"rp":{"name":"FIDOServer","id":"strongkey.com"},

"user":{"name":"user2",

"id":"vZPP6ho6FFgm5O43URA2BB8pc4AjQcEsl-my6LSQUfM",

"displayName":"user2_dn"},

"challenge":"JIsp0m8uc-All_Y4UsjqeQ",

"pubKeyCredParams":[

{"type":"public-key","alg":-7},{"type":"public-key","alg":-35},

{"type":"public-key","alg":-36},{"type":"public-key","alg":-8},

{"type":"public-key","alg":-47},{"type":"public-key","alg":-257},

{"type":"public-key","alg":-258},{"type":"public-key","alg":-259},

{"type":"public-key","alg":-37},{"type":"public-key","alg":-38},

{"type":"public-key","alg":-38}],

"excludeCredentials":[],"attestation":"direct"}}

Curl executed at 05/03/2022 15:10:15,

84

Tests

Figure 5.4. Messages in third step of registration phase

Figure 5.5. Messages in fourth step of registration phase

path: https://fido2server.strongkey.com/skfs/rest/register

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{

"strongkeyMetadata":{

"version":"1.0","create_location":"Catania, CT","username":"user2",

"origin":"https://fido2service.strongkey.com"},

"publicKeyCredential":{

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"rawId":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"response":{

"attestationObject":"o2NmbXRjdHBtZ2F0dFN0YDVR0TAQH...",

"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uY3JlYXRlIiwiY..."},

"type":"public-key"}}}

Response: {"Response":"Successfully processed registration response"}

Page viewed at 05/03/2022 15:10:15, path: /var/www/html/php/login.php,

page: Login, username: Not authenticated

First, the Registration page is requested; so far, the user is not recognized yet. Now, curl is
performed twice, first calling the preregister API and then calling the register API. Here, request
data and response data are shown. If the response of the last endpoint is positive, the user is
redirected to the login page, so that he can request the authentication task.

5.3 Login

When the user wants to be authenticated, he goes to the login interface. Here, as already ex-
plained, he enters his username and the web application server is called. As it is possible to see
in figure 5.8, the first kind of messages exchanged is of TLS 1.3 type between the browser and the
Relying Party. In particular, the client sends the information about the username to the server,
which can now proceed, as figure 5.9 shows, to call the preauthenticate endpoint of SKFS using
the 1.2 version of TLS. When the RP receives the answer by the FIDO2 server, containing the
challenge to be solved, it forwards this result to the platform (figure 5.10).

After the exchange of these messages, the user is called to provide the solution of the challenge
using his authenticator: this step is performed thanks to WebAuthn APIs. Afterwards, the
response of the authenticator is sent by the client to the web application server (figure 5.11).
Then, the authenticate API of SKFS is called and some messages are exchanged between FIDO2
and web application servers, as viewable in figure 5.12. Afterwards, the result computed by the
StrongKey Fido Server is sent from the web application server to the client: in case of success,
the user is redirected to the Resource interface and, due to this, some messages are exchanged to
allow the display and the operation of this page (figure 5.13).

85

Tests

Figure 5.6. Messages in fifth step of registration phase

Figure 5.7. Messages in sixth step of registration phase

The log file can offer a different vision of what happens here:

Page viewed at 05/03/2022 15:10:15, path: /var/www/html/php/login.php,

page: Login, username: Not authenticated

Curl executed at 05/03/2022 15:10:20,

path: https://fido2server.strongkey.com/skfs/rest/preauthenticate

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{"username":"user2","options":{}}}

Response: {

"Response":{

"challenge":"wgsMa0NwuUvjPsm_qoqg6A",

"allowCredentials":[{"type":"public-key",

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew","alg":-257}],

"rpId":"strongkey.com"}}

Curl executed at 05/03/2022 15:10:24,

path: https://fido2server.strongkey.com/skfs/rest/authenticate

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{

"strongkeyMetadata":{

"version":"1.0","last_used_location":"Catania, CT","username":"user2",

"origin":"https://fido2service.strongkey.com",

"clientUserAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/98.0.4758.102 Safari/537.36"},

86

Tests

Figure 5.8. Messages in first step of authentication phase

Figure 5.9. Messages in second step of authentication phase

"publicKeyCredential":{

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"rawId":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"response":{

"authenticatorData":"WnTBrV2dI2nYtpWAzOrzVHMkwfEC46d...",

"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uZ2V0IiwiY2hhbG..."},

"type":"public-key"}}}

Response: {

"Response":"Successfully processed sign response",

"jwt":"eyJhbGciOiJFUzI1NiIsIng1YyI6Ii0tLS0tQkVHSU4gQ0VSVElGSUN..."}

Page viewed at 05/03/2022 15:10:24, path: /var/www/html/php/resource.php,

page: Resource, username: user2

After having requested the access to the Login page, a first curl action is performed to the
FIDO2 server preauthenticate endpoint and a second one is executed to the FIDO2 server authen-
ticate API. In this case, the user willing to be authenticated is “user2”. At the end of the task,
if successful, the user is redirected to Resource page: here, it is possible to see that the session is
established since the username is recognized.

5.4 Authorisation

In the authorisation phase, the user accepts to start a transaction. In this case, the transaction is
just an example: the purchase of a personal computer. As figure 5.14 shows, the task starts with
messages exchanged between client and server: the content of these messages is about transaction
details, but does not regard username, since the web application server will obtain it using the
active session. With this information, the Relying Party contacts SKFS using the preauthorize
endpoint, like described in figure 5.15. After a while, the RP receives the challenge that it expects
the user to solve. Therefore, this answer is sent to the platform, like figure 5.16 shows.

After the user has solved the challenge, the result of the computation is sent by the web
application client to the server (figure 5.17). Now, RP, using data received in addition to the
username provided due to the session, calls the authorize API, as schematized in figure 5.18.
After these messages have been exchanged between servers, the web application one sends the
result to the platform, figure 5.19.

Even for the authorisation task, watching the log file can offer a different and more detailed
view of the action performed:

87

Tests

Figure 5.10. Messages in third step of authentication phase

Figure 5.11. Messages in fourth step of authentication phase

Page viewed at 05/03/2022 15:10:24, path: /var/www/html/php/resource.php,

page: Resource, username: user2

Curl executed at 05/03/2022 15:10:31,

path: https://fido2server.strongkey.com/skfs/rest/preauthorize

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{

"username":"user2","txid":"4",

"txpayload":"Intel Core i5, RAM 8GB DDR4, Hard drive 512GB SSD : 500eur

- Date : 5/3/2022 15:10:31",

"options":{}}}

Response: {

"Response":{

"challenge":"fKrJJ5AGJBELF6qeEvVKMTISKA29HfCkL53zSUbPnBo",

"allowCredentials":[{

"type":"public-key",

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew","alg":-257}],

"txid":"4",

"txpayload":"Intel Core i5, RAM 8GB DDR4, Hard drive 512GB SSD : 500eur

- Date : 5/3/2022 15:10:31","rpId":"strongkey.com"}}

Curl executed at 05/03/2022 15:10:34,

path: https://fido2server.strongkey.com/skfs/rest/authorize

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{

"txid":"4",

"txpayload":"Intel Core i5, RAM 8GB DDR4, Hard drive 512GB SSD : 500eur

- Date : 5/3/2022 15:10:31",

"strongkeyMetadata":{

"version":"1.0","last_used_location":"Catania, CT","username":"user2",

"origin":"https://fido2service.strongkey.com",

"clientUserAgent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/98.0.4758.102 Safari/537.36"},

"publicKeyCredential":{

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"rawId":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"response":{

"authenticatorData":"WnTBrV2dI2nYtpWAzOrzVHMkwfEC46dxH...",

88

Tests

Figure 5.12. Messages in fifth step of authentication phase

Figure 5.13. Messages in sixth step of authentication phase

"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uZ2V0IiwiY2hhbGxlb..."},

"type":"public-key"}}}

Response: {

"Response":"Successfully processed authorization response",

"txdetail":{

"txid":"4",

"txpayload":"Intel Core i5, RAM 8GB DDR4, Hard drive 512GB SSD : 500eur

- Date : 5/3/2022 15:10:31",

"nonce":"-z1TsRQSKF4P-lAQdLJSBA","txtime":1646489431061,

"challenge":"fKrJJ5AGJBELF6qeEvVKMTISKA29HfCkL53zSUbPnBo"},

"FIDOAuthenticatorReferences":[{

"protocol":"FIDO2_0",

"id":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"rawId":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"userHandle":"vZPP6ho6FFgm5O43URA2BB8pc4AjQcEsl-my6LSQUfM",

"rpId":"strongkey.com",

"authenticatorData":"WnTBrV2dI2nYtpWAzOrzVHMkwfEC46dxHD4U1R...",

"clientDataJSON":"eyJ0eXBlIjoid2ViYXV0aG4uZ2V0IiwiY2hhbGxlbmdlIjoi...",

"aaguid":"08987058-cadc-4b81-b6e1-30de50dcbe96",

"authorizationTime":1646489434755,"uv":true,"up":true,

"signerPublicKey":"MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCA...",

"signature":"oSCDOp2vABWKa1ItD9u63hqv2fGzrHNSEp9hyFfb5P0Tz7...",

"usedForThisTransaction":true,"signingKeyType":"RSA",

"signingKeyAlgorithm":"SHA256withRSA"}]}

First, the Resource interface is requested and shown. To execute the authorisation task, a first
call to preauthorize API of FIDO2 server is needed: the request data will contain information

89

Tests

Figure 5.14. Messages in first step of authorisation phase

Figure 5.15. Messages in second step of authorisation phase

about the newly transaction to authorise, such as the identifier and the payload. Then, another
curl is executed to the authorize endpoint: besides of the result of the task and the information
regarding the transaction, the response of this final call offers data about the authenticator and
the process of generation of the proof; these data are needed to perform transaction confirmation
tasks.

5.5 Transactions and Admin

When visiting the Transactions or Admin interfaces, the user wants to access to data contained
in the web application server database. Since here no verification is required by FIDO2 Server,
there is not exchange of messages with it; nevertheless, the size of information requested can be
considerable and therefore the number of packets sent by the Relying Party may be quite big,
especially in Admin page, where it has to be loaded information about all transactions of all users
registered in the web application.

In support of this, in the log file it is possible to find simply the request of access to Transactions
or Admin pages:

Page viewed at 05/03/2022 15:10:25, path: /var/www/html/php/transactions.php,

page: Transactions, username: user2

Page viewed at 05/03/2022 15:10:53, path: /var/www/html/php/admin.php,

page: Admin, username: admin

To test the validity of a transaction, a tester can use information contained in the log file,
under the response of a curl executed to the authorize endpoint.

To perform this verification, many tools can be used, such as openssl. It is crucial to notice
that, thereby executing this type of test, the tester should manually compose data as FIDO2
specifications impose [7].

In this project, a verification tool has been implemented. To use it, the tester should connect
to the web application in the path /utils/verifysignature/verifySignature.html.

As figure 5.20 shows, this tool needs as input

authenticatorData information about the authenticator used, needed to generate data the sig-
nature is computed on;

clientDataJson information about the client, needed to generate data the signature is computed
on;

90

Tests

Figure 5.16. Messages in third step of authorisation phase

Figure 5.17. Messages in fourth step of authorisation phase

signerPublicKey public key associated to the private one used to compute the signature at
authorisation step;

signature signature computed at authorisation step;

signingKeyAlgorithm algorithm used in the computation of the signature.

Once the tester has provided the required information, he can press the Verify button thereby
triggering the execution of the algorithm. At the end, the response is presented as a string and
an icon (figure 5.21).

5.6 Logout

When user performs the logout task, it wants to exit from its account destroying the session. In
this case, the messages exchanged, as figure 5.22 shows, are sent and received only by and to web
application server and client: since neither user verification nor change in user’s account must be
performed, FIDO2 server is not needed here. First, messages about the user’s willing are sent by
the platform to the server; it can now destroy the active session initialized before and redirect the
user to the Login page.

When the logout action is requested and performed, the web application logs the action:

Logout at 05/03/2022 15:10:44, path: /var/www/html/php/api/logout.php,

username: user2

Page viewed at 05/03/2022 15:10:44, path: /var/www/html/php/login.php,

page: Login, username: Not authenticated

5.7 Deregistration

In this phase, the user chooses to delete his account from both the Relying Party and the FIDO2
Server. When this task starts, the client tells the web application server the user’s willing as
described in figure 5.23. Afterwards, this server takes the username from the session it has
established before and, using it, proceeds to call SKFS endpoints. Figure 5.24 shows a long
sequence of messages: this is because two FIDO2 Server APIs are called in a raw. First, getkeysinfo
is called to let RP obtain the identifier of user’s key within SKFS; then, the web application
server calls deregister endpoint using the newly information as input to delete user’s account. It
is possible to see in figure 5.24, indeed, two different TLS sessions starting with two different
handshakes.

Afterwards, the result of the second endpoint is forwarded to the client, as figure 5.25 shows.
Since the user’s account does not exist anymore, the session created before has to be destroyed
and, therefore, the authenticated user turns to a non-authenticated user; for this reason, it is
redirected to the Login interface, which requires some data from the web application server to be
loaded. Figure 5.25 shows this behaviour, too.

It is possible to use the logging system to see details about the process of deregistration task:

91

Tests

Figure 5.18. Messages in fifth step of authorisation phase

Figure 5.19. Messages in sixth step of authorisation phase

Curl executed at 05/03/2022 15:11:15,

path: https://fido2server.strongkey.com/skfs/rest/getkeysinfo

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{"username":"user2"}}

Response: {

"Response":{

"keys":[{

"keyid":"1-1-8","fidoProtocol":"FIDO2_0",

"credentialId":"v_doEGtTFZbxOuVnBmImxcCYx6erzcqsA_DyG6SLUew",

"createLocation":"Catania, CT","createDate":1646489415000,

"lastusedLocation":"Catania, CT","modifyDate":1646489474000,

"status":"Active","displayName":"user2_dn","attestationFormat":"tpm"}]}}

Curl executed at 05/03/2022 15:11:15,

path: https://fido2server.strongkey.com/skfs/rest/deregister

Request: {

"svcinfo":{

"did":1,"protocol":"FIDO2_0","authtype":"PASSWORD",

"svcusername":"fido2service","svcpassword":"F1d02s3rv1c3_p4ssw0rd!"},

"payload":{"keyid":"1-1-8"}}

Response: {"Response":"Successfully deleted"}

Page viewed at 05/03/2022 15:11:15,

path: /var/www/html/php/login.php, page: Login, username: Not authenticated

This sequence of logs shows a first curl action executed to FIDO2 server getkeysinfo endpoint:
this is needed to obtain information about the key used by the user. Once this information has
been received, a second FIDO2 server API is called, the deregister one; in this call, data obtained
in the first curl action are used. If the entire task ends successfully, the session is destroyed, the
used becomes a non-authenticated user and it is redirected to the Login page.

92

Tests

Figure 5.20. Interface of the tool verifying the validity of transactions signatures

93

Tests

Figure 5.21. Interface of the tool after the verification of a transaction signature

Figure 5.22. Messages in logout phase

Figure 5.23. Messages in first step of deregistration phase

94

Tests

Figure 5.24. Messages in second step of deregistration phase

Figure 5.25. Messages in third step of deregistration phase

95

Chapter 6

Conclusions

This project was born to increase the security of high risk workplaces in which a breach would
be very dangerous and could do huge damage. To do that, the design of the system wants the
hardware board to be put as the only point of contact with the external world; this electronic
card should be the gateway in input and output. So, the aim of this project is to have a strong
authentication system in which the worker can be authenticated thereby accessing to the service
which, in this case, could be meaning to be able to talk with external net.

6.1 Production

Thereby being load in production, this project needs to be turned from a prototype to a real
system. The security level of a mechanism is defined by its weakest point. This can be a section
of the software, a hardware component, a mistake in design or configuration, or the final user.

In order to be put in production, this system needs first a secure DNS server; without this
kind of server, there would be the need to statically write all the required IP addresses: the RP
one in the user’s device and the FIDO2 server one in the web application. Doing this can raise
different vulnerabilities exploitable by attackers. For instance, a hacker could access to the device
of the user and change the static IP address with another: this action brings, at least, to DoS
attack, Denial of Service, if the static IP is just wrong.

Another crucial action to perform to make the system secure is to put the hardware board in
a protected place: cybersecurity is not just about virtual world, but also about physical security.
In this case, for instance, if an attacker manages to reach the board, it could easily access to
all the data inside it: it is true that the card is protected with a username and a password, but
there exist many methods hackers have and can use to discover, guess, or steal them. Moreover,
even though the hacker failed in accessing to the board, it would anyway be able, for instance, to
destroy it, so that to perform a DoS attack.

As this kind of systems sees the hardware card as the only gateway of the work office, designing
this system as in this project could be dangerous, as the board represents the only point of failure
of the mechanism. This problem is not just about attackers, but also about incidents in general:
if an issue raises into the embedded system causing it to be unable to properly work, the whole
mechanism would downfall.

Since this system is just a prototype, it is not a problem to have self-signed auto-generated
certificates; in production, however, it is mandatory the web application and the FIDO2 server
to have valid certificates provided by trusted Certificate Authorities.

6.2 Improvements and other functionalities

Many improvements may be done for this project: the first, which has already been discussed,
is the addition of a DNS server which can allow to avoid some vulnerabilities. In this case,
nevertheless, the DNS server can raise other treats, if implemented in a non-secure way.

Another functionality this web application may have is the management of more than one key
per user. FIDO2 implements this possibility and SKFS, the StrongKey Fido Server [8], offers
different mechanisms and APIs which can be used to let users manage different key pairs. This

96

Conclusions

functionality is not so important to build in this prototype since the example done for the service
is just the permission to purchase a personal computer; nevertheless, in a more complex web
application in which the user can access to more than one resource or service, it could be useful
the user to have two or three key pairs. In this kind of servers, a more sophisticated access control
could be implemented.

Finally, an improvement which can be implemented in the web application might be the
addition of other types of authentication algorithms supported in confirmation transaction tasks.

6.3 Connection with other projects

This project regards only the registration, authentication, and authorisation mechanism of an
embedded system to be used within a high-risk work office. To acquire sense, this system could
be associated to other similar projects implemented in the same hardware to improve the security
level. An example of this can be the implementation of a TPM mechanism which can grant the
absence of intrusions or the implementation of an embedded system-oriented software which can
offer VPN services.

97

Bibliography

[1] K. Bissell, L. Ponemon, “Accenture/Ponemon Institute: The Cost of Cybercrime”, Network
Security, Volume 2019, Issue 3, March 2019, pp. 4-4, DOI 10.1016/S1353-4858(19)30032-7

[2] C. Paulsen, R. Byers, “Glossary of Key Information Security Terms”, NIST Interagency or
Internal Report (NISTIR) 7298 July 2019, DOI 10.6028/NIST.IR.7298r3

[3] R. W. Shirey, “Internet Security Glossary, Version 2”, RFC-4949, August 2007, DOI
10.17487/RFC4949

[4] T. Hansen, “SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple Authentication and Se-
curity Layer (SASL) Mechanisms”, RFC-7677, November 2015, DOI 10.17487/RFC7677

[5] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, O. Ranen, “HOTP: An HMAC-Based
One-Time Password Algorithm”, RFC-4226, December 2005, DOI 10.17487/RFC4226

[6] D. M’Raihi, S. Machani, M. Pei, J. Rydell, “TOTP: Time-Based One-Time Password Algo-
rithm”, RFC-6238, May 2011, DOI 10.17487/RFC6238

[7] FIDO Alliance, https://fidoalliance.org/
[8] StrongKey, https://www.strongkey.com/
[9] HAProxy, https://www.haproxy.org/

[10] SoloKeys, https://solokeys.com/
[11] WebAuthn, https://webauthn.io/
[12] CentOS, https://www.centos.org/
[13] VMWare, https://www.vmware.com/
[14] Raspberry Pi, https://www.raspberrypi.com/
[15] Raspbian, https://www.raspbian.org/
[16] Apache, https://httpd.apache.org/
[17] Wireshark, https://www.wireshark.org/

98

https://doi.org/10.1016/S1353-4858(19)30032-7
https://doi.org/10.6028/NIST.IR.7298r3
https://doi.org/10.17487/RFC4949
https://doi.org/10.17487/RFC7677
https://doi.org/10.17487/RFC4226
https://doi.org/10.17487/RFC6238
https://fidoalliance.org/
https://www.strongkey.com/
https://www.haproxy.org/
https://solokeys.com/
https://webauthn.io/
https://www.centos.org/
https://www.vmware.com/
https://www.raspberrypi.com/
https://www.raspbian.org/
https://httpd.apache.org/
https://www.wireshark.org/

	Introduction
	The role of Computer Science
	Cybersecurity
	Cybersecurity pyramid

	The aim of this project
	Kinds of solutions
	Techniques and mechanisms to use

	State of the art
	The authentication property
	Authentication factors
	Authentication model

	User authentication
	Password-based authentication

	Challenge-response authentication
	Symmetric CRA
	Asymmetric CRA

	One-time password
	HMAC-based OTP
	Time-based OTP

	Fast Identity Online
	Authenticators and multi-factor authentication
	Asymmetric techniques
	Protocols
	User view
	FIDO2
	Conclusions

	Project design
	Network design
	Implementation choices
	FIDO2 server
	StrongKey

	Web application
	Implementation of the service

	Client device
	How this project works
	Registration
	Authentication
	Authorisation
	Deletion

	Web application
	Application design
	Interactions with users
	Interactions with authenticators
	Interactions with web application database
	Interactions with FIDO2 server
	Interaction between web client and web server

	Developer manual
	Certificate
	Css
	Images
	JS
	PHP
	Utils

	Installation
	SKFS
	Web application

	Interfaces and how to use the application
	Homepage
	Registration
	Login
	Resource
	Transactions
	Admin
	session, redirect and loading

	Tests
	Connection to the web application
	Registration
	Login
	Authorisation
	Transactions and Admin
	Logout
	Deregistration

	Conclusions
	Production
	Improvements and other functionalities
	Connection with other projects

	Bibliography

