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Abstract

Recent advances in Robotics research are pushing the limits of machines toward faster,
smarter and more efficient devices. Notable results have been achieved under the hardware
point of view, with humanoid devices that are able to consistently outperform human
movements. Under a perception perspective, however, we are still far from being capable
to match the human skills. The gap is even more consistent when we introduce constraints
typical of on-board implementations, such as limited resources and real-time requirements,
which leads to models that potentially works perfectly on a theoretical scenario, but are
not deployable in a real application.

Among the others, one of the most important tasks that a humanoid robot should
implement correctly to enable a fruitful human-robot interaction is an accurate human
activity recognition, namely the online identification of the action that the human is
performing, with the goal of triggering a consequent action, e.g. to support the task. State
of the art approaches typically provide solutions that relies on large and complex neural
models, which can hardly be deployed in the constrained hardware of a fully autonomous
humanoid robot.

This thesis provides a solution to the problem of real time human activity recognition
in the humanoid robotics; the model is built with an eye on the dimensionality, and it
is provided a solution based on skeleton data and graph neural networks. The working
scenario is a kitchen environment, with a single human and the robot being in the same
room. The model focus on both audio and visual data. From the visual data point of
view, a camera, hosted in the robot head, collects videos of the human that are sent to
the main model, which, after preprocessing, perform a classification task. The proposed
architecture demonstrated to be a convenient way for node level, edge level, and graph
level prediction task. In this work the focus was on graph level prediction, by comparing
different architectures for the updating and messages passing functions. The architecture
achieves interesting results on the dataset used, and it is demonstrated to be efficient
when deployed directly in the robot hardware. From the audio data point of view, a
microphone records the audio in the environment; the human speech is analyzed using
Natural Language Processing techniques and a classification model. The outputs of both
the visual and the audio based models are the merged for obtaining the final prediction.

Future developments of this work will implement an Incremental Learning policy to
expand the knowledge of the model to novel classes, and will consider the enrollment of
sequence-based models such as Long short-term memory networks.
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Chapter 1

Introduction

1.1 Humanoid Robotics, Where Do We Stand?

Robotics is the intersection of science, engineering, and technology that produces ma-
chines, called robots, that replace (or replicate) human actions. Initially created for use
in factories, robots have evolved over a long period of history. The spread of computer
technology led to a new wave of robotics in the 2000s [1]: robots are not only anymore for
industrial purposes, but also used for security, entertainment, health care, military and
different other purposes.

As the need for robotics capability increases, robotics software need to evolve. A cobot,
or collaborative robot, is a robot intended for direct human robot interaction within a
shared space, or where humans and robots are in close proximity. The development of
cognitive robots relies on artificial embodiment having complex and rich perceptual and
motor capabilities. This leads to humanoid robots as the most suitable experimental
platform. While simpler robotic systems might be more suitable for testing some theories
in simplified environments, only humanoid robots can provide rich sensorial inputs and
complex actions necessary to develop higher cognitive processes. The design of such
robots which are capable of developing perceptual, behavioural and cognitive categories
in a measurable way and are capable of communicating and sharing these with humans
and other artificial agents is a challenging task. The target system is supposed to interact
with humans in a reliable and safe manner. In particular, it is meant to be able to
cooperate and to enter a dialogue with them.

Human–Robot interaction is the study of interactions between humans and robots.
Multidisciplinary in nature, HRI draws on several disciplines including human–computer
interaction, artificial intelligence, robotics, psychology, and natural language understand-
ing. A crucial task for successful human–robot collaboration is Human activity recognition
(HAR). Indeed, in a world where robots perform such a wide range of tasks, especially in
human environments, it is fundamental for them to be able to deduce when and where
their help is required, even if not explicitly requested. In a number of fields, from indus-
try to healthcare, it is crucial for the cobot to be able to act autonomously in support of
the person (or people) they are in contact with. Recognition of the performed action is
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fundamental to achieve this, as it allows the robot to understand the current situation, to
build a scenario from which to decide how to act. This is why the task is so well studied,
although it still presents various difficulties. Indeed, the complexity of the problem is
intrinsic: as a first obstacle, there is the difficulty of unambiguously defining the con-
cept of activity, which can indicate concepts with different granularity. The segmentation
between different actions in time evolution is also non-trivial: even for a human being,
defining when one activity actually ends and another begins is not always simple or even
possible. Then, problems such as visual occlusion, change of point of view, number of
people present in the scene, impact and increase the complexity.

1.2 Humanoids at H2T
At H2T, the High Performance Humanoid Technologies research group in the Karlsruhe
Institute for Technology, they created an environment made of different robots and the
whole infrastructure for managing and working with them. With ArmarX, the event-

Figure 1.1: The ARMAR family [2]: they are different humanoid robots developed by the
H2T team at KIT since 1999.

based software infrastructure, they introduce a robot programming environment that has
been developed in order to ease the realization of higher level capabilities needed by
complex robotic systems such as humanoid robots. The work presented in this thesis is
built upon ArmarX (hereinafter named the infrastructure) and ARMAR-6 (hereinafter
named the robot). ARMAR-6 is a humanoid assistance robot for industrial environments
that interacts with humans and provides them with proactive support. Being able to
understand what a human is doing is fundamental in the area of cobot and robot for
industrial applications, in which they are supposed to support the human in their goals.

Starting from the video captured from a Microsoft Kinect posed in the robot head,
and from the audio recorded from a microphone, the HAR model has been developed: it
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1.3 – Thesis organization

is made of an algorithm based on GNNs and an NLP method, and they work together for
recognizing the action based on changes in the human pose among different frames and on
the analysis of the speech made by that person while performing the actions. The model
was trained using a lower-granularity version of the Bimanual Manipulation Dataset from
the H2T team itself. The videos in the dataset are captured by a camera in front of
the human, simulating the position of the robot. In order to keep this configuration,
in ARMAR-6, it has also been developed a system that makes the robot able to follow,
rotating the head, the human along its movements; this can guarantee that the human
pose is always centered in the camera frame. The dataset was originally made of 13
different classes, but because of their behaviours a subset of 7 was used. In fact, some
of the classes in the dataset represent more actions that activities (like Close and Open
a bottle), and so they were out of the scope of the thesis.The model achieves very good
results, with an accuracy of over 80% in the test phase. In addition, it also achieves the
goal of lightness and low impact on the use of resources, since it is built using only data
that was already collected and analysed for other purposes, thus avoiding burdening the
computational process of the robot.

1.3 Thesis organization
This thesis is organized as it follows: in Chapter 2, the robotics part is introduced,
explaining the basic of robotics and the ArmarX framework that has been used for this
work; in Chapter 3, the activity recognition problem is formalized, and the different
approaches available in the literature are presented. The framework of graph neural
networks, that are the main model used in the thesis, is illustrated in Chapter 4, where
it is also available a review of basic graph theory for the reader that is not familiar with
the topic. Chapter 5 is the core of the thesis, as it contains the proposed solution, the
experiments and the obtained results; finally, Chapter 6 contains the conclusions and the
discussion about the AVAR model, as well as the analysis of future possible works.
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Chapter 2

Robotics

2.1 Generalities
A definition of Robot, by the ISO standard, is “actuated mechanism programmable in
two or more axes with a degree of autonomy, moving within its environment, to perform
intended tasks” [3]. Robotics, therefore, is a field that refers to the study of machines
capable of replacing humans in the performance of tasks, whether these be physical work or
decision-making. Humans have always looked for ways to automate their tasks, especially
the heaviest and riskiest ones. For this reason, the idea of robotics and automation in
general culture predates by far its actual technological introduction. Even the term Robot
was coined by Karel Capek, a Czech writer, and used in one of his works (Rossumovi
univerzální roboti).

Around the 1930s, the development of the first industrial robots began in the United
States of America. At the same time, the science fiction writer Isaac Asimov formulated
the laws of robotics, which represent the expectations and fears that society had of robots
at that time:

• First Law: A robot may not injure a human being, or, through inaction, allow a
human being to come to harm.

• Second Law: A robot must obey orders given it by human beings, except where such
orders would conflict with the First Law.

• Third Law: A robot must protect its own existence as long as such protection does
not conflict with the First or Second Law.

Even nowadays, since there is no robot or automatic machine to which any of them apply,
they are considered fictitious. However, since the laws were created, great strides have
been made in the development of robotics: around 1949, at the Burden Neurological
Institute in Bristol, it was created the first electronic autonomous robots with complex
behavior; in 1954, George Devol constructed the Unimate, the first digitally controlled
and programmable robot. This later laid the foundations of the modern robotics industry;
Stanford Research Institute developed Shakey, the first mobile robot capable of reasoning
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about its environment, in 1970; in 2014 it was presented the Pepper, a humanoid robot by
SoftBank Robotics, designed with the ability to read emotions. Thanks to the evolution
of both hardware and software, especially with the rise of artificial intelligence systems,
it is possible to have robots that can talk like us, walk like us and express a wide range
of emotions.

2.1.1 Humanoid Robotics
Humanoids are robots whose appearance is similar to that of the human body. Some
humanoid robots may replicate only specific parts, others may duplicate the entire body:
it depends on the application. It can be used for interacting with people, for substituting
humans in certain contexts, or for experimental purposes. Firstly created in the 70s as a
field, several projects have been developed since then. In the development of humanoids,
as in other robotic applications, there are both hardware and software challenges. An
essential element in the development of a humanoid robot are sensors, which mimic the
human senses and facilitate human-robot interaction. Vision, audio and tactile are the
sense in which researchers most focused on. Moreover, internal sensors for position and
velocity are usually present. Data received from these internal sensors are used for address-
ing the body motion. Combination of internal and external sensors data are fundamental
for the manipulation task.

Given a robot, and an environment in which the robot is located, we need to describe
point’s positions in space. For doing that, it is essential to have a coordinate system and
a framework to describe positions and orientations, so that we can also address change in
them, by translations or rotations into the 6 degrees of freedom (DOF). Let’s give some
basic definitions. The joints of the robot connect adjacent links, that are rigid elements,
and allow for relative motion between them. The number of DOF represents the number
of parameters needed to specify a configuration. An essential concept in kinematic is the
pose: it is the positioning and orientation of the robot in the global coordinate frame.
Defined a fixed world reference coordinate frame W, a local coordinate frame R in the
robot’s reference point P in the space, then it is possible to describe the point P itself
as a vector r representing the relative position of point P w.r.t. referent point of system
W.

2.2 The ArmarX Framework and ARMAR Robots
The robot development environment (RDE) ArmarX aims at providing an infrastructure
for developing a customized robot framework that enables the realization of distributed
robot software components. For an RDE to be used with modern robotic platforms, it
must meet certain requirements. Specifically, based on [4], it is required to provide:

• distributed processing; this refers to multiple computer systems using more than
one computer (or processor) to run an application. A parallel processing method
uses more than one CPU to execute programs on a single computer. In robotics, a
hardware platform is typically composed of several sub-systems, each of which serves
a specific function. Therefore, this requires a distributed system.
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• interoperability, which is the ability for different systems to coordinate their com-
munications and collaborate without requiring the end user to make any consistent
effort. It is imperative that different hardware platforms and operating systems are
integrated, and the RDE should provide an interface that takes care of this.

• open source model, that enables researchers and developers to collaborate on im-
proving the model, which ultimately leads to greater improvements in research.

ArmarX meets these requirements. The software has a GPL open-source license; shared
memory and Ethernet are used for communications, and it runs on a variety of operating
systems and supports a variety of programming languages (C++, Java, and Python are
just a few examples).

From a structural viewpoint, ArmarX is comprised of three layers. A representation
can be found in the Figure 2.1, in which it is possible to see the Middleware Layer, the
Robot Framework Layer and the Application Layer.

The Middleware Layer implements all necessary components to realize distributed
applications by providing the basic building blocks for implementing the architectures. It
is based on the Ice platform, but also includes a shared memory channel for efficient data
transfers. It abstracts the communication mechanisms, provides basic building blocks of
the distributed application, and provides entry points for visualization and debugging.
Here there is the ArmarXCore, that contains the base functionality for all other packages.
With ArmarX RT a bridge to real time components can be established, as it is needed for
accessing low level robot control modules.

ArmarXCore It is basically the application programming interface provided by the
ArmarX Middleware Layer; made of four different layers, it is described in Figure 2.2.The
Inter-object communication layer provides mechanisms for communication between ob-
jects in the system. The Sensor-Actor Units offer a generic interface for robot components,
such as kinematics or camera. The ArmarX APIs follow an event-driven approach; the
Observers layer is crucial because it monitors sensor values and generates events based on
the data that is provided by the sensors. The events generated by Observers are sent to
the Statecharts, which process the events and send the resulting control commands to the
sensor-actor units that control the robot.

In the Robot Framework Layer, there are structures for providing a uniform inter-
face among perception modules and/or memory structures. It consists of generic APIs
that can be parametric and tailored to fit the scope of each project. Among the notable
projects in the Robot framework layer are memory (MemoryX), robot and world model,
perception (VisionX), and the robot API, required for basic Middleware layer building
blocks.

MemoryX It is the ArmarX layer that manages the memory; it incorporates the build-
ing blocks for memory structures, both for system memory and storage of databases. The
architecture is made up of working memory and long-term memory, both of which are
accessible to applications. As well as this, there is the prior knowledge memory that al-
lows already known data to be added to entities. MemoryX provides network-transparent
access facilities for updating and querying memory.
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Figure 2.1: ArmarX organization structure from [4]: "ArmarX is organized in three layers.
The Middleware Layer provides all core facilities to implement distributed applications
as well as basic building blocks for robot software architectures. Based on these building
blocks, the Robot Framework Layer provides a robot API implementing more complex
functionality like kinematics, memory, and perception. Robot specific APIs can be im-
plemented by extending the provided generic robot API modules. Robot programs are
realized in the Application Layer. They are implemented as distributed applications,
making use of the generic and specific robot APIs and statecharts. The ArmarX Tools
comprise a plugin-based GUI that can communicate with the components and visualize
their content. Specialized components can interact with the ArmarX Simulator or the
robot hardware via ArmarX RT."

VisionX It is the ArmarX layer that provides tools and facilities for include and process
images recorded from the cameras. There are two main components: the image provider
and the image processor; the image provide that care of sending the visual data as a
data stream, using shared memory or Ethernet technology; different image processors
can be implemented, for different purposes like object detection, pose estimation, scene
perception.

The final robot program, utilizing both generic and specific robot APIs is implemented
as a distributed application in the Application Layer.

Humanoid robots have been developed by KIT since 1999; the goal is to have hu-
manoids capable of undertaking a variety of tasks. The ARMAR robot series have been
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Figure 2.2: ArmarXCore layers and their interactions, from [4]: "the application pro-
gramming interface provided by the ArmarX Middleware Layer comprises four different
elements. The Sensor-Actor Units serve as abstraction of robot components, the Ob-
servers generate events from the continuous sensory data stream resulting in transitions
between Operations. Operations are organized as hierarchical state-transition networks.
These elements are connected by the communication mechanisms (arrows in the figure)."

designed for grasping and dexterous manipulation, and for learning through human ob-
servation and natural human-robot interaction. They are all based on the ArmarX in-
frastructure. In 2018 the ARMAR-6 [5], represented in Figure 2.3, was presented. It is
a collaborative robot with highly integrated hardware and software; main features are
robustness, reliability and modularity. It actuates 27 DOF: 8 actuated joints for each

Figure 2.3: The ARMAR-6 humanoid robot, from [5]

arm, 2 motors for the hands, 2 joints in the neck, 1 in the torso and 4 Mecanum wheels
in the base (ARMAR-6 doesn’t have legs, instead motion is possible thanks to a mobile
base) From a software point of view, ARMAR-6 contains four identical computers. Each
of them consists of a Mini-ITX motherboard with an Intel Core-i7 CPU, 32GB of RAM,
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500GB of SSD storage, and a dual Gigabit Ethernet link. The four PCs serve different
purposes: one is for real time control; a second one is used for vision related processes;
the third one for motion planning and the last one for NLP purposes. ARMAR-6 is able
to communicate with, act with and react to humans and their environment. Because
of its constant interaction with humans, it is necessary for the robot to be able to per-
form some complicated tasks, like grasping known and unknown objects, bimanual mobile
manipulation, activity recognition or recognition for the need of help.
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Chapter 3

Activity Recognition

3.1 Problem Formulation
Human activity recognition (HAR) is a classification task that attempts to determine the
activity performed by an individual. Due to its inherent complexity, HAR systems are of-
ten designed to be context-aware in order to reduce complexity. Some characteristics that
HAR systems are usually required to have are being non-intrusive and non-collaborative.
In other words, the task should be performed when the individual is completely free to
act as he or she wishes. The problem is relevant and has different applications [6]. Let us
analyze some of them.

Smart homes It is referred to a home automation system that monitors and controls
home attributes in order to facilitate daily life; in this scenario, having data about the
occupant’s habits is crucial, because it allows to adapt the system to the specific behaviours
of the people using it.

Healthcare Regular monitoring and recognition of physical activity can potentially
assist to manage and reduce the risk of many diseases; moreover, as the average age of the
population continues to rise, it is becoming increasingly useful to decouple the care of the
elderly from the constant physical presence of human carers. Automating these processes
would create benefits for society.

Security It is becoming increasingly important to use video surveillance to monitor
security, production, and deter predatory and theft behaviors. For example, having an
automatic system that in real-time processed video data in order to detect unusual hu-
man behaviours during an event, could help in detecting and preventing security-related
problems.

Cobot Robots capable of performing domestic tasks, or industrial tasks by collaborating
with human workers, are required being able to recognize human actions in the analyzed
scenario.
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In most instances, the problem is approached as part of the field of Computer Vision,
using video sequences or images as inputs. A significant difficulty is the fact that there
are multiple elements that may lead to classification errors, including partial occlusion,
point of view changes, lighting and appearance. For these reasons, HAR is one of the
most studied subjects in computer vision and it still remains a hot topic. Because of
this complexity, HAR is usually addressed using advanced Machine Learning and Deep
Learning techniques.

It is important, while addressing the HAR task, to keep in mind the distinction between
action and activities. The term action, also called gesture or primitive, is often used to
refer to a single movement (raising harm, closing hand etc.). When talking about activity,
usually, the focus is on something more complex, that can be also seen as a union of
different actions, which can involve objects and that is longer in time. This distinction is
not unique in literature. A different, but still related, taxonomic approach is presented in
[7]: here the activities are identified as sequences of motions that achieves several goals
to accomplish one overarching purpose, while actions (also called functional movements)
are motions that achieve a few goals to achieve a single purpose.

3.1.1 Action Recognition
A human body is a complex structure that is capable of performing an infinite number
of actions. Our everyday lives are characterized by continuous actions, with no clear and
defined distinction between one and another from a temporal and logical point of view:
different actions can be performed in parallel, or as a stream, even without being the
human able to explicitly segmenting them. It is this continuous nature of our world that
makes it difficult to address the issue of automatic recognition of an action performed by
a human. Additionally, each part of the human body is capable of performing different
functions, either independent or connected to a singular purpose. As an example of the
first situation, let’s say that one hand is used to open a door while the other is used to hold
something. An example of the second situation is when both hands are used to uncork a
bottle.

The nature of algorithms and computer systems is not suitable for continuous prob-
lems; therefore, when considering the development of a model for action recognition, it
is necessary to be able to discretize the performance of actions over time. This implies
that different actions can be extracted from each sequence of variable length. For the
analysis, the focus should not be on the entire environment, but rather on different parts
of the body. In traditional approaches for action recognition, methods from the field of
signal processing were employed: these models sought to extract domain-specific, rule-
based features from the original data and apply statistical and machine learning models
to these features. The drawback of this approach is that it requires expertise in signal
processing and domain knowledge to analyze the raw data and engineer the feature set
that will allow a model to be fitted to the data. This expertise is expensive and not
scalable. Due to the expansion and improvement of deep learning techniques in recent
years, action recognition has also improved considerably. In the literature we can find
different points of view to this problem: an important work focus on video segmentation
in order to separate different actions and then apply a classification algorithm on some
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extracted features [8]; a different approach involves the study of motion flux to perform
both action recognition and classification [9]. Another context-based approach studies the
relative position of objects and body parts to make inferences about what the human is
doing at that moment [10].

3.1.2 Activity Recognition
With an Action Recognition concept at its core, it can be realized that granularity of
analysis can be reduced to a level that does not focus so much on the movements of in-
dividual body parts but on the purpose of an action series. Here, we are moving from
the action level to the activity level. Activity is a complex concept that is difficult to
define and standardise. It includes different states that can be statics, dynamics and/or
transitions related. Also, the general Activity Recognition task can be faced from different
perspectives. One of the most popular is activity classification from a video, which entails
categorizing a segmented video in a supervised learning environment. There are many
available datasets tailored for this purpose, like UCF101 [11], HMDB [12], Kinects [13],
with videos taken from different sources like security cameras, movies, and others. Reg-
ularly, multiple activities can take place at the same time. Because of that, in its purest
form, one could refer to the activity recognition problem as a multi-label classification
problem. The analysis can be simplified by making assumptions, which in turn reduces
the problem to a simpler multi-class classification problem, for which a finite vocabulary
of actions can be defined. A different approach is activity detection, which is also known
as activity localization. This task involves identifying the person performing a certain ac-
tivity either temporarily or spatially in continuous video recordings. The logical next step
to Activity Recognition in this development is activity prediction or forecasting, which
involves predicting future activities based on current data. In this thesis, the focus is on
a Human Activity Recognition problem in a supervised learning framework, considering
mutually-exclusive classification.

3.2 Approaches
In machine learning, the choice of data to be used is crucial. Using one data source rather
than another can significantly vary both the choice of model to be applied and the final
performance. In the context of HAR, it is necessary to use data that enable the perception
of activities by automatically extracting features that can be used in classification. For
this, motion capture techniques are often used to generate the necessary information from
the real world for the task. In motion-capture (also known as mo-cap or MoCap for short),
objects or people are digitally recorded as they move. Given the fundamental nature of
data collection as a whole, it makes sense to study the HAR literature on the basis of how
the motion capture is carried out. According to the [14], there are three primary types of
approaches to MoCap: vision-based, sensor-based, and RF-signal-based.

In the radio-frequency (RF) signal-based approach, we use radio signals to detect
human pose or posture from an image or a video. Based on RF technology, movements
can be tracked by detecting radio signals. Generally, the system will consist of stationary
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sensor receivers, one (or more) transmitter marker tags, at least one stationary reference
tag transmitter, and a processing system for analyzing the signals received. With this
approach, generated signals are used to produce heat maps, which are then transferred
to encoders for feature extraction. Pose decoding is then performed on these encoded
features to extract key points, from which confidence maps can be generated for RF
signals. Classification is performed by passing these confidence maps to a network that
was trained using available data sets and that was already equipped with confidence maps
for key points for visual inputs. The RF approach suffers from echo and noise; moreover,
external nodes are required, limiting the user freedom of movements, and the estimate of
the posture of the user is qualitative [15].

Afterward, the two other approaches will be examined: vision-based and wearable-
sensor-based. It is also possible to categorize these two approaches differently, namely,
as marker-based and marker-less approaches. This is due to the fact that video-based
approaches do not require the user to wear anything, and that the analysis may also be
conducted based on available sources and not on purpose recorded videos. The marker-
based approach, on the other hand, requires the human to wear some tracking devices.

3.2.1 Marker-based
In the marker-based approach, MoCap is often achieved by analyzing the signals generated
by sensors attached to the body. A body-worn inertial sensor is the most commonly used
among the various kinds of sensor available, including force-based sensors, electromyogra-
phy sensors, and others. The main reason is that they permit direct measurement of the
body’s movements. It is likely that accelerometers and gyroscopes will be widely utilized
in this type of system; let us recall that the accelerometer measures the change in velocity
and the gyroscope measures the 3-D orientation of the body.

Sensors generated signals are passed through the pre-processing layer in order to reduce
any noise; then, a feature extraction pipeline is applied to the data, that are prepared to
be used for the classification. In literature [16] is discussed that, for the HAR system to
be truly useful in a real-life situation, it needs to not interfere with the subject’s habits.
Marker suits which require heavy or large sensor setups or require users to deal with
uncomfortable devices are thus not suitable. In selecting which data sources an HAR
model should utilize, it has to be taken into consideration that the more available data,
the better function the HAR system will provide. While combining these two aspects
is not trivial, the sensors industry has achieved remarkable advances, for instance with
sports watches and other unobtrusive devices. In a marker-based system, due to the rapid
emergence of wireless sensor networks, we can normally find, in addition to the wearable-
marker data, object and environmental sensors providing additional information. Object
sensors are attached to a particular object in the scene [17], and they are used in HAR
as an indirect way for inferring human activity by detecting specific objects’ movements.
Typically, they are utilized less often than wearable sensors due to high costs and setup
challenges. Environmental sensors are usually placed in the surroundings to sense accurate
data on fundamental environmental parameters that can occur when physical activities
are performed. They are extremely useful in certain applications (e.g. HAR for smart
homes), in which having sensors such as microphones, light sensors, thermometers allows
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to better track the human activity in a specific-activity-related context. Because of that,
the choice of sensors and of the setup is highly dependent on the kind of actions that have
to be captured [18].

Each type of sensor provides benefits and disadvantages. When different sources are
used, it is necessary to combine them into a single model. A well-suited fusion step may
also allow some of the problems related to each signal type to be solved. The fusion
process becomes more difficult as the number of sensors increases. In general, sensor
fusion techniques are typically based on Bayesian estimation, Kalman filters, and particle
filters.

The strength of marker-based systems is found in the adaptability of the marker model.
The precise and marker-point-based behavior of this model is extremely useful for tracking
objects or specific body parts. One disadvantage of marker-based systems is the setup
time, as well as the impact of skin movement and human error. Moreover, using sensors
is problematic because markers tend to move or fall off and the repeatability is poor.

3.2.2 Marker-less
In the field of marker-less motion capture, full-body motion capture is achieved without the
use of markers or special suits which have to be worn. Ideally, motion capture would only
use one set of cameras from one angle, similar to human vision. A number of advantages
can be derived from this approach, mainly related to its flexibility. The first advantage of
video models is that they can be applied to heterogeneous data, not necessarily collected
for the purpose of being used with a specific model (it is not unusual to find trained models
among YouTube videos, for example); the second advantage is that software improvements
are more readily available and cost less than hardware upgrades, which facilitates a faster
improvement of the technology. Also, software upgrades enable re-use of data that has
already been collected. Furthermore, the absence of setup times, such as those involved
in installing sensor technology on the human body, allows for more data to be collected.
In the literature, [19] it is possible to find a review of marker-less models divided on the
type of representation each method uses; namely, it is possible to identify four categories:

• Space-Time methods: these methods leverage features with a space-time aspect;
from this viewpoint, an activity is a 3D structure, which is basically a concatenation
of 2D structures in time, or the third dimension. Local space-time features are the
results of combining spatial and temporal data that represent the evolution of a phe-
nomenon at a given location and time. As an example of how such features might be
represented, see Figure 3.1. They have been found to be a successful representation
of data for activity recognition. Different approaches to data extraction have been
tested, from the Harris detector [20] to Gabor Filters [21] and Hessian matrices [22].
These methods serve as feature extractors, following which any algorithm can be
applied, from KNN over SVM to Neural Networks. As a drawback of the space-time
method, one disadvantage is that complex activities are more difficult to recognize,
particularly when they have to do with small movements. Furthermore, the model
tends to be point-of-view specific.
Another important example in [24]: in this paper, the authors faced the problem
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Figure 3.1: Visualization of human actions with dense trajectories (top row). Example of
a typical human space-time method based on dense trajectories (bottom row) [23].

of view-invariant fine-granularity action recognition, focused on the upper part of
the human body. As the list of primitives and the 3D samples for each of them
are given, a motion context is created for each primitive. This context captures the
information about the amount of motion, the direction of movement, and the location
using a Histogram of Optical Flow representation. An approximation to spherical
harmonics is used to construct a view-invariant representation. It is then proposed
to approach the problem of classifying a test sample in two steps: recognition of
motion primitives and recognition of gestures. Given the test sequence of frames
and the list of primitives, each frame is processed by looking for the corresponding
primitive. The set of them is retrieved as an array and, by using the Edit distance
method, a gesture is predicted from this list.

• Stochastic Methods: the entity to be recognized may be considered as a stochasti-
cally predictable sequence of states. Models such as Markov models [25] and hidden
conditional random fields [26] have been used to model human behavior as a stochas-
tic sequence of actions. It is possible to describe each action using a feature vector,
which encompasses information about the position, velocity, and local characteris-
tics. Using these features, a stochastic model like HMM can be utilized to encode
human actions, whereas recognition can be accomplished by identifying image fea-
tures that are representative of human actions. Stochastic methods perform well but
they are more complicated than non-parametric models.

• Rule-Based Methods: Essentially, a rule-based system applies human-made rules
to store, sort, and manipulate data. To work, rule-based systems require a set of
facts or sources of data and a set of rules for manipulating that data. Each activity is
considered as a set of primitive rules/attributes, which enables the construction of a
descriptive model for human activity recognition [27], [28]. Complex human activities
cannot be recognized directly from rule-based approaches. Thus, decomposition into
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simpler atomic actions is applied, and then the combination of individual actions is
employed for the recognition of complex or simultaneously occurring activities

• Shape-Based Methods: Algorithms based on human silhouettes have recently
gained considerable popularity in literature. From the dictionary, the silhouette
is "the dark shape and outline of someone or something visible in restricted light
against a brighter background". The silhouette may be defined at different levels of
precision: it may be represented as a unique bounding box [29] or may represent the
union of various bounding boxes [30] each representing a particular part of the body.
For a more accurate representation, a 3D representation can be used, and in these
approaches, it is also possible to use a single 3D box or a more advanced model. A
very popular and advanced approach for defining a silhouette is the skeleton based
one, which represents the silhouette as a bone structure constructed of joints and
links [31]. A more detailed discussion of skeleton-based models is available in Section
3.3.

Even if it is now clear that different approaches for defining a silhouette can be used,
it is possible to define a general pipeline, as presented in Figure 3.2. Let us analyze
it. After the video has been loaded, a frames selection is applied, which selects
from the entire video the frames that will be used for analysis. The model may, for
instance, choose only to select a sample of the entire video, or ignore frames where
no changes have occurred from the previous frames. Then, a background subtraction
is applied. This is a problem of image segmentation, and it has been well studied in
the literature. There are many available methods in literature that can be applied,
and the results vary according to the context: the chosen method must be tailored
to the data. Then, based upon the shape, it is necessary to determine the silhouette
itself, that is, the bounding boxes, the joints, and so forth. After determining the
silhouettes across frames, we need to prepare the data for the recognition process: it
is common in this case to use velocity, position, angles, and accelerations as features;
these can easily be derived from the evolution of the silhouettes in time. Lastly, the
classification model is applied and inferences are drawn.

Even though it is difficult and arduous to define, the shape-based approach has
various advantages: it allows for the creation of a view-invariant model, it can be
applied to any video, and, by utilizing normalization techniques, it can also be
subject-invariant.
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Figure 3.2: General pipeline describing HAR systems based on silhouettes representation

3.3 Skeleton-Based Methods
Earlier in this thesis, we discussed marker-less models and specifically shape-based models.
The kinematic skeleton definition is one of the most widely explored approaches in the
literature. It is also known as human pose estimation, and it can be addressed in a 2D
or 3D environment. Human pose estimation is primarily concerned with extracting, from
an image, the coordinates for a fixed set of points and links, each of which represents a
particular part of the human body. We must first specify the exact joint set that we desire
to identify, and also in this case different levels of precision may be required depending on
the specific application: for certain tasks, identifying the hand as a single joint is sufficient,
for others, multiple joints, one for each finger, may be essential.

As already said, the focus can be on either 2D or 3D points estimation. A difference
between the two final results, taken from [32], is available in Image 3.3.

Figure 3.3: Differences among the results in estimating a 2D pose or a 3D pose [32]

Although 2D points estimation is a simpler problem than 3D, it still poses some chal-
lenges: for instance, point occlusion, which is the estimation of the position of a non-visible
joint based on the location of visible joints. The estimation of a 3D pose requires the deter-
mination of the accurate spatial position of each joint in the third dimension. Beginning
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with 2D data, many different ways can be taken to accomplish this. A possible approach
to the problem is to view it as a regression problem in which one estimates the depth
of a point based on its 2D representation. Alternatively, the task can be interpreted as
a matching problem; given a dictionary of 2D → 3D poses, and a 2D pose P for whom
the 3D representation is necessary, the goal is to select the element from the dict that
maximizes the similarity between P and the 2D representation in the dictionary.

Various libraries have been developed for estimating human poses in the literature.
Among these, OpenPose [33] is a popular and highly effective library. This technology
was first developed in 2018 for the COCO Challenge. It had a number of important
features such as real-time 2D and 3D key point detection as well as a calibration toolbox
for estimating the camera’s distortion parameters. The model is presented as a pipeline,
in which an image is input and forwarded to a CNN with two branches, which jointly
predict confidence maps. Then, part affinity fields (a set of 2D vectors encoding location
and orientation) are derived. Using these data, the model creates sets of bipartite matching
that are used to associate body part candidates. The last step is assembling full-body
poses for each member of the group. A visual representation is available in Figure 3.4.

Figure 3.4: Pipeline of the OpenPose human pose detection starting from an image [33]:
"Overall pipeline. (a) Our method takes the entire image as the input for a CNN to jointly
predict (b) confidence maps for body part detection and (c) PAFs for part association. (d)
The parsing step performs a set of bipartite matchings to associate body part candidates.
(e) We finally assemble them into full body poses for all people in the image."

The 3D estimation is conducted not only from a software perspective, but also from
the standpoint of the hardware department. Depth cameras have been suggested as an
important solution. This type of camera contains a sensor which is capable of detecting
both depth and color. The Microsoft Kinect, which is a component of the Xbox kit, is
one of the most popular depth cameras on the market. Three hardware components are
critical to the success of the Kinect: an RGB color VGA video camera, a depth sensor,
and a multi-array microphone array. The video has a resolution of 640x480 pixels and
a frame rate of 30 frames per second. A depth additional dataset derived from such a
camera can greatly improve the 3D Human Pose Estimation algorithm [34].

3.3.1 Examples of skeleton-based HAR
Pose Refinement Graph Convolutional Network for Skeleton-Based Action-
Recognition [35]: the authors proposed a model for skeleton-based action recognition
that gradually fuses position and motion information. The pose refinement module reduces
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the impact of pose estimation errors and further improves the accuracy at a small increase
of computational cost. The network corrects pose estimation errors of the input sequence,
and then uses an action flow branch and a temporal aggregation branch to generate a
final prediction. An example of the pipeline is available in Figure 3.5

Figure 3.5: Pipeline of the Pose Refinement Graph Convolutional Network [35]: "Pose
Refinement Graph Convolutional Network. The input skeleton sequences are first passed
through a pose refinement module to reduce the impact of errors in the skeleton data.
Then the refined skeleton sequences are fed into the gradual fusion module consisting
of a motion-flow-branch and a position-flow-branch for fusing position and motion infor-
mation. The position flow aggregates spatial information of skeleton joints at each time
step whereas the motion flow captures the long-range temporal dependencies. Finally,
the temporal aggregation module aggregates the information over time and predicts the
action class probabilities."

An Attention Enhanced Graph Convolutional LSTM Network for Skeleton-
Based Action Recognition [36]: the proposed AGC-LSTM network uses a shared
LSTM to dispel scale variance between spatial and temporal features. It also uses attention
mechanisms to enhance the features of key nodes at each time step, which can promote
AGC-LSTM to learn more discriminative features. The model is based on a combination
of graph and recurrent neural network, and it can be used to detect and recognize human-
object interactions in images and videos.

A Human Activity Recognition System Using Skeleton Data from RGBD Sen-
sors [37]: The proposed activity recognition algorithm starts with a set of skeleton joints
and computes a vector of features for each activity. The authors find that many features
are able to be extracted from the skeleton data representing the input to the algorithm.
These features can be extracted by joint locations or from their distances, considering
spatial information. A set of N feature vectors is created with a human activity consti-
tuted by N frames. In order to achieve the activity recognition goal, it is used a clustering
algorithm that groups the feature vectors into clusters and gives the centroids of each
cluster. Refer to Figure 3.6 for a scheme of the pipeline applied. The clustering algorithm
used in this work selects the most informative postures from each sequence, instead of
finding the nearest neighbor key pose for each frame constituting the sequence.
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Figure 3.6: Scheme of HAR [37]: "The general scheme of the activity recognition algorithm
is composed of 4 steps. In the first step, the posture feature vectors are computed for each
skeleton frame; then the postures are selected and an activity features vector is created.
Finally, a multi-class SVM is exploited for classification."

Action Recognition Using Attention-Joints Graph Convolutional Neural Net-
works [38]: the model faced the task of action recognition from skeleton images using
attention-joints and a graph convolutional neural network. The process, represented in
Figure 3.7, is the following. A residual attention network emphasizes the most relevant re-
gions in an RGB-image, minimizing the number of network parameters. The human skele-
ton can be represented as a single feature vector or a spatial-temporal graph. According to
the connectivity of the human body structure, joints in one frame are connected via edges
to form an undirected graph. For each node, a set of features is defined: the nodes labeling
procedure includes three types of features, dCoG, dAN, and flow features, namely OFF.
dCoG is defined as the distances from the center of the body to the attention-joints, and
dAN is defined as distances between neighboring attention-joints. The joint-flow (OFF)
of an attention-node is computed in three levels: firstly for joints between two consecutive
frames, then for joints between current frame and third-last frame, and lastly for joints
between current frame and fifth-last frame. The classification is then achieved by using a
geometric graph-based convolutional neural network; the joints within a single frame are
represented as an adjacency matrix and self-connections as an identity matrix, and these
data are passed through the network.
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Figure 3.7: Schematic representation of the proposed network in [38]: "Block diagram of
our proposed attention-joints graph convolutional neural network. Attention network is
utilized to extract attention-joints of input skeleton. Then only the features associated
with attention-joints are fed into graph convolutional network for classification."
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Chapter 4

Graph Neural Networks

4.1 Graph Theory

To model the interconnection pattern in a network, mathematicians invented the concept
of a graph. Let us emphasize three key aspects that are captured by the concept of graph:

• set of nodes V , representing the units that constitute the network. The node is
the base element of a graph, and it is a simple unit that can represent complex
structures. For example, nodes can represent people, locations, and every kind of
entities. In certain cases, it is possible to associate to each node some features, and
to have another matrix that links each node to its related features.

• set of edges E , pairwise connections among nodes where each e = (i, j) is an ordered
pair indicating an existing link going from node i to node j, having i, j ∈ V

• an eventual weights matrix W , where each element is a positive scalar which repre-
sents the weight of a specific link, the strength of the connection. If W contains all
ones, the graph is named unweighted and the definition of W can be omitted.

A graph can be represented by using the Adjacency Matrix: in this matrix, the nodes of
the graph have been represented as row and column indices and are characterized by the
fact that the elements (i, j) of the matrix can only assume value Wij or 0; if the graph
does not contain self-loops, the elements of the main diagonal are always zeros. From this
matrix it is easy to retrieve the degree Deg of a node i; it is the number of edges connected
to the node and, in terms of the adjacency matrix A, it corresponds to Deg(i) =

q
j Ai,j,

with

Aij =
I

1 ∀i /= j|(i, j) ∈ E ,

0 ∀i = j ∨ i /= j|(i, j) /∈ E .
(4.1)

Another important and common representation is the node-link incidence matrix B of a
graph G; it is defined as in Eq.4.2 and represents, for each edge in the graph, its starting

33



Graph Neural Networks

and ending point.

Bie =


+1 e = (i, j) for some j /= i,

−1 e = (j, i) for some j /= i,

0 e = (i, i) or e = (j, k) for some j /= i, k /= i.

(4.2)

Even if the concept of an edge is intrinsically ordered, there are applications in which
this concept loses its utility. It is the situation in which every kind of relationship is
automatically bidirectional, having the same strength (or weight) in both directions. In
this case, we have that link (i, j) and link (j, i) are always present with Wi,j always equal
to Wj,i. In this case, the graph is called undirected. When a graph is unweighted and
undirected, it is called a simple graph.

x1

x2

x3

x4

(a) Undirected Graph

x1

x2

x3

x4

25

1 2

(b) Directed Graph

Figure 4.1: [Left] Simple graph. [Right] Directed, weighted graph

Let’s define, for a given graph G = (V , E ,W), the notions of neighborhood, defined as
the set of nodes Ni that are directly linked to node i, as defined in Eq.4.3. The concept
of neighborhood can also be split, for directed graphs, into in-neighborhood N+

i (for links
from other nodes to i) and out-neighborhood N−

i (vice-versa)

Ni = j ∈ V|(i, j) ∈ E (4.3)

In a graph it is possible to define, given two nodes, the concept of reachability; let’s
define the walk from node i to node j as a finite or infinite string of nodes such that there
is a link between every to consecutive nodes and the string starts in i and finishes in j.
Then, a node i is said to be reachable from j is there exist a sequence among them.

The concept of centrality is very important in graph analysis for identifying the im-
portance of nodes within a graph. Basically, the goal is to determine how important a
node is in the context of the graph in which it is embedded; since centrality is a relative
concept, it is not surprising that there are a variety of definitions for centrality. Various
approaches or metrics can be used to define centrality; each one defines a node’s impor-
tance from a different point of view and offers relevant analytical information about the
graph. The simplest notion is the degree centrality, that defines the centrality Ci of node
i as expressed in Eq.4.4

Ci =
Ø

j

1 ∀j ∈ N+
i (4.4)
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Reachability and centrality of nodes are fundamental in the study of flow evolution in
graphs. In general, arcs in a network can be interpreted as channels through which goods
flow. Goods can be, based on the applications, the number of cars on a road, or the
amount of oil flowing in a pipeline and, in general, any measurable quantity. They can
represent absolute values or relative values. There is a large number of real problems, in a
wide variety of domains, which are effectively modelled as flow problems, from production
scheduling to opinion dynamics. Studying how the flow evolves and is transmitted along
the graph is a field of graph theory.

4.2 GNNs
In the real world, objects are often defined in terms of their mutual relationships. The
connections between objects, and the objects themselves, can be expressed naturally as
graphs. When used as a representation model for complex structures, graphs have the ad-
vantage of taking into account only relative information between the objects the represent.
The graph network representation allows modelling topologically complex structures, of
arbitrary size and eventually having a dynamic. A graph is inherently invariant with
respect to changes in the absolute position of nodes: there is not a fixed node ordering or
reference point, as it is possible to highlight in Figure 4.2 in which (a) and (b) represents
an isomorphism of graphs. From there it is possible to notice that it is impossible to
determine unambiguously a representation of a graph as a features vectors, because all
the three proposal in the Figure 4.2(c) are equivalent from the graph perspective, but are
not equivalent if for example we want to apply a KNN algorithm.

x1

x2

x3

x4x5

(a)

x1

x2

x3

x4x5

(b)

x1 x2 x3 x4 x5

x3 x1 x2 x4 x5

x1 x4 x2 x5 x3

(c)

Figure 4.2: Two isomorphic graphs (a), (b), that are two graphs having the sane number
of vertices, edges and also the same connectivity but different structures. In (c) there are
three possible vector representation of nodes of graph (a)

Because of that particular structure, classical models from Machine and Deep Learning
can’t be applied to graph networks. Let us analyze in more details the reason: first, clas-
sical machine learning and deep learning rely on a concept of order that is not applicable
here. Second, classical models need to have as input a fixed-sized representation of the
image, but this is not applicable when we talk about graph-structured data. Third, in
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graphs generally there is nothing such as a grid structure, that is for example the basic
requirement for Convolutional Neural Networks to work. Given such a described struc-
ture for representing entities, we can be interested in performing different kind of tasks:
node predictions, edge predictions, graph classification are examples of them. Starting
from these points, it is clear that we need a new suitable way for analyzing graph data;
this is called representation learning. Such problem has been approached in 2008, when
the Graph Neural Network framework [39] has been proposed for the first time. Using
all the information from the graph, including the node features and the connections, the
GNN outputs new representations, or encoding, for each node and edge of the graph it-
self. In order to do so, one aims to map the nodes to a d-dimensional embedding space
(low-dimensional space rather than the actual dimension of the graph), whereby similar
nodes in the graph have similar embedding vectors in the new space. Embeddings contain
information about other nodes in the graph in the form of structural and functional in-
formation. It encodes information about other node’s features, connections, and context
within the graph. The embeddings are then used to perform predictions. Each node, at
each step, is influenced by the whole neighborhood Ni.

Looking at Figure 4.3, taken from [40], we have a representation of a convolutional
layer in a structured entity: the convolution on images is about striding a learnable kernel
on a regular structure, which extracts the most important information. But the concept

Figure 4.3: [Left]: Convolution on an image. [Right]: Convolution on a graph

of convolution can also be seen as combining all the information in a local area by using
neighborhood data. In fact, on the right of Figure 4.3, it is shown a convolution on graphs;
the idea of neighborhood is stressed, and we can see how the embedding is a function of
the Ni. The embedding process is applied simultaneously for all nodes at each step. This
sharing mechanism is also called message passing, because the states can be seen as many
messages passing backward and forward between the adjacent nodes.

Using the GNN, the number of layers is what determines how many neighbor hops we
perform: this number is a hyper-parameter based on the graph structure. Small graphs
can be learned using smaller GNNs, while bigger graphs can require more hops to include
in the embedding all the relevant information. As in CNNs, just stacking as many layers
as possible is not a good idea: in fact, it can lead to over-smoothing, which is the condition
in which all the nodes are converging to the same value.
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4.2.1 The message passing layer
The message passing layers are the core building blocks of GNNs and are those responsible
for combining the node and edge information, together with graph structural information,
in order to create the embedded values.

In order to do that, it is necessary to define a function that describes how relationships
in the embedded space are related to relationships in the original features space. In other
words, we need to learn a function f : S → S ′, as represented in Figure 4.4, that takes the
graph and gives embeddings of individual nodes. Looking at those two embeddings, and
having a similarity function sim(a, b), that can be for example the euclidean distance, we
want to define the embedding function such that sim(x1, x2) ≈ sim(y1, y2)

S S ′

x1

x2

y2

y1

Figure 4.4: Mapping function from the original graph space S to the embedding space S ′

The embedding is obtained by combining an updating step and an aggregating one, as
it is shown is Eq.4.5. These two steps needs to be differentiable functions, in order to allow
error back-propagation that lead the network to learn the desired function. The pipeline
for the graph encoding procedure corresponds to the Eq.4.5. Each node creates its own
message starting from the embedding obtained at the previous layer (in the first step, it
corresponds to the embedding); then, a computation graph is generated for the node in
analysis by taking all the neighbors; for each of these, the "message" is prepared, i.e. a
transformation is applied to their feature vectors. Then it is performed the aggregation of
the messages of all the neighbours. Finally, the updating function is called to revise the
current state of the node; this is done by using together the current node state vector and
the result of the aggregation of the neighbours’ messages. The basic aggregating function
consists in averaging information from the neighbors, so that the function AGGREGATE(k)

in Eq.4.5 became as described in Eq.4.7, where hk
u is the previous layer’s embeddings. For

the message creation point of view, instead, the basic MSG(k) function is a linear layer with
its own weights, and it is described in Eq.4.6.

h(k+1)
u = UPDATE(k)(h(k)

u , AGGREGATE(k)(MSG(h(k)
v ),∀v ∈ N (u))) (4.5)

MSG(k)(h(k)
v ) = W (k−1) ∗ h(k−1)

v (4.6)

AGGREGATE(k)(N (u)) =
Ø

v∈Nu

hk
v

|N (u)| (4.7)
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The UPDATE(k) function, instead, can be any kind of layer, from a simple linear layer to
a more complex CNN. It takes as input the embedding vector of a node and updated it.
So it takes as input the whole set of nodes V and returns an updated version V ′. When
it is expressed as a linear layer, the updating function takes the form in Eq.4.8, in which
Bk, is a trainable weight matrix and σ(·) is a non-linear function.

UPDATE(k)(uk+1) = σ(h(k)
u + Bk ∗ h(k)

v ) (4.8)

A GNN can be trained in either a supervised, an unsupervised or a semi-supervised
environment.

For the Unsupervised Learning approach, only the graph structure is used, and the
training phase assumes similar nodes will have similar embeddings. As a loss function,
losses similar to those used for clustering in classical machine learning can be used: node
proximity in the graph, or random walks.

The Supervised Learning task can be applied to either Node, Edge or Graph classifi-
cation. It relies on losses like Cross-Entropy and similar. This approach requires to have
labeled data.

In the Semi-Supervised Learning approach we have a mix of the two. Let’s focus on
Node Classification: in this case, part of the nodes in a graph are labelled, and part aren’t,
and we want to use all of them for the training phase.

The general idea of how a Graph Neural Network works has been clarified, but in order
to have a model that is actually usable we need to switch from the just presented form to
the matrix form. Let’s define a matrix containing all the embedding layers at a certain
step k, as H(k) = [h(k

1 , ..., h|V |(k) ]T . Then Eq.4.5 can be expressed in a general, matrix
multiplication based form as is it in Eq.4.9. In this equation, Au is the adjacency matrix
as defined in Eq.4.1. Ø

v∈N (u)

hk
v

|N (u)| = AuH(k) (4.9)

Let D and D−1 be two diagonal matrices, one the inverse of the other, as described in
Eq.4.10 representing the degree of each node.

Du,u = Deg(u) = |N (u)|

D−1
u,u = 1

|N (u)|
(4.10)

This allows to express the message passing model as a matrix multiplication, by the
formula in Eq.4.11.

H(k+1) = D−1AH(k) (4.11)

So, by using the elements defined above, we can rewrite the Eq.4.5 as it is in Eq.4.12, where
we can highlight two distinct terms: the first term represent neighborhood aggregation,
the second one is the self transformation.

H(k+1) = σ(ÃH(k)WT
k + H(k)BT

k ) (4.12)
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4.2.2 Examples of GNN
GNNs have been extensively studied in the literature. It is possible to create new and
different layers, independent of the general one presented here, through the combination of
different message passing algorithms and other aggregation algorithms. Those layers can
concentrate on a variety of aspects and address a wide range of graph network problems.
In this section, let’s present some famous examples of GNNs:

Graph Convolutional Networks : GCNs [41] were introduced as a method for apply-
ing neural networks to graph-structured data. It generalize the operation of convolution
from grid data to graph data. The message-aggregation framework defined is the following:

h(k)
u = σ(

Ø
v∈N (u)

W(k) h
(k−1)
v

|N (u)|) (4.13)

Where:

• The message computation is written as MSG(k)
u = W(k) h

(k−1)
u

|N (v)| , where W(k) is the
matrix that contains the learnable parameters for the training step

• A sum over neighbors is used as AGGREGATE(k)

• σ(·) is a non-linear function used to add some non-linearity to the model, with the
same purpose as in CNNs.

GraphSage Theorised in [42], the GraphSage method addresses the situation where a
graph is not fixed, but takes on a dynamic attitude that leads it to change its structure, or
the situation in which the graph is dense and each node has a very high degree, that makes
the computation as faced in GCNs too much expensive. In GraphSage the aggregation
function is modified and it introduces the concept of neighbor sampling. The layer of
GraphSage is built upon the GCN one, but it allows for different aggregation functions,
not only the sum. Moreover, it also update the aggregate messages from neighbors by
also concatenating the hidden representation of the node itself. The aggregation, shown
in Eq.4.14, can be done by using a pooling layer and by applying γ as the element-wise
mean/max. In this representation, Q is transformation matrix, and it acts as a convolution
operation that corresponds to the convolution in GCNs.

AGGREGATE(k)(N (u)) = γ(Qh(k
v , ∀v ∈ Nu) (4.14)

Graph Attention Networks The GAT layer [43] expands the basic aggregation func-
tion of the GCN layer by adding the concept of attention. It basically means assigning
different importance to each edge through the attention coefficients, based on the impor-
tance we want it to have for the underlined task. It allow the network to learn some
weights αk

ij for each step k and each edge (i, j) ∈ E that are used to weight the factors in
the aggregation phase. The step-by-step process of how the attention weights are trained
and used is described here. First, the layer embedding is linearly transformed as shown
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in Eq.4.15. Then, a pair-wise un-normalized score is computed between each pair of two
neighbors; here, the z

(k)
i refers to the embedding of the ith node at kth step. A softmax

normalization is applied in order to allow reading the result of Eq.4.17 as a probabil-
ity distribution. Finally, Eq.4.18 corresponds to the GCN aggregation and provided the
updated layer.

z
(k)
i = W(k)h

(k)
i (4.15)

eij = σ(a(k)T (z(k)
i ||z

(k)
j ) (4.16)

α
(k)
ij =

exp(e(k)
ij )q

l∈Ni
exp(e(k)

il )
(4.17)

h
(k+1)
i = σ(

Ø
j∈Ni

α
(k)
ij z

(k)
j ) (4.18)

4.2.3 Graph Nets from DeepMind
In [44], a group of researchers from DeepMind presented a new library, called Graph Nets,
to address graph tailored deep learning. The basic element on which the library is built
is the graph networks (GN) block. It is a graph-to-graph module that takes a graph G as
input and, after a set of operations that can be user-defined, retrieves the updated graph
G′. Main entities are graph’s nodes, edges and global attributes. The whole framework
was developed having in mind three key principles: flexible representations, configurable
within-block structure and composable multi-block architectures.

Flexible representations : both in terms of the representation of attributes and the
structure of the graph. With regards to the attributes, it means that there are no limita-
tions in the data structure used: DeepLearning typically relies on vectors and tensors, so
these are clearly supported. But other data structures are also supported. Even from the
viewpoint of output, the data retrieved by the graph block can be customized to meet the
individual user’s needs. Accordingly, when discussing the flexibility of the graph struc-
ture, it is intended that the graph block can handle both graphs with explicit relational
structures, as well as those for which the structure must be inferred from the data itself.

Configurable within-block structure : Graph Networks can be configured in many
different ways, allowing both inputs and outputs to be adapted to the needs of the task.
The functions used for entity updating must refer to a function f(·) that determines
the form of the input and output. Functions of varying complexity can be chosen, from
the simple linear layer to very complex networks such as neural networks with recurrent
structures. On the basis of the type of goal, it is also possible to define different types of
interaction between the various entities. For example, one of the proposed solutions is the
"Independent recurrent block", whereby each entity is updated independently taking into
account only the current and previous state. Another example are the "Deep sets", which,
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being sets, do not foresee the presence of arcs, and therefore the block is constructed in
such a way as to manage the interaction only between nodes and globals.

Composable multi-block architectures : The graph network block, understood as
the union of the updating and aggregation functions, can be interpreted as a layer in a
convolutional network. In fact, once the input and output parameters have been defined,
as long as they remain coherent on various levels, and exactly as in CNNs, it is possible
to create increasingly complex networks through the use of several levels, communicating
with each other. The union of the various layers can be sequential, thus creating a
concatenation in which the output of the layer k becomes the input of the layer k + 1,
simulating the evolution of the process of message-passing along the computational graph
of the single nodes. The layers can be all the same or different, creating for example an
encoder-decoder type structure.

A GN block is made of update functions ϕ and aggregate functions ρ, one for each
entity; the expression is available in Eq.4.19, where u is the global attribute, vi is the
node’s attribute and ek represents edge’s attribute. Each edge is identified by its attribute
and by the pair (rk, sk), that are respectively the receiver (the edge’s arrive node) and the
sender (the edge’s starting node), . We also have that V = {vi}i=1:|V | is the set of nodes,
E = {(ek, rk, sk)}k=1:|E| is the set of edges.

e′
k = ϕe(ek, vrk

, vsk
, u)

v′
i = ϕv(ē′

i, vi, u)
u′ = ϕu(ē′, v̄′, u)

↔
ē′

i = ρe→v(E′
i)

ē′ = ρe→u(E′)
v̄′ = ρv→u(V ′)

(4.19)

When a graph G is provided as input to the GN block, the updating process is called and
the model follows the operations described in Algorithm 1, as described in [44]. Starting
from the edge embeddings, the updating function is applied to all the edges, allowing to
retrieve the updated edges. Then, the new edges are used for the aggregation needed
for updating the nodes. This allows to have the new node attributes, obtained after N
steps that corresponds to N hops in the graph. Having the updated attributes for both
the nodes and the edges, it is now possible to apply the updating function also to the
global attributes. The new graph G′ is then constructed by using updated nodes, edges
and globals.
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Algorithm 1 Steps of computation in a full GN block
function GraphNetwork((E,V, u))

for i ∈ {1...|E|} do
e′

k ← ϕe(ek, vrk
, vsk

, u)
end for
for i ∈ {1...N} do

let E′
i = {(e′

k, rk, sk)}rk=i,k=1:|E|
ē′ ← ρe→v(E′

i)
v′

i ← ϕv(ē′
i, vi, u)

end for
let V ′ = {v′}i=1:|V |
let E′ = {(ek, rk, sk)}k=1:|E|
ē′ ← ρe→u(E′)
v̄′ ← ρv→u(V ′)
u′ ← ϕu(ē′, v̄′, u)
return (E′, V ′, u′)

end function
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Chapter 5

The AVAR Model

Starting from what has been defined in the previous chapters, let us outline the context
in which the project was carried out. Given the intrinsic complexities of the task of
activity recognition, some assumptions were made to simplify the problem, but these do
not detract from the results obtained as generalisation to a more elastic model is still
possible. First of all, it was chosen to work in a domestic environment, specifically inside
a kitchen, in order to exploit the KIT Bimanual Manipulation Dataset created within the
team itself; moreover, given the problems of tracking a single person in a context where
several individuals are present, it was chosen to assume that only the robot and another
person are present in the environment at any given time. As mentioned, this assumption
is not particularly limiting since, especially in the context of robots used for elderly care,
this is the most common scenario. Moreover, by applying facial recognition techniques
that allow the assisted subject to be tracked even within a group of people, the hypothesis
is easily removable. Another hypothesis, which is very reasonable given the context of
application of the project, is that human beings and robots collaborate with each other.
This hypothesis, especially in the analysis of audio data, implies that the human being
does not try to confuse the robot, does not give him deliberately wrong directions and is
aware of the robot’s capabilities and limitations.

The aim of the the Audio Visual Activity Recognition (AVAR) project, as already
mentioned, is to build an activity recognition system that acts in real time and can
therefore be used directly by the robot. For this reason, the development of the project
was carried out in two strands: on the one hand there is the creation and training of the
offline model, with the tuning of the hyperparameters and the evaluation of the results
on the basis of quantitative metrics. On the other hand, the creation of a pipeline that
takes in input, separately, the audio and video data, analyses them in real time using
the previously trained models and finally merges the results of the two in order to have
a single final classification. This chapter will deal with the development of the different
blocks of this pipeline, addressing both its development and offline training and its use in
real time.
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5.1 AVAR Complete Architecture
The data used for real-time HAR comes from two sources, which are the Microsoft Kinect
for video data and microphones for audio data. These sensors are mounted on the head
of the robot. Audio and video sensors operate in different ways. Since the camera records
continuously, it provides a frame for every instant of time; each frame corresponds to the
video recording at that specific moment. Differently, the analysis of audio data is event-
based: input audio to the AVAR model is only sent when the speaker is speaking; this
eliminates unnecessary data processing during those times when no valuable information
can be extracted from the analysis. A temporal representation of how this data is collected
and analysed can be found in Figure 5.1.

Figure 5.1: A temporal representation of how the AVAR model works. It is possible to
distinguish two timelines: the audio line and the video line. In the video line it is possible
to distinguish the fixed-sized recording window and the analysis time for the Vision Model.
The audio line, being event-based, is triggered whenever the human being speaks; here,
audio data are collected and passed to the Audio Model. Once the analysis of the visual
data finished, if there is also audio data, the two results are merged in the Fusion Model
and the result is the final classification.

Let us take a closer look at the timeline of video data, that corresponds to the lower
segment in Figure 5.1. The idea of segmenting time by identifying when one activity ends
and another begins is not a trivial task, often even for a human. Because of that, and since
the entire project was designed with the lightness and simplicity of the model in mind, it
was decided to pursue a simpler solution that still assures the goal to be achieved, even if
with possibly less accurate results. Keeping in mind that the primary goal of the project is
activity recognition and not primitive recognition, our interest is in a long time window for
each instance: in fact, an activity takes place in the order of seconds. Therefore, the loss
of a few milliseconds of video does not imply a significant loss of information that could
invalidate the analysis. The point can be illustrated using an example of "sweeping" as
the activity to be recognized: on a video of several seconds, even if the first milliseconds
are lost, it is still possible to detect the performed activity from the rest of the video.
Given these assumptions, the approach chosen for the segmentation of a single stream of
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video data into various actions is the following: given a value Dv which corresponds to the
temporal dimension of the analysis window, we record up until the time of t0 + Dv; then,
the recording stops and the data are sent for analysis to AVAR. After AVAR returns the
classification result, the process that collects the data restarts recording, which, in turn,
goes from t0 + Dv + tv to t0 + 2Dv + tv, where tv is the processing time for the visual
model and corresponds approximately to some milliseconds (further analysis on that are
available in Table 6.1. In Figure 5.1, the Dv corresponds to the yellow segment and the
tv to the red one. For simplicity, in this thesis the model that analyzed the visual data,
namely the OpenPose skeleton, will be referenced as Visual Model and, correspondingly,
the output from this model will be called Visual Output, but the reader should keep in
mind that the output is a probability vector. The same approach will be followed also for
the model that analyzes the audio data, called Audio Model and its output Audio Output.

When we examine the audio data, which is represented by the top segment in the
figure, we can see that its arrival is not synchronous. Again, however, we have a recording
time, which in this case is variable and corresponds to Da, and a processing time for the
audio model, ta. In Figure 5.1, Da in the represented in blue and ta in orange.

Once the results of the visual model and, if any, the audio model are obtained, the
two results are greased by the Fusion model, which applies a linear transformation to the
sum of the two models by applying learned weights. In order to use the model in the way
described, we require the three models (audio, video, and fusion) to be offline trained and
then tailored for be used online. We will analyze separately, in the following paragraphs,
the way in which each of the three models has been built and trained.

5.2 AVAR Visual Model

5.2.1 The Visual Dataset
To perform GNN training on visual data, the KIT Bimanual Manipulation Dataset [45]
was used. The dataset was recorded to address the problem of recognizing actions per-
formed by hands simultaneously. At this juncture, 2 different subjects performing 12
different activities while standing behind a table were considered. The dataset is designed
for a finer granularity than task recognition, but nevertheless also provides indications
of tasks performed at a higher granularity, such as sweeping, pouring and the like. For
each record, therefore, both activity classification and sub-classification into actions are
available. The 12 recorded actions are not present in the dataset in a balanced number.
Below is the distribution of the number of instances across the various classes: Scoop:
256, Pour : 193, Transfer : 154, Sweep: 143, Cut: 134, Wipe: 128, Stir : 126, Close: 78,
Roll: 67, Mix : 42, Peel: 42, Open: 42. Furthermore, it should be noted that some classes,
such as Close, Open or Scoop do not fit completely into the defined scenario: in fact, they
are carried out mainly using the hands, without involving the whole body as would be
necessary for an action. For this reason, the 25-joint representation is not very suitable
to classify them: the network remains confused by the stationary joints and is unable to
generalize. This cannot be seen as a problem of the network, but as a poor fit of the
dataset to the task. For this reason, it was decided in the design phase to reduce the
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dataset to those classes that can actually be considered tasks, or at least involve a larger
number of body parts. The selection of the classes to be kept was made in a qualitative
way by analyzing which classes the network tended to confuse the most and noting that
they were indeed those with the characteristics described so far. In the end a dataset
having num_classes = 7 was kept; the selected classes are the following: Sweep, Wipe,
Cut, Stir, Roll, Mix, Peel.

Even in the reduced dataset there is still an imbalance of classes. To solve this problem,
a data augmentation model was developed, which creates new instances from existing ones.
Let us analyze how this process worked.

Data Augmentation First of all, for each class is estimated the normal distribution
of the position of the joint corresponding to the nose. From this, is obtained a list of
num_classes distribution probabilities such that Nj(µj , σj),∀j ∈ (1,25). Secondly, a list
of thresholds T is defined, such that ti,∀i ∈ (0, num_classes. The threshold was defined
to be proportional to the number of elements present in the class itself. Thirdly, the data
augmentation is performed for each element in the dataset as follows:

• given the element k, a probability pk is sampled from a uniform distribution.

• from the list of thresholds T , the ti corresponding to the class of the elements k is
taken, namely ti(k).

• if pk ≥ ti(k) then the new instance is generate by translating the human body pose
in the camera frame of a value ∆ along each axis. The value ∆ = [∆x, ∆y, ∆z] is
defined as the distance, on each axis, between the coordinates of the nose in k and
the coordinates of the nose in an element extracted from the normal distribution
defined above.

5.2.2 The Visual Pipeline: An Overview
The part of AVAR that deals with the analysis of visual data can be represented by
means of a pipeline that, roughly speaking, consists of three blocks: pose refinement,
feature extraction and classification using GNNs. Thus, the input data to this pipeline
are the frames containing the skeleton data, while the output is a probability vector of
size num_classes, where each element represents the probability that the corresponding
activity is performed in those frames. Let us analyse each of the three blocks in detail.

5.2.3 Pose refinement
Given the frames recorded by the camera, the first step is to extract the human skeleton
of the subject to be tracked. The Kinect records at a rate of 30 frames per second. Given
a recording time window Dv sec, this means that for each analyzed window we would have
in input to the AVAR model Dv ∗ 30 frames. From each of these, using OpenPose, we
obtain for each frame a skeleton like the one in Figure 5.1, with 25 joints. It is obvious
that, although OpenPose is a very accurate model and it is the state of the art, it is not
yet perfect. In addition to some instability in the temporal evolution, another issue is that
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Figure 5.2: A diagram illustrating the visual data analysis pipeline. This model takes as
input the frames corresponding to the video; first, OpenPose is applied to each of these
frames to extract the human poses. Then, it performs a post-processing step of filtering
and smoothing. Next, the data is embedded in a graph and sent to a model that returns
a classification result.

Node Name
0 Nose
1 Mid shoulder
2, 5 Shoulder
3, 6 Elbow
4, 7 Hand
8 Mid Hip
9, 12 Hip
10, 13 Knee
11, 14 Ankle
21, 24 Heel
22, 19 Big toe
23, 20 Small toe
15, 16 Eye
17, 18 Ear
25 Background

Table 5.1: Locations of 25 body key-points extracted from OpenPose and the used map-
ping between numbers in the image and body parts names

it often detects non-existent skeletons, although with low confidence, in random parts of
the image. In order to address this problem, a post-processing technique is applied to
the OpenPose result. This technique, through the application of a filter and a smoothing
function, enhances the stability of the extracted poses. Here is a more detailed explanation
of the two functions.

Filtering The problem of OpenPose detecting not-existing skeletons in the image is rep-
resented in Figure 5.3. The filtering method is intended to determine, from the possible
various skeletons that OpenPose finds in the input image, the one that actually belongs
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to the subject of interest. In order to accomplish this, the skeleton with the maximum
confidence value of min_conf is taken from each frame. min_conf is defined as the mini-
mum confidence of all 25 joints. The function, described in Algorithm 2, takes as input a
list of poses and returns the selected single pose.

Algorithm 2 Filtering on the OpenPose results
function Filtering(S)

selected← None
conf_selected← 0
for s ∈ S do ▷ S: set of extracted skeletons

min_conf← 0
for j ∈ Js do ▷ Js: set of 25-joints of skeleton s

if conf(j) ≤ min_conf then
min_conf← conf(j)

end if
end for
if min_conf ≥ conf_selected then

selected← j
conf_selected← min_conf

end if
end for
return selected

end function

Smoothing Smoothing prevents stuttering during pose transitions between adjacent
frames. In fact even with an unaided eye it is apparent that joints can jump from one
position to another between one frame and the next. For this reason, we smoothed the
position using the algorithm described in the Algorithm 3. The smoothing is made over
a sliding window of N frames, and it returns, for each joint, the average position and
confidence among the window. The model also addressed those situations in which a joint
is missing for a specific frame, that can be because of OpenPose mistakes, and it downs
its confidence by averaging for the total number of frames N .

5.2.4 Features extraction
In the training phase of the visual model, one needs the shape of the data to be consistent
with that of real time use. For this reason, the same post-processing techniques explained
for the OpenPose outputs in real time were also applied to the training dataset.

Given then, for each instance, the set of filtered and smoothed poses, we need to apply
feature engineering techniques in order to create the data that will then be passed to the
classification model. For each set of filtered and smoothed pose data, we will apply feature
engineering techniques in order to produce the data that will be passed to the classification
model. Recall that for this project we chose to use GNNs, which, as discussed in Chapter
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Algorithm 3 Smoothing on the OpenPose results
function Smoothing(s1, ...sN ) ▷ si: i-th skeleton in a window of N frames

smoothed← None
conf_smoothed← 0
for j ← 0 to 25 do ▷ Js: set of 25-joints of skeleton s

new_pos← 0; new_conf← 0;
cnt_joint← 0
for i← 1 to N do

if exists(si[j]) then
cnt_joint← cnt_joint + 1
new_pos ← new_pos + si[j].pos
new_conf ← new_conf + si[j].conf

end if
end for
smoothed[j] ← new_pos

cnt_joint

conf_smoothed[j] ← new_conf
N

end for
return smoothed, conf_smoothed

end function
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(a) (b)

(c) (d)

Figure 5.3: Four examples of real-time use of OpenPose in which there are fake skeletons
in random part of the image. In Figure (a) it is possible to see a skleton in the bottle on
the right. In Figure (b) a fake skeleton in the the bottle on the table. In Figure (c) two
fake skeleton are detected, one in the chair and the other in the table. In Figure (d) a
fake skeleton in drawn in the wall pill in the left.

4, are well suited to represent human pose information. It is essential that both spatial
and temporal information be included in the graph used as input to the network. In fact,
it is necessary to consider both these two elements while classifying the performed action:
not only the instantaneous pose, but also how it evolves over time. The data is therefore
represented as a graph structure composed of nodes, edges and global values. Detailed
discussion of the three entities will follow.

Nodes A graph is composed primarily of nodes. Each pose joint corresponds to a node
of the graph. A vector of features is associated with each node, which will be used by the
model to distinguish among the various activities. A node from OpenPose is associated
with a timestamp and x, y, z coordinates corresponding to its position in the frame of
the camera. From the instantaneous position and time, it is quite natural to derive the
concept of velocity, which we remember being defined as the rate at which the position
changes. In Eq.5.1, we can see that for a given timestamp, the velocity can be computed
as function of the changes in point position from the previous stamp to the actual one.

v(t1) = x(t1)− x(t0)
t1 − t0

(5.1)
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Based on these data, we define a vector of features, represented in Figure 5.4, associated
with each node.

x y z vb
x vb

y vb
z vj

x vj
y vj

z

position body velocity joint velocity

Figure 5.4: Representation of the features vector that characterizes each node in the graph
structure used for embedding the video data

As clear from the figure, it is possible to split the features into three groups. Let us
analyze them:

• Position: these three elements are the coordinates obtained via OpenPose in the
camera frame.

• Body velocity: it represents the change in position in the body with respect to its
central axis, intended as the line dividing the body vertically into equal right and
left haves. The aim is to identify those movements, such as walking, that generate a
velocity on all joints of the body.

• Joint velocity: is the difference between the total velocity of a joint and the velocity
of the body in the same direction. It identifies single movements of the joint, such
as lifting a hand to demand attention.

Edges : they are used to describe relationships between nodes. Within this context,
there are two types of relationships: temporal and spatial. As there is no need to include
other types of information within the edges, it was decided to incorporate them as a binary
channel. This would guide the learning process by indicating the type of relation existing
between two nodes. Therefore, the existing edges are: from a temporal perspective, the
connection between the same joint at the previous and subsequent time snapshots of
the analysis; from a spatial perspective, the physical links between various joints seen in
Figure 5.1.

Globals : considering activity recognition is a classification at graph level, the globals
that we are using should reflect the ground truth of our analysis. Therefore, for each
graph it will be initialised as a vector of size num_classes, which represents the one-hot
encoding of the activity actually performed.

5.2.5 Classification
The graph constituted as described so far is used as input to a classification model, which
aims to learn to distinguish between one class and another. The model used to achieve
this goal, represented in Figure 5.5, includes three components. Let’s analyze each of
them.
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Figure 5.5: The GNN used for analyzing the visual data. It is an encode-process-decode
model: it takes as input a graph, maps it into a latent space by using the encoder module,
then applies m message-passing steps and finally return the output by decoding the graph
at the m-th step.

Encoder An encoder graph network, which independently encodes edge, node and
global attributes. Independently in the sense that each of the three encoding is cre-
ated independently without considering the relationships between elements. The encoder
is based on the GraphIndipendent model from GraphNets [44], that acts as follows:

encoding(e) = f e(e)
encoding(v) = fv(v)
encoding(u) = fu(u)

(5.2)

The Encoder function is applied to nodes and globals in order to expand the feature space
by the f : Rd → Rd′ . As represented in Figure 5.4, in fact, the space of the nodes is
dn = 9; by encoding it, we want to map these into a latent space of dimension d′

n > dn.
The global space, on the other hand, is dg = num_classes; this too is mapped to d′

g > dg.
For edges, however, the situation is different. As previously explained, the edges in

the graph under analysis can only take on two values, namely (0,1) if the given relation
is spatial and (1,0) if it is temporal. Precisely because of this intrinsic characteristic of
binary channels, during the entire process it is necessary that their value never changes:
a temporal (or spatial) edge must always and only indicate this specific characteristic. So
in this project the function f e is not used. The specific functions used for the node and
globals encoding are discussed in Section 5.5.

Core A Core network of graphs, which performs N rounds of processing (message-
passing) steps. The input of the Core is the concatenation of the output of the Encoder
and the previous output of the Core (labelled hereafter as Hidden(t), where t is the
processing step). This is the real fulcrum of the GNN, as the output of the Core will be
dependent not only on the input, but above all, on the inter-current relations among the
different entities.

As mentioned, the Core function is applied several times: the m hyper-parameter
defining the number of steps is strongly related to the structure of the graph. It represents
how far each node will "look" in updating its features: a value of m = 1 indicates that
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each node is only affected by its direct neighbours, while higher values add jumps in the
graph.

The block used for the core is a modified version of the Full GN Block presented in
Figure 5.6. As can be seen, the original block applies all the functions ϕ and ρ described
in Eq.4.19. Since, as described for the encoder, for this project it has been decided to

Figure 5.6: The full GN block as described in [44]: is shows how both the updating and the
aggregating functions are performed among the three entities nodes, edges and globals.

keep the features of the edges fixed, this means that the function ϕe is a linear function
that does not depend neither on v nor on u. The updating functions may be of various
types; aggregation, on the other hand, is used by nodes and globals to aggregate nodes
and edges. In Graph Nets, two functions are suggested: a sum function and an average
function. Further details about the results and the impact the choice has to the model
performances are available in Section 5.5.

Decoder A network of decoder graphs, which independently decodes the edge, node and
global attributes (it does not calculate the relations, etc.), at each message step. Again, as
with encoding, the three entities are analysed separately and mapped in the output space.
The applied functions are consistent with those in Eq.5.2, but in this case the dimension
of dn and dg depends on the output dimension of the Core layer. Decoding is applied to
each of the m steps, but only the last of these will actually be passed to the final dense
layer to extract the probabilities to be used in the classification. The same functions can
be used for the decoding function as for encoding, as long as they are followed by a final
layer that remaps everything in the final result space. In the case of the project under
analysis, since it is a graph classification problem, the final space will be a vector of globals
of dimension num_classes.

5.2.6 Implementation Details
Both the encoding of the encoder block, the encoding of the decoder block and also the
embedding function of the central block require features to be mapped from one space to
another. Thus, although different in size, the same type of network can be used as an
implementation for both. Several combinations of networks have been explored in this

53



The AVAR Model

thesis; we define the basic structures in this section, then in the 5.5 section we will study
the results obtained with each of the combinations. The two models that were utilized in
this thesis were a Normalized Multilayer Perceptron and a Convolutional Neural Network
for tabular data. Let us examine them in more detail.

The Normalized Multilayer Perceptron (NMLP)

Multilayer Perceptrons, represented in Figure 5.7 are a class of feed-forward artificial neu-
ral networks that consist of more than one perceptron. The feed-forward neural network
is an artificial neural network constructed without internal recurrence, that is, where in-
formation travels directly from the input layer to the output layer. The perceptron is a
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Figure 5.7: A representation of Mulilayer Perceptron; it has n input units and k output
units and the learning process in made by using 2 layers and m neurons

basic unit for a neural net. It produces a weighted linear combination of input, weights
and biases, though the function defined in Eq.5.3. The aim is to obtain a separation
of hyper planes that divides the classes through the learning of opportune weights and
biases. Therefore, by combining different perceptrons and using activation functions in
order to enable learning nonlinear models, the MLP is obtained.

f(x) = σ(⟨w, x⟩+ b) (5.3)

The common activation function historically has been a sigmoid, but in recent develop-
ments of deep learning the rectifier linear unit (ReLU) is more frequently used, and it is
also the function used in this thesis. It is defined as ReLu(x) = x+ = max(x,0). In order
to construct the MLP, you need to specify both the number of layers and the number of
neurons per layer. Additionally, in the version implemented for the thesis, a normalization
function is applied after each layer. The chosen function is a technique known as batch
normalization [46]. Using the distribution of inputs to each neuron, a mean and variance
are calculated, which are then used to normalize the input to that neuron on each training
trial.
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The CNN for Tabular Data (TabCNN)

Many Computer vision problems are nowadays most commonly addressed with CNNs
[47]. The effectiveness of CNNs on image and video data arises from the fact that they
consider the spatial structure of the data, capturing spatially local input patterns. Due
to the way convolution occurs, the image can be analyzed by extracting features that
will then be combined with others in subsequent layers, exploiting local connectivity and
spatial locality. Because spatial locality determines that the points where the convolution
kernels are applied are highly correlated, processing them together permits meaningful
feature representations to be extracted. Local connectivity means that each kernel is
connected to a small region of the input image when convolution is performed. In this,
CNNs have demonstrated an incredible learning ability.

However, when it comes to tabular data, which is a very common type of data, this
concept of spatial locality and local connectivity is missing. The use of this powerful
structure, however, is tempting, and some researchers have recently proposed solutions to
circumvent the problem, such as transforming tabular data into something like an image,
so that the convolution [48] can be applied. The work done in this thesis is similar. The
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Figure 5.8: A representation of how the Convolutional Neural Network for Tabular Data
works. The input is passed as vector, it is expanded by using N1 Dense layers, each
followed by its activation function. Then, the obtained vector is reshaped and passed
through N2 convolutional layer followed by pooling layers. The result is flatted and, by
using N3 Dense + Activation function layers, it is reduced to the needed output dimension.

model is presented in Figure 5.8, and it shows how we break the problem down into two
parts: starting from the tabular data, an expansion of the features is created through a
concatenation of dense layers. These layers are then reorganised to take a matrix form.
The matrix is then treated as a normal input to a CNN. The internal CNN constructed
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for this task is quite simple: 3 convolutions, interspersed with normalization, activation
function and dropout.

5.3 AVAR Audio Model

5.3.1 NLP Introduction
The aim of natural language processing (NLP) is to provide computers with the ability
to understand text and spoken words in the same way as humans. A non-exhaustive
list of NLP applications is as follows: sentiment analysis, text categorisation, machine
translation, question answering, topic modelling, text summarization. Texts can be anal-
ysed at various granularity, depending on the basic entity chosen (characters, n-grams,
words, sentences, and so on). Usually, NLP projects consist of several steps. If the data
is provided in the form of audio, the first thing that is done is the transcription into
text. After that, pre-processing is applied to clean the data. Among the most common
pre-processing steps are the removal of stop words (very common words that do not carry
any information), the tokenization step (which divides raw-text into sub-units) stemming
or lemmatization (which aim to return each word to its basic form) and Part-Of-Speech
tagging, which annotates the test by indicating for each unit its role in the sentence.

Once the clean text has been created, several techniques have been developed to achieve
the set task. One of these involves the creation of lexical chains that analyse the rela-
tionships between textual units; in this way, a text can be represented by a hierarchical
structure [49] [50]. Another involves the creation of embedding vectors for each unit; using
this approach, each word can be represented numerically, allowing it to be analysed by a
machine.

5.3.2 The Audio Pipeline: An Overview
The audio data stream, unlike the video data stream, is not continuous. The approach
chosen is an event-based model that triggers the sending of data only when it is actually
present. Given the purpose of the project, working directly with the audio data to carry
out the classification would not be productive; it was therefore preferred to carry out an
intermediate step of transcribing the audio data into text. This allows the classification
problem to be tackled using Natural Language Processing (NLP) techniques. In the NLP
field, the present problem turns out to be text categorization: it consists in assigning a
label to a text, it is a supervised process and can be solved both with deep NLP techniques
and with NLP rules. A representation of the steps in the audio analysis pipeline can be
found in the Figure 5.9. There are two blocks representing the textual analysis: "Root
Extraction" and "Classification".

5.3.3 Root Extraction
In the context of this project, it can be assumed that the sentences arriving as audio input
are short, simple and direct sentences. We can assume that it is not in the context of
this thesis that the human make use of complex, misleading or contradictory sentences.
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Figure 5.9: A diagram illustrating the audio data analysis pipeline. This model takes
as input the recorded audio; first, a speech-to-test model is applied that transcribes the
audio data in a textual form. Then, from the dependency tagging it is extracted the root
of the sentence. Finally, the root is used for the classification and the model provides as
output the probabilities for each class.

Based on this, each sentence is expected to consist of a main verb, subject and object.
This means that it is plausible to expect a sentence like "I am going to sweep the kitchen",
whereas sentences like "Yesterday my daughter found a ring while sweeping the kitchen"
would not be in the context.

A computationally simple way of analysing sentences of the type specified involves
creating the structure of hierarchical dependencies between the various words. The root
of this structure will be the main verb in the sentence, that is, the heart of the sentence
itself. The creation of the hierarchy is called dependency parsing, in NLP. The task of de-
pendency parsing involves extracting a dependency parse from a sentence that represents
its grammatical structure and identifies the relationship between "head" words and words
that modify those head words. A dependency parser analyzes the grammatical structure
of a sentence based on the inter dependencies between the words in that sentence and
assigns to every word a dependency tag. Each tag signifies a specific relationship between
two words in a sentence. For each sentence spoken by the subject, therefore, it is tran-

Figure 5.10: Dependency tagging tree from [50]: "An example full dependency tree. In the
case of partial annotation, only some (not all) dependencies are annotated, for example,
the two thick (blue) arcs."

scribed as text and passed as input to a pretrained dependency parsing model, which will
create a structure like the one in the Figure 5.10. From here, the lemmatized version of
the root will be extracted. In the example in figure, the result of this step would be the
word "see".
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5.3.4 Classification

Algorithm 4 Classification of audio data
function ClassEmbeddings(C)

num_classes← len(C)
for i ∈ range(num_classes) do

embedding_classes[i] = fastText.embedding(verb(ci))
end for
return embedding_classes[i]

end function
function Classifications(r, C)

num_classes← len(C)
embedding_classes← ClassEmbeddings(C)
embedded_r = fastText.embedding(r)
max_sim = 0
selected = None
similarities = [0] ∗ num_classes
for i ∈ range(num_classes) do ▷ Compute similarity as defined in Eq.5.4

similarities[i] = cos_sim(embedded_r, embedding_classes[i])
if similarities[i] > max_sim then

max_sim← similarities[i]
selected← C[i]

end if
end for
similarities = softmax(similarities)
return selected, similarities

end function

The input for this step, therefore, is the root verb extracted in the previous step. As
mentioned above, computers are not able to analyse words as such. They need to convert
them into a space of real numbers. This process, in NLP, is called Word Embedding, and is
based on the distributional hypothesis, i.e. the idea that each word tends to be represented
by the surrounding words. The general idea is to create, for each word in a dictionary,
a vector of dimension de which represents its syntactic and semantic characteristics. The
mapping must be done so that similar words have similar vectors. There are different types
of word-embedding: from "word-level" ones, which therefore analyse each word separately,
without taking into account the context in which it is inserted, to "context-based" systems
which provide different embeddings depending on the sentence in which the word is used.
An example of the first type is Word2Vec [51], an example of the second type is Elmo
[52].

This thesis made use of a pretrained model that would be able to embed words that
were never encountered during the training process. FastText [53] is a word embedding
model that matches these features: by saving an embedding dictionary of words and
n-grams, it allows to obtain the embedding for each word through the combination of
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the sub-elements. The used model was trained using CBOW with position-weights, in
dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives.

The classification of the audio data is then performed as described in Alg. 4. Let
us analyze it: for each class ci ∈ C, an embedding vector of the corresponding verb has
been defined using FastText: it is wci = fastText.embedding(verb(ci)) . Each time an
audio input data is received, first the root extraction is performed as explained in previous
subsection, obtaining r. Then, the embedding vector wi = fastText.embedding(r) is
created using FastText and then the class is assigned for which the cosine similarity as
defined in Eq.5.4 between the embedding of the root and the embedding of the class is
maximum.

In the inner product space, the cosine similarity is the measure of the similarity between
two vectors. By measuring the cosine of the angle between two vectors, this measure
indicates whether two vectors point roughly in the same direction. An example of how
this measure works is available in Figure 5.11.
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Figure 5.11: Three qualitative examples of how the cosine similarity on word embedding
vectors works. From the example is clear how the similarity is higher in (a) and (c) and
lower in (b)

The model retrieves both the assigned classes, for evaluating the Audio Model as
itself, and the classification probabilities for each class, obtained by applying a softmax
operation on the cosine similarity vector. This probability vector is used by the Fusion
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Model described in Section 5.4.

cos_sim(a, b) =
q

i ai ∗ biñq
i a2

i ∗
ñq

i b2
i

(5.4)

5.4 AVAR Fusion Model
We have seen so far how to analyze audio and visual data, by means of two models that
take as input the necessary data and return, both, two probability vectors of dimension
num_classes representing the classification of the model for that specific instance. We

Figure 5.12: A

now analyze how the two outputs are merged to obtain a single final classification that
takes into account both data sources. The chosen model learns weights for each class for
both the audio (wa) and the visual (wv) part. Given the probabilities estimated from the
audio model, pa, and the probabilities estimated from the vision model, pv, the fusion
model acts as follows:

pf = softmax(pa ∗ wa + pv ∗ wv)

where pf is the final probability vector. All the weights are initialized as ones and then
the best value is learnt during the training.

5.5 Experiments
The AVAR model, as has been explained, consists of several parts, which need separate
training and experiments to assess their effectiveness. In this section there is the pre-
sentation of which experiments were carried out, and in the next section results will be
presented. The AVAR training process was performed using a 12GB NVIDIA Titan X
GPU.

5.5.1 Evaluate Pose Refinement
In 5.2.3 it was presented the Pose refinement framework used on the OpenPose data. The
purpose of this function, as mentioned, is to solve some of OpenPose’s problems such as the
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fact that it sees skeletons where they are not present, or that the representation stutters
from one frame to another. In order to assess whether the function actually improves
the data, two analyses were carried out: a qualitative one, which shows that the skeleton
obtained from the refinement is more stable and the representation no longer suffers from
"ghost skeletons" corresponding to objects with human features (such as a coat hanging on
a hanger) or simple analysis errors by OpenPose.In order to assess whether the function
actually improves the data, two analyses were carried out: the first is qualitative, showing
that the skeleton obtained from the refinement is more stable and the representation no
longer suffers from "phantom skeletons" corresponding to objects with human features
(such as a coat hanging on a hanger) or simple analysis errors on the part of OpenPose.
The second one is quantitative and measures the mean squared error (MSE) between the
position estimated with OpenPose and the value of the joints obtained through a marker
based model. The MSE formula is defined as follows, where ytrue has to be intended as the
true coordinate value of each joint and ypred has to be inteded as the estimated coordinate
value using OpenPose:

MSE(ytrue, ypred) =
ñ

(y2
true − y2

pred).

The marker based model used in this context is the master motor map (MMM) [54], a
reference kinematics and dynamics model of the human body. The set of markers used
are 56 markers that are derived from specific anatomical landmarks of the human body,
see Figure 5.13 for reference. It is possible to see that there is not a direct correspondence
between OpenPose joints and MMM markers. Because of that, it is not possible to

Figure 5.13: [54]: "Reference marker set used for whole-body human motion capture as
proposed in the MMM framework."

directly apply the error computation from pairs of joint of different models. In order to
have comparable models, a subset of joints from both representations was takes, selecting
those that are more similar. From this analysis, it is clear that the refinement applied to
the pose improves the performances. Results are available in 5.6.1
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5.5.2 Training Visual Model
The central part of the Visual Model for AVAR is the graph neural network. The training
of the network takes place through the backpropagation of the loss. Basically, the loss
is a measure of how well a particular algorithm models a given data set. Loss function
would result in a very large number if predictions deviated too much from actual results.
Loss function allows to learn how to reduce the prediction error over time with the help of
optimization functions. The aim of the training is to find the best combination of factors
and hyper-parameters that guarantees the best final result. In order to define what the
"best result" is, the evaluation metrics must first be defined. In classification problems,
some standard metrics are accuracy, recall, precision, F1 and confusion matrix. For sim-
plicity, let us analyze a binary classification problem (positive class VS negative class),
but the definitions easily extend to multi-class classification problem. A true positive TP
occurs if the model correctly predicts the positive class. A true negative TN occurs if
the model correctly predicts the negative class. There is, instead, a false positive FP if
the model incorrectly predicts the positive class, and a false negative FN if the model
incorrectly predicts the negative class. Starting from these definitions, the metrics are
mathematically formulated as:

• Accuracy = T P +T N
T P +T N+F P +F N

• Precision = T P
T P +F P

• Recall = T P
T P +F N

• F1 = 2∗P recision∗Recall
P recision+Recall = 2∗T P

2∗T P +F P +F N

• Confusion Matrix = it is a squared matrix in the number of classes, in which in the
diagonal there are the TP and in the other cells (r, c) the number of element of class
r, the row-class, predicted as elements of class c.

In this thesis the used evaluation metrics are accuracy and confusion matrix. Additionally,
a relaxed version of the accuracy has been defined: instead of counting the TP , it counts
the almost TP : basically, it takes the final output probabilities from the Visual Model
and check if the True Class is in the top-3 of higher probabilities.

As previously said, two important aspects of the training process are the loss and the
optimizer. Different methods and combinations have been tested before choosing the best
one.

Loss Functions The Cross Entropy Loss (CE) is a loss for classification problems. Its
formulation is:

CE =
CØ
c

yc log(σ(xc))

where C is the number of classes, yi is the ground truth, σ is the activation function and
si is the result value obtained from the model.
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A variation of the CE is the Binary Cross Entropy (BCE) Loss, that for this project is
defined as follows:

BCE =
CØ
c

−wc[yc log σ(xc) + (1− yc) log(1− σ(xc))]

where yc is the one-hot-encoded version of the ground truth, xc is the result value and
σ the activation function. In the thesis there is the distinction among weightedBCE,
that uses the vale wc from the previous equation as weights for compensating the class
imbalance, and the BCE that doesn’t use the. The values of wc are set such that they are
higher for the classes with fewer elements; in this way, elements from that classes result
in having a higher loss and the model can focus more on learning them.

An alternative to CE for binary classification problems is the focal loss (FL); it applies
a modulating term to the CE in order to focus learning on hard misclassified examples.
The definition is:

FL = −(1− σ(xc))γ log(xx)

Optimizers In order to reduce losses, optimization provides information about how
to modify the weights and learning rates of neural networks. Optimizing is carried out
by using the gradient and additional information, which are dependent on the specific
optimization function chosen for the task at hand. The optimizer on which are based
most of the others is the Gradient Descent (GD). The idea of GD is optimizing a function
by finding a local minimum of a differentiable loss function. It looks for the direction of
steepest descent and then takes repeated steps in that direction. The step direction is
found at each step as being the opposite direction to the loss gradient at the current point.
In this thesis, two modified and more modern versions of the classical SG were tested.

Stochastic Gradient Descent (SGD) updates all the parameters for each instance indi-
vidually, instead of computing the gradient with respect to the whole training set. The
equation used for updating is:

θ = θ − µ∇θJ(Θ; x, y)

where θ are the parameters to update (e.g. the weights), µ is the learning rate (i.e. the
step dimension) and ∇ is the gradient of J , the objective function.

Adaptive Moment Estimation (Adam) is an evolution of SGD. It uses momentum and
adaptive learning rate, being momentum a method that accelerates the gradient descent
algorithm by taking into consideration the ‘exponentially weighted average’ of the gradi-
ents, and adaptive learning rate changes the value of the learning rate over time. The
mathematical formulation is the following:

θ = θ − µñ
ϵ +

qt
τ=1(∇(θτ,i))2

∗ ∇J(θτ,i)

Training configurations Starting from all that has been stated in this thesis, let us
resume here the different variations in the GNN architecture configuration, in the training
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parameters and in the hyperparameters, that has been tested. From the GNN point of
view, the configurations used for the performed analysis are described in Table 5.2; the
scope was measuring the impact that each of those function has on the final results.
It has been noticed during the training that using sum or averaging has aggregating
function has not noticeable impact on the final result, and so the analysis was carried
out using the average function. On the other hand, Table 5.3 shows the values tested

Conf. ID Encoder Core Decoder
Encoding Embedding Aggregate Decoding

Conf1 NMLP NMLP Avg NMLP
Conf2 NMLP NMLP Sum NMLP
Conf3 NMLP TabCNN Avg NMLP
Conf4 TabCNN TabCNN Avg TabCNN

Table 5.2: The Encoder-Decoder GNN is defined from those four functions. Encoding,
Embedding and Decoding functions can be either the Normalized Multilayer Perceptron
(NMLP) or the CNN for Tabular Data (TabCNN). The Aggregate function can be either
a Sum or an Average function.

for the hyperparameters of the model, understood as those parameters that define the
architecture of the model; this process of finding the ideal architecture of the model is
referred to as hyperparameter tuning. Regarding the num_epochs parameter, the final
choice has been to use the higher value in Table 5.3 together with an implemented early
stopping mechanism. In fact, training for too many epochs can lead to overfitting, but
the use of early stopping addresses this problem. The basic idea under early stopping is
to interrupt the training if the validation loss is not decreasing anymore (clear sign that
the network is not learning). The training was carried out by dividing the dataset into
3 parts: training, evaluation and test splits. The first part, which contains 70% of the
total elements, is used during the training phase. The second one, made of 20%, during
the tuning phase to evaluate the effectiveness of the hyperparameters and finally the final
results are evaluated on the third part, the 10% of elements left for the test set. The
division was done in a stratified way, in order to reproduce in each subset the distribution
of the classes of the complete set.

5.5.3 Training Fusion Model
The Fusion Model is a much simpler and smaller model of the GNN. In the implementation
used for AVAR, it contains only 2 ∗ num_classes parameters, which correspond to the
weights for the probability vector of the Audio Model and for those of the Visual Model.
As already described for the training of the Visual Model, even for the Fusion Model it has
been necessary to define the loss function and the optimizer. In this case, a CE loss was
used, and an ADAM-type optimizer. For the hyperparameters point of view, a learning
rate of 1e-3 has proven to be the best in this case.

As the two training, Visual Model and Fusion Model, were carried out at the same
time, the same division into training, validation and test splits as in the Visual Model was
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Structure Implementation Hyperparameter Value
GNN

general n_frames 10, 15
n_processing_steps 2, 3, 5

NMLP n_neurons 64, 128, 256
n_layers 1, 2, 3
dropout 0, 0.1, 0.2

TabCNN dropout 0, 0.1, 0.2
Loss

general regularization 1e-1,1e-2, 1e-3
Optimizer

general lr 1e-3, 1e-4, 1e-5
num_epochs 500, 1500, 2500, 5000

ADAM β1 0.85, 0.9
β2 0.9, 0.99

Table 5.3: Overview of tested hyperparameters for each element of the Visual Model
during the training phase.

also used here. A difference lies in the number of epochs for which the model is trained. As
already mentioned, the Fusion Model is very simple. Training it for a very large number
of epochs leads to overfitting. For this reason, the training phase of the Fusion Model lasts
only 100 epochs instead of 5000 (with possible early stopping) as defined for the Visual
Model.

The inputs for the fusion model were, at each training step, the output probabilities of
the Visual Model and the output probabilities of the Audio Model. As for the audio data,
not having a specific dataset for this purpose, what was done was to manually create a
sample set. For each activity in the dataset several instances were generated, using as
possible verbs a variety of synonyms and different forms of the verb associated with the
class, representing the actual variety of a real use situation.

5.6 Results

5.6.1 Results Pose Refinement
The selected joints for this experiment from the OpenPose representation and from the
MMM representation, and the correspondent mapping, are available in Table 5.4. Given
the imperfect correspondence between the joints in the two different representations, an
analysis of the error on the individual joint rather than on the total model was preferred.
In this way, it is possible to focus on the error difference between the OpenPose and the
Refined pose instead that focusing on the magnitude of the total error. There are cases
in which the joints from MMM and those from OpenPose almost overlap (e.g. CLAV and
Neck). The table shows how, in those cases, the pose data is not completely reliable. But
from these comparison is clear that the refinement, in most of the cases, improves the
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OpenPose MMM MSE(MMM,OpenPose) MSE(MMM,Refined) DeltaError
CLAV Neck 12.703 12.783 −0.080
RSHO RShoulder 10.211 10.326 −0.115
LSHO LShoulder 114.125 113.040 1.086
LAOL LElbow 39.588 39.578 0.010
RAOL RElbow 43.090 43.464 −0.374
LWTS LWrist 27.582 26.844 0.739
RWTS RWrist 25.508 25.724 −0.216
RHIP RHip 18.565 18.041 0.524
LHIP LHip 210.054 209.686 0.368
RKNE RKnee 81.613 79.499 2.113
LKNE LKnee 75.080 74.593 0.488
L3 MidHip 43.000 42.956 0.044
LHEE LHeel 9.851 9.932 −0.081
RHEE RHeel 11.828 11.499 0.329

Table 5.4: The first two columns represent the mapping among selected joints from the
MMM representation and selected joints in the OpenPose representation. The third col-
umn represents the error obtained comparing the OpenPose result with the MMM values.
The forth column represents the error obtained comparing the refined pose from Open-
Pose (Refined) with the MMM values. The last column is the delta among the OpenPose
pose and the refined one

accuracy of the pose estimation. In those cases in which the Delta Error is negative,
indicating an MSE(MMM,Refined) greater than an MSE(MMM,OpenPose), we can see that
the values are very small, indicating that probably that point was already stable in the
OpenPose prediction.

5.6.2 Results Visual Model
In this section, the results of the Visual Model experiments discussed above will be pre-
sented. The best parameter configurations turned out to be the following: for the net-
work structure, the Conf4 from Table 5.2, that uses TabCNN for encoders and decoders,
TabCNN as core embedding and average as aggregation function. The TabCNN used a
dropout value of 5e-2. Moreover, 2 steps of message passing were performed. From the
optimizer point of view, the used lr was 1e-5 with an Adam optimizer, the loss was the
CE with L2 regularization. Let’s analyze the results obtained with this configuration. In
Figure 5.14 it is shown a plot of the trend of the losses and accuracies during training,
while in Figure 5.15 there is the confusion matrix of the Visual Model on the test test.
We can clearly see that the Visual Model performs very well on all classes, with a high
peak performance on the "Sweeping" class. Compared to the other activities represented
in the dataset, the "Sweeping" involves more the lower body in the movement, so it makes
sense that the networks better recognize it. Taking into account the relaxed accuracy
introduced earlier, we notice that it is very high right from the start, which means that
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Figure 5.14: The loss and accuracy on the training and validation set for the Visual Model
along the epochs of the training process.

Figure 5.15: The confusion matrix for the Visual Model on the test set.

the model tends to muddle through on a few classes but you still manage to assign a high
probability, though perhaps not always the highest, to the correct class. Another very
interesting visualization to do is t-distributed stochastic neighbour embedding (t-SNE);
this is a statistical method for visualizing high-density data that maps each point in a
two- or three-dimensional space while preserving the proportional relative distance be-
tween points. Displaying this representation on the data output from the decoder allows
us to verify that the model is actually learning parameters that correctly separate the

67



The AVAR Model

Figure 5.16: The relaxed accuracy on the training and validation set for the Visual Model
along the epochs of the training process.

various classes. Since the model has been trained with 2 steps of message passing, we

Figure 5.17: The t-SNE visualization of the output of the decoder model at each message
passing step.

have two calls to the decoder and thus the possibility of displaying features at each mes-
sage passing step. The plots are available in Figure 5.17. It is easy to highlight how the
classes that are better separate from the others are the ones having better results in the
confusion matrix in Figure 5.15. This makes perfectly sense and confirm that the network
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is actually learning a correct representation for the data.

5.6.3 Results Fusion Model
As mentioned, the Fusion model takes as input the results of the Audio Model and the
results (if any) of the Visual Model to provide a single final result. The training phase
was carried out obtaining the results for loss and accuracy shown in Figure 5.18. Let us
note that the two curves are very similar to those obtained from the Visual Model, as
they are constructed from the results obtained with it and are therefore closely linked to
it. From the results it is immediately evident that using this system improves the final

Figure 5.18: The training loss and training accuracy for the Fusion Model along the
epochs.

results, especially for classes for which the Visual Model alone cannot produce very good
results.
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Figure 5.19: The confusion matrix for the Fusion Model on the test set.
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Chapter 6

Discussion and Conclusions

6.1 Discussion

The AVAR model is fast and lightweight, in addition to offering excellent performance in
terms of accuracy. AVAR actually does not require any input data that is not already
available in the robot. Indeed, the OpenPose data in the ARMAR-6 robot are required
for other tasks, which means, no matter whether or not AVAR is employed, it would have
been produced regardless. Consequently, the model developed provides a human activity
recognition system without burdening the robot’s hardware too much further.

As explained above, various configurations of the Graph Neural Network used for the
visual part of the network were tested. So far the results have been analysed in terms of
inference. However, as the aim of this thesis is also to build an efficient model, we also
analyse this aspect. Let us recall that Conf1 corresponds to the configuration having
NMLP for encoder, decoder and embedding model; Conf3 refers to the configuration
having NMLP for encoder and decoder and TabCNN as embedding function and finally
Conf4 has TabCNN for all the three. Table 6.1 shows the training time, inference time
and weight for the three configurations. Training time is define as the time needed for
the whole training process on the entire training set and validation set. Inference time,
instead, is the average time needed for making the inference on a single instance of the
test test. The variable weight refers to the MB occupied in the GPU memory for using
the whole Vision Model.

Model Training Time Inference Time Weight
Conf1 1h20min 0.0026s 3250MB
Conf3 2h10min 0.0029s 3250MB
Conf4 1h55min 0.0031s 3250MB

Table 6.1: Performances comparison among the three versions of Graph Neural Networks
used as Visual Model for the analysis of video data in AVAR. The Table shows the
whole training time, the inference time and the model’s weight in the memory for each
configuration.
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The use of audio data in combination with visual data has proven its effectiveness.
Above all, it was noted that for some classes the use of audio data is more important than
for others. In fact, some activities are quite similar to each other in terms of movements
(Wipe and Mix, for example). In this case, the relaxed accuracy (calculated taking into
account the first 3 higher probabilities) of the visual model, introduced in 5.5.2, is very
high, but the model is not able to define the correct result. The use of audio data helps
the model to resolve this confusion by selecting the actual activity performed.

6.2 Conclusions
In this thesis, the problem of Human Activity Recognition using video and audio data
was addressed. The AVAR model consists of a visual data analysis model, an audio
data analysis model and a fusion linear model for obtaining the final results. The Visual
Model is based on a Graph Neural Network and has been trained on the KIT Bimanual
Manipulation Dataset [45]; the Audio Model uses natural language processing techniques;
the fusion model is a linear model that weighs the probabilities obtained from the two
previous models.

The project provides results that fully meet the objectives. In addition to correctly
classifying the activities seen, the model also proved to be light on real-time use on
ARMAR-6. As mentioned above, the dataset used has some limitations due to the type
of classes present: the focus on the whole body for activities that focus mainly on the
upper body could in fact be a limitation. An interesting analysis could be to add attention
mechanisms that allow to give more weight, during the analysis, to the joints more involved
in the movement. This would make it easier to classify both total-body activities, such as
walking, sweeping and the like, and activities more focused on one part of the body.

Another very interesting aspect for robotics could be developing an incremental learn-
ing scenario, i.e. making the robot able to learn new tasks without having to be trained
again on all those already seen. This could be done by first recognizing a task as an un-
known task, then by saving the relevant data and accessing data sources that can create
a dataset to train the model on.
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