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Abstract

Object detection is one of the most central tasks in computer vision, its
purpose is to locate objects in space, classifying them and allowing a sepa-
ration from the background. Traditional object detection architectures are
designed to deal with a known set of data and classes that are used to train
from scratch the model. Humans naturally learn in a continual fashion: if a
new object is discovered, it can be learnt without forgetting old object seen
in the past, therefore human brain is intrinsically incremental. On the other
hand neural networks and consequently object detectors are not built to eas-
ily perform incremental learning. Although a network is perfectly trained,
when it is adapted to a new set of classes, performances on old classes de-
grades and the network face difficulties to learn new classes as well. In object
detection another problem arises: the background is shared among old and
new classes, thus meaning that a new class to learn, in the old model, could
be considered as background; this additional problem leads to confusion for
the model between background and objects, thus worsening the problem of
forgetting.

This is a practical limit when a model has been trained on a batch of
classes and additional kind of objects should be learned by simply feeding
new images to the detector.
Many approaches were carried out to solve the problem of continual learning
in different computer vision tasks and recently also in object detection.
This work aims to analyze the structure of Faster-RCNN, one of the main
used architectures for object detection in order to alleviate the aforemen-
tioned problems concentrating on modeling the background. A set of different
loss functions is proposed in order to teach to the model what is background
and what is an object. Moreover, since Faster-RCNN can be extended to per-
form instance segmentation, this work aims to prove that the approach used
for object detection fits also for another similar task. Experiments made on
Pascal VOC [11] and SBD datasets demonstrate that this approach improve
the capability of the network to separate objects from background during the
incremental steps, improving also overall performances.



Chapter 1

Introduction

In the last decade, the advancement of many different technologies and the
introduction of new high tech paradigms in already well established tasks,
pushed Artificial Intelligence research with the aim of assisting and some-
times replacing humans solving complex or time wasting-tasks.
There is actually a twofold objective for AI systems : firstly to solve tasks
that can be addressed processing tons of data and taking into account many
more variables than a human can handle, for instance making prediction on
future trends, discover underlying patterns, extract insights to make holistic
decisions; secondly to make machines able to achieve everyday tasks that
people are able to complete, making computers able to automatically and
autonomously complete them. Some example of the latter are : Computer
Vision and Natural Language Processing.
In just ten years this field saw enormous growing, especially thanks to the
advent of Deep Learning, which, by mimicking the structure of human mind
enables in computers the concept of abstraction, that is not possible using
standard algorithms. The main difference lays in how these algorithms are
built: in standard programming the coder knows how the computer behave
in every possible scenario, therefore the choice that an algorithm makes are
deterministic and decided a priori by the programmer , on the other hand,
artificial intelligence algorithms are based on learning, the system learns from
data as a person learns from experience. Machines would be capable of car-
rying out complex actions and reasoning, learning from mistakes, and per-
forming functions that until now were exclusive to human intelligence.
The task in which deep learning started to grow substantially is Computer
Vision. Its main goal is to extract high-level knowledge from an image to
solve many different tasks. The most investigated task and surely the most

1



1 – Introduction

trivial is Image Recognition: understanding what an image is representing.
From this tasks tons of disparate algorithms were carried out, going deeper
in the understanding of the content of an image. Therefore two main areas
are starring in today research: Object detection and Semantic Segmentation.
Both tasks aim to use computer vision in real scenarios, in which the objective
is not to predict the category of a single object image, but to recognize in an
image different objects and rather than just deciding the category these algo-
rithms are able to spatially describe the objects recognized. Object detection
algorithms are able to put a bounding box on the object and deciding which
is the label, on the other hand semantic segmentation is able to color the pix-
els of the image basing on the class to which those pixels belong. Moreover,
enhancing the concept of semantic segmentation and mixing it with object
detection, another task can be carried out : instance segmentation, that,
besides coloring the right pixels, is able to distinguish the colored objects,
thanks to object recognition. A visual explanation is given in fig.4.3.3
Therefore, these two tasks, in contrast to simple image classification are ap-
plied on multi-object images, making them suitable for many applications.
To cite some of them: autonomous driving, medical image processing, facial
recognition, anomaly detection in plants for quality control.

In deep learning there is a strong assumption that makes automatic learn-
ing far from human capabilities: the algorithm is trained once knowing in
advance all the categories that the detector is supposed to recognize. Hu-
mans have the ability to continuously learning and discover new objects,
without forgetting what they already learnt, on the other hand deep learning
architectures have not the correct structure to achieve the same goal. There-
fore one of the main challenges in computer vision is incremental learning:
namely, the ability of an agent to learn new classes without forgetting how
to recognize the ones learned before.

This problem adds complexity to standard algorithms and the solution to
it is deeply connected with the computer vision task to which it is applied. As
recognition tasks, also incremental learning have many applications in real
world. The trivial one is to make the learning of automatic agent continual,
allowing them to discover on their own what they do not know and then
automatically learn new concepts.

2



1 – Introduction

Figure 1.1. Difference between image classification, object detec-
tion and segmentation [2]

1.1 Research goals and main contributions
This work is on the lookout for exploring the behavior of object detection
and instance segmentation when casted in the incremental learning setting.
Since the framework used for the aforementioned tasks is composed by many
different modules, the main aim of this work is to understand which of these
modules are particularly affected by the incremental setting and try to avoid
the drop in performances designing corrective strategies to enhance the reli-
ability of the detector when new classes are added.

Object detection is a key task in computer vision that has seen significant
development in recent years. The advances were made possible by the rise
of deep neural network architectures [12, 13, 9, 14, 15, 16], which improved
results while reducing computation time. Despite the advances, these archi-
tectures assume that they already know all of the classes they will encounter
and are not designed to incrementally update their knowledge to learn new
classes over time. A naïve method would be to restart the training pro-
cess from scratch, obtaining a new dataset containing all of the classes and
retraining the architecture. This is impractical, however, because it would
need a considerable computational overhead to re-learn previously learned
classes, as well as the usage of previously trained data that may no longer
be available due to privacy issues or intellectual property rights.

A more effective option is to employ incremental learning and to update
models continuously in order to extend their knowledge to new classes by
training exclusively on fresh data and avoiding catastrophic forgetting [17].

3



1 – Introduction

Incremental learning has initially been studied in the context of image clas-
sification [18, 19, 20, 21, 22, 23, 24] but it has only recently been applied to
more complex tasks like object detection [25, 26, 27, 28, 29] and semantic
segmentation [30, 31, 32, 33, 34]. Performing incremental learning in object
detection (ILOD) imposes additional challenges because each image contains
multiple objects and, following the definition in [25], only objects belonging
to new classes are annotated while the rest (objects belonging to either old
or future classes) are ignored, introducing missing annotations.

Prior research has focused on the implementation of regularizations to
minimize catastrophic forgetting, but the impact of missing annotations has
been disregarded. Regions that lack annotations, in particular, are frequently
referred to as background areas, and the model classifies them as such. As
a result, unannotated objects will be associated with the backdrop, increas-
ing catastrophic forgetting in previous classes and complicating training in
subsequent classes.

To overcome this issue, inspired by [30], we revisit the common knowledge
distillation framework in ILOD [25, 26, 29] proposing MMA, that Models
the Missing Annotations in both the classification and distillation losses.

To avoid catastrophic forgetting, we allow the model to predict either
an old class or the background on any location not related with an anno-
tation on the classification loss. Alternatively, because current classes may
have been annotated as background in a previous learning step, we revisit
the distillation loss, matching the teacher model’s background probability
to the probability of having either a new class or the background, thereby
facilitating the acquisition of new classes.

On the Pascal-VOC dataset [11], we demonstrate the utility of our method
by examining a variety of single-step and multi-step tasks. Without using any
image from previous training steps, we show that our method outperforms
the current state-of-the-art.

Finally, we show that by adding an additional knowledge distillation term
to our framework, we can easily extend it to the task of instance segmen-
tation. On the Pascal SBD 2012 dataset [35], we show that our method
outperforms the other baselines.
To summarize, the contributions of this thesis are as follows:

• We identify the peculiar missing annotations issue in incremental learn-
ing for object detection.

• We propose to revisit the standard knowledge distillation framework to
cope with the missing annotations, showing that our proposed MMA

4



1 – Introduction

outperforms previous methods on multiple incremental settings.
• We extend our method to instance segmentation and we show that it

outperforms all the other baselines.

Figure 1.2. An illustration of the missing annotation issue of object detec-
tion in different time steps. At training step t, the annotations are provided
only for new classes (red), while all the other objects, both from old (blue)
and future (yellow) steps are not annotated.
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Chapter 2

Deep Learning

This chapter aims to provide an overview of deep learning base modules that
are relevant for this work, deepening aspects that are fundamental for object
detection, incremental learning and instance segmentation.

Deep learning emerges as a branch of machine learning to avoid costly man-
ual pre-processing trying to mimic the organization of information as the
human brain does. Deep learning is concerned with the development of al-
gorithms for learning several layers of representation in order to characterize
complicated data connections. As a result, higher-level features and ideas
are defined in terms of their lower-level equivalents, and this form of feature
hierarchy is known as deep architecture. Deep learning’s present popularity
may be attributed to three factors: considerably improved chip processing
capabilities enabled by the introduction of GPUs, vastly increased training
data size, and recent advances in machine learning. All of these develop-
ments have enabled deep learning systems to successfully exploit complex
nonlinear functions, to rapidly train distributed and hierarchical feature rep-
resentations, and to make effective use of both labeled and unlabeled data.
Deep Learning relies heavily on neural networks. They are, in fact, specific
structures meant to function similarly to the human brain.

2.1 Neural networks
In shallow learning one of the main used algorithms is the perceptron [36],
that is able to find a separation in training data between different classes, in
order to decide how to categorize new coming test data. The problem of this
architecture and all the variants and extensions is that they are not able to
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2 – Deep Learning

learn non linear functions. Generally many problems can be considered as
linearly separable and especially when handcrafted features are selected and
cleaned in the correct way, these algorithm perform satisfactorily.
Many years before the birth of deep learning many works have demonstrated
the insufficiency of such algorithms and the need to add non linearity and
complexity to architectures, since the world that they want to discover is
as well non linear and complex. The classic example of non linear function
that a perceptron cannot approximate is the XOR problem [37]. In order
to correctly make decisions in this case a layer must be added. the layer
conceptually represents an additional step of decision, that, if intermediated
with non linearity should be able to overcome the aforementioned problems.
In this way the MLP (Multi layer perceptron) was born.
Iterating this process the concept of neural network arises. A neural network
is a function approximator that taking in input many data points x tries to
approximate the function { by learning parameters θθθ to define a mapping
between a data point x and the corresponding label y, ending in the equa-
tion: y = f (x;θθθ). The number of these parameters θθθ defines the depth of
the network: the more parameters, the more the network is complex and
deep. Since usually, in real applications the chains are very long, the field of
machine learning that uses these architectures is called deep learning.
Diving in these deep architecture we cannot talk anymore about handcrafted
features, because the presence of many layers and non linear activation func-
tions allows the network to create different levels of representation that are
by definition hidden. Hence, deep architectures enhance the capability in
learning patterns but at the same time lowers the interpretability of the de-
cision

Neural network training

2.1.1 Activation functions
The element of neural networks that makes the whole system non-linear is
the activation function. When compared to a neuron-based model seen in
human brains, the activation function is responsible for determining what is
to be fired to the next neuron at the conclusion of the process. In an neural
network, it performs the same job. It takes the preceding cell’s output signal
and turns it into a format that may be used as input to the following cell.

7



2 – Deep Learning

Despite the similarity with human brain, they are fundamental to keep the
neurons’ outputs restricted to some limits. If we just use linear activation
(i.e. Wx + b), the growth of the output would be uncontrolled, leading both
to computational issues and poor learning stability.
The main contribution, as mentioned before, is to make the network non
linear. A linear classifier is able to output a pattern that can approximate
linear behaviors but not to exactly adapt to the function we want to approx-
imate, what basically a linear classifier does is to learn a group of multipliers
parameters W and a group of biases b, such that y = Wx + b . The
latter would be the final formula if we want to use a single cell neural net-
work, If we stack multiple layers, representing the ith layer as fi(x), we have:
o(x) = fi(fi(. . . .f1(x)), these function remains linear and therefore, although
it is more complex, it is not able to approximate non linear functions. In
order to make the model get the power to learn the non-linear patterns, spe-
cific non-linear layers are added in between.
Some of the most used activation functions are:

Sigmoid

It is defined as:
o(i) = 1

1 − ei
(2.1)

The sigmoid function ranges between 0 and 1. Notably, in contrast to the
binary step and linear functions, the sigmoid is a nonlinear function. Thus,
when having multiple neurons with sigmoid activation functions, the out-
put would be nonlinear as well. This activation function is mainly used as
a normalization for final output layers and not in the middle of deep ar-
chitechtures, since, as noticeable from the graph, the derivatives, when |x|
becomes higher vanish, leading to problem in the backpropagation algorithm
(vanishing gradient problem).

Hyperbolic tangent

It is defined as:
o(i) = tanh(i) (2.2)

where o is the output and i is the input. A desirable behavior for an activation
function is to be zero centered, in this way the gradient flowing through it
would not shift in a particular direction. On the other hand it carries the
same problem of the sigmoid: vanishing gradient in the tails.

8



2 – Deep Learning

ReLU (Rectified Linear Unit)

It is defined as:
o(i) = max(i,0) (2.3)

This is one of the most used activation function, especially with Con-
volutional Neural networks. Contrarily to the aforementioned functions it
does not saturate and consequently does not cause the Vanishing gradient
problem. It has some issues:

• It is not zero centred

• it suffers from “dying ReLU” problem: Since the output is zero for all
negative inputs, some cells are not able to learn anything, because their
gradient would always be zero

• Exploding gradient: since it is not a limited function the activations
could assume very high values, leading to instability

Leaky ReLU

It is defined as:

o(i) =
x x >= 0

αx x < 0
(2.4)

where α is an hyperparameter, smaller than 1 (0.1, 0.01 are typical values) It
solves the “dying ReLU” problem, by not zeroing negative output, but just
smoothing them with a modulation value α

2.1.2 Training of neural networks
The aim of neural networks is to find the best set of parameters θ that allows
to best approximate the complex non linear function that binds input data
and desired output. To this extent an optimization algorithm is the best way
to update those parameters during different iterations (i.e. every iteration is
the input of a new data point in the network).
In neural networks the function to optimize is called loss, and it is a function
of the output and of the ground truth (i.e. the expected output of the net-
work). Mathematically: L(o(x), y). This function must be 0 if o(x) exactly
match the ground-truth y and should grow proportionally to the misalign-
ment between y and o(x).

9



2 – Deep Learning

Figure 2.1. Graphs of different activation functions (a) Sigmoid, (b) Tanh
(c) RELU (d) Leaky RELU [3]

Gradient Descent

As mentioned before, the aim of a training is to minimize the loss function.
One of the most used algorithm to accomplish this task is the Gradient
Descent, as its name underlines, it involves calculating the gradient of a
certain function : the loss. The objective is to minimize L(o(x), y) in order
to find the best set of parameters θ, recalling that o(x) is actually o(x;θ),
meaning that the function o is dependent from the updatable parameters of
the network. The derivative of the loss is a very important spot, because it
gives hints to know where the function is reducing and where it is growing.
So, we can minimize L by gradually increasing x in the opposite direction of
the derivative. Due to the fact that we are dealing with multidimensional
data, the derivative’s generalization is the gradient ∇, and so we can decrease
f by travelling in the direction of the negative gradient.

Accordingly, the formula to update at each step θ is:

θt = θt−1 − α∇θL(θ) (2.5)

where α is the learning rate: a small constant that weight the importance
of the gradient in the update and that determines the entity of the change
of θ: the higher α the higher the change in θ.

The main problem of this approach is that if the function to minimize
is not convex, thus having a more complex shape, the optimization could

10



2 – Deep Learning

remain stacked in local minima or saddle point, constraining the problem to
not explore other set of parameters that would decrease the value of the loss.
Therefore in deep learning Stochastic gradient descent is used: instead of
calculating the gradient for the whole training set, the set of data is divided
in mini-batches and the update is calculated on the results of that mini-
batch, in this way the update is stochastic, since the gradients of the target
function with respect to the input variables are noisy. This means that the
evaluation of the gradient may have statistical noise that may obscure the
true underlying gradient signal, caused because of the sparseness and noise
in the training dataset. The update rule becomes:

θt = θt−1 − 1
Bs

α∇θ

BsØ
i=0

L(θ) (2.6)

where Bs is the mini-batch size (i.e. the number of data points x used to
calculate the approximate gradient).

Back-Propagation Algorithm

Even if the algorithm to update the weights is defined, it includes the calcu-
lation of the gradient of the loss function with respect to the parameter θθθ.
It is not easy to calculate the whole gradient, but there is the need of a trick
allowing to compute the partial derivatives efficiently. Back-Propagation Al-
gorithm is used to this extent. It is so important because it shows how much
the parameter x needs to change to minimize the loss function.
The gradient is calculated using the chain rule: denoting wl

jk the weight from
the kth neuron in the (l − 1)th layer to the jth in the lth layer, the activation
of a neuron j in layer l is:

zl
j = (

Ø
k

(wl
jkal−1

k + bl
j) (2.7)

al
j = σ(zl

j) (2.8)

where σ is an activation function, al
j is the activation of neuron j in layer and

zl
j is the output for neuron j in layer l. To update the network parameters

correctly, we are interested in calculating:

∂L

∂wl
jk

= ∂L

∂zl
j

∂zl
j

∂wl
jk

(2.9)
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∂zl
j

∂wl
jk

= al−1
k (2.10)

∂L

∂wl
jk

= ∂L

∂zl
j

al−1
k (2.11)

This rule allows a computational efficient calculation of the gradient and
it is the bulk of the backpropagation algorithm. Iterating the process going
backward in the network all the partial derivatives can be obtained and
consequently use that quantity to upadate the weights and biases (i.e. θθθ).

Learning rate and schedule

In equation 2.5 the parameter α is crucial to scale the effect of the gradient.
This parameter is named learning rate. As the word says it describes the
entity of the change in the network weights: the higher α, the higher the
change of the parameters. This is a fundamental hyper parameter that need
to be tuned depending on the task and the dataset. The rationale is that at
the beginning of the training there is the need of an high learning rate, in
order to explore more widely the space of solution and try to reach a state
in which the loss is lower quickly. Going forward in iterations this value
should be scheduled in a monotonic descendent way. Lowering the learning
rate means changing less the parameters, therefore, when α decreases the
optimization algorithm is searching in a reduced neighborhood, assuming
that the global optimum is much closer after some epochs.

Overfitting and regularization

Since a neural network should understand underlying patterns and generalize
the acquired knowledge to new incoming data, it is not convenient that the
model learns also the noise in training data, therefore the model should
understand that some particularities are proper of the single data point and
avoid to learn them. Therefore a portion of data is always sidelined to form
the test set. In this way the model can be tested on unseen data. If the error
on the training set is very low and not comparable with the one on the test
set, overfitting occurred.
There are many apporaches to avoid overfitting:

• Early stopping : Cutting the training iterations when the network is
learning too much on training data

12
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• Data augmentation : Modify data randomly, not altering dramatically
their characteristics, in order to feed different points to the network.

• Weight decay : In order to avoid some parts of the network (i.e. some
weights) to be too large and take over the other parameters, a regu-
larization expression is added to the update rule described in 2.5. The
most used is an L2 penalty:

L2penalty = λ

2
Ø

i

w2
i (2.12)

in this equation λ is named weight decay.

2.2 Convolutional neural networks
Standard neural networks (i.e. MLP) suffer of a problem: each neuron of
layer l is connected with all neurons of layer l − 1 and l + 1. If some partic-
ular data (e.g. images) are fed in MLP, the quantity of parameters could be
huge, since the input size is already high. This aspect could cause overfitting
(since the network tries to work pixel by pixel) and also computational is-
sues in training a network with too many parameters. The main observation
that leads, for these kind of data, to change the architectures are the local
connections: in images, audio recording, natural language, each feature is
strongly linked with the surroundings. For instance, in an image is more use-
ful to explore the together close pixels instead of considering the relationship
between farther parts of the picture (as MLP does). Therefore the concept
of convolutional neural network (CNN) was carried out. It is based on the
convolution operation.

2.2.1 Convolutional layer
The objective of convolutional layers is to capture patterns in the starting
image and generating another image called activation map. This layers are
called feature extractor layers, in fact, contrarily to other models CNN are
able to extract autonomously features not needing handcrafted approaches
to decide which features are more important. The image is just fed in the
network and the convolutional layers will transform the input autonomously
to make it suitable for classification. A convolutional layer may contain many
different filters that can be computed in parallel. Each of these filters has 4
fundamental parameters:

13
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• Size : The size (Hk, Wk) of the square filter (usually a common choice
is 3x3)

• Depth: How many filters to use (D)

• Stride: Denote how many pixels to move the filter (S)

• Padding: This is a parameter of the image itself, it describes the size of
the frame to apply on the image to enlarge it. (P )

Filters are applied to the image, obtaining as many feature maps as the
number of filters, they are then stacked together and passed for the next
convolutional layer. The convolutional operation can be finally described by
the following

Conv(ph, pw) =
HkØ
i

WkØ
j

ki,jxi+ph,j+pw (2.13)

where ph and pw is the position in the image of the filter, x is the input image
and k is the kernel. Particularly, output dimensions are described by these
equations:

Hout = H − Hk + 2P

S
+ 1

Wout = W − Wk + 2P

S
+ 1

(2.14)

specifically, the final output would be D feature maps, called also channels
of the feature map. Going from the input to the output the network is able
to extract different levels of knowledge. The first layer model the high level
features, hence general characteristics of images (e.g. edges). Going deeper
the network find features that are more related to the class to be predicted.
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Figure 2.2. Schema of a classic convolutional neural network

2.2.2 Pooling layer
The feature maps’ dimensions are reduced by using pooling layers. As a
result, the number of parameters to learn and the amount of processing in
the network are both reduced. The features contained in an area of the
feature map created by a convolution layer are summed up by the pooling
layer. As a result, rather than precisely positioned features created by the
convolution layer, following actions are conducted on summarised features.
As a result, the model is more resistant to changes in the location of features
in the input picture.

The most used pooling layers are:

• Max pooling: Pooling that chooses the maximum element from the region
of the feature map covered by the filter is known as max pooling. As a
result, following the max-pooling layer, the output would be a feature
map comprising the most prominent features of the preceding feature
map.

• Average pooling : The average of the items present in the region of the
feature map covered by the filter is computed using average pooling.
As a result, while max pooling returns the most prominent feature in a
feature map patch, average pooling returns the average of all features
present in that patch.

2.2.3 Resnet
Until 2015 research was moving towards making deep convolutional archi-
tectures deeper, following the erroneous thought that deeper means more
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accurate. Actually [4] demonstrated that increasing the number of layers in
a classic convolutional architectures (e.g. AlexNet [38] and VGG [39]) would
have led to an increase in both training and test error, thus underlining that
the problem was not overfitting. The issue was intrinsic in the nature of deep
neural networks, especially in the phenomenon of vanishing gradient: if the
backward pass traverse too much layers the gradient vanishes, making the
network unable to update correctly the parameters. To solve this problem [4]
introduces the residual block. In this architecture there is a direct link that
bypasses several levels in between. The skip connections or identity mapping,
is the most fundamental adjustment to comprehend. This identity mapping
has no parameters and serves just to add the output from the previous layer
to the next layer.. This results in the ability to train much deeper networks
than what was previously possible, because the gradient can flow backward
along the identity layer, not vanishing and thus making the optimization
easier to perform. The idea behind this concept is that instead of learning
a function H(x) from scratch the network learns F(x) + x, where F(x) is
called residual, therefore it should be easier for the model to learn a residual
instead of a completely new mapping. Empirically [4] demonstrated that, in
Resnets, both training and test error are reduced increasing the depth of the
network.

Figure 2.3. Visual representation of a generic residual block ([4]
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Chapter 3

Object Detection and
Instance segmentation

3.1 Problem definition
Traditional Object Detection. The Object Detection aim is very simple
and consists in locating all the objects within an image, labeling them as
belonging to one of the known classes of the model.

Definition 3.1.1 Given K the set of known classes, X a dataset of images
where each image Xi has size [Wi,Hi], the goal is to build a model F that
maps each image to a a set of pair (c, B), where c and B are the label of
the detected object and the corresponding bounding box that locates it inside
the image. More formally:

F : Xi → (c, B)Di

Di ≡ Number of detections for image Xi

c ≡ Label of one of the known classes

c ∈ K

B ≡ Bounding box

B = (x, y, w, h)

w ≡ Width of the bounding box

w ∈ [0+, Wi]
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h ≡ Height of the bounding box

h ∈ [0+, Hi]

x ≡ Abscissa of the center of the bounding box

x ∈ [wc

2 , Wi − wc

2 ]

y ≡ Ordinate of the center of the bounding box

y ∈ [hc

2 , Hi − hc

2 ]

In other words, for each image the model outputs a set of detected objects,
each identified both by a label that spatially localizes it (B), and by another
one that categorizes it (c).

Figure 3.1. Object Detection using bounding boxes [5]

3.2 Model Architectures
Modern object detection approaches are dominated by architectures based on
convolutional neural networks that differ on whether or not candidate object
proposals are used. We can group these works in two different categories:
two-stage approaches [40, 6, 41, 9, 8], that generates object proposals which
are classified and regressed by a region-of-interest (ROI) head module, and
single-stage approaches [42, 43, 15, 44, 45, 46] that simultaneously output
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both classification scores and regressed bounding boxes without the need of
any object proposal.
While single-stage approaches optimize time as they don’t need to generate
proposals for each image, two-stage approaches achieve higher performance.
For the purpose of this thesis, only two-stage approaches will be analyzed, in
particular a two-stage family called Regions with CNN features that represent
the current state-of-the-art.
Before to that, a brief introduction to deep learning and how it works is given,
starting from neural networks and a particular family called Convolutional
Neural Network, the most used nowadays in the field of computer vision.

3.2.1 R-CNN
The rise of Deep Convolutional Networks has strongly impacted the computer
vision sector, generating a significant increase in performance, especially in
image recognition. However, compared to image classification, the difficulties
in object detection task remained many, both in qualitative and computa-
tional terms. In particular, there were two main challenges:

1. For each image, the model has to generate a set of potential object
locations, often called proposals.

2. Refine the proposal according to the spatial characteristics of each of
the known classes in order to achieve better localization (a dining table
will almost certainly expand in breadth, but a tree will almost certainly
expand in height.)

Different approaches to address both challenges existed before 2014, how-
ever some based on CNN were able to detect only a limited set of categories
(such as [47],[48],[49]) while others [50] tackled the problem (1) as a regression
problem, without guaranteeing good performance.

The first to demonstrate the goodness of CNN for obtaining good results
in object detection was [6] through a particular architecture called Regions
with CNN features (R-CNN), which solved the localization problem by op-
erating within the “recognition using regions” paradigm [51]. In particular,
its strategy consisted in the generation of a set of category-independent re-
gion proposals for the input image through selective search algorithm
[52], then extracts a fixed-length feature vector from each proposal using a
CNN, finally classifies each region with category-specific linear SVMs. Before
feeding CNN, a fixed-size CNN input from each proposal is then computed
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regardless of the region’s shape through a technique called affine image warp-
ing, as explained in the image below.

Figure 3.2. R-CNN: Regions with CNN features [6]

Region proposals: selective search. Selective search is a greedy algo-
rithm whose goal is to generate all object locations within an image. Being
a heuristic-based algorithm, it guarantees a sub-optimal solution, however
some experiments [52] show that it can achieve good performance, by cap-
turing different object at different scales. The basic operation is very simple:
initially a region of space within the image that does not spread over several
objects is generated, then a similarity is calculated between the starting re-
gion and all its neighbors through a generic metric S; the two regions most
similar to each other are then joined and the algorithm proceeds iteratively
until a single region that spans over the entire image is obtained.
To ensure as much diversity as possible, multiple solutions are generated us-
ing both (1) different starting regions and (2) different S-similarity metrics.
The different solutions are then combined in such a way that the same loca-
tions of objects present in more solutions have a higher probability of being
selected.

Intersection-over-Union. After generating a set of region proposals,
each of them must be assigned a label in order to train the object-category
classifier. It is clear that if a region proposal fully overlaps a ground-truth
box, the label of that class must be assigned to it; by contrast if it does not
intersect any of the ground truth boxes of that image it must be labeled as
background. On the other hand, it is more difficult to understand what would
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be the best behavior to adopt if the region proposal partially overlaps one or
more ground-truth box. In [6], a grid-search over different values shows that
a region proposal must be labeled as positive (i.e. one of the known classes)
if it has an Intersection-over-Union higher than 0.3, which is calculated as
follows:

Definition 3.2.1 (Intersection-over-Union (OD)) Let denote with B1, B2
two rectangular boxes whose height is h1, h2 and width is w1, w2 respectively
and left-up corner position (x,y). Let I : R3 → R a function that receives in
input the area of two rectangles and outputs the intersection area; similarly
let U : R3 → R a function that receives in input the area of two rectangles
and outputs the union area. Then:

IoU = I(x, y, w1 · h1, w2 · h2)
O(x, y, w1 · h1, w2 · h2)

(3.1)

Definition 3.2.2 (Intersection-over-Union (IS)) Let denote with M1, M2
two segmentation masks. Let I : R → R a function that receives in input
the pixels of the two masks and outputs the number of intersection pixels;
similarly let U : R → R the pixels of the two masks and outputs the number
of intersection pixels. Then:

IoU = I(M1, M2)
O(M1, M2)

(3.2)

In other words, the IoU measures the ratio between the intersection area
and the union area of two boxes.
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Figure 3.3. Example of Intersection-over-Union between two
rectangular boxes [7]

Non-Maximum Suppression. Having now assigned a label to each pro-
posal, the model training phase begins. In particular, each region proposal is
fed into the deep convolutional layers of the R-CNN, whose last level extracts
a fixed-length feature vector of size 4096. Once features are extracted and
training labels are applied, a linear SVM per class is optimized by minimizing
a cross-entropy loss, which is defined as:

Definition 3.2.3 (Cross-Entropy Loss) Let X ∈ Rn,m a generic dataset,
C the set of classes, y ∈ Cn the corresponding ground-truth class vector,
p : Rm → R|C| the probability score that a data sample belongs to a specific
class, then:

CE(X , y) = −
Ø
x∈X

log(pyc(x)) (3.3)

Note that the cross-entropy loss looks only at the prediction of the model
related to ground-truth class (i.e. yc), thus the importance of the function
p : Rm → R|C| to map the data sample to a probabilistic vector, so the when
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the loss is minimized (i.e. when pyc(x) is equal to 1), the predictions for all
the other classes will be 0, that is the desired behavior.

Typically the number of proposals extracted from the selective search is
high (about 2000) and contains many overlapping boxes. Subsequently, in
order to select at test-time the best box (the one with the highest confi-
dence score) among all those that highly intersect with each other, the Non-
Maximum-Suppression algorithm is applied, which works as follows:

Algorithm 1 Non-Maximum-Suppression
Input: A list of Proposal boxes B, corresponding confidence scores S and
overlap threshold N.
Output: A list of filtered proposals D.
1. Select the proposal with highest confidence score, remove it from B and
add it to the final proposal list D. (Initially D is empty).
2 Compare this proposal with all the proposals — calculate the IoU (3.2)
of this proposal with every other proposal. If the IoU is greater than the
threshold N, remove that proposal from B.
3. Again take the proposal with the highest confidence from the remaining
proposals in B and remove it from B and add it to D.
4. Once again calculate the IOU of this proposal with all the proposals in
B and eliminate the boxes which have high IOU than threshold.
5. This process is repeated until there are no more proposals left in B.

3.2.2 Fast R-CNN
Despite its notable increase in performance with respect to previous ap-
proaches, R-CNN has three main drawbacks:

1. Training is a multi-stage pipeline: First R-CNN fine-tunes the deep
convolutional layers on object proposals, then it trains the SVM from
scratch by using the CNN feature maps.

2. Training is expensive in space: For SVM training, features are ex-
tracted from each object proposal and written to disk. This process
requires hundreds of gigabytes of storage on 5K images.

3. Training-Test is expensive in time: It takes around 2.5 GPU-days
to train a model on 5K images; at test-time it takes around 47/s per
image.
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Figure 3.4. Before and After Non-Maximum Suppression [7]

The main cause of slowdown in the R-CNN pipeline is due to the forward
process in the deep convolutional layers for each object proposal, without
sharing computation. To solve this problem, the same author of [6] in the
following years proposed a new pipeline called Fast-RCNN [41], in which the
training process was speeded up by 3x, while the test process was speeded
up by 10- 100x. In particular its main contributes are:

1. Training is single stage: it can update all network layers, by making
use of a multi-task loss;

2. It computes the forward in the deep convolutional layers only once for
each image, thus being able to share the computation among all the
object proposals generated by an image. As a consequence, no disk
storage is required.

RoI Pooling Layer. As in 3.2.1, various objects proposals for each image
are computed through selective-search algorithm. However, in Fast R-CNN
pipeline the whole image is initially processed with several convolutional and
max pooling layers to produce a conv-feature map. Then, for each object
proposal a Region-of-Interest pooling layer extracts a fixed-length feature
vector from the conv-feature map itself. In such a way there is no need to
process a deep convolutation forward for each object proposal in order to ex-
tract the corresponding fixed-length feature vector, as it is calculated starting
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from the conv-feature map, thus sharing an image-level computation.
As stated in [41], each RoI is defined by a four-tuple (r, c, h, w) that specifies
its top-left corner (r, c) and its height and width (h, w). RoI max pooling
works by dividing the h x w RoI window into an H x W grid of sub-windows
of approximate size h/H x w/W and then max-pooling the values in each
sub-window into the corresponding output grid cell.
Multi-task Loss. Differently from the R-CNN in which the classification
task is performed by multiple class-specific SVM classifiers, in Fast-RCNN
[41] the object-proposal feature vectore is fed into a sequence of fully con-
nected layers that finally branch into two sibling output layers: one that
produces softmax probability estimates over K object classes plus a catch-all
background class and another layer that outputs four real-valued numbers for
each of the K object classes. Each set of 4 values encodes refined bounding-
box positions for one of the K classes, as defined in ??. The rationale behind
the bounding-box refinition is to adjust, for each class, the spatial coordinates
of the shared object location according to intrinsic category characteristics (a
dining table will almost certainly expand in breadth, but a tree will almost
certainly expand in height).
More formally, given Bp and B̄c a proposal bounding box and a ground-truth
bounding box of class c respectively, the goal is to learn, for each class c, 4
functions f c

x(Bp), f c
y(Bp), f c

w(Bp), f c
h(Bp) that maps the proposal box Bp to

a class-specific box Bc; once learnt these functions, a scale-invariant trans-
formation of the center and log-space translations of width and height of the
proposal box is applied to obtain the predicted class-specific box Bc:

Bc
x = Bp

wf c
x(Bp) + Bp

x

Bc
y = Bp

hf c
y(Bp) + Bp

y

(3.4)

Bc
w = Bp

w exp(f c
w(Bp))

Bc
h = Bp

h exp(f c
h(Bp))

(3.5)

To learn these function, a smooth-L1 regression-loss Lreg is used, that is
defined as follows:

Definition 3.2.4 (Smooth-L1 Regression Loss) Given c the ground-truth
class, Bp, Bc and B̄ the proposal box, the predicted box for class c and the
ground-truth box respectively, then:

Lreg(Bc, Bp, B̄) =
Ø

i∈x,y,w,h

smoothL1(g(Bc, Bp) − B̄) (3.6)
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where the function g is the function that applies the scale-invariant trans-
formation and log-space translation and smoothL1 is a robust L1 loss that is
less sensitive to outliers than the typical L2 loss, both defined as:

g(Bc, Bp)x = Bc
x − Bp

x

Bp
w

g(Bc, Bp)y =
Bc

y − Bp
y

Bp
h

(3.7)

g(Bc, Bp)w = log(Bc
w

Bp
w

)

g(Bc, Bp)h = log(Bc
h

Bp
h

)
(3.8)

smoothL1(x) =
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.9)

Finally, the overall Multi-task Loss Ltot to minimize is:

Ltot(pc, c, Bc, Bp, B̄) = Lcls(pc, c) + λ[c ≥ 1]Lreg(Bc, Bp, B̄) (3.10)

where pc and c are the prediction of the model for class c and the ground-
truth class respectively, Lcls is the standard cross-entropy loss defined above
(3.3), Lreg is the smooth-L1 regression-loss Lreg, [c ≥ 1] is the Iverson Bracket
indicator function that evaluates to 1 when c ≥ 1, 0 otherwise; λ is a weighing
factor to balance both loss terms, that is set to 1 in [41].
Since the background class is labeled as 0, the corresponding regression loss
is ignored because there is no notion of a ground-truth background box.

3.2.3 Faster R-CNN
This section examines in detail the final architectural model of the trilogy
that began with R-CNN : the Faster R-CNN [8].
In the transition from R-CNN to Fast R-CNN both time and space cost were
drastically reduced thanks to sharing convolution across proposals. However,
a huge bottleneck still remained due to the generation of the object proposals
needed to train the Fast-RCNN detector D. In fact, although it could be
considered an independent module from the detector training and therefore
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did not impact the training time, the same thing cannot be said at test-time,
in which for each image to predict the corresponding object proposals must
be generated and the time spent on it is approximately 2 seconds per im-
age in a CPU implementation. This therefore constituted a major stumbling
block for achieving real-time object detection with this architecture.
To this end, Faster R-CNN introduces Region-Proposal-Network, a deep
learning that produces object proposals and at the same time it shares the
convolutional layers of the Fast R-CNN detector, thus creating a unified net-
work that can be trained in an end-to-end fashion.

Figure 3.5. Training schema of Region Proposal Network. [8]

Region Proposal Network. As stated in [8], a Region Proposal Network
takes and image of any size at input and outputs a set of object proposals,
each of them with a probabilistc score of being an object. To generate can-
didate proposals, a conv-feature map is generated as in [41], then a shared
small convolutional network (3 x 3) slides over the conv-feature map and each
sliding windows is mapped to a lower-dimensional feature vector of size 256.
This feature vector is finally fed into two siblings fully-connected layers: (1)
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a box-regression layers that outputs the object proposal, and a classification-
layer that outputs a probabilistic score of that proposal to be an object.
An important novelty of this process is constituted by the concept of an-
chors: in order to build a model that is able to detect same object-categories
at different scales and different height-width ratios, at each sliding windows
the RPN simultaneously computes multiple region proposals (called an-
chors). In particular it uses 3 scales (128, 256, 512) and 3 aspect ratios
(1:1, 1:2, 2:1) to generate 9 objects proposals at each sliding windows (each
possible combination of scale and aspect ratio).

Figure 3.6. Simultaneous computation of anchors starting from the sliding
window on conv-feature map. [8]

Thus the box-regression loss defined above (3.2.4) has been slightly modi-
fied to take into account the anchors:

Lreg(Bo, Ba, B̄) = 1
|A|

Ø
a

Ø
i∈x,y,w,h

smoothL1(g(Bo, Ba) − g(B̄, Ba)) (3.11)

where A is the set of anchors, Ba, Bo and B̄ the anchor box, the predicted
box for the object o and the ground-truth box respectively; while the func-
tion g(·, ·) and the smooth-L1 regression-loss are the same defined in 3.2.4.
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This can be thought as a bounding-box regression from an anchor box to a
nearby ground-truth box.

Thus the total loss Ltot used to train the region proposal network is:

Ltot(po, o, Bo, Ba, B̄) = Lcls(po, o) + λ · o · Lreg(Bo, Ba, B̄) (3.12)
where o is the ground-truth object class, that is set to 1 if any of: (i) it

is the anchor with the highest IoU, or (ii) it has an IoU overlap higher than
0.7 with any ground-truth box; otherwise is set to 0. po is the probability
that the anchor is an object, Ba, Bo and B̄ the anchor box, the predicted
box for the object o and the ground-truth box respectively. As in 3.10, the
regression term is calculated only if the anchor is positive (i.e. o is set to 1).

Overall Training Procedure. As stated in [8], Both RPN and Fast
R-CNN, trained independently, will modify their convolutional layers in dif-
ferent ways. We therefore need to develop a technique that allows for sharing
convolutional layers between the two networks, thus building a single unified
network. To accomplish this purpose, to paths can be followed:

1. Approximate joint training. In this solution, the RPN and Fast
R-CNN networks are merged into one network during training. This
solution is easy to implement. But this solution ignores the derivative
w.r.t. the proposal boxes’ coordinates that are also network responses,
so is approximate.

2. 4-Step Alternating Training. First the RPN is trained in the first
step, then the proposals are used to train the Fast R-CNN in a second
step. At this point the two networks are completely independent and
do not share any computation. In the third step, we use the detector
network to initialize RPN training, but the entire convolutional part
is kept frozen and only fine-tune layers unique to the RPN. Now the
two networks share convolutional layers. Finally, in the fourth step,
always keeping the shared convolutional layers fixed, we fine-tune the
unique layers of the Fast R-CNN. As such, both networks share the
same convolutional layers and form a single unified network.

3.3 Instance Segmentation with Faster-RCNN
Mask-RCNN [9] introduces an extension to Faster-RCNN that is able to
achieve the instance segmentation task.
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A computer vision job for recognizing and localizing an item in a picture is
instance segmentation. Instance segmentation is a logical step in the seman-
tic segmentation process, but it is also one of the more difficult approaches
to master when compared to other segmentation methods. The purpose of
instance segmentation is to provide a view that divides objects of the same
class into separate instances. Because the quantity of instances is unknown
in advance, and the assessment of the acquired instances is not dependent on
pixels, as was the case with semantic segmentation, automating this proce-
dure is difficult. Therefore it goes deeper than object detection, by coloring
pixels of the object and not just generating a bounding box for them.

3.3.1 Architecture

Mask R-CNN, which is used for instance segmentation issues, is an extension
of Faster R-CNN, with the inclusion of a third branch that allows for the
prediction of an instance’s mask. This procedure is performed in parallel
with two other branches of Faster R-CNN (the bounding box regressor).
Mask R-CNN will construct a mask with a size of 28x28 for each Region
Of Interest (RoI), which will then be enlarged until it meets the dimensions
of the appropriate bounding box. Mask R-CNN will output the class to
which each instance belongs, as well as its bounding box and a binary mask
placed on it, for each instance found. This new branch is composed by two
convolutional layers: a transposed convolution and a 1to1 convolutional layer.
In order to train the network to place correctly those masks another term to
the loss is added.Only one mask is associated with each RoI ground truth and
a sigmoid activation function will be applied to each pixel of the mask. The
branch associated with the mask prediction will generate binary masks having
dimensions m × m for each of the K possible classes. Therefore, in total it
will generate K · m2 possible masks, each associated with a different class.
Lmask is defined as the average of the binary cross-entropy loss functions,
in which the k-th mask is included if the region is associated with the k-th
ground mask truth:

Lmask = − 1
m2

mØ
i,j

[yijlog(yk
ij) + (1 − yij)log(1 − yk

ij)] (3.13)
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3 – Object Detection and Instance segmentation

Figure 3.7. Mask-RCNN architecture [9]

Figure 3.8. Instance segmentation example [10]
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3.3.2 RoI Align
An important novelty introduced by Mask R-CNN is the use of RoI Align to
replace RoI Pooling for the extraction of the RoI of a feature map. Suppose
we have a 256 × 256 size image and a feature map to it associated with
dimensions 50 × 50. We want to extract a RoI of dimension 30x30 of the
original image. Therefore, it would be necessary to extract a region of pixels
from the feature map equal to m × m. If we wanto to calculate m it is:
50∗30
256 = 5.86.

Using RoI Pooling, it will not be possible to extract a region of 5.86 ×
size 5.86, but an approximate region equal to 5 x 5 will be considered (i.e.
the integer part of m will be considered). This approximation produces a
loss of 0.86 pixels by dimension: it is associated with a loss of information
as the techniques pooling will not take into account the lost pixels. This
pixel misalignment problem has been solved thanks to the RoI Align layer,
which no longer approximates the size of the extracted regions, in fact it
uses bilinear interpolation to not loose any information. Considering the
proposed example again, the extracted region will actually have a dimension
5.86 x 5.86.

Figure 3.9. Roi align representation, each point represent a sampling point
into a single pixel of the feature map, then alignment would be performed
through bilinear interpolation [9]

32



Chapter 4

Incremental learning

4.1 Problem description
The goal of incremental learning is to create artificially intelligent systems
that can learn new tasks from fresh input while retaining knowledge from
previously learned tasks. It allows for efficient resource usage by overcoming
the need to retrain from scratch when new data with different classes arrive,
thus reducing memory usage by limiting the amount of data that should be
stored. In this way a model can be delivered and extended without having
(or partially having) old training data. This is suitable also for application
that requires high privacy standards.
The most difficult aspect of incremental learning is catastrophic forgetting,
which refers to a sharp reduction in performance on previously acquired
tasks after the acquisition of a new one. Moreover there is a contrasting
objective between old and new class learning, the model would maintain the
knowledge on old classes avoiding catastrophic forgetting and at the same
time aims to learn new classes; therefore also new classes are difficult to be
learned, because the model is not free to be updated on new classes as it
would have done in a standard end to end training on data.[53]
The most difficult aspect of incremental learning is learning from data from
the present task while avoiding forgetting previously learned tasks.

4.2 Mathematical formulation
An incremental learning problem P consists of a sequence of n tasks:

P = [(C1, D1, (C2, D2), ..., (Cn, Dn)] (4.1)
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where Ct represents a set of classes available in the training dataset Dt.
During training for step t, the learning model Pt can use data belonging to
Dt, and the tasks do not overlap in classes:

Ct ∩ Ct+1 = ∅ ∀t (4.2)

In this case the learner Pt is a deep architecture that should be optimized
as described in the previous chapter. This model must incrementally include
the classes at the previous step, thus meaning that at training time the
model must not process previous classes, but at test time it must be able
to recognize them. Therefore at test time we would have a model Pt that is
able to classify:

tÛ
τ=1

Cτ (4.3)

4.3 Approaches to solve incremental learning
General approaches to solve the problem of incremental learning are:

• Regularization approaches: approaches that use regularization terms to-
gether with the classification loss in order to mitigate catastrophic for-
getting.

• Rehearsal approaches: Rehearsal methods keep a small number of ex-
emplars (exemplar rehearsal), or generate synthetic images or features
(pseudo-rehearsal) of old classes to have at training data also a repre-
sentation of old data.

4.3.1 Transfer learning and finetuning
The naïve finetuning strategy, which has been successful in solving transfer
learning issues, suffers from a lack of data from earlier tasks, and the resultant
classifier is unable to retain previous knowledge.
Transfer earning is when relevant knowledge from a previously trained AI
model is "imported" and utilized as the foundation for a new model. The
main problem is that the assumption of having a model trained on a huge
dataset is strong itself, moreover, to transfer correctly knowledge the two
tasks that we want to solve must be very similar, and when the target network
is trained the set of classes is known and do not change. On the other
hand, in an incremental setting, where annotations are missing finetuning
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and transfer learning plummet in performance, because the two tasks are
too much different. For these reasons finetuning strategy is always a lower
bound in all incremental learning benchmarks. It is used as a baseline to drive
the research and to understand if the model is working properly (i.e. if it is
achieving better results than finetuning). Finetuning consist of making the
weights of a model free to update,in a training from scratch fashion, to adapt
the network to new images. In incremental learning this leads to catastrophic
forgetting [54], since the new classes are learnt correctly because the weights
update accordingly to the new images, on the other hand old classes are
completely forgotten because old classes are not present (or not annotated)
in incoming data.

4.3.2 Regularization

Regularization is one of the most used approaches in literature for continual
learning, namely one or more terms are added to the classification loss to
avoid it to completely forget the old classes representation.

Weight regularization

In the set of parameter θ of the network, some of them are more representa-
tive then others, therefore a smart approach is to understand the degree of
importance of a weight wi,t−1 for the task Pt−1 in order to avoid a wrong up-
date in the task Pt. The idea behind this kind of regularization is : if wi,t−1
was very discriminatory for the task Pt−1 (hence it was discriminatory for
the old class correct classification), then the difference|wi,t −wi,t−1| should be
small. The aim of these methods is to find a function ϕ(θt) able to quantify
this importance. Then, in addition to the classification loss another term can
be introduced:

Lwreg = ϕ(θt−1) · (θt − θt−1)2 (4.4)

Since the total loss Ltot = Lcls + Lwreg aims to be minimized, this equation
minimizes the difference between old and new model weights weighted on
the importance of the weights in the previous task. Kirkpatrick et al. [24]
proposed Elastic Weight Consolidation (EWC) in which ϕ is calculated is a
diagonal approximation of the Fisher Information Matrix.
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Knowledge distillation

Another regularization technique, maybe the most famous and used is Knowl-
edge distillation (KD). This methods are based on the usage of a distillation
loss that aims to generally keep the representation for model Pt on Ct−1
classes as close as possible to Pt−1 ones. This approach was firstly used in
learning without forgetting [20] and generally use the following loss, coupled
with the classification loss:

Ldist(x; θt) =
Ø

c∈Ct−1
pt−1

c · log(pt
c) (4.5)

where pt
c are the softmax probabilities for class c and model Pt. In or-

der to use this approach, contrarily to the previous one, during training the
old model (Pt−1) must be used to provide old output activation to the new
model Pt. This technique works well when between the task there is not
a huge domain shift, otherwise, constraining the model to act as the pre-
vious one could lead to poor results. This approach is recently combined
with attention mechanisms that aim to generate a "localization map" to in-
dicate which are the regions that majorly contribute to the prediction. In
this way knowledge distillation can be less constrictive and act just on nec-
essary parameters. Some trivial approaches use activation maps retrieved
from the feature extraction, other smarter approaches use Grad-CAM [55]
algorithm that is able to to produce an attention map basing on gradients
back-propagation.

4.3.3 Rehearsal approaches
Although the mathematical definition of the problem avoids the usage of
previous classes data to train the new model Pt, in literature this constraint is
relaxed by the usage of exemplars. Instead of not using previous data, a small
amount of them is kept (exemplar rehearsal), or synthetic images/features
are generated in order to help the network to not forget previous examples.
This method surely solves the problem of missing previous data, allowing the
network at time step t to use data from all classes. In this way at each step
the model is able to build optimally discriminatory weights, since the classes
are always trained almost jointly.
Of course, it is crucial that the exemplar set is small, otherwise the model is
cheating and going towards the joint-training upper bound. To this extent,
in literature, when the model uses exemplars the memory has a fixed size
decided a-priori. In this way, going forward with new tasks the representative
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exemplars for each class are reduced. Formally we define an exemplar set for
a class c ∈ Ct−1 Ec

t with memory K as:

Ec
t ⊂ X c

t−1

Ø
c∈Ct−1

|Ec
t | ≤ K

(4.6)

Usually, exemplars usage is linked with a sampling strategy. Both when
selecting new exemplars and reducing the set there is a need for a rule to
select them. Actually random selection is demonstrated to be effective and
with almost null computational cost. Other approaches proposed by [18] and
others try to select the most representative exemplars basing on features,
particularly it tries to maintain the images that minimize the distance from
the class centroid; other methods try instead to select exemplars in such a
way that the distribution on training data is respected. The latter approaches
involve more computational power having not a big gain in performances.

Figure 4.1. Schema of incremental learning general pipeline, in this model
the Rehearsal memory is not mandatory

37



4 – Incremental learning

4.4 Background shift: An additional problem
in incremental object detection

In image classification, an image contains just one class and furthermore the
whole image is classified. On the other hand, in more advanced tasks, such
as object detection, an image can contain many different object of different
classes. Particularly those objects can belong both to previous or new classes
leading to the problem of missing annotations (or background shift).

Let assume an incremental learning pipeline (P0...P t∗) in which we add
many times a single class to a set of already known classes. When the model
was trained the first time it was considering the first N classes as foreground
and the other classes (not present in the ground thruth) as background. Go-
ing forward in incremental steps the new classes learned could be objects that
in the previous steps were learnt as background. Moreover, since old classes
are not present in the ground truth of the current training step, if they are
processed by the model, object from old classes will be recognized as back-
ground backpropagating this information and harming the model training.
Therefore there is a double problem:

• The model P t∗ is trained considering old objects Ct with t < t∗ as
background, thus harming the performances on old classes.

• The model P t with t < t∗ was trained considering new classes as back-
ground, thus harming the performances of P t∗ on the new classes, since
it will distill the knowledge from the old model that pushes the new
classes as background.
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Related works

In this chapter a discussion on methods related to the central task of this
thesis are extensively described. The main aim is to analyze their main
contributions and find the strengths and weaknesses of these approaches.
Particularly, methods are divided by task (Object detection and Instance
segmentation), both in an incremental fashion. Moreover the object detection
works are divided in those using rehearsal strategies and those that do not
have any replay memory; this differentiation in made for the sake of fairness,
since when comparing our method with others if a method use exemplars is
more likely to achieve better results than methods that does not.

5.1 Incremental object detection
Incremental learning in Object detection has been gaining importance in
last years. The first mover in this task [25] proposes a framework based on
two stage detectors performing knowledge distillation on the output of Fast-
RCNN ROI without any rehearsal strategy. Following this pattern some
methods extend the distillation terms by reshaping knowledge distillation on
ROI heads [56] and proposing knowledge distillation on RPN and features
[26], interestingly [29] proposes a pseudo-positive sampling algorithm to deal
directly with background shift. Other methods [57], [58], [59], [60] [61] fo-
cused on rehearsal methods to maintain the old task knowledge, both on
feature and image replay. Finally [62] and [63] proposed parameter isolated
methods to retain knowledge via deep model consolidation, moreover the lat-
ter exploit a consistent change in the architecture introducing dilatable ROI
heads [63]. As for classic object detection also ICL pipelines show differences
in architectures, in fact there is not a clear base learner to the aforementioned
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tasks, but they use both one or two stage architectures. In the next sections
all these works will be described more in detail.

5.1.1 ILOD

This paper [25] is the first one facing the problem of incremental object detec-
tion. It uses the FastRCNN architecture as backbone for performing object
detection.
For the authors the main problem in forgetting is linked with the ROI heads,
therefore their main contribution in the incremental setting is to add a dis-
tillation loss to the ROI heads: clshead and bboxhead. Particularly, for each
image, 64 RoIs out of the 128 sampled from the anchors with the highest
objectness score are used to perform knowledge distillation.
The distillation loss is defined as follows:

Ldist(p, breg) = 1
N |Ct−1|

Ø
[(pt−1 − pt)2 + (bt−1

reg − bt
reg)2] (5.1)

where N is the number of RoIs sampled, Ct−1 is the number of old classes,
pt and bt

reg are respectively the class logits and the bounding box regression
outputs of the model at time t.
This paper posed the basis for incremental methods, inspired by recent works
published for incremental image classification, in fact it use an experimental
setting similar to image clssification, in which there is a teacher and the
student model the are used together during the learning step t, with the
model P t−1 frozen.

5.1.2 Faster ILOD

This paper [26] focuses to apply the aforementioned method [25] to a different
backbone: Faster-RCNN Moreover they try to constrict more the learning of
the new model by introducing two terms to the distillation loss: feature map
KD and RPN KD, maintaining unaltered the RoI distillation loss proposed
by ILOD.
The mentioned distillation losses are defined as follows:

F _Dist = 1
M

Ø ||f t−1 − f t||1 f t−1 > f t

0 otherwise
(5.2)
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LRP N_Dist = 1
N

Ø ||pt−1 − pt||22 + β||bt−1 − bt||22 pt−1 > pt

0 otherwise

β =
1 pt−1 > pt + T

0 otherwise

(5.3)

where M is the total number of activations in the feature map f, T is
a threshold to control regression (T = 0.1) and N is the total number of
anchors. These two additions are actually not too much influential in the
training, in fact the highest boost is given by the usage of a Faster-RCNN
architecture that generally achieve higher results than the Fast-RCNN.

5.1.3 Multi-View Correlation Distillation for Incre-
mental Object Detection

This paper [56] tries to solve the issue of a too constrained distillation loss,
it uses a distillation loss on features similar to [26]. Moreover it adds three
different distillation losses:

• Channel-wise: Distillation loss that acts on the aggregation of the
channels of the feature map leaving the RPN. It uses an SE attention
module (squeeze-and-excitation), the “important” channels are therefore
chosen by means of a threshold. This information is then used to distill.
The distillation is not done directly on the features but on the correla-
tion matrix between the features of the channels deemed important.

• Point-wise:it attempts to anchor the more activated points of the fea-
ture map output from the RPN to the previous model. In this way this
loss tries to keep the knowledge only on specific parts of the feature map,
leaving more freedom to the new model to act on the other parts of the
image. This is done on the high or low points response in the activation
based spatial attention map, which is a sum of the feature map across
all channels.

• Instance-wise: This loss tries to explore the correlations within the
single instance and keep them with respect to the previous model. The
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feature map after RoI pooling is divided into parts and the correlation
is calculated (within it image) between the various parts. Knowledge
about this is maintained by introducing a term in the distillation which
is the distance between the correlation matrix on t

he old model and on the new model.
This paper is very recent (summer 2021) and interestingly faces the prob-

lem of too much constrictions due to distillation loss, trying to tailor an
approach to distill in a smarter way the model.

5.1.4 Lifelong object detection
This paper [29] uses an approach similar to [26], using the same set of losses
for both RPN and RoI heads. Moreover it uses a method that deals specifi-
cally with background shift. One issue that leads the freshly updated model
to forget past class knowledge is that any old object classes in the newly
provided photos are considered as "background." This is because the only
bounding boxes in the new data that are labeled are those that correspond
to the new classes. In order to prevent this problem, the authors propose
a method to be aware of pseudo-positive boxes while collecting negative an-
chors and RoIs for training the student detector on new classes. Pseudo
positive boxes are defined as output bounding boxes with probability score
greater than 0.5 for any class other than background. Particularly, it prevents
pseudo-positive anchors from being used as negative anchors, and prevents
pseudo-positive RoIs from being used as negative RoI samples.

5.1.5 Methods with rehearsal
ILOD-Meta

This method uses the ILOD [25] framework, empowering it with the use of
exemplars and a meta learning strategy to adjust gradients during training.

RILOD

This paper [59] uses the same set of losses of [26], distilling the knowledge on
the three parts of the Faster-rcnn architecture. It uses exemplars, particularly
it studies the effect of different sampling strategies. Moreover it uses data
downloaded using search engines to increase the dataset size.
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OWOD

This work [64] is focused on open world object detection, therefore to rec-
ognize unknown classes. This method uses a normal rehearsal strategy and
interestingly, although it is not the main task it achieve good results on
incremental object detection.

5.2 Incremental Instance Segmentation
Very few works exist on incremental instance segmentation, particularly, to
the best of my knowledge the only one is: "Class-incremental instance seg-
mentation via multi-teacher networks" [65]. This paper is based on YOLACT
architecture [66] (1-stage) and uses two teachers to perform knowledge distil-
lation. Results are promising, on the other hand it is not fair to compare our
work with the latter since the architecture itself is deeply different and is tai-
lored on real time instance segmentation. This paper proposes an approach
already used in incremental learning tasks: using two different teachers to
distill the knowledge. The first one is a normal teacher network trained on
old classes (Former Teacher Network), the second one is a network that is
trained just on the new classes (Current Teacher Network). In this way
the knowledge is constrained by a model that knows just old classes but also
from a model that is able to recognize just new classes; in this way this paper
correctly balance the effect of distillation loss, avoiding to constraining too
much the network to old classes.
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Method

6.1 Notation and Preliminaries
The goal of object detection is to train a model able to detect objects, i.e.
localize and classify them by producing a rectangular box and a class label.
In this work, we focus on detection model in the R-CNN [12, 13, 9] family. A
detection model, denoted Fθ with parameters θ, is composed by three com-
ponents: a feature extractor FF E, a region proposal network (RPN) FRP N

θ ,
and a classification head FRCN

θ . Denoting with x an image, the feature ex-
tractor outputs a dense feature map. The map is forwarded to the RPN
that is devoted to produce a set of N rectangular regions of interest (RoIs),
and associates to it a binary objecteness score. The classification head then
applies the N RoIs to the feature map and classifies them, generating class
probabilities for each RoI (p ∈ IR|C|+1), indicating with C the number of
classes, and the final rectangular boxes r ∈ IR4|C|, one for each class. No-
tably, the classifier also generates a class score for the background, suggesting
that there are no objects within the relative RoI. The training process in in-
cremental learning for object detection (ILOD) is divided into many learning
phases, each of which introduces a new collection of classes to be detected.
Formally, in the t-th training step, a detection model Fθt is updated to learn
a set of classes Y t using a training set Dt. We note that, while an image
in the training set Dt can contain multiple objects of different classes, only
annotations for classes in Y t are provided. Moreover, at training step t the
old training sets {D0, . . . , Dt−1} are not available. After the t-th step, the
model Fθt should produce prediction for all the classes seen so far, i.e. its
output should consider the classes in Ct = ∪t

t′=1Y t′. We note that Y i ∩Yj = ∅
for any i, j ≤ t and i /= j.
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6.2 MMA: Modeling the Missing Annotations

negative RoI (z=0)

Input

Old Classes
New Classes

Background

Teacher 

Student 

Figure 6.1. The blue box illustrates how unbiased cross entropy loss behaves
when the RoI is negative (i.e. when the RoI is empty): the model maximizes
the likelihood of having either the background or an old class. We demon-
strate the effect of the unbiased distillation loss on the classification output
for a new class region in the red box: it associates the teacher’s background
with either the student’s background or a new class. Finally, in green, the
RPN distillation loss is indicated.

Despite its strength, Faster R-CNN is not well-suited to updating its
weights in order to learn new classes. In particular, fine-tuning the model on
Dt drive the model to completely forget what it has learnt, suffering catas-
trophic forgetting [17]. To alleviate it, previous works [25, 26, 29, 27, 28]
introduced knowledge distillation [67, 20]: at the training step t, the student
model Fθt is forced to mimic the output of the teacher model Fθt−1, i.e. the
model frozen after the previous training step.

Despite alleviating the forgetting, previous works did not consider the
missing annotation issue. Despite their efforts to alleviate forgetting, prior
works did not address the issue of missing annotations. At time step t, the
dataset Dt annotates just the classes in Y t ; other objects in the image,
whether they belong to previous or future classes, are not marked. Any RoI
that does not match a ground truth annotation is assigned to the background
using the normal detection procedure. This raises two points: i) if the RoI
contains an object from a previous class, the model learns to predict it as
background, exacerbating forgetting; (ii) if the RoI contains an object from
a future class, the model learns to consider it as background, making it more
difficult to learn new classes when presented. The missing annotation issue is
similar to the background shift presented in [30] in the context of incremental
learning for semantic segmentation. In the following, we show how to adapt
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the equations proposed by [30] in incremental learning for object detection.

6.2.1 Unbiased Classification Loss.

The classification loss ℓRCN
cls in the Faster R-CNN has the goal to push the

network to predict the correct class label for the RoIs. In depth, given a
sampled set of N RoIs, generated by the RPN, each one is matched with a
ground truth label (positive RoI) or with the background (negative RoI). It
is computed as:

ℓRCN
cls = 1

N

NØ
i=1

zi(
Ø

c∈C⊔
ȳc

i log(pc
i)) + (1 − zi) log(pb

i), (6.1)

where zi is 1 for a positive proposal and 0 otherwise, ȳi is the one-hot class
label (1 for the ground truth class, 0 otherwise), and pb

i indicates the proba-
bility for the background class for the i-th RoI.

Since it was built for offline object recognition, the 6.1 ignores the fact
that the ground truth contains only information about novel classes. The
difficulty is that all other objects in the image are not associated with any
ground truth and are thus deemed to have a negative RoI, for which the
model learns to predict the background class. This issue is especially critical
for objects of older classes, since it causes the model to forget the object’s
actual class and replace it with the background class, resulting in a severe
catastrophic forgetting. To address this concern, we amend 6.1 as follows:
To avoid this issue, we modify 6.1 as follows:

ℓRCN
cls = 1

N

NØ
i=1

zi(
Ø

c∈Yt

ȳc
i log(pc

i))+

(1 − zi) log(pb
i +

Ø
o∈Ct−1

po
i ),

(6.2)

where Y t are the new classes at t and Ct−1 are all the classes seen before t.
Using 6.2 the model learns new classes on the positive RoIs (zi = 1) while
preventing the background to prevail on the old classes: instead of pushing
the background class on every negative RoI (zi = 0), as in 6.1, it forces the
model to predict either the background or any old class by maximizing the
sum of their probabilities.
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6.2.2 Unbiased Knowledge Distillation.
A common solution [26, 29, 27, 28] to avoid forgetting is to add two knowledge
distillation loss terms to the training objective:

ℓ = ℓfaster + λ1ℓRCN
dist + λ2ℓRP N

dist , (6.3)

where λ1, λ2 are hyper-parameters.
The goal of ℓRCN

dist is to preserve the knowledge about old classes on the
classification head. Previous works [25, 26] force the student model to output
classification scores and box coordinates for old classes close to the teacher
using an L2 loss. However, they ignore the missing annotations, i.e. the new
classes have been seen in previous steps but, since they had been observed
without annotations, they have been matched to the background class. The
teacher would predict an high background score for new classes RoIs, and
forcing the student to mimic its behavior would make more difficult to learn
new classes, contrasting the classification loss. In order to model the missing
annotations, we formulate the distillation loss as:

ℓRCN
dist = 1

N

NØ
i=1

ℓRCN
dist_cls(i) + ℓsmooth_l1(rt

i, rt−1
i ), (6.4)

ℓRCN
dist_cls(i) = 1

|Ct−1| + 1(pb,t−1
i log(pb,t

i +
Ø

j∈Yt

pj,t
i )

+
Ø

c∈Ct−1
pc,t−1

i log(pc,t
i )),

(6.5)

where pk,t−1
i , rt−1

i and pk,t
i , rt

i indicates, respectively, the classification and
regression output for the proposal i and class k of the teacher and student
model, and b is the background class. While the second term of 6.4 has been
used in previous works [25, 26] and considers the box coordinates, we propose
to modify the first term that is crucial to handle the classification scores.

To model the missing annotations, 6.5 employs all of the student model’s
class probabilities to match the teacher model’s: the old classes Ct−1 are
preserved between the student and teacher models, while the teacher’s back-
ground pb,t−1

i is associated with either a new class or the student’s back-
ground. When the teacher predicts a high background probability for a RoI
belonging to a new class, the student is not required to copy the teacher’s
conduct; instead, the student can consolidate its new knowledge and correctly
predict the class.

47



6 – Method

6.2.3 Distillation on Region proposal network

ℓRP N
dist goal is to prevent forgetting on the RPN output. Since annotations

for old classes are not usable, the RPN learns to predict an high objectness
score only on RoIs belonging to new classes. To force the RPN to maintain
an high objectness score for regions belonging to old classes, we use the loss
proposed by [26]. The student is compelled to imitate the teacher only in
locations associated with previous classes., i.e. where the teacher score is
greater than the student one. Considering A regions, we compute ℓRP N

dist as:

ℓRP N
dist = 1

A

AØ
i=1

1[st
i≥st−1

i ]||s
t
i − st−1

i ||+

1[st
i≥st−1

i +τ ]||ω
t
i − ωt−1

i ||,
(6.6)

where st
i is the objectness score and ωt

i the coordinates of FRP N
θt on the i-

th proposal, || · || is the euclidean distance, τ is an hyperparameter, and 1
is the indicator function equal to 1 when the condition on the brackets is
verified and 0 otherwise. Note that when st

i > st−1
i , the teacher produces

an objectness score greater then the student and the proposal is probably
containing an old class. In contrast, when st

i ≥ st−1
i , the proposal is most

likely to belong to a new class, and requiring the student to replicate the
teacher score may bring errors that impair performance in new classes.

6.2.4 Feature Attention Distillation

In [26] the authors use a feature distillation on the output of the Resnet
backbone, this loss aims to maintain unaltered the feature space from the
old to the new model. Since one of the main problems in Object detection
ICL is the too constrictive distillation, then this loss increases that constraint,
blindly distillate all the feature map.
On the other hand since objects are not present in the whole image it could
be useful to distill just some parts of the feature map. Therefore in our
method we use the activation map of the previous model to weight the feature
distillation.
The old model should be activated in the portion of the feature map where
the object is, hence calculating the following matrices (respectively channel
and spatial attention map), we can have a measure of pixel importances in
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F , inspiring by [68] [69]

Satt(t) = HW · softmax[ 1
C

·
HØ
i

WØ
j

|F t
ij|)/T ]

Catt(t) = C · softmax[( 1
HW

·
CØ
c

F t
c)/T ]

(6.7)

where F t is the feature map of the model trained at step t and T is a
temperature to avoid high activations to deviate the softmax normalization
and H,W,C are respectively the feature map height, width and channels.
These two matrices represents the weights for the distillation loss that can
be written as follows:

Lact =
HØ
i

WØ
j

CØ
c

Satt(t − 1)ijC
att(t − 1)c · (F t

ijc − F t−1
ijc ) (6.8)

Moreover, since the activation map used is calculated on the old model,
there is the need to add a constraint to avoid that the new model diverges
too much in feature activation. Therefore another term to the distillation
loss is added:

Ldist
act = |Satt(t) − Satt(t − 1)| + |Catt(t) − Catt(t − 1)| (6.9)

Therefore the total attentive loss can be written as:

Latt = Lact + Ldist
act (6.10)

In order to give a practical example of the work made by this loss the
following images represent the activation maps on some images of VOC2007
dataset [11]. In these images the colored parts are the most activated by the
old model attention map. Particularly the "hottest" zones will be weighted
more in the feature distillation than the coldest one, allowing the model to
distill more the correct parts of the image.
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Figure 6.2. Example images taken from VOC dataset representing the acti-
vation maps of the old model

6.3 Extension to Instance Segmentation
The goal of instance segmentation is to produce an accurate pixel-wise mask
for each object in the image instead of a coarse bounding box. To produce
masks we rely on Mask R-CNN [9], that extends the Faster R-CNN intro-
ducing a mask head FMASK

θ . It generates an additional binary segmentation
mask with shape for each RoI C × h × w, where C is the number of classes
and h,w is the mask resolution. To train the mask head, [9] introduces an
additional loss term that is summed to the total multi-task loss. Formally,
Mask R-CNN objective is:

ℓmask = ℓfaster + ℓMASK
cls , (6.11)

where ℓMASK
cls is a average per-pixel binary cross-entropy loss between the

FMASK
θ output and the binary mask of the ground truth class.
Despite the method presented in 6.2 already accounts for forgetting on the

detection head, by applying 6.11 we incur the risk to forget how to segment
past objects while learning the new ones. For this reason, we further extend
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6.3 to add a knowledge distillation term on the mask head. Formally, in
instance segmentation we employ the following training objective:

ℓ = ℓmask + λ1ℓ
RCN
dist + λ2ℓ

RP N
dist + λ3ℓ

MASK
dist , (6.12)

where λ1, λ2, λ3 are hyper-parameters.
ℓMASK

dist has the goal of keeping the segmentation mask for old classes close
to the output of the teacher model. In particular, we employ a per-pixel
binary cross-entropy loss between the teacher model masks and the student
ones. Formally, denoting as mt

c,i the segmentation mask produced by FMASK
θt

for the class c at pixel i, we compute

ℓMASK
dist = 1

|I||Ct−1|
Ø
i∈I

Ø
c∈Ct−1

mt−1
c,i log(mt

c,i)+

(1 − mt−1
c,i ) log(1 − mt

c,i),
(6.13)

where I is the set of pixels and |I| = h × w. We note that 6.13 is computed
only on the segmentation masks belonging to old classes in Ct−1, while the
masks of the new ones are not distilled.
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Experiments

7.1 Experimental Protocol
We evaluate MMA on the Pascal dataset. In particular, following previous
works, we employ PASCAL-VOC 2007 [11] for object detection. It is a widely
used benchmark that includes 20 foreground object classes and consists in
5K images for training and 5K for testing. For instance segmentation, we
employed Pascal SBD 2012 [70], that contains the same set of 20 classes but
also reports the instance segmentation annotations. We used the standard
split of Pascal SBD 2012, using 8498 images for training and 2857 for evalua-
tion. Following [25], for both object detection and instance segmentation the
experimental protocol is as follows: each training step contains all the images
that have at least one bounding box of a novel class. We remark that at each
training step we have only labels for bounding boxes of novel classes, while all
the other objects that appear in the image, either belonging to past or future
classes, are not annotated. This is a very realistic configuration because it
makes no assumptions about the items in the photographs and significantly
minimizes the amount of annotation necessary at each incremental step.

7.2 Implementation Details
For object detection, we followed previous works [26, 29, 56, 71, 72, 60] and
we use the Faster R-CNN architecture with a ResNet-50 backbone. Similarly,
for instance segmentation, we employ the Mask R-CNN [9] architecture with
ResNet-50 backbone. Both backbones are initialized using the ImageNet
pretrained model [73]. We used the same training protocol of [25, 26] but
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we increased the batch size from 1 to 4 to reduce the time required for
training, scaling accordingly the learning rate and number of iterations. In
particular, for object detection we train the network with SGD, weight decay
10−4 and momentum 0.9. We use an initial learning rate of 4 · 10−3 for the
first learning step and 4 ·10−4 in the followings. We performed 10K iterations
when adding 5 or 10 classes, while we trained for 2.5K when learning only
one or two classes. We apply the same data augmentation of [25, 26]. We
set λ2 equal to 0.1, 0.5, and 1 when adding 10 classes, 5, and 1 or 2 classes,
respectively. λ1, λ3 are set to 1.

7.3 Evaluation Metrics
AP (Average Precision) is a widely used metric in object detection to eval-
uate how good the model is at both locating and classifying a given object
category. mAP is the average of the single APs computed for each class.
Before giving a formal definition of AP, it is necessary to step back and first
define the concepts of precision, recall and precision-recall curve.

Definition 7.3.1 (Precision-Recall-F1) Let c the target class, TP the
number of true positive (i.e. number of correct predictions of the model for
class c), FP the number of false positive (i.e. number of wrong predictions
of the model for class c), FN the number of false negative (i.e. number of
wrong predictions of the model for class different from c), then:

Precision = TP

TP + FP
(7.1)

Recall = TP

TP + FN
(7.2)

F1 = 2 · Precision ∗ Recall

Precision + Recall
(7.3)

In other words, precision measures how accurate are the predictions of
the model, i.e. the percentage of predictions are correct; the recall measures
how good the model finds all the positives. So the more the model tends to
predict each sample as positive, the higher the recall will be, but the lower
the precision will be as the number of false positive tends to increase. For
this reason, the metric F1 is introduced, which summarizes both precision
and recall in a single metric and it is maximized if and only if both precision
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and recall are maximized (the perfect model).
Due to the importance of both precision and recall, precision-recall curve
shows the tradeoff between the precision and recall values for different thresh-
olds. Let’s create a dummy example to better understand how to precision-
recall curve is plotted.

Table 7.1. Precision-Recall values [1]

Correct? Precision Recall
True 1 0.2
True 1 0.4
False 0.67 0.4
False 0.5 0.4
False 0.4 0.2
False 0.5 0.6
True 0.57 0.8

In table 7.3 we report the predictions of the model, sorted by confidence
score in a descending order. Note that recall values increase as we go down
the predictions, on the other hand precision has a zigzag pattern: it goes
down with false positives and goes up again with true positives. Let’s plot
the precision against the recall value to see this zig-zag pattern (7.3).
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Figure 7.1. Precision-Recall curve [1]

Now we can define the average precision as:

Definition 7.3.2 (Average Precision) Let p : R → R a function that cal-
culates the precision value at a specific recall level, then:

AP =
Ú 1

0
p(r)dr (7.4)

In other words, the average precision (AP) is finding the area under the
precision-recall curve defined above (7.3), so it is a way to summarize the
precision-recall curve into a single value representing the average of all pre-
cisions. Note that as precision and recall values are in between 0 and 1, also
the average precision will be in the range [0,1].

Finally, we can define the mAP as:

Definition 7.3.3 Let C the set of target classes, then:

mAP = 1
|C|

Ø
c∈C

AP c (7.5)

Each prediction of the model is considered correct when IoU ≥ IoUtresh =
0.5.
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To fairly compare our method with others for VOC 2007 [11] we use
mAP0.5, meaning that the Ioutresh is set to 0.5. For the same reason on
Pascal SBD [74] we use mAP0.5...0.95. It is an extension of the mAP and it is
calculated as follows:

mAP0.5...0.95 = 1
|T |

Ø
th

mAPth (7.6)

where T is the set of thresholds. Particularly thresholds goes from 0.5 to
0.95 with steps of 0.05. Since in this case the mAP is calculated for semantic
segmentation, the definition of IoU must be selected accordingly as in ??.

7.4 Object Detection Results
As done by previous works [56, 29, 60, 25, 26], for incremental object de-
tection we evaluate our method considering experimental settings adding a
different number of classes in one or multiple training steps. We report adding
10 (10-10 ), 5 (15-5 ) or 1 (19-1 ) class in a single incremental step and per-
forming two incremental steps adding 5 classes (10-5 ), five steps adding two
classes (10-2 ) and either ten (10-1 ) or five (15-1 ) steps adding one class. As
in previous works, we split the classes following the alphabetical order.

7.4.1 Single-step incremental settings (10-10, 15-5, 19-
1)

Results are reported in the tables below. The Avg metric equally weights
new and old classes averaging their aggregated mAP. We benchmark MMA
against previous works reporting the results on the same settings. We com-
pare either with methods using rehearsal [72, 71, 60] or not using them
[56, 29, 25, 26].
We emphasize that the previous approaches cannot be accurately compared
to MMA, as we do not use any replay memory to store previous samples.
Furthermore, for a fair comparison we report ILOD [25] and Faster ILOD
[26] using our same architecture and training protocol. Finally, we report two
baselines: the joint training upper bound, where the architecture is trained
using the whole dataset and all the annotations, and the fine-tuning, where
the architecture is trained on the new data using the standard Faster-RCNN
pipeline without using any regularization strategy.
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Table 7.2. mAP@0.5 results on single incremental step (10-10 scenario)
on Pascal-VOC 2007. Methods with † come from reimplementation.
Methods with * use exemplars.

10-10
Method 1-10 11-20 1-20 Avg
Joint Training 74.7 75.7 75.2 75.2
Fine-tuning 9.5 62.5 36.0 36.0
ILOD (Fast R-CNN) [25] 63.2 63.1 63.2 63.2
ILOD (Faster R-CNN) [25] † 65.3 69.2 53.0 61.1
61.1
Faster ILOD [26] 69.8 54.5 62.1 62.1
Faster ILOD [26] † 71.1 52.3 61.7 61.7
PPAS [75] 63.5 60.0 61.8 61.8
MVC [56] 66.2 66.0 66.1 66.1
OREO* [72] 60.4 68.8 64.6 64.6
OW-DETR* [71] 63.5 67.9 65.7 65.7
ILOD-Meta* [60] 68.4 64.3 66.3 66.3
MMA 69.3 63.9 66.6 66.6

As can be noted in 7.2 7.3 7.4, fine-tuning results in a significant decline in
performance when compared to previous classes, showing that catastrophic
forgetting is a problem that needs to be addressed. While earlier research has
improved performance by addressing the forgetting problem, MMA surpasses
all previous methods, including those that employ exemplars to prevent for-
getting, confirming the validity of our methodology.
In particular, when comparing with ILOD [25] and Faster ILOD [26], we
note that our method achieve comparable performance on old classes but
outperforms them on the new classes, outperforming them of 1% on both
19-1 and 15-5, and even by 10% on the 10-10 setting. We believe that the
improvement is mostly attributable to the unbiased distillation loss, which
eliminates incoherent training targets, hence improving performance.
Comparing MMA to previous state-of-the-art, we note that it outperforms
the competitive rehearsal strategies in every setting. On the 19-1 setting,
MMA outperforms the ILOD-Meta by 0.5% considering equally every class
(1-20 ) and by 1.1% OW-DETR when considering equally old and new classes
(Avg). Similarly, in the 15-5 and 10-10 settings, MMA outperforms the best
rehearsal method by 0.9% and 0.3% on all the classes 0.7% and by 0.3% on
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Table 7.3. mAP@0.5 results on single incremental step on (15-5 sce-
nario) Pascal-VOC 2007. Methods with † come from reimplementation.
Methods with * use exemplars.

15-5
Method 1-15 16-20 1-20 Avg
Joint Training 75.3 73.6 75.2 74.4
Fine-tuning 14.2 59.2 25.4 36.7
ILOD (Fast R-CNN) [25] 68.3 58.4 65.9 63.4
ILOD (Faster R-CNN) [25] † 72.5 58.0 68.9 65.3
Faster ILOD [26] 71.6 56.9 67.9 64.3
Faster ILOD [26] † 73.5 55.6 69.1 64.6
MVC [56] 69.4 57.9 66.5 63.7
OREO* [72] 71.8 58.7 68.5 65.2
OW-DETR* [71] 72.2 59.8 69.1 66.0
ILOD-Meta* [60] 71.7 55.9 67.8 63.8
MMA 73.0 60.5 69.9 66.7

Table 7.4. mAP@0.5 results on single incremental step (19-1 scenario)
on Pascal-VOC 2007. Methods with † come from reimplementation.
Methods with * use exemplars.

19-1
Method 1-19 20 1-20 Avg
Joint Training 75.3 73.6 75.2 74.4
Fine-tuning 12.0 62.8 14.5 37.4
ILOD (Fast R-CNN) [25] 68.5 62.7 68.3 65.6
ILOD (Faster R-CNN) [25] † 70.3 65.2 70.0 67.8
Faster ILOD [26] 68.9 61.1 68.5 65.0
Faster ILOD [26] † 70.9 64.3 70.6 67.6
PPAS [75] 70.5 53.0 69.2 61.8
MVC [56] 70.2 60.6 69.7 65.4
OREO* [72] 69.4 60.1 68.9 64.7
OW-DETR* [71] 70.2 62.0 69.8 66.1
ILOD-Meta* [60] 70.9 57.6 70.2 64.2
MMA 71.1 63.4 70.7 67.2
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the Avg metric, respectively.

7.4.2 Multi-step incremental settings (10-5, 10-2, 15-1,
10-1)

While doing a single training step is beneficial for assessing the ability to
prevent catastrophic forgetting, a more realistic scenario involves executing
numerous incremental steps to add additional classes. In this section, we an-
alyze the behavior of MMA against three baselines: fine-tuning, ILOD [25],
Faster ILOD [26], all implemented following our experimental protocol. We
report the results for the four considered settings in 7.8, showing the mAP%
over multiple incremental steps and 7.5, where the results after the last incre-
mental step are reported. 7.8 further reports the average performance across
multiple steps Avg-S.

We can observe that doing numerous incremental steps is difficult and that
current solutions perform poorly in comparison to single step instances. In
particular, fine-tuning the network on fresh data without applying any ap-
proach to avoid forgetting causes the network to totally forget the old classes,
resulting in performance close to 0% on the old classes in the final step.
ILOD [25] and Faster ILOD [26] substantially alleviate catastrophic forget-
ting, leading to better results both on old and new classes. However, when
comparing with MMA, we see that both ILOD and Faster ILOD achieve
worse results. In particular, after the last step, evidently MMA obtain bet-
ter performances on novel classes: +2.4% o 10-5, +3.3% on 10-2, +6.3% on
15-1, and 6.8% on 10-1 wrt. the best among the baselines. Furthermore,
MMA also obtains comparable or greater performance than previous meth-
ods on the old classes.
Overall, MMA outperforms the best among ILOD and Faster ILOD by 0.9%
on 10-5, 2.7% on 10-2, 2.8% on 15-1, and 6.5% on the 10-1 setting. We
observe that the improvement is greater as more classes are added, indicat-
ing that our strategy is more suited to executing several incremental stages.
Considering the trend over multiple training steps in 7.5, we note that MMA
is always comparable or better than previous methods. In particular, it is re-
markable that MMA largely outperforms the other methods when increasing
the number of training steps, as shown in the 10-1 setting.
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Table 7.5. mAP@0.5% results on multi incremental steps on Pascal-VOC
2007. Methods with † come from reimplementation.

10-5
Method 1-10 11-20 1-20 Avg-S
Joint Training 74.7 75.7 75.2 75.2
Fine-tuning 6.6 28.3 17.4 21.8
ILOD (Faster R-CNN) [25] † 67.2 59.4 63.3 65.2
Faster ILOD [26] † 68.3 57.9 63.1 65.5
MMA 66.7 61.8 64.2 67.3

Table 7.6. mAP@0.5% results on multi incremental steps on Pascal-VOC
2007. Methods with † come from reimplementation.

10-2
Method 1-10 11-20 1-20 Avg-S
Joint Training 74.7 75.7 75.2 75.2
Fine-tuning 5.2 12.3 8.8 16.7
ILOD (Faster R-CNN) [25] † 62.1 49.8 55.9 62.2
Faster ILOD [26] † 64.2 48.6 56.4 62.8
MMA 65.0 53.1 59.1 63.8

Table 7.7. mAP@0.5% results on multi incremental steps on Pascal-VOC
2007. Methods with † come from reimplementation.

15-1
Method 1-15 16-20 1-20 Avg-S
Joint Training 76.8 70.4 75.2 73.5
Fine-tuning 16.7 0.0 8.0 2.4
ILOD (Faster R-CNN) [25] † 65.6 47.6 60.2 65.8
Faster ILOD [26] † 66.9 44.5 61.3 67.1
MMA 68.3 54.3 64.1 67.5
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Table 7.8. mAP@0.5% results on multi incremental steps on Pascal-VOC
2007. Methods with † come from reimplementation.

10-1
Method 1-10 11-20 1-20 Avg-S
Joint Training 74.7 75.7 75.2 75.2
Fine-tuning 0.0 4.6 2.3 8.6
ILOD (Faster R-CNN) [25] † 52.9 41.5 47.2 59.1
Faster ILOD [26] † 53.5 41.0 47.3 60.4
MMA 59.2 48.3 53.8 62.4

Figure 7.2. mAP% results on multiple incremental steps (10-1 sce-
nario) on Pascal-VOC 2007.

61



7 – Experiments

Figure 7.3. mAP% results on multiple incremental steps (10-2 sce-
nario) on Pascal-VOC 2007.

Figure 7.4. mAP% results on multiple incremental steps (15-1 sce-
nario) on Pascal-VOC 2007.
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Figure 7.5. mAP% results on multiple incremental steps (10-5 sce-
nario) on Pascal-VOC 2007.
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7.5 Instance Segmentation Results
Following the protocol used in incremental object detection, we evaluate our
method considering two experimental settings: adding one (19-1 ) and five
(15-5 ) classes in a single training step. As with object detection, we use the
dataset’s alphabetical order. We report the mAP averaged across 11 IoU
criteria ranging from 0.5 to 0.95, with a 0.05 step, in accordance with normal
practice for instance segmentation.
We compare MMA with fine-tuning, fine-tuning using the unbiased classifi-
cation loss (6.2), ILOD [25] and Faster ILOD [26]. For all the methods we
employ the same architecture and hyper-parameters. 7.9 shows the results
for the 19-1 and 15-5 settings, reporting the average mAP of new and old
classes separately, the average over all classes, and the average of new and
old classes (Avg), weighting them equally.
We can see that fine-tuning shows a substantial forgetting on old classes,
both on the 19-1 and 15-5 settings. Introducing the unbiased classification
loss (6.2 helps with forgetting, the results are still poor for older classes, in-
dicating that a way to prevent forgetting is required.
ILOD and FasterILOD, in fact, improve the performances on old classes.
However, forgetting is prevented at the cost of a decrease in performance on
novel classes: they both loses nearly 8% on the 19-1 and 5% on the 15-5
with respect to fine-tuning. Differently, employing our proposed MMA we
clearly improve the performance, preventing forgetting while showing good
performance on novel classes. In particular, ILOD and Faster ILOD, MMA
obtains, on new classes, nearly +5% and +3%, respectively on 19-1 and 15-5,
while showing comparable performance on old classes.
Considering the extended version of MMA (MMA + ℓMASK

dist ), it slightly im-
proves the performance on old classes MMA, while obtaning comparable
results on the new ones. Overall, it obtains 41.1% and 38.2% on the 19-1
and 15-5, respectively, 0.3% and 0.9% better than MMA. Interestingly, we
observe that even without any mask head regularization (MMA), we may
still get acceptable segmentation performance. This is because classes on
the mask head are not competitive, as the mask head just regresses a binary
segmentation mask, while the classification head predicts the class, like in
regular Faster R-CNN.
By and large, MMA and its extension beat other baselines in instance seg-
mentation, demonstrating a favorable trade-off between learning new classes
and avoiding forgetting existing ones.
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Table 7.9. mAP@(0.5,0.95)% results of incremental instance segmen-
tation on Pascal-VOC 2012.

19-1 15-5
Method 1-19 20 1-20 Avg 1-15 16-20 1-20 Avg
Joint Training 40.4 54.1 41.1 47.2 41.0 41.2 41.1 41.1
Fine-tuning 6.7 46.3 8.7 26.5 1.9 35.3 10.2 18.6
Fine-tuning w/ 6.2 12.5 47.5 14.3 30.0 13.0 35.5 18.6 24.2
ILOD [25] 40.1 38.3 40.0 39.2 39.2 30.8 37.1 35.0
Faster ILOD [26] 40.6 38.1 40.4 39.3 39.4 30.3 37.1 34.8
MMA 40.6 43.0 40.8 41.8 38.2 33.7 37.1 35.9
MMA + ℓMASK

dist 41.0 42.8 41.1 41.9 40.2 32.2 38.2 36.2

7.6 Ablation Study on the importance of each
component

In Table 7.10 we report a detailed analysis of our contributions, considering
15-5 setting in incremental object detection. We ablate each proposed compo-
nent: the unbiased classification loss (6.2), the classification head knowledge
distillation loss (ℓRCN

dist ), the use of the RPN distillation loss (ℓRP N
dist ), and fi-

nally, the use of a feature distillation loss, as proposed in [26] compared to
the attentive distillation loss described in 6.2.4. The first row indicates fine-
tuning the network on the new data, without applying any regularization.
It is worth noting that the performances are subpar in older classes, but are
excellent in new ones. Adding the unbiased classification, the performance
on the old classes substantially improves: from 14.2% to 40.0%. This is due
to the handling of missing annotation that alleviates forgetting. Introducing
the unbiased distillation loss in 6.5 (UKD), the performances improves sig-
nificantly, both on old classes, reaching 67.3%, and new classes, going from
57.8% to 60.3%. We believe that the distillation loss increases performance
on new classes because it teaches the model to distinguish between old and
new classes, thus increasing overall precision. We then include the RPN dis-
tillation loss to achieve the final MMA model. We see that the performance
further improves on old classes, achieving 73.0%, while the performance on
the new classes is comparable.

Moreover, we compare the unbiased knowledge distillation in MMA with
other possible choices. Inspired by previous works we employ the L2 loss
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Table 7.10. Ablation study of the contribution of MMA components in the
15-5 setting. Results are mAP@0.5%. MMA is in green.

6.2 ℓRCN
dist ℓRP N

dist ℓatt
dist 1-15 16-20 1-20 Avg

- - - - 14.2 59.2 25.4 36.7
✓ - - - 40.0 57.8 44.4 48.9
✓ UKD - - 67.3 60.3 65.6 63.8
✓ l2 ✓ - 73.7 56.8 69.5 65.3
✓ CE ✓ - 72.8 59.4 69.5 66.1
✓ UKD ✓ - 72.9 59.9 69.6 66.4
✓ UKD ✓ ✓ 73.0 60.5 69.9 66.7

on the normalized classification scores [25, 26] and the cross-entropy (CE)
loss between the probability of old classes [20]. Finally, by inserting the
ℓatt

dist we note that the performances on old classes remain unvaried, while the
one on the new classes continue growing leading to the best result in the
ablation. We see that MMA distillation outperforms them, especially on the
new classes, clearly demonstrating that modeling the missing annotations is
essential to properly learn them. Overall, MMA achieves on the average of
old and new class performance 66.7%, 1.4% and 0.6% more than using the
L2 loss or the cross-entropy loss.
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Conclusions and future
works

We studied the incremental learning problem in object detection considering
an issue mostly overlooked by previous works. In particular, in each train-
ing step only the annotation for the classes to learn is provided, while the
other objects are not considered, leading to many missing annotations that
mislead the model to predict background on them, exacerbating catastrophic
forgetting. We address the missing annotations by revisiting the standard
knowledge distillation framework to consider non annotated regions as possi-
bly containing past objects. We show that our approach outperforms all the
previous works without using any data from previous training steps on the
Pascal-VOC 2007 dataset, considering multiple class-incremental settings.
Moreover one interesting insight coming from our results is to over-perform
methods that use rehearsal memory, demonstrating that incremental learn-
ing can be achieved also without using old classes examples.
Finally, we provide a simple extension of our method in the instance segmen-
tation task, showing that it outperforms all the baselines.
Incremental learning is unfortunately not ready to be used in a real practical
scenario, but with this thesis and with the current efforts in this field it will
be surely improved and optimized. We hope that our work will set a new
knowledge distillation formulation for incremental object detection methods.
Moreover we expect that the problem of background in incremental learn-
ing will be further analyzed in order to find new strategies to completely
overcome it, in fact we think it is the main issue harming performances in
incremental object detection. We leave extending our formulation to one-
stage detectors and to think to a more fine strategy to extend the pipeline
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to instance segmentation as a future work.
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