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Abstract

Nowadays nearly all financial orders across the globe are performed by automated
trading systems. In particular, machine learning and deep learning have been
utilised to try and predict the trend of different financial securities. Financial
market analysis has always been critical and, in recent years, more and more
opportunities are available to extract new information from all kinds of financial
data. In the past, reinforcement learning has been used to solve various financial
problems, including portfolio optimisation, securities trading and risk management.
Among those, stock trading is considered the most complex application of machine
learning in quantitative finance, primarily due to the inherent stochastic behaviour
of financial markets.

In this thesis, we investigate the usage of deep reinforcement learning techniques
to forecast financial time series and perform automated stock trading. The objective
is to automatically generate a profitable and reasonably safe trading strategy in
any financial market. Furthermore, we propose extensions of a deep reinforcement
learning algorithm to automatically trade financial securities, with a particular
focus on multiple stock trading. The resulting agent must consistently outperform
market indexes and generate positive returns while exposing itself to minimal risk.

Our approach is compared to existing state-of-the-art algorithms, namely
FinRL’s ensemble agent. The key difference of our approach is to enhance a
single agent to deal with financial markets in their entirety, instead of leveraging
multiple algorithms to avoid possible pitfalls. We also discuss how a reinforcement
learning agent can learn to trade in highly volatile markets, plus methods to build
a robust and stable algorithm across different markets.
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Chapter 1

Introduction

Nowadays nearly all financial orders across the globe are performed by automated
trading systems. In particular, machine learning and deep learning have been
utilised to try and predict the trend of different financial securities. Financial market
analysis has always been critical and, in recent years, more and more opportunities
are available to extract new information from all kinds of financial data. In the past,
reinforcement learning has been used to solve various financial problems, including
portfolio optimisation, securities trading and risk management. Among those,
stock trading is considered the most complex application of machine learning in
quantitative finance, primarily due to the inherent stochastic behaviour of financial
markets. Additionally, one of the primary challenges is how to deal with the
intrinsic noisy component of financial time series data. Such data is also sequential
(time-dependent), so we need to develop an algorithm that can dynamically predict
asset behaviour and optimise itself with each additional timestep.

In this thesis, we argue in favour of deep reinforcement learning as a practical
approach to time series forecasting and automated stock trading. The objective
is to automatically generate a profitable and reasonably safe trading strategy in
any financial market. Furthermore, we propose extensions of a deep reinforcement
learning algorithm to automatically trade financial securities, which can consistently
outperform market indexes and generate positive returns while exposing itself to
minimal risk. We also discuss how a reinforcement learning agent can learn to trade
in highly volatile markets, plus methods to build a robust and stable algorithm
across different markets.

We define an artificial environment to model the stock trading problem as
in real-world exchanges. The agent and the environment continually interact in
a time-dependent system. Also, the agent should learn how to trade directly
by trial-and-error and its experiences of the environment. Then we develop an
advanced DQN-based agent that is able to outperform other reinforcement learning
algorithms in the stock trading task. Most importantly, our agent must consistently
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Introduction

and reliably exceed the risk-adjusted returns of competing algorithms.
To achieve a realistic multi-asset trading strategy, this algorithm must be able

to overcome a few challenging aspects. First, we address how changes to the
network architecture allow us to solve the dimensionality problem of the agent’s
action space. Precisely, how independent action branches can efficiently compute
values for each stock in the reference portfolio. Second, we shift the focus of our
algorithm to learning the full value distribution through quantile regression. This
distributional approach allows our agent to better grasp the intrinsic randomness
of the stock market and, in some way, introduces a risk-aware component to our
algorithm’s behaviour. Practically speaking, this makes learning more stable and
reliable even in unstable markets. Third, we discuss how to efficiently explore the
initially unknown environment, and thus, gain more reward. To achieve this, we
introduce noise perturbations to the network’s weights. Also, the parameters of
the perturbations are tuned by the network itself, which means that the agent
autonomously finds the optimal degree of exploration for each input dimension. The
resulting agent can consistently find the top-performing assets and, consequently,
achieve the best returns over the long run.

To validate our approach in the stock trading task, we benchmark our agent
against traditional trading strategies and state-of-the-art reinforcement learning
algorithms. In order to verify the performance of our deep reinforcement learning
agent we conduct backtests with a portfolio composed of 30 US-based stocks. The
proposed TDQN algorithm can outperform competing algorithms and traditional
financial strategies in the stock market. Importantly, these results are obtained in
an extended test window, where the underlying market exhibits both upward and
downward trends.

Concretely speaking our agent’s strategy exceeds the reference index by 18%
and 30% when comparing cumulative and risk-adjusted returns respectively. Ad-
ditionally, we can consistently achieve 12% and 14% improvement over the top
reinforcement learning algorithms using the same metrics. Lastly, we also ex-
periment with cryptocurrency trading. In this highly-volatile market and with
somewhat limited data, our algorithm obtains a 43% improvement in risk-adjusted
returns over the equal-weighted buy-and-hold strategy when trading with a portfolio
of 8 crypto tokens.
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Chapter 2

Background

2.1 Machine Learning and Artificial Intelligence
Machine Learning (ML) is a discipline of computer science that focuses on devel-
oping algorithms that can learn from data and improve automatically through
experience.[1] Traditionally speaking, programming an algorithm means explicitly
defining how to solve a problem step-by-step. However, it tends to be challenging
for humans to build the needed algorithms for more advanced tasks manually.

In practice, it can end up being more productive to help the machine create
its own model of the problem, rather than having programmers specify each
required step.[2] Nowadays, ML algorithms are employed in an assortment of fields
and applications, such as speech recognition and computer vision, where it is
troublesome or unfeasible to develop regular algorithms to solve the needed tasks.

As we now know, machine learning methods can autonomously detect patterns
in available data and use them to solve complex tasks. Given the vast array of
different applications, multiple kinds of ML techniques can be considered. In
computer science literature, machine learning algorithms are traditionally divided
into two broad categories:

• Supervised learning is the task of learning a function that maps an input to
an output based on already labeled training data.

• Unsupervised learning is the task of drawing inferences from datasets consisting
of input data without labeled responses.

Supervised learning algorithms learn a function that can be utilised to predict the
output related to new information: the mathematical model infers a function from
a set of training examples, allowing the algorithm to accurately decide the results
for new inputs that were not part of the training data.[3]
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The algorithms in question must learn to generalise from the training data to
new unseen instances to solve this problem. The most well-known applications
of supervised learning are classification and regression algorithms. Classification
algorithms are utilised when the results are confined to a limited set of values, and
regression algorithms are used when the results might have any numerical value.
Since, ultimately, the focus is making predictions using data, these algorithms are
closely related to statistics.

In contrast to previous examples where an external supervisor tags the input
data, unsupervised learning algorithms can learn patterns from data that has not
been labelled, classified or categorised. Instead, the models can identify common
features in the input data and respond based on the presence or absence of such
features in each new piece of information.

Unsupervised learning is often used as a preprocessing step as in feature learning,
but it can also be used by itself. Clustering algorithms are the most common
among the unsupervised learning ones, where clustering means splitting a set of
observations into subsets so that data points within a cluster (grouping of objects)
are similar according to one or more criteria. Data mining and association rule
learning are connected fields of study, focusing on data analysis to discover hidden
patterns and relationships in the data.

For both supervised and unsupervised ML tasks the idea of function approxima-
tors is at the core of the solution. After all, performing machine learning involves
creating a mathematical model to make predictions. Most of the function ap-
proximators that are employed nowadays were initially developed and perfected in
statistics. The most common types of models are decision trees,[4, 5] support-vector
machines (SVMs),[6] linear and logistic regression.[7, 8]

Despite the transformative results obtained in certain fields, ML programs can
still fail to deliver expected results. One major limitation of traditional statistical
algorithms is difficulty in learning from high-dimensional data such as time series,
images and videos. In recent years, mainly because of substantial advancements in
deep learning, machine learning has gone through sensational improvements with
this kind of information.

2.1.1 Deep Learning

Machine learning as we know it today grew out of the quest for artificial intelligence
(AI). At the very beginning, when academic researchers were first interested in
having machines learn from data, they approached the problem by developing
computing systems to mimic the biological structures at the core of the human
brain.
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An Artificial Neural Network is an interconnected group of nodes, which loosely
model the neurons in a human brain. Each connection can propagate a signal to
other neurons, like the synapses in a biological brain.

The receiving neuron can process it and then transmit it to its downstream
neurons. Nodes are linked to each other in various patterns. Nodes may also have
a weight that changes during learning, which can increment (or decrement) the
strength of the signal that is propagated through the network. Thus, the neural
network forms a directed, weighted graph.

Network layers can be fully connected, with every neuron in one layer connecting
to every neuron in the next layer. Alternatively, they can be pooling layers, where a
group of neurons in one layer connect to a single neuron in the next layer. Neurons
with only such connections are known as feedforward networks. On the other hand,
networks that allow connections between neurons in the same or previous layers
are known as recurrent neural networks.

Neural networks learn by processing sample observations, each containing a
known input and result, forming associations between the two. This mapping is
then stored within the weight of the network itself. Neural network training is
usually conducted by minimising the error, which given an input example measures
the difference between the network output and the target result.

While neural networks training is quite a complex topic, most of it can be
explained as a mathematical optimisation process, where the goal is to minimise
the error value or the cost function (sometimes also referred to as loss func-
tion).Subsequent weights adjustments will produce increasingly similar results to
the target output. In order to adjust the network weights, we use backpropagation
to fine-tune for each error found during learning. Practically, this means that the
error amount is effectively divided among the upstream connections.

Deep learning (DL) is a subfield of machine learning methods based on artificial
neural networks. Typically, neurons nodes are aggregated into multiple layers,
hence the name deep neural networks. Signals travel from the input to the output
layer, possibly after traversing the layers multiple times. Deep learning algorithms
use such layers to extract higher-level features from the raw input progressively.

For example, in a computer vision application, the raw input is usually just a
matrix of pixels; the first representational layers may abstract the pixels and encode
edges; the intermediate layers may compose shapes; while higher layers may encode
digits or letters. Notably, a deep learning process can learn such features on its
own. Furthermore, different deep networks may perform different transformations
on their inputs. For instance, varying layers and layer sizes can provide different
degrees of abstraction.

Deep learning architectures such as recurrent neural networks and convolutional
neural networks have been applied to several fields, including computer vision,
speech recognition, natural language processing and many more.
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Most importantly, DL methods eliminate the need for feature engineering by
translating the data into a more compact intermediate representation and possibly
deriving internal structures that remove redundancy in representation. This feature
is crucial for both supervised and unsupervised learning tasks, where deep neural
networks are often employed as components of larger network architectures.

2.2 Reinforcement Learning

Alan Turing is widely considered the father of computer science and artificial
intelligence. Part of his legacy includes the Turing test, originally called the
imitation game, which tests a machine’s ability to exhibit intelligent behaviour
indistinguishable from that of a human.

Nowadays, AI researchers agree that artificial intelligence is not, by definition,
a simulation of human intelligence.[9] As a matter of fact, the intelligent agent
paradigm defines intelligent behaviour in general, without reference to human
beings:

An intelligent agent is anything that perceives its environment and
autonomously takes actions that maximize its chances of success.[10]

Modern textbooks define artificial intelligence as the study and design of intelligent
agents, a definition that considers goal-directed behaviour to be the essence of in-
telligence. Most importantly, researchers can directly compare different approaches
by asking which agent best maximises a given goal function using this definition.

Inspired by behavioural psychology, reinforcement learning (RL) studies how
intelligent agents ought to take actions in an unknown environment in order to
maximise reward. When we think about how we learn, the first idea that comes
to mind is that humans learn by doing. Reinforcement learning is nothing but a
computational approach to learning via interaction.[11]

Formally speaking, Reinforcement learning is learning what to do—how to map
situations to actions—to maximise a numerical reward signal. The rational agent
is not told which actions to take but instead must discover which actions yield
the most reward by trying them. In most cases, actions affect both the immediate
situation and the next one, so each action has an impact on all future rewards.
These characteristics, trial-and-error search, sequential decision-making and delayed
feedback, are the distinguishing features of reinforcement learning.

RL differs from supervised learning, as there is no external supervisor, only a
reward signal. A rational agent must be able to learn from its own experience, even
when it is dealing with an unknown environment.
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RL is also different from unsupervised learning: while uncovering a hidden structure
in an agent’s experience can undoubtedly be helpful, by itself, it does not address
the reinforcement learning problem of maximising a reward signal.

Moreover, reinforcement learning is different from other machine learning
paradigms because the system is dynamic: the RL agent does not require complete
knowledge of the environment, it only needs to interact with it and collect informa-
tion. In practice, this means that the agent’s actions directly affect the subsequent
data it receives.

To summarise, reinforcement learning is a computational approach to understand
and automate goal-directed learning and decision making. It is set apart from other
ML approaches by its emphasis on learning from direct interaction with an unknown
environment. For this reason, modern textbooks consider reinforcement learning
to be a third machine learning paradigm, alongside supervised and unsupervised
learning.

2.2.1 Problem Setting
We formalise the reinforcement learning problem as the optimal control of stochastic
Markov decision processes (MDPs). As put it by Sutton and Barto, the basic idea
is simply to capture the key components of the following problem: a learning agent
interacts with its environment over time to achieve a goal. Therefore, the learner
must be able to perceive the state of its environment to some extent and must be
able to take actions that affect the state.[11]

The agent and the environment continually interact in a time-dependent system:
the agent selects actions, while the environment responds to these actions and
presents new situations. The environment also gives back numerical values that
the agent seeks to maximise over time through its choice of actions, these values
are called rewards. More specifically, the reward signal defines the goal of a
reinforcement learning problem.

Figure 2.1: The agent–environment interaction in a Markov decision process
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Concretely, at each time step t, the agent receives some representation of the
environment’s state St, and on that basis, selects an action At. Then, one timestep
later, partly due to its action, the agent receives a numerical reward Rt+1, and
finds itself in a new state St+1 as shown in Figure 2.1.

Informally, we can think of the state as a representation of “how the environment
is” at a particular time. Therefore, let us define the agent’s internal representation
of the environment as state. It is the information used by the agent to pick the
following action, and for this reason, it is also called information state.

Reinforcement learning uses the formal framework of Markov decision processes
to simply represent the interaction between a goal-directed learning agent and its
environment in terms of states, actions, and rewards.

In a finite MDP, the random variables Rt and St have well defined probability
distributions dependent only on the preceding state St−1 and action At−1. That is,
for particular values of these random variables there exists a probability of such
values occurring at time t, given particular values of the prior state and action:

p (s′, r | s, a) = P (St = s′, Rt = r | St−1 = s, At−1 = a) (2.1)

In a MDP, the probabilities given by p completely specify the environment’s
dynamics. Particularly, the probability of each possible value for Rt and St

depends only on the immediately preceding state and action, St−1 and At−1.
If the information state includes all information about past agent–environment
interactions, then the state is said to have the Markov property.

MDPs can seem a bit abstract, but for the moment, it is only essential to
understand that the function p can completely explain the dynamics of a RL process.
Furthermore, as mentioned above, the state captures all relevant information from
the history, which also means that the state is a sufficient statistic of the future.

Up to now, we informally said that the agent’s goal is to maximise the cumulative
reward it receives in the long run. In general, we seek to maximise the expected
return, where the return Gt, is defined as a function of the reward sequence. In
the simplest case, the return is the sum of the discounted rewards from timestep t:

Gt =
Ø

k

γk ·Rt+k+1 (2.2)

The discount rate γ, a parameter between 0 and 1, determines the present value
of future rewards: a reward received t time steps in the future is worth only γt−1

times what it would be worth if it were received immediately. In simpler terms, this
expression values immediate reward above delayed return. By the above definition,
we notice that returns at successive time steps are related to each other. As a
consequence, we can rewrite the equation using a recursive approach as:

Gt = Rt+1 + γ ·Gt+1 (2.3)
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2.2.2 Fundamental Components
Beyond the agent and the environment, one can identify three main components of
a reinforcement learning system:

• A policy defines the learning agent’s way of behaving at a given time. Roughly
speaking, a policy is a mapping from perceived states of the environment
to actions to be taken when in those states. The policy is the core of a
reinforcement learning agent because it is sufficient to determine behaviour, it
essentially represents the agent’s behaviour function.

• A value function is a prediction of future rewards given the current state.
The value of a state is the total amount of reward an agent can expect to
accumulate over the future iterations, starting from that state. In a way, the
value function measures the long-term desirability of states. For this reason,
the agent uses it to evaluate the goodness or badness of each state.

• A model mimics the behaviour of the environment, or more generally, allows us
to predict how the environment will behave in the future. Models are utilized
for planning a course of action by considering possible future states before
they actually happen.

Methods for solving RL problems that use models and planning are called
model-based methods, as opposed to more straightforward model-free methods that
are explicitly trial-and-error learners. The concepts of policy and value function
are critical to the reinforcement learning methods that we consider in this thesis,
however we will consider only model-free methods.

Formally, a policy is a mapping from states to probabilities of selecting each
possible action. If the agent follows policy π at time t, then π (a|s) is the probability
that At = a if St = s. In most reinforcement learning algorithms the policy is
updated after every transition.

The value function of a state s under a policy π is the expected return when
starting in s and following π after that. For MDPs, we call the function vπ the
state-value function for policy π and can define it as:

vπ(s) = Eπ (Gt | St = s) (2.4)

Intuitively speaking, the value function is supposed to represent the quality of the
current state. Since the agent’s goal is to maximise total reward, it will naturally
prefer to be in a state with higher perceived value.

Similarly, we can define the value of taking action a in state s under a policy π
as the expected return starting from s, taking the action a, and after that following
policy π:

qπ(s, a) = Eπ (Gt | St = s, At = a ) (2.5)

9
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We call qπ the action-value function for policy π. The value functions vπ and qπ are
important because they can be estimated from experience. For example, suppose
an agent follows policy π and maintains an average, for each state encountered, of
the returns that have followed that state. In that case, the average will eventually
converge to the state’s value vπ(s). Similarly, if different averages are kept for each
action taken in each state, then these averages will similarly converge to the action
values, qπ(s, a).

Even though this trivial estimation works perfectly well for small MDPs, in real-
world applications there are millions of states (and even more state-action pairs).
Consequently, it is not practical to keep separate averages for each state individually.
Instead, a better solution would be to maintain vπ and qπ as approximated functions
and adjust the parameters to better match the observed returns at every step.

A fundamental property of functions used throughout reinforcement learning
is that they satisfy recursive relationships similar to those introduced above in
equation 2.3 for the return Gt. Thus, we can rewrite vπ as:

vπ(s) = Eπ (Gt | St = s) =
= Eπ (Rt+1 + γ ·Gt+1 | St = s) =
= Eπ (Rt+1 + γ · vπ(St+1) | St = s)

(2.6)

As such, we notice that the value function vπ can be decomposed into two compo-
nents, the immediate reward Rt+1 and the discounted value of the successor state
γ · vπ(St+1). This recursive formula is known as the Bellman expectation equation,
and it is the single most important formula of reinforcement learning. It expresses
the relationship between the value of a state and the value of its successor states.

Figure 2.2: Backup diagrams for vπ and qπ

Think of looking ahead from a state to its possible successor states. Starting from
state s, the root node at the top, the agent could take any action based on its
policy π. From each of these actions, the environment transitions to one of several
states and responds with a reward r, depending on its dynamics function p.
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Finally, backup operations transfer value information back to the initial state (or a
state-action pair) from its successor states. This one-step lookahead is represented
in the backup diagram in Figure 2.2.

So, in a way, the Bellman equation (2.6) averages over all the possibilities of a,
s′ and r, weighting each by its probability of occurring. For any policy π and any
state s, the following consistency condition holds between the value of s and the
value of its possible successor states:

vπ(s) =
Ø

a

π (a|s)
Ø
s′,r

p (s′, r | s, a)
è
r + γ · vπ(s′)

é
(2.7)

Solving a reinforcement learning task means finding a policy that accumulates a
lot of reward over time. For finite MDPs, we can precisely define an optimal policy
since value functions define a partial ordering over policies. This means that there
is always at least one policy superior to all other options, the optimal policy π∗.
Given an optimal policy, for all states s and actions a, we can write:

v∗(s) = max
π

vπ(s) (2.8)

q∗(s, a) = max
π

qπ(s, a) (2.9)

Combining 2.7 and 2.8, we can write the optimal value function v∗ in a particular
form, without reference to any specific policy. This is the Bellman optimality
equation for v∗:

v∗(s) = max
a

E (Rt+1 + γ · v∗(St+1)|St = s) =

= max
a

Ø
s′,r

p (s′, r | s, a)
è
r + γ · v∗(s′)

é (2.10)

Intuitively, the Bellman optimality equation expresses that the value of a state
under an optimal policy must equal the expected return for the best action from
that state. Similarly, the Bellman optimality equation for q∗ is:

q∗(s, a) = E
3

Rt+1 + γ ·max
a′

q∗(St+1, a′)
---- St = s, At = a

4
=

=
Ø
s′,r

p (s′, r | s, a)
è
r + γ ·max

a′
q∗(s′, a′)

é (2.11)

Once one has v∗ or q∗, it is relatively easy to determine an optimal policy. For
example, if we have the optimal value function, then the actions that appear best
after a one-step search will be optimal actions. In other words, any greedy policy
with respect to the optimal evaluation function is an optimal policy. The term
greedy is used in computer science to describe any algorithm that makes choices
based only on immediate benefit.
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The backup diagrams in the figure below show graphically the spans of future
states and actions considered in the Bellman optimality equations for v∗ and q∗.
These are similar to Figure 2.2 except that the maximum over the agent’s choice
points is taken rather than following some given policy.

Figure 2.3: Backup diagrams for v∗ and q∗

While greedy algorithms are a computationally efficient solution to many classic
dynamic programming problems, they do not always work: a locally optimal
decision does not always converge to the best global solution. However, for our
problem, if one uses the Bellman optimality equation to evaluate the short-term
consequences of actions (in our example, the one-step consequences), then a greedy
policy is actually optimal in the long run. Moreover, since the formula for v∗ (2.10)
already considers the reward consequences of all possible future behaviour, a greedy
choice is also optimal globally.

With the q∗ version (2.11), the agent does not even have to do a one-step-ahead
search: for any state s, it can simply find any action that maximises q∗(s, a).
The action-value function effectively encapsulates the results of all one-step-ahead
searches. Moreover, it provides the optimal expected long-term return as an
immediately available value for each state-action pair. Hence, the optimal action-
value function allows our agent to select actions without knowing anything about
possible successor states and their values, that is, without knowing anything about
the environment’s dynamics.

This latest form of the Bellman equation forms the basis to learn and make
decisions for many reinforcement learning methods. However, as discussed above,
even if we have a complete and accurate model of the environment’s dynamics
(which may not be possible in the case of limited data), it is usually not viable to
compute an optimal policy by solving the Bellman optimality equation.

This is because the agent would typically be unable to fully use such a complex
model because of its memory limitations. In conclusion, there are far more states
than we can reasonably compute and store in most real-world applications, so
approximations must be made.
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2.2.3 Categorizing Reinforcement Learning Agents
As mentioned previously, computing value functions involves evaluating expectations
over the whole state-space which is realistic only for the smallest (finite) MDPs.
In real reinforcement learning applications, expectations are approximated by
averaging over samples and also using function approximation techniques to deal
with large state-action spaces.

Nowadays, many methods and algorithms are available to solve different RL
tasks. Among the model-free methods, we can distinguish two main categories:
on-policy methods, also called policy-based, and off-policy methods, also called
value-based. Simply put, on-policy methods attempt to evaluate or improve the
policy used to make decisions. In contrast, off-policy methods evaluate or improve
a policy different from that which is used to select among actions.

More in detail, in policy-based algorithms, the agent learns the optimal policy
and uses the same policy π∗ to act. The policy used for updating and the policy
used for acting is the same. In practice, in on-policy learning, the q(s, a) function is
updated according to action a, which we selected under our current policy π (a|s).

The simplest implementation of on-policy learning is the SARSA algorithm[12],
where the name represents the elements needed (St, At, Rt+1, St+1, A

t+1) for the
action-value function update:

q(s, a) ← q(s, a) + α [r + γq(s′, a′)− q(s, a)] (2.12)

On the other hand, in off-policy learning, the policy used to generate behaviour
is kept unrelated to the policy that is evaluated and improved, called the target
policy. In fact, the policy is implicit for many value-based algorithms as it can
be derived directly from the action-value function. In this case, function q(s, a) is
updated according to greedy action a, the best available among all actions probed
in the successor state s′.

One of the earliest examples of off-policy learning is an algorithm known as
Q-learning. In this case, the learned action-value function directly approximates q∗
independently of the policy being followed:

q(s, a) ← q(s, a) + α
5
r + γ max

a′
q(s′, a′)− q(s, a)

6
(2.13)

Learning is straightforward in off-policy-based methods because all samples are
obtained according to the same logic. Therefore, we can reuse samples from previous
observations without any issue. On the contrary, on-policy based methods must
not use previous observations since they are not independent from each other.

For this reason, value-based methods are naturally more sample efficient as they
can make use of any transition; in contrast, policy-based methods would introduce
a bias when using off-policy experience.
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On the flip side, value-based algorithms are not well-suited to deal with large or
continuous action spaces. Both of these are non-issues with policy-based methods.

In recent years, actor-critic methods have been introduced to bridge the gap
between the two previously mentioned methods. The core idea in the actor-critic
approach is to update the actor network which approximates the policy probability
distribution and the critic network that estimates the value function simultaneously.
Over time, the actor learns to take better actions, and the critic evaluates those
actions more precisely. The actor-critic approach can learn and adapt to large,
continuous environments at the cost of increased complexity and execution time.

2.3 Deep Q-Learning
We now understand that computing value functions involve evaluating expectations
over the whole state-space, which is unfeasible in actual MDPs. Therefore, in real
reinforcement learning applications, function approximation techniques must be
used to represent value functions over large state-action spaces.

One of the simplest and most popular options to obtain excellent results is the
value-based algorithm known as Q-learning. The basic version of Q-learning keeps
a lookup table of values Q(s, a) with one entry for every state-action pair. In order
to learn the optimal Q-value function, the algorithm uses the Bellman equation
(2.11), whose unique solution is Q∗(s, a).

Algorithm 1 Q-learning
input step size α ∈ (0,1], small ϵ > 0
Initialize Q(s, a) arbitrarily
for each episode do

Initialize S
for each timestep t do

Choose At = a∗ from St = s using policy derived by Q
a∗ ← arg maxa Q(s, a)
Take action At, observe Rt+1 = r, St+1 = s′

Q(s, a)← Q(s, a) + α [r + γ maxa′ q(s′, a′)− q(s, a)]
s← s′

end for
end for

This elementary tabular setting is often inapplicable due to the high-dimensional
(and possibly continuous) state-action space. In that context, a parameterised
value function Q(s, a, θ) is needed, where θ is a parameter that helps us compute an
approximation of the Q-values. This primary variant is known as fitted Q-learning.
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The input state is provided to the Q-network in neural fitted Q-learning, plus a
different output is given for each possible action. This setting provides an efficient
structure that has the advantage of computing the action-value update in a single
forward pass in the neural network for a given s′.

The Q-values are often parameterised with a neural network Q(s, a, θk), where
the parameters θk are updated by stochastic gradient descent (or a variant) by
minimising the square loss. Thus, the Q-learning update amounts in updating the
parameters as:

Y Q
k = r + γ ·max

a′
q(s′, a′, θk) (2.14)

θk+1 = θk + α
5
Y Q

k −Q(s, a, θk)
6
· ∇θk

Q(s, a, θk) (2.15)

where α is a tuning parameter called learning rate, a scalar step size that represents
the speed at which the agent learns.

Despite the generalisation and extrapolation abilities of neural networks, this
approach can still result in errors at different places in the state-action space.
Consequently, convergence may be slow or even unstable. Another related side-
effect of using function approximators is that Q-values tend to be overestimated
due to the max operator. Due to the instabilities and the risk of overestimation,
specific care has to be taken to ensure proper learning.

The deep Q-network (DQN) algorithm uses two ideas to limit such instabilities,
the target network and the experience replay memory:

• The target Q-network parameters are updated only once every C iterations.
This delayed update prevents the instabilities from propagating too quickly,
reducing the risk of divergence as the target values Y Q

k are kept fixed for C
iterations.

• The replay memory keeps all information of the last N time steps, where the
experience is collected by following an ϵ-greedy policy. The updates are then
made on a set of tuples (s, a, r, s′) called mini-batch, selected randomly within
the replay memory.

These techniques allow for updates that cover a wide range of the action space.
Consequently, these two ideas allow us to make a more extensive update of the
parameters while efficiently parallelising the algorithm.

DQN can use other techniques in addition to the target Q-network and the
replay memory. For example, to keep the target values on a reasonable scale and
ensure proper learning in practice, rewards are often clipped between -1 and +1.
Clipping the rewards limits the scale of possible errors and makes it easier to learn.

One of the major shortcomings of the Q-learning algorithm is that the max
operation uses the same values both to select and evaluate an action.
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This trivial operation tends to overestimate values in case of inaccuracies or noise,
resulting in overoptimistic value estimates. Therefore, the DQN algorithm might
induce an intrinsic bias.

Several techniques can be implemented to counter this issue, but the most
popular solutions are Double DQN and Dueling DQN. Both methods keep track of
multiple estimates for each variable, allowing us to find its values from unrelated
information. Thus, regardless of whether errors in the estimated Q-values are due
to function approximation or any other source, these methods manage to cancel
out the positive bias in estimating the action values.

There are many more tips and tricks that researchers have discovered to make
DQN training more stable and efficient; some of them will be highlighted in the
following sections. It is important to note that even the basic DQN algorithm has
achieved superhuman level control when tested on a suite of ATARI games. So
while the ideas behind deep Q-networks are elementary, the performance is still
class-leading among model-free methods.

2.3.1 Action Branching Architectures

As mentioned before, value-based reinforcement learning algorithms have been
historically limited to domains with relatively small discrete action spaces. This
limitation is due to the number of actions growing exponentially with increasing
action space dimensionality. This combinatorial increase can rapidly decrease
the performance of discrete-action agents, especially considering that large action
spaces are already challenging to explore efficiently.

Despite this fact, DQN and its variants have been central to numerous successes of
deep reinforcement learning. DQNs excellent track record can be partially explained
by their intrinsic off-policy nature, which can, in principle, obtain better sample
efficiency (which is of fundamental importance with smaller financial datasets)
than corresponding policy gradient methods by reusing transitions from a replay
memory of past experience.

Given the potential of off-policy algorithms, Tavakoli et al.[13] introduced a novel
neural architecture featuring a shared decision module followed by several network
branches, one for each action dimension. The shared module computes a latent
representation of the input state, which is then used to evaluate the current state
value. This state value is then forwarded to the action branches that independently
compute the state-dependent action advantages before combining them to output
the Q values for each action dimension.

This architecture achieves a linear increase in network outputs and allows
traditional value-based algorithms such as Deep Q-Learning to operate effectively
in domains with high-dimensional continuous action spaces.
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2.3.2 Distributional Reinforcement Learning

One of the core principles of reinforcement learning is that the agent goal is to
maximise cumulative reward. In off-policy agents, this is achieved by selecting
the optimal action based upon the action-value function Q, which is described by
Bellman’s equation in terms of expected reward R and expected outcome of the
current sample transition:

Q (s, a) = E R (s, a) + γ E Q(S ′, A′) (2.16)

Therefore, in a way, traditional reinforcement learning algorithms average over the
aforementioned state transitions to estimate the value function. In contrast to the
traditional solution, Bellamare et al.[14] argue in favour of the value distribution, a
novel approach in which the distribution over returns is modeled explicitly inside the
agent state instead of only estimating the mean. In practice, this new distributional
approach on reinforcement learning studies the random return Z, whose expectation
is the value Q:

Q (s, a) = E Z(s, a) (2.17)

Like many of the functions presented earlier this random return is also described
by a recursive equation, but one of a distributional nature, where the action-value
distribution Z is computed as:

Z(s, a) = R(s, a) + γ Z(S ′, A′) (2.18)

The formula above is called distributional Bellman equation. By combining this
distributional approach with a neural network as the function approximator, we
can implement risk-aware behaviour inside the RL agent itself. In fact, Dabney et
al.[15] state that “the value distribution describes the intrinsic randomness of the
agent’s interactions with its environment, rather than some measure of uncertainty
about the environment itself”.

Approximating the full distribution through the distributional Bellman operator
also preserves multimodality and randomness instead of only estimating the mean.
The authors believe these qualities of the value distribution lead to more stable
learning and increase the agent’s robustness by improving its ability to propagate
rarely occurring events.

The authors implement the aforementioned distributional perspective by ap-
proximating the value distribution Z, and then using quantile regression to train
the network’s parameters. This new algorithm can be built on top of the classic
DQN architecture and is called quantile regression DQN (QR-DQN).
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The only additional parameter of QR-DQN not shared by DQN is the number
of quantiles N , which controls with what resolution we approximate the value
distribution. As we increase N , the algorithm becomes increasingly able to distin-
guish and propagate low probability events within the environment, significantly
improving robustness and performance over the baseline algorithm.

2.3.3 Exploration Methods
At its core, for model-free agents, reinforcement learning is like trial-and-error
learning. We already know that the agent goal is to discover a suitable policy by
learning from its experiences of the environment, so the question we now face is
how to do it without losing too much reward along the way since the environment
is initially unknown. This issue is known as the exploration versus exploitation
tradeoff, and it is one of the most critical reinforcement learning problems.

The problem is as follows: how can an agent get as much reward as possible while
learning about the environment as quickly as possible. This is a tricky problem
because, in real applications, the best long-term strategy may involve short-term
sacrifices, so the agent must initially gather enough information to be able to make
the best overall decisions

The naïve solution to this problem is simply to add random noise to a greedy
policy: the agent selects the action with the highest perceived value at each
transition, but there is a non-zero chance to select a random action at each
iteration. This method is known as ϵ-greedy, where ϵ is the probability of random
exploration and usually follows a linearly decaying schedule. Unfortunately, naïve
exploration methods are still used in many state-of-the-art publications.

Fortunato et al.[16] argue that such local (and state-independent) perturbations
are “unlikely to lead to the large-scale behavioural patterns needed for efficient
exploration in larger environments”. Consequently, they propose a simple alternative
approach called NoisyNet, where perturbations of the network weights are used to
drive exploration.

The key insight is that changes of the weight vector can induce a consistent and
potentially complex, state-dependent policy change over multiple time steps. The
perturbations are sampled from a noise distribution, whose parameters are learned
using gradients from the loss function alongside the other parameters of the agent.

2.4 Related Works
Dynamic programming applications in finance are far from a novel idea, but in
recent years, mainly due to the deep learning revolution, the popularity of deep
reinforcement learning (DRL) methods in economics and finance is booming.

18



Background

This increase in popularity is because RL algorithms offer problem-solving tech-
niques perfect for the dynamic control problem posed by financial markets. In fact,
reinforcement learning methods offer a wide variety of capabilities for handling
quite complex and realistic market environments. For example we can naturally
incorporate many real-world limitations such as transaction costs and market
volatility which is difficult to implement in traditional ML algorithms.

Furthermore, deep learning can be employed to help with noisy and nonlinear
patterns of economic timeseries data. So by combining the modelling capabilities
and computational efficiency of RL with the excellent feature extraction properties
of DL we obtain the ideal, scalable solution to real-world financial problems.

There are many problems for reinforcement learning in economics and finance,
but most applications can be grouped under the portfolio allocation [17, 18, 19]
and stock trading [20, 21] categories. For this project we focus on automated stock
trading, or more in detail, multi-asset trading for any financial securities.

Among the most recent applications of deep reinforcement learning for stock
trading the vast majority operate with a critic-only approach. In particular, Deep
Q-learning (DQN) and its variants are the most commonly used algorithms, given
that it is relatively simple to work with and can still obtain great results despite
being an older method.

Many implementations train agents on a single asset as in Jeong et al.[22],
Dang[23]. This idea is, of course, unrealistic for real-world application since it
would require many independent models for each security in the trader portfolio.
Another limitation of DQN is that it only works with small, discrete action spaces,
which is not ideal since asset prices are obviously continuous.

To solve this issue we can use actor-only or actor-critc methods instead, like in
Yang et al.[24], Zhang et al.[25], Chen et al.[26]. This approach is better because
by approximating the policy, which is a probability distribution, we can enhance
the behaviour of our algorithm when dealing with stochastic financial markets.

Unfortunately, these methods require much more information to work optimally
since they can not store and reuse previous experiences in a replay buffer. In theory
this makes algorithms like DQN more sample efficient, which is absolutely essential
with some of the more recent financial markets for which quality historical data is
difficult to obtain for free.

Next, considering the problem setting and financial data representation, the
vast majority of publications only rely on elementary data such as prices and
volumes. However, some projects [27] include additional information in the form of
technical indicators, which can always be computed starting from the primary data
mentioned above. Additionally, some previous studies [28] also merge additional
market-specific information like, for instance, the volatility index (VIX) for the
stock market or even market sentiment information, extracted from external data
like financial news.
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For our project implementation we rely on a common framework called FinRL for
deep reinforcement learning applications in quantitative finance. FinRL[29] is an
extensive library containing everything from trading environments to historical
market data and live-trading APIs. In addition, it provides comprehensive support
for many essential operations such as backtesting and plotting through several
open-source packages.

The framework allows us to focus on the algorithmic implementation while
setting some common trading constraints: this standard setting will allow future
projects to precisely compare our results. It also means that we can objectively
compare our agent performance to previous state-of-the-art projects compatible
with this framework, such as the ensemble agent[24]. The idea behind the ensemble
agent is simple yet powerful: use three different actor-critic algorithms to develop
a robust trading strategy. The ensemble strategy inherits and combines the best
features of each algorithm. As a result, the overall trading agent is better than
the sum of its parts as it can adjust to different market situations making it more
reliable. The ensemble approach leverages multiple algorithms to avoid a single
point of failure, as such the resulting strategy is naturally more resilient to trend
reserval and market volatility in general. On the other hand, our solution is to
enhance a single agent’s ability to deal with financial markets in their entirety.
This fundamental notion is the driving principle behind our agent, whose key
components and proposed techniques can be reused and built upon in the future.

We believe that the ecosystem developed by Liu et al.[30] is a great starting
point for developing reinforcement learning applications, as such we contributed
to the project by writing an open leaderboard to compare different algorithms
and parameter settings for each environment. Furthermore, we intend to publish
our project results on the leaderboard so that community members can learn and
improve their submissions even further.
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Chapter 3

Methodology

As part of this thesis project, we define an environment to model the stock trading
problem as in real trading exchanges. Furthermore, we propose Trading Deep
Q-Network (TDQN), a DQN-based algorithm, to automatically trade financial
securities within this environment. The algorithm can consistently outperform
market indexes and generate positive returns while exposing itself to minimal risk.

In this chapter we explain in detail the architecture of the project, analyzing
the stock market environment, the problem constraints, and the trading agent
algorithm. Specifically, we discuss how our agent can learn to trade in highly
volatile markets, and how to build a stable algorithm across different markets.

3.1 Model for stock trading
This project aims to develop an algorithm able to trade in a market environment
with a portfolio of multiple stocks. For our experiments, an artificial OpenAI Gym[31]
environment is employed to mimic a real-world trading exchange. The environment
is provided as part of the FinRL framework by the AI4Finance Foundation.

We previously defined the reinforcement learning problem as the optimal control
of stochastic Markov decision processes. Therefore, to model the interactive nature
of the dynamic stock market environment, we develop a Markov Decision Process
(MDP) as follows:

• The state space is composed of all the stock information available to our
agent, including the stock prices and shares, as well as the remaining account
balance.

• The action space is a vector of actions over the stocks in the portfolio. At
each timestep, the allowed actions on each stock include selling, buying, or
holding.
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• The reward is proportional to the difference in total account value. The net
worth of the account is the sum of the remaining cash balance plus the current
value of the stock portfolio.

Before training a deep reinforcement trading agent, we must carefully consider
what information is valuable and how can our trading agent obtain it. In practical
trading, various information needs to be considered, such as the historical stock
prices, current holding shares, market liquidity, and technical indicators. So, let us
breakdown the components of the environment more in detail.

Excluding the remaining account balance, the state space is composed of two key
parts the position state and the market features. The position state includes the
current stock price and the number of shares in our possession, while the market
features is a set of 8 different technical indicators for each ticket.

In financial technical analysis, an indicator is a mathematical calculation based
on historical price and volume that aims to forecast financial market direction.
Technical indicators are a fundamental part of technical analysis and are often
employed to try to predict the market trend.

Our state-space representation makes it easy to port to other markets and
captures intermarket relations like momentum, trend-reversal, and so forth. Fur-
thermore, we only make use of public information without relying on high-quality
data: financial data can be highly profitable, which is why it is not as easy to
obtain beyond the US stock market.

Some assumptions still need to be made with respect to real trading exchanges,
in particular, the environment assumes enough liquidity for the agent’s transactions
to be executed instantly at close price. Moreover, we also assume that our agent’s
actions will not influence the stock market behaviour. Given that the agent’s initial
capital is set to 1 million US$ by default, we uphold that the marked liquidity
assumptions are fair.

Additionally, a transaction fee is charged for each trade to mimic the long list
of transaction costs (exchange fees, execution fees, SEC fees) related to real-world
stock trading. Different exchanges and brokers have different commission fees, but
for our project, we set transaction cost as 0.1% of the value of each trade.

The action space is defined as {−k, · · · ,−1,0,1, · · · , k} for a single stock, where
k is a predefined parameter that sets the maximum number of shares for each
buying action. The action space is then normalized to [−1,1], since for our agent it
is easier to work with a normalized and symmetric distribution. In this setting, an
action in absolute value closer to 1 represents a confident Buy or Sell signal, where
the agent will trade a number of shares proportional to such confidence measure.
On the other hand, an absolute value close to 0 represents a doubtful signal, which
will be interpreted by the agent as a tentative Buy or Sell, or outright null Hold
signal.

22



Methodology

If the action generated is that of a Hold signal, then the positions owned in the
previous timestamp are carried over, and no change is done to the position space.
Further, if the action corresponds to a Buy signal, then a long contract is added
to the position space, provided the number of contracts in the position space is
less than the maximum number of contracts we can buy. This course of action is
known as long selling. In long selling we buy assets because we believe that the
value is going to increase in the future.

The Sell signals work in the same manner except that our agent must operate
with a long-only strategy, which does not allow short selling. This portfolio setting
means that all assets are bought using cash, and the value gained from selling assets
is held in cash. That is, the agent cannot buy any asset without the necessary
funds and can not sell any asset without holding it.

The agent can derive a stock trading strategy with lower turnover because the
available trading actions for individual assets are limited to a range. The upper
bound of our action space limits the issue of massive changes in portfolio weights
and guarantees us lower losses from transaction costs with respect to unlimited
trading strategies.

Finally, we define our reward function as the portfolio value change between
consecutive timesteps. The theory is quite simple: we need to maximize the positive
change of the portfolio value by buying and holding the stocks whose price will
increase at the next step, and minimize the negative change of the portfolio value
by selling the stocks whose price will decrease at the next time step.

Sometimes, sudden events may cause a stock market crash, such as the global
pandemic in the first quarter of 2020. We employ the volatility index (VIX), which
measures extreme asset price movements, to control the risk in a worst-case scenario.
This index is incorporated with the reward function to address our risk-aversion
for market crashes. When it is higher than a predefined threshold, which indicates
extreme market conditions, we halt buying and the trading agent sells all shares,
because all stock prices will fall. We resume trading once the volatility index
returns under the threshold.

3.2 Network architecture
This section discusses how our agent is built from the ground up and every step
needed to build a robust trading strategy. We start from a basic DQN algorithm
to implement our trading agent and progressively enhance its ability to deal with
the aforementioned financial environment.

As mentioned in Section 2.2.3, off-policy algorithms are almost always used in
tasks with a somewhat restricted state-action space. This historical notion has
already been questioned in the past and, especially with the introduction of deep
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learning methods (neural networks as function approximators) within RL, proved
old fashioned. Modern DQN algorithms are clearly able to deal with complex
state spaces, as proven by Mnih et al.[32] when their agent was able to achieve
superhuman level results when playing ATARI games starting from just pixels.

The main complication for this project is the complexity of the action space:
DQN algorithms are not equipped by default with the tools needed to successfully
solve a task with action spaces as widespread as ours. In general, off-policy
algorithms struggle with high-dimensional action spaces because the count of
actions that need to be evaluated at each timestep grows exponentially with the
number of action dimensions.

Large actions spaces are handled better by learning policy directly with on-policy
or actor-critic methods. In this case, the agent optimizes a parametrized policy
function. This method is way more efficient from a computational standpoint,
because by approximating the policy function we can avoid evaluating all actions
at each timestep since the optimal action is chosen directly using the policy.

Due to this computational limit most state-of-the-art implementations of DQN
operate with a minimal action space, often with only 2 or 3 input dimensions. For
example, the action space size of the ATARI environment in OpenAI Gym is only
18. For our problem, the agent needs to be able to operate with an action space
size in the hundreds. Specifically, given our problem setting, the DQN agent needs
to be able to operate over 30 inputs, each with size (2k + 1).

To deal with our task’s continuous, high-dimensional action space, we employ
the action branching architecture introduced in Section 2.3.1. The core idea is that
it is possible to learn for each action dimension with a degree of independence.
This fundamental notion is reflected in the network architecture, which includes
several independent action branches as shown in Figure 3.1 below.

Figure 3.1: Action branching network architecture
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In practice, the shared representation module computes an intermediate representa-
tion of the state input. This intermediate value is then used to evaluate the shared
state value and the state-dependent action advantages for each subsequent action
branch. Finally, both the state value and the action advantages are combined to
output the Q values for each action dimension.

Note that even though the action branches are independent from each other,
the shared representation module acts as a common denominator in evaluating
the action advantages. As such, all components of the network share information
with each other and even different action branches are interconnected to a degree.
Intuitively one can imagine that this network architecture allows us to distribute the
approximation of the value function over several action branches while maintaining
a shared network module for coordination.

At this point, our branching DQN (BDQN) agent can operate within our financial
environment with moderate success, but our purpose is to create a highly robust
trading strategy. To achieve our ultimate goal, we need to enhance our agent’s
ability to learn under any circumstance. This means that we have to improve the
stability of our agent.

During testing, we quickly realized that the stability metric was the top priority:
our agent’s performance is directly related to its stability. Even minor losses in
stability can drastically alter our results in the long run. This behaviour can
be partially explained by the intrinsic randomness of the stock market, which
makes learning challenging under some circumstances even for our BDQN agent.
Moreover, our experiments also underline that the stability metric (and thus,
our agent performance) suffers from high variance across the pseudorandom seed
initialization. That is, stability results vary wildly by only changing the agent or
environment seed.

So our objective is to strengthen our agent’s ability to learn across different
market conditions, including high-turbulence periods, and independently of its
initialization. To model the parametric uncertainty of our agent we turn to
distributional reinforcement learning, as introduced in Section 2.3.2.

Changes with respect to the current BDQN algorithm are substantial but
restricted to the algorithm’s core, which allows us to combine quantile regression
to our existing branching architecture. Referencing Figure 3.1 again, we can think
that changes are restricted to the shared module and the state value, so action
branches can still work independently as before. The resulting QR-BDQN agent is
indeed more resilient to the randomness of the environment.

The reason behind this choice is that our trading agent should be responsive to
different type of market trends: we cannot afford to underperform under different
market behaviour. Therefore, our agent must be a ‘jack-of-all-trades’ and remain
profitable whether the market exhibits a bullish (upward) trend or a bearish
(downward) trend.
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At this point, the algorithm can trade effectively even in an unstable market,
trend reversal is easily spotted, and weight adjustments are quickly propagated
through the network weights. One last shortcoming we wish to address is the
agent’s exploration within the financial environment. Analogously as before, during
practical testing, we noticed a correlation between the exploration schedule of our
agent and its performance. Namely, more in-depth exploration resulted in overall
better performance across all metrics. It is not easy to pinpoint the exact cause of
this relation. One hypothesis is that our algorithm tends to overfit the training
data, resulting in underperformance if significant price changes appear in one of
the stocks in the state space.

To address the exploration issue, we swap the fully connected linear layers of our
QR-BDQN agent to noisy linear layers. This solution, introduced in Section 2.3.3,
allows us to replace the conventional exploration heuristics (in our case, ϵ-greedy)
with a totally different exploration method. Simply put, we inject the agent’s
network weights with gaussian noise. Having weights with greater uncertainty
introduces more variability into the decisions made by the agent, which ultimately
is what we need for our exploration. The stochasticity induced by noisy networks
into the agent’s behaviour can be used to augment its ability to explore.

Figure 3.2: Graphical representation of noisy layer

As pictured in Figure 3.2, the parameters (µw, σw, µb, σb) are the learnables of the
network whereas (ϵw, ϵb) are noise variables. The noisy layer functions similarly
to the standard fully connected linear layer, the main difference is that in the
noisy layer both the weights vector and the bias is perturbed by some parametric
zero-mean noise. The parameters of the noise are learned along with the remaining
network weights, which means that the noise is automatically tuned by the algorithm
itself.
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For our purposes the optimal noise distribution for our network layers is factorized
gaussian noise, which uses an independent noise source for each input and each
output. The main reason to use this noise distribution is to reduce the computational
overhead of random number generation in our algorithm, as recommended by the
authors in the original NoisyNet implementation.[16]

Another interesting feature of the NoisyNet approach is that the degree of
exploration is contextual and varies based upon the current state. This behaviour
is a side-effect of the noise perturbations inside the weight vector, which induce
a persistent change over multiple time steps. Such a complex, state-dependent
change is the key to drive efficient exploration in larger environments.

Since at this point the network model is already modified quite extensively, we
decided to run a series of tests to figure out the best configuration for our problem
setting. At the end we ended up switching only the linear layers inside the shared
module while keeping the layers of the action branches as default. Thus, given that
the core network is composed of two layers, there are just two noisy linear layers in
our model.

For the following chapters, our quantile regression branching deep Q-network
agent with noisy linear layers will be referred to as trading deep Q-network (TDQN).
This name is only introduced for the sake of clarity and is chosen due to the purpose
of the algorithm, which is to be an automated trading agent that can operate with
top results in any market and under any circumstances.
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Chapter 4

Experimental Results

In this section, we prove that the trading strategy derived by our proposed TDQN
agent can outperform other deep reinforcement learning algorithms. Additionally,
we also compare our approach to other financial benchmarks and traditional trading
strategies. For this comparison we perform backtesting in two different markets
and verity results based on several financial performance measures.

4.1 Data Summary
For this project, the main portfolio employed in our experiments is composed of
30 US-based stocks. Specifically, it includes the stocks tracked by the Dow Jones
30. The reference DJIA index (Dow Jones Industrial Average) is a price-weighted
measurement of 30 prominent companies listed on US stock exchanges.

We choose the DJIA to represent the US stock market since it is the most
commonly followed equity index, but broader market indices such as the Nasdaq
100 or Standard & Poor’s 500 can also be used as well. Another reason for choosing
this stock portfolio is that we can objectively compare the performance of our
agents against the reference index.

Our backtests use daily data from 2009/01/01 to 2021/12/31 obtained on Yahoo
Finance for the performance evaluation. The dataset is, of course, split into a
training set with records until 2019/01/01 for a total of ten years of daily data,
while the remaining three years are used for testing. Note, however, that the agent
can also learn while under evaluation since we are still working with a dynamic
reinforcement learning environment. Furthermore, there are no data leakage issues
due to time series record’s sequential nature.

As our data model is not specific to the stock market, as explained in Section
3.1, we can also test our TDQN agent with cryptocurrencies. We selected a custom
portfolio with 8 crypto trading pairs in the new cryptocurrency market environment.
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The individual coins are chosen according to the market cap and the project’s
longevity. The pairing is Tether (USDT), a stablecoin created to maintain value
equal to the US dollar.

For the performance evaluation, our backtest use data from the Binance Exchange
obtained through CryptoDataDownload. We use hourly data from 2020/08/01 to
2021/12/31 in contrast to the previous setting. After the initial training, we start
the backtesting trial from 2021/09/01 onwards.

A complete breakdown of the assets and the data used in both experiments can
be found in Table 4.1 below.

US Stocks Crypto

AAPL, AXP, BA, BTC/USDT,
CAT, CSCO, CVX, ETH/USDT,
DD, DIS, GS, HD, ADA/USDT,
IBM, INTC, JNJ, BNB/USDT,

JPM, KO, MCD, MMM, XRP/USDT
MRK, MSFT, NKE, LTC/USDT,

PFE, PG, RTX, XLM/USDT,
TRV, UNH, V, VZ, TRX/USDT
WBA, WMT, XOM

Table 4.1: Test portfolios

Both datasets are composed of asset entries that contain the raw price data and
volume for each timestamp. Remember that while the close price is indeed the
essential value, our algorithm is also given a set of technical indicators computed
starting from the initial raw price data.

The technical indicators available to our agent are provided by the stockstats
package. The complete list is: Moving Average Convergence Divergence (MACD),
Bollinger Band upper and lower bound, Relative Strength Index (RSI), Commodity
Channel Index (CCI), Average Directional Index (ADX) and Simple Moving Average
(SMA) over 30 and 60 days.

The market features portion of the state space also contains the VIX and
turbulence values for the current timestamp along with the technical indicators.
Our algorithm uses the VIX indicator as a measure of market volatility. Concretely,
when the value of VIX is above a threshold, the agent halts all trading actions and
sells the remaining shares in its possession.
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4.2 Experimental Setting
In the experiment, we also need to set the parameters of the trading environment.
Of course, many of the parameter settings can be considered default values in the
financial reinforcement learning field, but let us list them nonetheless.

For the stock trading environment, we set initial capital to 1 million USD$,
while it is only 100 thousand for cryptocurrency trading. In addition, for both
environments, fees are set to 0.1% of the total order value whether the agent is
buying or selling. This value is meant to represent an average of different real-world
online exchanges, but it is only an approximation.

After thorough testing, the optimal parameters of TDQN are set to the values
reported in Table 4.2. The only notable changes with respect to the respective
authors recommendation are a doubling of the batch size from 32 to 64 and
a decrease of the initial sigma zero for the noise distribution from 0.5 to 0.3.
Additionally, we used the Adam optimizer for the policy and ReLu activation
function inside the deep neural network module.

Parameter Value Parameter Value

batch size 64 DNN input 64
replay mem size 1e6 DNN dim 1 64
learning rate (α) 1e−4 DNN dim 2 32
learning starts 1e4 quantiles 200

discount factor (γ) 0.99 sigma zero 0.3

Table 4.2: Summary of parameters

To objectively measure the performance of our trading agent against the reference
index and other deep reinforcement learning benchmarks we rely on several financial
metrics as provided by package empyrical courtesy of Quantopian. Let us provide
a short overview for each of the most relevant metrics:

• Cumulative return and Annualized return measure the amount gained by the
trading strategy over time. The former is the total compounded value, while
the latter is a yearly average.

• Annualized volatility measures the variance in the returns obtained by the
agent, aggregated over a year. A trading strategy with high volatility is
correlated with an increased risk.

• Max drawdown is the maximum loss over the trading period. It is usually
expressed as a percentage.
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• Sharpe ratio and Calmar ratio both measure the risk-adjusted returns. Simply
put, Sharpe is a function of returns versus volatility. On the other hand
Calmar ratio is a function of returns over max drawdown. Sharpe ratio is the
one traditionally used as measure of risk-adjusted returns.

• Stability measures the link between the variability of the underlying data
and the strategy’s correctness. Oversimplifying, we can think of stability as
representing the quality of our agent trading strategy. It is important to note
that stability is not related to financial theory like the other metrics, more
often is associated with statistics.

Of course, cumulative and risk-adjusted returns are the most critical metrics in
general. Still, for this project, we must also focus on volatility, max drawdown
and stability as together they can give us an appropriate measure of our model
robustness.

4.3 Stock Trading

We previously stated that we use the DJIA index as a reference benchmark regarding
traditional financial strategies. On top of that, we also selected three distinct actor-
critic based algorithms to compare with our agent, namely Advantage Actor-Critic
(A2C)[33, 34], Proximal Policy Optimization (PPO)[35] and Deep Deterministic
Policy Gradient (DDPG)[36]. The PyTorch implementation of these algorithms
is provided by package Stable-Baselines3[37, 38], while the optimal parameter
settings are thanks to the FinRL framework.

After extensive testing, these algorithms have been selected to represent how
various agents respond to different financial market trends. Intuitively we can
expect each agent to have unique strengths and weaknesses depending on the current
state of the market: one model may be more efficient in a bullish market while
the other may perform better in a bearish market. These same deep reinforcement
learning algorithms have also been used in other notable stock trading projects,
such as the ensemble agent proposed by Yang et al.[24].

Figure 4.1 demonstrates that the trading strategy devised by our TDQN agent
significantly outperforms the DJIA index and the top-performing deep reinforcement
learning agent DDPG. As shown in Table 4.3, our algorithm strategy obtains higher
returns while maintaining lower annualized volatility and maximum drawdown with
respect to the other trading strategies. Furthermore, these results should mean
that the robustness of our algorithm is superior to the competing benchmarks,
which is confirmed by the best stability score in the lot.
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Figure 4.1: Cumulative returns comparison

Diving into more detail, we notice that our TDQN strategy obtains a Sharpe
ratio of 1.01 and a Calmar ratio of 0.65 over three full years of trading, which is
noticeably better than the 0.75 and 0.43 achieved by DJIA in the same period.
Overall this sums up to a difference of 30% when balancing risk and return, or an
18% improvement when only returns are taken into account.

Aside from the statistics in Table 4.3 a more in-depth analysis reveals that the
strategy derived by our TDQN agent has higher win ratio and gain/pain ratio.
Simply put, these metrics measure the difference between winning and losing trades
in number and amount respectively.
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This means that our agent makes fewer losing trades, and when it does lose, the loss
is minor with respect to the DJIA index. On top of that, the average drawdown is
smaller and the recovery factor is much higher when compared to the traditional
financial strategy. So when considering all of this together we can confidently say
that our TDQN strategy is superior to the DJIA benchmark according to every
significant metric.

Trading from Jan 1, 2019 to Dec 31, 2021

TDQN DDPG PPO A2C DJIA

Cumulative Returns 74.1% 62.5% 57.2% 50.8% 55.9%
Annual Returns 20.3% 17.6% 16.3% 14.7% 16.0%

Annual Volatility 20.4% 21.0% 19.5% 22.3% 23.6%
Sharpe Ratio 1.01 0.88 0.87 0.73 0.75
Calmar Ratio 0.65 0.54 0.61 0.48 0.43

Stability 74.5% 59.0% 60.0% 54.8% 67.8%
Max drawdown -31.2% -32.5% -26.7% -32.0% -37.1%

Table 4.3: Performance evaluation comparison

Among the other deep reinforcement learning agents, DDPG has the lead in returns
while PPO has the lowest max drawdown and volatility. Leaving statistical results
aside for a second, we can quickly see how the three benchmark agents behave
differently in Figure 4.2. In this graph we show how all strategies performed during
the stock market crash of February 2020, in particular, we can notice how high the
volatility index VIX spiked.

For instance, even if A2C is the worst performing agent in cumulative returns, it
quickly picked up on the trend reversal and behaved well in a bearish market. On
the other hand, while it looks like PPO is the most adaptive to risk, from Table 4.4
we can clearly see how bad it was in a volatile market and that most of its gains
were in 2021 instead. So it means that PPO is only preferred in a stable, growing
market trend.

TDQN DDPG PPO A2C DJIA

2019 23.0% 23.6% 10.6% 18.9% 23.7%
2020 12.2% 7.11% 4.11% 9.96% 5.80%
2021 38.9% 31.8% 42.5% 21.9% 26.4%

Table 4.4: Comparison of yearly returns
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Figure 4.2: Volatile market comparison

This leaves us with DDPG, which behaves strongly in almost all conditions and
is the only one that is able to match the reference DJIA index during the whole
trading period. In practice DDPG produces the best all-round trading strategy,
second only to our TDQN agent.

Concretely, our trading strategy is 14% better when considering risk-adjusted
returns versus DDPG, or 12% in cumulative returns. Moreover, our TDQN agent
obtains record returns during 2020 as shown in Table 4.4. This performance means
that we can effectively trade both in upward and downwards trends, as well as high
volatility periods.

The robustness of the TDQN trading strategy is also confirmed by top Sharpe and
Calmar ratios when compared to the other deep reinforcement learning algorithms.
Even if we fall slightly behind in volatility and maximum drawdown with respect
to PPO, the returns obtained in exchange are definitely worth the risk according
to these metrics.

Once again a more thorough analysis reveals that our algorithm is still ahead
of the competition in every metric, including the previously cited gain/pain and
payoff ratios. In particular, against the well-rounded DDPG strategy, we have
higher expected returns in every timeframe (daily, monthly, quarterly and yearly)
on average.

As highlighted in Figure 4.3 the TDQN agent is often ahead or on par in monthly
returns, and the most significant difference between the two heatmaps is focused
on the best and worst months in the entire trading window. In fact, the benchmark
DDPG strategy has both higher best month and lower worst month.

34



Experimental Results

Figure 4.3: Monthly returns vs DDPG

This kind of behaviour does not pay off in the long run since TDQN still obtains a
higher monthly average of 1.72%, compared to DDPG’s 1.53%. Still, to put things
in perspective, the DJIA average monthly returns are only 1.47%, so both agents
are outperforming the market in the end.

The higher variability in monthly returns is also highlighted in the distributions
pictured in Figure 4.4. The histogram of DDPG’s monthly returns is narrower, and
the graph shows more occurrences for lousy trading months. In contrast, TDQN
strategy is more spread out and outlier months are rarer, this is undoubtedly
reflected in the better stability score of TDQN as reported in Table 4.3.
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Figure 4.4: Distribution of returns vs DDPG

In conclusion, our DQN-based trading agent performs exceptionally in the stock
trading market, obtaining great returns while managing relatively low risk. While
it is true that most of the deep reinforcement learning algorithms were able to
outperform the DJIA financial benchmark, none of them was able to obtain as stable
and robust a strategy as TDQN. Consequently we uphold that the gap between
the results of TDQN and the rest of the field in the stock trading environment is
enough to validate our project methodology. Plus, given that our trading window
is set purposely to capture a wide variety of market trends (including downward
trends and high volatility periods), we claim that our TDQN agent can effectively
trade in all market conditions with remarkable results.
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4.4 Cryptocurrencies Trading
As an introductory notice consider that while cryptocurrency exchanges are booming
in popularity, there are still many problems that we have to face when acquiring
related data. In particular, it is not easy to find historical data since many coins
are relatively new instruments. So while we were able to obtain daily records from
2018 onwards for our entire portfolio, it was not enough to train our algorithm
effectively as the extremely limited dataset made our agent prone to overfitting the
training set.

To solve this issue we used hourly data instead, which helped us obtain a big
enough sample to train our agent. Still, since the objective of this project is to
develop an algorithm that can trade in any financial market, we must acknowledge
that less than a year and a half of data is not enough to capture an accurate
representation of the market.

Specifically, the trading period for our experiment (last quarter of 2021) presented
a significant downward trend that effectively limited the viable options for trading at
a profit, especially considering that all agents must work with a long-only portfolio.

On top of this, whereas the stock environment is well established inside the
trading framework used for this project, the cryptocurrency market is still in
development and is subject to frequent changes. So, in the end, all of these issues
must be considered when analysing experimental results in the cryptocurrency
environment.

Introducing the results, we compare our TDQN agent’s performance against
an equal-weighted portfolio, which will act as our traditional financial benchmark
inside of the cryptocurrency environment. In addition we also tested a bitcoin
(BTC) only portfolio, but we quickly discarded it since it failed to obtain positive
returns. In both cases the initial capital is spent on day one and we hold all assets
until the end, following buy-and-hold criteria.

We also utilised the same three actor-critic reinforcement learning algorithms
as before, but only DDPG returned positive results with our experiment’s trading
setting. The failure of PPO and A2C can probably be explained by the downward
market trend of the trading window, that when paired with the extreme volatility
of the cryptocurrencies market can quickly result in a total crash.

All considered, TDQN obtains an improvement of 43% over the equal-weight
portfolio when balancing risk and return or a 129% improvement when only returns
are taken into account, as reported by Table 4.5. These results may look unrealistic,
but they are actually in line with our expectations and are comparable to related
experiments. Regarding the deep reinforcement learning benchmark in DDPG
the comparison is a wash. One algorithm edges the other by 0.1% and 0.2% in
risk-adjusted and cumulative returns respectively, which is definitely not enough to
distinguish the two agents.
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Trading from Sept 1, 2021 to Dec 31, 2021

TDQN DDPG EW

Cumulative Returns 99.9% 100% 21.4%
Annual Returns 6.21% 6.21% 1.70%

Annual Volatility 29.5% 29.5% 19.5%
Sharpe Ratio 0.29 0.30 0.19

Max drawdown -18.0% -13.9% -36.7%

Table 4.5: Cryptocurrencies performance evaluation comparison

Both algorithms obtain higher volatility but lower max drawdown with respect to
the equally-weighted strategy. The volatility is to be expected since the benchmark
strategy does not involve any activity during the trading window. On the other
hand, the maximum drawdown can tell us something about how the algorithms
trade in such a volatile market.

Max drawdown is nothing but a measure of the largest loss during the trading
window as explained earlier, therefore low values indicate to us that both agents
do not suffer from significant losses. A more thorough analysis reveals that both
algorithms trade with fewer assets per action and fewer shares for each purchase.
This means that the agent mitigates the potential for major losses by minimizing
the market exposure.

While this is an obvious conclusion in retrospect, especially considering the
highly volatile nature of the cryptocurrencies market, this kind of behaviour is
not at all granted for our algorithmic trading strategy. This kind of behaviour is
what allowed both TDQN and DDPG to outperform the EW portfolio, and avoid
a complete crash like the other DRL algorithms.

Nevertheless, while the overwhelmingly positive results over the financial bench-
mark are to be expected during a downward trend, we should still be confident in
the performance of our TDQN agent in the cryptocurrencies market. We trust that
our algorithm could implement a successful trading strategy even in other market
circumstances and hope that, as more crypto data becomes freely available, we will
be able to test this.
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4.5 Ensemble Comparison
As briefly mentioned in Section 2.4, the obvious choice for the ultimate comparison is
the ensemble agent[24]. It is the immediate choice not only because it is developed
for the exact same environment that we use for our project, but because it is
designed for the same objective: obtain a profitable trading strategy in a complex
and volatile stock market.

In the simplest terms possible, the ensemble agent trades with only one of three
algorithms (A2C, PPO, DDPG) for every quarter. The best performing agent is
automatically chosen by using a 3-month validation rolling window and selecting
the one with the highest Sharpe ratio. In this manner the authors determine the
optimal algorithm for each market trend, effectively integrating and combining the
best features of the three algorithms.

On top of that the authors made specific choices in their design to make the
algorithm more robust and reliable, exactly as in TDQN. Related works in the
field often tackle different subproblems because it is challenging to implement an
all-rounder strategy, so it is exciting to find a similar project that is able to adapt
and succeed in every market condition.

In the spirit of fairness we kept settings for this comparison as similar to the
original as possible. In practice, this means that our backtests use daily data from
2009/01/01 to 2021/07/01 for the performance evaluation. The dataset is obtained
from Yahoo Finance just as before and is also split into a training and testing split
in a similar fashion.

As opposed to the previous example, the trading period is closer to two years
since we actively trade only from 2019/04/01 to 2021/07/01. This choice is again
made to keep settings as close to the original. The ensemble agent effectively begins
the trading from 2019/01/01, but the first three months report no profits since
they are used as a validation window, so with TDQN we start from April instead.

Furthermore, there are some slight changes in the data. First of all the ensemble
agent works with a subset of the original technical indicators as it excludes the
highly correlated attributes (only use MACD, RSI, CCI, ADX). Then, the high
volatility cutoff threshold uses a computation of market turbulence instead of the
VIX index. We mirror the same changes to keep the information equal between
the two agents.

Once again, the strategy implemented by our TDQN algorithms tops the table
and can comfortably outperform the ensemble agent as pictured in Figure 4.5. The
DJIA benchmark, which is actually a solid strategy in this trading window, is also
outclassed by a sizeable margin. In Tables 4.6 and 4.7 we report the numerical
results that are not as one-sided as one might initially think. In particular the
ensemble agent obtains the best score for volatility and maximum drawdown,
underlying its risk-avoidant behaviour.
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Figure 4.5: Cumulative returns comparison

Trading from Apr 1, 2019 to Jul 1, 2021

TDQN ENS DJIA

Cumulative Returns 52.0% 22.9% 31.9%
Annual Returns 18.2% 9.58% 12.1%

Annual Volatility 24.3% 19.0% 25.2%
Sharpe Ratio 0.81 0.58 0.75
Calmar Ratio 0.53 0.40 0.46

Stability 55.5% 37.9% 48.4%
Max drawdown -34.5% -23.9% -37.1%

Table 4.6: Performance evaluation vs ENS

TDQN ENS DJIA

2019 24.5% 5.47% 9.94%
2020 7.91% 2.16% 5.16%
2021 19.7% 15.2% 16.8%

Table 4.7: Yearly returns vs ENS
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Unfortunately though, yearly and cumulative returns suffer immensely from such
low risk tolerance. This is also shown in the risk-adjusted returns as measured by
the Sharpe and Calmar ratio, so in the end the higher safety attributes are not
worth the vastly lower returns. TDQN obtains higher returns than both DJIA and
the ensemble strategy. Specifically, it is 7% and 34% better in risk-adjusted returns
respectively. Although it is not a clean sweep as in the previous experiment we
can still be confident in our agent performance, whose robustness is still highest
according to the stability metric.

Figure 4.6: Monthly returns vs ENS
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Let us briefly discuss TDQN performance versus the ensemble agent more in detail.
Just as in the previous experiment our algorithm is still ahead of the competition in
every metric: it shows a higher gain/pain ratio, higher payoff ratio and even higher
profit ratio. This means that our agent makes fewer losing trades with respect
to the ensemble agent. Plus, the loss is smaller on average when it fails, and the
payoff is usually bigger when it wins.

Figure 4.7: Distribution of returns vs ENS
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As highlighted in Figure 4.6 our agent is often ahead of or on par in monthly returns,
this is confirmed to be the case since TDQN has once again higher expected returns
in every timeframe on average. As shown previously the strategy devised by our
agent is more stable, its strategy obtains a higher monthly average of 1.43%, versus
0.89% of the ensemble strategy.

In this example the histogram of TDQN’s monthly returns is more spread out
and, admittedly, the worst trading month is not of the ensemble. In contrast, the
ensemble strategy appears more focused, but negative months occurrences are still
higher. This is reflected in an average down month score of -5.84% compared to
TDQN’s score of -5.07%. It is also important to notice that while the maximum
drawdown of our algorithm is worse, the longest drawdown (in days) is actually
shorter. Meaning that TDQN recovers from the stock market crash much better,
as shown in Figure 4.5.

We also performed some additional experiments, including TDQN inside the set
of algorithms used by the ensemble agent. In these trials we removed each of the
three algorithms and used our agent instead at their place. The best resulting set
is composed of TDQN, DDPG and A2C. The best performing algorithm overall is
TDQN which is chosen as trading agent in 4 quarters, which means 45% of the
trading window. The remaining quarters are split among DDPG and A2C, with our
agent being the second choice (by Sharpe ratio) in all but one quarters. Ultimately
the performance with respect to the original ensemble agent is closer than expected
and sits between 3% to 5% improvement depending on the algorithms used. This is
too close a result for our standards and therefore further testing is required before
drawing conclusions of any kind.

Last but not least, we can now validate our previous claims about our perfor-
mance in the stock market. At the end we improved the starting DQN algorithm
into a well-rounded trading agent that can trade in all market trends and is able to
outperform other state-of-the-art trading agents. As a result, we are confident that
our agent’s performance can be used as a benchmark for automated stock trading
in the near future.
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Conclusions and future
works

In this thesis, we compared different solutions to the automated stock trading task
and discussed how to build an artificial environment to model the stock trading
problem as in real-world exchanges. For this project’s main objective we developed
a trading agent specifically designed to automatically generate a profitable and
reasonably safe trading strategy in any financial market. In addition, we built upon
the basic algorithm in order to adjust to different market trends and implement a
robust and reliable trading strategy.

At the beginning we worked to expand the agent’s capabilities using the value
distribution to increase stability, allowing the agent to better understand the
intrinsic randomness of financial timeseries data. Simply put the distributional
approach gives our agent a broader, more comprehensive picture of the financial
market environment, which in turn makes our agent behaviour to be more risk-
aware and learning more stable in highly-volatile markets. Finally we focused
on using noisy network layers inside our automated trading system to introduce
more variability in the agent’s decisions and increase returns in the long run.
This exploration technique is crucial to TDQN success in a complex and dynamic
financial market, and is the single best improvement in our project.

Experimental results confirm our hypotheses and obtain top results compared to
the DJIA financial index and other reinforcement learning algorithms. We obtain
solid returns in a volatile, dynamic market under an extended trading window.
Moreover, the trading strategy devised by TDQN is remarkable mainly for its
robustness, based on Sharpe and Calmar ratios plus overall stability. Similar results
are obtained in the cryptocurrencies market in a narrower trading window. We
are confident that the methods and techniques behind TDQN are great tools for
automated trading with reinforcement learning.
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For future work, it will be interesting to integrate these solutions with more
advanced models like IQN[39] and FQF[40]. These algorithm build upon the ideas
of QR-DQN and distributional reinforcement learning in general, so it will be
interesting to see how they stack up in the multi-asset trading problem. At the
same time it will be interesting to explore how to learn and explore effectively with
even larger state spaces such as S&P500 or STOXX600 constituent stocks.
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Appendix

A.1 Environment setup
The entire project is implemented in Python 3.8. In our work we use several
open-source packages, a shortlist of the primary packages and respective versions
is reported below.

1 pytorch : 1 . 9 . 0
2 numpy : 1 . 1 9 . 2
3 pandas : 1 . 3 . 2
4 s t o c k s t a t s : 0 . 4 . 1
5 quants ta t s : 0 . 0 . 5 0
6 y f inance : 0 . 1 . 7 0
7 p y f o l i o : 0 . 9 . 2
8 matp lo t l i b : 3 . 4 . 2
9 seaborn : 0 . 1 1 . 2

10 gym : 0 . 1 7 . 3
11 s tab l e −b a s e l i n e s 3 : 1 . 4
12 sb3−cont r i b : 1 . 4 . 0
13 tensorboardX : 2 .2

The complete list is available in the Conda environment file, distributed openly
with the source code at github.com/zappavignandrea. To properly test and replicate
our results we suggest to create a copy of the environment with the file, as different
version of all packages makes results incomparable.

A.2 In-depth performance analysis
For additional analysis, we attach a detailed report generated by quantstats. In
this tearsheet we compare TDQN’s strategy to the DDPG benchmark as described
in Section 4.3.
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Figure A.1: TDQN vs DDPG tearsheet
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