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1. Introduction

In academia and the financial industry, quantitative trading has been a popular topic since the
late 1960s. In general, it refers to the use of statistical models and data-driven methodologies
in financial market analysis, following two main approaches. The classical approach is related
to the development of economic theories in order to interpret the financial market behaviour.
A few representative examples include the well-known Capital Asset Pricing Model and
Markowitz Portfolio Theory.

Computer scientists apply data-driven techniques to analyze financial data. In particular,
machine learning and deep learning have been critical components generating a high interest
in the finance industry in the last period. The advancements of these techniques, technologies,
and skills have allowed the financial industry to grow at a frenetic pace over the years due to
its exceptional performance as well as the appealing property of learning meaningful
representations from scratch. Most of these adaptive systems rely on supervised learning,
which involves the training of a forecasting model on historical data to project market
products trend direction. However, despite their popularity, these methods usually have a
number of flaws that result in suboptimal results linked to the fact that financial assets trading
is not only a process aiming to estimate future prices: it also requires many other elements that
should be taken into account, such as the risk involved as well as exogenous constrictions like
transaction fees and market liquidity. On the contrary, the supervised model aims to minimise
prediction error (profit maximization) regardless of risk, which is not in the investor's best
interests. Furthermore, as financial market data is extremely noisy, the performance of
supervised machine learning algorithms, such as Neural Networks, can be suboptimal.

Due to its outstanding ability to solve complex sequential decision-making problems,
reinforcement learning (RL) has attracted significant interest in many automation domains
over the last decade, including robotics and video games. RL is able to fully use large
amounts of financial data with fewer model assumptions and to improve decisions in complex
action and space states training an agent to solve dynamic optimization problems. In the
Reinforcement Learning context, the algorithm is not given any explicit supervision: it relies
on the rewarding function to guide the agent and evaluate how it is behaving in the given
environment. The agent in this context is a trader, the actions are the amounts of shares to be
traded, and the environment is the stock's price movement.

Multistock Trading and Portfolio Allocation are problems that can be easily framed into a RL
application. In the thesis we explore the performance of different RL algorithms in a variety
of contexts with different parameterizations, training the agents with historical prices of the
Dow Jones' stocks. The Reward Function, in particular, plays a key role in Reinforcement
Learning applications. It is an incentive technique that utilizes a reward and punishment
system to make the agent understand how it should behave in order to maximize its reward.
As a consequence, the natural approach to train a RL agent to solve a quantitative trading task
is to reward its action with a value proportional to the gained profit (Multistock Trading
problem), or to the new Portfolio Value (Portfolio Allocation problem).

State-of-the-art RL techniques have already demonstrated to be profitable, being efficient in
different market conditions and beating the benchmarks. Despite the results, the classic
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rewarding methodology brings to model instability, overfitting and ineffectiveness in taking
into account medium and long-term trends, and difficulties in diversifying the portfolio
exposure to the market, while not being interpretable enough to be inspected before any
deployment. Solely providing the agent with historical price data information is often not
enough to enable it to learn comprehensive and reliable strategies. Especially when dealing
with multi stock trading problems the complexity of the process increases, due to the
fluctuating nature of the market and the demand to manage a structured portfolio, as it is
necessary for the agent to take into account several factors such as distinguishing how much
to allocate on each asset, which positions to open in what direction, and what is the best
condition to close them in order to accumulate the maximum reward in an unknown
environment. In these circumstances, the choice of the reward function turns out to be a
fundamental aspect, and must be tailored to the trading context allowing the model to learn
how to act efficiently.

This thesis extends the state-of-the-art RL algorithms by also analyzing a series of financial
data containing, for each trading day, the information about prices’ moving averages,
historical volumes, trend momentum indicators, volatility-related information and a
correlation matrix between the stocks considered. In particular, the thesis research aims at
taking advantage of the historical technical analysis data. It also incorporates in the reward
function the metrics associated to the historical returns and the asset allocation thus allowing
the trader to configure his risk-aversion profile.

The experiments reported in this thesis work were run on the prices and exchange volume
data of the Dow Jones stocks in the period from January 1st, 2001 to October 31th, 2021. The
analysis of the results shows that our approach can accurately interfere with the behaviour of
the agent with a high interpretability level and can be applicable in a real-world working
application, with an integration in the workflow of the risk-management office, empowering
the operators with a tool tailored on their risk-aversion profile.

In the future, this approach could be extended to work on other types of financial products or
markets, different RL algorithms, data and preprocessing pipelines.



2. Financial Engineering

The stock market definition refers to the collection of exchanges and other venues, where
shares of publicly held companies can be bought, sold, and issued. A corporation's shares are
units of equity ownership. Shares exist as a financial asset for some companies, enabling for
an equal distribution of any residual profits, if any, in the form of dividends. Shareholders of a
stock that does not pay a dividend will not receive profit distribution but they expect to benefit
from rising stock prices as the company's income rises.

2.1 Financial Terms and Concepts
This chapter aims to give a complete overview about the financial terms and concepts we
made use of in the thesis starting from the basic concepts about positions handling up to the
main portfolio allocation strategies.

2.1.1 Long & Short
From the point of view of investments in the stock market, there are essentially two strategies:
the first one is based on the adoption of "long positions", by specifically betting on stock
rising; the second one is based on the adoption of "short positions", through which a trader
bets on the fall of a stock.

The long position assumes the purchase of an asset to later resell it at a higher price while a
“short” sale is instead the sale of a financial product that an investor does not own or a sale
which is consummated by the delivery of a stock borrowed by the investor. The investor later
closes out the position by returning the borrowed security to the stock lender, typically by
purchasing securities on the open market

Investors who sell stock short typically believe the price of the stock will fall and hope to buy
the stock at the lower price in order to make a profit.

If the asset pays cash dividends while the short position is held, the dividends are paid to the
short sale buyer. The lender must also be compensated by the short seller, who must match the
cash dividends with his own funds.

In other words, the short seller is equally responsible for paying the lender’s cash dividends
on the borrowed asset.
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2.1.2 Transaction Fees
Transaction fees are expenses incurred when buying or selling a good or service representing
the labour required to bring a good or service to the market, giving rise to an entire industry
dedicated to facilitating exchanges. In a financial sense, transaction costs include brokers'
commissions and spreads, which are the differences in terms of price paid from the dealer and
from the buyer.

2.2 Financial Time Series
Prices change throughout time due to the dynamic behaviour of the economy and the
non-static supply and demand balance enable market dynamics to be treated as time series and
to be analysed and modelled using quantitative methods and instruments.

The theory and practice of asset valuation across time are the focus of financial time series
analysis. Although it is a very empirical subject, theory serves as a framework for making
inferences, just as it does in other scientific fields.

As a result of the uncertainty existing in both financial theories and its empirical time series,
financial time series analysis is set apart from other types of time series analysis.

There are numerous definitions of asset volatility, for example, and the volatility of a stock
return series is not clearly visible. This is why statistical theory and methods play an essential
part in financial time series analysis [3, 4].

2.2.1 Prices
Let 𝑝t belong to ℝ and be the price of an asset at discrete time t. The sequence 𝑝1, 𝑝2, ...., 𝑝𝑇
is a univariate time-series. We use 𝑝𝑖,t to represent the price of an asset i at time t and 𝑝asset 𝑖,𝑡 to
represent the prices of different assets.

Given the price time series of an asset i, the column vector 𝑝→ 𝑖,1:𝑇 is:

⃗𝑝
𝑖, 1:𝑇

 =  𝑝
𝑖, 1

 ,  𝑝
𝑖, 2

 ,  .  .  .  ,  𝑝
𝑖, 𝑇[ ]𝑇 ∈ 𝑅

+
𝑇

In order to make portfolio analysis easier, we define the price vector pt as follows:

𝑝
𝑡

=  𝑝
1, 𝑡 

 ,  𝑝
2, 𝑡 

 ,  .  .  .  ,  𝑝
𝑀, 𝑡[ ] ∈ 𝑅

+
𝑀 

By stacking T column-wise – samples price time-series of the M assets in the portfolio, we
build the asset price matrix P 1:T and extend the single-asset time-series notation to the
multivariate scenario:



2.2.2 Volume
The trading volume of a financial asset is a measure of how much it has been traded in a
certain period of time. It is measured by the number of shares traded in stocks, and in the
number of contracts traded in futures and options.

Looking at volume trends over time might allow traders and quantitative investors to
understand the strength or confidence behind certain stocks and market rises and losses.
Volume, in fact, plays a vital part in quantitative analysis and is one of the most important
technical indicators and its movement prediction is the key in a variety of financial
applications [5, 6, 7].

2.2.3 Candlestick Chart
A candlestick chart is a type of financial chart that is used to represent price fluctuations over
time. Using financial terms, It is also called the “Japanese candlestick chart”, as it was devised
by Japanese rice trader Munehisa Hooma [8, 9].

A daily candlestick chart describes the market's movement for that day. The "real body" of the
candlestick is the central section that represents the price range between the open and close of
that day's trade. When the close price is lower than the open, the true body is filled in or black.
On the other hand if the real body is empty it means that the trading day closed positively.
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Image 2.2 Candlestick format detailed description. The image shows how and which information are
described by a candle in a candlestick chart

Source: https://commons.wikimedia.org/wiki/File:Candlestick_chart_scheme_01-en.svg

The shadows are the upper and lower lines and show the highest and lowest price ranges
within a given time period.

The candlestick chart is a visual aid for making stock market decisions giving traders the
chance to better grasp the link between the high and low, as well as the open and close values.

2.3 Technical Indicators
Technical indicators are the most common analysis tools used to determine the market trend
of an asset using historical price and volume information.

A large number of technical indicators and associated trading rules have been developed over
the years with mixed success. All of them showed different performances under different
market conditions and different human operators, which is why traders often used multiple
indicators to confirm the same signal.

The same indicator can be analysed on different time frames to assess local and global trends
for that particular asset [10].



2.3.1 SMA
A Simple Moving Average (SMA) computes the average of a specified range of prices,
typically closing prices, divided by the number of periods in that range.

𝑆𝑀𝐴 =  
𝐴

1
+ 𝐴

2
 + ... + 𝐴

𝑛

𝑛

Where:

𝐴
𝑛
 =  𝑡ℎ𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑎𝑛 𝑎𝑠𝑠𝑒𝑡 𝑎𝑡 𝑝𝑒𝑟𝑖𝑜𝑑 𝑛

𝑛 =  𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑𝑠

2.3.2 MACD
The Moving Average Convergence Divergence indicator, namely MACD, is a measure that
shows the relationship between two price moving averages. In particular the MACD is
estimated as the difference between the Exponential Moving Average (EMA) of 26-periods
and the EMA 12-periods.

𝑀𝐴𝐶𝐷 =  12 − 𝑃𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴 −  26 − 𝑃𝑒𝑟𝑖𝑜𝑑 𝐸𝑀𝐴

The crossover between the two EMA, and consequently the MACD cross with the 0 value, is
usually interpreted as a buy/sell signal.

2.3.3 Bollinger Bands
Bollinger Bands are a type of price envelope developed by John Bollinger. Bollinger Bands
define upper and lower price range levels at a standard deviation level above and below a
simple moving average of the price. Because the distance of the bands is based on standard
deviation, they adjust to volatility swings in the underlying price.

𝐵𝑂𝐿𝑈 =  𝑀𝐴 (𝑇𝑃, 𝑛) +  𝑚 * σ [𝑇𝑃, 𝑛]

𝐵𝑂𝐿𝐷 =  𝑀𝐴 (𝑇𝑃, 𝑛) −  𝑚 * σ [𝑇𝑃, 𝑛]

Where:

𝐵𝑂𝐿𝑈 =  𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑
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𝐵𝑂𝐿𝐷 =  𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑙𝑙𝑖𝑛𝑔𝑒𝑟 𝐵𝑎𝑛𝑑

𝑀𝐴 =  𝑀𝑜𝑣𝑖𝑛𝑔 𝑎𝑣𝑒𝑟𝑎𝑔𝑒

𝑇𝑃 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑝𝑟𝑖𝑐𝑒) = (𝐻𝑖𝑔ℎ +  𝐿𝑜𝑤 + 𝐶𝑙𝑜𝑠𝑒)÷ 3

𝑛 =  𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑖𝑛 𝑠𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 20)

𝑚 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠 (𝑡𝑦𝑝𝑖𝑐𝑎𝑙𝑙𝑦 2)

σ [𝑇𝑃,  𝑛] =  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑣𝑒𝑟 𝑙𝑎𝑠𝑡 𝑛 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 𝑜𝑓 𝑇𝑃 

2.3.4 Relative Strength Index
The relative strength index (RSI) is a technical indicator used that measures whether a stock
or an asset is overbought or oversold based on the most recent market movements.

The RSI has traditionally been interpreted such that values greater than 70 indicate that a
security is becoming overbought or overvalued and may be primed for a trend reversal or
corrective price pullback. An RSI value less than 30 instead, indicates that the market could
be potentially undervalued.

RSI is calculated as:

𝑅𝑆𝐼
𝑠𝑡𝑒𝑝 𝑡𝑤𝑜

=  100 −  [ 100
1+ (𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐺𝑎𝑖𝑛 𝑥 13) + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐺𝑎𝑖𝑛

((𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐿𝑜𝑠𝑠 𝑥 13) + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑜𝑠𝑠)

 ]

2.3.5 Commodity Channel Index
Donald Lambert, a technical analyst, created the CCI, or Commodity Channel Index, which
was first published in Commodities magazine (now Futures) in 1980. The CCI, despite its
name, can be used in any market and is not limited to commodities [12].

The CCI was originally designed to detect long-term trend changes, but traders have adapted
its use on all markets and timeframes. Active traders benefit from multiple buy and sell
signals when trading across multiple timeframes.

Traders frequently use the CCI to establish the dominant trend on the longer-term chart and to
isolate pullbacks and generate trade signals on the shorter-term chart.

(𝑇𝑦𝑝𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑐𝑒 − 𝑆𝑖𝑚𝑝𝑙𝑒 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
(0.0.15 𝑥 𝑀𝑒𝑎𝑛 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛



2.3.6 Directional Movement Index
The directional movement index (DMI) is a technical indicator developed that is used to
determine the strength and direction of a price movement and is intended to help the trader
filter possible false signals.This is accomplished by comparing previous highs and lows and
drawing a positive directional movement line ( ) and a negative one ( ).𝐷𝐼+ 𝐷𝐼−

Crossovers between the directional movement lines are often used as buy or sell signals by
traders [13]. The larger the spread between the two primary lines, the stronger the price trend.
If +DI is way above -DI the price trend is strongly up and vice versa.
DMI is calculated as:

+ 𝐷𝐼 = 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 + 𝐷𝑀
𝐴𝑇𝑅( )×100

‐𝐷𝐼 = 𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 ‐𝐷𝑀
𝐴𝑇𝑅( )×100

𝐷𝑋 = +𝐷𝐼− ‐𝐷𝐼| |
+𝐷𝐼+ ‐𝐷𝐼| |( )×100

where:

+ 𝐷𝑀(𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑀𝑜𝑣𝑒𝑚𝑒𝑛𝑡) = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐻𝑖𝑔ℎ −  𝑃𝐻

𝑃𝐻 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ℎ𝑖𝑔ℎ

‐𝐷𝑀 = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝐿𝑜𝑤 −  𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐿𝑜𝑤

𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 ± 𝐷𝑀 =
𝑡=1

14

∑ 𝐷𝑀 − 𝑡=1

14

∑ 𝐷𝑀

14
⎛

⎝

⎞

⎠

+ 𝐶𝐷𝑀

𝐶𝐷𝑀 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐷𝑀

𝐴𝑇𝑅 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑟𝑢𝑒 𝑅𝑎𝑛𝑔𝑒

2.3.7 GICS: The Global Industry Classification Standard
The Global Industry Classification System (GICS) is a four-tiered, hierarchical industry
classification system based on quantitative and qualitative analysis developed in 1999 by
Morgan Stanley Capital International and S&P Dow Jones Indices.

GICS systematically identifies every company by sector, industry group, industry, and
sub-industry and is used by investors and analysts to identify, compare, and contrast a firm's
competitors [14].

13



2.4 Asset Returns
The majority of financial research focuses on asset returns rather than asset prices.

Returns are used for two main reasons, according to Campbell, Lo, and MacKinlay (1997).
Firstly, the return on an asset provides a comprehensive and scale-free assessment of the
investment potential. Secondly, as return series have more appealing statistical features than
price series, they are easier to handle.

An asset return, on the other hand, can be defined in a variety of ways [15].

2.4.1 One-Period Single Return
The gross rate of return on an investment is the overall rate of return before any fees,
commissions, or expenses are deducted. It is expressed as a percentage over a given time
period, such as a month, quarter, or year.

1 + 𝑅
𝑡

=
𝑃

𝑡

𝑃
𝑡−1

 𝑜𝑟 𝑃
𝑡

= 𝑃
𝑡−1

(1 + 𝑅
𝑡
)

The net rate of return, on the other hand, takes fees and costs out of the equation to give a
more accurate picture of return.

𝑅
𝑡

=
𝑃

𝑡

𝑃
𝑡−1

− 1 =
𝑃

𝑡
−𝑃

𝑡−1

𝑃
𝑡−1

2.4.2 Multi-Period Single Return
A k-period simple gross return is obtained by holding the asset for k periods between dates t -
k and t.

1 + 𝑅
𝑡
[𝑘] =

𝑃
𝑡

𝑃
𝑡−𝑘

=
𝑃

𝑡

𝑃
𝑡−1

 𝑥 
𝑃

𝑡−1

𝑃
𝑡−2

 𝑥 ...  𝑥 
𝑃

𝑡−𝑘+1

𝑃
𝑡−𝑘

= (1 + 𝑅
𝑡
)(1 + 𝑅

𝑡−1
)... (1 + 𝑅

𝑡−𝑘+1
)

=
𝑗=0

𝑘−1

∏ (1 + 𝑅
𝑡−𝑗

)

2.4.3 Portfolio Return
A portfolio's simple net return is a weighted average of the simple net returns of the assets in
the portfolio, where the weight of each asset equals the proportion of the portfolio's value
allocated on that product.



Let p represent a portfolio with a weighting of wi on asset i. Then, at time t, the simple return
of p is

𝑖=1

𝑁

∑  𝑤
𝑖
 𝑅

𝑖𝑡

2.4.4 Log Return
The log return is obtained computing the log of the gross return. Although Simple Return is a
more straightforward method of calculating returns, it is asymmetric.

Log returns are a symmetric approach of calculating an asset's future value.

ρ
𝑡
≜ 𝑙𝑛 (

𝑝
𝑡

𝑝
𝑡−1

) 𝑙𝑛 (𝑅
𝑡
)ϵ 𝑅

2.5 Evaluation Metrics
To evaluate the performance of an algorithm in the financial field, we often rely on a set of
evaluation metrics that allow us to quantify how the model has performed, both in terms of
profitability and risk.

This chapter aims to analyze evaluation metrics used in this research, providing a
comprehensive definition and the empirical interpretations.

2.5.1 Sharpe Ratio
The Sharpe ratio is a risk-adjusted evaluation metric developed by William F. Sharpe in 1977
[16] and is used to understand the return of an investment strategy compared to the underlying
risk. It is calculated as a ratio between the average return earned in excess of the risk-free rate
per unit of volatility. It can be formulated as:

𝑆ℎ𝑎𝑟𝑝𝑒 𝑅𝑎𝑡𝑖𝑜 =  
𝑅

𝑝
− 𝑅

𝑓

σ
𝑝

Where:

𝑅
𝑝

= 𝑟𝑒𝑡𝑢𝑟𝑛 𝑜𝑓 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜

𝑅
𝑓

= 𝑟𝑖𝑠𝑘‐𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒

σ
𝑝

= 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜'𝑠 𝑒𝑥𝑐𝑒𝑠𝑠 𝑟𝑒𝑡𝑢𝑟𝑛
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The could be a U.S. Treasury rate , such as the one-year or two-year Treasury yield [17]. In𝑅
𝑓
 

general, the risk-free rate is commonly thought to be the yield paid by a 3-month government
Treasury bill, which is statistically the safest operation for an investor.

2.5.2 Calmar Ratio
The Calmar ratio [19,18] is a metric created by Terry W. Young that is used to give a
quantitative idea about the performance of a trading strategy or fund. As shown in the formula
below it is calculated as the average compounded annual rate of return versus the maximum
drawdown encountered. It takes the name of its creator company press release: CALifornia
Managed Accounts Reports.

𝐶𝑎𝑙𝑚𝑎𝑟𝑅𝑎𝑡𝑖𝑜 =  
𝑅

𝑝
 − 𝑅

𝑓

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐷𝑟𝑎𝑤𝑑𝑜𝑤𝑛

Where:

𝑅
𝑝

= 𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 𝑟𝑒𝑡𝑢𝑟𝑛

𝑅
𝑓

= 𝑟𝑖𝑠𝑘‐𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒

𝑅
𝑝

−  𝑅
𝑓

= 𝑎𝑛𝑛𝑢𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑡𝑢𝑟𝑛

It aims to demonstrate the amount of risk required to obtain a return.

2.5.3 Omega Ratio
The Omega ratio or reward-to-variability ratio, conceived by Con Keating and William F.
Shadwick, is used as a risk-return performance measure of an investment strategy or fund. It
is formulated as the probability weighted ratio of gains on losses for a given threshold returns
target [20].

This indicator is calculated by a partition of the cumulative return distribution to create an
area of losses and an area for gains relative to the given threshold:

Ω(𝑟)≜ 𝑟

∞

∫ (1 − 𝐹 (𝑥)) 𝑑𝑥

−∞

𝑟

∫ 𝐹 (𝑥) 𝑑𝑥

Where:



;𝐹 = 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑡𝑢𝑟𝑛𝑠

𝑟 = 𝑇ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.  𝐼𝑡 𝑖𝑠 𝑢𝑠𝑒𝑑 𝑡𝑜 𝑑𝑒𝑓𝑖𝑛𝑒 𝑤ℎ𝑎𝑡 𝑖𝑠 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑒𝑑 𝑎 𝑔𝑎𝑖𝑛 𝑣𝑠 𝑎 𝑙𝑜𝑠𝑠;

An investor should prefer a strategy with larger value since it suggests that the asset provides
more gains relative to losses for some threshold θ [21].

2.5.4 Sortino Ratio
The Sortino ratio measures the risk-adjusted return of an investment strategy[22].

It is a variation of the Sharpe ratio but it penalises only those returns falling below a
user-specified threshold or required rate of return, while the Sharpe ratio penalises both
downside and upside volatility equally [23].

𝑆 = 𝑅 − 𝑇
𝐷𝑅

Where is the strategy average realised return, is the target rate of return for the investment𝑅 𝑇 
strategy under consideration (called the minimum acceptable return MAR), and DR is the
target semi-deviation (the square root of target semivariance), also referred to as downside
deviation. The yearly standard deviation of returns below the target is a simple way to think
about downside risk.

2.5.5 Tail ratio
The tail ratio is an indicator used to evaluate the ratio between the 95% right and 5% left tail
of a distribution of returns. For example, a ratio of 0.5 means that losses are two times greater
than profits.

2.5.6 Stability
Stability is an indicator used to determine the R-squared of a linear fit to the cumulative log
returns. It is calculated computing an ordinary least squares linear fit, and returns R-squared.

2.5.7 Skewness
In statistics the skewness of a distribution indicates the asymmetry of the values around the
mean. As a normal distribution is symmetric around the mean, skewness can be used to
evaluate how non-normally the distribution of the returns of a strategy are.
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For instance, if a portfolio's returns distribution is right-skewed, it means that there are a lot of
small negative returns compared to few big ones. On the other hand, if they are negatively
skewed, it can be interpreted as small positive returns and frequent large negative returns.

For a trader having a negatively skewed distribution of returns means that the portfolio is at
risk of rare but massive losses.

𝑆𝑘𝑒𝑤 = 𝑡=1

𝑛

∑ 𝑥
𝑖
−𝑥( )3/𝑛

𝑡=1

𝑛

∑ 𝑥
𝑖
−𝑥( )2/𝑛( )3/2  

2.5.8 Kurtosis
The Kurtosis is a measure of the proportion of portfolio returns that occurs in the tails of a
distribution. A normal distribution is defined as having a kurtosis value equal to 3, which
results from the tails of a normal distribution containing some of its mass.

A distribution with a kurtosis value greater than 3 has a larger tail than a normal distribution,
while one with a kurtosis less than 3 has fewer returns in its tails than a normal distribution.

This is important to be analysed in a strategy tuning since the higher the kurtosis value, the
higher the risk of a rare but massive downside of the portfolio value.

In other words a higher kurtosis value corresponds to more frequent outliers, as opposed to
frequent modestly sized deviations. Kurtosis can be calculated as:

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 = 𝑡=1

𝑛

∑ 𝑥
𝑖
−𝑥( )4/𝑛

𝑡=1

𝑛

∑ 𝑥
𝑖
−𝑥( )2/𝑛( )2  

2.6 Portfolio Management Strategies
Portfolio management is the science of selecting and supervising a group of investments
based in order to target long-term financial objectives given a risk tolerance. In order to
correctly manage a portfolio of financial assets a portfolio manager or a trader necessitates to
have the ability to evaluate opportunities and risks across the entire investment spectrum. In
order to build the optimal portfolio there are multiple trade-offs to consider starting from the
financial product choice such as debt against equity, domestic versus foreign, and growth
versus safety [24].



2.6.1 Risk Management
In finance, risk is defined in ISO 31000 as the effect of uncertainty on objectives. A
fundamental aspect for a fund manager or a trader is the portfolio risk-management, namely
the process of analysis, identification and mitigation of uncertainty in investment decisions.
Risk management is fundamental to quantify the potential losses and to take the appropriate
action to achieve the fund's investment objectives and do not exceed the risk tolerance.

Every investment operation exposes the fund or the trader to some degree of risk, which is
quantifiable in absolute and in relative terms. It is generally considered equal to zero in the
case of the U.S. T-bill or very high in emerging-market equities or real estate. A proper
understanding of risk in its various forms can aid investors in better comprehending the
opportunities, costs, and trade-offs associated with different investment strategies.

2.6.2 Benchmark
A benchmark is a measure of a security, mutual fund or investment manager's performance.

The most common stock and bond indexes used for this scope are broad market and
market-segment indexes.

2.6.3 Passive Management
Passive management or index fund management is a set-it-and-forget-it long-term investing
strategy. This strategy is usually designed to closely match the returns of a specific market
index or benchmark.

2.6.4 Active Management
Active management involves attempting to beat the performance of an index (S&P, DOW,
etc.) by actively buying and selling individual stocks and other financial products modifying
the portfolio allocation based on a given strategy or the trader analysis. [26]

- Follow The winner: follow-the-Winner is a strategy that involves raising the relative
weights of more successful experts/stocks.

- Follow The Loser: rather than following the winners, the Follow-the-Loser strategy
involves transferring wealth from winners to losers. The basic premise of this
technique is mean reversion, which states that good (poor)-performing assets will
perform poorly (well) in the future.

- Pattern-Matching-based: these approaches are based on the assumption that market
sequences with similar preceding market appearances tend to re-appear. Thus, the
common behaviour of these approaches is to firstly identify similar market sequences
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that are deemed similar to the coming sequence, and then obtain a portfolio that
maximises the expected return based on these similar sequences.



3. Reinforcement Learning: Fundamentals

Image 3.1 Reinforcement Learning overview. The image points out how an agent acts in an environment in
order to gain a reward based on his action choice.

Reinforcement Learning (RL) is a field of machine learning that investigates how an agent
should operate in a given environment in order to maximize a cumulative reward based on the
task. Thanks to its adaptability, RL is broadly applied to many different disciplines such as
game theory, statistics and optimization research in a variety of fields. [27]

One of the fundamental contrasts between RL and supervised learning is that in RL, the
agent's outcomes may modify the environment. This way RL can solve Markov Decision
Processes even if the transition probabilities are not explicitly specified.

The objective of a Reinforcement Learning agent is to maximize the total Expected Reward
for all the incoming actions in the next state.

𝐸 𝑅 𝑠
0
 ,  𝑎

0( ) + γ 𝑅 𝑠
1
 ,  𝑎

1( ) +  .  .  .  + γ𝑛𝑅 𝑠
𝑛
 ,  𝑎

𝑛( )⎡⎢⎣
⎤⎥⎦ = 𝐸 

𝑛
∑ γ𝑛𝑅 𝑠

𝑛
 ,  𝑎

𝑛( )⎡⎢⎢⎣

⎤⎥⎥⎦

Not every action immediately results in a reward/feedback; in certain cases, extended
sequences of activities are required to receive a reward, yet future actions have not been
completed. This means that the algorithm will have a tougher time learning if the rewards are
more sparse.
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3.1 Markov Decision Process (MDP)

Image 3.2 Example of a simple MDP network.
Source: https://en.wikipedia.org/wiki/Markov_decision_process

A Markov decision process (MDP) is a discrete-time stochastic control process in
mathematics that provides a strong mathematical framework to model decision-making in
environments where outcomes are distributed partly random and partly produced by a
decision maker. The essence of this mathematical model is that the state of the agent
environment affects the reward obtained and the probabilities of future state transitions.

It is made of four tuples, S, A, :𝑃
𝑎
,  𝑃

𝑟

● S: the state space

● A: the action space. It is the set of potential action starting from the state 𝑆

● : the probability that taking the action in the current state , will result, at𝑃
𝑎
(𝑠, 𝑠') 𝑎 𝑠

time , in state𝑡 + 1 𝑠'

● R : is the expected immediate reward for taking the action in the state(𝑠, 𝑠') 𝑎 𝑠



The process is completely based on the Markov property, namely the memoryless property of
a stochastic process [25]. Transitions from a state to the next one only depend on the current
state and action, and no prior history [26].

3.2 Policy
A policy is a set of rules that an agent uses to determine which actions to choose in a given
state [17, 18].

It can be deterministic, which is generally indicated by :µ

𝑎
𝑡

= µ (𝑠
𝑡
)

or stochastic, which is usually denoted by 𝜋:

𝑎
𝑡

∼ π (⋅|𝑠
𝑡
 )

3.3 Value Function
Almost all Reinforcement Learning algorithms use estimating value functions, which are state
functions that estimate how good it is for the agent, in terms of reward, to perform a given
action in that particular state.

We can distinguish four different types of Value Function that will be discussed in the next
chapters.

3.3.1 On-Policy Value Function
V𝜋(s), which represents the expected return if one starts in state s and always follows the
policy 𝜋.

𝑉π(𝑆) = 𝐸
τ∼π

 𝑅 (τ) | 𝑠
0

= 𝑠[ ]

3.3.2 Optimal Value Function
V*(s) is the expected return if one starts in state s and always operates in accordance with the
best environmental policy.

𝑉*(𝑠) = 𝑚𝑎𝑥
π
 𝐸

τ∼π
𝑅 (τ)|𝑠

0
= 𝑠[ ]
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3.3.3 On-Policy Action-Value Function
Q𝜋(s,a), which gives the expected return if one starts in state s, take an arbitrary action a, and
then act according to policy for the rest of the time.

𝑄π(𝑠,  𝑎) = 𝐸
τ∼π

 𝑅 (τ)|𝑠
0
 ,  𝑎

0
= 𝑎[ ]

3.3.4 Optimal Action-Value Function
Q*(s,a), which calculates the expected return if one starts in state s, takes an arbitrary action a,
and then operates in the environment according to the best policy.

𝑄*(𝑠,  𝑎) = 𝑚𝑎𝑥
π
 𝐸

τ∼π
 𝑅 (τ)|𝑠

0
= 𝑠 ,  𝑎

0
= 𝑎[ ]

There are two important relationships between the value function and the action-value
function that are frequently discussed. In particular:

𝑉π(𝑠) =  𝐸
𝑎∼π

 𝑄π(𝑠,  𝑎)[ ]
and

𝑉*(𝑠) = 𝑚𝑎𝑥
𝑎
 𝑄*(𝑠, 𝑎)

The optimal action-value function, Q*(s,a), and the action chosen under the optimal policy
have a strong relationship.

Q*(s,a), infact, is the expected return for starting in state s, executing an arbitrary action a, and
then operating according to the optimal policy for the rest of the time. In , the optimal policy𝑠
will choose the action that maximises the expected return starting from .𝑠

As a result, if we have Q, we can get the best action, a*(s), directly as:

𝑎*(𝑠) = 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑎
𝑄*(𝑠, 𝑎) 

3.4 Returns
A RL agent's goal is to select a policy that maximises the future expected cumulative rewards.

The cumulative return, , is defined as:𝐺𝑡

𝐺
𝑡

= 𝑟
𝑡

+ 𝑟
𝑡+1

+ 𝑟
𝑡+2

+  .  .  .  +  𝑟
𝑁−1



where is the time index and marks the end of an episode. For continuous action-spaces,𝑡 𝑁
the discounted return can be formulated as:

𝐺
𝑡

= 𝑟
𝑡

+ γ𝑟
𝑡+1

+ γ2𝑟
𝑡+2

+  .  .  .  =
𝑘=0

∞

∑ γ𝑘 𝑟
𝑡+𝑘

where is the discount factor and . The meaning and interpretations of theγ γ ∈[0,  1)
discounted returns will be explored in chapter 5.3.

3.5 Bellman Equation
The Bellman Equation is the core of many Reinforcement Algorithms. In summary, it
decompresses the value function into two parts: the current reward and the discounted future
values.

Rather than summing over successive time steps, Bellman Equation simplifies the evaluation
of the value function, allowing us to identify the best solution to a complex problem by
breaking it down into smaller recursive subproblems and finding their optimal solutions.

𝑞
*
(𝑠, 𝑎) = 𝐸 [𝑅

𝑡+1
+ γ 𝑚𝑎𝑥

𝑎'
 𝑞

*
 ( 𝑠',  𝑎' )

The Bellman Equation is formulated such as at time , the expected return from the initial𝑡
state , performing the action and then following the optimal policy will be equal to the𝑠 𝑎
expected reward we could achieve choosing an action in state , plus the maximum of𝑅

𝑡+1
𝑠

the expected discounted return that is feasible of any (s′, a′) where (s′, a′) is a potential
succeeding state-action set.

If the agent follows an optimal policy, it is expected that the final state s′ is the one in which
the best possible next action a′ at time can be taken.𝑡

+1

The Bellman Equation evaluated for on-policy value-functions can be expressed as following:

𝑉π(𝑠) = 𝐸
𝑎∼π𝑠'∼𝑃

𝑟 𝑠,  𝑎( ) + γ 𝑉π 𝑠'( )[ ]

𝑄π 𝑠,  𝑎( ) = 𝐸
𝑠'∼𝑃

 𝑟 𝑠,  𝑎( ) + γ 𝐸
𝑎'∼π

𝑄π 𝑠',  𝑎'( )[ ]⎡⎢⎣
⎤⎥⎦

(where 𝑠′ ∼𝑃 is a shorthand for 𝑠′ ∼𝑃(.|𝑠,𝑎), indicating that the next state 𝑠′ is
sampled from the environment’s transition rules; 𝑎 ∼𝜋 is a shorthand for 𝑎 ∼
𝜋(.| 𝑠); and 𝑎′ ∼𝜋 is a shorthand for 𝑎′ ∼𝜋(.| 𝑠′).)
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Reformulating the Bellman Equations for the Optimal Policy Functions, it can be formulated
as:

𝑉*(𝑠) = 𝑚𝑎𝑥
𝑎
 𝐸

𝑠'∼𝑃
 𝑟 𝑠, 𝑎( ) + γ 𝑉*(𝑠')[ ]

𝑄*(𝑠, 𝑎) = 𝐸
𝑠'∼𝑃

 𝑟 (𝑠, 𝑎) + γ 𝑚𝑎𝑥
𝑎'

 𝑄*(𝑠', 𝑎')⎡⎢⎣
⎤⎥⎦

The absence or presence of the max operator over actions is the essential distinction between
the Bellman equations for on-policy value functions and the optimal value functions.

Its inclusion highlights the notion that whenever the agent is involved in a choice of an action,
it must choose the action that produces the maximum value in order to operate optimally.

3.6 Model - Free vs Model - Based
The classification of RL algorithms is based on whether the agent has access to a function that
forecasts rewards and state transitions. In particular, model-free RL agents are trained in
environments with a massive number of possible states.

3.6.1 Model Free Method
Model-free methods do not require an environment model therefore can be applied to any
reinforcement learning problem without distinction.

Most model-free approaches either attempt to learn a value function and infer an optimal
policy from it (Value Function-based methods) or directly search in the space of policy
parameters to find an Optimal Policy (Policy Search methods). These algorithms make no
attempt to learn the underlying dynamics that govern how an agent interacts with its
environment.

Model-free approaches are also classified as:

- On-policy methods: they choose the actions based on the current policy and use them
to update the current policy.

- Off-policy methods: they articulate their actions based on a different exploratory
policy than the policy being updated.



3.6.2 Value Function Based Methods
The concept of Value-Based learning is central in reinforcement learning literature. It aims to
calculate how good it is to reach certain states or perform certain actions in a given
environment.

Even if value-learning alone may not be sufficient to solve complex problems, it is an
important building block for many Reinforcement Learning methods. Some important
Value-Based methods are:

- Monte Carlo Methods: Monte Carlo methods are based on the concept of generalised
policy iteration (GPI), an iterative scheme consisting of two steps. The first step,
known as the Policy Evaluation Step, attempts to build an approximation of the value
function based on the actual policy while, in the Policy Improvement Step, the policy
is improved with respect to the current value function.

- Temporal Difference Methods: Temporal Difference (TD) Learning is an unsupervised
technique that aims to predict the expected value of a variable in a sequence of states
without major losses in terms of accuracy

- Function Approximators: the idea is to find an approximated function that, given the
set of features, estimates the optimal action based on the previous experience gained
during the training. They can be a linear combination of the features, neural networks,
decision tree, etc.

3.6.3 Policy Search Methods
Policy search methods are another type of RL algorithm that employ parameterized policies

, where is the parameter vector. These methods aim to find an optimal policy in theπ
θ

π

θ
π

parameter space Θ, θπ ∈ Θ.

The policy is assessed by carrying out rollouts from the current policy and calculating the
reward. The Gradient Descent is then used to update the policy's parameters in the direction of
increasing expected return.

The policy parameters' updating rule can be formulated in terms of the expected return, J, as
follows:

θ
𝑡+1
π = θ

𝑡
π + α ▽

θπ 𝐽 ,  𝐽 = 𝐸
π

𝑘=0

∞

∑ γ𝑘 𝑟
𝑘( )

Policy Search methods generally provide higher convergence and are able to learn stochastic
policies, which value-based techniques can not. The main disadvantage, instead, is their
policy evaluation stage, which has a high variance and can therefore be slow to learn
appropriate policies.
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3.6.4 Actor Critic Methods
Actor-critic methods are temporal-difference methods that explicitly store the policy. The
policy is known as the “actor” since it provides the action in a given state. The critic instead,
approximates the Value Function suggesting the direction in which to update the policy.

The actor critic method is generally on-policy, despite some off-policy implementations have
been introduced in the literature.

Actor critic approaches outperform prior time-difference methods in terms of convergence
and simplifies the computation of the action, which was a critical point for continuous action-
spaces tasks. Furthermore, Actor-Critic algorithms can be used to learn stochastic policies as
well.

3.6.5 Model-based Methods
All the methods that have been discussed so far have no knowledge about the environment.
Model-based strategies instead, attempt to enhance sample efficiency by utilising some
environmental knowledge.

There are two techniques to implement model-based learning. The first is to create a model of
the environment from basic principles and use it to learn the policy or value function.
However, this approach often leads to inaccuracies when applied to new scenarios.

On the other hand, the agent can empirically deduce the structure of the environment.

3.7 Temporal Difference Learning
Usually in Reinforcement Learning algorithms, the rewards received from the environment
are not immediately observable but are sent back to the terminal state. Temporal Difference
(TD) Learning is an unsupervised technique that aims to predict the expected value of a
variable in a sequence of states without major losses in terms of accuracy. In fact, TD, instead
of trying to predict the final reward, tries to calculate the combination of rewards in all the
next states.

Mathematically, the key concept on which TD is based is the discounted returns. It can
formulated as:

𝑅
𝑡 
 =  

𝑘=0

∞

∑ γ𝑘𝑟
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3.8 Discounted Returns
The goal of a Reinforcement Learning agent is to maximize the policy such that:π 
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where is the discount factor.λ𝑛 ϵ [0, 1]

In reinforcement learning problems, the discount factor determines how much the agent cares
about rewards in distant futures compared to more immediate ones. If = 0, the agent will beλ
completely short-sighted focusing only on actions that produce an immediate reward. When
instead, = 1, the agent will evaluate his actions as a function of the sum of all its futureλ
rewards.

The discount factor is often associated with the time horizon of the context to which the
model is applied. Longer time horizons usually present greater variance as they include more
irrelevant information, while shorter ones are biased only towards short-term gains.

For example, by applying reinforcement learning to trade in the stock market, common sense
would suggest making profit as soon as possible in order to lock them in and keep free
liquidity in order to exploit future opportunities.

As suggested in “Markov games as a framework for multi-agent reinforcement learning” by
Michael Littman, 1994, the discount factor can be even thought of as the probability that the
“game” will be allowed to continue after the current move.

3.9 Exploration and Exploitation

Image 5.1 The graph highlights the exploration vs exploitation trade-off in Reinforcement Learning. In the
graph the nodes are the states, the edges are the potential transitions.

Image source: Savinov, et al. 2019
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For every action made in a given state, a Reinforcement Learning agent has to balance the
exploration vs exploitation tradeoff. It can choose between undergoing actions that have
already been explored to catch higher rewards or exploring unknown actions in order to
discover new states and then higher rewards.

The idea behind curiosity-driven exploration is to stimulate the agent to investigate unknown
outcomes in order to potentially find the optimal solutions operating on the reward function.

Bringing the agent to have an exploratory behaviour, RL agents collect data using a stochastic
policy, such as Gaussian distribution in continuous-action spaces or Boltzmann distributions
in discrete ones.

Different tailored reward functions and solutions have been researched to accomplish the task
at hand.

3.10 Reinforcement Learning algorithms overview
In this thesis project different algorithms have been used to train the agent on the same
environment. This chapter aims to give a detailed overview of these algorithms and their
peculiarities.

3.10.1 PPO: Proximal Policy Optimization

Image 3.3: PPO algorithm pseudocode

Source: https://arxiv.org/pdf/1707.06347.pdf

One of the problems that reinforcement learning suffers from is that the generated training
data is itself dependent on the current policy since our agent is generating its own training
data by interacting with the environment rather than relying on a static data set as in the
supervised case. This means that the data distributions of our observations and rewards are
constantly changing as our agent learns which is a major cause of instability in the whole
training process. Apart from that reinforcement learning also suffers from a very high
sensitivity to hyper parameter tuning. To address these problems, the OpenAI team designed a
new algorithm called Proximal Policy Optimization algorithm.



The core purpose behind PPO was to strike a balance between ease of implementation, sample
efficiency and ease of tuning. Vanilla Policy Gradient methods define the policy gradient laws
as the expectation over the log of the policy.

𝐿𝑃𝐺(θ) = 𝐸
𝑡

^
 𝑙𝑜𝑔 π

θ
𝑎
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where At is an estimator of the advantage function at timestep t and πθ is a stochastic policy.

The Advantage Function basically tries to estimate the relative value of the selected action in
the current state.

𝐴
𝑡 
 =  𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑢𝑚 𝑜𝑓 𝑅𝑒𝑤𝑎𝑟𝑑𝑠 −  𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒

Where the discounted sum of rewards is a weighted sum of all the rewards the agent gained
during each time step in the current episode. The baseline, or the value function, is an
estimation of the discounted sum of rewards from this point onward.

PPO simplifies the TRPO implementation which tries to constrain the new updated policy into
the trust-region of the old policy, defining a probability ratio between the new policy and old
policy.

𝑟 (θ) =
π

θ
 ( 𝑎 | 𝑠 )

π
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 ( 𝑎 | 𝑠)

PPO, in order to solve the instability and slow convergence problem brought by the TRPO
algorithms, impose this ratio to be into an interval (set to 0.2 in the original[1 −  ϵ,  1 +  ϵ]
paper).

The resulting objective function is formulated as:

𝐽𝐶𝐿𝐼𝑃 (θ) = 𝐸 𝑚𝑖𝑛 𝑟 θ( )𝐴
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^

θ𝑜𝑙𝑑
 (𝑠, 𝑎)( )⎡⎢⎣

⎤⎥⎦

It takes the expectation of the minimum between the Normal Policy gradient objective which
pushes the policy towards actions that yield a high positive advantage over the baseline and a
clipped version of the first term.
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Image 3.4 function evaluated for A>0 and A<0.𝐿
𝑐𝑙𝑖𝑝

Source: https://arxiv.org/pdf/1707.06347.pdf

In the first case, the current action in the current timestep , yielded better than the expected𝑡
return while in the second case it did not. We can notice that the Loss Function flattens out in
the case of actions with excellent or really bad results so as not to change the old policy too
much due to a single estimate.

3.10.2 A2C: Advantage Actor Critic

Image 3.5 Q Actor Critic pseudocode

Source: https://towardsdatascience.com/understanding-actor-critic-methods-931b97b6df3f



A3C has been introduced by "Asynchronous Methods for Deep Reinforcement Learning"
Deepmind article and it is essentially asynchronous parallel training, in which several workers
in parallel environments update a single global value function separately in order to explore
the state space more efficiently.

A2C is a single-worker variation of A3C, so without the asynchronous part. A2C produces
comparable performance to A3C while being, according to empirical findings, more efficient.

In particular with A2C we combine value based methods and policy-based methods into a
single algorithm training two different networks: the actor to control how the agent behaves in
a given state (policy-based method) and a critic to measure how good it is performing
approximating the value function (value-based method)

Using the Advantage function for the discounted cumulative award from vanilla policy
gradients, we can formulate the Advantage Actor Critic objective function as:

▽
θ
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 , 𝑎

𝑡
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updating both the actor, with policy gradients and advantage value, and the critic, minimising
the MSE with the Bellman update equation, parameters at each timestep.

The advantage function measures how good one action is in comparison to others at a given
state, whereas the value function measures how good it is to be in that state.

It has been empirically demonstrated that A2C stabilises the model by reducing the large
variance of policy networks.
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3.10.3 DDPG: Deep Deterministic Policy Gradient

Image 3.6 DDPG pseudocode

Source: https://spinningup.openai.com/en/latest/algorithms/ddpg.html

Deep Deterministic Policy Gradient (DDPG) is an algorithm that concurrently learns a policy
and a Q-function. In particular it uses off-policy data to learn the Q-function and then, it uses
the Q-function to train its policy.

It also takes advantage of the experience-replay technique , learning from the samplings of all
the agent experiences accumulated so far, and the slow learning idea from DQN.

DDPG, being based on the Q-learning approach, interleaves learning an approximator for the
action-value function and an approximator of the optimal action, thus it is particularly
recommended for continuous action-spaces environments.



This algorithm, during each trajectory roll-out, uses sample minibatch from the experience
“buffer” to update the value and policy networks through a mean-squared Bellman Error
minimization (MSBE), in order to solve the non-independence issue related to the
sequentiality of data. The buffer replay must contain old experiences even if they are due to an
old policy since the Bellman Equation does not take into consideration the single action
transition but has to be satisfied for the aggregation of all the actions stored.

DDPG is in fact an actor-critic algorithm meaning that it trains two distinct networks at the
same time. The actor decides the action to be taken in the given state in a deterministic way
while the critic evaluates the state-action pairs.

The value network is updated similarly as in Q-learning but, in DDPG, the next state Q-value
is calculated through the target-value network and target-policy network.

To calculate the policy loss, we take the mean of the gradients calculated for each minibatch,
as:
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Since DDPG learns a deterministic policy in an off-policy way, exploration could result in
being not that efficient to find useful learning information for the agent. To solve this
problem, DDPG adds a noisy parameter in the training phase. The official paper suggests
using a mean-zero Gaussian Noise.

3.10.4 TD3: Twin Delayed DDPG
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Image 3.7 TD3 pseudocode

Source: https://spinningup.openai.com/en/latest/algorithms/td3.html

Like many RL algorithms, DDPG can be unstable and often rely on finding the correct
parameterization for that particular application and environment, due to the overestimation of
the Q values of the Critic Network leading eventually the agent to fall in local optima.

TD3. also referred to as Clipped Double-Q Learning, tries to address these problems
implementing two Q-functions instead of one and allowing then using smaller to construct the
target. Underestimation does not propagate through the algorithm, unlike overestimation, so it
brings to the model overall stability.



Then, in order to avoid poor-policy overestimation, in TD3 the policy is updated less
frequently than the Q-function. The reference paper suggests one policy update every two
Q-function updates. In this way TD3 provides noise to the target action, making it more
difficult for the policy to exploit Q-function faults.

TD3, also referred to as Clipped Double-Q Learning, is an algorithm where the agent learns
two Q-functions instead of one and the Bellman Error Loss functions uses the smaller to
construct the targets. In TD3 the policy is updated less frequently than the Q-function. The
reference paper suggests one policy update every two Q-function updates. In this way TD3
provides noise to the target action, making it more difficult for the policy to exploit
Q-function faults.

In the end, TD3 applied a regularisation technique called Target Policy Smoothing to reduce
the variance in the critic. In particular it adds a small clipped-random noise to the target
averaging through mini-batches.

After applying the noise, the action is bounded into a valid action range. It can be formulated
as:

These techniques help to solve the DDPG problem where a Q-approximator used to develop
an acute peak for an action bringing the policy to quickly exploit it learning wrong
behaviours.

TD3 resulted in a significant improvement in performance over the baseline DDPG and is
broadly used in multiple RL research applications.

3.10.5 SAC: Soft Actor Critic
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Image 3.8 SAC pseudocode

Source: https://spinningup.openai.com/en/latest/algorithms/sac.html

SAC (Soft Actor Critic), or off-policy actor-critic that can be seen as a maximum-entropy
version of DDPG.

It has been recently created as a solution to the most common DRL critical issues: sample
complexity and hyper-parameterization sensibility. It is implemented as an entropy RL
framework where the agent aims to maximize both expected return and system entropy.



SAC takes the double Q-trick from the PPO (they have been published almost concurrently)
but the main feature of this algorithm is the entropy regularization. It allows the agent to get,
foreach timestep , a bonus reward proportional to the policy distribution entropy.𝑡

This is closely related to the exploration-exploitation tradeoff: this way the agent is able to
quickly explore the environment in order to gain useful learning signals and at the same time
prevent the policy from converging to a local-optimum.

The new SAC reinforcement learning problem could be at this point formulated as the
following optimization problem:
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Where > 0 is a coefficient that coordinates the trade-off between the reward and the policyα
entropy.

The Value-Function changes to:𝑉π 
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as the which is modified to implement the entropy bonuses:𝑄π
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Similarly to TD3 the Q-Value Functions are learned concurrently regressing to the same target
using the MSBE minimization. On the other hand, TD3 takes advantage of the current policy
to choose the next-state action, unlike TD3 that instead uses the target-policy. Then, since
SAC learns a stochastic policy, that noise is sufficient for the exploration purposes and does
not require any further noise to be added to the next-state action. During the test phase, the
paper suggests using the mean action instead of a random action from the policy distribution
to improve the performances over the stochastic policy.
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4. Deep Learning Overview

Deep learning is a subset of a larger class of machine learning methods based on artificial
neural networks and representation learning that can be categorised as supervised,
semi-supervised, or unsupervised learning.

Figura 4.1 A Deep Neural Network structure made of input layers, multiple levels of input layers and an
output layer.



4.1 Perceptron

Image 4.2. A NeuralNetwork perceptron visual representation

Source: https://commons.wikimedia.org/wiki/File:Perceptron_moj.png

Frank Rosenblatt introduced the artificial perceptron idea in 1957 starting from the original
MCP neuron. A Perceptron is an algorithm for supervised learning of binary classifiers that
allows neurons to learn and process elements from the training set one at a time.

The Perceptron algorithms learn the weights for the input signals in order to draw a linear
decision boundary. While single layer perceptrons can learn only to distinguish linearly
separable patterns, multilayer perceptrons or feedforward Neural Networks with two or more
layers have a greater processing power.

4.2 Loss Function
The Loss Function (also known as the Error/Cost/Objective function) is a technique for
determining how well an algorithm models a dataset. When the model predictions are
completely off the mark, the loss function will return a large number while, if the predictions
are correct, the loss function will return a lower value.

As changes are made to the model, the loss function is the best indicator of whether the
algorithm is heading in the right direction.

In this chapter we will propose some of the more popular loss functions which tend to produce
the most accurate results.
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4.2.1 Mean Squared Error Loss

Mean squared error is calculated as the average of the squared differences between the
predicted and actual values. The outcome is always greater than 0 and the optimal outcome is
0.0.

The squaring brings to the fact that the biggest errors result in greater Loss for the model than
smaller ones, implying that the model is punished for making larger mistakes.

4.2.2 Mean Absolute Error
Absolute Error is calculated as the absolute difference between the predicted value and the
target value for each data point in a dataset.

4.2.3 Cross Entropy Loss
Log-Loss is a popular loss function for classification problems and it is a logarithmic version
of the likelihood function.

4.3 Activation Function
The activation function in a Deep Neural Network, specifies how the weighted sum of the
input is transformed into an output from a node to another. Since many activation functions
are nonlinear, its choice has a large impact on the neural network's capability and
performance, and different activation functions may be used in different parts of the model
and tailored to the scientist task.

Although networks are designed to use the same activation function for all nodes in a layer,
the activation function is used within or after the internal processing of each node in the
network.



Figure 4.3 The more popular Activation Functions at the state of the art: Sigmoid, Tanh, ReLU and
LeakyReLU ( a )

Source:
https://www.researchgate.net/figure/Commonly-used-activation-functions-a-Sigmoid-b-Tanh-c-ReLU-and-d-L

ReLU_fig3_335845675

4.4 Backpropagation
Backpropagation ("backward propagation of errors"), or reverse-mode automatic
differentiation, is a way of computing the gradient for gradient descent and is a widely used
machine learning algorithm for training feedforward neural networks despite it has many
generalisations for other artificial neural networks.[2]

It is a method of fine-tuning the weights of a neural network, computing the gradient of a loss
function with respect to all weights in the network, based on the error rate obtained in the
previous iteration, namely epoch. By fine-tuning the weights, one can reduce error rates and
increase the model's reliability by increasing its generalisation.

5. Deep Reinforcement Learning
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Image 5.1: Schematic view of a deep reinforcement learning agent. Compared to the Reinforcement Learning
approach, in this case the policy is evaluated through a networkπ 

Source:
https://medium.com/@vishnuvijayanpv/deep-reinforcement-learning-value-functions-dqn-actor-critic-method-

backpropagation-through-83a277d8c38d

Deep Reinforcement Learning (DRL) has caught the interest of the AI community in recent
years attaining human-level performance in Atari game play and in controlling 3D locomotion
tasks with high dimensional state space DRL's ability to handle high-dimensional state and
action space makes it ideal to be used in a financial context.

Deep Reinforcement Learning is still a really active area of research, given its great
adaptability to different disciplines such as game theory, statistics and simulation-based
optimization in various fields.

In many practical cases, the states of the markov decision process are multi-dimensional and
cannot be solved by reinforcement learning algorithms. To solve this problem, deep learning
is often used to represent policies, or other functions, through neural networks, using
algorithms that can exploit them.

5.1 Deep Reinforcement Learning applied to Financial Data

In academia and the financial industry, quantitative trading has been a popular topic since the
late 1960s. In general, it refers to the use of statistical models and data-driven methodologies
in financial market analysis, following two main approaches.

The classical approach is related to the development of economic theories in order to interpret
the financial market behaviour. A few representative examples include the well-known
Capital Asset Pricing Model and Markowitz Portfolio Theory.



On the other hand, computer scientists apply data-driven techniques to analyze financial data.
In particular, machine learning and deep learning have been critical components generating a
high interest in the finance industry in the last period.

The advancement of these techniques, technologies, and skills has allowed the financial
industry to grow at a frenetic pace over the years due to its exceptional performance as well as
the appealing property of learning meaningful representations from scratch.

Electronic markets are among the main problems to which quantitative finance techniques
have been applied. Electronic markets have emerged, since the 90s, in many countries as a
solution for different types of financial products online.

Optimal execution is another fundamental problem in this field. It consists, in the simplest
case, of a trader who wants to buy or sell a large amount of certain asset in a predefined
period of time, aiming to minimise transaction fees and obtain the optimal return. The
purchase of shares has a non-linear impact on the price as a function of the orderbook and has
been demonstrated that can be assisted or executed effectively by machine learning and deep
learning algorithms.

Assuming that the price of financial products can be derived as a function of the financial
state and contracts term, it is possible to model Options Pricing problems and hedging
management algorithmically. It has been shown that these methodologies outperform the
classic pricing models such as Black-Scholes Model, binomial option pricing and
Monte-Carlo simulations.

Most of these adaptive systems rely on supervised learning, which involves the training of a
forecasting model on historical data to project market products trend direction. However,
despite their popularity, these methods usually have a number of flaws that result in
suboptimal results linked to the fact that financial assets trading is not only a process aiming
to estimate future prices: it also requires many other elements that should be taken into
account, such as the risk involved as well as exogenous constrictions like transaction fees and
market liquidity. On the contrary, the supervised model aims to minimise prediction error
(profit maximisation) regardless of risk, which is not in the investor's best interests.

Furthermore, as financial market data is extremely noisy, the use of an algorithm with a large
learning capacity, such as Neural Networks, in this context will most likely result in
overfitting.

In the Reinforcement Learning context, conversely, the algorithm is not given any explicit
supervision: it relies on the rewarding function to guide the agent and evaluate how it is
behaving in the given environment.

The agent in this context is a trader, the actions are the amounts of shares to be traded, and the
environment is the stock's price movement.

5.2 DRL Libraries for Finance
Getting hands-on experience is appealing to beginner traders since deep reinforcement
learning (DRL) has become one of the main research topics in quantitative finance.

Below some of best recognized open-source DRL libraries available:
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- OpenAI’s Gym: is a package that allows the creation of custom reinforcement learning
agents. It comes with quite a few pre-built environments in different contexts.

- Google Dopamine: GD is a research framework for fast prototyping of reinforcement
learning algorithms. It features pluggability and reusability.

- RLlib: RLlib is an open-source reinforcement learning library that supports APIs for a
wide range of industry applications, from video games to financial trading.

- Horizon: Horizon is Facebook's open source applied reinforcement learning platform.
It is designed to solve industry applied RL problems with large datasets and slow
feedback loops.



6. FinRL

FinRL is a deep reinforcement learning (DRL) library by AI4Finance-LLC that allows users
to build quantitative financial analysis tools and develop their own custom stock trading
strategies with different fine-tuned DRL algorithms.

Their three primary principles listed in its official research paper are:

1. Completeness: This library completely covers all the major DRL framework.

2. Reproducibility: FinRL ensures transparency on different implementation levels to
provide users reliability and reproducibility.

3. Hands-on tutorial: detailed tutorial and examples are provided within the library

FINRL is a structure consisting of three layers. At the lowest level there is the environment
which simulates markets by working with different types of data starting with the price and its
derivatives such as technical indicators (DQN, DDPG, Adaptive DDPG, Multi-Agent DDPG,
PPO, SAC, A2C and TD3). In the middle we find the trading agent which runs several
fine-tuned algorithms. The last layer consists of the high-level application which trades
automatically.

The three trading use-cases provided by FinRL jointly with their environment are:

- Single stock trading: the agent is trained to trade a single ticker

- Multiple stock trading: the agent is trained on a collection of different stocks at the
same time. The agent will be able to buy and sell from that stocks pool independently

- Portfolio allocation: the agent is trained to reallocate the entire portfolio at each
timestep 𝑡

6.1 Architecture
FinRL library consists of a three layer architecture:

- The stock market environment built on OpenAI gym that describes the trading
problem

- Deep Reinforcement Learning trading agent, trained and tested on the environment

- Stock trading application to backtest what the agent learned and trade the live strategy
on the Stock Market

The agent layer interacts with the environment layer in an exploration/exploitation manner in
order to be able to make an already evaluated decision or to explore a new potential action and
state and potentially gain higher reward.
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Each lower layer provides the APIs higher ones, which makes the library an highly
customizable framework.

Figure 6.1 FinRLApplications, Agent and Environment layers overview. The environment layer exposes API
to the RL agents.

Source:https://arxiv.org/pdf/2011.09607.pdf

Each layer contains several easily customisable modules that can be used for the trading
strategy. New modules can be created and added to existing ones.

6.2 Environment: OpenAI Gym
The environment used by FinRL is based on the OpenAI gym. It is modelled as a Markov
Decision Process (MDP) due to the stochastic and interactive nature of the automated trading
task.

OpenAI helps to simulate the market behaviours based on the principles of time-driven
simulation and working with historical price data. This means that the environment for live
trading is different from the one used for training purposes. Also because of some risk
aversion techniques implemented.

OpenAI also provides well-documented APIs on different levels to build custom
environments and to customise the existing ones.



6.2.1 Turbulence Index
The usage of a Turbulence Index is a method to measure the market’s systematic risk over
time in order to avoid large drawdowns during turbulent periods.

Qualitatively, in FinRL, the financial turbulence is a market structure condition defined taking
in to account:

- The amount of volatility in asset prices.

- The current correlation structure (the "decoupling of correlated assets" and
"convergence of uncorrelated assets") is violated by asset price movements.

Quantitatively, it can be formulated as:
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Σ = 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑜𝑓 ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 (𝑛 × 𝑛 𝑚𝑎𝑡𝑟𝑖𝑥)

If the turbulence index at time is higher than a predefined threshold, the agent halts and will𝑡
resume when the turbulence is over.

6.3 Problem Definition: State Space, Action Space, and Reward Function
The main components of the reinforcement learning environment are described below.
Starting from these concepts, one can formulate the problem of Single and Multiple Stocks
Trading as a maximisation problem:

- Action: the action space is made up of all the actions that can

be undertaken by the agent at time . In the case of Portfolio𝑡
Trading Problem it will be the new distribution of weights in

the portfolio while for Multi Stock Trading, it consists of all

the possible combinations of amounts of stocks to buy or sell.

In the next chapter, the action space will be de

- State: all the information accessible by the agent at time are stored in the state, such𝑡
as the stocks’ price and the technical indicators.
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- Reward function: : it defines how the agent should be𝑟(𝑠, 𝑎, 𝑠') 
rewarded for his actions. In the financial context it is usually

proportional to the Portfolio Value but can be tailored to

different experiments or environments.

Image 6.2: RL algorithms provided within FinRL.

Source: https://finrl.readthedocs.io/en/latest/guide/overview.html#implemented-algorithms



7. Thesis Contribution

The research aims to take advantage of the implementation of the metrics associated to the
historical returns and the asset allocation into the reward function in order to give to the model
a clear view about the trader risk-aversion profile. Being rewarded not only through the
results of trading operations in terms of returns, but also as a function of the results stability
and, in the case of portfolio allocation, the gini index can allow the agent to gain the
information necessary to behave more efficiently.

In order to achieve the result the reward function experimented was:

 𝑅𝑊 + =  
𝑤

1
𝑆𝑅 + 𝑤

2
𝐺 + 𝑤

3
𝑆

𝑖=1

3

∑ 𝑤
𝑖

𝑅𝑒𝑤𝑎𝑟𝑑 =  α𝑃𝑉 +  (1 −  α)𝑅𝑊+

where:

- is the parametric weight given to each portfolio metric. It is bounded in the𝑤
𝑖
 ∈ [0, 1]

interval and they add up to 1.[0, 1]

- SR is the Sharpe Ratio indicator calculated on the historical returns obtained by the
agent since time 𝑡

- G is the current portfolio Gini Index at time 𝑡

- S is the historical returns Stability

- is the weight given to the new Portfolio Value after each step in theα ∈ [0 , 1]
Portfolio Allocation problem and to the Total Gains (compared to the initial balance)
in the Multistock Trading problem.

The idea is that different configurations of parameters can provide, during the training phase,
different information to the agent who in turn can learn to behave accordingly to different risk
profiles.

In this thesis we also explored the possibility to standardize or normalize the value of the
metrics experimenting with both the methodologies.
We stored the metrics historical values and, for each step and metric, we used the (minValue,
maxValue) and (meanValue,stdValue) couple calculated on the last 3 training months to
respectively normalize or standardize the parameters.

In the test phase, in order to scale the indicators, we used the historical value from the last
training quarter.
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7.2 Portfolio Management
The task is to develop an automated trading solution for portfolio allocation training the agent
on the DOW 30 stocks price dataset.

The stock trading process is modelled as a Markov Decision Process (MDP) so that we are
able to formulate the model trading goal as an MDP maximisation problem.

For all the experiments run in this thesis, we assumed no margin, no short sale and no
transaction costs. It means that we allocate all of the money in the portfolio and we trade only
the selected 30 stocks. Since the assets considered are highly liquid, they can be converted
into cash quickly and without potential slippage issues.

As a result, the weight of each individual stock is greater or equal than zero, and the weights
of all stocks add up to one. The total portfolio value is calculated as:

=𝑝𝑉𝑎𝑙𝑢𝑒
𝑡

𝑖

𝑛

∑ 𝑤
𝑖
𝑙𝑎𝑠𝑡𝐶𝑙𝑜𝑠𝑖𝑛𝑔𝑃𝑟𝑖𝑐𝑒

The Reinforcement Learning Environment used for the Portfolio Allocation problem is
defined as:

- Action: the portfolio weight for each stock in the DOW 30. The value is bounded
within [0,1]. For every timestep the model re-elaborate every coefficient.

- State: the state space shape is (34, 30) and it is made by price, technical indicators
information and a correlation matrix about each stock for the day .𝑡

- Reward function : it is the reward function defined in the introduction of𝑟(𝑠,  𝑎,  𝑠')
this chapter. It is the weighted sum of the new Portfolio Value at time and the𝑡
weighted average of the portfolio metrics.

- Environment: the environment is the portfolio allocation for Dow 30 constituents at
time 𝑡.



Image 7.1 Portfolio Allocation Pseudocode using DRL

The reward function used by FINRL’s basic model for the Portfolio Allocation problem was
defined as:

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑃𝑉

where PV is the Portfolio Value at time . Instead, for this type of problem, the reward𝑡
function implemented and tested in this research will be formulated as:

 𝑅𝑊 + =  
𝑤

1
𝑆𝑅 + 𝑤

2
𝐺 + 𝑤

3
𝑆

𝑖=1

3

∑ 𝑤
𝑖

𝑅𝑒𝑤𝑎𝑟𝑑 =  α𝑃𝑉 +  (1 −  α)𝑅𝑊+

The aim of the thesis is to demonstrate the possibility of defining different risk profiles by
assigning different coefficients to the SR (Sharpe Ratio), S (Stability) and G (Gini index)
metrics in the reward function, influencing the agent's behaviour so that act consistently
with the chosen parameterization. The alpha parameter, on the other hand, will be used to
define the weight of the new portfolio value with respect to the weighted average of the
metrics.

7.2 Multi Stock Trading
The second problem taken into account is the Multi Stock Trading Problem. It is modelled as
a MDP in order to be able to formulate the solution as a maximisation problem. As in the
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Portfolio Allocation Problem case, the agent will be trained on the historical prices of the
DOW 30 exploiting different DRL algorithms.



Image 7.2 this image show how the models behave procedurally for each timestep, from the state acquisition
to the reward calculation

Source: https://finrl.readthedocs.io/en/latest/tutorial/MultipleStockTrading.html#

The Deep Reinforcement Learning environment components used to solve this problem can
be defined as:

- Action: the action space describes the potential action performed by the model at each
timestep . In the Multistock Trading problem the action describe𝑡 𝑎 ∈ {− 𝑘 ,  0,  + 𝑘} 
the number of shares to buy, for , to sell, for or hold for 0. The𝑘 > 0 𝑘 < 0 𝑘 =
action can be carried upon multiple stocks as well.

- Reward function : it is the reward function defined in the introduction of𝑟(𝑠,  𝑎,  𝑠')
this chapter. It is the weighted sum of the trading reward at time and the weighted𝑡
average of the portfolio metrics. The trading reward is calculated as:

where𝑉(𝑡) −  𝑉(𝑡 − 1) 
𝑉(𝑡) = 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (𝑡) +  𝑑𝑜𝑙𝑙𝑎𝑟 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑜𝑐𝑘𝑠 (𝑡).

- State: the state space shape is (34, 30) and it is made by price, technical indicators
information and a correlation matrix about each stock for the day .𝑡

- Environment: Dow 30 constituents

In this case, the reward function used in the FINRL AI4Finance’s Paper was defined in as the
trading reward at time :𝑡

𝑅𝑒𝑤𝑎𝑟𝑑 =  𝑇𝑟𝑎𝑑𝑖𝑛𝑔 𝑅𝑒𝑤𝑎𝑟𝑑

In this research we will instead reward the trading agent with the new reward function,
defined as a weighted sum of the trading reward on the metric associated to the historical
returns.

Contrary to what we saw for the Portfolio Allocation problem, the Gini Index is not
considered in the reward function of the Multi Stock trading problem, as it is a metric of a
portfolio that can make sense in the case of long-term allocations.

In this case, the new reward function, is thus formulated as:
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8. Experiments & Results
The experiments used to validate the hypothesis of this research consist of a set consisting of
an experiment on portfolio allocation and multi stock trading, divided by metrics scaling
mode, for different algorithms and parametric configurations.

The overall experiment’s hierarchy is described in Table 8.1

Table 8.1: experiments hierarchy

Reward Function Parametrization

Portfolio Allocation Multi Stock Trading

Standardization Normalization Standardization Normalization
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A
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P
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D
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C

D
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P
G

A
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C

T
D
3

P
P
O

S
A
C

8.1 Data Preparation
In this thesis we used DOW 30 constituents' price and volume data provided Yahoo Finance,
downloaded using FINRL’s high-level APIs, from January 1st, 2001 till October 31th, 2021 .
For each stock the dataframe contains the Date, Open Price, High Price, Low Price, Close
Price, Volume and Stock Ticker. All the prices are in Dollars, while the volume is defined in
the number of shares traded for that ticker on that particular day.

FINRL uses the class FeatureEngineer to validate data, fill the null values and compute
technical indicators (MACD, Bollinger Bands, CCI, DX,. SMA30, SMA60). We also process
the Covariance matrix, a useful feature to quantify the risk associated with a particular
portfolio.

The lookback used to calculate the covariance matrix is one trading-year or to 252 trading
days.

We performed a number of experiments involving different sets of algorithms and reward
functions using the Quantopian pyfolio package to backtest the trading strategies. We assumed
to have 1,000,000$ starting capital by 01-07-2021 and we used the model to trade the DOW
30 constituents until 10-31-2021.
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8.1.1 Dow Jones Industrial Average
The Dow Jones Industrial Average (DJIA) or simply Dow Jones is a price-weighted
measurement stock market index of 30 companies listed on stock exchanges in the United
States. The companies listed in the Dow Jones are described in Table 8.1.

However, the DJIA does not use a weighted arithmetic mean and it does not represent its
component companies' market capitalization (unlike, for example, the S&P 500). It rather
reflects the sum of the price of one share of stock for all the product, divided by the Dow
Divisor, a predetermined constant that is used to determine the effect of a one-point move in
any of the 30 stocks that comprise the Dow. As of Dec. 27, 2021 the Dow Divisor was
0.15172752595384 [29].

𝐷𝐽𝐼𝐴 𝑃𝑟𝑖𝑐𝑒 =  𝑆𝑈𝑀 (𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑠𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒𝑠)/𝐷𝑜𝑤 𝐷𝑖𝑣𝑖𝑠𝑜𝑟

Table 8.2. List of companies in the DOW 30

3M MMM 1976

American Express AXP 1982

Amgen AMGN 2020

Apple Inc. AAPL 2015

Boeing BA 1987

Caterpillar CAT 1991

Chevron CVX 2008

Cisco Systems CSCO 2009

The Coca-Cola Company KO 1987

Dow Inc. DOW 2019

Goldman Sachs GS 2013

The Home Depot HD 1999

Honeywell HON 2020

IBM IBM 1979

Intel INTC 1999



Johnson & Johnson JNJ 1997

JPMorgan Chase JPM 1991

McDonald's MCD 1985

Merck & Co. MRK 1979

Microsoft MSFT 1999

NIKE NKE 2013

Procter & Gamble PG 1932

Salesforce CRM 2020

The Travellers Companies TRV 2009

UnitedHealth Group UNH 2012

Verizon VZ 2004

Visa V 2013

Walmart WMT 1997

Walgreens Boots Alliance WBA 2018

The Walt Disney Company DIS 1991

8.1.2 Gini Index
Several measures are taken by investors to protect their portfolios from risk. Diversification,
in particular, is an important way to protect a portfolio and can be achieved including a variety
of securities and investments from various issuers and industries.

In this experiment we labelled each constituent of the DOW 30 using the GICS Classification
System (section 2.3.7) in order to be able to calculate a global portfolio-Gini Index.

The Gini ratio is infact a measure of statistical dispersion intended to represent the inequality
within a population. In our case, we allow the model to be rewarded to have a highly
diversified portfolio.

To validate the thesis hypothesis we performed a large set of experiments that can be
classified by problem definition, algorithm used, scaling method used to scale the portfolio
metrics exploited in the reward function and reward function parameterization for each metric.
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8.2 Portfolio Allocation Problem: overall results description by algorithm
Figures 8.1 ,8.2, 8.3 represent the boxplot charts calculated on the Portfolio Allocation
problem’s results dataset, obtained from the experiments performed using different
parameterizations and scaling methods. Each boxplot contains the aggregated results of all the
experiments performed for each algorithm. In the calculation of the quartiles, both data
scaling methodologies (normalization and standardization) and all the tested parametric
configurations were taken into consideration.

Analyzing the distributions of the results, shown in Figure 8.1, we realise that all the
algorithms over-performed in terms of sharpe ratio, stability and cumulative results compared
to the FinRL baseline, highlighted by the dashed lines. All the medians and upper quartiles are
in fact above the baseline.

The baseline was calculated by reproducing the experiments, for each algorithm, proposed by
AI4Finance using FinRL without the improvements implemented by the thesis project.

Figure 8.1: Portfolio Overall Standardization and Normalization Sharpe Results vs Baseline

Figure 8.2 describes the algorithm's results in terms of resulting stability, aggregating all the
experiments tested for each DRL algorithm. As in the case of the sharpe ratio, also in terms of
stability, for almost all algorithms, the medians and upper quartiles exceed the baseline.

SAC is the only one that has not improved compared to the baseline but this result is
attributable to the entropic behaviour of the algorithm.



Figure 8.2: Portfolio Overall Standardization and Normalization Stability Results vs Baseline

Figure 8.3 shows how in the portfolio allocation problem, on average all the algorithms
overperformed with respect to the baseline also in cumulative returns, calculated on the test
set.

Figure 8.3: Portfolio Overall Standardization and Normalization Cumulative Returns vs Baseline
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8.3 Multistock Overall Standardization and Normalization Sharpe Results vs
Baseline
Figures 8.4 ,8.5, 8.6 represent the boxplot charts calculated on the Multi Stock Trading
problem’s results dataset, obtained from the experiments performed using different
parameterizations and scaling methods. Analyzing the distributions of the results we realise
that all the algorithms over-performed in terms of sharpe ratio, stability and cumulative results
compared to the FinRL baseline, highlighted by the dashed lines.

Also in the case of Multistock trading the baseline was calculated by reproducing the
experiments, for each algorithm, proposed by AI4Finance using FinRL without the
improvements implemented by the thesis project.

From Figure 8.4 we can see that even in the case of multi stock trading, the aggregate results
of all the algorithms have overperformed with respect to the FinRL baseline

Figure 8.4 Multistock overall sharpe ratio results vs baseline

Figure 8.5 depicts the aggregate results in terms of stability. In this case, they all
overperformed except the SAC and the PPO who settled on the same level.



Figure 8.5 Multistock overall stability results vs baseline

From the boxplots chart in Figure 8.6 we can notice that all the algorithms overperformed in
terms of cumulative returns compared to those obtained by the baseline, except PPO which is
set on average about at the same level.

Figure 8.6 Multistock overall cumulative returns results vs baseline
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8.4 Sharpe Ratio Metric Overview
Figure 8.7 and Figure 8.8 highlights the results obtained in terms of sharpe ratio for different
sharpe coefficients, while alpha is fixed at 0.5. Each boxplot represents the aggregated results
for different algorithms and coefficient values ​​of the reward function, given a fixed value of
alpha and the coefficient associated with the Sharpe Ratio metric.

Almost every algorithm, both in the case of Portfolio Allocation and Multi stock trading,
performed consistently with the values ​​of the coefficient associated with the Sharpe metric,
showing a linear correlation between the coefficient and the results in terms of Sharpe Ratio.

It demonstrates that through the new reward function it is possible to accurately interfere with
the training of the models, aiming to obtain better returns regardless of the volatility,
congruently with the risk profile of the reference trader.

Figure 8.7 shows these results in the case of Portfolio allocation. In particular, the results in
terms of sharpe ratio performed linearly with the coefficient associated with the metric sharpe
ratio in the reward function. Only for the SAC algorithm, despite having passed the baseline,
the results are not linear, due to the entropic nature of the algorithm.

Figure 8.7 Portfolio Allocation Sharpe Ratio results with fixed alpha coefficient equal to 0,5. The representation shows the
sharpe ratio distribution by algorithm / alpha coefficient.

In the case of multi stock trading, on the other hand, this linearity is not noticed, as some
algorithms for which the coefficient was set to 0.5 showed Sharpe Ratio higher than the
others, as we can see in Figure 8.8. We suppose this is due to the fact that the Sharpe Ratio
metric is more congenial to a long-term allocation problem than to short-term trading
activities.



Figure 8.8 Multi Stock Trading Sharpe Ratio results with fixed alpha coefficient equal to 0,5. The representation shows the
sharpe ratio distribution by algorithm / alpha coefficient.

8.5 Stability Metric Overview
Figure 8.9 and Figure 8.10 highlights the results obtained in terms of Stability for different
stability coefficients, while alpha is fixed at 0.5. Almost every algorithm, both in the case of
Portfolio Allocation and Multi stock trading, performed consistently with the values ​​of the
coefficient associated with the sharpe, demonstrating that through the new reward function it
is possible to accurately interfere with the training of the models.
Only in the case of A2C, the relation does not seem, in this case respected, showing a great
variance in its results. Figure 8.9 depicts these results for the Portfolio Allocation problem.
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Figure 8.9 Portfolio Allocation Stability results with fixed alpha equal to 0,5. The representation shows the resultant stability
distributions by algorithm / alpha coefficient.

As for the sharpe ratio, also for stability, in Figure 8.10 we can see how the results, despite
exceeding the baseline in terms of stability, are more variable than what we noted in the case
of portfolio allocation. In fact, in the case of PPO, DDPG and SAC, a coefficient equal to 0.7
associated with the stability metric performed better than higher values.

Figure 8.10 Multi Stock Stability results with fixed alpha equal to 0,5. The representation shows the resultant stability
distributions by algorithm / alpha coefficient.



8.6 Coefficients Configuration Comparison
The graph shown in figure 8.11 was obtained by aggregating the results of the experiments for
different configurations of the reward function, highlighting the results in terms of sharpe
ratio.

It is interesting to note that the best results, in the Portfolio Allocation Problem, were obtained
by giving the same weight to the new value of the portfolio (Alpha Coefficient equal to 0.5)
and to the coefficient associated with the sharpe ratio metric, validating the initial hypothesis
of this thesis. Rewarding the agent with this reward function means in fact rewarding him for
the profits obtained and at the same time for high levels of sharpe ratios, i.e. returns with
respect to risk.

It is followed by the configuration with alpha equal to 0.5 and the same weight associated
with the sharpe ratio and stability metrics which, compared with the other configurations,
jointly provides the greatest relevance to the sharpe ratio and the value of the portfolio in the
reward function.

Image 8.11: The image shows a representation of the Sharpe Ratio results distribution given different metric
configurations in the reward function for the Portfolio Allocation Problem
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The same pattern can be noticed in Figure 8.12 that represents the aggregated results obtained
from the experiments on the Multi Stock Trading problem, with the configurations (0.5, 1, 0)
and (0.9, 0.5, 0.5) leading the ranking.

Figure 8.12: The image shows a representation of the Sharpe Ratio results distribution given different metric
configurations in the reward function for the Multi Stock Trading Problem

On the other hand, by evaluating the aggregate results in terms of stability, consistently with
what is expected given the hypotheses of this research, in Figure 8.13 the configuration that
presents the most stable results is (0.5, 0, 0, 1). In this case, in fact, the model is rewarded in
the same way according to the value of the portfolio at time t and the stability obtained.

In second place we find the configuration that jointly enhances stability and the Gini Index.
Indeed, it is clear that favouring an uncorrelated portfolio, given the industry sector for each
stock, can provide greater long-term stability.



Figure 8.13: The image shows a representation of the Stability results distribution given different metric
configurations in the reward function for the Portfolio Allocation Problem

Even in the case of Multi stock trading, the configurations that have performed best in terms
of stability are the ones where the influence of stability in the reward function has been
prioritised, such as the (0.9, 0.5, 0.5), the (0.5, 0, 1) and the (0.5, 0.3, 0,7)
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Figure 8.14: The image shows a representation of the Stability results distribution given different metric
configurations in the reward function for the Multi Stock TradingProblem

Analyzing the drawdown results show in image 8.15 i.e. maximum observed loss from a peak
to a trough in the returns of the portaglio, we deduce that the configuration that produced the
best results was the one in which the model was uniquely rewarded for the new value of the
portfolio and the value of the gini index.

The Gini Index in fact, pushes the model to avoid over-exposure to a particular market sector
in order to be covered from the systematic risk of a large market correction and and therefore
drawdowns.

Figure 8.15: The image shows a representation of the max drawdown distribution given different metric
configurations in the reward function for the Portfolio Problem

With regards to the Multi Stock trading problem, Figure 8.16 shows that no models
significantly outperformed the others. The reason could be associated with the fact that this
problem implies faster trades and no obligation to allocate the entire portfolio.

The model that in fact performed slightly better than the others, is the one in which the reward
function gave greater weight to the sharpe ratio which pushed the agent to prefer those trades
that potentially promised greater rewards given the same level of risk.



Figure 8.16: The image shows a representation of the max drawdown distribution given different metric
configurations in the reward function for the Multi Stock Trading Problem

Finally, drawing the graphs to evaluate the configurations that performed best in terms of
annual returns (Figure 8.17), for the portfolio allocation problem we realise that the results
almost linearly follow the trend of the coefficient associated with the sharpe ratio.

In those configurations that favour the sharpe ratio metric, in fact, the agent had more room to
focus on recognizing the most profitable trades without paying too much attention to the
stability or composition of the portfolio at time .𝑡
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Figure 8.17: The image shows a representation of the annual returns distribution given different metric
configurations in the reward function for the Portfolio Allocation Problem

Even in the case of Multi Stock Trading, the most performing configuration was the one
associated with the higher sharpe ratio, namely the configuration (0.5, 1, 0). This
configuration has in fact exceeded 40% annual return.

Figure 8.18: The image shows a representation of the annual returns distribution given different metric
configurations in the reward function for the Multi Stock Trading Problem

8.7 Best Configuration Comparison
Table 8.3 shows the best performing algorithms results in terms of cumulative returns, both
for the Portfolio Allocation and Multi Stock trading problems. Figure8.19, on the other hand,
shows the equity line from July 2020 to October 2021, compared with the performance of the
DJIA.

Both the represented configurations present an Alpha coefficient equal to 0.5 and Sharpe
equal to 1. As shown in the previous chapters, in fact, the performances of the models in terms
of cumulative returns responded linearly to the values ​​of the sharpe ratio coefficient,
increasing the cumulative returns with the same level of risk.



Table 8.3

Problem Multistock Portfolio

Scaling Method Standardization Normalization

Algorithm SAC DDPG

Configuration

Alpha 0,5 0,5

Sharpe 1 1

Stability 0 0

Gini \ 0

Results

Annual return 0.413726 0.346904

Cumulative returns 0.631723 0.470040

Annual volatility 0.172428 0.145247

Sharpe ratio 2.217177 2.257061

Calmar ratio 3.894910 4.279437

Stability 0.964523 0.911949

Max drawdown -0.113925 -0.078025

Omega ratio 1.465561 1.409963

Sortino ratio 3.506085 3.194643

Skew -0.052183 -0.019835

Kurtosis 1.680755 1.233719

Tail ratio 1.269227 1.140191

Daily value at risk -0.020207 -0.017114

Figure 8.9 represents the equity lines of the two best algorithms, compared to the performance
of the DJIA.
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Figure 8.19: Equity Line comparison between the best performing Portfolio Allocation and Multi Stock
Trading models vs DJIA

8.8 Equity Line Comparison
Charts in Image 8.21 and 8.22 show the backtests performed using different parameters
configurations of the SAC for Multi Stock Trading and the DDPG for the Portfolio Allocation
problem

The backtest was performed on the test period dataset, from July 2020 to the end of
September 2021.

As anticipated in chapter 8.4, the parameterizations that prefer a higher weight for the
coefficient associated with the sharpe ratio tend to perform better also in terms of Cumulative
Returns, outperforming the market during bull markets and limiting drawdowns. On the other
hand, parameterizations that favour stability and diversification tend to flatten the equity line,
reducing the volatility of returns, protecting capital from sharp market moves.



Figure 8.20: different SAC Configurations’ Equity Lines for the multiple stock trading problem

Image 8.20 shows a comparison between the equity lines of different sac parameterizations
for the multi stock trading problem. The most performing configuration, as anticipated, was
the one where the model was rewarded, equally, through the value of the Sharpe Ratio and the
returns at time t. Following, two mixed sharpe-stability configurations that can be associated
with medium risk profiles. The model that performed worst was the one awarded only for
15% of the reward function through the sharpe, while the remainder was assessed on the basis
of returns and stability.

Figure 8.21: Different DDPG Configurations’ Equity Lines for the Portfolio Allocation problem

The same pattern can be noticed in figure 8.21, where a comparison between different DDPG
parameterizations for the portfolio allocation problem is shown. The best algorithm in terms
of returns in the testing period was, as we expected, the one with alpha equal to 0.5 and the
coefficient associated with the sharpe ratio equal to 1, followed by the configuration in which
the weight of the reward function was distributed between Sharpe and Stability.

While in the last places, again in terms of cumulative returns, the configurations in which the
coefficients of stability and gini index have been preferred. The last configuration in particular
showed to be particularly resilient to market drops and stable in periods of high volatility.
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9. Conclusions and future works

This thesis work has investigated the use of Reinforcement Learning techniques to address
multi-stock trading and portfolio allocation. The idea was to give the reference trader or fund
manager the possibility to configure the agent in such a way that it favours a certain style in
terms of risk and exposure to the market.

State-of-the-art reinforcement learning algorithms developed have always adopted a
market-neutral approach, without providing any contextual information to the agent on the
trader's risk profile and the portfolio under management. The methodologies developed in this
thesis aim at overcoming such a limitation by incorporating stock-related technical data to
better contextualise past stock returns.

The contextual information provided to the Reinforcement Learning agent, to enable him to
learn how to behave in a complex system and optimise his policies, was not just about the
prices of each single action. In fact, to ensure that the agent could recognize the different
market structures and have an overview of the context in which it was operating, we included
in the training set information on prices' moving averages, historical volumes, trend
momentum indicators, volatility-related information and a correlation matrix between the
stocks considered.

In this thesis we have experimented the possibility of extending the decision metrics, such as
the sharpe ratio or the stability, related to the portfolio composition and historical returns
within the reward function of the RL method. In fact, by rewarding the agent for having
obtained higher values in these metrics, it was possible to influence the learning signals and
the development of trading strategies. The results of the experiments proved the effective
functioning of this methodology.

The results achieved on real stock market data show that through the new, price-aware reward
function implemented in this thesis, it was possible to improve the average results of all the
algorithms and to guide the agent in the development of strategies to achieve specific results.
In particular, by giving more weight in the reward function to the metrics of sharpe ratio,
stability and gini index, it was possible to obtain more stable and at the same time profitable
strategies, in line with the defined parameterization.

The different deep reinforcement learning algorithms have reacted positively to the changes
implemented in this thesis, both in the case of portfolio allocation and in multi stock trading.
In particular, the configurations in which the sharpe ratio metric was preferred have far
outperformed compared to the FinRL baseline, reaching annual returns of 41% compared to
the 30% achieved by the base model. On the other hand, in the cases where the configurations
preferred the Stability and Gini Index metrics, the strategies were more stable and resilient to
drawdowns. Even in the case of mixed configurations, where the agent was jointly awarded
for more than one metric, the results were consistent with what was specified in the reward
function, still obtaining better results than the baseline. The results show how the
reinforcement learning model was able, despite the stochastic nature of the markets, to
recognize the setups that would have allowed it to optimise cumulative rewards in the short
and long term.

The future works will address the application of similar approaches to other markets, such as
cryptocurrencies, and financial instruments. They will also investigate the interpretability of
the models thus providing experts the reasons behind the generated predictions.
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