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Abstract

The enormous dissemination of data and information enabled by the Internet has
brought great freedom of expression and information to almost the entire world
population. However, at the same time the spread of information also brings
with it the spread of false information, known in the field as "Fake news" or
"misinformation". This phenomenon has led the scientific community to become
interested in and develop solutions that can curb the problem: a fundamental
building block is Natural Language Processing, an algorithmic technique developed
through Machine Learning and artificial intelligence in general. In this work we
address two challenges carried out during 2021, FEVEROUS and MediaEval 2021,
that concern the identification of fake news through natural language processing and
the most widely used models for text classification. The first challenge dealt with
the truthfulness of various claims within an ad hoc provided database by retrieving
evidence from the English Wikipedia corpus; on the other hand, the second challenge
concerned the identification of misinformation in a dataset composed of real tweets
about the recent Covid-19 pandemic and related conspiracy theories. Among
the tested models, the most explored techniques are the classification algorithms
following a pre-processing and encoding process of the text and, secondly, the
Transformers, considered the current state-of-art for the main Natural Language
Processing tasks, such as the one analysed, but also used in other fields. The
promising results show that this type of solution can be an excellent tool to help
the community face this problem from a social and technical point of view.
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Chapter 1

Introduction

Recent years have seen a surge in the use of the internet and social networks
in particular. This situation increases in parallel a large flow of information
circulating on the web. The case of fake news is not a contemporary problem,
but it developed simultaneously with the spread of the media. However, with
the advent of the Internet, the phenomenon has become increasingly present and
constant, also because of the echo-chamber effect, where information, ideas or
beliefs are reinforced by communication and repetition within a defined group of
people. This is a relevant situation especially when events of global interest occur:
the most striking and recent case is the Covid-19 pandemic. Fake news includes
not only false textual news, but also news or phrases of various kinds that have
been manipulated, de-contextualised or created with the aim of doing harm, thus
threatening both the collective knowledge of a given event and the actions that
follow it.
This type of phenomena has stimulated the scientific community in the field of data
science, which developed in the past statistical and Machine Learning techniques
firstly to make natural language understandable from computer, and consequently
to perform specific tasks on textual data, such as machine translation, question-
answering, topic modeling, etc. From statistical tools, configurations have evolved
to the latest technologies that most often include models based on complex neural
networks.
In the last years the research community experimented with the application of new
architectures and technologies to the field of fake news detection, studying if these
could be usable tools to tackle the problem. Numerous researches and surveys have
been carried out in order to initially study the characteristics of misinformation in
depth, and subsequently to be able to identify, block and prevent its spread. This
area of research has also been encouraged by the numerous organisations that have
been set up in recent years with the aim of curbing the problem of misinformation.
Despite this, current technologies do not allow us to have accurate solutions, both
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Introduction

because of a limitation in terms of computational power and because of people’s
distrust of automated systems. However, this does not exclude the possibility of
implementing tools that can help humans in this task.
In this work we approach two different challenges held in 2021, both focused on
fake claims and disinformation detection in two different fields and with different
configurations. Before diving into the two task, in chapter 2 we present a general
overview of the most widely used Machine Learning and Deep Learning techniques,
from the most basic natural language textual encoding up to the state-of-art
architectures based on deep neural networks. Following, in chapter 3 we introduce
the social context in which the tasks are designed and placed, together with
motivations about the importance of developing solutions, some definitions about
misinformation and related concepts, and a brief description of current state-of-art
in fake news field.
The core sections of this work are chapter 4 and chapter 5, which present two
challenges. The first one is a task held by the FEVER workshop concerning the
identification of claim veracity from a dataset of annotated sentences. These
claims have been generated by some volunteer annotators starting from a set of
Wikipedia elements. The web encyclopedia is central for this work: indeed, the
authors provided a corpus created from the English Wikipedia, through which
the algorithm has to extract structured and unstructured evidences in order to
predict the factuality of the input claims. Our solution was based on a combination
of transformer-based and neural re-ranker models that allowed us to finish in
fifth place, above the baseline score. Instead, the second challenge was held by
MediaEval organization, which concern a more real-world problem, specifically the
misinformation about Covid-19 pandemic. In fact, the provided dataset consists
in a set of tweet text scraped from the famous social network, which focus on
the emergency pandemic situation and on the related conspiracy theories that
circulate online. The authors decided to extract 9 different conspiracies through
keywords and hashtags, and the main task of the challenge is to identify if a tweet
is discussing a theory and which of the conspiracies it is about. We managed to
reach the first position through a state-of-art transformer-based solutions combined
with an ensembling model, winning the contest.
Finally, in chapter 6 we summarize the results we obtained in order to contextualize
them.
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Chapter 2

Preliminaries on Machine
and Deep Learning

Due to the great amount of data from the Internet, especially textual information,
the usage of algorithms in this sense have been broad explored through Machine
Learning and, from a different point of view, Deep Learning. This approach to
textual data processing gave birth to Natural Language Processing and it enabled
the resolution of important tasks and challenges, with the aim of achieving Natural
Language Understanding, considered by the community as the "holy grail" of this
field. In this chapter we provide a summary of the principal ML and DL algorithms,
up to the latest and most widely used architectures with the best performance.

2.1 Natural Language Processing
Natural Language Processing is a subject related to linguistics, computer science
and therefore artificial intelligence, that deals with the analysis of human-computer
interaction through natural language, which can be in the form of sound or text.
This type of technology is concerned with analysing and extracting information
from natural language sources and often making predictions about the extracted
data. The wide field of NLP covers a diversified set of tasks and problems which
aim to different objectives; the most popular are:

• Text classification: it is the task that deals with processing unstructured
data (such as texts) and making predictions and analyses on the characteristics
extracted from them. This task is widely use in AI scientific community with
broad applications other than fake news detection, such as sentiment analysis,
topic labeling, spam detection, and intent detection.

• Natural Language Inference (NLI): it is the task of determining whether
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an hypothesis query is an entailment, a contradiction, or neutral with respect
to a given premise query. An example is shown in Figure 2.1.

• Named Entity Recognition (NER): it is the task which aims to identify and
classify named entities (real-world object denoted with a name) mentioned in
unstructured data; this can be done through a grammar-based or a statistical-
based strategy.

• Text pre-processing: it is explained in subsection 2.1.1

Before diving into the numerous ML techniques that are used for classification, it
is useful to understand the characteristics of unstructured data in exam and, in
particular, how it can be processed in order to make it algorithmically usable by
ML and DL techniques.

Figure 2.1: NLI example

2.1.1 Pre-processing
Unstructured natural language, being such, is by nature ambiguous and sloppy;
especially on the Internet, one can find such text modifications that make it difficult
to process by current technologies: padding, unconventional characters, typos,
wrong capitalisation, abbreviations, etc. Furthermore, it is good to remember that
the algorithms do not operate on words or letters but on numbers - in particular in
the case of Machine Learning on numerical vectors - therefore it is necessary to
find a suitable technique for the conversion of sentences and words into numerical
feature vectors that can integrate both their semantic content and their meaning
within the context of the sentence. This must also integrate a model that can
measure the similarity between terms.
For what concern natural language difficulties, we have numerous cases in which
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the similarity of words in sense or form can cause prediction problems. Because of
this, it might be useful to use a dictionary to distinguish the semantic meaning
of various words. In this regard, it is important to identify how we categorise the
words when they appear in textual data:

• Lemma is the canonical, dictionary or citation form of a word

• Wordform is the "inflected" word as it appears in the text

• Word sense is the discrete representation of an aspect of a word’s meaning

Using these definitions we can define how to organise a possible dictionary: through
semasiological approach1 entries are arranged by lexemes or words and each of them
describe their sense; on the other hand the onomasiological approach2 organises
the entries by senses or meanings. While constructing this dictionary, one must
take into account the problems often present in written plain text, among them:

• Homonymy: it is a relation between words that have the same form but
unrelated meanings, examples are homographs that have the same written
form and homophones that have the same pronunciation. It is the main cause
of NLP problems, especially in information retrieval, machine translation and
text-to-speech algorithms.

• Polysemy: it is a systematic relation between words that share the same
form and have related meanings or senses e.g. the word "bank" can mean both
the building and the organisation depending on the context. This problem is
often solved through Name Entity Recognition.

• Synonymy: it is a relation between words that share the same meaning but
with different form in some or all contexts. Two lexemes can be defined as
synonyms if one can substitute the other in some or all contexts.

• Antonymy: it is a relation between words that do not share meaning nor
form, but their senses are strictly related since they represents opposites with
respect to one feature of meaning.

• Hyponymy and Hypernymy: one word is defined as hyponymy of another
if its sense is more specific, denoting a subclass of the other word. Conversely,
hypernymy defines a superclass of the other word, having a wider sense.

1https://en.wikipedia.org/wiki/Semasiology
2https://en.wikipedia.org/wiki/Onomasiology
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All these features make the creation of a dictionary difficult, which is why it is
necessary to apply methods of text normalization the text in order to simplify
it and remove unnecessary elements. The normalisation process consists of several
steps, which are not always applied in their entirety to the whole text, but it
depends mainly on data characteristics. The main steps are structured as follows:

• Punctuation removal: this is usually the first step to apply, it removes
all the punctuation in order to simplify the text. The task may also include
emoticon/emoji and HTML tags removal.

• Stop word removal: this step removes the words that are not useful for
encoding and text understanding because they act as padding and/or they
have low entropy.

• Capitalization: this concerns the substitution of all the capital letters with
lower case ones. It is not always used because it often depends on the theme
of the text being analysed, but it is a general rule to apply it for long texts.

• Tokenization: it is a process that divide the plain text/sentence in atomic
elements that are semantically useful for processing, called tokens; punctuation
and white spaces may or may not be included in the final tokens.

• Lemmatization: it is a process that apply a morphological analysis of the
word, removing the inflectional endings of the word and returning only its
lemma, so the canonical form.

After applying these processes, it is necessary to adopt a model for organising words
so that they can be codified. In the field of NLP, there are two macro-approaches,
which in turn contain more specific ones: the thesaurus-based approach and the
distributional approach.

2.1.2 Thesaurus-based approach
A thesaurus is a set of terms used to classify documents and data in order to fed
them to a model; more specifically, in this scenario, it is a hierarchically organized
lexical database which contains words related among them. The most used is the
WordNet3, which is a database consisting of an on-line thesaurus that is enriched
by some dictionary aspects. Wordnet is structured in a semasiological way, so
each entry is a term whose different senses and meanings are defined. It has both
instances and classes: instances define a proper, individual name that identifies
a single entity, while classes are words that indicate a super-class, which may

3http://wordnetweb.princeton.edu/perl/webwn
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contain several sub-classes and instances depending on the term. The hierarchical
structure of the thesaurus makes it possible to establish and calculate a measure of
similarity or, more precisely, relatedness, since similarity implies that the terms are
near-synonymous, whereas relatedness implies that the words are related in any
way. So, it defines that two concepts are similar if they are near each other in the
thesaurus hierarchy: shorter is the path separating the terms/senses, more related
they are. Figure 2.2 shows the logic of the path computing in the hierarchy. In
formulas:

pathlen(c1, c2) = 1+number of edges in the shortest path between
senses nodes c1 and c2

simpath(c1, c2) = 1
pathlen(c1, c2)

wordsim(w1, w2) = max
c1∈senses(w1),c2∈senses(w2)

sim(c1, c2)

WordNet has been also used as a corpus in Python language by the NLTK library4,
as well as in the Java language. Despite its structure, this approach has weaknesses,
for example this paradigm assumes that each edge of the tree has a weight of 1 and
for some sense nodes this may be misleading; furthermore, there is no thesaurus
for every existing language and they must be hand-built. The next step to improve
word encoding is the distributional approach.

2.1.3 Distributional approach
Distributional models are embedded vector-space models of meaning, since every
word is embedded through a numerical vector in a multi-feature space. This means
that words are represented with vectors and if they are related in the context, they
are placed "nearby" in the feature space. Because of this, the approach tends to
have lower precision but higher recall. The first and simpler type of embedding is
the Bag of Words model: having a certain number of documents or sentences, each
word is coded by the frequencies with which they occur in each document. The
BoW model is also referred to as term-document matrix if the terms in the entries
are not only single words but also combination of them as n-grams. Through this
model, the calculation of similarity is more intuitive, since it is closely linked to the
context in which the words are inserted: two words are similar in meaning if their
context vectors are similar. Mathematically, this measure is computed through the

4https://www.nltk.org/howto/wordnet.html
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Figure 2.2: Logic of thesaurus’ hierarchy

cosine similarity between vectors; in this way, the more two vectors have similar
direction and versor, the more the two words are related:

cosine(v⃗ · w⃗ ) =

Nq
i=1

viwió
Nq

i=1
v2

i

ó
Nq

i=1
w2

i

(2.1)

Although the frequency of words is useful for representation, if no stop word removal
is applied, the most frequently occurring terms and lemmas are the ones that acts
as paddings, so they are useless for the context, e.g. "the", "and", "among", etc.
To overcome this problem, various types of function are often applied, in order to
re-weight the vectors.

TF-IDF

TF-IDF stands for Term Frequency-Inverse Document Frequency and it is a re-
weighting technique for term-frequency matrix in order to re-balance the importance
of a single term in every document. Due to its configuration, it often results in
very sparse vectors, but despite this [1] showed how this technique leads to decent
accuracy and results in text classification field; for this reason it is often used
as baseline system together with basic machine learning models. Its value for a
term is proportional to the word frequency, but it is normalized by the number
of documents in the database: in such way, the importance of a single term is
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adjusted by its frequency in all the documents. Having the term t, the document d,
and the total number of documents D, the expression is:

tfidf(t, d, D) = tf(t, d) · idf(t, D) (2.2)

The term frequency defines the frequency of a single word or n-gram that depends
on the raw counts of a term t in a document d:

tf(t, d) = ft,dq
t′∈d ft′,d

While the identity frequency matrix define the "importance" of the word across
all the documents, i.e. how much the term appears in all the corpus, through the
logarithmic scaled inverse fraction of number of documents that contain the word
and the total number of documents:

idf(t, D) = log |D|
|{d ∈ D : t ∈ d}|

So, words such as "the", "alone", etc. has a normalized count among all the
documents, since they will tend to have low idf because of their high frequency in
all the documents.
It often happens that a certain problem needs the normalized version of both the
elements that compose TF-IDF: for tf, it is often logarithmic scaled or a double
normalization is scaled, on the other hand idf is computed as a probabilistic inverse
document frequency.

tf(t, d) = log(1 + ft,d) idf(t, D) = log |D| − nt

nt

Where nt is the number of documents where the term t is present. Regardless of
the type of normalisation, the distance between words or n-grams can be calculated
using the cosine formula 2.1 as in the previous case.
Other solutions for encoding words and phrases consist of processing them using
more or less complex models in order to obtain embeddings: this is the case of
Word2Vec5. This type of embedding is characterized by way shorter vector, but
denser as well, so generalizing better the word features. Due also to its small
size, this kind of vector is easier to process for machine learning models, since
they will have less weights subject to tuning. The approach consists in fed a two
layer neural network that is fed with corpus of text and returns a vector space
where every word is represented. This technique has the advantage of being able

5Code: https://code.google.com/archive/p/word2vec/
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to represent the linguistic context of individual words, thereby also being able to
better distinguish synonyms and other similar semantic entities. Despite these
advantages, it has drawbacks too: since it relies on local information, it cannot
handle out-of-vocabulary words and it needs a larger corpus to be train to in
order to avoid sub-optimal results. Moreover, parameters cannot be shared among
language, so the model must be trained from scratch for each language.

2.2 Introduction to Machine Learning
In this section we briefly describe the concept of Machine Learning, while tackling
specifically the problem of classification in a general way, how it is handled and
evaluated. Machine learning is a sub-field of AI which has the aim to describe
a problem in a logical form, so with uncertainty, and to apply general deduction
procedures to solve it: in other words, it is a process that gives the ability to learn
to a computer model. Having a ML model, the elements that it needs are the data
from experience E, the task to solve T and the performance measure P. So, an agent
learns when its performance in solving T, measurably P, improves with experience
E. Moreover, experience E is described by data points or instances, which in turn
are characterised by sets of qualitative or quantitative fields, called features.
Depending on how E, P and T are defined, we can have different approaches of
learning, the four main types are presented here:

• Supervised learning: it is a learning process where the input data is
characterized by its features and the labels (which can be categorical or a
continuous real value); the model learns the relationship between the data
points and the related label, applying this mapping process to new unseen
data instances.

• Unsupervised learning: it is a learning process is a process in which the
model is fed with data without related labels; so, in this case, the learning
agent has to identify structures, such as patterns and clusters, within the data
space, based on their features.

• Semi-supervised learning: it is a learning process that falls between
supervised and unsupervised learning, since it uses a combination of labelled
and unlabelled data in order to return better performances in specific tasks.

• Reinforcement learning: it is a learning process in which the agent is placed
in an environment where each action can correspond to a cumulative reward
and a current state of the surrounding conditions; its aim is to maximize the
function that defines the reward.

10
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Depending on the type of learning, we mention specific tasks that identify the most
popular problems within the ML field:

• Classification: it is a specific task of supervised learning, where the data
points are related to categorical labels and the aim of the learner is to optimize
the function that links the data to their specific labels.

• Clustering it is the task of grouping the data instances in such a way that the
points with similar characteristics belong to the same group, which are called
clusters; in this scenario the data has no labels, so it falls in the unsupervised
learning field.

• Regression: it is a sub-task of the supervised learning, since the labels
attached to the data are real continuous values; in this case the task of the
agent is to estimate a function that can approximate the relationship between
the outcome of the data (the label, that is defined as dependent variable)
and the features (which are defined as independent variables) based on a
mathematical criterion.

• Dimensionality reduction: it is a process that concerns the reduction of
the feature space, so the number of characteristics that a single data point
has, in order to obtain a smaller set of principal components in which the
data instances are distributed; this goal can be achieved through extraction,
elimination or elaboration of the feature fields. The most popular mathematical
tool in this sense is the PCA.

2.2.1 Supervised Learning
Since this work is focused on text classification, a more precise overview of supervised
learning is provided. A typical supervised learning setup is composed by an unknown
distribution of data, which is divided in training and test set

D = {(x1, y1), ..., (xn, yn), (xn+1, yn+1), ..., (xm, ym)}

where the samples from 1 to n are the ones belonging to the training set (xtr, ytr)
and the others from n + 1 to m are set as test set (xt, yt). So, it is a finite sequence
of pairs x ∈ X, y ∈ Y in the X × Y space, where X is the feature space, while Y
is the set of possible labels or outcomes. Assuming that the data distribution D is
defined as independently and identically distributed (i.i.d.), the main aim of the
supervised learning model is to find a function f , called hypotesis function, that:

• belongs to the set of possible functions F (f ∈ F : X → Y )

• learns a relationship between the features and the outcomes such that yi = f(xi)
∀i ∈ D

11
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• minimize a function that depend on the loss

The loss function is a relationship that defines the difference between the true
labels and the predicted ones, in such way it describes how well the model make
predictions on the data: L(x, y, f(x)). The loss can be of different types depending
on the type of task to be solved (binary, squared, hinge, etc.).
The minimized and optimized function that depends on the previously defined loss
is the Risk, or Generalization error:

RL,D(f) = E[L(x, y, f(x)] = Px∼D[h(x) /= f(x)]

where h = arg min
h∈F

R(h) and the expectation is taken with respect to D. This means
that since the data distribution is unknown and i.i.d., it can be defined as a random
variable, consequently also the risk function is defined as such; so, in a probabilistic
sense, the risk is the expected value of the loss function. The minimization of the
risk is not a trivial problem, since the function h is not accessible, together with
the distribution D, because the model has access only to the training data. In order
to solve this optimization, different resolutions may be adopted: one of these is
the Empirical Risk Minimization. The ERM concerns another definition of risk,
defined as Empirical Risk or Empirical Error:

Remp(f) = 1
n

nØ
i=1

L(f(xi), yi)

As can be seen, the amount of available data - belonging to the training set - is
used to compose an approximation of the risk that has to be optimized by finding
the appropriate function f that minimize the ERM:

f ∗ = arg min
f∈F

Remp(f)

This optimization problem may often lead to a small generalization, since it will
tend to overfit over the training data; overfitting means to learn too closely to
the training data - even the noise - so, for future and unknown samples, the model
will fail to fit them because of a very low generalization. In order to avoid this,
some restrictions are often applied to some parameters, such as the solution space
F ; these limitations are called generalization bounds. The opposite problem, called
underfitting, occurs when the model cannot capture the structure of data in a
proper way due to a lack of parameters.
This situation can be explained also in error terms: once the solution of the
optimization problem f ∗ is found, we can compute its risk as

RD(f ∗) = ϵapp + ϵest
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where ϵapp is the approximation error, which defines the bias and it is due to wrong
assumptions about the learning model and the data distribution; it is strongly
related to the restriction on the complexity of the solution space F and consequently
a high value of bias leads inevitably to underfitting, provoking a low value for
the other error. This last one, denoted as ϵest, is the estimation error, which
represents the variance. It depends on the model sensitivity to small fluctuation
of the training samples, so it is strictly correlated to the data distribution D and
its high value corresponds to low bias and leads to overfitting. The goal of the
optimization problem is also to find a proper bias-variance tradeoff that can lead
to high prediction performances, therefore to risk minimization, without generalize
too much or too little.

2.2.2 Classification metrics
Before diving into the study of the data and its divisions, it is important to ascertain
how the learning models will be evaluated, thus how we will assess the distance
between the true labels and the predicted ones. All measures presented here are
based on the binary concepts of positives and negatives, which can in turn be true
or false, in short:

• True Positive (TP): number of samples for which the prediction is positive
and the true label is positive

• False Positive (FP): number of samples for which the prediction is positive
but the true label is negative

• True Negative (TN): number of samples for which the prediction is negative
and the true label is negative

• False Negative (FN): number of samples for which the prediction is negative
but the true label is positive

Given these parameters, we can define the confusion matrix, which namely is a
table layout that allows the visualization of a classification algorithm; it consists
in a 2 × 2 matrix where each row represents the cases of a true class, while the
columns represent the instances of the predicted classes. Through this structure
we can compute the main measures:

• Accuracy: it is the proportion of correct prediction over the data cardinality.

Acc = TP + TN

TP + TN + FP + FN
(2.3)

13



Preliminaries on Machine and Deep Learning

• Recall (or True Positive Rate): it is the proportion of correctly identified
positives over the actual positives.

Recall = TPR = TP

TP + FN
(2.4)

• Precision: it is the proportion of correctly identified positives over all samples
identified as positive.

Precision = TP

TP + FP
(2.5)

• F1 score: it is the harmonic average of recall and precision.

F1 = 2 · Precision · Recall
Precision + Recall (2.6)

• AUC score: it is a measure based on the ROC curve (Receiver Operating
Characteristic curve); the ROC curve is a graph that shows the relationship
between the TPR and the FPR (False Positive Rate) at different classification
threshold. The FPR is the proportion of the wrongly identified negatives over
all the actual negatives:

FPR = FP

FP + TN
(2.7)

The ROC space concerns a [0,1] square, so the perfect prediction is a function
that covers the point in the upper left corner or coordinate (0,1) of the ROC
space, while a diagonal line corresponds to a random guess of the prediction.
Through this function it is possible to compute the classification goodness,
namely the degree or measure of separability among the classes; this means
computing the area below the function (Area Under the Curve). Figure
Figure 2.3 shows some examples of ROC curves.

• MCC (Matthews Correlation Coefficient): it is a correlation coefficient be-
tween the observed and predicted binary classifications; it is considered an
equivalent to a χ-square statistics for a 2× 2 contingency table (such as the
confusion matrix). Unlike the other measures which compute values between
0 and 1, it returns a value between -1 and +1: a result of +1 represents a
perfect prediction, 0 loosely indicates a random prediction and -1 indicates
total disagreement between prediction and reference value.

MCC = TP × TN − FP × FNñ
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2.8)
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Figure 2.3: ROC curves

2.2.3 Training and validation method

The methods concerning the training and validation steps are divided into three
parts: dataset splitting, cross validation and hyperparameter tuning.
The first step, the dataset splitting, is performed so that the model can better
generalise over the data. The datatset is divided in two parts which we have already
referred to above: the training set and the test set. In this way, the model is trained
on the former and then tested on the latter, i.e. the algorithm parameters are
adjusted based on the first, then it tries to predict the labels of the latter and its
outcomes are then compared with the true labels, from which the performance is
measured. The splitting is usually applied using 80% of the data as training, while
the rest of it is used as test set. The split is performed in a stratified way, this
means that the distribution of labels in the original dataset is also maintained in
the resulting splits.
Despite this approach, the data that falls in the test set is unknown and the
performance is strongly dependent on which data belong to this set, so the variance
is high. In order to reduce this characteristic, the cross validation method is
adopted: the training set is split again in training set and validation set in a
stratified way. This last element is the part which is used to have a first glimpse of
the model goodness, since the model is trained on the first set and then evaluated
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on the second. Usually a specific version of this approach is used, called K-fold
cross validation, which consists in several steps:

1. Split the training set in K subsets, which are called folds

2. The classification paradigm is trained on k − 1 folds, while the k-th fold is
used as validation set

3. The process is repeated changing the k-th fold in order to change the validation
set

4. Eventually the results of the previous K validations are averaged

This approach allows a reduced variance and a more precise evaluation of the
measure. Figure 2.4 represents a visualization of this approach.

Figure 2.4: Visual of K fold cross validation

Moreover, this method is also used to choose the best model. A model is changed
by modifying its hyperparameters: a hyperparameter is a variable specific to the
model which is set before the algorithm processes the data and their value deeply
affect its performance. The K fold validation is repeated several times in order to
find the best values for the hyperparameters: this process is called hyperparameter
tuning.
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2.3 Machine Learning models
In this section we introduce some algorithms that have been used during the
challenges with a brief description of their logic and parameters.

2.3.1 Tree-based algorithms
The tree-based methods are specific types of ML paradigms which involve the
segmentation the feature space into regions through a set of splitting rules: this
concept allows their representation as a tree-like graphic. These algorithms are
really simple in terms of usage and representation, but they can have less accuracy
performances respect to more sophisticated learning approaches; indeed, they are
the more prone to overfit.

Decision Tree

The Decision tree is one of the tree-based methods that can be used both for
regression and classification. The goal of this paradigm is to iteratively split the
feature space in subregions Ri in order to minimize an objective variable. Displayed,
trees are usually represented uspide-down, which means that the root is on top,
then any points along the tree where the prediction space is split are defined
as internal nodes, while the leaf nodes, where the regions are defined, are called
terminal nodes.
The decision tree process can be described as:

• Greedy: at each step the node is split according to the best locally optimal
decision, independently from the previous and future steps; thus, we have no
certainty of reaching a global optimum.

• Top-down: it begins at the top of the tree with the root node and at each
step it generates recursively two branches that correspond to splits of the
feature space.

This greedy approach is strongly related to the Hunt’s algorithm, which is the basis
of the many decision tree models. In general the paradigm can be summarized in
two steps:

1. It divides the predictor space into J distinct and non-overlapping regions
R1,R2,...,RJ

2. For every observation that falls into the region Rj , it makes the same prediction:
it assigns the most occurring label related to the observations that lie in that
region
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As stated previously, the locally optimal splits are made in order to minimize an
object variable, which is linked to the concept of impurity. A node is considered
pure if all of its data belongs to a single class, while it is completely impure if the
node can be split evenly 50/50 based on a feature. There are several measurement
of purity or impurity, but the most commonly used are:

• Classification error rate: the fraction of the training observations in that
region that do not belong to the most common class

E = 1−max
k

(p̂mk) (2.9)

where p̂mk represents the proportion of training observations in the m-th region
that are from the k-th class

• Gini index: it is a measure of total variance across the K classes. It can be
seen as a measure of node purity, a small value indicates that a node contains
predominantly observations from a single class

G =
KØ

k=1
p̂mk(1− p̂mk) (2.10)

• Cross validation: it is a variation of the Gini index

D = −
KØ

k=1
p̂mk log(p̂mk) (2.11)

Bagging & Random Forest

Bagging (or Bootstrap aggregation) is a general-purpose procedure for reducing
the variance of a statistical learning method. Since deeper trees are characterized
by low bias and high variance, it is particularly useful and frequently used in the
context of decision trees. The concept is statistical: if we have n observations
with variance σ2, the mean value of the observation will have a lower variance σ2

2 .
So, averaging a set of observations reduces variance. Unfortunately, we do not
always have access to multiple datasets; to overcome this problem, to solution is
to bootstrap our training dataset, which means taking repeated samples from the
single set. After this, having B bootstrapped datasets, we train our method on
the b-th dataset, computing an outcome f̂ ∗b(x), which is a prediction of sample x.
Then, in case of regression, an average of all the prediction is computed:

f̂bag(x) = 1
B

BØ
b=1

f̂ b(x)
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While, in case of classification, a majority vote among all predictions is performed.
Random forest is an ensemble learning method for classification, regression and
other tasks that make use of a set of uncorrelated decisions trees to construct
a model during the training phase. In particular, it is based on the previously
described bootstrapping technique, but it also introduces also an improvement
that decorrelates the trees. As in bagging, we build a number of decision trees on
bootstrapped samples, which are constructed over all the predictors; conversely, in
this scenario a randomly subset of the features is selected, which cardinality is often
m ≈ √p, where p is the number of features in the dataset. The final prediction is
chosen through majority voting, as shown in Figure 2.5.

Figure 2.5: Bagging and random forest

Boosting & AdaBoost

Boosting is a general purpose method similar to bagging, but with the main dif-
ference that the approach is sequential: specifically, the concept is train weakly
classifier in a sequential way such that every model will correct the misclassification
of its predecessor. This approach allows to reduce variance taking into account the
bias too, developing a procedure based on the bias-variance trade-off.
AdaBoost is a meta-algorithm based on boosting method which often use de-
cision trees as weak classifiers: it takes as an input a distribution of data S =
{(x1, y1), ..., (xm, ym)}, where ∀i xi are the features, yi are the labels, m is the
cardinality of the set and the weak learners are functions such that yi = f(xi);
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in addition, the procedure consists in T rounds. At each round a distribution
of weights Dt is assigned to the data, and it is related to the learner; initially,
denoting wt

i as the weight for sample i at round t, all the weights are set equally,
but they are updated at each round such that the misclassified samples’ weights
are increased, while the correctly classified ones are decreased. In such way, the
algorithm forces the following learner to focus and fix the previously misclassified
data points. Visualization of the process is shown in Figure 2.6.

Figure 2.6: AdaBoost procedure

2.3.2 Support Vector Machines
Support Vector Machines are classification methods that aim to find the best hyper-
plane which can separate the data belonging to different classes, while maximizing
the margin, which is defined as the distance between the separating hyperplane
and the closest data points of any class, called support vectors.

Linear SVM

Linear SVM is sub-type of classifier that aims to find a linear separation among
the classes and it is based on the maximal marginal classifier, in which we can
distinguish hard margin classifier and soft margin classifier.
The first considers the hard margin problem, which is an optimization problem
that can be solved if the data is linearly separable; thus, having a dataset S =
{(x1, y1), ..., (xN , yN )} where ∀i xi ∈ Rd and yi = ±1, the algorithm aims to find a
linear hyperplane

w · x + b = 0
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or, in other terms
f(X) = β0 + β1X1 + ... + βpXp = 0

where X⃗ = xi, β0 = b and β⃗ = w, which is the unitary vector orthogonal to the
hyperplane. The hyperplane sought must be such that it maximises the margin M
and, at the same time, separate the data points belonging to different classes; this
last objective can be achieved by adding the condition that yif(xi) > 0, but since
we are in the hard margin setting, the formula must be greater than M . Having
these elements, we can formulate the optimization problem in its primal form:

max
β0,β1,...,βp

M

s.t.
pØ

j=1
β2

j = 1

yi(β0 + β1xi1 + ... + βpxip) ≥M

∀i = 1, ..., N

(2.12)

where N is the total number of samples in the training set. Figure 2.7 summarizes
the method.

Figure 2.7: Linear Support Vector Machine

Despite this, most of real life datasets have no points that are linearly separable,
so it is a very rare situation to correctly classify all the samples. In these cases, the
aim is to focus on the trade-off between maximizing the margin and minimizing the
misclassification rate: the algorithm can be adjusted by injecting in the marginal
classifier a sort of error "tolerance" for the margin zone. This paradigm is called
soft margin classifier. The tolerance for misclassification is inserted through some
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non-negative variables, defined as slack variables ξi.; they allow some errors inside
the margin and measure how much the constraint is violated. The optimization
problem is structured as

max
β0,β1,...,βp

M

s.t.
pØ

j=1
β2

j = 1

yi(β0 + β1xi1 + ... + βpxip) ≥M(1− ξi)
NØ

i=1
ξi ≤ C

ξi ≥ 0
∀i = 1, ..., N

(2.13)

C is defined as cost variable, it is an hyperparameter and regularization term, it
defines how much the classifier is keen to "pay" to allow samples in the margin area.
Higher values of C means higher slack variables, which consequently means that
the classifier will allow more misclassification points, increasing the variance and
the probability to overfit. On the other hand, if we decrease C, it will result in a
narrower margin (smaller M), increasing the bias.

Kernel function

It may happen that the data is non-linearly separable: this means that regardless
of error tolerance level, the classes cannot be separable through a linear hyperplane.
In this scenario, SVMs can be used also to generate non-linear functions that help
classifying the samples: in particular, the concept is to map the sample points into
a higher dimensional space where there is at least one hyperplane that can linearly
separate the classes. Figure 2.8 visualizes this concept.
Thus, having a dataset S = {(x1, y1), ..., (xN , yN)}, there exists a mapping func-
tion ϕ : X → Rn that maps the points creating the image sequence Ŝ =
{(ϕ(x1), y1), ..., (ϕ(xN), yN)}. Despite this, computing the transformation func-
tion may be computationally expensive, so a process called Kernel trick is adopted:
instead of calculating all data projections, only the inner products between them
are computed, using the Kernel function. To better understand this process, we
define an inner product as:

⟨xi, xj⟩ =
pØ

k=1
xikxjk (2.14)

On the other hand, the Kernel function is defined as

K(x, x′) = ⟨ϕ(x), ϕ(x′)⟩ (2.15)
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which is the inner product between the projection of two data samples. Using the
representer theorem, we can write w as

w =
NØ

j=1
αjyiϕ(xj) (2.16)

Consequently:
∥w∥2 = ⟨

Ø
i

αiϕ(xi),
Ø

j

αjϕ(xj)⟩

=
Ø
i,j

αiαj⟨ϕ(xi), ϕ(xj)⟩

=
Ø
i,j

αiαjK(xi, xj)

(2.17)

Thus, eventually the final function is dependent on Kernel functions; moreover,
most of the αi will be zero, since only the ones related to the support vectors will
have non-zero values. The function is solved by replacing the inner products with
a Kernel function: the type of separation depends on the chosen function.
Usually a Kernel function : X×X → R is symmetric and must obey to the Mercer’s
theorem, which defines that the matrix related to the Kernel function, called Gram
matrix, must be positive semidefinite

Gij = K(xi, xj)
The most popular Kernel function is the Radial Basis Function (RBF kernel):

K(xi, xj) = e−γ∥xi−xj∥2
(2.18)

2.3.3 Naive Bayes classifiers
Naive Bayes classifiers are a subset of ML models, intended as probabilistic
classifiers, which are based on the strong naive assumption of independence between
the features, so the presence of one of them does not affect the others. The classifier
is based on the Bayes rule:

P (A|B) = P (B|A)P (A)
P (B)

Having a dataset S = {(x1, y1), ..., (xN , yN)}, we can define X = {x1, ..., xN} and
y = {y1, ..., yN}; through these elements and exploiting the naive assumption of
independence we can rewrite the Bayes function as

P (y|X) = P (X|y)P (y)
P (X)

= P (x1|y)P (x2|y)...P (xN |y)P (y)
P (x1)P (x2)...P (xN)

(2.19)
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Figure 2.8: Kernel trick

Again, for the naive assumption, the denominator of the fraction can be overlooked
by introducing a proportionality relationship, since it will never change:

P (y|x1, x2, ..., xN) ∝ P (y)
NÙ

i=1
P (xi|y) (2.20)

After this, the classifier combines this with a decision rule, which usually it is to
pick the most probable hypothesis i.e. label. This approach is known as maximum
a posteriori decision rule, thus it needs to find the ŷ with maximum probability:

ŷ = arg max
y

P (y)
NÙ

i=1
P (xi|y) (2.21)

By assuming or estimating the feature distribution, called event model, one can
change the likelihood probability and replace it with a known distribution, de-
pending on the type of features (continuous or discrete). The most popular ones
are:

• Gaussian: the continuous values associated with each class are distributed
according to a normal distribution with µy as mean value and σ2

y as variance

P (xi|y) = 1ñ
2πσ2

y

exp(−(xi − µy)2

2σ2
y

• Bernoulli: it is a multivariate event model where features are independent
binary variables describing inputs; this model is popular for document classifi-
cation tasks.

P (xi|y) =
NÙ

i=1
pxi

iy(1− piy)xi
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2.3.4 K-Nearest Neighbor
K-nearest neighbor is a non-parametric ML algorithm used both in classification
and regression. The basic concept is to assign a label or class to a new data
point based on the majority voting of its K neighbors, where K is an user-defined
hyperparameter.
In order to return a proper classification, it needs:

• A set of stored records

• The distance metric, in order to compute the distances from the neighbors;
this measurement can be user-defined, but the most used one is the Euclidian
distance

• A value for K, which can affect the model: specifically, if it is too small, the
classifier is more sensitive to noise and outliers, if on the other hand it is too
large, the neighborhood may not be precise and include elements with other
labels

Keeping these elements in mind, and having a new unseen data point, the algorithm
can be decomposed in few steps:

1. Compute the distance between the new record and all the other ones

2. Identify the K nearest elements

3. Take the majority vote of class labels among the k-nearest neighbors

4. Weight the vote according to the distance d (with a weight factor of 1
d2 )

Despite its simplicity and its versatility, it is very sensitive to noise and outliers.
Moreover, it is computationally expensive due to the great amount of distances
to compute for every new record; that is why it usually works better with small
datasets.

2.3.5 Logistic Regression
Logistic regression is a generalized linear model used for classification tasks which is
graphically structured as an S-shaped function between 0 and 1. It is structured in
such way since it tries to assign a label by exploiting the probability that a sample
has of belonging to a certain class: it computes if the probability related to one
sample is greater or smaller than a certain threshold. This calculated probability
is a conditioned one, so defining

p(X) = P (Y = 1|X)
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as the conditional probability that x belongs to class 1 having seen the data x,
logistic regression identifies this probability as

p(X) = eβ0+β1X

1 + eβ0+β1X
(2.22)

and it is used to assign a label to a sample. Then, we make a logit transformation
of the previous equation obtaining

log p(X)
1− p(X) = β0 + β1X (2.23)

The final goal is to estimate β0 and β1 such that we can maximize the maximum
likelihood estimator of observing the given class on the observed sample:

L(β0, β1) =
Ù

i:yi=1
p(xi)

Ù
i:yi=0

(1− p(xi)) (2.24)

2.3.6 Linear Regression Models
Linear regression models are a subset of models used in regression paradigms and
often in classification ones too. The most basic type is the simple linear regression,
which tries to analyse the probabilistic relationship between a set of predictors and
their response. This model can be generalised through the following formula

Y = Xβ + ε (2.25)

where

• Y is the vector of response variable, so a vector of random variables with
dimensions n× 1.

• X is the matrix of row vectors xi containing the values of the p predictors,
which are called independent variables, so its dimensions are n× p.

• β is the vector of parameters, called regression coefficients, which are the goal
of the statistical inference; each element refers to a predictor, so it has p× 1
dimensions.

• ε is the set of non-observable random variables called errors: they take into
account the uncertainty, the dimensions are equal to Y .

The learning step involves the resolution of the problem by finding the most
appropriate vector of coefficient β such that the vector of error ε is at its minimum.
The most popular way to solve this optimization problem is called Ordinary least
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squares estimation: the solution consists in an optimization problem structured as
follows

β̂ = arg min
β
∥y −Xβ∥2 (2.26)

Solving the previous we obtain this estimated solution

β̂ = (XT X)−1XT y (2.27)

Despite the simple solution, it is based on the assumption that the features are
independent of both features and coefficients, but this is not always true in real
world problems. When features are correlated and dependent on each other, the
elements are in a situation called multicollinearity and it may give problems in
coefficient estimation and standard errors. In order to solve this situation, some
regularization techniques can be adopted, such as Ridge and Lasso. Since only the
first is adopted in this challenge, a brief explanation of it is provided.

Ridge

Ridge regression is a regularization technique injected in linear regression, in
particular it uses an L2 regularization term: it means that it adds an L2 penalty
to the optimization problem, obtaining

β̂ = arg min
β
∥y −Xβ∥2 + α

...β2
... (2.28)

where α is an hyperparameter that concerns the coefficient shrinkage: the more α
is near zero, the more similar the problem is to the ordinary least squares one; on
the other hand, if α tends to higher values or to +∞, then the coefficients tend to
zero, since the weight of the penalty is higher.
Ridge paradigm is popular also in classification problem: in particular, for binary
classifications, the labels are converted in yi = ±1 and then the regression task is
performed; the final class depends on the sign of the predicted value.

2.4 Introduction to Deep Learning
Deep Learning is a sub-field of Machine Learning that concerns artificial neural
networks; these networks uses multiple layer entities that progressively extract
high-level features from an input which can be an image, text, audio or other kind
of data.
The underlying element of NNs is the artificial neuron: since NNs were conceived as
inspired by the neural networks of the animal brain, i.e. interconnected entities that
exchange and process electrical signals, an NN is composed by artificial neurons
which are connected by edges and their signals are called weights. In order to better
understand the underlying logic, an explenation of the perceptron is provided.
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Perceptron

It is a basic classifier that artificial neurons use to elaborate inputs. The elements
that characterize a perceptron are:

• A set of inputs x = {x1, x2, ..., xn}: these are the independent variables

• A vector of weights w = {w1, w2, ..., wn}: they are the coefficients which
values are the goal of the optimization

• A bias b

• An activation function ϕ(·): this is particularly important since it is the one
function that allows the transmission of the signal, together with a threshold;
if the input has enough probability to happen, it will activate the neuron and
transmit the output. Different types of function can be used as activation
function.

• The output y, which for the i-th perceptron is defined as:

yi = ϕ(
nØ

j=1
wijxj + bi) (2.29)

Figure 2.9: Basic structure of a perceptron

The basic concept is structuring a model that performs a weighted linear
combination of its inputs and then applies an activation function: if the weighted
input activates it, then it has enough probability to fire the unit and pass the
output to the following perceptron. Figure 2.9 presents its basic structure. The
goal is to have a threshold that allows the important part of the input - the signal -
to pass through it and not the noise, and that makes it tolerant for small variations.
Since the activation function is a non-linear one that has also the task to normalize
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the output, its choice deeply affect the task performances and there are several
different functions that can be adopted. Specifically, keeping in mind that in the
following formulas x = q

j wijxj + bi, some options are:

• Linear function: it is the simplest function, since it returns exactly the value
of the input:

ϕ(x) = x

• Step function: it is the most popular function, if the linear combination
overcomes a certain threshold θ, than the output is 1, otherwise is 0

ϕ(x) =

0 if x < θ

1 if x ≥ θ

• Sigmoid function, structured as:

ϕ(x) = 1
1 + e−x

• Hyperbolic tangent function, defined as:

ϕ(x) = tanh(x) = ex − e−x

ex + e−x

• ReLU function (Rectified Linear Unit function), defined as:

ϕ(x) = max(0, x)

Figure 2.10 shows and summarizes the most popular functions.

2.4.1 Multilayer Perceptron
After presenting the basic element, the most popular and supporting structure is
the multilayer perceptron: it is often used in classification frameworks where data
is non-linearly separable. Regarding this structure, it is composed by layers, which
are set of neurons, they are usually fully connected, i.e. each output or hidden
unit takes as input all the outputs from the units at the previous layer. A single
structure may have different number of layers depending on the task and its level
of complexity: usually they are always composed by an input layer, which accept
the input and it consists in a number of neurons equal to the number of dataset
features, one or more hidden layers and a classification layer, which is the output
one and it has a number of neurons equal to the number of classes. It is common
to combine the output layer with a softmax layer, which is the layer in charge of

29



Preliminaries on Machine and Deep Learning

Figure 2.10: Examples of activation function

normalise the output in order to generate a distribution probability of the classes:
in this way the output of the NN can be interpreted as a vector of probabilities,
where the i-th element with highest probability is the class prediction.
It is noteworthy to say that there is a distinction between shallow and deep neural
networks based on the task performed by the hidden layers:

• Shallow architectures: they are networks composed by feature extractors
and a trainable classifier, which usually embeds a generic ML algorithm, so
features are not learned.

• Deep architectures: they are networks which usually consists in several
number of hidden layers and the ability to learn features through filters at
different levels of semantic abstraction depending on the layer level, structuring
in such a way a feature hierarchy.

The training phase of the MLP, or NN in general, consists in several steps, called
epochs; the number of steps is an user-defined hyperparameter that depends on
the task and on the performances. In each step there is the production of the
output and a way to make the network learn, which is performed through the loss
computing. In short we can identify two different phases:

• Feed-forwarding (or forward propagation): it is the process of computing
the output of a network given the input; so, the input is fed to the first layer
which consequently activates its nodes and the ones of the following layers
until it reaches an output, which is used to compute the loss.
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• Back-propagation: it is a chain rule-based process to compute the gradients
of the loss with respect to parameters in a multi-layer network, in order to
penalize the NN’s behaviour, since the network learns if it minimizes the loss
(plus some regularization terms) with respect to parameter over the training
set. In case of classification tasks, the loss is a Cross-entropy loss defined as a
negative log-likelihood

L(x, y; w) = −
Ø

j

yj log p(cj|x) (2.30)

where yj is the ground truth, w is the vector of parameters and p(cj|x) is
the conditional probability related to the cj class. In such way, the learning
optimization problem becomes

w∗ = arg min
θ

NØ
n=1

L(xn, yn; w) (2.31)

In order to solve this problem, the backpropagation technique is adopted,
where the gradient of the loss is computed and it is used to adjust the value of
the parameter (weight) vector through a Stochastic Gradiend Descent rule. To
better understand, pseudocode for backpropagation (Algorithm 1) is provided
in case of 4-layer neural network like the one in Figure 2.11.

Algorithm 1 Backpropagation
1: Initialize all the weights w to small random numbers
2: repeat
3: Input the training examples and compute output o
4: for each output unit k do
5: δk ← o2

k(1− o2
k)(t− o2

k) ▷ t is the target output
6: end for
7: for each hidden unit h do
8: δh ← o1

h(1− o1
h) q

k∈outputs
wh,kδk

9: end for
10: wij ← wij + ∆wij where ∆wij = ηδjx

j ▷ η is an user-defined
hyperparameter called Learning rate

11: until convergence

2.4.2 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are a type of deep NN with a specialized
connectivity structure and multiple stages of feature extraction, often used in
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Figure 2.11: Neural network with 2 hidden layers

computer vision and NLP tasks, since it allows to embed relationships among
elements at different positions; they are characterized by:

• Convolutional layers: as stated previously, feed-forward NNs usually have
fully connected layers, where every neuron takes as input every output from
the previous layer, and this implies a great amount of parameters for deep
networks; on the other hand, CNNs have convolutional layers, where every
neuron is in charge of a specific sub-window of data which "stride" through
the set. Subsequently, the layer apply the same activation passage as a Fully
connected layer and then it performs a dot-product between the extracted
sub-window and a matrix called kernel or filter, obtaining a value what will
compose the feature map.

• Pooling layer: after generating the convolutional output, a pooling layer may
be insterted, which has the task to divide the output in other sub-windows
and then collapse each of them in a single data point with a specific function
(usually averaging, sum or max), giving robustness to the network.

• Normalization: Usually the output of the convolutional layers is always
normalized through a normalization layer.

• Non-linearity functions: while in the fully connected layers a sigmoid or
a tanh function is applied to data, in convolutional layers there is always a
non-linear function, such as ReLU or Leaky ReLU, the latter defined as

ϕ(x) =

x if x > 0
0.01x otherwise
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These are used in order to solve problems like output saturation, collapsing
of subsequent linear Fully connected layers and the vanishing problem in the
backpropagation phase.

Figure 2.12 shows a simplified structured performance of the convolutional layer.

Figure 2.12: Actions of a convolutional layer

2.4.3 Recurrent Neural Networks
Recurrent Neural Networks are a class of deep neural networks that mainly works
with sequential data, thus data with temporal characteristics. Several different
types of RNNs can be identified depending on the number of inputs and outputs;
the most popular is the Vanilla RNN, which is a one-to-one network.
The main feature of the RNN is to elaborate the inputs while maintaining an
internal state which is recurrently elaborated with the input from the sequence at
the time unit t. In formula:

ht = fw(ht−1, xt) (2.32)

where

• ht is the current state at time t

• fw(·) is the activation function which also applies the product with the vector
parameter w

• ht−1 is the immediately previous state at time t− 1

• xt is the input vector at time t
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The training phase of an RNN is equal to the one related to MLP or CNN, but the
backpropagation phase is subject to a modification: the basic idea is to compute the
loss through the entire sequence and then backpropagate it, but this is a technique
that could be computationally expensive. So, the adopted solution is a division of
the input: the sequence is divided in chunks, thus the loss and the backpropagation
are computed and performed only for that specific chunk and the process is repeated
for each of them. This technique is called truncated backpropagation.
In some tasks RNNs are often combined with attention layer, in order to identify
the most important areas in an image or elements in a text through an attention
distribution. Evolution of the RNNs are the Long-Short Term Memories (LSTM):
they are specialized architectures characterized by two hidden state and 4 different
gates with specific function; they have been created in order to solve the vanishing
and exploding problems of parameters and to reduce the computational slowness of
RNNs.

2.5 Transformers
In the field of NLP and for specific tasks such as machine translation, sequence
modeling and text classification, research has always implemented complex versions
of NN, in particular Convolutional neural networks and Recurrent neural networks.
Despite they have been used as basic building blocks for state-of-art network, they
had several drawbacks e.g. the number of operation performed to relate signals
from two positions in the input sequence increases as the distance between positions
grows; because of this, learning the dependencies among elements becomes more
and more difficult for complex nets. Since then, state of art evolved due to the
implementation of encoders-decoders models: an encoder is a network (FC,
CNN, RNN, or other) that takes the input, and generates a feature vector as
output; these feature vector holds the information that represents the input. On
the other hand, the decoder is again a network (usually the same network structure
as encoder but in opposite orientation) that takes the feature vector, and gives the
best closest match to the actual input or intended output.
The current state of art for NLP is based on this model, since it is the basic
block for Transformers. A Transformer, first presented in the famous work [2],
is an encoder-decoder model based solely on attention mechanisms, specifically
the self-attention (also called intra-attention), which is "an attention mechanism
relating different positions of a single sequence in order to compute a representation
of the sequence", as stated in [2].
Figure 2.13 shows the model structure. As can be seen it is divided in two parts:
encoder and decoder. The general process involves two steps:

• The encoder maps the input sequence x = (x1, ..., xn) of symbols to a sequence
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of representations z = (z1, ..., zn)

• Having z, the decoder takes it as an input and generate an output sequence
y = (y1, ..., yn) of symbols one element at a time.

At each step the decoder part of the model is fed with the previously generated
symbols as additional input. On the other hand, for what concern the structure:

• The encoder consists in N = 6 identical layers, which each of them is in
turn composed by 2 sub-layers: the first is a multi-head attention layer, while
the second is a feed-forward fully connected layer. A layer normalization and
residual connections (i.e. blocks that allows data to reach latter parts of the
neural network by skipping some layers) are added to each sub-layer, so the
output of a single sub-layer can be summarized as

o(x) = LayerNorm(x + Sublayer(x))

• The decoder consists in N = 6 layers too, but in this case each layer is
composed by 3 sub-layers: one of them is a multi-head attention layer, the last
one is a feed-forward network, while the second in-between layer is another
attention layer which is fed with the true output (offset by one position)
and the encoder output. Moreover, it is modified with a masking technique
in order to prevent positions from attending to subsequent position: this
approach ensures that the prediction for a position i depends only on the
known information at positions less than i. All the 3 sub-layers are provided
with residual connections and normalization layers.

Multi-head attention layer

This layer and its approach is the basic block of the Transformer, so it is worth
to delve into how it works. The layer works with the attention function, which is
described as a mapping of a query and a set of key-value tuples to an output, which
are all extracted components of the input embedding. A simplified structure is
shown in Figure 2.14. This mapping process is performed by computing a weighted
sum of the values, where the weights in object are computed through a compatibility
measure between the key related to the value and the query.
In practical sense, the attention function is computed through the scaled dot-product
attention: it performs a dot-product between queries and keys, with a normalization
term that depends on the key vector dimension. The result of this multiplication
is then fed to a softmax function, which output is the weight related to the values.
The additional scaled factor is used to counteract a no-convergence situation: for
small dk values, the layer performs similarly to an additive attention layer, but
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Figure 2.13: Transformer structure [2]

for larger values, the following softmax function may push the multiplication into
region with small gradient values, which may provoke a slow convergence or no
convergence at all. In formula:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.33)

where Q, K and V are the matrices related respectively to queries, keys and
values; the first two have dk dimensions while the latter has dv dimensions. These
matrices are extracted from the input dmodel-dimensional embedding through a
linear projection layer with proper weight matrices.
Eventually this process is repeated in the multi-head layer: the heads allow the
model to jointly receive information from different representation sub-spaces at
different position. The outputs of the several heads, which in the original work
[2] are h = 8, are then concatenated and agaijn projected in a dmodel-dimensional
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space:
MultiHead(Q, K, V ) = Concat(head1, ..., headh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

(2.34)

The multi-layer attention layers are used in various parts of the model with different
inputs:

Figure 2.14: Scaled-dot product and Multi-head attention layer structures from
[2]

• In the "encoder-decoder attention layers": they are placed in the decoder,
but the queries are the outputs of the previous decoder layer, while keys and
values are received from the output of the encoder. This allows every position
of the decoder to elaborate all the position from the encoder, related to the
input sequence.

• In the encoder: these attention layers receive all the matrices from the previous
layer in the encoder itself.

• In the decoder: these layers are modified through a masking technique in
order to make accessible only the positions up to the one that the decoder
is currently elaborating; thus, queries, keys and values are received from the
right-shifted embedding (the first solution token related to the first decoder
step is always a padding one), and the masking is performed by setting to
−∞ all the values related to the illegal positions.
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Other elements

Since the Transformer was born as sequence transduction model, it uses learned
embeddings to convert the input and output tokens into dmodel-dimensional vectors;
on the other hand at the end of the decoder there are a linear transformation
layer and a softmax layer in order to obtain a distribution probability about the
most probable word prediction.
At the beginning of both encoder and decoder there is a positional encoding layer
which add its output to the input embedding: this additional process is performed
in order to inject the information about the relative and absolute position of the
tokens. The value for the i-th dimension is computed though sinusoidal functions,
which depend both on the position of the token and the dimension of the element
in positional array, in this way both types of positions are encoded:

PEpos,2i = sin pos
100002i/dmodel

PEpos,2i+1 = cos pos
100002i/dmodel

(2.35)

Figure 2.15 shows how the values of the positional encoding sinusoid functions can
be visualized on scale. Essentially, two tokens that are nearby in a sentence will
have similar values when the sinusoidal frequency is low and when it is high, but
their difference in position will be noticed at very higher values; on the other hand,
two distant tokens are more likely to have different positional encoding values at
much lower frequency values. In this way every element of the positional encoding
array is computer for each token and than added to the related embedding vector.

Figure 2.15: Positional embedding curves on scale
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2.5.1 BERT
As stated previously, until the Transformers, language neural networks have been
based on recurrent neural nets and LSTM, which despite reaching a decent accuracy,
they have still some drawbacks, such as their slowness in training (words are passed
and generated sequentially), and in particular, they are not truly bidirectional.
These problems have been solved thanks to the introduction of Transformers, which
are faster and deeply bidirectional, so they are able to understand the word and
sentence context both from left to right and from right to left. Moreover, both
of the core elements of the Transformer (encoder and decoder) have a general
understanding of semantics and language, even though they have different tasks in
the model.
The basic idea of the new NLP state-of-art, first introduced in [3], is to stack
multiple times together one of this core elements: in case of BERT (Bidirectional
Encoder Representations from Transformers), it is composed by several encoders
stacked together. This architecture falls into the field of the fine-tuned approach,
which divide the training phase into two sub-phases: a pre-training step that
introduces tasks and specific parameters, and a fine-tuning phase, where the model
is trained by fine-tuning all the pre-trained parameters with a downstream task.
Before delving into its phases, we summarize its structure. One can refer to
Figure 2.16 to better understand structures and tasks.

Figure 2.16: BERT structure from [3]

Model structure

The main feature of BERT is its unified structure even if it is trained on differ-
ent tasks, so the differences between the pre-trained architecture and the final
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downstream ones are minimal. As stated, its structure is derived from the encoder
model from the Transformer structure, thus it is composed by several multi-layer
bidirectional Transformers encoders. Depending on the number of Transformer
blocks, we have different BERT configurations: denoting the number of stacked
blocks as L, the hidden size as H and the number of attention heads as A, [3]
presents two different architectures:

• BERTBASE: L = 12, H = 768, A = 12, parameters = 110M

• BERTLARGE: L = 24, H = 1024, A = 16, parameters = 340M

For what concern the input/output representation structure, we recall that the
model must be trained over different tasks. Because of this, the input structure
has to represent different elements always composed by tokens: the input can
represent both a single sentence, but it can also represent a pair of sentences as a
token sequence interspersed with some special tokens that defines specific entities.
Its structure depends on the sub-task which the model is trained on. In order
to convert the word into tokens, [3] uses WordPiece embeddings with a 30,000
token vocabulary. The special tokens are the first of the sequence [CLS], which
is a special token used for the binary classification task with one sentence input,
while the second is a token that defines a separator [SEP], in order to distinguish
first and second sentence. Moreover, based on Figure 2.17, when it is codified
the input structure involves different types of embeddings: the first is the token
embedding, taken from the previously mentioned vocabulary, the second is the
sentence embedding, which is a set of labels that define the first from the second
sentence, and eventually, a positional embedding like in Transformer structure,
explained in [2].

Training

Since BERT is based on a fine-tuning approach, we already stated how the training
phase is sub-divided, we can differentiate two phases, which are also the reason why
the model is so easy and quick to train and use: pre-training phase and fine-tuning
phase.

Pre-training phase

BERT is trained through two unsupervised tasks simultaneously:

• Masked Language Model (MLM): nowadays language models can be
trained in a bidirectional way in order to make them able to understand the
context; despite this, this approach may allow each word to "see itself" and the
task of word prediction could become trivial. In order to avoid this problem,
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the solution adopted in BERT is to randomly mask a percentage of the token
representations through a token mask defined as [MASK]. The model will
have a vector representation of all the token words, then only the ones related
to the masked tokens will be fed to a softmax layer with a number of classes
equal to the number of tokens from the vocabulary; finally, the predicted
token is evaluated through a cross-entropy loss. So, its final task is to predict
the masked words instead of reconstruct the entire input. Nevertheless, this
approach creates a discrepancy between the two training phases, since the
masked tokens do not appear during fine-tuning. In order to attenuate this,
the mask may be replaced: the training data generator considers 15% of the
tokens at random, if a token is chosen, it is replaced with:

– The [MASK] token the 80% of the time
– A random token the 10% of the time
– The same unchanged token the last 10% of the time

Eventually, the original chosen token is used to evaluate the performance.

• Next Sentence Prediction (NSP): this task mainly concerns the relationship
between sentences, which needs to be recognized through a binary output.
The prediction task needs two sentences A and B as inputs and it has to
return the label IsNext if B is the actual sentence that follows A, the label
NotNext otherwise. The datasets analysed in [3] are composed from pairs
of sentences where 50% of the time B actually follows A, in the other 50%
of the cases B is a random sentence taken from the corpus. Specifically, the
corpuses are the BooksCorpus with 800M words and English Wikipedia (only
the unstructured text parts) with 2,500M words.

The introduction of these tasks with the related parameters reduce the need for a
heavily-engineered task-specific architectures, using a single paradigm that can be
fine-tuned on a specific objective.

Fine-tuning phase

The fine-tuning phase is more fast and less computationally expensive compared to
the previous pre-training part: for general tasks, usually involving a single sentence,
the model needs only a modification of the input and the output structures, which
have to fit the task properties, and then the parameters can be fine-tuned end-to-end.
When BERT is used for task involving more than one sentence, the self-attention
mechanism become extremely useful to elaborate in a single step a pair of sentences
and understand their relationship: this is done concatenating the text pair with
self-attention, performing in such a way a bidirectional cross attention between the
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sentences. Then, at output level, the token representation are fed to an appropriate
output layer, while the [CLS] token is fed to a softmax layer for classification.

Figure 2.17: BERT input embeddings from [3]

2.5.2 RoBERTa
RoBERTa (Robustly optimized BERT approach), presented in [4], is a replication
study of BERT pre-training involving the modification of hyperparameter tuning,
training set size and task approaches, since the authors found that the previous
Transformer-based model was significantly under-trained and they managed to
improve the performances on several tasks by changing some parameters and
paradigms. Moreover, the same paper [4] collected as much more data through five
different corpora which concern different domains and consist in different sizes.
The training procedure experimentation involves different aspects of the model:

• Masking

• Model input format and NSP task

• Mini-batches size and text encoding

Next sections will delve in each of these elements.

Masking

The original implementation of BERT and the modified approach differ in how
they mask the input tokens in order to pre-train the model for the MLM task: the
original architecture makes use of static masking, which means that it masks a
random token with a certain probability. To avoid the selection of the same masked
token for each instance in every epoch, the data is duplicated 10 times, so that
the sequences are masked in 10 different ways over the overall 40 epochs; but this
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implies that the same mask is seen 4 times by the model.
The previous approach is substituted by the dynamic masking, which implies the
generation of a masking pattern every time the model is fed with a sequence.
Results in [4] shows that the re-implementation performs slightly better than the
original one.

Model input format and NSP

In the original BERT configuration, the model is fed with two segments which
could have come with 50% probability from the same document, or otherwise from
different documents; moreover, they were concatenated through a separator token.
The authors of [4] tried different configurations of input structures and they studied
the effects of the Next Sentence Prediction loss, which is the one used to make the
model able to learn. The different experimented configurations are:

• Segment-pair with NSP loss: this is the original BERT configuration

• Sentence-pair with NSP loss: in this case each input consists in a pair of
natural sentences extracted from the same document or different documents;
the pair is usually shorter than 512 tokens in its entirety.

• Full sentences: the input is composed from full sentences sampled contiguously
from a single documents or more than one, but with the overall length at
most equal to 512 tokens. The sampling can be cross document: if during the
sampling process a document ends, the following sample is taken from the
immediately following document. In this case the NSP loss is removed.

• Doc-sentences: the input is similar to the full sentences case, but with the
exception that the sampling is not cross document boundaries.

The results show how extracting only natural sentences instead of segment worsens
performance, while the NSP loss removing increase it. Overall the Full sentence
paradigm is the best, but in the [4] experiments the full sentences approach is
chosen because it is less computationally expensive.

Batches size and text encoding

Usually the increment of mini-batch size improve optimization and task perfor-
mance and this is experimented also for BERT: the BERTBASE architecture is
originally trained with a batch size of 256 sequences for 1M steps; this is changed to
2K sequences with 125K steps, since it is equal in terms of computational burden.
For what concern the last point, the Byte-Pair Encoding (BPE) is an encoding
representation that falls between the character and the word-level, and it allows
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the representation of units in a large vocabulary from 10K to 100K sub-word units.
The original BERT implementation uses a character-level BPE vocabulary with
30K units. In [4] the byte level of the vocabulary is increased up to 50K sub-word
units; despite it is a feature that during experiment decreases the performance, the
authors believe that benefits outweigh the accuracy discrepancy.

Eventually this combination of modifications is applied to BERTLARGE archi-
tecture, obtaining RoBERTa, and the results are compared: the latter configuration
provides a great improvement with respect to the performances stated in [3] in
different fine-tuning settings.
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Chapter 3

General background

In this chapter we introduce the concept of "Fake news", a broad argument that
will be briefly described in order to understand the context and the motivation
of the tackled challenges. Since this phenomenon has its inevitable consequences,
we delve into the reasons why we should implement current technology to curb
them, along with the challenges the scientific community is currently facing and
the solutions they are implementing to solve them.

3.1 Definitions and motivations
The advent of the World Wide Web and in particular social networks has allowed
individuals to freely express their opinions, while at the same time allowing everyone
to access a nearly infinite range of information and sources: today, everyone has
the potential to open an online communication channel and reach a wide audience
as never before in history.
This has led on one hand to an exponential increase of freedom of expression,
allowing everyone to be a news medium, leading to the birth of so-called citizien
journalism. On the other hand, this allowed the rapid and wide dissemination
of misleading and often dangerous information that have serious repercussions
on both a social and political level. This had as a first consequence a trust
crisis, where society found itself helpless in front of the manipulation of a large
amount of information and secondly, the Post-Truth Era, where emotions have a
preponderant power over facts. Notable examples include the emergence of fake
news dissemination during the 2016 U.S. presidential campaign, during Brexit, and
in the aftermath of the COVID-19 pandemic health emergency.
Furthermore, [5] showed how misinformation persists at a social level, even after
it has been discredited: this social attitude is due to the causal inferences that
individuals make based on available information about a certain event. However, the
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same review also showed that it is possible to combat this behaviour by providing
a causal explanation for the unexplained outcome. The emergency is not only
worsened by individuals, but also by the media channels themselves, which often
pick up news from citizens (and netizens), acting as external agents that intensify
the echo of inaccurate information, acting complementarily to internal individuals,
as demonstrated in [6].
These conditions have increased the interest of the worldwide scientific community
in the topic of disinformation and in the ways to use modern technology to face
the problem. This is not the first time that technology has been implemented to
solve social problems: in fact, data from micro-blogging platforms have often been
exploited to implement algorithms and databases to address relevant issues. For
example, [7] shows how internet communication channels are particularly useful
during mass convergences and emergency events, as they are often filled with
information during these mass events; this data has been collected and can be
used to implement autonomous systems that induce collective awareness and other
humanitarian response efforts. Some solutions have been implemented even in
the medical field: another noteworthy case is that of [8], where they present the
implementation of a framework to predict possible influenza and H1N1 outbreaks
in advance through mentions of the diseases on Twitter.

3.1.1 Fake news
The "Fake news" term has been widely used for years in both journalistic and every-
day language to indicate a piece of news that is declared false by an authoritative
source. It was elected Word of the Year 2016 by Macquaire Dictionary1 and of the
Year 2017 as well by Collins English Dictionary2. Despite this, the term is still
extremely vague and it is used, especially in the media, as a buzzword to indicate
a current socio-political problem. [9] has defined this term very precisely; first,
the authors refer to the phenomenon as misinformation and they defined it as a
misleading information that has two fundamental characteristics:

• The information is false (Factuality)

• The information spreads deliberately to deceive and harm others (Harmfulness)

Often when people talk about misinformation they refer exclusively to the first
characteristic, the veracity of the information. However, we often overlook the most
serious consequence of misleading information, namely the danger and harmfulness
of its dissemination. The experiments presented here aim at limiting the spread of

1www.macquariedictionary.com.au/resources/view/word/of/the/year/2016
2blog.collinsdictionary.com/language-lovers/collins-2017-word-of-the-year-shortlist/

46

https://www.macquariedictionary.com.au/resources/view/word/of/the/year/2016
https://blog.collinsdictionary.com/language-lovers/collins-2017-word-of-the-year-shortlist/


General background

fake news considering also this second aspect.
Misinformation can be spread in a variety of modes such as text (e. g. viral claims,
tweets), images (e.g. memes, fauxtografics), video (e.g. deepfakes) and sound (e.g.
public speeches, political debates) in a multi-modal manner: each media channel
has features and metadata of various kinds that can be extracted and used to
predict their factuality or harmfulness, including features regarding the network in
which the information spreads and temporal characteristics. Figure 3.1 summarises
how multi-modal fake news is structured. Nevertheless, in the challenges presented
in this work, only textual channels will be considered. Regardless of the type of
media, [10] has shown that fake news spreads six times faster, deeper, and more
broadly than the true ones in all categories of information, with a specific stress on
political news.

Figure 3.1: Envision of misinformation multi-modality

3.1.2 Fact-checkers
The misuse of the media that has led to the spread of misinformation has led to
the emergence of a new profession: the Fact-checker. [11] presents an excellent defi-
nition of this new professional together with a survey of his/her work, in particular
the FC is defined as "a professional whose main aim is to examine claims using
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available evidence to assess their veracity". [12] presents a typical pipeline of FCs
in assessing the veracity of a claim, divided into four steps: selecting check-worthy
claims and news, constructing the appropriate questions to retrieve the correct
information, obtaining evidence (e.g. previously verified claims, general evidences)
from reliable sources and reaching a final verdict.
Given the widespread use of the web and social media, the fight against misin-
formation has become increasingly complex as time has passed in parallel with
the complexity of the internet. This has led to the creation of public and private
fact-checking organisations, some of the most relevant are FactCheck.org3, Snopes4,
PolitiFact5, FullFact6, Pagella Politica7, EUfactCheck8, Google Factcheck9 and
Hoaxy10.

Figure 3.2: Fact-checking pipeline

Despite the presence of a lot of organizations which fight against modern
misinformation is significant, their workers still have to face several issues about
fact checking. Most of the difficulties for FCs are time-related and related to
the resources that current organisations have. First of all, their activity is very
time-consuming and this characteristic is in contrast with the very nature of the
internet: as previously written, fake news spreads faster than normal news and
moreover, focusing on the more general field of viral content, [13] shows that half
of the spread of viral claims happens in the first ten minutes after their publication
on social media. Secondly, the role of the fact checker has to be free of any bias in
order to assess a claim or news item correctly: this, besides being time-consuming,
implies that each step of the pipeline cannot be implemented on all data from
the online world. Thus, many claims remain unchecked and/or unverified, as the
amount of text data is much higher than what can be processed by human FCs.

3www.factcheck.org/
4www.snopes.com
5www.politifact.com
6fullfact.org
7pagellapolitica.it
8eufactcheck.eu
9toolbox.google.com/factcheck/explorer

10hoaxy.osome.iu.edu
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This is where modern technology, and in particular AI, comes to the rescue: currently
there are algorithms that can implement certain steps in the pipeline autonomously
or can create a support system for human FCs (e.g. human-in-the-loop). However,
these systems are not infallible or problem-free: in fact, many claims are not simply
true or false, but their factuality may change or is highly dependent on the context
from which they were extracted. For this reason, an autonomous fact-checking
system is not considered as possible in the near future. To summarise, AI has to
prove firstly that it can offer suitable solutions to the problems faced by FCs, and
secondly its reliability as a support or as an autonomous system.

3.2 State of art
In this section we analyse the state-of-art solutions and projects that have been
developed in recent years for the different steps of the fact-checking pipeline,
together with the datasets often released together with them. In this regard, the
analysis is divided according to the task for which the project was developed, thus
differentiating the generated datasets which are freely provided to the scientific
community, from the application solutions that focus mainly on the various steps
of the pipeline described above: check-worthy claim and previously fact-checked
claim detection, evidence retrieval and veracity prediction. Nevertheless, many
of the projects mentioned cover more than one step in the pipeline, as they are
strongly interrelated.

Datasets

The most important datasets used by the scientific community in the field of NLP
and fake news detection are generally data collected by organisations working in the
field of fact-checking, such as the ones mentioned above: Snopes4, PolitiFacts5 and
FullFact6. The data collected by the aforementioned organizations is often used to
create new datasets merging them with other textual data: the first part of [14]
presents an example where sentences from political debates and politically oriented
tweets are merged with sets of verified claims and annotations from PolitiFacts and
Snopes.
Among the most important projects, it is worth mentioning the GDELT11 project
on which numerous studies and scientific papers have been based. GDELT is
an international project that aims to monitor and collect data and events from
news media from all over the world. Among the works based on the databases
they provide the previously mentioned [7] and [15] are worthy of note. In the

11https://www.gdeltproject.org/
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latter, a system for efficient in-memory analysis of data is presented, making use of
high-performance computing hardwares and analysing correlation among GDELT
data.
In other examples, data generation and/or its retrieval are integral elements of the
project: this is the case of CLEF CheckThat! projects [16], [17], [18], [19] which
focus mainly on the first two steps of the pipeline, but they also generate datasets
by web scraping from social networks, often in English and other languages such
as Arabic. In particular, [16] was the first edition in which a dataset corpus was
created for the aim of the work, using both the transcription of political debates
from U.S. presidential campaigns and the related annotations from FactCheck3.
The broad topic of datasets does not only include the free provision of data to
the scientific community, but also their collection and the consequent difficulties
encountered during this process, such as complex APIs and data scraping limitations.
For this reason, many projects include or focus exclusively on lowering these virtual
barriers to allow teams of scientists to legally access more data and information.
In this sense two examples are [20] and [21]: they present two different approaches
to retrieve a sufficient amount of data from the social network Twitter. The
first example is FACT (Framework for Analysis and Capture of Twitter Graphs)
framework: it is a scalable framework for capturing and analysing information
from Twitter, creating graphs of retrieved follower networks, posts and profiles in
a multi-experiment environment; in this scenario an experiment is described as
an user-defined code prescribing the data to be captured and the analysis to be
run. Each experiment interacts with the Twitter API through a Proxy in order
to retrieve the data, with a passive storage section where the structured graphs
are stored and with a third party analysis component. All these elements are
managed by an experiment wrapper. The second project is a technique designed
to improve the FACT framework, in particular the management of many data-
dependent experiments in a single closed research environment: the authors presents
a improved Proxy in order to overcome the Twitter API limitations; in this setting,
the Proxy server injects authentication information into the requests, managing all
the quotas (rate limits for data retrieval) through a centralised API endpoint.

Check-worthy claim detection

As explained above, FCs often find it difficult to check and verify claims that
proliferate online because of both the great amount of information that is generated,
even in short time windows, and the speed with which claims, especially the ones
derived by fake news, spread through the interconnected communities of the internet.
So, the algorithms that can detect which claims are more worth fact-checking respect
to others are of great help in this situation. In this sense, the problem is tackled as a
ranking one, where the AI solution has to return a rank of the analysed claims with
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the related check-worthiness score. This latter element is particularly important
in order to generate a human-in-the-loop system, since the FC must be the last
evaluator for the purpose of prioritise or filter claims.
The aforementioned CLEF CheckThat! projects include this first task in their
objectives, often reformulated differently with different and innovative solutions for
each edition. However, the basis of the task has always been constant, i.e. a list of
politically oriented sentences or tweets: the best approach in the 2018 edition [16]
constructed pseudo-discourses as a concatenation of all sentences and represented
them through embeddings, part-of-speech tags and semantic dependencies. In
2019 [17] the best model was a neural network that learned domain-specific word
embedding and syntactic dependencies whose output was fed to a LSTM classifier,
performing in such way an individual classification. Finally, in 2020 edition [18]
they used the state-of-art transformers model such as BERT [3] and RoBERTa
[4]. As a final mention, we mention the work of FullFact6 [22], which uses a BERT
model to classify phrases from posters of various political parties, based on the
type of claim e.g. a quantitative claim, a prediction about the future etc. This
allows FCs to identify the most important and worthwhile claims based on their
type.

Previously fact-checked claim detection

When fake news spreads, it often occurs in multiple channels and often undergoes
a process of paraphrased repetition. This is closely linked to the speed with which
they spread, which is greater than the speed with which normal news circulates,
as mentioned above via [10]. Due to their speed and the time the fact-checking
process requires, detection often comes too late: identifying whether a news item
has been previously checked can both decrease the time spent in the process
and at the same time anticipate the spread and the dangerous consequences of
misinformation. From a FC point of view, the huge amount of claims that spreads
online and on the newspapers increase the likelihood to find a claim that have
been already fact-checked from a trusted source or organization. While, from a
journalistic perspective, solving this task may be revolutionary since it can ensure
that journalists are able to put politicians on the spot in real time during speeches
and debates.
The world of research has only recently begun to take an interest in this issue,
with one of the first to address this problem being the aforementioned [14]; the
authors define the problem as follows: "Given a check-worthy input claim and a
set of verified claims, rank those verified claims, so that the claims that can help
verify the input claim, or a sub-claim in it, are ranked above any claim that is
not helpful to verify the input claim". Again, as the previous task, the problem is
tackled as a ranking one where an input claim is needed along with the previously
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checked textual dataset. As stated previously, the authors in [14] created and made
freely available to the scientific community two datasets consisting of tuples of
verified claim-sets. In addition to this, the input claims are strictly correlated to
an article (often it is extracted by it) with related features, composed by Title,
Verified claim and Article Body. Exploiting the similarity analysis between the
input claim and these elements (or a combination of them) they tried different
models and paradigms to retrieve a ranked list for each input. The models tested
are the BM25 [23],[24] and various variations of the BERT model [3]. The first is a
classic information retrieval approach: BM25 produces a rank through a similarity
score which is computed for each tuple based on exact matching between the words
in the query and the words in a target document, that in this case may be simply
the verified claim or a representation of it through the combination of two or
more of its features. On the other hand, the BERT models are used as a sentence
encoder to obtain a representation, then a cosine similarity between the claim and a
representation of the verified claim is computed to obtain a score. A third model is
taken into account by combining the previous two ranked list through a re-ranking
algorithm, which learns to rank using a pairwise loss.
The task was also included in the aforementioned CLEF project [18], where the best
solution in 2020 was a specific variation of the BERT model (top-ranked fine-tuned
RoBERTa).

Evidence retrieval

Although it is difficult for FCs to check the volume of claims available online,
evidence retrieval can be an excellent tool that can be used to facilitate the process.
This step is particularly useful when the evidence to be retrieved is found in very
long documents, audio-visual recordings or simply information in languages different
from the ones which the FCs are familiar with. Combining this tool with other
factors such as summaries or machine translation can create a supporting structure.
The aim of the task is to find external evidence in order to support or deny the
claim under examination. So, the inputs are the claim and a data collection of
evidences, meanwhile the process must produce a ranked list of the relevant data or
a specific piece of data from the collection: in this sense the task can be categorized
as a ranking problem.
Initial work in this direction has purely focused on a similarity calculation at
document and sentence level in order to retrieve the most relevant documents: [25]
applies this approach of a clickbait detection scenario, in particular exploiting a
TF-IDF matching between the title of the article and the body of the article itself
to identify its stance and determine whether the two elements are related to each
other.
This piece of work is also included in the multi-task project CLEF in 2019 and
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2020: in the first, [17] shows that the retrieval of evidences had to be applied on a
set of Web pages e.g. "Given a claim and a set of potentially relevant Web pages,
identify which of the pages are useful for assisting a human in fact-checking the
claim. [...]": the task has been solved using a textual entailment. The following
year the proposed solution shown in [18] concerns "ranking a set of verified claims,
so that those that verify the input claim (or a sub-claim in it) are ranked on top";
the most effective approach used a fine-tuned RoBERTa.
Finally, one of the most comprehensive works dealing with both the current task
and automatic verification is the FEVER project shown in [26]: in this work, the
authors focused on the extraction of unstructured evidence (e.g. sentences) from a
corpus containing the set of articles written on Wikipedia, in order to use them to
verify the veracity of claims. The evidence retrieval phase was developed using a
cosine similarity between TF-IDF encoding of the claim and the pages in order to
retrieve a ranked list of them and then the same score computation is performed to
obtain a ranked list of sentences from the previously selected articles. The evolution
of this project has resulted in the baseline system described in chapter 4.

Automated verification

This last task is the ultimate goal of fact-checking, i.e. to speed up the work of
the FCs in order to develop a system that can pre-emptively identify false claims.
As mentioned before, there are several obstacles to overcome: firstly, current
technologies do not allow us to develop a system that is able to identify false
claims with absolute accuracy; secondly, many claims can be true, false or partially
true/false, or misleading or decontextualised, which increases the complexity of task
automation. In addition to this, fact checking organisations need to be trustworthy
out of respect for their readers, and unfortunately AI solutions alone do not yet
enjoy this trust. Despite this and the imperfections of the applications, it is not
excluded that a support system for FCs could be developed, since it may be useful
in presenting evidences, reasoning and a possible conclusion regarding a claim
under examination.
In this sense, [11] differentiates between two types of approaches: explainable and
non-explainable. The former are also referred to as reference-based approaches and
are generally the most widely used, as they seek to generate a verdict on the claim
by exploiting a reliable resource, such as tables or knowledge graphs, or a database.
This approach also includes two techniques analysed in the previous paragraphs,
i.e. the search of previously checked claims as in [14], where the authors perform
a search within a dataset starting from a single claim, and fact-checking through
external databases, as occurs in [26], where following the retrieval of evidence, a
Transformer gives as output a label that defines whether the evidence supports,
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rejects or does not have enough information on the claim under examination. Non-
explainable approaches, on the other hand, make a prediction based on documents
retrieved from social media or the web in general by studying the content of the
claim and its dissemination. An example is presented by [27]: in fact FANG,
despite being a project focused on representation, manages to create an inductive
graph learning framework that effectively captures social structure and engagement
patterns; together with this, the representations learned by FANG manages to
generalise to the related task of predicting the factuality and veracity of a media.
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Chapter 4

FEVEROUS challenge

The FEVEROUS (Fact Extraction and VERification Over Unstructured and Struc-
tured information) challenge1 is a competition held in 2021 based on fact news
detection: the aim of the project is to to evaluate the ability of a system to verify
information using unstructured and structured evidence from Wikipedia. The
challenge is based on the project presented in [28]. The present chapter deals
with a brief description of the task objectives, then it presents the structures of
FEVEROUS dataset and corpus, followed by the explenation of the benchmark
and our solution, together with the results. Our work and results are presented in
[29].

4.1 Task description
In fake news detection through evidence retrieval, previous benchmarks and experi-
ments have mainly focused on textual data, so unstructured information, rather
than more structured formats such as table, lists, etc. This new project highlights
the importance of exploit structured data in NLP tasks and text classification field,
given also the increasing diffusion of datasets with structured information of this
kind. [28] presents a project in which a novel dataset and a baseline benchmark
are introduced, in order to tackle the fake claim detection task by selecting and re-
trieving unstructured and structured evidences from a corpus based on the English
Wikipedia. The ultimate objectives of the challenge are:

• Properly retrieve a set of evidences E from the Wikipedia corpus

• Assign a label y to the claim in exam: a record can be labelled as "Supports",
"Refutes" or "Not Enough Information" (or NEI), so y ∈ {Supports, Refutes, NEI}

1https://fever.ai/task.html
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Each claim may need one or more evidences to retrieve, which can be structured,
unstructured or both in the case of multiple information. The evidences needed for
a single claim could be recovered from a single Wikipedia page or multiple web
pages from the same corpus.

4.2 Dataset
Claims

The FEVEROUS dataset consists in 87,026 claims divided in training, development
and test set with a ratio respectively of 0.8, 0.1 and 0.1. As will be explained, each
group of three claims is generated by an highlight from a Wikipedia page: the
division is made in such a way as to assign each group to the same split. Since
there is an evident lack of NEI samples with respect to the other two classes, a
slight more balanced split has been performed for the test set, both regarding the
classes and the type of evidence needed to predict claim factuality (some claims
need only unstructured evidence, others only structured evidence, others a mix of
the previous two). The split is summarized in Table 4.1.

Labels # of claims Train Dev Test
Supports 49,115 (56%) 41,835 (50%) 3,908 (50%) 3,372 (43%)
Refutes 33,669 (39%) 27,215 (38%) 3,481 (44%) 2,973 (38%)
NEI 4,242 (5%) 2,241 (3%) 501 (6%) 1,500 (19%)
Total 87,026 71,291 7,890 7,845

Table 4.1: FEVEROUS dataset splitting per label

Moreover, a data augmentation concerning the NEI samples was performed: as
can be seen from Table 4.1 the dataset results unbalanced, only 5% of it are NEI,
so the authors of [28] sampled additional NEI instances for training by modifying
annotations that contain both structured and unstructured evidences and then
removing either a sentence or a structured information (table or list) from it.
The generation of the dataset was done through a group of annotators hired by
the authors themselves and it consists in three phases: generation, verification
and quality control. The annotators were provided with a dedicated interface
built on Wikipedia software called Mediawiki2 in order to facilitate the search
for information. As mentioned before, in the generation phase, each annotator
is provided with a highlight from a Wikipedia page, which can be a set of four

2www.mediawiki.org/wiki/MediaWiki
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sentences or structured information. For each provided highlight, they had the task
of writing three different claims with the following rules leading to three types:

• Claim using highlight only (Type I): the claim must be generated using
only information from the highlighted evidence and their context, possibly
combining information and characteristics from the four sentences/tables.

• Claim beyond the highlight (Type II): this type must be based on the
highlighted information and the ones beyond them. The claim can be generated
either by modifying the previous type by adding other information or creating
an unrelated claim which must still include insights from the highlights,
enforcing the information retrieval from other Wikipedia pages in half of the
cases.

• Mutated claim (Type III): this last type involves the manipulation of one of
the previous two claims using one of the proposed ‘mutations’, More specific,
Generalization, Negation, Paraphrasing or Entity substitution with probabilities
0.15, 0.15, 0.3, 0.1, 0.3.

Following the generation, the claims are subject to a second phase of verification
where annotators are asked to determine the label of the claim based on the evidence
they can find on Wikipedia. For supported claims, every part of the claim has to
be verified through evidences, while for refuted claims, they only need to refute at
least one part of it. A claim is considered unverifiable (NEI) if the information to
precisely label the data is not found or if the information found is insufficient.
Finally, the last phase of quality control is performed simultaneously to the previous
steps. This process consists in evaluating the quality of different factors that
contributed to the dataset creation process:

• Annotators: each claim were generated and verified by different annotators,
all US-English speaker or at least language-aware, which are in turn supervised
by other managers.

• Calibration: annotation is a complex process, so training and selecting
annotators are two phases performed together with a calibration procedure.

• Quality assurance: after the generation, each claim were checked by claim
verification annotators in order to identify and report the ones that do not
meet the claim requirements.

• Dataset artifact and biases: the association between several claim-related
variables are measured in order to avoid dataset artifacts and no co-occurrence
has been found between the verdicts and the claim words.
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Corpus

As stated previously, the corpus from which the algorithm have to retrieve the
pieces of evidence is a dataset of about 60GB based on the English Wikipedia
collection of pages. The evidences can be structured as:

• Sentences: the unstructured information are any given piece of text from
a Wikipedia page, considering also the sentences that refers to other pages
(hyperlinks are maintained)

• Tables: the structured information considered in the corpus have various
formats, they can be tables, lists and infoboxes, even with complex structures
such as multi-headers. A general structured evidence consists in a set of cells
denoted as cij where i and j corresponds to the row and column indices where
the cell is placed; a caption q is related to the cell, it is usually the content
of the cell, which can be a word, a numerical value or an entire sentence. To
retrieve the evidence, the algorithm has to extract the cell which the related
caption can help evaluate the claim, instead of extracting the table in its
entirety.

Figure 4.1: Evidence examples from [28]

Despite the concept of evidence allows the presence of hyperlinks (only to
other Wikipedia pages), it does not include the references that are common in the
Wikipedia site. Examples of claim-evidences pairs are shown in Figure 4.1.
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Each piece of evidence is also addressed with its context: this consists in principal
elements extracted from the Wikipedia page which the evidence belongs to; usually
these elements are the article’s title or the section title, including the sub-sections.
In the case of structured information such as tables or lists, the context includes
the nearest row and column headers; if the selected row/column is preceded by
another header, the latter is also included in the context too. This is a particularly
important piece of information, since it helps the model to understand relevant
features of the evidence, even though it is not considered as evidence by itself.

4.3 Baseline
Before presenting the main baseline, the authors of [28] experimented some simpler
models in order to compare the performances with the [26] ones: they developed
a claim-only baseline and claim-only evidence type model. The first baseline is a
model which is fed only with the claims and it aims to predict the verdict label:
this is implemented through a fine-tuned BERT with a classification layer on top
of it and the accuracy results similar as the one implemented in [26]. The second
architecture is instead a model which takes as input only the claim, but it has to
predict whenever the sentence requires a sentence, cells or a combination of both
as evidence types. They developed it in the same way as the previous model and it
reached a 62% of accuracy.
The real baseline model implemented for the main objective of the challenge is
shown in Figure 4.2 and it has a structure based on two elements:

• Retriever: this element has the task to retrieve evidences from the Wikipedia
corpus, firstly recovering pages and secondly retrieving specific elements such
as sentences and cells from the previously selected pages. The extraction of
the k pages is performed through an entity matching between the claim and
the Wikipedia page’s title. If it receive less than k pages, the rest of them is
retrieved through a TF-IDF matching between the first sentences of the article
and the claim. After obtaining the pages, the top l sentences and q tables
are retrieved via TF-IDF again. k, l and q are user-defined hyperparameters
which are set respectively to 5, 5, and 3 in the baseline model. Once the
evidences are retrieved, the q tables are linearized, concatenated to the input
claim and fed to a RoBERTa model, aiming to extract the most important
cells through a binary classification for each cell.

• Verdict predictor: the label prediction is performed through a RoBERTa
model with a linear layer on top of it. The input are the concatenation of
claim, sentence evidences and cells, enabling in such a way the cross attention
between the evidences and the input claim. It is worth noticing that every
context information is concatenated to the related evidence in this phase.
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To reproduce the results in [28], the model has been trained on a set of labelled
claims (71,291 samples) with their associated evidence.

Figure 4.2: Baseline model from [28]

Evaluation

The evaluation of the performance for this challenge was not based on the assigned
label only, but it must take into consideration also how well the algorithm retrieve
the correct evidences, since they are fundamental to provide a justification for the
final verdict. [28] introduces a new evaluation score, called FEVEROUS score, and
defined as

Score(y, ŷ,E, Ê) =

1 ∃E ∈ E : E ⊆ Ê ∧ ŷ = y

0 otherwise
(4.1)

where ŷ and Ê are the predicted label and evidence, E is the set of gold evidences.
Hence, the FEVEROUS score returns 1 if there is at least one predicted evidence
that belongs to the golden set and its label prediction is correct, otherwise it scores
0. On the other hand, the task needs also another score to measure the goodness
of evidence prediction: in this sense we measures precision, recall and F1 scores of
the evidence retrieval.

4.4 Method and proposed solution
Studying the architecture, since the verdict predictor part uses basically a state-
of-art model, we assumed that the part which we should focus on is the retrieval
part, since it is trivial to find the accurate evidence in order to enhance the label
prediction. Thus, the next step is to find a suitable method that can better
identify the correct Wikipedia pages and relative elements within it. We started
by analysing the novelties in the information retrieval (IR) community, where the
neural ranking models have been widely exploited.
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Our proposed solution is based on a standard IR pipeline, which consists in a
two-step ranking process where:

• Given a query, a large number of documents are retrieved from a corpus through
some standard mechanism: for this step we decided to keep the original method
by using a mix of entity and TF-IDF matching, while increasing the number
k of pages extracted from the Wikipedia corpus.

• The documents are scored and re-ranked using a non-standard and more
computationally expensive method: in this case, since the popularity of neural
re-rankers in the IR community, our choice was a pre-trained BERT which was
fine-tuned on a specific re-ranking task of the MS MARCO dataset, explained
in [30], and it has to minimize the binary cross-entropy loss

L = −
Ø

i∈I+

log(si)−
Ø

i∈I−

log(1− si) (4.2)

where I+ and I− are respectively the relevant and non-relevant pages.

In the representation of the experiments we will define the first step as BLpage(k)
(Baseline Page extractor) where k are the number of relevant extracted pages, while
the second model step will be defined as PR(m) (Page Ranker) where it takes the
k relevant pages extracted previously as input, it scores them and then it outputs
the top m pages in the ranked list.

4.5 Experiments and results
As stated previously, our model relies on:

• Entity and TF-IDF matching for extracting the pages

• A BERT encoder fine-tuned on the MS MARCO Passage Ranking task for
scoring, re-ranking and extracting the top pages

• a TF-IDF matching for extracting the sentences and the table evidences, while
a RoBERTa model is used for the cell evidences

• A final RoEBRTa to predict the verdict

The best model has the hyperparameters set as k = 150 and m = 5, where
in order to obtain a large number of document in the first instance, the model
extract 150 pages through the matching mechanism; these pages are scored and
re-ranked, then from these the top 5 pages are extracted. The remaining part of
the pipeline is kept equal to the baseline (l = 5, q = 3). This configuration is
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defined BLpage(150)→ PR(5)→ tf-idf(5,3). The results are shown in Table 4.2.
As made clear in the Github documentation3 of the project the baseline model has
been trained only partially on the training set, defined as BL(5,5,3) obtaining the
first line of results in Table 4.2. Our first experiment concerned the full training
of the baseline and its test on the development set (defined as BL(5,5,3)full: the
results are quite similar and no improvement is worth noticing. For what concern
our model, looking at Table 4.2, it can be seen an improvement between the
implemented model (written in bold) and the previous explained configuration:
this means that the injected re-ranker has increased the coverage of the documents
compared to the basic TF-IDF technique.
Despite our model implements more time-consuming paradigms, it returns more
accurate pages and evidences compared to the baseline model in most of the cases.
An example is the input claim "Family Guy is an American animated sitcom that
features five main voice actors [...] and has appeared in 22 (out of 349) episodes [...]
that has appeared in 90 episodes.": in this case it is trivial that the main evidences
should be in the Family Guy Wikipedia page. The baseline retrieval extracts pages
that are formally similar to the claim, but semantically incoherent, like Guy and
American, and in some cases even pages that have nothing in common with the
input. On the contrary, our model succeeds in retrieving the correct page in the
top 5, together with other related pages, such as List of Family Guy episodes. On
the other hand, there are also cases in which the basic baseline mechanism is more
precise: for the claim "Seven notable animated television series, including Super
Why!, a children’s educational show created by Angela C. Santomero and Samantha
Freeman Alpert, Phineas and Ferb and WordGirl, were released in September 2007."
the re-ranker retrieve related pages, such as other TV shows created from Angela
C. Santomero, but no meaningful page is shown in the top 5. However, the baseline
can identify Phineas and Ferb as important page, but it fails in predicting the
correct elements.
Nevertheless, despite these drawbacks, our team (EURECOM Fever) managed to
reach the fifth position on the final leaderboard with a score of 0.2001 (measured
with FEVEROUS score) on the test set, above the benchmark set by the original
baseline. The final competition ranking can be seen on the FEVER shared task
website4. Our code is freely accessible on GitLab5.

3Code source: github.com/Raldir/FEVEROUS
4FEVER website: fever.ai/task.html
5Code: gitlab.eurecom.fr/saeedm1/eurecom-fever

62

https://github.com/Raldir/FEVEROUS
https://fever.ai/task.html
https://gitlab.eurecom.fr/saeedm1/eurecom-fever


FEVEROUS challenge

FS LA EP ER E-F1
BL(5,5,3) 0.19 0.54 0.12 0.29 0.17

BL(5,5,3)full 0.186 0.533 0.119 0.289 0.168
BLpage(50)→ PR(5)→ tfidf(5,3) 0.129 0.468 0.120 0.201 0.151
BLpage(150)→ PR(5)→ tfidf(5,3) 0.218 0.548 0.145 0.339 0.203

BLpage(150)→ PR(5)→ BM25(5,3) 0.205 0.550 0.127 0.321 0.182
BLpage(150)→ PR(5)→ SR(5)→ tfidftable(3) 0.184 0.501 0.130 0.283 0.179

Table 4.2: Results on the dev set showing the FEVEROUS Score (FS), the Label
Accuracy (LA), the Evidence Precision (EP), the Evidence Recall (ER), and the
Evidence F1-score (E-F1) of the different system variants.

Other attempts

We have attempted other configurations shown in Table 4.2 in order to enhance
the performance of our model:

• We tried to reduce the number k of extracted paged by the re-ranker to 50,
but this experiment worsened the score. This model is defined BLpage(50)→
PR(5)→ tf-idf(5,3).

• After noticing the great result with the page re-ranker, we tried to apply
this configuration in order to extract better sentence evidences, exploiting
another BERT-based encoder. However, despite the previous scores, this
implementation did not return better results compared to the ones obtained
with the TF-IDF matching. This model is shown in the table as BLpage(150)→
PR(5)→ SR(5)→ tf-idftable(5,3).

• Regarding the retrieval of sentences and tables, we experimented with the
Okapi BM25 scoring function [23], which is a ranking function based on the
probabilistic retrieval framework. It is in great use in IR community, but in this
case it did not return better result than TF-IDF matching function, probably
because of the pre-processing, since we did not explore many pre-processing
functions.

To participate to the challenge, we used the best model in Table 4.2. However, we
continued to further experiment and improve our configuration after the deadline,
by changing parameters in order to reach better results at least on the development
set. Since we noticed that the increase of the hyperparameter k led to better
results, we tried different amount of pages to select. The results can be seen in
Table 4.3: as the number of pages increases, the performances are better as well,
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FS LA EP ER E-F1
BLpage(150)→ PR(5)→ tfidf(5,3) 0.218 0.548 0.145 0.339 0.203
BLpage(200)→ PR(5)→ tfidf(5,3) 0.216 0.543 0.146 0.338 0.204
BLpage(300)→ PR(5)→ tfidf(5,3) 0.224 0.545 0.147 0.349 0.207
BLpage(500)→ PR(5)→ tfidf(5,3) 0.219 0.541 0.147 0.344 0.206

Table 4.3: Results on the dev set showing the FEVEROUS Score (FS), the Label
Accuracy (LA), the Evidence Precision (EP), the Evidence Recall (ER), and the
Evidence F1-score (E-F1) of the different models changing the number of retrieved
pages by the re-ranker.

until it reach a peak at 300 pages and the results are worsened if the number keeps
growing. While the performances are more variable, the process becomes more
time-consuming proportionally to the number of pages to be selected. Eventually,
we reach a model that perform slightly better on the development set.
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Chapter 5

MediaEval 2021 challenge

The MediaEval Multimedia Evaluation benchmark1 is an organization that offers
tasks and workshops which are related to multimedia retrieval, analysis, and
exploration. In this chapter we delve into a specific challenge held during the 2021
edition called "FakeNews: Corona Virus and Conspiracies Multimedia Analysis
Task"2. We already analysed how the digital wildfires provoked by fake news
spreading can be harmful for public consciousness and can imply severe real-world
implication: focal points for the spreading are the social networks, such as Twitter,
Facebook, Reddit etc. The Covid-19 pandemic has affected the life of all the
population worldwide and it has been a central topic in news media and in public
debates both in real life and on the Internet. Thus, this has provoked consequently a
great spread of misinformation in parallel, mostly due to the fact that the scientific
community did not have all the information and details about the virus and the
pandemic situation. This challenge aims at the development of methods capable
of detecting such misinformation on tweets. Online misinformation provides very
different narratives when it comes to Covid-19: for this specific task, the aim is
focused on the pandemic-related conspiracy theories. Regarding this challenge, our
work is presented in [31].

5.1 Task description
The task concern a dataset of tweets related to Covid-19 pandemic and conspiracy
theories. It is divided in three sub-taks: the first sub-task concerns text-based fake
news detection, the second sub-task aims to conspiracy theory-related detection,

1Website: multimediaeval.github.io/
2multimediaeval.github.io/editions/2021/tasks/fakenews/

65

https://multimediaeval.github.io/
https://multimediaeval.github.io/editions/2021/tasks/fakenews/


MediaEval 2021 challenge

while the third sub-task is a combination of the previous topic and conspiracy
detection. The theories taken into consideration are usually the ones considering
some reprehensible action committed by the governments, such as intentional
spreading of the disease, or lying about the nature of the virus. Specifically, we
can describe the sub-tasks as:

• Text-Based Misinformation Detection: the first sub-task concerns the
detection of the topic-related discussion in a dataset composed by tweet text
blocks in English related to Covid-19. In this case, a single tweet can promote
or discuss at least one conspiracy theory; the third label is that the text does
not concern any Covid-19-related topic. In the situation in which the tweet
discusses a theory but supports another, the label refers to the "stronger"
label ("support" is stronger than "discuss", which in turn is heavier than "not
concerning"). The participants have to implement a multi-class classifier with
three output labels.

• Text-Based Conspiracy Theories Recognition: in this sub-task the
labels of every single tweet from the dataset are 9, each of them refers to
a specific conspiracy theory. The participants are encouraged to create a
multi-label classifier which can identify which of the conspiracy theories the
tweet is focused on (or if it does not concern any theory at all).

• Text-Based Combined Misinformation and Conspiracies Detection:
this last sub-task is a mix of the previous two steps; specifically, the classifier
that the participants have to implement is a multi-class multi-label type. The
model has to identify which of the conspiracy theories the tweet is about and
moreover if the tweet is promoting or just discussing the theory (or theories)
in exam.

In the testing phase, where the test set become available, the challenge is structured
in 5 runs for each sub-task:

• First required run: it must concern an automated tweet content classification
model based only on the provided text tweet dataset.

• Second optional run: this run requires an automated tweet content classifi-
cation model that can be based on any publicly available pre-trained linguistic
and NLP architecture which can re-trained or fine-tuned on the provided
dataset, but any other external training data is prohibited for use.

• From third to fifth optional run: for these last runs the participants can
use an automated tweet content classification model that can be based on
any pre-trained linguistic and NLP architecture and/or on any external data
scraped from any external sources.
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Eventually, the evaluation is performed using the MCC (Matthews Correlation
Coefficient), defined in Equation 2.8. In the first sub-task it is computed in its
multi-class configuration; on the other hand, for the second and third sub-tasks, it
is computed individually for each label and then the average of the values defines
the measure. A detailed description of the task can be found in [32].

5.2 Dataset
The provided dataset contains 1554 tweets in English mentioning Coronavirus and
various conspiracy theories. The texts are characterized by various long sentences
with neutral, positive, negative, and sarcastic phrasing. The texts have been
collected in a period of time from January 2020 to July 2021 by searching on
Twitter Corona-virus-related keywords and hashtags, such as "corona", "COVID-
19", etc. followed by another search related to conspiracy theories. The ground
truth was created by a team of students and researchers using an overlapping
annotation process. The dataset is not balanced with respect to the number of
samples of conspiracy-promoting and other tweets, nor to the number of tweets
per each conspiracy class.
The dataset is divided in three parts, one per sub-tasks, but they all share the same
texts for the tweets and the related tweets IDs. The labels change depending on
the sub-task which they refer to: the first two fields of the datasets are the tweet
ID and the related tweet text, while for the first sub-task these fields are followed
by a class identifier value which can have three values:

• 3 = Promotes/Supports conspiracy: this class label is assigned to all those
tweets promotes, supports, or insinuate some relationship between Covid-19
and various conspiracies, such as the 5G connection caused the virus pandemic,
the intentional release of the virus from government for various purposes like
a population reduction, the idea that the pandemic is completely made up
and/or a hoax, etc.

• 2 = Discusses conspiracy: this class contains all the tweets that do not
support the conspiracies, but they mention the existing of these connections,
or deny them, or they discuss them in a clearly sarcastic manner.

• 2 = Non-conspiracy: this class covers all the tweets that are not labelled with
the previous two scenarios, so generally those tweets that do not mention Covid-
19 or they mention the pandemic situation without any hint on conspiracies.

The dataset related to the second sub-task instead contains 9 different binary flags
that report the presence (1) or the absence (0) of that specific conspiracy theory
they relate to in an individual tweet. The conspiracy theories they identify are
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Suppressed Cures, Behaviour and Mind Control, Antivax, Fake Virus, Intentional
Pandemic, Harmful Radiation, Population Reduction, New World Order, and
Satanism. The final sub-task is related to the dataset that have, together with
the ID and the text, 9 different class labels: each class labels i defines if the tweet
promotes (3), discusses (2) or it is not about (1) that specific i-th conspiracy. The
theories are the same mentioned before.
Figure 5.1, Figure 5.2 and Figure 5.3 show an approximate distribution of class
and labels, stressing the unbalancing. The dataset is fully explained in [33].

Figure 5.1: Class distribution for sub-task 1

5.3 Method and proposed solutions

Since this challenge did not provide any baseline or starting point, in order to
tackle the task, we proceeded to develop three different kind of approaches. The
first uses a combination of TF-IDF encoding and Machine Learning algorithms.
The second experimented with language model models which were fine-tuned on
NLI datasets and combined with some metadata scraped from Wikipedia. The
third approach aimed to fine-tuning transformer-based models.
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Figure 5.2: Label distribution for sub-task 2

Figure 5.3: Class label distribution for sub-task 3

5.3.1 TF-IDF-based approach
TF-IDF is one of the first technique we experimented with, because, despite
its simplicity, it allows us to have a decent baseline to compare more complex
configuration. Moreover, it has been very useful during the first required runs of
the challenge, where no pre-trained language models, nor any external data outside
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the textual one extracted from the tweets were allowed.
Firstly, we elaborate the text of the tweets through a pre-processing step which
concerned tokenization, capitalization and stop word removal. Secondly, the plain
text has been fed to a TF-IDF vectorization and this method allowed us to obtain
a sparse TF-IDF feature matrix which was fed to different supervised Machine
Learning methods. Several algorithms have been tested: Decision Tree, Naive Bayes
classifier (Gaussian and Bernoullian), AdaBoost, Ridge and Logistic Regression.
In the case of Task 1, these were used in a multi-class asset. In the multi-label
case of Task 2, we used a multi-output classifier with the different methods listed
above as estimators: in this scenario the algorithm instantiates a binary model
estimator for each conspiracy theory and train the models with the same training
data, interpreting the problem as a binary one. Finally, in the Task 3, only the
strictly tree-based algorithms (Decision Tree, Random Forest and AdaBoost) were
tested, since they are the only ones to allow a multi-label and multi-class output
at the same time.

5.3.2 NLI-based approach

This approach relies on leveraging pre-trained language models that are then fine-
tuned on databases based on the task of NLI. The NLI task has been explained in
section 2.1. These type of models are trained to project text records that share
similar features in the same area in their embedding space, so we expected to
identify tweets that focus on the same topic/conspiracy theory in the same space
using the common embedding space. The model used for these experiments is a
specific type of NLI pre-trained sentence transformer-based BERT, which allows
the computation of these embeddings. This model is deeply described in [34].
In the first task, the idea is to identify the stance of each tweet, which can support,
discuss or being neutral about conspiracies, embedding the records in the same
space: in this scenario, the tweets with similar stances should lay in the same
sub-space. Thus, the first step is to generate the text embeddings, and then classify
the different data points through a K-nearest neighbor. In the second task, the
process is really similar, but is geared towards the differentiation of conspiracy
theories, rather than stances. Moreover, we pre-trained the models by feeding them
with definition of the conspiracy theories found on Wikipedia: thus, the model
identify a tweet related a certain conspiracy if it predict an entailment between
the Wikipedia definition (premise) and the tweet text (hypothesis). A mix of the
previous processes is used in the third task: annotated tweets related to a specific
conspiracy are used as a premise instead of a definition of the conspiracy, then the
model classify them if an entailment is found.
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5.3.3 Transformer-based approach
As stated multiple times previously, the Transformer-based models are the state-of-
art for NLP task like the one in exam. In our scenario, we decided to try several
experiments with a RoBERTaLarge and a CT-BERT (Covid-Twitter-BERT). This
last Transformer is presented in [35], a BERT-based transformer which has been
pre-trained on a large corpus of Twitter messages on the topic of COVID-19. It has
shown remarkable improvements in Covid-19-related task compared to BERTLarge.
Before feeding the tweets into these models, we perform a basic pre-processing
technique: we replaced all emojis with their textual meaning, and removed all
the ’#’ characters (so that the hashtags remain in the text as simple words),
since hashtags are often used also as part of sentences with their semantic and
contextual meaning. The first task is approached as a multi-class task, so each
transformer-based model is fine-tuned on the training set with a Cross-entropy
loss function. The second task is performed in the same way experimenting with
the models, but as a multi-label task using a weighted Binary Cross Entropy loss
function. The weights are factors which depends on the inverse frequency of each
class or sub-class they are related to.
Eventually, the third task can be approached with different strategies. The first we
tried concerned the mixing of the results of the previous two tasks: we labelled the
tweets with the level detected in the first task for the conspiracy theories detected
in the second one. Despite its simplicity and its promising results, this technique
fails to recognize tweets that supports a theory, but discusses another one. The
second strategy is to train the two transformers in exam directly on the task: these
models are fine tuned for nine different multi-class classification problems with
nine Cross Entropy loss functions, one for each conspiracy theory. The final loss is
the weighted sum of the nine losses with weight factors similar to the previously
described ones. This approach simplify also the previous two task, since they are
specific cases of the last one. Figure 5.4 shows an illustration of this configuration.

5.4 Experiments and results
Results are presented in Table 5.1: the values for the evaluation set are available
for all the experimented models; on the other hand we had to select few models
to be tested on the test set, due to the limited number of attempts available, as
explained in section 5.1.
The dataset has been splitted in training and test set with a proportionality of
0.8 and 0.2 respectively. The evaluation has been made with a stratified 5-fold
validation with a 0.2 of the training set used as validation set. As expected, the
Transformers obtained the most competitive results. Specifically, the RoBERTa
performed worse than the CT-BERT model, surely because it has been pre-trained
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Figure 5.4: Illustration of the models for Task 3

on dataset that uses a strong Covid-19-related vocabulary, such as the dataset in
exam in this challenge, that is hardly understood from the other model.
For what concern the TF-IDF approach, it gives decent baselines for all the three
tasks: in the first a linear Support Vector Machine model gave the best performances
with 0.461 MCC score; while for the other two tasks, the tree-based performed
better, Decision tree in particular, with 0.565 and 0.497 MCC score. The linear and
tree-based models worked better in this case probably because of the sparsity of
the generated TF-IDF matrix. Unfortunately, the NLI approach did not measure
up to the fully-trained models, but it may be an interesting alternative to explore
in the case where annotated data is lacking: a few tweets per class/label or just
the definition may give interesting results.
It is worth mentioning that all our models performed slightly worse in the most
present label in task 2 and 3, which is Intentional pandemic, while they performed
better with other labels such as Harmful influence and New World Order. This is
probably due to the more specific vocabulary that these tweets tend to have: e.g.
they mention the words "5G" and "NWO" several times. As a last experiment, we
tried to create ensambling models by mixing the results of the Transformer-based
models through majority voting. The results have increased significantly on the
evaluation set, but they did not reflected the same improvement in the test set too.
With these results we were able to win the challenge by placing first. The code is
freely available on Github3.

3Code: github.com/D2KLab/mediaeval-fakenews
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Models Evaluation MCC Test MCC

Ta
sk

1

TFIDF (SVC) 0.461 0.498
NLI transformer 0.426 X

RoBERTa 0.624 X
CT-BERT 0.676 X

RoBERTa-task3 0.667 X
CT-BERT-task3 0.700 0.720

Ensembling Models 0.716 0.733

Ta
sk

2

TFIDF (DT + Multi output clf) 0.585 0.317
NLI Wikipedia 0.310 X

RoBERTa 0.731 X
CT-BERT 0.780 0.774

RoBERTa-task3 0.734 X
CT-BERT-task3 0.743 0.719

Ensembling Models 0.781 0.768

Ta
sk

3

TFIDF (DT) 0.497 0.186
RoBERTa-task1+task2 0.675 X
CT-BERT-task1+task2 0.717 0.775

RoBERTa-task3 0.690 X
CT-BERT-task3 0.706 0.713

Ensembling Models 0.726 0.676

Table 5.1: MCC results for each task, based on stratified 5-fold cross-validation
set and then on the test set
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Conclusion

In this work we faced two different challenges concerning fake news detection. After
a brief description of technical and social background, we implemented different
solutions for the presented tasks. The implemented models allowed us to place
fifth in the first challenge and first in the second one: these results reflect how
language models can help create an excellent tool that may not replace the human
work, but instead it can create an helpful environment to the human worker i.e. a
human-in-the-loop tool, that can lighten the burden of fact-checking work, since it
is an increasingly heavy workload due to the growing flow of information on the
Internet.
For what concern our solution, in the first challenge we had a baseline model to
start with: this was based on a mix of TF-IDF and entity matching, which works
in parallel with transformer-based models that elaborated both structured and
unstructured information. Our solution improved the previous baseline by adding
a transformer-based neural re-ranker that was able to extract more accurately
the Wikipedia pages, then another mechanism extracted the evidences from them.
We managed to further improve the model by changing the number of selected
top k pages, but its increase provoked a more time-consuming process. On the
other hand, in the second project we experimented with different implementations:
from TF-IDF encoding, resulting in large sparse matrices, combined with various
supervised models, to state-of-art BERT-based models fine-tuned to specific datasets
concerning the Covid-19 context.
This work has the main aim to give to the reader a glimpse of how the Natural
Language models and the current state-of-art can help curb a social-political
problem that human work hardly manage. Obviously these are not the only
solutions one can implement: scientific community in data science and NLP field
is continuing to grow while creating more and more efficient and complex models.
From a transformer-based point of view, there is a continuous study on how (and
why) present transformers work, as explained in [36]. Other studies focus on how
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the data should be stored and how to interact with it: some examples are the Neural
Databases, presented by [37], which are modular architecture capable of taking as
input complex database-style queries, and making the information retrieval process
more accurate and fast. On the other hand, Knowledge Base Graphs are deeply
studied as data storing technique, since this type of data configuration can be
mixed with state-of-art NLP technologies to improve performances in a wide range
of fields.
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