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Abstract 
Ocean energy is an abundant but relatively unexploited renewable energy source which has the 

potential to become one of the key players in the upscaling of global renewable energy production 

for the near future. 

Despite this huge potential, ocean energy technology and especially wave energy technology is still 

considered to be immature compared to other renewable energy technologies. 

One of the main goals to be achieved is to reduce the levelized cost of electricity (LCOE) coming 

from wave energy converter devices in order to make them economically competitive with respect 

to other more established renewable energy sources. To achieve this, one of the main areas of focus 

in recent years has been to develop and optimise control strategies to improve the efficiency of the 

energy conversion process.  

The main challenges that wave energy converters (WECs) face, stem from the irregular reciprocating 

nature of the energy source, making the design of the control strategy, the WEC itself, and any 

modelling of the WEC-wave interaction extremely challenging.  

A large portion of the most popular control strategies adopted on wave energy converters rely on a 

model-based control strategy to determine the optimal control action to be taken. The control action 

is usually optimised over a predefined range of wave conditions which can be grouped within a single 

statistical description of the current sea state by using parameters such as the significant wave height 

Hs and the wave energy period Te. Although these control strategies may give good results, they are 

inevitably affected by modelling errors and uncertainties, together with a control which is not 

optimised on a wave-by-wave basis. 

In this thesis, a model free control strategy for an array of heaving point absorbers is explored.                 

A model free control approach was chosen since it allows to neglect the device model and wave 

interaction modelling, which in turn allows to avoid modelling errors and to directly develop the 

control strategy using data obtained while at sea. 

The proposed strategy involves an initial online optimisation of the control parameters of a reactive 

control law using genetic algorithms to map the point absorber array to a population of individuals 

within a metaheuristic optimization framework. This allows the single point absorbers to collaborate 

and learn from one another to reach the common goal of finding the optimal control parameters for 

each discrete sea state encountered. 

After the initial sea-state-based model free collaborative optimisation has reached satisfactory 

results, a secondary mechanism based on machine learning through neural networks is used to try 

and learn interdependencies between the discrete sea states and the relative optimal control 

parameters to achieve a continuous control, no longer dependant on a statistical description of the 

sea state but based on direct force measurements on the heaving point absorbers. In this framework, 
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the data collected during the initial optimization using genetic algorithms is then used to train the 

neural networks so to output a continuous control command. 

Preliminary simulation results show that an array of point absorbers using a genetic algorithm based 

collaborative optimisation is able to achieve control parameters close to the theoretical optimal ones 

within only a few days from deployment, while the neural networks show comparable performance, 

indicating that with further tweaking of the learning procedure, superior results may be obtainable. 
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1 – Wave energy and wave energy converters, an introduction 
 

1.1 Introduction 

As energy demands grow, due mainly to an increasing population and an increasing demand for 

electrical energy to power an ever-increasing number of devices, new energy resources must be 

exploited if such energy demands need to be met.  

Predictions suggest that most of the population growth will be in non-OECD countries, i.e., presently 

under-developed and with opportunities to build new energy infrastructures. This is thus a great 

opportunity to create new energy infrastructures which heavily rely on renewable energy sources to 

supply the required energy. 

With an increasing pressure by worldwide governments to reduce greenhouse gas emissions and to 

cut back on fossil fuels, the energy sector, which is responsible for two thirds of the global 

greenhouse gas emissions [1], needs to transition to renewable energy sources to help combat climate 

change. 

Focusing on the energy sector may be one of the easiest ways to enforce the required changes. Other 

sectors such as transport and household heating will be harder to tackle since the pollution sources 

are more distributed and, because of an obvious human factor involved in the equation, change will 

take a considerable amount of time. 

According to the renewable capacity statistics report produced by IRENA in 2021 [2], global 

renewable capacity as of 2020 is approximately 2800 GW, about a two-fold increase over the past 

10 years. Whilst the major contribution to the total capacity still comes from hydropower, more than 

80 per cent of all new electricity capacity added last year was from other renewable sources, with 

solar and wind accounting for 91 per cent of new renewables.  

Whilst the rate of growth of ocean energy has been slower than expected (with the exception of the 

commissioning of the Sihwa Lake Tidal Power Plant in South Korea in 2011), predictions suggest 

that ocean energy may experience similar rates of rapid growth between 2030 and 2050 as offshore 

wind and solar experienced in the last 20 years. 

Currently, a total capacity of 12.91 megawatts (MW) of tidal stream and wave energy is operational 

of which 2.31 MW from wave and 10.6 MW from tidal stream [3]. In both fields a significant number 

of new devices are being developed, with some units being able to reach 1 MW or higher. More 

capacity additions can be expected in the upcoming years. As of 2020, wave and tidal stream projects 

with total capacity of 2,83 GW were in the pipeline. 
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Figure 1. 1 - Active and projected tidal stream and wave energy capacity beyond 2020 [3]. 

 

Ocean energy is an abundant, yet relatively unexploited renewable energy source, which can be 

tapped using offshore technologies including offshore wind, wave energy, tidal stream and tidal 

barrage. Globally, 40% of the population live within 100 kilometres from the coast [4]. An obvious 

choice as a main energy source used to provide for such communities would be to use some sort of 

offshore renewable. Ocean energy is an abundant and greatly untapped resource which holds enough 

potential to meet the current and projected global electricity demand well into the future. Based on 

an analysis performed by IRENA in 2020 [3], the global potential ranges from 45.000 TWh to above 

130.000 TWh annually. 

At least theoretically, ocean energy alone has the potential to satisfy more than twice the current 

global electricity demand, but the benefits that offshore renewables can provide are not limited to the 

energy sector alone. Energy harnessed from the ocean has the ability to spark and drive a sustainable 

global blue economy while providing a reliable and local energy source to small island developing 

states (SIDS) and least developed countries (LDCs) bringing remarkable socio-economic benefits 

through job creations and promotion of energy independence.  

Despite all the benefits listed above, offshore renewables are generally still emerging technologies, 

with most still in development stages. With the exception of offshore wind, offshore renewables like 

wave energy and tidal stream technologies are still in the research and development phase with a 

generally high degree of immaturity. The reduced pace at which the maturity of the ocean energy 

sector has grown could probably mainly be attributed to the presence of other renewable energy 

sources who outshined ocean energy due to larger funding, structured governmental policies and 

simply because they have been looked in to for a longer period of time. A concrete example provided 

by IRENA [5] shows how global funding for offshore wind amounted to 27,30 billion USD in 2006, 

while global funding for marine renewables only capped at a mere 0,02 billion USD in the same year. 

This clearly shows that although marine technologies hold great potential, additional funding and 

policy support is needed to enable greater performance, reliability and especially cost reduction to 

allow for the commissioning of larger commercial plants. 

That said, an increasing number of companies, universities and investors outside the previously 

mentioned countries are sponsoring the development of ocean technologies, consequently substantial 

growth in the installed capacity is expected in the upcoming years.  
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1.2 Wave energy converter technologies and classification 

Wave energy converters (WECs) are devices which harness the energy coming from ocean waves to 

generate electricity. The main categories of wave energy converters produce electricity by either 

exploiting the kinetic energy of the waves or the potential energy of the waves. The first kind usually 

use moving bodies which thanks to the imparted energy, create electricity. The second type uses the 

height of the wave itself to propel turbines thanks to overtopping or water column mechanisms. 

As can be noticed, wave energy technologies have not yet converged towards a single type of 

technological design. Instead, numerous different WEC technologies are being pursued, and unlike 

tidal energy that aims at large-scale arrays, wave energy converters are currently following two 

parallel paths: one leading to the deployment of largescale devices above 1 MW and possibly towards 

deploying such devices in arrays, and the other aimed at smaller devices for specific offshore 

applications such as water culture. 

Although ocean energy is globally available, European costal countries, together with Australia, 

Canada the United States and China, have been at the forefront of the ocean energy technological 

development, with the largest number of projects deployed and the most device manufacturers. 

An overview of the different wave energy converter technologies is presented in the following table: 

 
Figure 1. 2 - Wave energy converter technologies [1]. 
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In figure 1.2, TRL stands for Technology Readiness Level, which indicates the maturity achieved by 

the given technology. Such scale goes from 1 to 9 where 1-3 represents a device in its research phase, 

4-5 a device in its development phase, 6 the demonstration phase and finally 7-9 the deployment 

phase where the bottom range, i.e.7, represents a prototype stage while 9 represents a fully deployed 

stage. 

Based on the classification in figure 1.2, a more in-depth description of different kind of devices and 

some examples of physically deployed devices will follow. 

A first classification of wave energy converters can be based on their location of dispatchment [6] 

[7] [8] 

- Onshore devices, as the name suggests, are devices which are rigidly connected to land. 

These converters can be placed in shallow water, integrated in a dam or fixed to a manmade 

structure such as a water breaker. The main advantages of such devices include their ease of 

maintenance and the lack of long power lines to connect them to the mainland grid. The main 

drawbacks for such devices instead are the lack of wave energy near the shoreline because 

of interaction with the seabed and the limited number of sites in which such devices can be 

installed. Typical examples of technologies adopted for such devices are oscillating water 

column and overtopping devices. 

- Nearshore devices are devices which are installed in waters of moderate depth, usually a 

few hundred meters from the shore. Such structures can be either anchored on the sea bed or 

floating. One of the advantages such devices have compared to onshore devices is their 

placement in waters which naturally have higher power density. The main drawback might 

be their negative impact on a social level. Because of their closeness to the shore and because 

of their size, which does not go unnoticed, they might be seen as detrimental to the costal 

landscape. 

- Offshore devices are installed in deep waters far from the coast. These devices are most 

often floating devices equipped with a mooring system. The advantage of such positioning 

is the availability of waters with a high power density, allowing to potentially extract a large 

amount of energy. The disadvantages are quite obviously due to the distance from the shore, 

resulting in a long electrical connection line needed to connect to the mainland grid and in 

difficult deployment, maintenance, and monitoring. For such devices, reliability and 

sturdiness is of paramount importance in order to avoid excessive maintenance and to survive 

the high loads they might be subject to.  
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Figure 1. 3 - Wave energy converter location classification and relative wave power 

Another type of classification which can be made is based on the working principle of the device. 

This type of classification allows to better understand how the device works and which physical 

phenomenon it exploits to harvest energy from the wave motion. 

- Oscillating Water Colum devices are devices composed by a partially submerged hollow 

structure. Such structure is open to the sea below the water line, creating a chamber in which 

water can enter from the bottom. Wave motion cause water to enter from such opening and 

flow into the main chamber, creating a water column which rises and falls according to the 

wave motion. This rising and falling of the water column within the device causes to air 

above the water column to move across a turbine placed at the top of the device whose other 

end is exposed to atmospheric pressure. Usually the turbine is bidirectional, meaning it will 

rotate both when the air is being expelled from the chamber (water column rising) and when 

air is being sucked into the chamber (water column falling). These devices are usually 

onshore devices, but nearshore and offshore devices have also been conceived. 

 
Figure 1. 4 - Oscillating water column devices 
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- Overtopping devices are devices which exploit a difference in potential energy which is 

artificially created by raising a volume of water above the ocean’s surface. This can be 

achieved thanks to structures which mimic the wave action you might find naturally on a 

beach. As waves approach and hit the artificial beach they run up a ramp and into a storage 

reservoir which is at a higher level than the average surround sea level. From this reservoir 

the water then flows through a turbine back into the sea simply thanks to gravity. Examples 

of these devices have been developed for onshore, nearshore, and offshore applications. 

 
Figure 1. 5 - Overtopping devices 

 

- Attenuator devices are devices whose most significant dimension is oriented parallel to the 

direction of wave travel. Their working principle relies on wave motion to flex the joints 

connecting the main bodies to generate power. Often these devices are modular, allowing 

for multiple floaters to be attached in sequence. Some devices are also able to capture energy 

utilizing multiple degrees of freedom of motion between the attached bodies, relying on 

surge, heave and sway to capture energy. These devices are most commonly only found in 

nearshore and offshore applications because of their working nature. 

 
Figure 1. 6 - Attenuator devices 
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- Point absorbers are floating structures who usually, but not always, possess a small 

horizontal dimension with respect to their vertical dimension. In most point absorber designs, 

one end of the device is anchored to the seabed while the other end can freely float and move 

vertically as the wave crests and throughs move the device up and down. This reciprocal 

vertical motion between the two ends of the device is what is used to provide usable power. 

As can be noticed, the main motion used to generate power is thus the heaving motion. These 

devices are most prominently used in offshore applications since they can better exploit the 

more powerful waves to extract more energy, but nearshore applications do exist. 

 
Figure 1. 7 - Point Absorbers 

 

- Oscillating water surge converter devices use the surge motion of waves to swing back 

and forth. Most designs rely on a structure, hinged at it’s base which is able to pivot as the 

wave motion acts on it, causing the whole pivoted structure to swing back and forth. This 

motion resembles that of a large lever whose base is then linked to either a generator or a 

pump to move fluid or to drive a hydraulic motor. These devices are usually completely 

submerged and directly anchored to the sea floor. Such devices are usually deployed in 

nearshore applications or even in breakwater areas. 

 
Figure 1. 8 - Oscillating water surge devices 
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- Submerged pressure differential devices work by exploiting the pressure differential that 

passing waves crate. By placing the device on the seabed, the motion of the waves causes 

the sea level to rise and fall above the device, creating a pressure differential above the device 

which can be used to compress a pliable material such as an air bladder, thus moving a fluid 

which can be used to drive a turbine or some other power take off unit. These devices are 

typically located nearshore. 

 
Figure 1. 9 - Submerged pressure differential devices 

 

- Bulge wave devices use wave forces to push a fluid along a flexible channel and through a 

turbine. Such devices are aligned perpendicular to the wave and their shape can resemble 

that of a sea snake. Such devices operate very close to the water’s surface and their design 

must be carefully tuned based on the expected sea conditions. 

 
Figure 1. 10 - Bulge wave devices 
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- Rotating mass devices can be of two generic kinds. The first design includes a closed hull, 

which floats on the water’s surface like a vessel, enclosing multiple eccentric masses which 

are able to rotate on different axis. With this design, if the device is excited in any direction 

from the incoming waves, one or more of the eccentric masses will rotate. This rotation is 

then used to generate energy. 

The second kind of design uses a gyroscope instead of the eccentric masses. These devices 

take advantage of the gyroscopic procession effect which takes place if the hull of the vessel 

moves because of the interaction with the waves. This procession motion can then be used 

to extract energy from different PTO technologies. 

These devices can be placed nearshore or offshore but are most prominently used offshore 

because of the more energetic waves. 

 
Figure 1. 11 - Rotating mass devices 

 

- Other: It must be noted that although the above classification of wave energy converters 

based on their working principle does encapsulate most of the current designs being used, 

other designs exist which do not fit in any of the above categories.  

The above classification considers the most common working principles but also some of 

the designs which are currently in the research phase but which show promising results and 

in which funding is currently being invested. 
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2 – Wave energy  
Understanding the medium with which a wave energy converter has to interact with is a key 

requirement in designing efficient and reliable WECs. The study of sea behavior and of wave 

characterization is not only related to the wave energy industry and has been a research area for other 

industries for many years. Although wave-body interactions have also been a topic of study for any 

floating device, such as ships, the peculiarity about the wave energy industry is the need to study 

how this interaction might affect the power transfer from the sea to the wave energy converter device 

in order to extract the most amount of energy for each condition encountered. 

In the following chapters an overview of the wave energy resource will be given. 

 

2.1 The global wave energy resource 

Waves on the ocean surface are primarily created by wind passing across the surface of the ocean. 

Initially, waves start as small ripples, but then grow in size thanks to the continuous energy provided 

by the wind. If the wind blows for long enough, the waves will eventually reach a limit past which 

they cannot grow any longer for that particular weather scenario because of internal energy losses. 

This stage is known as a fully developed sea. 

The average wave power density is very diverse from location to location depending on seasonal 

average temperatures, winds, and many other local factors. 

Figure 2.1 shows the global annual mean omni-directional wave power density. 

As can be noticed, the most energetic regions occur in bands located in the north and southern 

hemispheres.  

 
 Figure 2. 1 - Annual mean omni-directional power [9].  

These regions of high power-density are located for the most part far from coastal regions. This poses 

the additional problem of choosing the most optimal position for a WEC.  
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Although more energetic regions would favor a greater energy extraction, they would also need 

exceptionally long underwater cables to carry the produced electricity ashore. Furthermore, because 

of their distance from the coast, any repair operation would be extremely costly.  

In comparison, one might argue that deploying an offshore WEC in a region closer to the coast, at 

the expense of a lower average wave power density, might be a better solution in the long run. 

It must be noted that although average wave power density does give an insight on how much energy 

might be extracted by a WEC in any given location, because of the complexity and different working 

principles that each wave energy converter possesses, it is not possible to arbitrarily choose a single 

factor describing wave energy that can singlehandedly define which location is most suitable for 

energy extraction, no matter what WEC might be used. 

 

2.2 Wave physical description 

The most simplistic definition of a sea wave is a sinusoidal wave at the water surface with a 

characteristic wave height or amplitude and a wavelength associated with a corresponding wave 

period. This kind of wave is known as a regular linear wave. 

 
Figure 2. 2 - Sinusoidal wave parameters [10] 

Other wave parameters can be produced by using the fundamental parameters described above. 

𝑠 = 𝐻/𝜆 , Wave steepness 
(1. 1) 

𝑘 = 2𝜋/𝜆 , Wave number 
(1. 2) 

𝜔 = 2𝜋/𝑇 , Wave frequency 
(1. 3) 

In particular, the wave steepness can be used as a reference to distinguish between linear and non-

linear waves and between which wave theory better describes the particular wave scenario. 

Typically, if the wave steepness is smaller than 0.01, then linear wave theory can be used, but as the 

wave steepness increases, linear theory becomes less valid and other wave model theories should 
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theoretically be used. Figure 2.3 shows the validity of different wave theories based on the wave 

steepness (pictured on the vertical axis) and the relative water depth (on the horizontal axis) where h 

is the mean water depth and τ the wave period. 

 
Figure 2. 3 - Ranges of applicability of wave theories according to Le Méhauté [11]. 

It must be noted that although these guidelines exist, it is extremely complex to apply any theory 

other than linear wave theory to irregular waves. It is thus common practice to use linear wave theory 

even beyond the bounds shown in figure 2.3. 

Figure 2.4 shows qualitative examples of different regular waves based on different wave theories. 

 
Figure 2.4 - Qualitative wave profiles according to different wave theories 
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2.3 Spectral characterization of sea states 

The natural behavior of sea waves is irregular, often also referred to as random sea. The sea rarely 

shows a regular sinusoidal wave pattern, instead, a mixture of different contributions forms the final 

waves that we observe. 

One of the most used characterizations of a given sea condition is the definition of the sea using a 

spectrum. This representation considers the variation in the elevation at the water surface (the waves) 

as a linear superposition of sinusoidal waves of different frequencies, amplitudes, and phases. This 

assumption is accompanied by considering the superimposed waves to have a random phase between 

each other. 

 
Figure 2. 4 - Irregular wave from sum of sinusoidal regular waves [12]. 

A generic irregular wave pattern ζ can be decomposed into the partial regular waves that form it 

using Fourier analysis. If given a set of partial waves instead, an irregular wave can be created as the 

sum of the partial waves according to [12]: 

 

Where: 

- ζ   Wave ordinate expressing surface elevation 

- 𝑖    Number of wave component 

- 𝑐𝑖   Amplitude of the ith partial wave 

- 𝜔𝑖  Frequency of partial wave 

- 𝑥, 𝑡 Direction of progress, time 

- 𝑘𝑖   Wave number 

- 𝜀𝑖    Phase angle of partial wave 

Where the phase 𝜀𝑖 is randomly distributed. 
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Given an irregular sea state, the variation of the wave energy with frequency, given the components 

that for such irregular sea state is called wave spectrum. 

 
Figure 2. 5 - Typical spectrum graph 

The wave energy spectrum gives an understanding of the distribution of energy across the different 

frequencies composing the irregular sea condition. This can give an insight of what are the 

predominant frequencies in the current sea condition and how narrow or large banded is a given sea 

state. This is especially important during the design phase of a WEC in order to match the design 

characteristics with the desired deployment location. 

 

2.3.1 Idealized wave spectra 

In an attempt to characterize sea conditions given certain external meteorological conditions and 

predefined assumptions, different standardized wave spectrum equations have been developed. 

These equations are used to create wave spectrums under very specific assumptions, and thus do not 

perfectly represent all possible sea conditions. 

 

One of the most commonly used spectrums is the Pierson-Moscowitz spectrum [13]. This spectrum 

was developed under the assumptions that the wind has been blowing across a sufficiently large and 

deep body of water for enough time to create a fully developed sea. Under these assumptions, the 

proposed spectrum now only depends on the wind speed at 19.5m above the water surface. 

 

This idea was furtherly refined by Hasselman et al. after analyzing data collected during the Joint 

North Sea Wave Observation Project (JONSWAP) [14]. 

The produced spectrum was an extension and refinement on the Pierson-Moscowitz spectrum for 

conditions in which the sea is not fully developed and for limited fetch length. 
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Figure 2. 6 - Spectrum parameters [15]. 

 

Where: 

- 𝑆(𝜔)   Spectral variance density 

- 𝜔𝑝       Peak frequency 

- 𝜔         Wave component frequency 

- 𝑔         Gravitational acceleration  

- 𝑈19.5    Wind speed at 19.5 meters above water level 

- 𝑈10       Wind speed at 10 meters above water level 

- 𝐹          Fetch length 

- 𝛾          Peak enhancement factor    

 

The above discussion, and the spectrum in figure 2.6 were only referring to sea states that have been 

generated by wind blowing in only one direction. However, there might be situations in which 

multiple sources of wind act on the same location, or where swell and local wind conditions are 

relatively uncorrelated. In these cases, spectra containing multiple peaks can occur. 

Examples of how such sea states can be classified are given in figure 2.7. 
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Figure 2. 7 - Swell and wind wave classifications [12]. 

The variety of wave spectral shapes presents a big challenge when designing and controlling a WEC 

since both the design and the control strategy could be much easier to develop if a narrow-banded 

sea state was always present, allowing for optimal design for a small range of frequencies. 
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2.4 Sea state characterizing parameters and wave power density 

Sea states can be generically described by using two important parameters, which in some sense 

represent the wave height and the wave period. 

Before measuring devices allowed for a precise local and statistical measurement of the sea state, the 

wave heigh was historically based solely on the direct observation of an experienced observer. 

This heigh was named Significant Wave Height, symbolized by 𝐻𝑠. 

When technology allowed for a precise measurement of the water surface elevation, this method was 

replaced by a more reliable and unbiased methodology. Because of the existing records of the 

significant wave heigh, the new method had to be consistent with the historical reports, thus 

producing a measurement equivalent to the 𝐻𝑠. 

A good analogy to the old method was found to be given by considering the height of the third highest 

waves considering a time series record of the measured surface elevation. To distinguish this method 

from the previous one, the significant height was marked as 𝐻1/3. 

𝐻1/3 =
1

1
3 𝑁

∑ 𝐻𝑚

1
3

𝑁

𝑚=1

 

Where N is the total number of measurements of the wave height and 𝐻𝑚 is the individual height 

measurement. 

The third, and most commonly used measurement of the significant wave height is represented by a 

measurement based on the wave spectrum, denoted with 𝐻𝑚0. 

𝐻𝑚0 = 4  √∫ 𝑆(𝜔) 𝑑𝜔
∞

0

 

Where 𝑆(𝜔), is the spectral variance density previously used when defining the sea state spectrum. 

This method of measuring the significant wave height is useful since it’s directly related to the 

average wave power density. 

 

The power of a given sea state can be initially described by considering a single wave component at 

a time. Using linear superposition, it is then possible to find the total average wave power density. 

Considering a single wave component, the wave power is: 

𝐽(𝜔) = 𝜌𝑔𝑆(𝜔) · 𝐶𝑔(𝜔) 

Where 𝐶𝑔, is the velocity at which the energy is propagating known as the group velocity. 

𝐶𝑔(𝜔) =
1

2

𝜔

𝑘(𝜔)
(1 +

2𝑘(𝜔)ℎ

𝑠𝑖𝑛ℎ 2𝑘(𝜔)ℎ
) 
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Using linear superposition, the average wave power density can be defined as 

𝐽 = ∫ 𝜌𝑔𝑆(𝜔) ·
1

2

𝜔

𝑘(𝜔)
(1 +

2𝑘(𝜔)ℎ

𝑠𝑖𝑛ℎ 2𝑘(𝜔)ℎ
) 𝑑𝜔

∞

0

 

 

The other important parameter mentioned which is used to describe a sea state is the wave energy 

period which can be defined as 

𝑇𝑒 =
𝑚−1

𝑚0
 

Where 𝑚𝑛, are the moments of the spectrum defined as 

𝑚𝑛 = ∫ 𝑆(𝜔)
∞

0

𝜔𝑛 𝑑𝜔 

Using the definitions of wave energy period and significant wave height, the omnidirectional wave 

power in deep water J can be defined as 

𝐽 =
𝜌𝑔2

64𝜋
𝐻𝑚0

2 𝑇𝑒 

Additionally, a final additional consideration may be made regarding the directionality 

characteristics of the sea state. The directionally resolved wave power density 𝐽(𝜗)defines the wave 

power in a particular direction and is an important parameter for directional WECs and for wave 

farm deployments. 

A directional wave spectrum 𝑆(𝜔, 𝜑) can be used to calculate 𝐽(𝜗) as 

𝐽(𝜗) = 𝜌𝑔 ∫ ∫ 𝑆(𝜔, 𝜑
∞

0

)𝐶𝑔(𝜔)cos (𝜗 − 𝜑)𝛿 · 𝑑𝜔 · 𝑑𝜑
+𝜋

−𝜋

 

{ 
 𝛿 = 1, 𝑐𝑜𝑠(𝜗 − 𝜑) ≥ 0
𝛿 = 0, 𝑐𝑜𝑠(𝜗 − 𝜑) < 0

 

 

The above parameters used to describe a given sea condition and the power that accompanies such 

state are just some of the many possible parameters that exist to characterize a given sea state. 

For the purpose of this thesis, the above description of a sea state using the significant height 𝐻𝑚0 

and the energy period 𝑇𝑒, in conjunction with the spectral characterization is enough. 

It must be noted that for simplicity, the wave significant height will be referred to as 𝐻𝑠.  
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2.5 Characterizing Ocean sites  

When considering deployment locations for a WEC, it is important to understand how the local sea 

conditions may affect the performance of the wave energy converter. Some of the main aspects to 

take into considerations can be considered to be the temporal, directional, and spectral characteristics 

of the local ocean sea states and how these characteristics may affect the average power generation. 

 

2.5.1 Temporal characteristics 

Temporal characteristics show how the local sea state changes throughout a given period of time. 

These changes are usually measured by considering the changes in significant wave height 𝐻𝑠 and 

wave energy period 𝑇𝑒.  

In general, it can be stated that, for a given average wave power, a wave climate which is more 

consistent in time is desirable because there will be less need to overengineer the WEC components 

to withstand extreme sea conditions. Furthermore, the working conditions in which the WEC will be 

working in most of the time will be the conditions for which it was designed to have greatest 

efficiency. 

The temporal characteristics can be related to different time windows such as daily, monthly or 

seasonal variations in the sea conditions. Each time span considered will have its own impact on the 

WEC energy generation, with longer time span variations usually being more predictable than short 

ones, allowing for possible preemptive measures to be taken. 

An example of temporal variations in the wave significant height and energy period is given in figure 

2.8. 

 
Figure 2. 8 - Wave significant heigh and energy period yearly variations from the FINO1b dataset. 
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2.5.2 Directional characteristics 

Directional characteristics of the local sea state are extremely important wen considering a 

deployment location for a directional WEC or when designing a WEC farm. The only situation in 

which directionality may not be of importance is for a single omni-directional WEC such as a heaving 

point absorber. 

In general, an increase in the variation of the wave directionality of a give site will lead to a decrease 

in performance since it will be more likely that the directional dependent WEC or the wave farm will 

be often oriented in a less optimal direction. 

Directional measurements can be of many different kinds. One example of a commonly used 

indicator is the wave rose shown in figure 2.9. This kind of graph can be used to represent average 

wave power or significant wave height measurements divided in different directional sectors. The 

length of each coloured sector radiating out in a given direction gives the percentage average 

occurrence of a given power or significant wave height it that specific direction. 

An example of a wave rose is given in figure 2.10. 

 
Figure 2. 9 - Wave rose for significant wave height [15]. 
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2.5.3 Spectral characteristics 

Spectral characteristics of wave climate add a frequency component to the measurements taken. 

Measurements based on the frequency at which such conditions occur may include wave 

directionality, wave significant height and other wave measurements varying across a frequency 

range. Spectral characteristics can be associated to spectral variations of a single sea state or spectral 

variations of a given site, considering all possible sea states together. 

Spectral characteristics of wave climate are particularly important both when designing a WEC and 

also when analyzing a possible deployment site because the efficiency of most WECs is frequency 

dependent. Thus, for example, two sites having the same average power density may produce 

significantly different power outputs because of the different frequency ranges associated with each 

site.  

 

 
Figure 2. 10 - Average directional wave spectrum from SBF7-1A GPS wave buoy [16]. 

 

2.5.4 The scatter diagram 

One of the most used diagrams to characterize a location is the scatter diagram. The scatter diagram 

consists of a grid of occurrences of sea states characterized by the significant wave height and wave 

energy period.  

This kind of diagram allow to understand which sea conditions occur most often for the location 

under analysis but they are also prone to some potential issues. 

Firstly, because of their discrete nature, sea states may vary significantly from one cell to the next, 

especially if the resolution is poor and the significant wave height is small, it is thus usually desirable 

to produce a scatter table with a good resolution, this although will take a larger number of samples 

and more precise measurements. 

 

 



33 
 

Another issue with the scatter table is that it does not give any indication on the directional 

distribution or spectral shape of the sea state contained within each cell which as discussed above are 

important factors when evaluating a location. 

Although it does present some possible flaws, the scatter diagram is one of the most used tools to 

conduct a preliminary examination of a given site. Other techniques which take in to account 

frequency, temporal and directional dependencies are then used to get a better understanding of the 

sea behavior for the selected site. 

 

 
Figure 2. 11 - Scatter table produced from occurrences off the coast of Pantelleria [17]. 

Summarizing, it is important to note that although wave climate characterizations as the ones 

presented above do give a good insight on the wave climate at a given location and on how well a 

given WEC might perform at such location, they cannot give a complete picture of how the WEC 

will behave and cannot be used to properly estimate the power generation of a WEC. However, these 

diagrams do provide an overview of the potential a site might have. This is especially true if these 

characterizations are coupled with a strong knowledge of how the given WEC works, allowing to 

choose the most appropriate information to analyze a give location. 

When possible, it is always recommended to use the full time series of directional wave spectra to 

estimate the power generation of a WEC for a given site and time span [18]. 
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2.6 Generating Sea states in MATLAB  

In most sea conditions, ocean waves can be modelled as a stationary, zero-mean Gaussian process.    

This is trues as long as the water is deep enough and the waves are not too extreme, which are the 

conditions in which most offshore WECs will find themselves in most of the time during their 

deployment. For this reason it is thus desirable to have a wave generation method which is able to 

reproduce the statistical properties of a Gaussian Sea condition. 

For the purpose of this work, the sea states and related sea state forces used to simulate the behavior 

of the point absorber at sea were modelled following the Random Amplitude Scheme presented by 

Mérigaud and Ringwood in their work in [19]. 

The Random Amplitude Scheme (RAS) for generating finite length numerical simulations of 

Gaussian seas belongs to the class of wave superposition methods to produce free-surface time-

series. This method consists in adding up harmonic sinusoidal components with random phases and 

component amplitudes which are chosen randomly with a variance which depends on the sea 

spectrum.  

The discrete sequence generated when using RAS can be written as follows: 

𝜂𝑡𝑖 = ∑ 𝑎𝑘 cos(2𝜋𝑓𝑘𝑡𝑖) + 𝑏𝑘sin (2𝜋𝑓𝑘𝑡𝑖)

𝑀/2

𝑘=1

 

Where 𝑎𝑘 and 𝑏𝑘 are independent normally distributed random variables with zero mean and with 

variance 𝑆(𝑓𝑘)Δ𝑓. 

The sequence can also be equivalently written as: 

𝜂𝑡𝑖 = ∑ 𝐴𝑘 cos(2𝜋𝑓𝑘𝑡𝑖 + 𝜙𝑘)

𝑀/2

𝑘=1

 

Where 𝜙𝑘 is chosen randomly according to a uniform distribution in [0;2π] while 𝐴𝑘 follows a 

Rayleigh distribution with variance 2𝑆(𝑓𝑘)Δ𝑓. 

It is possible to show that RAS is able to reproduce the true statistical properties of a Gaussian Sea 

and is able to reflect how short-term WEC performance varies with respect to its long-term average 

allowing to realistically assess how the WEC power output may vary when measured over a finite 

duration. Because the basis of this work relies on finite measurements of the average WEC power 

output which will then be directly used as a driver to select the appropriate control strategy for each 

sea state, RAS provides the right tool for a probabilistic analysis of a finite length time domain 

simulation. 
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3 – Point absorbers 
As mentioned in chapter 1, point absorbers are wave energy converter devices that have the ability 

to extract energy from the heaving motion of the incoming waves from all directions. 

Currently, most attention worldwide is being focused on the point absorber design as it’s one of the 

most promising designs thanks to its reduced complexity and ability to harvest energy form different 

wave directions. Additionally, this design is efficient, reliable, and also one of the first wave energy 

converter designs to be conceived. 

One of the earliest recorded patents for a point absorber dates back to 1885 by Leavitt [20]. His 

design exploited wave forces through a heaving buoy connected to a gear system used to pump water. 

Not only is the point absorber design one of the most popular as suggested by the chart below [21], 

but some research suggests that it is currently one of the stronger candidates to be the standout WEC 

to harvest energy from highly energetic locations [22]. 

A more in depth overview of point absorber technology will follow in the next chapters. 

 
Figure 3. 1 - Popularity of developed wave energy converter devices 

3.1 Point absorber technology 

Point absorbers are constituted by a spherical or cylindrical buoy which oscillates predominantly in 

the vertical direction with respect to a fixed reference which can either be the seabed, or another 

submerged body with much higher inertia with respect to the floater. In general, point absorbers 

present fewer moving joints than other WECs, thus reducing the complexity of the device. 

Additionally, if linear wave theory is assumed, point absorbers can be modelled with fewer degrees 

of freedom, which simplifies the computations and the problem layout in general. 

The reciprocating motion between the buoy and the fixed reference is then used to harvest energy 

through a PTO placed between the buoy and the fixed reference as can be seen in the figure below. 
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Figure 3. 2 - Example of one body point absorber model [23]. 

 

3.2 Power take off 

The purpose of the PTO system is to transform the reciprocal motion created by the moving floater, 

into electrical energy suitable for being distributed on the main electrical grid. Because the electricity 

entering the main grid needs to meet certain standards, especially regarding the wave form, a 

significant challenge that the complete PTO system must overcome is to transform the irregular 

power input from the incoming waves into a smooth sinusoidal electrical power output. 

This requirement is thus one of the main requirements to consider when designing a PTO for a wave 

energy converter.  

PTO systems are also most often required to convert a slow motion accompanied high forces, coming 

from the interaction with the waves, into a fast rotational motion to drive an electric motor. 

Throughout the years, efforts have been made to meet such requirements by including storage 

systems (mechanical, hydraulic, or electric) and rectifiers in the PTO design. 

The main challenges a PTO has to face are mainly due to the intrinsic properties of the energy source. 

Ocean energy presents a high variability both in the short and in the long term which in turn means 

that the displacements, accelerations and forces induced may vary greatly over time. These large 

possible working ranges will induce different dynamic loadings on the structure, and it is thus 

mandatory for the PTO design to be robust and reliable, but at the same time, be able to be as efficient 

as possible in all sea conditions. 

It is generally possible to recognize four types of PTO technologies as represented in the figure below 

[24]: hydraulic with hydraulic rectifier, hydraulic with electrical rectifier, mechanical with 

mechanical rectifier and direct drive. 
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Figure 3. 3 - Block diagram of four different PTO configurations [24]. 

 

3.2.1 Hydraulic PTOs 

Hydraulic converters are a popular solution to interface the external forces acting on the wave energy 

converter with the electrical generator since they are well suited to absorb energy coming from large 

forces with low frequencies and can provide good energy storage and rectification capacity. 

The movement of the prime mover, the buoy in the case of a point absorber, is used to drive fluid 

through a hydraulic circuit with two parallel branches. Valves are used to ensure that the fluid moves 

always in the same direction within the circuit, no matter the direction of motion of the floater. High 

and low pressure accumulators are used to ensure a smooth hydraulic flow before the fluid reaches 

the hydraulic motor which then translates the energy into a fast rotation that can be used by an 

electrical rotary generator. A radial piston hydraulic motor is often used as it is capable of 

withstanding high loads for low velocity applications. 

A depiction of a PTO hydraulic system follows below. 

 

 
Figure 3. 4 - Example of a hydraulic PTO with hydraulic rectifier [7]. 
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Hydraulic PTOs with electrical rectifiers use the hydraulic part of the system to transform the low 

velocities of the prime mover into higher velocities which can then be used to move a rotary electrical 

generator while the storage elements are instead represented by batteries 

Particular considerations must be made regarding the possible issues when choosing a hydraulic PTO 

for a wave energy converter. Some of the main topics on which to reflect are: 

- Fluid containment in the hydraulic system and possible environmental issues. 

- Maintenance. Hydraulic systems are composed of numerous moving parts, where many are 

equipped with seals which will wear over time, producing the need for maintenance. 

- The hydraulic circuit must be designed to work even in extreme conditions characterized by 

high forces and fluid pressures. 

 

3.2.2 Mechanical PTOs 

In mechanical PTOs the increase in speed which in hydraulic PTOs was achieved by a hydraulic 

motor is instead achieved through a mechanical conversion system such as a gearbox. This gearbox 

is then linked to a rotary electrical generator to produce electrical energy. A flywheel can be used as 

a mechanical accumulator to smoothen out power variations. 

An advantage of this kind of system is its high efficiency, but because of the high number of cycles 

and forces that the mechanical conversion system has to bear, the reliability and robustness of such 

system is crucial. 

 

3.2.3 Direct drive PTOs 

Direct drive PTOs are able to directly convert the kinetic energy of the reciprocating motion of the 

prime mover straight into electrical energy through a linear generator with permanent magnets [25]. 

Because of the large forces and low velocities involved, the design and manufacturing of these 

devices is usually performed ad-hoc for the specific application, but advancements in the fields of 

power electronics and permanent magnets have made this solution attractive in the most recent years. 

Since the alternating wave motion is directly converted in to electricity, rectification must be carried 

out by a power electronics system before conversion to a sinusoidal waveform with fixed voltage 

and frequency can be performed.  

An example of this technology is given in the following figure coming from [7]. 
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Figure 3. 5 - Example of a direct drive PTO [7]. 

 

 

 

3.3 Point absorber model 

For this work, the considered point absorbers consist of simple heaving point absorbers constituted 

of 2[m] radius speres with an internal mechanical PTO directly anchored to the seabed. This kind of 

point absorber was chosen since it represents a simple but realistic model on which to test the devised 

control strategy. A graphical representation of the point absorber model is shown in figure 3.6. 

 
Figure 3. 6 - Graphical scheme of a point absorber [26]. 

The considered device is limited to extract power in the vertical direction only, meaning that we are 

considering a 1 Degree of Freedom (DoF) device. For this kind of vertical heaving point absorber 

the system dynamics can be modelled as [27]: 

𝑚𝑧̈ = 𝑓𝑟 + 𝑓ℎ𝑟 + 𝑓𝑒𝑥 − 𝑓𝑃𝑇𝑂 
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Where 𝑧(𝑡) is the device vertical displacement, 𝑓𝑟(𝑡) is the radiation force, 𝑓ℎ𝑟(𝑡) is the hydrostatic 

restoring force, 𝑓𝑒𝑥(𝑡) is the external heave force, and 𝑓𝑃𝑇𝑂(𝑡) is the controllable force exerted by 

the power take off. 

The hydrostatic force can be written as: 

𝑓ℎ𝑟(𝑡) = −𝑘ℎ𝑧(𝑡) 

Where 𝑘ℎ is the hydrostatic stiffness constant of the device. 

The radiation force instead can be expressed following the Cummins’ equation as: 

𝑓𝑟(𝑡) = −𝑚∞�̈�(𝑡) − ∫ ℎ𝑟(𝜏) �̇�(𝑡 − 𝜏)𝑑𝜏 

Where ℎ𝑟 is the impulse radiation response and 𝑚∞ is the added mass at infinite frequency. 

The convolution term can be approximated by using an LTI system using proper 

identification techniques [28] which in turn lead to the following input-output state space 

representation: 

{
�̇�𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�
𝑓𝑟 = 𝐶𝑟𝑥𝑟 + 𝐷𝑟�̇�

 

Where 𝑥𝑟 are the additional radiation states and the matrices 𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟 are the state-space 

matrices used to approximate the convolution term, identified using the FOAMM toolbox. 

As stated in chapter 2.6 instead, the 𝑓𝑒𝑥 term has been modelled using the Random Amplitude 

Scheme (RAS) allowing a force representation which realistically depicts a Gaussian Sea 

state. 

Finally, in a realistic scenario, WEC interactions might need to be considered for a compact 

array of devices. For this work the devices are considered far enough (at least 160[m] apart) 

so to not affect each other’s dynamics. 

 

3.4 Control of wave energy converters 

3.4.1 Introduction 

Wave motion is characterized by a broad frequency band that changes over both relatively short time 

spans (hours) and across larger time spans (seasons). This is an important consideration since wave 

energy converters are most efficient at absorbing energy when their natural frequency is close to the 

dominant frequency of the incident wave [29] [30]. 

In order to increase the power output of a wave energy converter, in response to the continuously 

changing wave spectrum, the behavior of the wave energy converter needs to be changed so that it’s 

frequency will be in resonance with the incoming waves. This can be done by using an appropriate 

control strategy. 
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The physical properties of the device, like mass and shape are difficult if not impossible to vary 

according to the incident wave. Instead, the behavior of the wave energy converter can be tuned by 

acting on the stiffness and damping coefficients of the system, which can be accessed through the 

power take-off. 

The main purpose of control is to produce a wave energy converter which is as efficient as possible 

at capturing energy from the incoming waves, but control can also become useful in the event of 

extreme sea conditions. 

In case of such an event, the device could switch to a safe mode in order to prevent any damage to 

the structure, ensuring it’s survivability. 

 

The design of a control strategy to be implemented on a WEC is usually performed using a model of 

the system. This is obviously true for model-based control strategies, but it can also be true for model 

free control strategies since, to both design and to validate the viability and performance of the 

implemented control strategies, a numerical simulation is needed which in turn involves a model of 

the WEC. This model will usually not perfectly reflect the dynamic behavior of the device because 

of approximations made when constructing the model (e.g., reducing the DOFs of the model) and 

because of unmodelled unknown dynamics. 

The design of the control strategy can then be defined as the task of using the model to design a 

control function, together with its parameters, to satisfy and optimize some desired performance 

objective, usually energy capture maximization. 

Different control strategies have been proposed, and in the following chapters some of the most 

important strategies will be described. 

 

3.4.2 Discrete (slow) vs Continuous (fast) control 

As stated in the previous chapter, optimal damping and stiffness coefficients with the goal of 

maximizing energy absorption depend on the incoming wave frequency [31]. 

Thus, it is desirable for the control parameters to adapt to the current wave conditions. 

This is usually approached from two perspectives: a discrete, also known as “slow” control or a 

continuous, also known as “fast” control. 

 

3.4.2.1 Discrete control  

Discrete control is currently one of the most used classes of control because of its simplicity. 

It involves identifying discrete sea states determined by statistical measures of the wave amplitude 

and wave period. In particular, the significant wave height (Hs) and the wave energy period (Te) are 

most commonly used as the identifying parameters of the sea state. 
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Once sea conditions have been adequately gridded, numerical simulations are run offline to 

determine the optimal control coefficients in each sea state by using a numerical model of the wave 

energy converter. These discrete control coefficients for each sea state in the grid are then stored in 

a lookup table. 

With the wave energy converter deployed, the current sea state is determined by wave buoys placed 

in the vicinity of the WEC and the optimal control coefficients can simply be selected by using the 

lookup table. 

Although this approach is rather simple, it has been shown to be effective compared to fixed damping 

control which has made it rather popular in the past because of its relatively good performance and 

inherent simplicity. 

The main drawbacks of using discrete model-based strategies are caused by model accuracy and the 

discretization strategy.  

Because optimal energy capture of a WEC can be achieved only if the WEC changes its control 

parameters on a wave-by-wave basis, the discretization strategy is clearly non optimal. That said, a 

discrete control strategy may vary widely in performance based on the information used to tune the 

device which in turn depends on how fine of a gridding was used to define the sea states. 

Additionally, it is also important to correctly measure and define which sea state the device is 

currently in so to correctly select the control parameters. 

Finally, for sea conditions in which linear wave theory starts to break down, the highly nonlinear 

interactions will lead to suboptimal control parameter choices. This can be mitigated by either using 

a more robust or accurate model or by using model-free techniques  

 

3.4.2.1 Continuous control  

Differently from a discrete control strategy, continuous control aims at developing a control strategy 

which can adapt the control parameters in real time based on the current incident wave acting on the 

device. These strategies try to either directly measure or to estimate the current and future wave 

parameters characterizing the incident waves on the device. In this manner a precise and fine control 

can be applied based on the specific wave which is currently affecting the wave energy converter. 

The measurements or estimations used usually regard either parameters which directly characterize 

the wave, such as period and amplitude, or which describe the forces acting on the device, such as 

heave, surge and sway forces. 

Although this might lead improvements in the amount of energy harvested, this kind of control is 

usually accompanied by difficulties in measuring or predicting the exact wave profile which is 

currently affecting the exact position of the WEC. 
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3.4.3 Optimal control of WECs 

In the case of an unconstrained point absorber in a sinusoidal wave, two conditions are necessary in 

order to achieve optimum energy absorption [32]: 

- The velocity of the oscillator must be in phase with the dynamic pressure of the incident 

wave. 

- The amplitude of motion of the oscillator needs to be tuned in order that the amplitude of the 

radiated wave from the oscillator is half that of the incident wave. 

The first condition is related to the adjustment of the phase of the velocity of the oscillator to match 

that of the incoming wave and is thus often referred to as phase control. 

The second condition instead can be met by adjusting the damping factor of the device in order to 

achieve maximum energy efficiency. 

If the damping were to be set too high, then the motions are limited, and a low efficiency would be 

the result. If instead the damping were to be set too low, then little power would be absorbed and 

again this would result in low efficiency. 

The above conditions can be summed up in the frequency domain as: 

 

𝑍𝑃𝑇𝑂(𝜔) = 𝑍𝑖
∗(𝜔) 

 

Where: 

- 𝑍𝑃𝑇𝑂(𝜔) is the frequency dependent PTO impedance 

- 𝑍𝑖
∗(𝜔) is the complex conjugate of the WEC’s frequency dependent intrinsic impedance 

This is equivalent to saying that the maximum absorbed energy for an oscillating body in one mode 

is obtained by imposing that the intrinsic WEC reactance 𝑋𝑖(𝜔) is cancelled out by the PTO reactance 

𝑋𝑃𝑇𝑂(𝜔) while the resistance 𝑅𝑃𝑇𝑂(𝜔) must match the intrinsic resistance 𝑅𝑖(𝜔). 

This is what is known as impedance matching [33]. 

This result gives rise to a number of important considerations to be made [34]: 

- The above result is frequency dependent, meaning that there is an optimal impedance value 

for each frequency, which raises a problem on how to specify the PTO resistance for irregular 

waves which, by definition, are formed by a mixture of different frequencies. 

- In some cases, the PTO system may need to supply power for some parts of the cycle (an 

analogy to reactive power). This adds additional design constraints on the PTO which needs 

to be able to facilitate bidirectional power flow and must also be designed to handle peak 

reactive power surges which may be greater than peak active power values. This condition 

puts the optimal control condition of the above equation in the category of reactive control. 
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- The optimal impedance matching control does not take in to account the physical limitations 

imposed by the WEC and PTO constructions. These limitations include force limitations on 

the PTO, displacement limitations and even electrical limitations. 

To achieve impedance matching, different strategies have been proposed [30]:  

- Complex conjugate control 

- Phase and amplitude control 

Complex conjugate control involves choosing 𝑍𝑃𝑇𝑂(𝜔) as equal to the intrinsic WEC impedance 𝑍𝑖
∗. 

By considering the force to velocity model of a WEC as: 

𝑉(𝜔)

𝐹𝑒𝑥(𝜔) + 𝐹𝑢(𝜔)
=

1

𝑍𝑖(𝜔)
 

Where: 

- 𝑉(𝜔) = Fourier transform of the velocity v(t) 

- 𝐹𝑒𝑥(𝜔) = Fourier transform of the excitation force 𝑓𝑒𝑥(𝑡) 

- 𝐹𝑢(𝜔) =Fourier transform of the control force 𝑓𝑃𝑇𝑂(𝑡) 

It is easy to see that a feedback of the measured buoy velocity is needed.  

This represents a problem since the transfer function from velocity to force becomes anticausal.  

This implies that the optimal force to be applied depends on future values of the buoy velocity which 

renders this approach impossible to implement in practice since the velocity itself depends on the 

applied force. Because of this, many control techniques are based on a realizable but suboptimal 

approximation of complex conjugate control. 

The condition expressed in equation 3.1 can also be equivalently expressed as: 

 

𝑉𝑜𝑝𝑡(𝜔) = 𝐹𝑒𝑥(𝜔)/(2𝑅𝑖(𝜔)) 

 

This creates the foundation for phase and amplitude control. 

The optimal velocity 𝑉𝑜𝑝𝑡(𝜔) is calculated thanks to a feedforward of the excitation force yielding 

an optimal velocity reference signal which can then be tracked by a controller with the restriction of 

having 𝑣𝑜𝑝𝑡(𝑡) in phase with 𝑓𝑒𝑥(𝑡). 

Again though, the excitation force transfer function 𝐻𝑣(𝑠) = 1/(2𝑅𝑖(𝑠))becomes non causal. This 

problem can be approximately solved if the future excitation force can be predicted or by 

approximating the transfer function 𝐻𝑣(𝑠) with a causal counterpart. 

 

In the next chapters, some examples of commonly applied control strategies will be presented. 

The presented strategies will be divided in two groups, reactive control, and resistive/bang-bang 

control. 
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3.4.4 Resistive/bang-bang control strategies 

This first generic category of control strategies includes control strategies which no not require 

reactive power flow. Although this inherently causes the control strategy to deviate from what would 

be the optimal control model, they allow to design simpler PTOs which do not need to handle 

reversible power flows or high reactive power peaks.  

 

3.4.4.1 Resistive control  

Resistive control consists of tuning the PTO force based of the value of the PTO velocity. The control 

variable in this technique is thus represented by the proportionality constant between the PTO 

velocity and the PTO force (the damping coefficient). The main drawback of using this technique is 

that only the amplitude and not the phase of the velocity can be controlled. 

This technique is the simplest control technique which can be devised and can be seen as an 

approximation of impedance matching in which only the resistive part of the PTO impedance is used 

while the reactance is set to zero. This technique thus avoids the need for the PTO to be able to supply 

power but results in suboptimal control. 

The PTO or machinery force can be written as: 

𝐹𝑃𝑇𝑂(𝑡) = −𝑅𝑃𝑇𝑂 ∙ 𝑣(𝑡) 

Where, 𝑣(𝑡) is the velocity measurement and 𝑅𝑃𝑇𝑂 is the proportionality constant to be controlled. 

The optimal frequency dependent passive resistive control law objective can be written as: 

𝑅𝑃𝑇𝑂(𝜔) = |𝑍𝑖(𝜔)| 

For irregular waves, the value of 𝑅𝑃𝑇𝑂(𝜔) is usually set to a fixed value for each sea state, creating 

a discrete control strategy. 

 

3.4.4.2 Latching Control  

This control strategy was first introduced by Budal and Falnes in their work concerning heaving 

buoys [35]. The basis of latching control is to try and satisfy the phase condition described previously 

when talking about phase and amplitude control. 

In latching control, the motion of the device is blocked at specific points during a cycle, usually at 

the two extremum points of the displacement when the device velocity is null. This blocking of the 

device is performed in order to impose the device velocity to be in phase with the excitation force. 

Although this causes the velocity to be zero in parts of the cycle, it still allows for a greater energy 

capture because of the phase alignment of velocity and excitation force. 

For regular waves, the frequency for latching and unlatching will be fixed, but for irregular waves, 

the time interval between force maxima varies in time, not allowing a fixed latching and unlatching 

scheduling. Additionally, this technique requires the knowledge or at least a prediction of the future 
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wave excitation force since the unlatching must obviously occur before the peak force in order to 

allow the velocity profile to build up so to obtain matching peaks in time (same phase). 

An example of the evolution of system variables under latching control subject to a regular wave is 

presented in the following image where: 

- Red line = Excitation force 

- Blue line = Velocity 

- Black line = Heave position 

 

 
Figure 3. 7 - System variables under Latching control [33]. 

 

It can be easily understood that latching control works best when the excitation period is larger than 

the intrinsic resonant period of the device. 

 

The latching technique described above is also known as peak-matching latching control since it 

tries to match the peaks of the velocity and force signals [36] [37]. 

Another variation of latching control was suggested in the works of Falcão [38] and Lopes et al. [39]. 

Instead of aligning the peaks, which requires a prediction of the future excitation force, an estimation 

of the instantaneous force is used to trigger latching and unlatching. The proposed principle simply 

involves releasing the buoy once a certain force threshold has been passed. This technique is also 

known as threshold unlatching control. 

Whatever the latching implementation may be, during the unlatched period of the motion, the PTO 

resistance 𝑅𝑃𝑇𝑂 is usually kept constant at a value which is optimized based on the current sea state 

which resembles resistive control. 

This is obviously an improvement over simple resistive control since although the resistance value 

may still be calculated and optimized in the same manner, the devices motion is tried to be kept in 

phase with the excitation force which is one of the conditions for optimal control, allowing for greater 

energy capture. 
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3.4.4.3 Clutching Control  

Clutching control, also sometimes known as declutching control, has the same goal as latching 

control, to achieve phase matching between the excitation force and the device velocity. The 

difference between latching and clutching is how this is achieved. In latching, the PTO resistance is 

switched between a constant value and a value ideally equal to infinity which causes the device to 

halt. In Clutching instead, the device is not clamped, but instead the PTO is clutched or decoupled in 

specific point of the cycle causing the PTO resistance to switch from a constant value to a value equal 

to zero. 

An example of the evolution of system variables under clutching control subject to a regular wave is 

presented in the following image: 

 

 
Figure 3. 8 - System variables under Clutching control [33] 

 

Clutching control is most effective when the WECs intrinsic resonant period is larger than the period 

of the excitation force. This is the opposite working condition as for latching control. 

Again, as in latching control, when the device is not clutched, the control law is resistive. 

For both latching and clutching, the control goal is to apply the correct switching sequence to 

maximize power absorption subject to the constraints imposed by the latching or clutching 

mechanisms and the WECs dynamics.  

 

3.4.4.4 Joint Latching and Clutching Control  

As stated earlier, latching control is most suitable when the device intrinsic resonant period is smaller 

than that of the excitation force, while for clutching the opposite is true. Because of these conditions, 

both latching and clutching are most suitable only in a well-defined excitation force frequency band 

based on the intrinsic resonant period of the WEC. A substantial increase in energy absorption can 

be achieved if both techniques are applied on the same system depending on weather the current 

excitation force has a larger or smaller period with respect to the device intrinsic period. 

This technique has been successfully implemented in [40]. 
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3.4.5 Reactive control strategies 

As the name suggests, reactive control strategies are those control strategies which involve reactive 

power flow.  

 

3.4.5.1 Reactive loading control  

By adding a stiffness control term to resistive control, it’s possible to obtain what is known as reactive 

loading control. 

𝐹𝑃𝑇𝑂(𝑡) = −𝑅𝑃𝑇𝑂 ∙ 𝑣(𝑡) −  𝐾𝑃𝑇𝑂 ∙ 𝑥(𝑡) 

 

Where, 𝐾𝑃𝑇𝑂 is the additional stiffness coefficient. 

In this work the damping coefficient (𝑅𝑃𝑇𝑂) will be referred to as C while the stiffness coefficient 

(𝐾𝑃𝑇𝑂) will be referred to as K. 

Reactive loading control, in principle, allows for perfect phase and amplitude control. As stated by 

Slater et.al [31], when incoming waves have a constant frequency equal to the resonant frequency of 

the WEC, the behavior only depends on the damping factor of the device, which, if set correctly, 

allows for maximum efficiency. 

Thus potentially, reactive loading control has the ability to provide optimal control, but this is an 

easy task only if the ideal condition of sea states composed of linear single frequency sinusoidal 

waves. As stated in chapter 3.4.3, optimal WEC control leads to a non-causal problem which in turn 

requires the prediction of the future excitation force values. 

Another difference between ideal impedance matching and what can be achieved using reactive 

loading is that ideal impedance matching may require optimal damping and stiffness coefficients 

which may not be feasible because of inherent constraints of the WEC which in turn leads to 

saturation phenomena of the achievable forces and displacements. Additionally, for point absorbers 

the optimal stiffness coefficient is likely to be negative [38]. Although this can be achieved with the 

use of power electronics, the resulting system may become unstable if the control stiffness exceeds 

the hydrostatic and mooring stiffness of the wave energy converter. For these reasons, limitations on 

the control parameters must be imposed, which in turn may lead to sub-optimal control in some 

scenarios. 

With all of the above considerations, reactive control is usually not used in the continuous time form 

to try to achieve optimal energy extraction through time varying damping and stiffness coefficients, 

instead it is most often used in a tabular manner involving an offline optimization procedure to 

calculate the most effective damping and stiffness coefficients for a given range of sea states defined 

by statistical measures of the wave period and amplitude. Hence, sub-optimal values for the control 

parameters are used. Clearly, a finer gridding of the scatter table and an accurate modelling procedure 

will produce a higher overall efficiency, still, because of the discrete nature of the gridding strategy 
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and because of inherent differences between the model and the physical device, this technique is 

prone to modelling errors.  

A solution to the modelling errors is to optimize the control parameters online or over a specified 

time horizon through a model free strategy. An example of such kind of implementation is given in 

this thesis. Omitting the use of a model and using an online model-free strategy avoids modelling 

errors, allowing for a more accurate parameter optimization. Additionally, most model free 

techniques are able to continuously adapt to changing external variables affecting the relation 

between sea state, control parameters and power absorption such as phenomena caused by the aging 

of the device. 

 

An additional further improvement could be achieved if the WECs response was adapted on a wave-

by-wave basis. Machine learning techniques such as those used in [41] can be used to predict future 

wave height and period, which, together with a model free approach and an online optimization of 

the parameters could potentially allow to firstly learn the optimal parameters for a given wave 

condition and to then dynamically change the control parameters based on the predicted incoming 

wave, potentially resulting in a much larger energy capture than what can be obtained with discrete 

reactive control. The topic of wave forecasting has been extensively studied by Fusco and Ringwood 

[42]. 

 

3.4.5.2 Model predictive control (MPC) 

In recent years, one of the most promising control methods to be used on WECs has been model 

predictive control. Model predictive control uses a dynamic model of the system together with a 

feedback of the controlled variables to select an optimal control action at each sample time. This is 

achieved through a quadratic optimization of a cost function based on the predicted model behavior 

over a specified time horizon with a moving window, which in turn allows a certain degree of 

prediction. Additionally, MPC has the inherent ability to handle constraints in the values of the 

control variables, which as stated before is fundamental when dealing with control of WECs. 

Model predictive control applied to WECs was first proposed Gieske in 2007 [43]. 

Dozens of other studies have been performed since, with many showing promising results [44], [45]. 

For all it’s good attributes, model predictive control also has its flaws. Under energetic wave 

conditions, the accuracy of linear wave theory decreases, and non-linear interactions between the 

WEC and the impacting waves become significant. Under such conditions the accuracy of the model 

used by model predictive control will most probably drop significantly, causing the control strategy 

to become less efficient. Furthermore, Tona et al. have shown that MPC can suffer from measurement 

noise in the wave elevation measurement and in its forecast [46]. 
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3.5 Challenges  

The main challenges with WEC control can be usually traced to different root causes, with the most 

evident being the non-causal nature of the control problem itself, the highly non-linear interactions 

for rough and uneven sea states, the inherent modelling inaccuracies within model-based strategies. 

As stated in the previous chapter, optimal WEC control is frequency dependent, which requires the 

need to continuously vary the control parameters on a wave-by-wave basis in order to obtain the 

highest possible energy absorption. A solution not the problem of wave forecasting with the aim to 

then be able to apply a wave-by-wave (fast) control has been extensively studied through techniques 

such as machine learning, neural networks or autoregressive models [42] [47].  

A possible solution to the problem of the highly non-linear interactions which then inevitably lead to 

modelling errors and consequently suboptimal control actions, is to use a model-fee approach. 

The advantage of these approaches is that no model is used as a basis of the calculation of the control 

parameters to be used, thus avoiding modelling errors and also having the possibility to adapt to any 

changes in the behavior of the WEC. A parallel to this strategy is to define the model of the WEC 

with the use of machine leering techniques as proposed by Valério et al. [48]. 

 

 

3.6 Proposed control solution 

The proposed control solution aims at resolving some of the issues presented in chapter 3.5 by using 

a model free approach. This approach will be focused in finding the optimal control parameters of a 

reactive control law. A reactive control law was chosen because it has two clear control parameters 

which can be tuned based on the sea condition, which makes it a perfect candidate for the work which 

needed to be performed, and also because reactive control laws have proven to be good candidates 

as WEC control laws [33]. 

The proposed solution starts by considering each point absorber in the deployed array of point 

absorbers as an individual of the population of a genetic algorithm [49]. In this framework, each 

individual carries as genetic information the control parameters (stiffness and damping) currently in 

use.  

Regarding the fitness measure of each individual, the control system in a WEC aims at maximizing 

the energy absorbed by the device over a certain period of time T. Since the instantaneous gross 

power for a point absorber is given by the product between the wave energy converter heave velocity 

�̇�(𝑡) and the force applied by the PTO 𝑓𝑃𝑇𝑂(𝑡), the final control aim can be expressed as: 
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To this end, the fitness of each individual in the genetic algorithm was defined as the average 

absorbed power over a predefined and fixed time span. 

With each individual carrying as genetic information the control parameters used to obtain a certain 

fitness, i.e., a certain average power output, the genetic algorithm framework could be used as an 

optimization algorithm to find the optimal control parameters in a collaborative manner, with the 

population of the algorithm evolving over time to reach increasingly better control parameters. 

To achieve this, an optimization procedure corresponding to an independent genetic algorithm was 

performed for each discrete sea state encountered, considering for example, the use of a wave buoy 

to provide the information of what the current sea condition affecting the array is. 

This procedure had to be performed on discrete sea states instead of on a global perspective of all the 

encountered sea conditions since the latter procedure would lead to a single couple of control 

parameters which would be optimal in a global sense but would be sub optimal in whatever sea 

condition they encountered. Furthermore, the optimum of such global landscape would be 

continuously changing based on the encountered sea states and thus on the encountered information, 

leading to a continuously morphing optimization landscape. 

The solution proposed until now has the goal of finding the optimal control parameters of a reactive 

control law for each discrete sea condition considering the average power absorbed over a predefined 

timespan. As can be noticed this can be categorized as “discrete control”, where the control 

parameters are not chosen on a wave-by-wave basis. 

To try and improve the control strategy, a continuous control was then implemented with the use of 

feed forward and long short term memory (LSTM) neural networks. 

Once the optimization in each sea state has reached satisfactory results and the algorithms have 

converged, the data acquired during the optimization procedure can then be used to train a neural 

network to produce the control parameters in a continuous and real time manner, independently of 

the current sea state. 

This can be achieved by training the network using as inputs to the net the wave force data recorded 

during the optimization procedures, and as outputs, the optimal control parameters for that specific 

force sequence. 

This will allow the network to learn dependencies which are not directly related to the specific sea 

state, allowing for a continuous control instead of a discrete control. 

 

The whole purpose of using a genetic algorithm as an online optimization strategy is to not rely on a 

model to optimize the control parameters, but to rely on physical data. 

Although the whole approach is thus based around a model free ideology, for the purposes of this 

thesis, a model of the point absorber was used instead of a real physical point absorber to simulate 

the optimization procedure. 
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It must be noted that this does not in any manner impact the structure of the problem itself, and the 

developed strategy may be directly applicable to a real-world scenario. 

 

With the above framework in mind, the next chapters will be dedicated at giving an in-depth 

explanation of how the genetic algorithm and neural networks were developed and lastly, how they 

were used together to control in a collaborative and model free manner an array of point absorbers. 
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4 – The genetic algorithm 
 

4.1 Considerations to be made when designing a genetic algorithm 

Genetic algorithms are optimization algorithms belonging to the family of metaheuristics, 

specifically in the subfamily of population based, nature inspired algorithms. 

This family of algorithms employ a population of individuals each carrying a set of genes 

representing a candidate solution to the optimization problem. These individuals interact with each 

other and with the environment with the aim of increasing the average quality of the solutions that 

the population carries, i.e., the fitness of each individual. To achieve this, mechanisms which try to 

mimic natural evolution and selection are used. Some of the main processes used are parent selection, 

reproduction, mutation and survivor selection.  

The above-mentioned mechanisms all need to contribute to the final goal, evolving the population 

such that one or more of the individuals reach an optimal or quasi optimal solution in the optimization 

landscape.  

Because genetic algorithms belong to the family of metaheuristics the algorithms are, by nature, 

stochastic. 

Because of this natural stochasticity introduced in these algorithms, two driving forces to success 

can be distinguished, exploration and exploitation. 

Generally speaking, exploration can be seen as the tendency of an algorithm to let its individuals 

explore the space of solutions, without using any knowledge of the optimization space. Exploration 

is an important facet of the optimization algorithm since it allows individuals to explore the solution 

space and to possibly find new solutions with higher quality and to then share this information to 

other individuals. Without exploration, an optimization algorithm would only focus on the current 

knowledge of the optimization space and would most probably converge very quickly to a local 

optimum or would stall, a phenomenon called premature convergence. 

Exploitation instead is the opposing force to exploration. Exploitation, as the word suggests, is used 

to exploit current knowledge of the optimization landscape to drive further improvement of the 

population fitness. If no exploitation was introduced into the algorithm, the result would be a 

completely stochastic algorithm driven by random sampling and would probably fail to converge to 

a solution for the problem at hand. 

It is thus important for these kind optimization strategies to always keep both exploration and 

exploitation of the solution space in use. The degree of exploration vs exploitation depends on the 

optimization problem and may even be changed during the run of a single problem as the landscape 

evolves in time or the population reaches a certain position in the parametric space. 
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For a simpler, unimodal optimization space, the algorithm may be tailored to focus more on 

exploitation instead of exploration since there would be less danger of trapping in local minima. For 

highly multimodal problems instead, a careful balance between exploration and exploitation may be 

needed to prevent both a quasi-random sampling of the space and to prevent trapping in local minima, 

known as premature convergence. The issue of exploration and exploitation has been reviewed in 

depth in [50]. 

In a genetic algorithm, the main drivers of exploration and exploitation will be both the qualitative 

parameters chosen, like the kind of crossover operator or the kind of parent selection operator, and 

the quantitative parameters used by such operators, such as tournament size or mutation probability. 

Most importantly though, the quantitative parameters will mostly affect the explorative and 

exploitative behavior of the algorithm. 

Operators used within a genetic algorithm can be divided in two broad categories depending on what 

they promote, exploration or exploitation. 

- Variation operators, such as crossover and mutation, add an exploratory behavior and create 

the necessary diversity within a population to prevent stagnation or premature convergence. 

- Selection instead is used to exploit the current knowledge and to drive the quality of the 

solutions carried by the population. 

The quantitative parameters behind the variation operators which drive exploration are specific to 

the kind of crossover and mutation implementation, but generally the most effective way of 

increasing exploration in a genetic algorithm is to increase the mutation rate. 

A higher mutation rate increases the probability that newly produced offspring get mutated, randomly 

changing their genome thereby exploring new random solutions. 

Regarding selection operators, depending on the specific selection operator chosen for both parent 

selection and for survivor selection, there usually exists a quantitative parameter defining the 

selection process which can be used to vary what is known as the selection pressure. 

An example of such parameter is the tournament size for tournament selection. 

Selection pressure can be seen as the pressure driving better solutions to be picked for both 

reproductive purposes and for survival. As selection pressure increases, solutions with a higher 

fitness will be more likely to reproduce and survive and less-fit solutions are correspondingly more 

likely to be discarded. 

Selection pressure can be measured in many different ways [51] but as stated above, the driver behind 

selection pressure can always be related to the setup of the selection mechanisms 

According to how much selection pressure is acting on the GA, the search mechanism may present 

two extremes.  

One extreme occurs when selection pressure is null. In this situation the search is completely 

stochastic and may resemble a Monte Carlo method [52], randomly sampling the solution space.  
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On the other extreme, when the selection pressure is very high, the stochasticity in the problem 

becomes almost insignificant and the algorithm will closely resemble a local hill-climbing search 

method.  

In the case of the former extreme, the search will obviously become more inefficient since the 

knowledge of the fitness of each individual will simply be wasted, leading to a very long execution 

time of the algorithm. 

In the latter case instead, the algorithm will blindly follow the fitness information of the most fit 

individual of each generation, and with a reduction of the introduced stochasticity this will lead to 

confinement to a local optimum point, also known as “premature convergence”. 

In both cases the fundamental workings and benefits of how a genetic algorithm, and in general, how 

an evolutionary algorithm works, will be lost. 

It is thus important to always have a balance between selection pressure and the stochasticity 

introduced into the problem. 

Historically, it was common practice to try and produce an algorithm which would exhibit low 

selection pressure at the beginning of the run, and a strong selection pressure at the end of the run. 

The idea behind this method was that this would allow the algorithm to initially explore more of the 

solution landscape, while at the end of the run, when close to the optimum, it would allow to fully 

exploit the current knowledge to reach such optimum.  

Although this might seem like a sound reasoning, a few problems with this approach might arise: 

 

- Unless dynamic feedback is given on how close the run is from completion, or a priory 

knowledge is used to determine approximately how long run is going to take, there is no way 

of precisely implementing predetermined rise in selection pressure over a complete run. 

- Evolutionary learning, especially if the optimization landscape is highly multimodal, is a 

more dynamic process than what the previously described technique would seem to propose. 

In some stages of the run, high selection pressure may be beneficial because the population 

may find itself on a mostly smooth optimization surface to be climbed, and a strong selection 

pressure may be beneficial to exploit the current situation.  

In other stages of the run, the population may risk trapping in a local minimum, and a low 

selection pressure is beneficial to explore solutions outside the local minimum valley so that 

premature convergence does not occur. 

Considering these possible scenarios, it is obvious that there is no certainty about at what 

point during the run they may occur. Additionally, the order in which they occur will most 

certainly be mixed in most cases.  

As can be noticed, tuning the selection pressure of an algorithm is still a difficult task and remains 

an important factor to be studied in the field. 
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Setting up the algorithms to have a well-balanced selection pressure is not the only way to ensure 

that the algorithm will converge without risking either a premature convergence or no convergence 

at all.  

As stated before, the selection operators are only part of the complete process needed to evolve a 

population of a genetic algorithm.  

The other equally important parameters that need to be set correctly are those of the variation 

operators which are mainly responsible for the exploratory behavior of the individuals within the 

population. These parameters include the right choice of crossover operator and the quantitative 

parameters defining it, the right choice of mutation operator and the quantitative parameters defining 

it, and in general a correct setup of the algorithm structure. 

 

All of the above considerations are needed in order to produce an algorithm which is neither too 

explorative, which would lead to a very sparse and diverse population and a failure to converge to a 

solution, nor too exploitative which would lead to a population whose individuals become very 

similar very quickly, causing a loss in diversity in the population which then consequently leads to 

the population converging to a suboptimal region of the search space. 

 

 

4.1.2 System stability for C and K values 

Because a genetic algorithm does not inherently have any boundaries within which it should generate 

candidate solutions, particular attention had to be placed on whether the generated solutions of the 

parameters for the reactive control law led to a stable or unstable system. 

To this end, the 1 DOF model of the point absorber was used to test for which couples of C and K 

would the system become unstable. 

This information could then be used to properly design the genetic algorithm so that it would not 

generate solutions outside the stability bounds. 

The aim of the test was to evaluate for which couples of the control constants would the eigenvalues 

of the “A” matrix of the state space representation of the point absorber have a real part larger than 

zero. 

An initial range of the parameters to perform the test was chosen as: 

Parameter Min Max 
C -100 [Ns/m] 3 ∗ 106 [Ns/m] 
K -2*kh 3*kh 

 

Where kh is the hydrostatic stiffness parameter whose values is 1,9743*10^5 N/m for the considered 

point absorber model. 
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Using the above ranges, two vectors of C and K values to be fed to the pint absorber model, together 

with a reference sea condition, were created. 

These two vectors were then used to create a gridding of the two C and K parameters allowing to see 

for which ranges was the system stable (real part of eigenvalues of A matrix < 0) or unstable (real 

part of eigenvalues of A matrix > 0). 

Because only one positive eigenvalue is needed to render the system unstable, and because the A 

matrix is a square matrix of dimension eight, at each iteration with a couple of control parameters, 

only the eigenvalue with largest real part was plotted. This procedure saved time and was more 

accurate than plotting the real parts of all eight eigenvalues. 

The resulting plot is the following: 

 
Figure 4. 1 - Plot of the largest eigenvalue of A matrix with varying stiffness and damping parameters 

 

Results showed that the whole range of C parameters did not cause instability, while for a K value 

lower than -kh, the system became unstable. 

These results allowed to limit any individual within the genetic algorithm to have Genene within the 

predefined stable bounds. 

For what would concern a possible real application, this test could be done on a meta model of the 

real device. The final results could then be used as guidelines to design bounds with a given degree 

of conservativeness in order to prevent possible unstable working conditions. 
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4.2 Genetic algorithm design 

Although the underling idea and goal is usually common between all forms of a genetic algorithm, 

the mechanisms and strategies which form the algorithm itself vary based on the kind of problem 

that needs to be solved and on the variables that the algorithm needs to handle. 

In the following sections, a description will be given concerning which operators were chosen to set 

up the genetic algorithms for the problem of optimizing the control parameters of the reactive control 

law, namely the damping coefficient C and the stiffness K, for each sea condition. 

 

4.2.1 Representation 

The first step to take when designing a genetic algorithm is to link the real-world problem with the 

genetic algorithm. This procedure entails translating or “representing” the variables of interest for 

the given optimization problem, into variables which can be manipulated by the genetic algorithm. 

Solutions in the variable space of the original problem are called phenotypes while solutions encoded 

in the optimization space of the genetic algorithm are called genotypes. The purpose of the 

representation strategy is to find a mapping between the phenotypic solutions and their genotypic 

counterparts which will then form the genes belonging to the individuals of the population of the 

genetic algorithm. 

When choosing or designing a representation strategy, a few important considerations need to be 

made: 

- Each solution of the phenotypic space needs to be explorable: It’s important to have a 

mapping between phenotypes and genotypes that does not inherently limit the exploration of 

the phenotypic space unless specified. This would quite obviously be a limitation in such 

that possible good solutions may never be explored simply because they were not accessible. 

In some applications although, the phenotype space is naturally discrete, or may be limited 

by design. In such cases, a representation may perfectly fit such limitations without causing 

a loss of potential solutions.  

 

- The mapping of elements must be an injective mapping: When a solution of the 

optimization problem (a genotype) needs to be translated back into a solution of the real 

physical problem (a phenotype) it’s important for this mapping to be injective, meaning that 

the genotypic solution must correspond to one and only one phenotypic solution. 

 

- The mapping must be meaningful: Lastly it is important to note that when choosing a 

mapping, it is important to make sure that each possible solution generated by the genetic 

algorithm can be translated back into a meaningful solution to the original real-world 

problem. 
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Following the above guidelines, the chosen representation was a real representation strategy. 

Real representation in our case entailed directly using the genotypic variables as phenotypic 

variables. Since the variables in the phenotype space were the two control variables for the reactive 

control law, namely C and K, these two variables were directly used as the genes which each 

individual of the genetic algorithm would carry. 

This approach allowed to easily follow all three guidelines proposed above, but it also allows the 

designer to have a good tangible feel of all the following design steps he must take since the variables 

witch the genetic algorithm will manipulate are the same variables used in the real physical problem. 

 

4.2.2 Evaluation function (Fitness Function) 

The purpose of the fitness function is to take the gene of an individual and to evaluate how well it 

fulfills the criterions for which the algorithm is optimizing for. So simply put, it takes as input the 

gene of a candidate solution previously decoded in to its phenotypic equivalent and gives as output 

how fit the solution to the problem at hand is when using that particular phenotypic solution. 

This function is of particular importance since it’s the driver for improvements in the population and 

it’s the basis of one of the main mechanisms within the genetic algorithm structure, selection.  

To give an example, if the problem were to maximize the function 𝑥2, and for example we were 

considering a binary representation, an individual with gene 1001, which would correspond to a 

phenotypic solution equal to 9, would have a fitness of: 92 = 81.  

For the specific problem of maximizing the absorbed energy over a predefined period of time, a 

simple fitness function that may be used is the average power output over such period of time. 

In order to correctly choose a time period over which base the fitness function, a spectrum analysis 

of the wave conditions under consideration had to be performed. 

 

4.2.2.1 Spectrum analysis of wave conditions  

An analysis of the wave conditions considered and the noise that affects them was needed in order 

to properly choose the time over which evaluate the fitness function.  

This parameter would not only affect the fitness function itself but would also affect the simulation 

running time of the algorithm, or in a physical application, the optimization time needed by the 

algorithm to reach a solution. This is because the timespan to be chosen coincides with the time each 

generation will be tested for to retrieve the fitness of each individual. Since the fitness of each 

individual must be evaluated at each generation, the time over which the average power must be 

evaluated is obviously of great importance to assure both a good solution to the problem, but also to 

converge in a timely manner to such solution and to take full advantage of a possibly short sea state. 

The main considerations which needed to be considered were 
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- Too short of a time span would lead to a fast algorithm, with each generation elapsing quickly 

and with the algorithm being able to fit many generations in a short time window, allowing 

for fast convergence. The downside would be that the average power reading over a very 

short time window would firstly not consider the full dynamics of a given sea state and 

secondly, it would strongly be affected by the random noise components affecting the sea 

state. This would most probably guide the genetic algorithm to a suboptimal solution. 

 

- A very long timespan instead would do the very opposite. A long time to evaluate the average 

absorbed power would allow to fully appreciate the dynamics of the given sea state and 

would make the random noise affecting the reading insignificant, leading to a robust fitness 

evaluation of the individual. The downside to having a very long time span is that it would 

take a very long time for the algorithm to converge to a solution. This would be particularly 

detrimental for sea conditions which are rarely observed. 

 

The spectral analysis showed that a 20-minute time window would be a good trade-off between a 

fast algorithm, and an algorithm where the random waive noise components wouldn’t greatly affect 

the average power measurement. 

This consideration is also supported by previous work from the research team of the MOREnergy 

Lab which can be read in [53]. 

 

4.2.3 Population 

The population of a genetic algorithm is composed of individuals, each carrying a set of genes 

representing a single solution in the genotype space. As generations elapse, the population will 

evolve to reach the optimum of the fitness function.  

An important parameter to be chosen is the population size, which refers to the number of individuals 

which are present in each generation. 

For the specific problem at hand, a fixed population size had to be chosen since each individual in 

the population represents an actual physical point absorber of the array.  

Regarding the population size itself, an array of 16 point absorbers was considered. This choice 

comes from both an implementation and a computational point of view. Sixteen point absorbers is a 

reasonable compromise which strikes a balance between a realizable project, with a reasonably small 

number of devices, and having enough devices to be able to solve the optimization problem using a 

genetic algorithm. 
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4.2.4 Initialization procedure 

With the representation and fitness function defined, the initialization procedure for the first 

generation of individuals had to be chosen. 

To create the first generation of a genetic algorithm, an initialization procedure must be defined since 

no previous generation exists from which the first generation can evolve from. 

Different initialization techniques exist in the literature, with some techniques taking advantage of 

partial knowledge of the optimization landscape to initialize part of the population in strategic points 

of the landscape. 

When considering evolutionary algorithms (EAs) in general it has been shown that good initial 

guesses can facilitate EAs to locate the optimum [54] [55]. 

When dealing with black box optimization, there exists no a priori knowledge about the search 

landscape of the given problem, therefore it is not possible to label an initial population as good or 

bad. For these classes of problems, the most common initialization procedures employ pseudo-

random number generators (PRNGs) to create the initial population. 

For this work, in order to generalize the process as much as possible, the initial candidate solutions 

were generated by picking the gene values from the continuous uniform distributions of the variables 

C and K using the know stable ranges previously computed by testing the values of the eigenvalues 

of the A matrix belonging to the state space representation of the 1DOF model of the pint absorber. 

Specifically, the utilized MATLAB function was the “unifrnd” function. 

 

4.2.5 Parent selection  

Parent selection is the stage at which parents are selected from the individuals of the current 

generation so that they can then be used to produce new individuals, the offspring. 

The parent selection strategy has to be carefully chosen since it’s one of the main operators of the 

genetic algorithm and it has been shown to be one of the main influences on the performance of the 

algorithm [56] [57]. 

Different selection strategies were tested for this work, including fitness proportionate selection [58], 

deterministic tournament selection [59] and stud selection [60]. 

The final choice fell on tournament selection for a number of reasons: 

- Tournament selection allows to easily choose or tune the selection pressure it applies by 

choosing the size of the tournament. 

A large tournament size will have a high probability of including the fittest member of the 

population or equivalently, a member with relative high fitness. 

This means that by using a deterministic tournament strategy, such individual will be chosen 

to be one of the parents that will produce offspring. A can be clearly understood, having a 



62 
 

large tournament will promote parents with high fitness, resulting in a large selection 

pressure. 

Taking the concept to the extreme, if the tournament size was equal to the population size, 

all parents would be equal to the best individual in the generation. This is obviously not 

desirable since only mutation would be capable of producing new genetic material, but it’s 

simply a boundary case scenario. 

Conversely, a small tournament size will have a smaller chance of having high fitness 

individuals within it, allowing for individuals with lower fitness to have a better chance to 

being chosen as parents. This strategy would then lead to a lower selection pressure. 

Again, considering a boundary case scenario, if the tournament size was equal to one, no 

selection pressure would be present, and all individuals would have equal chance of being 

selected as parents. 

 

- Tournament selection allows to maintain the selection pressure constant even as the run 

progresses and solutions become more and more similar.  

Although as explained in a previous section this might not be the perfect trend for selection 

pressure, and a dynamically changing selection pressure may deliver better performance, a 

constant selection pressure is definitely an improvement over a selection strategy which 

suffers from decreasing selection pressure such as fitness proportionate selection. 

 

- It has been shown that tournament selection is a robust selection scheme for noisy 

environments [61]. 

- Tournament selection has a good propensity to be tuned and to thus adapt to the optimization 

problem at hand. It was shown by Volker et al. [56] that tuning an algorithm equipped with 

tournament selection as a parent selection strategy returned remarkable result in terms of 

solution quality, algorithm speed and tuning effort. 

 

Once the selection strategy had been chosen, the number of parents to be picked and how many 

offspring they will produce needs to be decided. 

For the current implementation, I decided to pick sixteen parents for each generation and to have 

each couple of parents produce two offspring, so that the final number of offspring matched the fixed 

population size. 

It was obviously important to have the offspring population size to be equal to the predetermined 

population size since each offspring was directly linked to one of the physical point absorbers in the 

array. This would then allow to measure the fitness of each offspring with the usual reading of the 

average power absorbed over a twenty-minute time span.  
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It must be noted that although the total number of parents to be picked equaled the number of 

individuals from which the parents were picked, it does not mean that each member of the population 

got to become a parent, otherwise the parent selection strategy would be useless. 

Instead, each parent was picked by a single independent deterministic tournament selection strategy, 

allowing for each member of the population to be picked multiple times, or possibly none, in a given 

generation. 

To implement this strategy, a total of sixteen tournaments were run for each generation to pick the 

sixteen parents. Each time a couple of parents was selected, a corresponding couple of offspring 

would be produced. This process would repeat until all sixteen offspring were generated. 

 

 
Figure 4. 2 - Qualitative representation of deterministic tournament selection 

 

4.2.6 Crossover (Recombination) 

After each couple of parents had been selected using a tournament selection scheme, crossover was 

deterministically applied to produce two offspring from each parent couple. 

Crossover is used to merge the information contained in the parent’s genes to produce new genetic 

material, the offspring. 

Crossover is linked to the parent selection stage since, the purpose of the two operators combined is 

not to blindly produce offspring, but to produce offspring who most likely will have a higher fitness 

with respect to the parents which gave birth to them. This can be achieved by providing a healthy 

selection pressure throughout the algorithm, and by using an appropriate crossover mechanism to 

properly blend the genetic information of the two parents. 

A binary crossover strategy was used since, although crossover operators using more than two 

parents exist, the binary option is the most popularly used and additionally it provides a direct link 

to most biological reproduction mechanisms. 
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In particular, a whole arithmetic recombination strategy was used as crossover. 

Whole Arithmetic Recombination is a fully arithmetic recombination strategy. It simply involves 

taking the weighted sum of each gene from the two parents. This weighted sum is controlled by the 

parameter α which tells which parent will influence the weighted sum more greatly [62]. 

Two offspring can be produced by using: 

 

 

 

Where �̅� and  �̅� are the gene sequences of the two parents. 

The parameter α is used to tune the weight each parent has when forming the two offspring. 

It must be noted that when 𝛼 = 1/2 the two offspring will be exactly identical, thus it is usually 

preferred to maintain 𝛼 ≠ 1/2. 

 

4.2.7 Mutation 

After the offspring had been produced, a mutation procedure was used to produce the final mutated 

offspring. 

Mutation takes the original gene sequence from an offspring and slightly modifies it to produce the 

mutated version of the original offspring. This operator is used to introduce some additional 

stochasticity in the algorithm which helps in delivering a more effective search procedure in the 

optimization landscape.  

In general, it is desired to design a mutation operator such that the change it causes is random, 

unbiased and most often small rather than large. 

To meet the requirements listed above, the chosen mutation operator was a Nonuniform Mutation. 

The nonuniform mutation operator adds a value drawn from a Gaussian distribution with zero mean 

and with a predefined standard deviation. This kind of mutation assures that the additional value 

added to the gene is most likely small, and the probability of having a large mutation decreases as a 

function of the standard deviation chosen. 

The standard deviation of the Gaussian distribution will dictate how large will the mutation be on 

average and is thus often referred to as mutation step size.  

For this work, mutation was not applied deterministically to each offspring, instead a mutation 

probability was accounted for in order to only apply mutation with a certain probability distribution. 

This is generally the most common way to use mutation since it allows to benefit from mutation by 

exploring new solutions in the search space with an unbiased and randomic pattern, but, because it 

is not applied deterministically on all individuals, it also allows to prevent a disruption of the 
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evolution mechanisms of the genetic algorithm, which would then behave similar to a random search 

procedure. 

After mutation has occurred, the offspring should be theoretically ready to be evaluated, and their 

fitness function defined. Because the problem at hand needs to work with finite and well defined 

ranges of the optimization variables, before this evaluation could be performed, a truncation of the 

offspring gene values to the bounds of the optimization variables had to be performed. 

 

4.2.8 Survivor Selection 

Survivor selection is used to select the individuals which will “survive” and will go and form the 

next generation, from which parents can be picked, which will then produce offspring and the cycle 

repeats itself until a termination condition in met. 

Because the population size is fixed for this work, selection is needed in order to prevent the 

population size from continuously growing and it is also used to try and keep the better individuals 

while discarding the worst ones. 

The process of discarding the worst individuals although might need to be carefully regulated since 

in some scenarios, simply discarding all the lesser fit individuals and only allowing the fittest to 

survival may cause premature convergence to a local optimum. 

The main driving factors that are used for survival selection are either age or fitness. Age can be used 

to discard the “n” oldest individuals each time selection has to be performed while fitness-based 

selection usually discards the “n” less fit individuals. Stochasticity can be added if needed to make 

the processes nondeterministic. 

Different kind of survivor selection methods are available but generally, the offspring can either: 

 

- Directly form the next generation (if the number of offspring is equal to the population size). 

- Compete against each other only (if the number of offspring is larger than the population 

size). 

- Compete against each other and the previous generation. 

- No fitness-based competition occurs, the age of the solutions is used to determine who 

continues to the next generation (youngest) and who is left out (oldest). 

Since for the current implementation age is not seen as a driver to a good solution, competition based 

on fitness has been used in order to drive survivor selection. In particular, a competition between the 

previous generation and the relative offspring generation was used. 

As a mechanism to implement survivor selection, tournament selection was used. Differently from 

when used for parent selection, the individuals which participate in the tournament are now picked 

from the joint parent and offspring populations. In this way, parents and offspring are pit against each 
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other for survival. At each tournament, the winner is allowed to be one of the members of the next 

generation of individuals. Tournaments are run until the next generation is completed. 

Tournament selection was chosen because of all the good characteristics it possesses which were 

previously listed in section 3.2.5 related to parent selection. 

Additionally, it has been shown that, just as tournament selection shows good tuning characteristics 

for parent selection, it also shows a good ability to be tuned for survivor selection [56]. 

 

4.3 Tuning the genetic algorithm 

 

4.3.1 Introduction 

With the structure of the genetic algorithm defined, the next step to be taken was to define the various 

hyperparameters to be used within each step and operator of the genetic algorithm. 

Historically, hyperparameters such as mutation rate, mutation step size and tournament size were 

chosen without any specific empirical data showing that the chosen parameters would allow the 

algorithm to perform well on the specific problem. 

This practice was common since evolutionary algorithms in general were considered vary robust 

with respect to variations on the hyperparameters characterizing their operators, allowing 

practitioners to be confident that choosing hyperparameters that were in the general neighborhood of 

the optimal hyperparameters was good enough to achieve good performance from the algorithm. 

The following image shows how evolutionary algorithms were seen in the 1980s after Goldberg [63]. 

The image shows how evolutionary algorithms were seen as good search algorithms over a wide 

range of problems, and thus did not need additional tailoring to the specific problem to be solved. 

 
Figure 4. 3 - View of Evolutionary algorithm performance in the 1980s [62]. 

 

Although evolutionary algorithms are still considered quite robust with respect to variations in their 

hyperparameters, it was soon understood that by tailoring the evolutionary algorithm to the problem 

at hand, adding problem specific knowledge to the design of the algorithm would allow for a much 
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more performing optimization procedure. In this vie it is possible to transform the above graph by 

adding problem specific knowledge to a basic evolutionary algorithm in order to achieve better 

performance for a specific range of problems. 

 
Figure 4. 4 - View of evolutionary algorithms with added problem specific knowledge [62]. 

 

In order to achieve the above result, the hyperparameters (also called quantitative parameters) a 

tuning procedure was applied. 

In the following section the basic notions on tuning and the tuning method utilized in the genetic 

algorithm for this work will be presented. 

 

4.3.2 Tuning notions 

After the framework for the genetic algorithm has been decided, the parameters governing this 

framework and its operators must be selected. In these terms, designing a genetic algorithm is about 

selecting possibly good values for the parameters involved. It must be noted that the choice of such 

parameters is fundamentally different from the choice of the operators that made up the structure of 

the genetic algorithm. In other words, choosing between different parent selection strategies such as 

tournament vs stochastic universal sampling is different than choosing a crossover rate 𝑝𝑐 ∈ [0, 1]. 

This fundamental difference comes from the fact that the main operators belong to a finite domain 

with no ordering or distance metric, e.g., crossoveroperator ∈ {one point, averaging, uniform}, while 

the hyperparameters used by such operators belong to a subset of real numbers, thus having a natural 

structure with ordering and distance metrics. This notion is fundamental for searchability. For 

parameters that belong to an ordered structure, and which have a distance metric, heuristic search 

and optimization methods can be used in order to find optimal parameter values given a performance 

function to maximize or a cost function to minimize. For parameters that do not belong to this 

category, such as crossover operators or selection strategies, the only option to find the optimal 

operator is sampling.  
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As suggested by Eiben et.al [64] it is thus important to differentiate the two kinds of parameters, and 

the naming convention used from here on will be qualitative parameters for operators such as 

tournament selection, roulette wheel selection etc. while quantitative parameters will be used for the 

parameters which belong to a numerical structure such as the mutation step size. 

4.3.3 Tuning vs control 

Regarding the choice of qualitative parameters, as stated previously, this procedure was often 

performed choosing the values to be used simply through experience, or by using values which were 

thought to allow good performance over a wide variety of problems, meaning that the chosen 

parameters were never specifically tailored to the problem to be solved. 

An opposite view on the problem of choosing qualitative parameters is to use information about the 

problem in order to make an informed decision on the parameters to be used.  

In the filed of evolutionary computing, this procedure can usually be distinguished in two 

approaches: 

- Parameter tuning: Where the qualitative parameters are established before the run of the EA 

by optimizing such parameters through the use of a performance function for the EA. 

Additionally, the parameters do not change for the entire run. 

- Parameter control: Where the qualitative parameters are established during the run thanks to 

feedback from the algorithm state. In this case, parameters are given an initial value, and are 

then allowed to evolve as the algorithm is running. 

Both techniques have been extensively studied in recent years and are both a definite improvement 

over using “standard” settings. 

For this work, parameter tuning was chosen over parameter optimization since parameter tuning was 

deemed to provide good results with relatively small effort compared to parameter control, which 

would have also added an extra layer of complexity to be managed online during the algorithm run.  

Finally, the choice of using parameter tuning is also justified by the fact that the additional 

complexity of parameter control is usually justified for performance landscapes which dynamically 

change during the run [65], while for the purpose of this work, the performance landscapes are static. 

 

4.3.4 Tuning procedure layout 

The tuning procedure involves tuning the genetic algorithm quantitative parameters while allowing 

the underlying genetic algorithm to use such parameters to solve a target problem in order to get 

feedback on how the used quantitative parameters allowed the algorithm to perform on the 

optimization problem. This feedback is then used to optimize the quantitative parameters through a 

secondary optimization procedure. This process is represented in the flow chart below [64]. 
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Figure 4. 5 - Control flow (left) and information flow (right) 

Using the nomenclature in the image above, it is possible to distinguish: 

- The Design Layer, responsible for the optimization of the quantitative parameters of the 

algorithm layer below. As information, the design layer receives a value from the algorithm 

layer representing the quality of the parameter vector being optimized (in this case the quality 

of the parameter vector fed to the genetic algorithm). The Design layer then uses this 

information in order to optimize the vector of quantitative parameters. 

- The Algorithm Layer, which corresponds in this case to the genetic algorithm. As 

information the genetic algorithm receives feedback from the Application Layer about the 

solution quality (or fitness) each individual currently possesses during the run and uses this 

information to try and solve (optimize) the problem at hand. 

- The Application Layer, which contains the original problem which the genetic algorithm is 

being designed to solve. This layer is obviously responsible for giving information to the 

genetic algorithm about the current fitness of each individual in the optimization landscape. 

To avoid confusion regarding the quality of the individuals of the genetic algorithm and the quality 

of the parameter vector used by the genetic algorithm we denote as fitness the quality of a given 

individual in the original problem optimization landscape, while we denote as utility the quality of a 

given parameter vector being used by the genetic algorithm. 

A fundamental difference between the fitness of the individuals of the genetic algorithm and the 

utility of the parameter vectors is that the fitness of each individual in the genetic algorithm is 

deterministic, meaning that if two separate calculations of the fitness of an individual carrying a 

given set of genes is performed using the underlying function to be optimized, the fitness value will 

not change in time since the fitness landscape for the problem at hand does not dynamically change 

in time. On the other hand, the utility value of a given vector of quantitative parameters will be 

necessarily stochastic because of the stochasticity of the genetic algorithm using such vector of 

parameters. If two runs of a genetic algorithm are performed using the same vector of parameters, 

the resulting utility measure will differ between the two runs, this is due to the fact that because 

genetic algorithms are stochastic in nature, two runs with identical setup will evolve differently, 

giving different utility measure values. 

Because of this, the utility measure needs to be defined in some statistical sense. 
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Furthermore, the utility measure must be defined in order to reflect the target performance of the 

genetic algorithm. Based on the problem at hand and on the user’s preference, one might define a 

utility measure more focused on algorithm speed, or for example more focused on algorithm 

performance in terms of quality of the final solution. 

In the next section, algorithm quality and performance functions will be addressed, which will form 

the basis of the definition of the utility measure. 

 

4.3.5 Algorithm performance and utility measure definition 

When defining the performance of a given algorithm using a vector of quantitative parameters there 

are two main factors influencing performance: algorithm speed and solution quality. 

Most often the performance metric and thus utility measure will take into account both of these 

factors when evaluating an algorithm implementation. 

Solution quality can be easily related to the fitness function of the genetic algorithm, while algorithm 

speed is usually related to either the running time or the number of elapsed evaluations (generations). 

These two factors can then be used to define different performance measures used to evaluate the 

performance of an algorithm on a single run: 

- Given a predefined maximum running time or number of elapsed evaluations, the algorithm 

performance is defined as the best fitness value in the population at termination 

- Given a predefined fitness level, algorithm performance is defined as the time needed to 

reach such fitness level 

- Given a predefined maximum running time and a target fitness level, the algorithm 

performance is defined through the notion of success. If the algorithm reaches the fitness 

target within the predefined time window, the run is marked as successful. 

Because of the stochastic nature of genetic algorithms, the performance measure needed to be 

evaluated not on a single run, but on multiple runs in order to have a statistically relevant measure. 

Considering multiple runs of the genetic algorithm and by taking the average performance over all 

runs, the performance measured defined above for a single run take the names of: 

- Mean Best Fitness (MBF) 

- Average Number of Evaluations to Solution (AES) 

- Success Rate (SR) 

For this work, the performance measure, which corresponded to the utility measure of the parameter 

vector used for the run, was chosen as the mean best fitness. 

When using mean best fitness, two important considerations need to be addressed: 

- The time measure to be used 

- The maximum running time limit 

- The number of evaluations over which the MBS is calculated 
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Regarding the time measure to be used, many options are available and have been used in the 

literature. Some examples include the number of fitness evaluations, the CPU time or the wall-clock 

time. For this work, the number of fitness evaluations was chosen as a time measure. This choice 

was made in order to eliminate the effects coming from the particular hardware and software 

implementations that were used for the optimization procedure [66], but more importantly because 

in a real world implementation of the proposed algorithm, what really defines the time needed to 

reach a good solution is the number of fitness evaluations, since each fitness evaluation may last 

anywhere from 15 to 40 minutes, depending on the implementation strategy proposed by the used. 

In this work, each fitness evaluation is considered to take 20 minutes, thus the driving factor behind 

algorithm speed will be the reduction of the number of fitness evaluations needed. 

 

The maximum running time limit in order to define the performance function through MBS had to 

be carefully chosen since it would define the stopping time at which each optimization would be 

evaluated. If a large number of maximum evaluations were to be chosen, algorithm instances which 

reached a good solution, without much regard for speed would be favored, on the other hand, if a 

really small number of maximum evaluations were to be chosen, algorithms which quickly improved 

the fitness of individuals would be favored, but without any guarantee that such algorithm 

implementations would guarantee steady improvement over a longer time period. 

A balance had to be struck between favoring algorithm instances which reached good solutions 

quickly, and algorithm instances which reached good solutions, given a very long computational time 

window. 

A basic idea of how many generations would a genetic algorithm need to reach a good solution had 

already been acquired through different tests with various GA implementations before the tuning 

procedure was used, furthermore, another driving consideration to be taken in to account was the 

duration of each sea state, and the occurrence of each sea state in a yearly scatter table. 

With all the above considerations, a maximum number of fitness evaluations of 15 was chosen as it 

allowed a good balance between favoring swift algorithms, but also considering that within 15 

generations a good solution was expected to be found. 

Finally, the number of statistical evaluations in order to calculate the MBF had to be decided. This 

number corresponds to the number of times a genetic algorithm with a given quantitative parameter 

vector was allowed to run to completion (15 generations), before calculating the MBF, which would 

then translate in the utility of the used parameter vector which in turn could then be used by the top-

level optimizer (in the design layer) in order to optimize the parameter vector values. 
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Ideally, the larger the number of evaluations, the more statistically robust will the utility of the 

parameter vector be, and more reliable the results, but on the other hand, each additional evaluation 

meant that the computation time would grow considerably. 

A number of statistical evaluations equal to 5 was chosen for this work. 

 

Another consideration which needed to be made was the application layer function that the genetic 

algorithm would be tested on. 

The choice of the function used for this layer will greatly impact the outcome of the result of the 

tuning procedure of the qualitative parameters since the tuned parameters will be optimized to 

produce good results, in terms of speed of convergence and quality, on that specific function. 

A possibility which was considered was to produce a test suite with all the sea states considered in 

this work and to optimize the parameter vector over all sea states. Although this would guarantee a 

performing algorithm over all sea states, it would also mean that the algorithm would be optimized 

considering feedback from each sea state to have equal importance, unless some sort of weighting 

procedure was added. This is obviously undesirable since it would be more useful to reach excellent 

optimization results in the sea states which are most frequent instead of good results for all sea states. 

Furthermore, the shape of the power curves under the influence of each of the sea states considered 

had the basic same shape. With the above considerations in mind, the choice was made to use the 

power curve of the most frequently encountered sea state to optimize the quantitative parameter 

vector. This would allow to focus performance on the most frequent sea state while still guaranteeing 

good performance on other sea state power curves because of the shared similarities between curves. 

 

The final piece of the puzzle is the optimizer used to optimize the quantitative parameter vectors 

being fed to the genetic algorithm below. For this work two options were considered, either use 

another genetic algorithm to optimize the parameter vectors [67] [68] [69] or use a surrogate 

optimization strategy.  

Both techniques were tested, but the choice fell on the surrogate optimization strategy because of its 

capability of handling time consuming objective functions. For reference, the surrogateopt Matlab 

function was used. 

To summarize the procedure, a surrogate optimization was used to optimize the quantitative 

parameters characterizing the genetic algorithm in order to obtain a configuration of the GA which 

would perform well in its task of finding the optimal control parameters for a given average power 

optimization landscape in each sea condition. The surrogate optimization considered 5 independent 

runs of the GA with a given vector of parameters before it could evaluate the utility value of the used 

parameter vector, which was directly associated to the MBF over the 5 runs, with a predefined 
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computational effort of 15 generations to be elapsed in each GA iteration. The utility measure was 

then the driving factor behind the surrogate optimization. 

 

In the following table, a summary of the parameters used for the optimization of the GA parameters 

is presented. 

 

Design 
Layer 

Algorithm 
Layer 

Application 
layer 

Performance 
function 

Time limit 
algorithm 

layer 

Number of 
statistical 

evaluations 
for MBF 

Surrogate 
optimization 

Genetic 
algorithm 

Power curve 
of most 

frequent sea 
state 

MBF 15 
generations 5 

 

 

4.3.6 Tuning results 

With the described tuning setup, it was now possible to tune the quantitative parameters belonging 

to the genetic algorithm structure described in section 4.2. 

The parameters to be tuned were: 

- Parent selection tournament size;  𝜂𝑝𝑎𝑟,𝑡𝑜𝑢𝑟𝑛 

- Mutation step size;  𝜎𝑚𝑢𝑡 

- Whole arithmetic crossover weight;  𝛼 

- Mutation probability;  𝑃𝑚𝑢𝑡 

- Survivor selection tournament size;  𝜂𝑠𝑢𝑟𝑣,𝑡𝑜𝑢𝑟𝑛 

The setup of the surrogate includes lower and upper bound options for its optimization variables and 

an option to limit some variables to only integer solutions. 

These options are very handy for the variables described above in order to limit the search space and 

to prevent unfeasible solutions such as a non-integer tournament size. 

The setup included as bounds for the variables: 

- 2 < 𝜂𝑝𝑎𝑟,𝑡𝑜𝑢𝑟𝑛 < 15 

-  500 < 𝜎𝑚𝑢𝑡 < 2500 

- 0.01 < 𝛼 < 1 

- 0.05 < 𝑃𝑚𝑢𝑡 < 1 

- 2 < 𝜂𝑠𝑢𝑟𝑣,𝑡𝑜𝑢𝑟𝑛 < 30 

While the tournament sizes were both limited to be integer numbers. 
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Additionally, a maximum number of function evaluations equal to 60 was used as a stopping criterion 

of the optimization procedure. 

The results of the tuning procedure are summarized in the following table 

 
Figure 4. 6 - Tuning results 

 

Some of the above results fell in a range of expected values, while others did not fall within what 

could generally be considered a canonical range for genetic algorithm setup parameters. 

Starting from the parent selection tournament size and the survival selection tournament size, which 

together create the selection pressure which drive progressive evolution, having a small tournament 

size for the parent selection and a large tournament size for survival selection creates a balanced 

selection pressure. This result was somewhat expected since it is generally recommended that the 

two selection pressures coming from the parent selection scheme and from the survival selection 

should balance each other out. 

With the above settings, a small parent selection pressure allows for most individuals to have a good 

chance of being picked as parents, thus allowing even sub optimal genotypes to reproduce, while a 

high selection pressure in the survivor selection section is useful to strongly favor the fittest 

individuals as candidates for the next generation. 

The mutation step size is about in the middle of the chosen range. This indicates that the chosen range 

was adequate for the optimization procedure. A step size close to one of the imposed bounds might 

indicate that the chosen range should be extended to find the optimal value for such parameter. 

The arithmetic crossover weight factor is the weighting factor used to select how much of each of 

the parent’s genes is used to create the offspring. A value of exactly 0.5 would create two identical 

offspring each having a gene value halfway between the two parent gene values.  

An optimal value of 0.5324 indicates that the created offspring are not equal but are quite similar. 

Additionally, both of the genetic materials from each parent will approximately have the same 

weight, and thus the same importance, resulting in a good mix of the genetic material from both 

parents. 

Finally, the mutation probability was the most surprising factor. In the literature, it is most common 

to find mutation probability values close to 10 times less than the optimal value found during the 

optimization procedure. 
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A large value of mutation probability indicates that the genetic algorithm will have a large explorative 

proportion to its behavior, creating offspring which mutate quite often to better explore the 

environment. This behavior will then be mitigated by a strong selection pressure in the survivor 

selection section, only allowing stronger candidates to form the next generation. 

 

4.3.7 Tuning procedure for physical application 

The whole reason for using genetic algorithms to find optimal control parameters in each sea state 

for the point absorber array is to disregard the modelling of the point absorber and use a model free 

approach. But as stated above, a model of the point absorber was used for hyperparameter tuning of 

the genetic algorithm. This was the only option for this work because of obvious restrictions both in 

the accessibility to an actual device and also because of time constraints. 

In a physical implementation of the device and control algorithm, different possibilities exist 

regarding the tuning procedure of the parameters of the genetic algorithm. 

- A first possible solution is to not tune the genetic algorithm at all, and to use a “standard” 

genetic algorithm setting. This solution will most probably save setup time, but the main 

drawback is that the solution found might be suboptimal, leading to suboptimal power 

extraction. 

- A second solution is to use a model as close as possible to the real point absorber in order to 

perform the tuning phase offline. Having a model which is close to the actual physical point 

absorber model will allow to tune the genetic algorithm parameters on a fitness function 

(power curve in this case) very similar to the one from the actual point absorber. This will 

definitely allow to get into the ballpark of good hyperparameter settings even for an 

application with a real point absorber. This is a good solution for practitioners who might 

not have a great knowledge of the relation between the hyperparameter settings and the 

behaviour of the genetic algorithm on the specific function given by the point absorber used. 

In any case this method should still give better performance than just manually setting 

hyperparameters. 

- Finally, the third solution is to optimise the genetic algorithm online. This involves an initial 

deployment phase where the only goal is to tune the parameters of the genetic algorithm. In 

this scenario, the quantitative parameters of the GA will be changed every so often, and the 

optimisation results in terms of optimisation speed and result quality can be compared with 

different implementations of the GA. These results can then be used to determine the quality 

of the parameter vector used by a given GA implementation, which in turn can then be used 

to optimise the parameters of the GA itself. 

Although this solution is feasible, the time needed to optimise the parameters online would 

probably render this solution unfeasible in a real application. 
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5 – Optimization through the genetic algorithm 
With the genetic algorithm structure chosen and the quantitative parameters tuned, it was possible to 

deploy the genetic algorithm to optimize the two control parameters (C and K) of the reactive control 

law for the control of the resistive force that the PTO of the point absorber should apply in each 

separate sea state. 

The test setup consisted of the same genetic algorithm structure, previously tuned, to be used to 

optimize the control parameters in all sea states while still maintaining all optimization procedures 

separate. This was achieved by using a memory management strategy, allowing each specific 

population belonging to a given sea state to evolve separately and only when the corresponding sea 

state was encountered. This setup thus consisted of one isolated population of individuals for each 

sea state evolving side by side as different sea states presented themselves and interacted with the 

point absorber array. As the sea state changes, the memory management system calls on the 

corresponding population which can carry on the evolution process from where it left off when the 

given sea state was last seen. 

 

5.1 Sea state generation 

To test the optimization procedure, a 90-day simulation window was considered in which the sea 

state occurrence was regulated by the following lookup table. 

 
Figure 5. 1 - Lookup table from Pantelleria site 

The values in the above lookup table come from physical data acquired from wave buoys off the 

coast of Pantelleria in the Mediterranean Sea. 

Each sea state was considered to last for one hour and the succession of sea states was considered to 

be random. 

With each sea state lasting one hour and with each genetic algorithm generation taking twenty 

minutes to evaluate the average power absorbed to be used as a fitness value, each time a sea state 
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presented itself, three generations of individuals could elapse in the genetic algorithm dedicated to 

the current sea state. In other words, every three generations elapsed correlates to one hour of elapsed 

corresponding sea state. 

Using the occurrence table, a vector of random sea states was created, with a total duration of 90 

days. The vector was simply a vector of couples of Te an Hs values representing a given sea state. 

The vector was then fed to the memory management system which used the Te an Hs values to trigger 

the correct genetic algorithm optimization process related to the given sea state and also to generate 

the simulated sea state with which the point absorber model had to interact with in order to calculate 

the average absorbed power for each individual. 

It must be noted that no stopping condition was imposed since the sea state vector is limited to a 90-

day vector. In a real scenario, a stopping condition should be imposed to decide on when the 

optimization procedure should stop and pure exploitation with the optimized control parameters 

should begin. The stopping condition could impose a limit on the total days of optimization, or it 

could impose a limit on the optimization time on each single sea state, may that be through a bound 

on the generations elapsed or on the number of times a certain sea state is encountered. 

The first option would guarantee a well-known stopping time for all optimization procedures, but it 

would not guarantee satisfactory results for all sea states, especially for the less frequent ones. The 

second option instead guarantees that a certain number of generations has elapsed in each of the 

separate genetic algorithms before the optimization procedure stops, thus guaranteeing a certain level 

of performance but with an unknown time horizon in which all optimization procedures will end. 

 

5.2 Simulation results 

The most important values to be evaluated from the results of the optimization test were the average 

number of generations needed for the genetic algorithms to converge and the optimality of the best 

solution obtained at the end of the simulation in terms of average absorbed power. 

The aim of the optimization was thus to reach peak performance in terms of average absorbed power 

in the least time possible. 

The following figure shows an example of one of the power plots for a given sea state with different 

values of C and K control parameters. The Z axis represents the average absorbed power in a 20-

minute time window.  
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Figure 5. 2 - Point absorber power plot 

One of the tools which was used to visually evaluate performance was the power absorption of the 

best individual in the population as the generations elapsed for a given sea state. 

Because of how the optimization in the genetic algorithm was setup, the inverse of the absorbed 

power was used as the cost function to be minimized, thus the plots which were analyzed show a 

decreasing trend, meaning an increase of power as generations elapse. 

  

 
Figure 5. 3 - Examples of evolution of cost of best solution in two different sea states 

As can be seen, the above plots show a steep descent at the beginning of the evolution process, 

meaning a fast initial progress towards optimal regions of the search space. 

After only a few generations/iterations, the cost function has practically converged, meaning that the 

best member of the population is currently using stiffness (K) and damping (C) parameters close to 

the optimal ones for the given sea state.  

Considering that each generation is equivalent to 20 minutes of the corresponding sea state, and that 

in just over 10 generations the algorithms converged, it would only take approximately 4 hours in a 

given sea state to find the optimal stiffness and damping factors for that particular sea state. 
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The convergence graphs shown above do show a fast convergence, but no information is shared on 

how the whole population evolves. To better understand how the population evolves it was useful to 

visualize the single individuals evolve over the optimization landscape. An example of three 

instances during a whole evolution process are proposed. 

 
Figure 5. 4 - First generation population 

 

The first image shows the randomly generated initial population over the power plot of a given sea 

state. Each dot represents an individual with its own specific couple of stiffness (K) and damping (C) 

parameters. 

The following images show different stages of the evolution process of the same population on the 

same power plot, but from a slightly different prospective in order to better visualize the location of 

the individuals. 

 
Figure 5. 5 - Fifth generation population 
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After 5 generations the population has already started to converge towards the top of the power curve 

while still maintaining some diversity. 

 
Figure 5. 6 - Fully converged population after 12 generations 

Finally, after 12 generations the population has converged to the top of the power curve with most 

individuals sharing the same genes (K and C). In the above image this translates into what seems to 

be a single individual, whilst in reality it’s multiple individuals sharing nearly identical genes. 

These results alone show how well this method works and how after only a few generations the 

individuals manage to reach optimal locations in the search space. 

 

Other graphical data used to evaluate the evolution progress of the individuals were the convergence 

plots of the stiffness and damping factors of each individual in the population for a given sea state as 

generations elapse. These plots show how well the individuals coalesce towards a common set of 

control parameters for a give sea state as generations pass. 

 
Figure 5. 7 - Evolution of damping values 
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Figure 5. 8 - Evolution of stiffness values 

Each line represents the evolution of the control parameter for a single individual in the population. 

Both graphs show how quickly can the population adapt to the newly encountered sea state and 

correctly converge to optimal control parameters. 

 

Finally, another important result that was analyzed was the overall best fixed control parameters 

obtained for each sea state. 

These results were picked as the best performing individual in terms of absorbed power for each sea 

state throughout the whole 90-day simulation. 

The following table and graph report the findings for each of the 14 sea states. 

 

Sea state 
number 

C value 
[Ns/m] 

K value 
[N/m] 

1 2,0567*10^4 -1,1788*10^5 
2 1,3886*10^4 -1,5681*10^5 
3 9,0838*10^3 -1,7266*10^5 
4 7,2034*10^3 -1,8010*10^5 
5 2,1256*10^4 -1,1059*10^5 
6 1,3617*10^4 -1,5666*10^5 
7 7,8073*10^3 -1,7337*10^5 
8 6,2768*10^3 -1,8046*10^5 
9 1,9589*10^4 -1,0172*10^5 

10 1,3376*10^4 -1,5624*10^5 
11 8,5141*10^3 -1,7255*10^5 
12 1,2176*10^4 -1,4903*10^5 
13 8,7092*10^3 -1,7320*10^5 
14 8,3835*10^3 -1,7076*10^5 
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Figure 5. 9 - Best constant damping values from genetic algorithm optimization 

 

 
Figure 5. 10 - Best stiffness values form genetic algorithm optimization 
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Figure 5. 11 - Wave energy periods of the 14 generated sea states 

 

 
Figure 5. 12 - Wave significant height of the 14 generated sea states 

 

By comparing the results of the optimization process with the graphs related to the wave energy 

period and significant wave height of each sea state it’s clear how the wave period is the driving 

force behind the most significant changes in both the stiffness and damping control parameters. 
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5.3 Expected Annual Energy Production 

To understand what impact the above results would have on energy production in the long term the 

Expected Annual Energy Production (EAEP) was computed. 

𝐸𝐴𝐸𝑃𝑡𝑠 =
3600 ⋅ 24 ⋅ 365

100
 ∑ 𝑂𝑐𝑐%𝜔 𝑃𝑎𝑏𝑠𝜔

(𝐶𝜔,𝑡𝑠 , 𝐾𝜔,𝑡𝑠
 )

𝑁𝜔

𝜔=1

 

Where EAEPts is the Expected Annual Energy Production computed at time 𝑡𝑠 and where: 

- ω : Sea state indicator 

- 𝑂𝑐𝑐%𝜔 : Occurrence percentage of sea state ω 

- 𝑁𝜔 : Total number of sea states 

- 𝑃𝑎𝑏𝑠𝜔
(𝐶𝜔,𝑡𝑠

, 𝐾𝜔,𝑡𝑠
) : Power absorbed in sea state ω with the best C and K parameters 

obtained until time 𝑡𝑠. 

This parameter represents the annual productivity that would be obtained if for each sea state 

characterizing the deployment site the best control action seen until time 𝑡𝑠 was fixed and used over 

an entire year. In other words, it’s as if the optimization procedure was stopped at a given time, and 

whatever best results had been found up until such time were then used each time a sea state was 

encountered, over a whole year of deployment with mixed and random sea states. 

The resulting productivity is reported in the following graph. 

 

 

 
Figure 5. 13 - Expected Annual Energy Production over the 90-day simulation 

As can be seen, after only a few days at sea, the Expected Annual Energy Production has nearly 

peaked. This is due to both the ability of the genetic algorithm to quickly hone in to the optimal 

control parameters for each sea state, but also due to the structure of the problem itself. Most of the 
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absorbed power for the considered deployment location comes from the most frequently encountered 

sea states, even though they might not necessarily be the most energetic. Thus, although after a short 

period of time the most energetic sea states might not have been encountered often or at all, the 

parameters related to the most frequent sea states have already been optimized, which in turn means 

that most of the power production over a whole year is at near optimal performance.  
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6 – The neural network 
 

6.1 Introduction 

Having achieved excellent performance with a discrete model free control strategy through the use 

of genetic algorithms to optimize the control parameters of a reactive control law, the focus was now 

shifted on developing a continuous control strategy based on the same reactive law. 

The idea is to train a neural network to produce the optimal time-varying sequence of control 

parameters, no longer based on a description of the current sea condition through discrete sea states 

as used by the genetic algorithms but based on the current forces acing on the point absorber.  

This approach could ideally create a continuous control over the control parameters on a wave-by-

wave basis, potentially allowing for much greater energy extraction thanks to a tailored and specific 

control compared to an averaged control obtained when describing the current sea conditions using 

statistical variables such as significant height and energy period. 

 

The modern concept of artificial neural networks (see appendix B) was first introduced in the 1940s 

with the work of McCulloch and Pitts [70] who showed that artificial neural networks possess, at 

least in principle, the ability to compute any logical function. 

Neural networks are mathematical computing systems inspired by the biological neural networks 

present in our brains. Similarly, to a biological neural network, ANNs are composed of multiple 

interconnected nodes called artificial neurons or simply neurons which are capable of receiving and 

processing information which can then be passed through to other neurons in the network. 

 
Figure 6. 1 - Example of a simple neural network [71]. 
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Given a certain input, the network is able to process the information to produce a corresponding 

output. To achieve the desired network behavior, may it be image classification, pattern recognition 

or any other of the many applications in which ANNs can be used, the network must first be trained.  

Training involves using a set of know inputs and desired corresponding outputs to teach or train the 

network to be able to correctly match the training set inputs to the correct desired training outputs. 

This training process can be achieved by feeding the network with the training input samples and by 

comparing the current output with the ideal desired output. The error between these two values is 

then used in what is known as a performance or loss function to determine how well the network is 

behaving on the assigned task. The magnitude of the loss function indicates if the network is 

performing well or badly with the given training set. With the loss function known, the gradient 

information of the loss function is then used to update the weights and biases of all the neurons in 

the network with the goal of decreasing the loss function at each iteration, in turn producing a neural 

network which performs well in the desired task. A more detailed explanation of the internal 

workings of neural networks and how they are trained can be found in appendix B. 

 

Crucially then, the most important aspects of using a neural network for a given task lie within two 

main categories. The first consists in choosing the correct neural network structure, including layer 

size and number, layout, performance function metric, optimization algorithm, learning rate and 

many other hyperparameters affecting the network performance. The second important aspect to 

consider is the training set used to train the network. A correct training set is fundamental since it’s 

the only external information that will be used to train the network, where a badly chosen training 

set may cause the network to underperform during its deployment on the field. 

The first step towards a functioning neural network is to decide what structure and type of network 

is needed for the problem at hand. 

Several types of networks exist, each with its own specific structure and working principle based on 

the problem to be solved.  

The problem faced in this work can be considered a sequence-to-sequence regression problem where 

for a given time series sequence of inputs, a corresponding sequence of outputs must be produced. 

For this kind of problem, two network architectures were used and tested: a deep feed-forward neural 

network and a Long-Short Term Memory (LSTM) neural network. 

 

 In the next chapters the chosen neural network architecture will be presented together with the how 

training set was conceived and used. 
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6.2 The Feed-forward neural network 

A deep feed-forward neural network is one of the simplest forms of neural network. It consists of 

multiple successive network layers where all the layers are fully connected (i.e., each neuron in a 

given layer is connected to all the neurons in the successive layer) and where information can only 

flow forwards, so from the input towards the output. 

The number of layers and the number of neurons in each layer is a design specification, as are the 

activation functions used in each layer, the number of neurons in the input and output layer, and 

many other parameters which will be listed and described later on. 

The choice of using a feed-forward network comes from the fact that this kind of network is one of 

the most versatile but simple networks, and also one of the most diffused. 

 

6.2.1 The network structure 

Multiple preliminary tests were performed to gage the ability of these networks to map a time varying 

input to a desired output. These tests were performed using a time varying sequence of forces 

measured on a WEC device and using these forces as an input to a network which was tasked to map 

such forces to the corresponding time varying vertical displacement of the WEC.  

These preliminary tests suggested that using a deeper network, usually with a number of layers larger 

than 5, allowed to learn more complex dependencies between the inputs and the corresponding 

outputs, resulting in a smaller final learning error. 

All of the tests were performed using MATLAB’s Experiment Manager app, which allows to design 

and run experiments to train and compare deep learning networks. During the tests, both the 

parameters regarding the structure of the net and the training parameters such as solver type, input 

normalization and activation functions were evaluated and compared to find a network layout with 

good performance for a sequence-to-sequence regression problem. 

The final network structure was composed of: 

- a sequence input layer  

- 7 fully connected hidden layers each with 256 neurons 

- a fully connected output layer with two outputs 

- a scaling layer to scale the outputs so to match the bounds on the stiffness and damping 

control parameters presented in chapter 4.1.2 

- a regression layer. 

The whole neural network structure was built in MATLAB using the “layers” function to define the 

needed layers and their hyperparameters. For more information, please refer to the official 

MathWorks web page at: https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-

layers.html. 

 

https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
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The sequence input layer, as its name suggests, is a specific layer used to feed a sequence as an input 

to the neural network. The main parameters to be set for this layer are the input size, which refers to 

how many inputs are fed to the network simultaneously at any given time step, and the normalization 

type. The normalization chosen by analyzing the preliminary tests was a ‘zscore’ normalization 

where each input has the mean subtracted before being divided by the standard deviation value. 

Both the mean and standard deviation of the whole training set are calculated automatically at 

training time. The value of the chosen input size will be covered in the chapter related to how the 

network was trained. 

 

Immediately after the sequence input layer, 7 fully connected layers were placed as the hidden layers 

of the network. These layers act as basic neural network layers which multiply the input by a weight 

matrix and then add a bias vector. All the hyperparameters related to the fully connected layers, such 

as weight and bias initializer, weight and bias learn rate factor and weight and bias L2 factors were 

left in their default mode. 

Weight 
Initializer 

Bias 
Initializer 

Weight learn 
rate factor 

Bias learn 
rate factor 

Weight L2 
factor 

Bias L2 
factor 

glorot zeros 1 1 1 0 

 

After each fully connected layer, an activation function layer was placed acting as the non-linearity 

function in the layer. For all layers, a reluLayer was used as activation function. 

After the seven hidden layers, the output section was composed by a fully connected layer with two 

outputs (C and K of the reactive control law) accompanied by a tanhLayer as a squishing activation 

function. After the fully connected layer, a scaling layer was used to scale the bounded output from 

the tanhLayer from values ranging between -1 and 1 to values ranging from the minimum to the 

maximum admissible values for C and K calculated in chapter 4.1.2. 

As a last layer, a regression layer was used so to compute the half-mean-squared-error loss for the 

regression task. 
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6.2.2 Training the feed forward network 

The training of a neural network is the process which allows a neural network to learn how to perform 

a given task by examining examples of how such task should be executed and by modifying its 

internal parameters to try and perform the desired function as best as possible. 

Training is achieved by feeding a network with a training set of input data which has a known 

corresponding desired set of outputs. 

For a sequence-to-sequence regression problem, an input sequence is fed to the network, and the 

output produced by the network is then compared to the known desired output sequence. 

The error between the desired output and the actual output is then used as information on how well 

the network is currently performing. An optimization procedure which uses the gradient information 

of the error function is then used to update the weights and biases of the network to try and minimize 

the error. This process of feeding inputs, comparing the produced output to the desired output, and 

updating the weights and biases is performed iteratively until a predefined stopping condition is met, 

eventually leading to a more performing network. For a more detailed description of how the training 

process occurs, please refer to appendix B. 

When training a network, the most important considerations to be made are those regarding the 

training input/output sequence and the hyperparameters to be used for the training process. 

The training input, and the corresponding desired output, must be carefully chosen since they will be 

the driving force behind the training of the network and will be the only information seen by the 

network before deployment, so it’s crucial that the chosen training set input allows the network to be 

able to learn a correct mapping to the desired output. 

 

With the above considerations in mind, an analysis of the problem at hand is needed to understand 

the choice of the training set used. 

The goal for the neural network is to map the varying force input to the corresponding optimal control 

parameters for the given sea state and to possibly learn interdependencies between the sea state and 

corresponding control parameters so to be able to handle any force input which was not directly 

shown in the training examples, or which does not belong to any of the sea states seen before. 

To achieve this, it is not sufficient to feed the network with a single input sequence representing the 

force time series and mapping such force to the control values because this would mean mapping a 

single force input value to a single corresponding couple of control parameters at each time step. 

This is obviously not the goal since past force inputs influence the current WEC dynamics, thus the 

current force acting on the WEC is not sufficient to determine what the correct control values should 

be. A solution to this problem was to feed at each time step, not a single input representing the current 

force acting on the point absorber, but multiple inputs representing present and past values of force 

acting on the point absorber. 
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This process creates a sort of memory of the past force values which is then used in conjunction with 

the present force to determine the correct output values for the two control parameters. 

What needed to be determined was how many inputs were needed, which translates in how much 

past information was needed at each time step to train the network. 

Preliminary tests were performed with MATLAB’s Experiment Manager which indicated that taking 

multiple periods of the exciting force yielded better output mapping, hence, considering a sampling 

frequency of 0.1s and the wave heave forces generated in the sea states presented in chapter 5.1, 600 

inputs were used at each time step in order to guarantee that even for the wave excitation forces with 

lower frequency, at least 4 whole periods of the varying force would be used as inputs to the net. 

 

 
Figure 6. 2 - Qualitative representation of the feed-forward neural network 

 

With the network structure and training input strategy defined, the necessary data for training had to 

be defined and collected.  

The devised strategy consisted in training the network every seven days with the information 

gathered by the top three performing point absorbers for each sea state, right from the beginning of 

the launch of the point absorbers when using the genetic algorithm to optimize the control parameters 

in each sea state. 

As each week passes, the information on how each tested control strategy for each sea state 

encountered is gathered, and for each discrete sea state encountered in the given week, the top three 

performing control strategies, together with the relative measured heave force values are registered 

and stored. This information is then used to create a training set composed of an input vector of all 

the successive measured forces and two corresponding output vectors of the most effective control 

values related to each of the input force vectors. 
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The input force vector is then rearranged in a matrix form in order to fit a network paradigm which 

includes 600 inputs. 

The resulting training set is thus composed of a matrix of input forces which were recorded for each 

sea state encountered during the week from the top three performing point absorbers in a given sea 

state over the duration of a single generation of the genetic algorithm, which in turn is related to a 

single sea state evolving for twenty minutes. Each of the recorded force vectors lasting twenty 

minutes is then associated to two corresponding vectors of the same length which represent the fixed 

control parameters used by the selected top performing point absorbers during the twenty-minute 

time period. The training procedure thus associates the input force vector, to the corresponding 

control parameters which for the given sea state and corresponding force were the best performing 

parameters found in the given week. 

The above considerations result in a vector of recorded forces for each given sea state encountered 

in the week which has 36003 entries, which corresponds to three stacked vectors, one for each of the 

top three performing point absorbers in the given sea state each with 12001 entries, which correspond 

to a twenty-minute force reading, with a sampling frequency of 0.1s. 

As stated before, all the vectors for all the sea states encountered are then stacked and placed in 

matrix for to allow for a 600-input net structure. 

The goal of this training setup is to create a network which can map input heave forces in to 

instantaneous and continuous control parameters by learning possible interdependencies between all 

the forces seen and the corresponding optimal control parameters found by the populations in the 

genetic algorithm. 

 

With the network structure, training set and training strategy defined, only the hyperparameters used 

for training had to be defined before training could commence.  

As for the network structure, different network training hyperparameter values were evaluated using 

the Experiment Manager tool available on MATLAB in the Machine Learning and Deep Learning 

toolbox. The main hyperparameters tested were: 

- Initial learning rate 

- Solver type 

- Mini-Batch size 

- Input normalization type 

The final hyperparameters chosen for training were: 

Initial 
learning rate Solver type Mini-Batch 

Size 
Input 

normalization Shuffle Max Epochs 

0.001 Adam 128 zscore Never 150 
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Where all the other many hyperparameters for training a neural network were kept standard according 

to the standard MATLAB ‘trainingOptions’ function when training a neural network. 

The training process was performed using the ‘trainNetwork’ function and simply involved the 

definition of the input training input sequence, output sequence, layer types and training options 

defined in this chapter. The training process was performed on a workstation belonging to the 

MOREnergy research lab because of the computation weight was too much for a standard PC. 

 

6.2.3 Testing the feed forward network 

The trained network could finally be used to verify its capabilities in mapping an input heave force 

reading in to control parameters which would potentially allow for a greater energy absorption than 

what could be obtained with the genetic algorithms. 

To test the neural network, a Simulink model was built which would simulate the behavior of the 

point absorber model in conjunction with the neural network. A wave scenario was generated in 

MATLAB and the resulting heave force was fed to the neural network as an input, thus generating a 

corresponding vector of control parameters. This vector was then used in Simulink together with the 

original wave heave force vector to simulate how the point absorber would behave under such a wave 

scenario if it adopted as control parameters, the parameters created by the neural network. 

 

The Simulink environment setup was as follows. 

 
Figure 6. 3 - Simulink model for point absorber and neural network simulation 

Where C_input and K_input are the control parameter vectors created by the neural network when 

fed the wave heave force Fz. Both vectors were created through a MATLAB script separately from 

the Simulink model. 

Tests were performed for each of the fourteen sea states to compare the behavior of the model when 

using the control vectors generated by the neural network and when using the constant control 

parameters obtained during the optimization phase involving the genetic algorithms. 
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The tests were conducted one sea state at a time, and for each sea state, a force vector Fz was 

generated. This force vector was then used both directly in the Simulink environment and also as an 

input to the neural network so to obtain the corresponding control parameter vectors to be used in 

the Simulink simulation. A comparison was drawn between either using the generated control 

parameter vectors as control inputs in the model or using the best constant control parameters for the 

sea state under test found during the previous optimization using genetic algorithms. 

The generated force vector corresponded to a 20-minute representation of the sea state, which is the 

same time span used by each generation of the genetic algorithm to evaluate a population. 

The analysis of the results will mainly focus on the comparison of the mean power output between 

the two methods, while also taking into account features like maximum and minimum power peaks. 

Sea 
state 

number 

Te & Hs 
values 
[s]; [m] 

Mean 
power 

constant 
C & K 

[W] 

Mean 
power 

with N.N 
control 

[W] 

Max 
power 

constant 
C & K 

[W] 

Max 
power 

with N.N 
control 

[W] 

Min 
power 

constant 
C & K 
 [W] 

Min 
power 

with N.N 
control 

[W] 

1 4,17; 0,1 
7,953* 
10^1 

7,932* 
10^1 

2,013* 
10^3 

2,284* 
10^3 

-1,354* 
10^3 

-1,703* 
10^3 

2 6,13; 0,1 
2,166* 
10^2 

2,105* 
10^2 

1,904* 
10^4 

2,063* 
10^4 

-1,599* 
10^4 

-1,820* 
10^4 

3 8,08; 0,1 
3,981* 
10^2 

3,937* 
10^2 

6,916* 
10^4 

7,744* 
10^4 

-6,768* 
10^4 

-7.063* 
10^4 

4 10,04; 0,1 
5,860* 
10^2 

5,483* 
10^2 

1,376* 
10^5 

1,181* 
10^5 

-1,366* 
10^5 

-1,249* 
10^5 

5 4,17; 1,08 
9,480* 
10^3 

9,451* 
10^3 

2,400* 
10^5 

2,697* 
10^5 

-1,482* 
10^5 

-1,829* 
10^5 

6 6,13; 1,08 
2,527* 
10^4 

2,472* 
10^4 

2,260* 
10^6 

1,755* 
10^6 

-1,900* 
10^6 

-1,376* 
10^6 

7 8,08; 1,08 
4,609* 
10^4 

3,964* 
10^4 

9,794* 
10^6 

8,718* 
10^6 

-9,684* 
10^6 

-7,295* 
10^6 

8 10,04; 1,08 
6,872* 
10^4 

5,483* 
10^4 

1,893* 
10^7 

1,966* 
10^7 

-1,884* 
10^7 

-1,664* 
10^7 

9 4,17; 2,06 
3,440* 
10^4 

3,408* 
10^4 

8,210* 
10^5 

7,982* 
10^5 

-4,898* 
10^5 

-4,881* 
10^5 

10 6,13; 2,06 
9,220* 
10^4 

9,256* 
10^4 

8,358* 
10^6 

7,166* 
10^6 

-7,010* 
10^6 

-5,926* 
10^6 

11 8,08; 2,06 
1,689* 
10^5 

1,630* 
10^5 

3,047* 
10^7 

5,954* 
10^7 

-3,056* 
10^7 

-5,781* 
10^7 

12 6,13; 3,04 
2,223* 
10^5 

2,062* 
10^5 

2,431* 
10^7 

1,948* 
10^7 

-2,167* 
10^7 

-1,788* 
10^7 

13 8,08; 3,04 
3,667* 
10^5 

2,835* 
10^5 

6,979* 
10^7 

1,113* 
10^8 

-6,755* 
10^7 

-1,285* 
10^8 

14 8,08; 4,02 
6,908* 
10^5 

3,222* 
10^5 

1,914* 
10^8 

1,582* 
10^8 

-1,833* 
10^8 

-1,560* 
10^8 
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The above results show that in most cases, the constant control parameters outperform the continuous 

control vector produced by the neural network. A summary of the percentage difference in mean 

absorbed power, peak positive power and peak negative (reactive) power between the constant 

control strategy versus the continuous control produced by the neural network is presented in the 

following table where a positive percentage indicates a higher power reading for the neural network 

implementation. 

Sea state 
number 

Percentage 
mean power 
difference 

Percentage max 
positive power 

difference 

Percentage min 
reactive power 

difference 
1 -0,2641 13,4625  25,7755 
2 -2,8163 8,3508    13,8211 
3 -1,1052 11,9722     4,3587 
4 -6,4334 -14,1715    -8,5652 
5 -0,3059 12,3750    23,4143 
6 -2,1765 -22,3451   -27,5789 
7 -13,9944 -10,9863   -24,6696 
8 -20,2125 3,8563   -11,6773 
9 -0,9302 -2,7771    -0,3471 

10 +0,3905 -14,2618   -15,4636 
11 -3,4932 95,4053    89,1688 
12 -7,2425 -19,8684   -17,4896 
13 -22,6888 59,4784    90,2295 
14 -53,3584 -17,3459   -14,8936 

 

 
Figure 6. 4 - Percentage mean power difference between using constant control parameters or neural network parameters 
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Figure 6. 5 – Max and min peak power difference when using constant control parameters or neural network parameters 

 

As the above tables and graphs clearly show, the performance in terms of mean absorbed power is 

better in all but one case when using constant control parameters. 

Despite this, in most cases the difference in the mean absorbed power is actually pretty small, with 

differences of only a few percent. On the other hand, some sea state scenarios, particularly scenarios 

8, 13 and 14, showed a tremendous drop in performance, up to the point where in sea state number 

14 the mean absorbed power with the neural network configuration was less than half of what was 

obtained with constant control parameters. 

Although these results may seem disappointing, it is interesting to point out how in most sea states, 

a basic implementation of a simple feed forward neural network is able to produce a time varying 

control signal which is able to nearly match the performance of a carefully optimized pair of constant 

control parameters and in one of the sea states (number 10), it is even able to produce a control signal 

which leads to a slight increase in the mean absorbed power. Additionally, the neural network was 

also able to produce a control input which resulted in a smaller overall peak to peak power output in 

seven out of the fourteen sea states, which brings the obvious benefits of hardware downsizing and 

also the need to handle a smaller reactive power flow. 

 

Another interesting result produced by the neural network is the shape of the produced control 

signals. In the next few graphs, some examples of the produced signals, together with the 

corresponding input heave force will be presented and analyzed. 
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Figure 6. 6 - Control signal of damping control parameter 'C' generated for sea state number 5 

 
Figure 6. 7 - Control signal of stiffness control parameter 'K' generated for sea state number 5 

 
Figure 6. 8 - Normalized damping, stiffness and heave force signal for sea state number 5 
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Analyzing figure 6.6 it is possible to notice how the two control signals seem to be strongly related 

to one another, often following each other creating two nearly symmetrical shapes. This is surprising 

since the two control signals were not linked in any way during the training phase. 

Another interesting feature to point out is how the control signals have a principal frequency 

component which seems to be quite similar to the principal frequency of the wave heave force 

represented in yellow. This suggests that, to some extent, the neural network is actually able to follow 

the incoming wave force and select an appropriate control signal on a sample-by-sample basis. 

To confirm this, another plot was drawn using the data collected from sea state number 4, which 

compared to sea state number 5 has a wave energy period more than twice as long. The following 

plots show the control signals and force reading corresponding to sea state number 4. 

 
Figure 6. 9 - Control signal of damping control parameter 'C' generated for sea state number 4 

 
Figure 6. 10 - Control signal of stiffness control parameter 'K' generated for sea state number 4 
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Figure 6. 11 - Normalized damping, stiffness and heave force signal for sea state number 4 

As confirmed by figure 6.9, when the input heave force has a larger period, also the respective control 

signal generated by the neural network will have a corresponding larger oscillating period. 

This result is something that might seem quite unremarkable at first sight, but it must be noted that 

at training time, each oscillating wave force signal was only coupled with a corresponding constant 

pair of optimal control parameters obtained from the genetic algorithms. This means that no 

information was given on how the control parameters should change in time on a wave-by-wave 

basis. It is thus quite remarkable that the neural network was able to produce a control signal which 

varied in time with a frequency very similar to the corresponding input wave heave force and that 

additionally, the produced control signal actually oscillated close to the optimal value obtained 

during the heuristic optimization, signifying that the neural network was actually able to distinguish 

wave scenarios and use both the optimal static control information as well as the time varying force 

to produce the control signal. 
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6.3 The Long Short Term Memory Neural Network 

A long-short term memory neural network (LSTM neural network) is a type of recurrent neural 

network which, unlike feed forward neural networks, is able to store information and even feedback 

such information instead of only being able to pass information forwards from the input to the output 

nodes. LSTM neural networks were specifically developed to handle sequential data inputs and to 

solve problems related to these kinds of inputs, such as weather forecasting, stock market predictions, 

text translation, and many other similar applications. The main idea behind a LSTM neural network 

is to create a network which is able to operate in a manner which is close to how a human mind 

operates. As humans process information, they do not start their thinking from scratch at every time 

step, but instead, information is stored, and in some cases reused in order to process the current 

information not only on the basis of the current input, but also on the basis of past inputs which help 

to give the information context. Traditional feed forward networks cannot do this since they have no 

memory storing capability and also no feedback capability. On the other hand, LSTM neural 

networks have the ability to store, forget and reuse past information at each time step in order to help 

the process of deciding the current predicted output. 

These processes are achieved through a system of gates, each with its own specific task, which 

ultimately allow the LSTM unit to hold on to what is considered as relevant past information and to 

discard other information which is not as relevant and to use such information to make decisions on 

the upcoming outputs. For a more detailed explanation of the workings of a LSTM neural network, 

please refer to the appropriate chapter in appendix B. 

 

6.3.1 The network structure 

When dealing with LSTM neural networks, the classic shape and structure seen for feed forward 

neural networks is no longer valid. Instead, each LSTM layer is composed of cells. 

 
Figure 6. 12 - An unrolled LSTM network layer [75]. 

Each cell represents the LSTM layer for a given time instant. For this reason, LSTM layers are said 

to unroll to match the length of the input vector. This is simply an easier manner to visualize a LSTM 

layer. So instead of thinking of it as a layer which feeds back information to itself, we can imagine 

an LSTM cell for each time step, where information is passed from one cell to the next as time passes. 
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The number of cells in a LSTM layer, is thus a variable which does not need to be explicitly defined 

since it will depend on the length of the input vector. 

What does need to be defined instead, is the number of hidden units.  

Within each LSTM cell, the user can define how many hidden units are needed for the problem at 

hand. Hidden units can be thought of as basic LSTM building blocks where each hidden unit contains 

the basic elements needed for a LSTM network to work.  

 
Figure 6. 13 - Basic LSTM unit 

Within each cell, the hidden units are concatenated, so that information is processed by all the units 

at each time instant. 

Each LSTM cell can work perfectly with just one hidden unit per cell, in fact in appendix B, each 

cell is only shown to have one hidden unit within it. But just as a feed forward neural network can 

work with only one neuron per layer, this is often not enough to have a structure which is able to 

solve more complex problem. So just as in feed forward neural networks the user might decide to 

increase the number of neurons, for LSTM layers the number of hidden units can be increased as 

well based on the problem complexity. For this work, each LSTM layer was equipped with 128 

hidden units. 

Just as for the feed forward network, the Experiment Manager tool was used to setup tests to gauge 

the performance of the network on a sequence regression task while varying some network 

hyperparameters. 

The chosen network structure was composed of: 

- a sequence input layer with rescale-symmetric normalization 

- 3 bidirectional LSTM layers, each having 128 hidden units and set to sequence output mode 

- a fully connected output layer with 2 outputs and a tanh activation function 

- a scaling layer to scale the outputs so to match the bounds on the stiffness and damping 

control parameters 

- a regression layer 

Just as for the feed forward neural network, the LSTM network was built in MATLAB using the 

“layers” function to define the different network layers. 
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6.3.2 Training the LSTM network 

Just as for the feed forward neural network, training was performed by gathering data every seven 

days from the top three performing point absorbers for each sea state during the optimization 

performed by the genetic algorithm. This meant that the used training set was exactly the same as for 

the feed forward network, with the difference that LSTM networks are inherently able to store past 

information, so there was no need to rearrange the heave force data into matrix form. 

With the network structure, training set and training strategy defined, only the hyperparameters used 

for training had to be defined before training could commence.  

As for the network structure, different network training hyperparameter values were evaluated using 

the Experiment Manager tool available on MATLAB in the Machine Learning and Deep Learning 

toolbox. The main hyperparameters tested were: 

- Initial learning rate 

- Solver type 

- Mini-Batch size 

- Input normalization type 

The final hyperparameters chosen for training were: 

Initial 
learning rate Solver type Mini-Batch 

Size 
Input 

normalization Shuffle Max Epochs 

0.001 Adam 1 rescale-
symmetric Never 200 

 

Where all the other many hyperparameters for training a neural network were kept standard according 

to the standard MATLAB ‘trainingOptions’ function when training a neural network. 

The training process was performed using the ‘trainNetwork’ function and simply involved the 

definition of the input training input sequence, output sequence, layer types and training options 

defined in this chapter. The training process was performed on a workstation belonging to the 

MOREnergy research lab because of the computation weight was too much for a standard PC. 

 

6.3.3 Testing the LSTM network 

To test the neural network, the same Simulink model used for the feed forward neural network test 

was used. A wave scenario was generated in MATLAB and the resulting heave force was fed to the 

neural network as an input, thus generating a corresponding vector of control parameters. This vector 

was then used in Simulink together with the original wave heave force vector to simulate how the 

point absorber would behave under such a wave scenario if it adopted as control parameters, the 

parameters created by the neural network. 
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The Simulink environment setup was as follows. 

 
Figure 6. 14 - Simulink model for point absorber and neural network simulation 

Tests were performed for each of the fourteen sea states to compare the behavior of the model when 

using the control vectors generated by the neural network and when using the constant control 

parameters obtained during the optimization phase involving the genetic algorithms. 

 

The tests were conducted one sea state at a time, and for each sea state, a force vector Fz was 

generated. This force vector was then used both directly in the Simulink environment and also as an 

input to the neural network so to obtain the corresponding control parameter vectors to be used in 

the Simulink simulation. A comparison was drawn between either using the generated control 

parameter vectors as control inputs in the model or using the best constant control parameters for the 

sea state under test found during the previous optimization using genetic algorithms. 

The generated force vector corresponded to a 20-minute representation of the sea state, which is the 

same time span used by each generation of the genetic algorithm to evaluate a population. 

The analysis of the results will mainly focus on the comparison of the mean power output between 

the two methods, while also taking into account features like maximum and minimum power peaks. 

 

Sea 
state 

number 

Te & Hs 
values 
[s]; [m] 

Mean 
power 

constant 
C & K 

[W] 

Mean 
power 

with N.N 
control 

[W] 

Max 
power 

constant 
C & K 

[W] 

Max 
power 

with N.N 
control 

[W] 

Min 
power 

constant 
C & K 
 [W] 

Min 
power 

with N.N 
control 

[W] 

1 4,17; 0,1 
7,870* 
10^1 

1,523* 
10^1 

2,013* 
10^3 

1,131* 
10^3 

-1,354* 
10^3 

-9,868* 
10^2 

2 6,13; 0,1 
2,185* 
10^2 

5,647* 
10^1 

1,901* 
10^4 

5,979* 
10^3 

-1,596* 
10^4 

-5,225* 
10^3 

3 8,08; 0,1 
4,097* 
10^2 

1,435* 
10^2 

6,916* 
10^4 

2,281* 
10^4 

-6,768* 
10^4 

-2,119* 
10^4 

4 10,04; 0,1 
6,384* 
10^2 

3,043* 
10^2 

1,745* 
10^5 

5,258* 
10^4 

-1,571* 
10^5 

-4,823* 
10^4 
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5 4,17; 1,08 
9,391* 
10^3 

1,724* 
10^3 

2,400* 
10^5 

1,325* 
10^5 

-1,482* 
10^5 

-1,094* 
10^5 

6 6,13; 1,08 
2,549* 
10^4 

6,583* 
10^3 

2,256* 
10^6 

6,960* 
10^5 

-1,895* 
10^6 

-6,086* 
10^5 

7 8,08; 1,08 
4,753* 
10^4 

1,672* 
10^4 

9,794* 
10^6 

2,669* 
10^6 

-9,684* 
10^6 

-2,471* 
10^6 

8 10,04; 1,08 
7,489* 
10^4 

3,543* 
10^4 

2,324* 
10^7 

6,157* 
10^6 

-2,117* 
10^7 

-5,638* 
10^6 

9 4,17; 2,06 
3,542* 
10^4 

5,849* 
10^3 

1,100* 
10^6 

4,443* 
10^5 

-6,295* 
10^5 

-3,523* 
10^5 

10 6,13; 2,06 
9,295* 
10^4 

2,396* 
10^4 

8,333* 
10^6 

2,531* 
10^6 

-6,981* 
10^6 

-2,213* 
10^6 

11 8,08; 2,06 
1,738* 
10^5 

6,070* 
10^4 

3,047* 
10^7 

9,772* 
10^6 

-3,056* 
10^7 

-8,997* 
10^6 

12 6,13; 3,04 
2,215* 
10^5 

4,753* 
10^4 

2,431* 
10^7 

7,590* 
10^6 

-2,167* 
10^7 

-6,617* 
10^6 

13 8,08; 3,04 
3,779* 
10^5 

1,318* 
10^5 

6,979* 
10^7 

2,145* 
10^7 

-6,755* 
10^7 

-1,963* 
10^7 

14 8,08; 4,02 
6,993* 
10^5 

2,258* 
10^5 

1,914* 
10^8 

4,638* 
10^7 

-1,833* 
10^8 

-4,323* 
10^7 

 

Sea state 
number 

Percentage 
mean power 
difference 

Percentage max 
positive power 

difference 

Percentage min 
reactive power 

difference 
1 -80,6480  -43,8152 -27,1196 
2   -74,1556   -68,5481   -67,2619 
3   -64,9744   -67,0185   -68,6909 
4   -52,3340   -69,8682   -69,2998 
5   -81,6420   -44,7917   -26,1808 
6   -74,1742   -69,1489   -67,8839 
7   -64,8222   -72,7486   -74,4837 
8   -52,6906   -73,5069   -73,3680 
9   -83,4867   -59,6091   -44,0349 

10   -74,2227   -69,6268   -68,2997 
11   -65,0748   -67,9291   -70,5596 
12   -78,5418   -68,7783   -69,4647 
13   -65,1230   -69,2649   -70,9400 
14   -67,7106   -75,7680   -76,4157 
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Figure 6. 15 - Percentage mean power difference between using constant control parameters or LSTM network parameters 

 

 
Figure 6. 16 - Max and min peak power difference when using constant control parameters or neural network parameters 

 

From the above graphs it is clear that the performance obtained with the LSTM configuration is by 

far the worst between the two neural network configurations. 

Analyzing the mean power difference graph, it is possible to pick out a noticeable efficiency trend 

as the wave energy period changes. As the period increases, the relative loss decreases, signifying 

that this current configuration of the neural network has difficulty in producing a control signal for 

wave forces with higher energetic frequencies. 
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To better understand this phenomenon, the control signals produced by the neural network and the 

corresponding wave heave force which was used as an input to produce the control signal will be 

plotted together to better understand if there may be any relationship between the input force 

frequency and the control signal frequency which ultimately led to a drop in mean absorbed power 

as the force frequency increased. 

 

 
Figure 6. 17 - Control signal of damping control parameter 'C' generated for sea state number 1 

 
Figure 6. 18 - Control signal of stiffness control parameter 'K' generated for sea state number 1 

For both the damping and the stiffness control signals, the LSTM neural network produces a control 

signal which has a large transient spike both at the beginning and at the end of the run, which spoils 

the graphical analysis of the plotted control signals. The next two plots will show a close up of the 

two control signals once the transient sections have been removed. 

 



107 
 

 
Figure 6. 19 – Close-up of the control signal of the damping control parameter 'C' generated for sea state number 1 

 
Figure 6. 20 – Close-up of the control signal of the stiffness control parameter 'K' generated for sea state number 1 

The close-up graphs reveal how the LSTM network produced a constant control signal for the 

stiffness and a time varying signal for the damping values. This is quite in contrast to what was 

produced by the feed forward neural network which produced time varying signals for both control 

variables. Additionally, the produced signals from the LSTM do not seem to be anywhere near the 

corresponding optimal fixed control signals found by the genetic algorithm optimization. 

 

To get a better understanding of how the control signal is produced and how it matches the force 

input, a closeup plot of the control and the heave force is presented next for both the damping and 

stiffness control values. 
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As for the feed forward neural network, the following plots will show the normalized values of the 

heave force and control signals. To better appreciate the variations on the control signals, the transient 

sections were truncated. 

 
Figure 6. 21 - Normalized damping and heave force signal for sea state number 1 

The above image suggests that, even for sea states with a small energetic period such as sea state 

number 1, for which the energy losses were much worse compared to sea states with a larger energy 

period, the LSTM network is able to produce a control signal for the damping parameter which is 

completely able to follow the oscillating input heave force, while also varying the magnitude of such 

control signal according to the magnitude of the input force. 

This leads to the conclusion that it is not a problem related to the ability to follow the input heave 

force, but rater most likely linked to the magnitude itself of the control signals for both the damping 

and stiffness parameters. 

A quick look at the optimal static control parameters obtained for sea state 1 by the genetic algorithm 

optimization shows how far both the constant stiffness and the mean of the varying damping 

produced by the LSTM network are for the parameters found by the genetic algorithm.  

This is most likely the reason for the pore performance since, although a variation on a wave-by-

wave basis was expected for the control parameter vectors produced by the neural network, the 

general working area should probably be in the same region as the static parameters obtained from 

the optimization process.  

Further proof of this is the trend of the power loss in figure 6.15 where it’s clear that performance 

improves as the sea state energy period increases. This is not because of some intrinsic problem with 

the frequency of the generated control signal for the damping control parameter, but it’s simply due 

to how far the magnitude of the generated stiffness control signal is from the different static optimal 

stiffness signals for each sea state. 
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The next image shows all the different control signals for all the 14 sea states plotted on a single 

graph for the damping and stiffness control parameters with the transients removed. 

 
Figure 6. 22 – Damping control signals generated by LSTM neural network for all 14 sea states 

 
Figure 6. 23 – Stiffness control signals generated by LSTM neural network for all 14 sea states 

From the two graphs it’s clear how the LSTM network somehow had bound all the control signals 

to be centered around two very specific locations for both the varying damping control signal and 

the constant stiffness signal; was now clear that this was the main driver of the poor performance.   

In particular, the greatest contribution to this poor performance was given by the constant stiffness 

signal, which for some sea states was very far from the optimal constant stiffness found by the genetic 

algorithms, while for other sea states (see table at page 78) it was much closer. 

It was now clear how the main cause of the bad performance and of the power loss trend which varied 

as the sea state energy period varied was the produced stiffness control signal and that although also 
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the damping signal seemed to be bound to a region in which it most likely should not be, it was not 

the main driver of the bad performance. 

This theory was put to the test by shifting the damping control signal so that it’s mean would lie 

around the optimal value produced by the genetic algorithm and by amplifying the control signal so 

that the oscillations would be more prominent. A simulation was then run with the modified damping 

control alongside with the constant optimal stiffness produced by the genetic algorithm. This mix of 

control signals was done to ensure that the comparison between the constant control signals and the 

time varying damping control would be a fair comparison without taking in to account the value of 

the stiffness produced by the neural network. The results showed that with a constant stiffness but a 

time varying damping factor the mean absorbed power actually increased with respect to the control 

using constant control variables in some sea states. 

Sea 
state 

number 

Te & Hs 
values 
[s]; [m] 

Mean 
power 

constant 
C & K 

[W] 

Mean 
power 

with N.N 
control 

[W] 

Max 
power 

constant 
C & K 

[W] 

Max 
power 

with N.N 
control 

[W] 

Min 
power 

constant 
C & K 
 [W] 

Min 
power 

with N.N 
control 

[W] 

1 4,17; 0,1 
7,987* 
10^1 

8,031* 
10^1 

2,013* 
10^3 

3,015* 
10^3 

-1,354* 
10^3 

-2,291* 
10^3 

2 6,13; 0,1 
2,048* 
10^2 

2,048* 
10^2 

1,901* 
10^4 

1,713* 
10^4 

-1,596* 
10^4 

-1,413* 
10^4 

3 8,08; 0,1 
3,982* 
10^2 

3,921* 
10^2 

6,916* 
10^4 

7,837* 
10^4 

-6,768* 
10^4 

-6,545* 
10^4 

4 10,04; 0,1 
5,783* 
10^2 

5,809* 
10^2 

1,376* 
10^5 

1,675* 
10^5 

-1,366* 
10^5 

-1,730* 
10^5 

5 4,17; 1,08 
9,213* 
10^3 

9,234* 
10^3 

2,400* 
10^5 

3,015* 
10^5 

-1,482* 
10^5 

-1,885* 
10^5 

6 6,13; 1,08 
2,390* 
10^4 

2,393* 
10^4 

2,256* 
10^6 

2,096* 
10^6 

-1,900* 
10^6 

-1,765* 
10^6 

7 8,08; 1,08 
4,514* 
10^4 

4,522* 
10^4 

9,794* 
10^6 

1,062* 
10^7 

-9,684* 
10^6 

-9,512* 
10^6 

8 10,04; 1,08 
6,799* 
10^4 

6,802* 
10^4 

1,893* 
10^7 

1,915* 
10^7 

-1,884* 
10^7 

-1,908* 
10^7 

9 4,17; 2,06 
3,642* 
10^4 

3,644* 
10^4 

1,086* 
10^6 

1,052* 
10^6 

-6,173* 
10^5 

-6,68* 
10^5 

10 6,13; 2,06 
8,723* 
10^4 

8,747* 
10^4 

8,333* 
10^6 

8,270* 
10^6 

-6,981* 
10^6 

-6,880* 
10^6 

11 8,08; 2,06 
1,639* 
10^5 

1,669* 
10^5 

3,047* 
10^7 

3,765* 
10^7 

-3,056* 
10^7 

-3,130* 
10^7 

12 6,13; 3,04 
2,282* 
10^5 

2,287* 
10^5 

2,431* 
10^7 

2,856* 
10^7 

-2,167* 
10^7 

-2,441 * 
10^7 

13 8,08; 3,04 
3,599* 
10^5 

3,639* 
10^5 

6,979* 
10^7 

1,056* 
10^8 

-6,755* 
10^7 

-9,140* 
10^7 

14 8,08; 4,02 
6,862* 
10^5 

6,879* 
10^5 

1,914* 
10^8 

2,074* 
10^8 

-1,833* 
10^8 

-2,003* 
10^8 
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Sea state 
number 

Percentage 
mean power 
difference 

Percentage max 
positive power 

difference 

Percentage min 
reactive power 

difference 
1 0,5509 49,7765 69,2024 
2          0    -9,8895   -11,4662 
3    -1,5319    13,3169    -3,2949 
4     0,4496    21,7297    26,6471 
5     0,2279    25,6250    27,1930 
6     0,1255    -7,0922    -7,1053 
7     0,1772     8,4337    -1,7761 
8     0,0441 1,1622   1,2739 
9     0,0549    -3,1308     8,2132 

10     0,2751    -0,7560    -1,4468 
11     1,8304    23,5642     2,4215 
12     0,2191    17,4825    12,6442 
13     1,1114    51,3111    35,3072 
14     0,2477   8,3595   9,2744 

 

 

 
Figure 6. 24 - Percentage power difference when using shifted and rescaled LSTM network damping and constant stiffness 
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Figure 6. 25 - Max and min power difference when using shifted and rescaled LSTM network damping and constant stiffness 

 

The above graphs suggest that the problems of the control signals produced by the neural network 

were mainly two: 

- Firstly, both the damping and stiffness signal were centered around a single value for all sea 

states. This is particularly detrimental especially considering that, since the produced 

stiffness signal was constant, this meant that, whatever the sea state, the stiffness would not 

change. This problem was fixed in the last test by shifting the signals produced by the LSTM 

network to be centered around the optimal vales found by the genetic algorithm optimization 

procedure. 

- Secondly, the variation in the damping control signal actually seemed to produce some 

positive effects in terms of produced mean power in most of the sea state scenarios tested. 

Thus, it might have also been positive to have a varying stiffness signal instead of a constant 

one. 

Although the above results were obtained by shifting the damping control signal around a working 

point which was known a priori to be efficient, it is still a positive result to see that in all sea states 

but one, the varying damping signal produced by the neural network actually managed to achieve a 

higher mean power reading than when using a constant damping signal. So, despite having to 

manually manipulate the signal position, this result still shows that a neural network does have the 

potential to create a time varying control signal able to increase the power absorption of a point 

absorber. 
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7 – Conclusions and future work 
In this thesis, a collaborative learning strategy for model-free control of an array of wave energy 

converters has been analyzed and tested in a simulation environment. 

The aim of this work was to test a model-free learning strategy which would allow an array of heaving 

point absorbers to collaborate to reach the common goal of optimizing the control strategy variables 

and to use the acquired data to further learn how to change the control parameters in a continuous 

manner in order to adapt the control strategy on a wave-by-wave basis. 

The simulations involved 14 separate sea states, each characterized by its own couple of significant 

wave height (Hs) and wave energy period (Te). Each sea state was considered to last 20 minutes in 

order to get a robust statistical evaluation of the point absorber performance. 

The control strategy chosen was of the reactive type which implied the use of two independent control 

parameters to be tuned, namely the damping factor (C) and the stiffness (K).  

Genetic algorithms were initially used as a metaheuristic collaborative learning strategy to optimize 

the two control parameters for each sea state. Each point absorber in the array represented a single 

individual in the population of the genetic algorithm carrying as genes the control parameters used 

for the current generation and as fitness, the mean absorbed power over the simulation time window 

of 20 minutes.  

Before deploying the genetic algorithm, a tuning procedure was used which would promote 

algorithm structures who’s internal hyperparameters resulted in algorithms with enough exploratory 

behavior to not trap in local minima but enough exploitative behavior so to not take too much time 

to converge. 

A ninety-minute simulation comprised of a mixture of all the sea states taking in to account their 

specific occurrence was created and used as a testing ground for the genetic algorithm evolution. 

A memory management system was then used to create individual meta populations of a single 

genetic algorithm structure where each population was linked to a single sea state and could evolve 

independently to reach optimal control parameters for the given sea state. 

The results showed how a population of 16 individuals was able to converge to optimal static control 

parameters for a given sea state in just over 12 generations, which in turn meant that the array would 

only need about 4 hours in a given sea state to find the optimal damping and stiffness parameters 

which would maximize the mean power output of the device. 

With the genetic algorithm structure complete, the next step was to find a means to achieve a model-

free continuous control over the control variables of the reactive control law so to achieve a control 

signal which could vary on a wave-by-wave basis so to continuously adapt to the current scenario. 
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The adopted strategy tested both feed-forward neural networks and LSTM neural networks as means 

to learn how to map the input heave wave force into a meaningful continuous control signal for both 

the damping factor and the stiffness parameters of the reactive control law. 

The two network structures showed remarkably different behavior. 

 

The feed forward neural network was fed, at each time instant, with multiple inputs which 

represented the current and past 600 heave force values read and as output, the vectors corresponding 

to the two control parameters had to be produced. 

The network showed that it was able to produce signals with a similar frequency to the input heave 

force, signifying that it was actually able to correctly follow the oscillating wave input force. 

Besides this positive remark, in all but one wave scenario the mean produced power was lower than 

what was obtained with the constant control parameters and the peak power flow values were in 

some cases lower and in other higher. 

Summarizing, the feedforward neural network showed potential in its ability to map the force signal 

in to the two control signals, but the results showed that the produced signals didn’t actually cause 

any appreciable increase in the produced mean power. 

 

A second but similar test was carried out using a long-short term memory (LSTM) neural network. 

This kind of network has the ability to crate feedback loops within itself and to store past information 

in order to make more significant predictions about the current input. For these reasons there was no 

need to feed the network with a matrix of inputs, instead a simple single force vector of the time 

series heave force was used.  

Unfortunately, the network by its own wasn’t able to improve on the feed forward neural network, 

but actually produced worst results in terms of the mean absorbed power. This was mainly due to the 

produced control signals all being bound in a region which was sub optimal in terms of produced 

power. The reason behind this most likely resides in the chosen network structure. 

Additionally, to having all the signals bound to a fixed common mean value, an unexpected behavior 

from the LSTM network was the constant stiffness control signals it produced. This was particularly 

surprising since, at least to the authors knowledge, no bias was given between one output and the 

other and both outputs were treated in the same manner in the final processing phases of the neural 

network. These two major malfunctions ultimately caused the LSTM network to perform poorly with 

respect to the feed forward network. 

 

To understand if the network could have potentially still produced a control signal which could have 

increased the mean absorbed power of the device, the damping control signals were manually shifted 

so that their mean would match the optimal control values produced by the genetic algorithm 
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optimization. The results showed that in this scenario the mean absorbed power actually increased in 

all but one sea state signifying that the varying damping signal produced by the LSTM network could 

have had the potential to improve the performance over the constant control signals. Unfortunately, 

since the stiffness signal produced by the network was constant, the same could not be said for the 

stiffness parameter, although one might speculate that also a varying stiffness control signal might 

also increase the systems performance. 

 

As a final consideration, the first half of the proposed strategy, involving the online optimization of 

the control parameters through a metaheuristic approach employing genetic algorithms can be 

considered a success. The designed genetic algorithm proved to be a valid tool to optimize the 

parameters of a reactive control law over multiple sea state scenarios in a repeatable, fast and reliable 

manner while never using any model of the system during the optimization process. 

On the other hand, the second half of this work, which involved the use of neural networks to further 

learn interdependencies between the input heave force and the corresponding control parameters to 

try and achieve a continuous control over such parameters did not produce exceptional results. 

The main problem with the neural network approach will obviously lie either in the training set used 

or in the structure of the neural nets themselves. Both of these fields may be subject of further study 

to try and accomplish better results. 

Future work which may spawn form this preliminary research might include: 

- Further work on the genetic algorithms to make the optimization process even faster and 

more reliable by trying to implement adaptive control over the genetic algorithm structure 

and self-adaptation [72], [73], [74]. 

- Testing and developing neural network structures to try and achieve better performance and 

to try and uncover the possible causes of the shapes of the signals produced by the LSTM 

network. 

- Additional work may also try and achieve continuous data driven control through other 

machine learning techniques asides from neural networks. 

- Finally, the actual dataset used to train the neural networks might be revised and modified 

to try and give the neural networks, or any other tool used, more information about how the 

input signals are linked to the desired output control signals, and to try and gather more 

meaningful data about what the networks are actually trying to achieve. 
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Appendix A: Evolutionary algorithms 
Evolutionary computing is a branch of computer science which, as the name suggests, takes 

inspiration from evolutionary processes occurring in nature. More precisely we can think of 

evolutionary computing as a parallel to a scenario where in nature, a population of individuals in a 

given environment is competing for survival and reproduction.  

The competing individuals can be somehow ranked based on their fitness. In evolutionary computing 

such fitness relates to how well and individual is performing at achieving the desired goal. Just as in 

nature, the probability of survival and reproduction of an individual depends on how fit such 

individual is. 

When talking about evolutionary computing, we still use the term individual and fitness, but it must 

be noted what such terms mean. For individual we intend a candidate solution to our optimization 

problem, this solution may be a single parameter, or a set of parameters based on the dimension of 

the optimization problem. For fitness of an individual, we mean the quality (how well it solves the 

problem at hand) of a solution that uses the given parameters that the individual carries. 

Under the main category of Evolutionary Computing, over the years many branches stemming from 

the same basic concepts have emerged. 

In the 1960s three different families of Evolutionary Computing emerged: 

- In the USA, Fogel, Owens and Walsh introduced Evolutionary Programming (EP). 

- In the USA, Holland introduced his version called Genetic Algorithm (GA). 

- In Germany, Reichenberg and Schwefel introduced Evolution Strategies (ES). 

Each of these methods use the same basic principles of evolution but differ in their implementation. 

The basic underlying idea behind all Evolutionary Computing algorithms is the same: given a 

population of individuals and a measure to evaluate the fitness of such individuals, as generations 

pass and natural selection takes place, thanks to the principle of survival of the fittest, the average 

fitness of the population will grow as populations elapse. 

This concept can easily be translated into function maximization (using a fitness function) or 

minimization (using a cost function). We can imagine a simple example with a 3D surface and only 

2 optimization variables, while the vertical axis corresponds to the fitness of the candidate solutions 

(individuals). An initial population of candidate solutions is initialized randomly, as populations 

elapse and reproduction and mutation between solutions occurs, the average fitness of the population 

will increase thanks to reproductive and survival selection strategies which favour the fittest 

individuals. Eventually the population should move to a position in the landscape which is correlated 

to high fitness (a peak in the fitness function), leading to a solution very close to the function’s 

maximum. Thus, it’s easy to see that in an Evolutionary Algorithm scenario, the fitness function 

which gives a measure of how fit each individual is, must correspond to the function we want to 

maximise (or minimise if using a cost function). 
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In the next chapter, a detailed view of how an Evolutionary Algorithm operates is given referencing 

the main operators that are used. Later, focus will be shifted on specific operators and mechanisms 

for Genetic Algorithms, which as stated earlier, are a specific family of Evolutionary Algorithms. 

 

A.1 How does and Evolutionary Algorithm work? 

As stated in the previous paragraphs, an Evolutionary Algorithm takes inspiration from evolutionary 

theory by using an analogy of survival of the fittest to a population of candidate solutions, in order 

to possibly reach the optimum solution to our underlying problem.  

At the beginning of an algorithm run, a set of candidate solutions is randomly produced in the space 

of optimization variables specific to the problem, and within the predefined bounds of such variables. 

To give an example, if the function we were trying to minimize was the sphere function, each 

individual would carry in its genome the X and Y coordinates of its position in the X-Y plane. 

Depending on the problem dimensionality, the number of optimization variables will vary. 

It must be noted that the number of candidates solutions randomly generated is chosen a priory and 

is referred to as population size. Generally, the population size will remain constant throughout the 

run, while the individuals making up the population will change. 

Once the initial population has been initialised, each member of the population is assigned a fitness 

value which depends on the function value we are trying to minimise/maximise if the optimization 

parameters of such individual were plugged in to such function. Usually, the fitness is chosen to be 

exactly equal to the function value. 

At this point the initial individuals will be ranked by fitness and the first generation is now complete. 

All further steps are needed to give life to the next generation of individuals which will either replace 

or will in some cases compete against the current generation for survival. 

Firstly, form the pool of current individuals, parents are picked for reproduction, this is known as 

parent selection. Usually, each couple of parents gives life to 2 offspring so that the number of 

offspring can easily match the population size. This is not always the case since in some 

implementations the total number of offspring is larger than the population size. Competition 

between offspring or between offspring and current population is then used to reduce the number of 

survivors to the selected population size. In other cases (steady state algorithms) at each generation 

only one offspring is produced. Whatever the total number of chosen offspring may be, once such 

number has been reached, the offspring undergo mutation. Mutation allows the genotype of an 

individual to mutate randomly in order to create a new mutated version of the initial gene. In other 

words, the optimization parameters which an individual is carrying are mutated, forming a new 

individual which replaces the non-mutated child. Mutation is not always applied to all the offspring, 

usually the offspring undergo mutation with a certain probability often referred to as mutation 

probability or mutation rate. Once the offspring have been created, their fitness is evaluated. 
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Now that a new set of offspring has been created and mutated, competition for survival must occur. 

Different kind of survival selection methods are available but generally, the offspring can either: 

- Directly form the next generation (if the number of offspring is equal to the population size). 

- Compete against each other only (if the number of offspring is larger than the population 

size). 

- Compete against each other and the previous generation. 

- No fitness-based competition occurs, the age of the solutions is used to determine who 

continues to the next generation (youngest) and who is left out (oldest). 

Competition can be either completely deterministic, only choosing the best candidates at each cycle, 

or it can have some stochasticity introduced, thus giving a chance to suboptimal solutions to also 

pass in the next generation. 

The process that has just been described then continues until either a predefined termination 

condition is met or when a solution of sufficient quality is found. 

A pseudo code for an EA might look something like: 

 
Figure A. 1 - Pseudo code for a generic EA [62]. 

A simple high-level explanation of the main forces acting on an Evolutionary Algorithm can help 

explain how each operation within the above pseudocode can help the population to increase its 

average fitness and finally reach an adequate solution  

The main forces acting on an Evolutionary Algorithm are Variation and Selection: 

- Recombination and Mutation are both variation operators. Their purpose is to create new 

genetic material thus allowing the exploration of new solutions and thus of the optimization 

space. 

- Selection is instead the driving force which utilises the fitness information of each individual 

to drive the increase of the average population fitness, thus allowing the population to exploit 

the fitness information that is known. 
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A balance between exploration and exploitation is usually needed to properly reach a good solution.  

Typically, at the beginning of a run, exploration must be predominant in order to allow the collection 

of data about the optimization landscape and to explore new solutions. As time passes, exploitation 

usually takes over in order to use the gathered information to reach an optimal solution. 

The balance and trade-off between exploration and exploitation obviously depends on the type of 

landscape we are facing (unimodal/multimodal, simple/complex etc) and on the specific 

implementation details of the EA. 

In general, if exploration is kept too high, the algorithm will act as a random search algorithm, losing 

all the good traits of an EA, if instead exploitation is too high, the algorithm might make ill-suited 

decisions based on too little information and may end up stuck in a local minimum. 

 

A.2 Evolutionary Algorithms: Why? 

When looking for new ideas on how to solve problems, scientists and engineers have often resorted 

to nature, looking for inspiration from natural processes or living beings. 

Regarding problem optimization and problem solving, two obvious candidates from which we might 

take inspiration from are: 

- The human brain. 

- The naturally occurring evolutionary processes. 

The first candidate led to the evolution of the field of neurocomputing, while the second led to the 

field of evolutionary computing. Thus, as a first motivation for how and why evolutionary algorithms 

came to be we can simply say, nature inspired human curiosity. This curiosity can be then directly 

linked to the use of evolutionary computing not only for problem solving but used directly to better 

understand natural evolution processes. Evolutionary processes can be simulated using a wide range 

of parameters, simulating different population traits and different set of initial circumstances within 

a matter of a few hours or days, giving researchers insights of how evolutionary processes might 

have shaped passed populations or how they might shape future ones. 

Obviously, such simulations have to be performed very carefully, paying attention to all 

implementation details in order to get a realistic performance. But even so, this will not always ensure 

that the obtained results can be directly linked to real world processes.  

A second motivation for the use of evolutionary algorithms is the fast pace at which new problems, 

requiring new solutions, are emerging. This fast growth pace although is accompanied by a smaller 

and smaller time window to solve these problems in, thus preventing ad hoc solutions to be 

developed, which would obviously take time and resources to implement. Thus, the trend is to look 

for a robust general solver which can perform well under a variety of problems with only minor 

adjustments. This is exactly what evolutionary algorithms are capable of, making them ideal 
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candidates for a wide variety of problems that can then be solved with minor adjustments in a 

relatively short time. 

A.3 Components of Evolutionary Algorithms 

The main components that make up the most important parameters to be chosen when constructing 

an Evolutionary Algorithm are: 

- Representation  

- Population 

- Initialization 

- Parent selection 

- Recombination (or Crossover) 

- Mutation 

- Survival selection 

- Termination condition 

- Performance measure 

 

A.3.1 Representation 

The first step to take when designing an Evolutionary Algorithm is to decide which representation 

type will be used to define the population members. Representation consists in finding a way to map 

the solutions of our real-world problem into the population of our Evolutionary Algorithm, such that 

this population can then be manipulated by the algorithm to evolve in time. 

Objects forming the solution space of the original “real world” problem are referred to as phenotypes 

while the encoded solutions that are then manipulated by the Evolutionary Algorithm are called 

genotypes. 

In this stage it is important to select a proper encoding in order to assure firstly that all possible 

solutions to our problem may be explored without limitations (unless specified) and also that the 

final solution of our Evolutionary Algorithm (the final genotype) then can be meaningfully translated 

back into a solution of our optimization problem (a phenotype). 

The type of representation used mainly depends on the problem at hand, even though in some cases, 

different types of representations may work on the same problem. 

Binary representation 

Binary representation is one of the earliest types of representation used, especially when dealing with 

Genetic Algorithms (GAs).  

Binary representation simply consists in encoding a solution in a bitstring of predetermined length. 

This type of encoding is quite a natural type of encoding when dealing with Boolean decision 

problems where the complete solution is a simple set of a certain number of either yes or no. An 
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example of these kind of problems is the Knapsack problem, which is a sort of generalization of 

many industrial problems. Imagine having a set of n items each with its own value vi and cost ci. The 

problem consists in selecting a subset of such items that will maximise the sum of the single values, 

while keeping the sum of the costs below a certain a priori defined threshold Cmax. It is thus natural 

to use binary encoding for such kind of problems where each candidate carries a binary string where 

a 1 means to keep the corresponding item while a 0 means to discard such item. 

Binary encoding was also heavily used in early genetic algorithms whose phenotype solution space 

was made of real numbers. For example, an individual might carry a binary string of length 32 where 

each 8 bits represented an encoded real valued variable, thus in this specific example, allowing up to 

256 possible values to each variable in a range defined a priori. 

One of the main problems in representing real numbers using a binary encoding is that not all bits 

have the same importance, thus when mutation occurs (random change of individual’s value) the 

magnitude of such mutation strongly depends on which bit is mutated. This can be reformulated in 

the fact that the Hamming distance between consecutive integers, mapped as binary strings, is often 

not equal to one. 

Ideally, during mutation, the probability of changing a 5 in to a 6 or in to a 4 should be the same, 

however changing a 0101 to 0110 requires 2 bits to be flipped while changing it in to a 0100 only 

requires 1 bit to be flipped. Thus, when dealing with real valued phenotypic variables, the extra work 

of mapping into binary is usually not worth the effort. 

 

Integer representation 

Integer representation can be naturally used if out problem deals with the optimization of variables 

which take on integer values. An example might be of moving along a path on a square grid, we 

might encode North, East, South, West as {0, 1, 2, 3}.  

As can be seen from the example above, integer representation can be used both wen our variables 

actually represent real integers, and thus phenotype to genotype mapping is straight forward, or it 

can also be used to represent a list of actions or a list of attributes on which our optimization problem 

is based on. 

 

Real valued representation 

When the values we need to represent come from a continuous distribution instead of a discrete one, 

it is obvious that neither binary nor integer representations are well suited to our needs. The most 

natural representation in this case is a real valued representation where variables might represent 

continuous physical quantities like a length, temperature, power etc.  

In the early days of Evolutionary Algorithms, especially when dealing with Genetic Algorithms, 

problems whose phenotypic variables were real valued numbers were often encoded using a binary 



123 
 

representation instead of a real valued representation. This was often done simply because 

historically Genetic Algorithms were born using a binary representation scheme. Encoding real 

valued variables as binary strings obviously causes a loss in precision since a binary string can only 

be decoded in an integer number. This number can then be used to represent a position within a 

predefined range, which can then lead to a floating-point number in some cases, but still, only a 

limited number of floating point numbers in the predefined range can be represented in such manner, 

causing a loss in precision. The other problem with binary representations of real valued numbers 

was already presented previously when it was shown that the Hamming distance of two consecutive 

binary numbers is not always 1, thus leading to favourable directions of mutation. 

 

Permutation Representation 

Permutation representation is used when the problem at hand requires the optimiser to decider an 

ordering in which a sequence of events should happen. Permutation encodes the events as a fixed set 

of integer values but differs from integer representation since it does not allow a given integer to be 

repeated twice in the sequence (so any given event can only occur once in the sequence). 

A classic example of this type of representation may be used when dealing with a production 

scheduling problem where the problem may ask to decide in which order should some components 

be produced based on the set-up times, production times etc. 

 

A.3.2 Population 

The population of Evolutionary Algorithms can be seen as a group of individuals whose role is to 

hold the representation of possible solutions. Initially, the population is usually initialized at random, 

thus the values of the variable that each individual carries in its genes are randomly chosen within a 

predefined range. The population can then evolve in time leading to an increasing fitness and finally 

a near optimal solution to the n dimensional fitness landscape on which it’s evolving on. 

The population size is a key parameter to be chosen when dealing with any Evolutionary Algorithm.                 

The population size is usually chosen to be fixed during a single run, thus creating the competition 

for survival, but in some case studies, researchers have experimented with varying population size 

in order to obtain better performance from the given algorithm. Generally, a fixed population size is 

a good choice for most problems. 

Usually, a larger population size is preferred for complex landscapes and multimodal problems in 

order to allow for better exploration. A smaller population is instead preferred for simpler landscapes, 

which also allows a smaller computational cost with respect to a large population. 

Population diversity is a measure of how diverse the population is, or in other words, how many 

different solutions are present in the population and how different such solutions are from one 

another. It is usually desirable to keep population diversity high at the beginning of a run, in order to 
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better explore the landscape and to avoid getting trapped in local minima. As the run progresses, 

population diversity should drop as the population converges to a minimum, hopefully being a global 

minimum. 

A.3.3 Initialization 

Initialization is a procedure used only once at the beginning of the run of a genetic algorithm to create 

the first population of individuals. All the methods used in future generations do not apply to the first 

generation since they are all based on evolutionary concepts, while the first generation has nothing 

to evolve from. 

Generally, a good initial population can help the algorithm to locate the optima while a bad guess 

may hinder the evolution. While this topic may be intuitive, some researchers sustain that the effort 

put in to finding an optimal initialization strategy may be in some sense not particularly well placed 

since evolutionary algorithms can in general increase the average fitness of the population very 

quickly in the first few generations. Thus, a good initialization strategy, which would cause the initial 

average fitness of the first population to be higher, may only save a few elapsed generations with 

respect to any other initialization technique.  

Although the above statement may be true, choosing the right initialization technique may help in 

solving particularly hard and large-scale problems with a relatively small population. 

For a problem regarding a black-box optimization, no information about the optimization landscape 

can be used by the initialization procedure to select favourable location in which to initialize the 

population. In these cases, the most common initialization procedure involves a random initialization 

of the initial individuals. An example is the use of pseudo-random number generators. 

Many other techniques and categorizations of initialization procedures exist, and an extensive survey 

can be found in the work from Borhan et al. [75]. 

 

A.3.3 Parent selection 

Parent selection is the procedure of selecting a number of parents for reproduction which will yield 

their offspring which will then form the next generation. Parent selection is usually not completely 

stochastic, in other words, individuals with higher fitness have a higher chance of being selected with 

respect to individuals with a lower fitness level.  The probability distribution of parent selection over 

the whole population determines what is known as selection pressure.  

A high selection pressure means that low fitness candidates have a low probability of being selected 

while a lower selection pressure starts to even out the field and makes parent selection tend towards 

a stochastic process. It is usually preferrable to avoid the extremes of selection pressure since a 

pressure which is too high will lead to an algorithm which is too greedy and not very explorative, 

causing the population to get stuck in a local minimum, while a selection pressure which is too low 

will cause parent selection to be stochastic and will not drive the population to increase its fitness 
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since individuals with poor performance have the same chance of reproducing as individuals with 

high performance. 

Selection pressure can usually be tuned based on the parent selection mechanism chosen. 

The parameter through which selection pressure can be tuned is usually chosen to be constant 

throughout a run, but research indicates that often, a varying selection pressure may lead to better 

performance both in terms of quality and in terms of speed. The commonly chosen option when 

varying selection pressure is to increase selection pressure in time since this will allow the population 

to initially explore a larger solution space and not get trapped in local minima, then in time, selection 

pressure can be increased in order to focus on a specific location in the search space where the 

optimum probably lies.  

Different parent selection schemes exist, and most of these can also be used for survival selection. 

 

Fitness proportional selection (Roulette wheel selection) 

In fitness proportional selection the probability that an individual i is chosen for mating depends on 

its absolute fitness value related to the absolute fitness values of the rest of the individuals in the 

population. 

Given an individual i with fitness fi the selection probability of such individual using fitness 

proportional selection is: 

𝑃𝐹𝑃𝑆(𝑖) =  
𝑓𝑖

∑ 𝑓𝑖
𝑢
𝑗=1

 

 

Over the years this selection method has been studied intensively and some of the problems which 

have been discovered include: 

- When fitness values are very close to one another, selection pressure is practically null. Thus, 

when the run has passed the initial phase and the population starts to converge, population 

fitness will usually increase very slowly because of vanishing selection pressure. 

 

- Outstandingly fit individuals can take over the population very quickly. This causes the 

search to focus on a specific location of the search space where the very fit individual lies, 

causing the population to initially converge quickly thus reducing the explorative traits of 

the algorithm which are desirable early on in order to properly assess the search space. This 

will lead to premature convergence. 

 

- The selection pressure changes if the fitness function is transposed. Because the fitness 

proportional selection works on the relative difference of fitness between individuals, if for 
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example the fitness function is transposed, the relative difference in fitness of each individual 

with respect to the others will change.  

 

Ranking selection 

Ranking selection was conceived to try and fix some of the issues present in fitness proportional 

selection. 

In ranking selection, the selection probability is not directly proportional to the absolute fitness of 

the individual, instead, individuals are ranked based on their fitness level. This ordered list of 

individuals can then be used to allocate selection probabilities to each individual based on their rank, 

not directly on their fitness value. 

Mapping a rank number to a selection probability can be done in different ways, the most common 

are a linearly decreasing probability or an exponentially decreasing probability of selection. 

Exponentially decreasing selection pressure provides a stronger selection pressure with respect to 

linear selection. 

Considering a population of μ individuals the selection probability of an individual with rank i where 

the best individual has rank μ-1 and the worst has rank 0 can be expressed using either linear ranking 

or exponential ranking: 

𝑃𝑙𝑖𝑛𝑒𝑎𝑟(𝑖) =  
(2 − 𝑠)

𝜇
+  

2𝑖 (𝑠 − 1)

𝜇 (𝜇 − 1)
 

 

𝑃𝑒𝑥𝑝(𝑖) =  
1 −  𝑒−𝑖

𝑐
 

Where 1 < s ≤ 2 ensures that the worst individual does not have a probability below 0. 

C instead ensures that the sum of the probabilities is 1, thus C is a function of population size. 

Tournament selection 

Tournament selection works by picking a predefined number of individuals randomly from the 

population and then selecting the best individual form such group. The size of the selected sample is 

called tournament size. 

Tournament selection does not require any global knowledge of the whole population and it does not 

need an ordered population to work. It is therefore conceptually simple to understand and to 

implement. 

Selection pressure can easily be tuned in tournament selection by tuning the size of the tournament. 

A large tournament will most likely include the best individual in it; thus, a high selection pressure 

will result since the best individual will often be chosen. A small tournament instead will have a 
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lower chance of including the best individual, and might even only include poor individuals, thus 

allowing for a lower selection pressure. 

An individual within a tournament can be selected depending on the following factors: 

- It’s rank in the population. This does not need to be known a priori, but it is obvious that a 

higher-ranking individual has a higher chance of being selected if it is included in a given 

tournament. 

- The tournament size. As stated above, the tournament size can be used to vary the selection 

pressure. 

- The probability that the most fit member of the tournament is selected. In the classic 

tournament selection format, the probability that the most fit member of the tournament is 

selected is 1 (Deterministic tournament), but variants exist where the probability is <1 

(Stochastic tournament). 

The ease of implementation at the ability to control selection pressure simply through the tournament 

size make tournament selection one of the most widely used selection methods. 

 

Stud selection 

Stud selection is a selection strategy which involves always selecting the fittest member of the 

population as one of the parents used for reproduction. In other words the fittest member of each 

generation acts as the Stud. Once the Stud has been identified, the next generation created by mating 

the stud with all the remaining individuals in the current population. 

This mating procedure will cause the number of offspring to be one less than the current number of 

individuals in the population. If we want the populations to have constant size, one option is to simply 

carry the stud to the next generation directly, in this way all generations will have equal size. 

This method of selection and reproduction obviously has its roots in animal breeding where the fittest 

individual is chosen to mate in order to hopefully produce the fittest offspring as possible. 

 

 A.3.4 Recombination (or crossover) 
After parent selection has been performed, the selected parents are then combined to produce 

offspring, such procedure is known as recombination or crossover. The crossover operator takes the 

genotypes from two parents and combines them to form a given number of children. Often this 

number is equal to two in order to have the population size equal to the offspring number, such that 

the offspring directly become the new population. 

Crossover is not a deterministic operation in the sense that the portions of genetic information 

exchanged by the two parents are not chosen a priori, instead the genetic information exchanged is 

randomly chosen. The structure itself of the crossover operation, meaning how the genetic 
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information is chosen and later combined to form the offspring, depends on the chosen crossover 

operator. 

The structure of a crossover operator mainly depends on the representation chosen for the population. 

Here are a few examples of crossover operators depending on the chosen representation: 

 

1) Recombination for Binary Representation 

 

- One Point Crossover: initially a random number is selected in the range [1, l -1] where l is 

the length of the binary string encoding. This random number indicated the position where 

the binary string of the two parents will be cut. Two children can be then created by 

exchanging the tails of the binary encoding of the two parents after the cutting point. 

The random number indicating the cutting point is chosen at random within the given range 

for each set of parents. Obviously for a given couple of parents the cutting point must be 

equal otherwise this would cause children with encodings of different length. 

 

 
Figure A. 2 - One point crossover [62] 

 

- n Point Crossover: n point crossover is simply the variant of one point crossover in which 

instead of having only one cutting point, multiple cutting points are used. Offspring are then 

created by taking alternate segments from the two parents.  

The most common form of n point crossover is two-point crossover (n = 2). 

 
Figure A. 3 - Two-point crossover [62] 
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- Uniform Crossover: Uniform crossover differs from n point crossover in such that it does 

not consider sections of the genomes to be exchanged between parents, but it randomly 

selects single genes from each parent that will then form the new offspring.  

This procedure can be implemented by creating a random binary bitstring of the same length 

of the parent’s bitstring, which is then used to decide from which parent each gene should 

come from. If at a given position in the newly generated bitstring a 1 is present, then the first 

child will inherit such gene from the first parent, if instead a 0 is present, the first child will 

inherit the gene from the second parent. 

A second child can be created from the two parents by either creating a new bitstring and 

repeating the procedure, or by simply flipping the already generated bitstring so that the 

second child takes its genes in a mirror like manner with respect to the first child. 

In the image below, uniform crossover is performed using the second option (only one 

bitstring) 

 
Figure A. 4 - Uniform crossover [62] 

 

By analysing the proposed crossovers for binary representations, we can notice that each 

crossover presents a so-called Bias. 

As an be noticed, n Point crossover has an inherent bias in that it keeps together genes that 

are close to each other in the original parents. This effect is known as Positional Bias. 

Differently, Uniform Crossover does not display any Positional Bias since there is no 

mechanism that inherently prevents or favours a group of genes from sticking together and 

being passed on to the offspring. However, Uniform Crossover does present a tendency of 

transmitting approximately 50% of genes from each parent and usually hinders a large 

number of genes coming from the same parent from being transmitted to the offspring. This 

is known as Distributional Bias. 

Generally, it is not directly possible to state which crossover operator works best on any 

given problem. But knowing how the crossover operators work and knowing their biases can 
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sometimes give an insight on which crossover operator might work best for a given kind of 

problem. 

For example, in ordering problems where an ordering of actions or items is the output of our 

problem, we might consider using n Point Crossover since it might help keep together parts 

of the sequence which work well together. This is then obviously subject to the number of 

objects in the list, the weight/impact each object has on the fitness function, the number of 

crossover points etc. 

 

2) Recombination for Real Valued Representation 
 
For what concerns Real Valued Representations, three main families of recombination 

operators are available. 

The first option consists in recombination operators which simply assign to each of the 

child’s gene, one of the corresponding genes form one of the two parents. Thus, a given gene 

of a child is either the gene of one parent or the gene of the other. This is then repeated for 

all genes an individual might carry. This option has the disadvantage that no new values can 

be added to a gene through crossover, but only through mutation. Crossover in this case acts 

kind of like a selector of genes and does not produce any new genetic material. 

Recombination operators of this kind are called discrete recombination operators. 

 

The second option are recombination operators which create new genes whose values lie 

between the parent genes used for crossover.  

This can be seen as creating a new gene z from the genes x & y of the two parents as: 

 

𝑧𝑖 =  𝛼𝑥𝑖 + (1 −  𝛼 )𝑦𝑖 

Where α Є [0,1]. 

This method has the advantage of being able to create new gene values but has the drawback 

that this new value is restricted to be in between the values of the genes used from the two 

parents. 

Recombination operators of this kind are called intermediate or arithmetic recombination 

operators. 

The third kind of operator involves creating new genetic material from the parent genes with 

values which may also lie outside the range defined by the parent’s genes. 

Recombination operators of this kind are called blend recombination operators. 

Next, some of the most common operators for real valued representations are illustrated: 
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- Simple Arithmetic Recombination: Simple Arithmetic Recombination is a mixture of 

discrete recombination strategy and an arithmetic recombination strategy. It involves simply 

picking a random number between one and j-1 where j is the number of genes in each 

individual, that is, the number of optimization variables (since each optimization variable 

will be represented by a real valued number for real valued representations). To perform 

crossover, simply perform the arithmetic average of all genes after the selected point, all 

genes before such point come from the 2 parents. 

 
Figure A. 5 - Simple arithmetic crossover [62] 

 

 

- Single Arithmetic Recombination: Single Arithmetic Recombination is again a mixture of 

discrete recombination strategy and an arithmetic recombination strategy. For this 

recombination, simply pick a random gene, at that gene perform an arithmetic average of the 

two parents, the other genes come directly from the parents. 

 
Figure A. 6 - Single arithmetic crossover [62] 

 

 

- Whole Arithmetic Recombination: Whole Arithmetic Recombination is a fully arithmetic 

recombination strategy. It simply involves taking the weighted sum of each gene from the 

two parents. This weighted sum is controlled by the parameter α which tells which parent 

will influence the weighted sum more greatly.  

Two offspring can be produced by using: 
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If α= 1/2 the two offspring generated will be identical, thus usually α is chosen different from 

1/2. 

 
Figure A. 7 - Whole arithmetic crossover [62] 

 

- Blend Recombination: Blend recombination vas created in order to have the possibility to 

create offspring with genes whose values can lie outside of the range of the parent’s genes. 

To create an offspring, we firstly need to sample a random number u from [0, 1], then we 

can calculate 

𝛾 = (1 − 2𝛼)𝑢 − 𝛼 

 

The final offspring gene value can be calculated as:  

𝑧𝑖 = (1 − 𝛾)𝑥𝑖 + 𝛾𝑦𝑖 

 

The term α can be used to control how likely it is for the child’s gene to fall in a range within 

that of the parent’s genes or outside. Using α=1/2 gives equal probabilities of the two events 

happening.  

 

 

A.3.5 Mutation 

In a conventional Evolutionary Algorithm, after the crossover operation, mutation is performed on 

either the whole offspring population or on only part of it based on a given probability of mutation. 

Mutation in the process of taking a single genotype and slightly modifying it according to a 

predefined mutation strategy. It must be noted that mutation is a stochastic operator in the sense that 

the change it causes to the genotype is random and unbiased. 

What can be controlled in some sense while performing mutation is with what probability will 

mutation occur, and, if mutation takes place, approximately how large will this mutation be. These 

two parameters are usually referred to as mutation probability and mutation step size. 

Mutation probability can vary widely from problem to problem, but in general, different Evolutionary 

Algorithms use mutation differently, and thus have a different take on what ranges should the 

mutation probability be in. For example, Genetic Algorithms use mutation as a secondary search 

operator, leading to low mutation probabilities, while in Evolutionary Programming, mutation is 
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considered it is used as the main search operator, solely responsible for the generation of new 

individuals. 

Another argument that can be made while choosing the mutation probability is whether the specific 

problem requires all the members of the population to reach the optimum or if only one member (the 

fittest) is required to reach the optimum solution. In the former case, a smaller mutation probability 

might be preferred in order to avoid disruption of a good solution of the whole population, while in 

the latter case, a larger mutation might allow a better exploration of the search space. 

Mutation step size instead varies according to the problem to be solved and to the ranges of the 

optimization variables in question. Obviously, a large mutation step will be preferred when the search 

space is very large and when the optimum might have a “soft” shape, while is the search space has a 

very small range, small mutation steps are needed. 

The operator through which mutation takes place depends on the type of representation used. Some 

of the main mutation operators for different representation classes are presented next. 

 

1) Mutation for Binary Representation 
 

- Bitwise mutation: Bitwise mutation consists in creating a vector of random numbers 

uniformly distributed between 0 and 1 of the same length as the genotype binary vector. This 

random vector is then compared with the mutation probability 𝑝𝑚. At each position in which 

the randomly generated number is smaller than the mutation probability, a bit flip is 

performed in the binary genotype. Thus, on average, an increase in mutation probability will 

cause an increase in the number of bits flipped. An example is presented with a probability 

of mutation of 50%. 

𝒑𝒎 = 𝟎. 𝟓 

 

 
 

 
Figure A. 8 - Bitwise mutation 
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2) Mutation for Real Valued Representation 
 
For real valued representations, the value that a genotype can take is no longer discrete, thus 

mutation operators simply involve mutating each original genotype to a value within a 

predefined domain given by a lower bound and an upper bound for each gene. 

The lower and upper bounds are obviously problem dependent. 

 

 

 
- Uniform Mutation: For uniform mutation, the mutated values (xi’) are drawn from a 

uniform random distribution with bounds [Li, Ui]. This is very simple to implement but has 

the disadvantage that the size of the mutation cannot be controlled since is equally probable 

to pick any value within the range. Thus, depending on what the original gene value was, the 

step caused by mutation might be very small or very large and anywhere in between.  

 
- Non-Uniform Mutation: Non uniform mutation is designed so that the size of the mutation 

step can somehow be controlled and is most likely to be small than very large. This is 

achieved by adding to the current gene a value drawn randomly form a Gaussian distribution 

with zero mean. The size of the step can be controlled by appropriately choosing the standard 

deviation of the Gaussian distribution. Increasing the standard deviation will increase the 

likelihood of picking larger mutation values while reducing the standard deviation will 

ensure that the mutation step size will most likely be small. In the literature, the standard 

deviation of the Gaussian distribution is in fact referred to as mutation step size.  

 

After adding the value picked from the Gaussian distribution, if necessary, a truncation can 

be performed to respect the predefined gene bounds [Li, Ui]. 

 

 
Figure A. 9 - Non uniform mutation with gaussian distribution of step size 
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A.3.6 Survivor Selection 

Survivor selection is used in order to decide which members of the current child population and 

parent population are going to go and form the next parent population, thus survival selection is used 

at the end of a single evolutionary cycle, before a new cycle begins. 

Selection is needed in order to prevent the population size from continuously growing and can be 

also used to try and keep the better individuals while discarding the worst ones. 

The process of discarding the worst individuals although might need to be carefully regulated since 

in some scenarios, simply discarding all the lesser fit individuals and only allowing the fittest to 

survival may cause premature convergence to a local optimum. 

In principle any of the mechanisms used for parent selection can also be used for survival selection 

but over the years many tailored solutions for survival selection have been proposed. 

The main driving factors that are used for survival selection are either age or fitness. Age can be used 

to discard the “n” oldest individuals each time selection has to be performed while fitness-based 

selection usually discards the “n” less fit individuals. Stochasticity can be added if needed to make 

the processes nondeterministic. 

 

1) Age-Based Survival Selection 
 

Age-based survival mechanisms are designed to ensure that each individual exists in the 

population for the same number of EA iterations. This kind of survival mechanism does not 

use any fitness information of the individuals, and thus might seem to be detrimental to the 

goal of reaching an optimum through fit individuals. But as long as it is coupled with a 

sufficient selection pressure from the parent selection stage and with a variation operator 

(mutation and crossover) which is not too disruptive, a steady increase in the average 

population fitness should be observed. 

Age based survival selection may take different forms based on the number of offspring (λ) 

and the number of members of the population (μ). 

 

μ = λ : When the number of offspring is exactly equal to the number of members of the 

population, at each cycle the parents are discarded, and the offspring form the new 

population. Each individual exists for one generation only. 

λ < μ: When the number of offspring is smaller than the number of members of the 

generation the λ offspring are simply inserted in each generation by eliminating λ individuals 

to make space. Initially the individuals eliminated are picked at random until the initial 

population disappears. After μ/λ cycles, it will be possible to deterministically eliminate the 

oldest λ individuals at each cycle. 
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2) Fitness Bases Selection 
 

Fitness based survival selection mechanisms use the fitness information of the μ individuals 

plus the λ offspring to decide which individuals should pass to the next generation. 

Some examples of fitness-based selection strategies are presented next. 

 

- Elitism: This technique is usually used in conjunction with age based survival selection 

schemes in order to prevent the loss of the fittest member in each generation. Simply, each 

time survival selection takes place, whatever method for selection is used, the currently fittest 

member of the population is always inserted in the next generation.  

 

- (μ + λ) Selection: For this selection scheme, the parent and offspring population are merged 

together and ordered according to their fitness. The top μ individuals of the newly merged 

population will then go and form the next generation. 

This kind of selection introduces a very large selection pressure since only the best 

individuals are kept. Because of this it is usually coupled with parent selection methods 

which offer relatively low selection pressure. Furthermore, this kind of selection is often 

detrimental if a self-adaptation of the EA parameters is in place. 

 
 

- (μ, λ) Selection: This selection scheme is used when λ ≥  μ, thus when the number of 

offspring is larger or equal to the number of members of the population. This strategy 

involves discarding the parents and only keeping the offspring. If the number of offspring is 

equal to μ, then no further computation for the selection is needed, instead, if the number of 

offspring is larger than μ, the offspring are ranked according to their fitness and only the top 

μ are selected as the next generation. Because at each generation, all the parents are 

discarded, this kind of selection may be useful for optimization problems involving 

multimodal landscapes, allowing the population to escape a local minimum more easily. 

 

A.3.7 Termination Condition 

The above steps that were previously discussed form the backbone of a single cycle/generation of an 

evolutionary algorithm. The algorithm will then continuously run through generations until a 

termination criterion is met. Ideally such termination criterion would be that the algorithm has found 

the solution leading to the optimum of the function it is trying to optimize. But since EAs are 

stochastic by nature, there is no guarantee that the optimum will be reached, and furthermore, such 

optimum may not be known a priori. For these reasons a termination condition is needed in order to 

stop the algorithm from running indefinitely. The main termination conditions used are: 
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- The number of generations reaches a certain limit. 

- The fitness improvement remains below a predefined threshold for a predefined time. 

- The population diversity is below a predefined threshold. 

The first condition is usually the most widely used condition for termination. 

If the function optimum was known, another termination condition may be the arrival to the target 

solution. 

 

A.3.8 Performance Measure 

As a user designs an EA, a need to assess its performance compared to other optimization algorithms 

or compared to different implementations of the same EA is needed.  

Because EAs are stochastic by nature, a single run cannot be used to empirically determine the 

performance of an EA, instead a number of experiments needs to be performed to gain sufficient 

experimental data to assign a certain performance measure to the EA. 

The main solution measures are based on: 

- Success rate 

- Solution quality 

- Speed 

 

- Success rate (SR) involves defining or knowing a priory a target solution to the problem at 

hand. This is usually straight forward in standard academic problems where the optimum 

solution is known, while it can also be defined for a real-world problem if enough 

information about the problem is known. 

An example of a possible target for a real-world problem in which the optimum is not exactly 

known is to mark as a successful run, a run ending below a certain fitness threshold within a 

given number of generations. If a run manages to stay within the predefined conditions, it 

can be marked as successful, if it does not it is not successful. 

The success rate is then simply the rate of successful runs within all the runs tested. As stated 

earlier, a good number of runs must be performed to obtain a reliable performance measure. 

In general, SR is used when the solution to our problem is known a priory so that the success 

rate is the rate of successful runs that have found the optimum of the selected function. 

 

- Mean best fitness (MBF) is another performance measure which is instead directly linked 

to solution quality. To calculate MBF, the fitness of the best individual at each complete run 

of an EA is recorded, the MBS is then the average of such values over all runs. 
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- Average number of Evaluations to a Solution (AES) considers as a performance measure 

the speed of an algorithm by using the time it has taken, on average, to reach a predefined 

solution. It must be noted that only successful runs (runs which manage to reach the 

predefined solution) are used to calculate the AES since if also the runs which did not find 

the solution were used, their number of evaluations would depend on the stopping criterion 

and not at all on the target solution set, thus skewing the AES result. 

 

- Best Ever Fitness and Worst Ever Fitness: Additionally, to the previously mentioned 

fitness measures, which are the most used fitness measures since they give a statistical result 

over a number of runs, best ever fitness and worst ever fitness can be two additional 

performance measures which may be particularly useful in scenarios in which a single 

excellent or terrible run may be important to log. For example, for one off design problems, 

the best ever fitness may be the most important measure since one very good solution is all 

we are looking, on the other hand, the worst ever fitness may give an insight on how bad the 

worst case scenario might be for an algorithm that is running a repetitive problem and needs 

to run multiple optimization cycles in real time, in which each obtained result must be used 

and cannot simply be discarded.  

 

 

Regarding SR and MBF it must be noted that both these measures can be used to compare algorithm 

runs and implementations for a predefined limit on the computational time. If the maximum 

computation time is changed, obviously the SR and MBF will change, not allowing a fair 

comparison. This can be intuitively seen in the graph below where two stopping times are chosen 

and based on the stopping time, algorithm A and B actually swap position in their performance 

ranking. Obviously both results are valid if we are comparing A and B with the same maximum 

computation time, what must be avoided in order to have a fair comparison, is to compare the two 

algorithms with different maximum computation times. 

 
Figure A. 10 - Comparison of different stopping times [62]. 
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Thus recapping, for SR and MBF we define a priori a maximum computation time (e.g. generations) 

and measure the algorithms effectiveness within this time window. For AES instead, the user must 

first define a suitable level of target fitness, AES then considers how much time is needed on average 

to reach such predefined level of fitness. 

Although AES can generally give a good indicator of how fast an algorithm is, it can sometimes be 

misleading depending on the structure of the EA. 

Since in general AES only takes in to account the number of evaluations or of generations elapsed 

until a solution is found, the total algorithm run time may vary widely depending on how long a 

single evaluation (or generation) takes. This will obviously depend on how the EA is structured and 

if any ‘hidden labour’ is present in any of the operators of the EA (e.g., some form of local search in 

the mutation operator). 

An argument can be made of then replacing the number of evaluations to solution for another time 

dependent parameter, for example the CPU run time to solution, but this would cause problems in 

comparing EA on different platforms since the run time would now depend on the hardware on which 

the EA is running and on how such hardware is being currently utilised. 

 

- Progress Plot: Another interesting performance measure which can be used to analyse the 

performance of an EA is a plot showing the progress of the fitness measure of the most fit 

individual over time. The plot can either represent a single run or can represent an averaged 

value of fitness in time over multiple runs, giving more robustness to the comparison.  This 

kind of plot can be very useful to compare the performance of EAs since it can give a lot of 

information to the user such as the number of runs until convergence, or the steepness of the 

curve at the end of the run, giving an indication if a possible improvement could be made by 

extending the run time, etc. 
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Appendix B: Neural Networks 
Artificial Neural Networks (ANNs) are a tool which can be used to perform machine learning, such 

that an algorithm learns to perform a certain task by analysing training examples of the same class 

of the task we later need it to perform autonomously. 

ANNs are used anywhere from speech recognition, image classification, to data regression. 

Their name stems from the fact that their structure is inspired by the human brain, mimicking the 

way that biological neurons transmit signals to one another. 

Many types of neural networks currently exist based on their structure and internal workings.                   

The Feed Forward Neural Network can be considered as the simplest neural network and was the 

first kind of Artificial Neural Network to be conceived. 

Feed Forward Neural Networks are networks in which information can only be passed forwards, so 

from input to output and not vice versa. 

The basic building block of any neural network is a Neuron. In Feed Forward neural networks 

neurons are stacked to produce what is called a Layer. 

Layers can then be placed in a sequential manner in order to produce the basic structure of a Feed 

Forward Neural Network. 

 
Figure B. 1 - Basic structure of a feed-forward neural network 

As can be seen from the above image, in Feed Forward Neural Networks (FFNNs) the output of each 

neuron is passed on as information to each neuron on the next layer. This produces what is known as 

a Fully Connected Layer (each neuron passes its output to all neurons in the next layer). 

Notice that the number of neurons in any given layer does not depend on the number of neurons in 

the other layers. The number of neurons in a given hidden layer is a design specification which can 

be set in order to create a Neural Network with the desired working characteristics. 

What is important though, is the number of neurons in the input layer and in the output layer. As can 

be assumed from their names, the neurons in the input and output layers represent the inputs we feed 
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to the neural network and the corresponding outputs we need the net to produce. Thus, it is obvious 

that the number of neurons in the input and output layers is problem dependant. 

 

B.1 Neurons 

As stated earlier, the basic building block of an Artificial Neural Network is called a neuron. 

Neurons are simply nodes whose purpose is to take an input and produce and output based on the 

activation function and bias assigned to such neuron. 

 
Figure B. 2 - Working principle of an ANN neuron 

As we saw earlier, the input to any given neuron is coming from the neurons in the previous layer.                         

To produce the output of a neuron, firstly the weighted sum of all the inputs is performed. This 

implies having a certain weight assigned to each connection between neurons. To such sum a bias, 

which is simply a number, can be added in order to shift the result of the sum preferentially towards 

a given direction or in order to create a threshold based on such bias. After the weighted sum is 

performed, the resulting number is passed through an Activation Function whose purpose is to add a 

nonlinear behaviour to the algorithm or also to simply bound the output value of the neuron within a 

certain range.  The resulting output from the activation function is then the final output of the neuron, 

this output is then passed on to all neurons in the next layer and the cycle continues until the 

information gets to the final layer, the output layer. 

The equation for the output of a neuron with activation function g and bias w0 can be written as: 

�̂� = 𝑔 (𝑤0 + ∑ 𝑥𝑖  𝑤𝑖

𝑚

𝑖=1

) 
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B.2 Activation functions 

Many types of activation functions have been proposed through the years [76]. Each has its own 

advantages and disadvantages, and many are only suited for a particular class of problems. 

B.2.1 Hidden layer activation functions 

Typically, nonlinear and differentiable functions are used as activation functions in hidden layers. 

Nonlinear functions allow the network to have non linearities in its governing equations and in turn 

allows to learn more complex functions. Differentiability is key since the derivative of the activation 

function will be later used by the backpropagation algorithm. 

The most commonly used activation functions for a hidden layer are: 

- Rectified Linear Unit (ReLU) 

- Sigmoid 

- Hyperbolic Tangent (Tanh) 

 

1) ReLU 
The rectified linear activation function is one of the most commonly used for the hidden 

layers in modern Neural Networks and was popularized in 2010 by Nair and Hinton for 

Restricted Boltzmann machines [77] . 

Its recent popularity is due to the fact that it is less susceptible to the vanishing gradient 

problem which prevents deep networks from improving their learning abilities [78] [79].  

For all its advantages, the ReLU function does suffer from what is called the dying ReLU 

problem [76]. 

This occurs when a large number of ReLU neurons only output 0 and thus the gradient will 

fail to flow during back propagation (which is how Neural Networks learn) since the 

function’s gradient is zero in the left half plane. This will cause a large part of the network 

to become inactive or die. 

 

This phenomenon can be prevented by either using smaller learning rates or by simply 

replacing the ReLU function with a Leaky ReLU. 

The Leaky ReLU adds a small slope for negative inputs. This allows the output to be non-

zero and thus it prevents neurons from dying off. 
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The mathematical definition of the ReLU function is as follows 

𝑔(𝑥) = max(0, 𝑥) = {
  𝑥   𝑖𝑓   𝑥  ≥ 0
 0   𝑖𝑓    𝑥  < 0

 

 

 
Figure B. 3 - ReLU activation function 

                         

 

The mathematical definition of the Leaky ReLU function is as follows 

𝑔(𝑥) = {
 𝑥                   𝑖𝑓    𝑥  ≥ 0
 𝑎𝑙𝑝ℎ𝑎 ⋅ 𝑥   𝑖𝑓    𝑥  < 0

 

 

 
                           Figure B. 4 - Leaky ReLU activation function 
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Some of the advantages of using this activation function can be [80]: 

• Neural networks using ReLU activation functions are computationally cheaper than 

networks using sigmoid or tanh activation functions. 

• Neural networks that use ReLU activation functions usually converge much faster 

than networks using saturating activation functions with gradient descent. 

• The derivative of the ReLU activation function is equal to 1 in the right-hand plane 

of the function. This can help avoid trapping into local optima and resolves the 

vanishing gradient problem. 

 

The main problem which accompanies ReLU functions is that the function derivative in the 

left plane is equal to 0, meaning it’s left-hard-saturating. This may lead to what is known as 

the dying neuron phenomenon which causes the affected neurons to shut down and their 

weights and biases to not be updated and the neurons will not be activated any longer. 

 

2) Sigmoid 
The sigmoid activation function, sometimes called a “squishing” function, maps all input 

values in a range between 0 and 1. This activation function is inspired from the activation 

functions found in the neurons of our brain where often neurons fire following a sigmoidal 

trend. 

As can be seen, the sigmoid is a non-symmetric function, thus all neurons will have only 

positive outputs. This can sometimes be a problem which can be addressed by using a Tanh 

function. 
The mathematical definition of the sigmoid function is as follows. 

𝑔(𝑥) =  
1

1 + 𝑒−𝑥
 

 

 
                            Figure B. 5 - Sigmoid activation function                        
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Because of its inherent saturation for large magnitudes of inputs, the sigmoid (and also tanh) 

function is seldomly used for the hidden layers of deep neural networks because of the 

vanishing gradient problem it can cause. The sigmoid function is thus usually used for 

shallower networks or even as an output layer activation function because of its bounding 

abilities with a smooth transition between 0 and 1. 

 

3) Tanh 
The Hyperbolic Tangent (Tanh) activation function is very similar to the sigmoid function, 

the only difference is that it’s symmetric with respect to the origin. This allows the output of 

neurons to take both positive and negative values between -1 and +1. 

The mathematical definition of the tanh function is as follows. 

𝑔(𝑥) =  
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 

 

 
Figure B. 6 - Hyperbolic tangent 

The hyperbolic tangent activation function is usually preferred over the sigmoid function 

because of its symmetry with respect to 0 which means that most of its outputs will usually 

be small. In addition, nets using the tanh function converge faster than those using sigmoid 

activation functions [81]. 
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B.2.2 Output layer activation functions 

The most commonly used activation functions for the output layer are: 

- Linear activation function 

- Sigmoid activation function 

- Softmax activation function 

 

1) Linear activation function 
The linear activation function, as its name suggests, linearly transposes the input to the 

output. When using this function, the output is not bonded and thus can take any value. 

This function is only usually used in output layers since as stated earlier, to map complex 

data, a non-linearity must be introduced in our net, and this being a linear function it could 

not serve such purpose. It is instead often used as an output activation function in regression 

problems where we don’t want the output data to be altered in scale. 

 
                    Figure B. 7 - Linear activation function                              

2) Sigmoid activation function 

This function was already presented earlier as a candidate for a hidden layer activation 

function. It can also be used as an output function when we need our output to be scaled 

between 0 and 1. This might happen when for example we are facing a multilabel 

classification problem and need to know to which categories our inputs belong to, or when 

we need to for example predict a probability 

 

3) Softmax activation function 
A softmax activation function outputs a vector of values which sum to 1. The size of the 

output vector is equal to the size of the input vector thus, this function is especially useful in 

multiclass classification when we need to classify an object and select the appropriate class. 

Softmax thus returns the single probabilities that such object belongs to a certain class, a 

decision can then be made from the obtained probability values. 
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B.3 How neural networks are trained 

Before ANNs can be used to solve actual problems, ANNs must be trained. 

Training involves using a training dataset which is comprised of a series of inputs and a series of 

known desired outputs that we wish the net to produce when it is fed the corresponding inputs. 

An example might be a classification problem in which we show the net a series of images of cats 

and dogs, each of which is labelled with the correct name, either cat or dog. We then show the neural 

network such image inputs and we also tell the net which are the correct outputs it should produce, 

so which name corresponds to which image. This is known as the training phase of the network. 

During this phase, the network updates its internal weights and biases, based on the training set it is 

provided with, in order to learn whatever task it was assigned to solve. In the simple case above it 

learns to sort images of cats and dogs. 

The process of updating the biases and weight during training occurs through an optimization of the 

loss function or error function or performance function which tells the user how well (or badly) the 

network is doing on the training data, so how close is the output of the network to the desired output. 

Since Artificial Neural Networks learn to map inputs to desired outputs from the examples proposed 

during the training session, an adequate loss function must be used depending on the specific problem 

at hand, may it be for example a classification or a regression problem. 

Choosing the right loss function for the problem at hand is a critical step, a bad choice of the loss 

function might lead to unsatisfactory results simply because the loss function is not adequately 

representing the performance of our neural network. 

In this text, only loss functions suited for regression problems will be analysed since no classification 

problems are faced in this discussion. 

B.3.1 Loss functions for regression problems 

In a regression problem, the network is tasked to learn how to predict real valued quantities.                       

One example might be the prediction of the remaining milage in a car given a set of signals coming 

from the accelerator, how much fuel is left in the tank etc. The most common loss functions used for 

regression problems are: 

- Mean absolute error loss (MAE) 

- Mean squared error loss (MSE) 

- Root mean square error loss (RMSE) 
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Mean absolute error (MAE) 

The mean absolute error loss is probably the easiest error function to implement because it is simply 

the mean of the absolute error (difference) between the actual and predicted output values during 

training. 

The equation for the MAE can be written as: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

 

 

From the above formula we can see that the MAE increases linearly with the size of the error. 

 
      Figure B. 8 - Mean absolute error 

Advantages 

- Easy to implement 

- Computationally inexpensive 

- Robust to outliers 

Drawbacks 

- MEA does not consider the order of magnitude of the outputs. If the Neural Network under 

consideration has multiple outputs and they have different orders of magnitude, when 

computing the MEA this will not be considered. This is obviously a drawback since MAE 

of 1 on a scale of 10 is very different than on a scale of 1000. 

- MAE presents a large gradient even for small error vales. This is detrimental for the learning 

process in ANNs. 

 

 

 

 

 



149 
 

Mean squared error (MSE) 

The mean squared error (MSE) is the go-to loss function when dealing with regression problems.               

The MSE is calculated by computing the square of the errors and then taking it’s mean. 

This created a quadratic scoring method which is not proportional to the error as in MAE but it’s 

proportional to the square of the error. This causes the loss to be much greater for relatively larger 

errors while smaller errors are not penalized so much. 

This behaviour can be understood by looking the MSE equation and the graph correlating MSE to 

loss. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 
     Figure B. 9 - Mean squared error 

Advantages 

- The gradient reduces gradually as the error shrinks, thus allowing the optimization algorithm 

to converge to the minimum efficiently. 

Drawbacks 

- The very large loss caused by a large error might cause drastic jumps during backpropagation 

and the update of weights and biases, which is usually undesired. 

- MSE is sensitive to outliers 

 

 

 

 

 

 



150 
 

Root mean squared error (RMSE) 

As the name suggests, RMSE is simply the MSE with an additional square root applied. 

This renders RMSE a linear loss function, similar to MAE. 

 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 

 
Figure B. 10 - Root mean squared error 

 

Advantages 

- Penalizes larger errors more than MAE. This is a desirable trait if we are facing a problem 

where the seriousness of the error grows faster than the error itself. So having an error of 10 

is more than double as bad as having an error of 5. 

Drawbacks 

- Just like MAE, it’s a linear function of the error, thus its gradient is large even when small 

errors are present. 
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B.4 Optimization techniques for neural networks 

Once a performance function/loss function has been defined, an optimization procedure must be 

performed to minimise the function in order for the network to increase its performance and learn 

how to solve a specific set of tasks. This process is an iterative process where many training examples 

are fed to the network and where the network’s parameters (weights, biases etc) are modified in order 

to minimise the chosen performance/loss function which in turn reflects the performance of the 

network. 

There are several different classes of network learning laws, such as associative, competitive learning 

and performance learning. Many different learning laws exist that fall under the category of 

performance learning. These learning laws are distinguished by the fact that during training the 

network parameters are adjusted in an effort to optimize the “performance” of the network. 

The general setup for performance learning involves two steps. 

The first step is to choose the performance/loss function which will define what is meant by network 

“performance”. The performance index must be chosen so that it guarantees that the corresponding 

performance surface has a minimum point (the target optimum). 

 The second step is to the perform a search of the parameter space of the network in order to try and 

reduce the performance index and hopefully reach a minimum of the performance function. 

Note that the performance function will be a function of the network parameters, i.e., the weights 

and biases. 

 

B.4.1 Conditions for optimality 

Now that the general setting of the problem ah hand has been defined it is possible to define some 

necessary conditions for optimality of a candidate point on the performance surface. 

Considering F(x) as a multivariable function representing the performance function whose variables 

represent the variables in the neural network structure (weights and biases) and considering 𝑥∗ as a 

candidate point for a minimum of the performance function, we may write multiple conditions in 

order to ensure that such point is a minimum of the performance function. 

 

1) First order conditions 

A first order condition is for the gradient at 𝑥∗ to be equal to zero. This is a necessary but 

not sufficient condition for 𝑥∗ to be a local minimum point. 

 

𝛻𝐹(𝑥)|𝑥=𝑥∗ = 0 

 
Any points satisfying the above equation are called stationary points. 
 



152 
 

2) Second order conditions 

Assuming now that point 𝑥∗ is a stationary point a new condition is needed to verify that 

such point is a minimum point. 

 

- A necessary condition for 𝑥∗ to be a minimum (strong or weak minimum) point is that the 

Hessian matrix related to F(x) must be positive semidefinite. This condition can be tested by 

verifying that all the eigenvalues of the matrix are non-negative. 

 

𝛻2𝐹(𝑥)|𝑥=𝑥∗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 

 

- A sufficient condition for 𝑥∗ to be a strong minimum point is that the Hessian matrix related 

to F(x) must be positive definite. 

 

𝛻2𝐹(𝑥)|𝑥=𝑥∗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 

 

B.4.2 Performance optimization: basic optimization algorithms 
 
In the first part of this chapter, the main basic optimization strategies will be presented, namely 

gradient descent with steepest gradient, conjugate gradient and the stochastic/minibatch variants. 

Again, in this chapter we consider the performance function as a given without specifying which 

performance function is used. 

Given a performance function F(x) which in some sense reflects the performance of the neural 

network, the objective of the optimization algorithm is find a value of x (where x represents the 

vector variables on which F is dependent on) that minimizes F(x).  

Most optimization algorithms are iterative algorithms. These algorithms begin their search from an 

initial guess 𝑥0 and then update the guess based on an equation of the form: 

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘  
 

Where 𝑝𝑘 is a vector representing a search direction and 𝛼𝑘 is a positive scalar called learning rate 

which determines the size of the step in the 𝑝𝑘 direction. 

The algorithms discussed from here on are distinguished by how each chooses the search direction 

𝑝𝑘. 
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Steepest Descent 

The steepest descent algorithm entails moving at each step always in the direction of steepest descent.  

Calling 𝑔𝑘 the gradient evaluated at the “old” guess 

 

𝑔𝑘 = 𝛻𝐹(𝑥)|𝑥=𝑥𝑘
 

Any vector 𝑝𝑘 that satisfies: 

𝑔𝑘
𝑇𝑝𝑘 < 0 

Is called a descent direction. In practice this means that if we take a small enough step in this direction 

the function will decrease. Although taking enough adequate steps in a given set of generic descent 

directions would bring to the minimization of the performance function, a better solution would be 

to choose the descent direction of steepest descent at each iteration. The direction of steepest descent 

occurs when 𝑔𝑘
𝑇𝑝𝑘 is most negative. 

Therefore, the vector 𝑝𝑘 that points in the direction of steepest descent is given by: 

 

𝑝𝑘 = −𝑔𝑘 
 

From this definition it is possible to define the method of steepest descent: 

 

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘 
 

Regarding the learning rate 𝛼𝑘 different techniques can be used to select its value. The simplest 

methods use either a fixed learning rate throughout the run or a variable learning rate that changes 

according to a predetermined rule (e.g., 𝛼𝑘=1/k). 

 

The size of the learning rate is an important hyperparameter that must be chosen carefully in order 

to obtain good performance from the algorithm.  

Consider an example of a 2-variable performance function F(x1, x2) for which we can draw the 

contour plot. For small leering rates, the steepest descent trajectory will follow a path that is 

practically always orthogonal to the contour lines. This will guarantee a precise and efficient path 

towards the minimum but might take a long time because of the very small steps taken at each 

iteration. 
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Figure B. 11 - Trajectory for steepest descent with small α 

Although a larger learning rate might be desired to speed up convergence, if the learning rate was set 

too high the result might be an oscillating trajectory which in turn will not save time. 

 
Figure B. 12 - Trajectory for steepest descent with larger α 

If the learning rate is still increased at this point, an unstable learning rate might eventually be reached 

for which convergence will not be possible and the algorithm’s oscillations will not decay but will 

grow. 

 
Figure B. 13 - Trajectory for steepest descent with unstable α 

The α value which guarantees an upper stability limit to the algorithm cannot be fund for any arbitrary 

performance function, but it is possible to show that for quadratic functions such limit is: 

α <
2

𝜆𝑚𝑎𝑥
 

Where 𝜆𝑚𝑎𝑥 is the larges eigenvalue of the Hessian matrix of the performance function F(x). 
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Conjugate Gradient 

The conjugate gradient method is similar to the steepest descent method but instead of using 

directional vectors pointing in the direction of steepest descent it uses conjugate vectors. 

It can be shown that if a sequence of linear searches is performed along a set of conjugate directions, 

then the exact minimum of any given quadratic function will be reached in at most n steps, where n 

corresponds to the number of parameters characterizing the quadratic function. This property is 

known as quadratic termination. This property makes the conjugate gradient method much more 

efficient that the simple steepest descent method. 

Other search algorithms such as Newton’s Method also possess this characteristic, but the conjugate 

gradient method possesses the advantage (compared to Newton’s Method) that it does not need to 

calculate and store the second derivatives of the performance function. This is particularly 

advantageous when dealing with functions of a large number of variables as in neural networks since 

the Hessian of a function of n elements requires the calculation of 𝑛2 elements. 

 

It can be shown that search directions are conjugate if they are orthogonal to the changes in the 

gradient at successive iterations of the algorithm: 

 

𝛥𝑔𝑘
𝑇𝑝𝑗 = 0            𝑘 ≠ 𝑗 

 

It must be noted that the first search direction is chosen arbitrarily. It is thus common practice to 

choose the first search direction in the direction of steepest descent: 

𝑝0 = −𝑔0 

As for the steepest gradient method, the step at each iteration can always be defined as: 

 

𝛥𝑥𝑘 = 𝛼𝑘𝑝𝑘 

 

The size of the learning rate 𝛼𝑘 must be chosen so that we minimise the performance index with 

respect to 𝛼𝑘 at each iteration. For a generic performance function this requires a line search, but for 

a quadratic function it can be shown that given a certain direction 𝑝𝑘, the value of 𝛼𝑘 which 

minimises 𝐹(𝑥𝑘 + 𝛼𝑘𝑝𝑘) is: 

 

𝛼𝑘 = −
𝑔𝑘

𝑇𝑝𝑘

𝑝𝑘
𝑇𝐴𝑘𝑝𝑘
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Where: 

- 𝐴𝑘: Hessian matrix evaluated at old position 𝑥𝑘 

- 𝑔𝑘: Gradient direction 

- 𝑝𝑘: direction vector for kth step 

 

Finally, at the successive iterations, it is necessary to compute the next vector 𝑝𝑘 which must be 

orthogonal to {𝛥𝑔0, 𝛥𝑔1, 𝛥𝑔2, … . . , 𝛥𝑔𝑘−1}. 

 

It can be shown that such a vector can be constructed as: 

𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1 

 

The values of 𝛽𝑘 can be canonically chosen from the following most common choices: 
 

𝛽𝑘 =
𝛥𝑔𝑘−1

𝑇  𝑔𝑘

𝛥𝑔𝑘−1 
𝑇 𝑝𝑘−1

 

 

𝑓𝑟𝑜𝑚 𝐻𝑒𝑠𝑡𝑒𝑛𝑒𝑠 𝑎𝑛𝑑 𝑆𝑡𝑖𝑒𝑓𝑒𝑙 

 

 

𝛽𝑘 =
𝑔𝑘

𝑇  𝑔𝑘

𝑔𝑘−1 
𝑇 𝑔𝑘−1

 

 
𝑓𝑟𝑜𝑚 𝐹𝑙𝑒𝑡𝑐ℎ𝑒𝑟 𝑎𝑛𝑑 𝑅𝑒𝑒𝑣𝑒𝑠 

 

 

𝛽𝑘 =
𝛥𝑔𝑘−1

𝑇  𝑔𝑘

𝑔𝑘−1 
𝑇 𝑔𝑘−1

 

 

𝑓𝑟𝑜𝑚 𝑃𝑜𝑙𝑎𝑘 𝑎𝑛𝑑 𝑅𝑖𝑏𝑖é𝑟𝑒 
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Stochastic gradient descent / mini batch stochastic gradient descent 

Gradient descent in its simplest form uses the gradient information of the individual losses of each 

training example in the whole training dataset before making a single well-informed step in the 

direction of steepest descent. Although this allows for a precise step based on all training information, 

it increases training time. A solution to the problem, is to use either stochastic gradient descent or 

mini batch stochastic gradient descent where the gradient is not calculated using the whole dataset, 

but only a subset of it (mini-batch) or one single training example (stochastic). 

Stochastic gradient descent works just as gradient descent does, but instead of using the whole dataset 

before making a decision, weights and biases are updated at each training example. 

This in turn makes the whole training process take steps much more often.  

The drawback is that since each step is taken while considering only a single training example, the 

direction of the step is only based on the gradient delivered by such training example. This causes 

the step to very likely be in a direction that is not exactly optimal for the whole dataset. 

 
Figure B. 14 - Examples of trajectories taken from SGD and simple GD 

 

In general, this is not a problem since the combined effect of many steps will eventually lead in the 

correct direction. Thus, in general, the gradient descent method used to train neural networks is still 

Stochastic Gradient Descent since it delivers huge time savings with respect to simple GD. 

Mini batch stochastic gradient descent is middle option between stochastic gradient descent and 

simple gradient descent. At each iteration, a group of training examples called mini batch is used to 

update the weights and biases of the net. This in turn allows the average effect of more than one 

training example to be used to make a decision in which direction to move. This allows for a slightly 

longer time to train with respect to stochastic gradient descent, but a more informed decision when 

taking a step. 

 
Figure B. 15 - Examples of trajectories taken from SGD and simple Mini-Batch GD 



158 
 

B.4.3 Performance optimization: improvements on basic optimization algorithms 

Over the years, many improvements have been suggested to increase the performance of the basic 

implementations of gradient descent proposed in the previous chapter. The main improvements 

presented here fall within two main categories: momentum and adaptive learning rate. From these 

two improvements, different algorithms implementing these two main ideas have spawned. 

 

Momentum 

Momentum was added to the simple gradient descent by borrowing the concept of momentum from 

physics. This is achieved by enforcing each step in the newly calculated direction to also have a 

contribution coming from the direction of the previous timestep. In practical terms this is achieved 

by calculating what is known as velocity and by adding a term which acts as friction. 

Velocity v is simply computed by adding to the currently calculated step (learning rate * gradient) a 

portion of the previously computed step weighted by the friction factor γ. 

 

𝑣𝑘 = 𝛾 ⋅ 𝑣𝑘−1 + 𝛼𝑘𝑔𝑘 
The descent step is then calculated as: 

𝑥𝑘+1 = 𝑥𝑘 − 𝑣𝑘 
The addition of momentum helps to prevent large oscillations in stochastic gradient descent thanks 

to the fact that there is now also a contribution coming from the previous training example.  

Note that if the friction parameter γ is set to zero, the algorithm returns to simple steepest gradient 

descent. 

Other more complicated implementations of the same basic idea of momentum have also been 

developed throughout the years such as the Nesterov Accelerated Gradient Descent (NAG)  

 

Adaptive learning rate 

The second main addition to the basic steepest descent algorithm was to adapt the learning rate on 

the fly based on how often a given parameter actually influences the performance function. Some 

parameters may be “active” in the function minimisation process more often than others, by adapting 

the learning rate to how often a given parameter is used/updated allows to dynamically optimise the 

size of the steps based on the single current optimization step. This is a powerful tool for data sets 

containing data ranging from sparse to very dense. 

Some of the main algorithms that use adaptive learning rates are Adagrad, RMSProp and Adam. 
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Adaptive gradient descent (Adagrad) 

The key idea behind Adagrad is to have an adaptive learning rate for each of the weights. It performs 

large updates for parameters which are less frequent, and small steps for parameters which are 

frequently observed. 

Adagrad adjusts the learning rate in time, not by considering the overall elapsed time or the overall 

iterations, but it proposes a schedule based on the number of times a particular feature is seen. 

Parameters associated with infrequent features could potentially only receive updates whenever these 

features occur. Thus, if a learning rate is decreased based on a total elapsed time, parameter control 

for the infrequent features might reach a very low learning rate before the infrequent feature can be 

observed properly. The advantage of counting the number of times a feature is observed is now 

obvious.  

In Adagrad, instead of an actual count, an aggregate of the squares of the previously observed 

gradients is used. We define 𝒔𝒕 as a variable to accumulate past gradient variance. In the following 

example the per-parameter update formulations are proposed which can then simply be put in vector 

form to account for all the remaining variables. 

𝑠𝑘,𝑖 = 𝑠𝑘−1,𝑖 +  𝑔𝑘,𝑖
2  

The weights can then be updated as: 

𝑥𝑘+1,𝑖 =  𝑥𝑘,𝑖 − 
𝛼

√𝑠𝑘,𝑖 + 𝜀
𝑔𝑘,𝑖 

Where α is the initial learning rate, ε is an addition constant so that it’s impossible to divide by zero, 

k is the time step and i is the variable index. 

Advantages 

- Learning rate is different for each parameter independently 

- No need for manual tuning of the learning rates 

- Parameters which are infrequent won’t risk having small learning rates prematurely 

Drawbacks 

- Computationally expensive 

- Since the learning rate is continuously decreasing, if the number of computations needed to 

find a solution is very large, training might get very slow. 

- For deep learning problems, Adagrad might decrease learning rate too fast 
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RMSProp 

One of the problems with Adagrad is that the learning rates might become very small when the 

number of iterations is large. Also, for deep learning problems, Adagrad might reduce the learning 

rate far too quickly. The problem is that Adagrad accumulates the squares of the gradient 𝑔𝑘 into a 

vector 𝑠𝑘 =  𝑠𝑘−1 +  𝑔𝑘
2 which causes 𝑠𝑡 to keep growing due to the lack of normalization. In turn 

the weights keep decreasing. To fix this problem RMSProp uses a leaky average to accumulate the 

squares of the gradient. 

𝑠𝑘 =  (1 − 𝛾)𝑔𝑘
2 +  𝛾𝑠𝑘−1 

𝑥𝑘+1 =  𝑥𝑘 − 
𝛼

√𝑠𝑘 + 𝜀
𝑔𝑘 

Where γ is > 0. This additional freedom allows to prevent the denominator beneath the learning rate 

α to become too large and cause learning to become extremely slow. 

 

Adaptive Moment Estimation (Adam) 

Adam can be considered as a combination of RMSProp and stochastic gradient descent with 

momentum. Adam uses leaky averaging to obtain an estimate of both the momentum and also the 

second moment of the gradient. In addition to storing the decaying average of past gradients, it also 

stores a decaying average of past gradients used for momentum. This is done individually for each 

variable, allowing to have individual learning rates and individual momentum changes. 

𝑣𝑘 =  (1 − 𝛽1)𝑔𝑘 +  𝛽1𝑣𝑘−1 

𝑠𝑘 =  (1 − 𝛽2)𝑔𝑘
2 + 𝛽2𝑠𝑘−1 

The new step becomes: 

𝑥𝑘+1 =  𝑥𝑘 − 
𝛼

√𝑠𝑘 + 𝜀
𝑣𝑘 

Where 𝛽1 and 𝛽1 are non-negative weighting parameters often set to 𝛽1 = 0.9 and 𝛽2 = 0.999. 

Thanks to the combination of the best different aspects from different optimization algorithms, Adam 

presents itself as one of the most robust and effective optimization algorithms used in deep learning. 

Advantages 

- Fast convergence to minima 

- Robust  

Drawbacks 

- Possible failure to converge when second moment estimate 𝑠𝑡 blows up 

- Computationally costly 
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B.5 Long Short-Term Memory (LSTM) neural networks 

LSTM neural networks are a particular kind of neural networks belonging to the class of recurrent 

neural networks. These kinds of networks are particularly useful at processing data linked to a 

timeseries such as video, speech data or any other sequential data. The peculiarity of these kind of 

networks with respect to traditional neural networks is their ability to store or discard past 

information that has been fed to the network up until a certain moment. This can be seen as a sort of 

memory of past events used to better process current event which is similar to how a human would 

take decisions. When we think or when we process information, we do not only rely on the current 

information being fed to our brains, but we use past information, both long and short term, in order 

to take better decisions.  

From this point of view, LSTM networks can be seen as networks which have internal loops within 

them to allow a given set of information of past events to persist. 

 
Figure B. 16 – Basic idea behind recurring neural networks and LSTM networks [82]. 

In the above image an input 𝑥𝑡 is fed to a cell A which then produces an output ℎ𝑡, with the addition 

of an internal loop to feed information back to the cell. This concept may be hard to grasp, so it can 

be easier to imagine the looping network as a succession of multiple copies of the same network, 

each copy dealing with the inputs at a given time step and then passing on information to the next 

network used for the next time step. 

 
Figure B. 17 - An unrolled LSTM network [82]. 
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As can be seen in the above image, an LSTM network, or any other recurrent network for that matter, 

naturally “unrolls” or “unfolds” to the length of the input sequence fed to the network. 

The peculiarity of LSTM networks with respect to standard recurrent neural networks lies within the 

repeating cell. 

Standard recurring neural networks usually possess very simple repeating modules, such as modules 

only containing a single tanh network layer. 

 
Figure B. 18 - Repeating module or cell for a RNN [82]. 

This simplicity of the repeating module or cell is one of the reasons why RNNs suffer from long-

term dependency learning difficulties where they struggle to connect relevant information from 

previous time steps to current events if the time gap to the past information is too large.  

LSTM networks instead were conceived with this problem in mind, and what results is a much more 

complex repeating module than what is found in standard RNNs. 

LSTM networks were introduced by Hochreiter and Schmidhuber in 1997 [83] and through the years 

have been refined by many others to avoid the long-term dependency problem of standard RNNs, 

making them extremely well suited to tackle problems related to long time series, especially when 

relevant information needs to be stored and kept relevant for long periods of time. 

LSTM networks achieve this behavior thanks to the specially designed repeating module composed 

of four neural network layers and different pointwise operations at different points in the information 

flow. 

 
Figure B. 19 - Repeating module of a LSTM neural network [82]. 
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Where in the above diagram we have: 

 
Figure B. 20 - List of symbols for LSTM module [82]. 

 

The information that is passed from one cell to the next (so from one time step to the next) is both 

the current output ℎ𝑡 and what is known as the cell state 𝐶𝑡. 

The cell state can be considered as the mechanism used to keep memory of past information, or past 

outputs/predictions and let it flow to the next cells, carefully regulated by structures called gates. 

Gates allow to select which information and how much of it to let through, so they act as a sort of 

memory management where they decide which information is relevant and thus should be kept and 

which information can be discarded. 

As can be seen in figure B.19, the processed and gated information in a concatenation of the past 

output and the current input. This information is then passed simultaneously to multiple gates, each 

performing a specific operation in order to produce the next output and next cell state. 

 
B.5.1 Forget gate layer 

The forget gate is responsible to interpret the current input and past output information in order to 

decide what information needs to be discarded form the cell state. 

This operation is achieved thanks to a sigmoid layer which produces a value between 1 and 0 for 

each variable in the merged input and past output vector. This vector then multiplies the past cell 

state, effectively gating each value. If the sigmoid layer outputs a value equal to 1 for a given position 

in the vector, the subsequent multiplication will translate in to letting all the information through in 

that position, while if a 0 is outputted from the sigmoid layer, the vector wise multiplication will 

translate in to forgetting all the information in the corresponding position of the cell state vector. 

 
Figure B. 21 – Forget gate and operation on old cell state [82]. 
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B.5.2 Ignore gate layer or input gate layer 

The ignore gate layer is used to gate the newly created or predicted cell state so to ignore part of this 

new vector. First, the new vector 𝐶�̃� of candidate values for the cell state is created through the use 

of a tanh layer. In parallel, a sigmoid layer is used to produce a vector of values spanning between 0 

and 1 which are then used in a vector multiplication operation to decide how much of each of the 

new candidates in 𝐶�̃� to let through. This operation of using a vector from a sigmoid layer to gate 

another vector is the basis of the gating operations used in LSTM neural networks. 

 
Figure B. 22 - Ignore gate operation [82]. 

 

B.5.3 Updating the cell state 

Finally, after forgetting the unwanted information form the old cell state and creating new gated 

candidates, the cell state can be updated. This is simply achieved through simple vector addition of 

the old, gated cell state, rid of what was deemed forgettable, and the new gated candidates. 

 
Figure B. 23 - Updating the cell state [82]. 
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B.5.4 Creating the output of the cell 

With the cell state created it is now possible to create the output of the cell, which is the actual output 

that out neural network is trained to produced. The output is based on the cell state, but it will be a 

filtered version of it.  

Again, similarly to what was done in the forget and ignore gates, a sigmoid layer is used to produce 

a vector of values ranging from 0 to 1 which will be used to decide which and how much of each 

value in the cell state is going to be used to produce the output ℎ𝑡. 

The cell state is then passed through a tanh pointwise operation in order to compress all the values 

within the cell state between -1 and 1. The resulting squashed cell state is then multiplied by the 

vector coming from the sigmoid layer. The resulting filtered or gated values represent the output ℎ𝑡. 

 
Figure B. 24 - Creating the output vector ht [82]. 
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