
1

POLITECNICO DI TORINO

 DEPARTMENT OF ELECTRONICS AND TELECOMMUNICATIONS

Master of Science in Mechatronic Engineering

2021/2022

Final thesis

A collaborative learning strategy for model-
free control of an array of wave energy

converters

Supervisors: Author:

prof. Giovanni Bracco Taylor Veale

 Edoardo Pasta

2

Abstract
Ocean energy is an abundant but relatively unexploited renewable energy source which has the

potential to become one of the key players in the upscaling of global renewable energy production

for the near future.

Despite this huge potential, ocean energy technology and especially wave energy technology is still

considered to be immature compared to other renewable energy technologies.

One of the main goals to be achieved is to reduce the levelized cost of electricity (LCOE) coming

from wave energy converter devices in order to make them economically competitive with respect

to other more established renewable energy sources. To achieve this, one of the main areas of focus

in recent years has been to develop and optimise control strategies to improve the efficiency of the

energy conversion process.

The main challenges that wave energy converters (WECs) face, stem from the irregular reciprocating

nature of the energy source, making the design of the control strategy, the WEC itself, and any

modelling of the WEC-wave interaction extremely challenging.

A large portion of the most popular control strategies adopted on wave energy converters rely on a

model-based control strategy to determine the optimal control action to be taken. The control action

is usually optimised over a predefined range of wave conditions which can be grouped within a single

statistical description of the current sea state by using parameters such as the significant wave height

Hs and the wave energy period Te. Although these control strategies may give good results, they are

inevitably affected by modelling errors and uncertainties, together with a control which is not

optimised on a wave-by-wave basis.

In this thesis, a model free control strategy for an array of heaving point absorbers is explored.

A model free control approach was chosen since it allows to neglect the device model and wave

interaction modelling, which in turn allows to avoid modelling errors and to directly develop the

control strategy using data obtained while at sea.

The proposed strategy involves an initial online optimisation of the control parameters of a reactive

control law using genetic algorithms to map the point absorber array to a population of individuals

within a metaheuristic optimization framework. This allows the single point absorbers to collaborate

and learn from one another to reach the common goal of finding the optimal control parameters for

each discrete sea state encountered.

After the initial sea-state-based model free collaborative optimisation has reached satisfactory

results, a secondary mechanism based on machine learning through neural networks is used to try

and learn interdependencies between the discrete sea states and the relative optimal control

parameters to achieve a continuous control, no longer dependant on a statistical description of the

sea state but based on direct force measurements on the heaving point absorbers. In this framework,

3

the data collected during the initial optimization using genetic algorithms is then used to train the

neural networks so to output a continuous control command.

Preliminary simulation results show that an array of point absorbers using a genetic algorithm based

collaborative optimisation is able to achieve control parameters close to the theoretical optimal ones

within only a few days from deployment, while the neural networks show comparable performance,

indicating that with further tweaking of the learning procedure, superior results may be obtainable.

4

Contents
Abstract .. 2

1 – Wave energy and wave energy converters, an introduction ... 12

1.1 Introduction .. 12

1.2 Wave energy converter technologies and classification .. 14

2 – Wave energy .. 21

2.1 The global wave energy resource ... 21

2.2 Wave physical description ... 22

2.3 Spectral characterization of sea states .. 24

2.3.1 Idealized wave spectra .. 25

2.4 Sea state characterizing parameters and wave power density .. 28

2.5 Characterizing Ocean sites ... 30

2.5.1 Temporal characteristics ... 30

2.5.2 Directional characteristics ... 31

2.5.3 Spectral characteristics .. 32

2.5.4 The scatter diagram ... 32

2.6 Generating Sea states in MATLAB ... 34

3 – Point absorbers ... 35

3.1 Point absorber technology .. 35

3.2 Power take off .. 36

3.2.1 Hydraulic PTOs ... 37

3.2.2 Mechanical PTOs .. 38

3.2.3 Direct drive PTOs ... 38

3.3 Point absorber model ... 39

3.4 Control of wave energy converters .. 40

3.4.1 Introduction ... 40

3.4.2 Discrete (slow) vs Continuous (fast) control... 41

3.4.3 Optimal control of WECs.. 43

3.4.4 Resistive/bang-bang control strategies .. 45

3.4.5 Reactive control strategies .. 48

5

3.5 Challenges .. 50

3.6 Proposed control solution ... 50

4 – The genetic algorithm .. 53

4.1 Considerations to be made when designing a genetic algorithm ... 53

4.1.2 System stability for C and K values .. 56

4.2 Genetic algorithm design ... 58

4.2.1 Representation ... 58

4.2.2 Evaluation function (Fitness Function) ... 59

4.2.3 Population ... 60

4.2.4 Initialization procedure ... 61

4.2.5 Parent selection ... 61

4.2.6 Crossover (Recombination) .. 63

4.2.7 Mutation .. 64

4.2.8 Survivor Selection ... 65

4.3 Tuning the genetic algorithm ... 66

4.3.1 Introduction ... 66

4.3.2 Tuning notions .. 67

4.3.3 Tuning vs control .. 68

4.3.4 Tuning procedure layout ... 68

4.3.5 Algorithm performance and utility measure definition ... 70

4.3.6 Tuning results .. 73

4.3.7 Tuning procedure for physical application.. 75

5 – Optimization through the genetic algorithm .. 76

5.1 Sea state generation .. 76

5.2 Simulation results ... 77

5.3 Expected Annual Energy Production ... 84

6 – The neural network .. 86

6.1 Introduction .. 86

6.2 The Feed-forward neural network .. 88

6.2.1 The network structure ... 88

6

6.2.2 Training the feed forward network ... 90

6.2.3 Testing the feed forward network ... 93

6.3 The Long Short Term Memory Neural Network ... 100

6.3.1 The network structure ... 100

6.3.2 Training the LSTM network ... 102

6.3.3 Testing the LSTM network ... 102

7 – Conclusions and future work ... 113

Appendix A: Evolutionary algorithms ... 117

Appendix B: Neural Networks ... 140

Bibliography... 167

7

Table of Figures
Figure 1. 1 - Active and projected tidal stream and wave energy capacity beyond 2020 [3]. 13

Figure 1. 2 - Wave energy converter technologies [1]. .. 14

Figure 1. 3 - Wave energy converter location classification and relative wave power 16

Figure 1. 4 - Oscillating water column devices .. 16

Figure 1. 5 - Overtopping devices .. 17

Figure 1. 6 - Attenuator devices ... 17

Figure 1. 7 - Point Absorbers ... 18

Figure 1. 8 - Oscillating water surge devices ... 18

Figure 1. 9 - Submerged pressure differential devices ... 19

Figure 1. 10 - Bulge wave devices ... 19

Figure 1. 11 - Rotating mass devices ... 20

Figure 2. 1 - Annual mean omni-directional power [9]. .. 21

Figure 2. 2 - Sinusoidal wave parameters [10]... 22

Figure 2. 3 - Ranges of applicability of wave theories according to Le Méhauté [11]. 23

Figure 2. 4 - Irregular wave from sum of sinusoidal regular waves [12]. .. 24

Figure 2. 5 - Typical spectrum graph ... 25

Figure 2. 6 - Spectrum parameters [15]. .. 26

Figure 2. 7 - Swell and wind wave classifications [12]. .. 27

Figure 2. 8 - Wave significant heigh and energy period yearly variations from the FINO1b dataset.

 .. 30

Figure 2. 9 - Wave rose for significant wave height [15]... 31

Figure 2. 10 - Average directional wave spectrum from SBF7-1A GPS wave buoy [16]. 32

Figure 2. 11 - Scatter table produced from occurrences off the coast of Pantelleria [17]. 33

Figure 3. 1 - Popularity of developed wave energy converter devices .. 35

Figure 3. 2 - Example of one body point absorber model [22]. ... 36

Figure 3. 3 - Block diagram of four different PTO configurations [23]. ... 37

Figure 3. 4 - Example of a hydraulic PTO with hydraulic rectifier [7]. ... 37

Figure 3. 5 - Example of a direct drive PTO [7]. ... 39

Figure 3. 6 - Graphical scheme of a point absorber [26]. ... 39

Figure 3. 7 - System variables under Latching control [29]. .. 46

8

Figure 3. 8 - System variables under Clutching control [29] ... 47

Figure 4. 1 - Plot of the largest eigenvalue of A matrix with varying stiffness and damping parameters

 .. 57

Figure 4. 2 - Qualitative representation of deterministic tournament selection 63

Figure 4. 3 - View of Evolutionary algorithm performance in the 1980s [58]. 66

Figure 4. 4 - View of evolutionary algorithms with added problem specific knowledge [58]. 67

Figure 4. 5 - Control flow (left) and information flow (right) ... 69

Figure 4. 6 - Tuning results .. 74

Figure 5. 1 - Lookup table from Pantelleria site .. 76

Figure 5. 2 - Point absorber power plot .. 78

Figure 5. 3 - Examples of evolution of cost of best solution in two different sea states 78

Figure 5. 4 - First generation population .. 79

Figure 5. 5 - Fifth generation population ... 79

Figure 5. 6 - Fully converged population after 12 generations .. 80

Figure 5. 7 - Evolution of damping values ... 80

Figure 5. 8 - Evolution of stiffness values ... 81

Figure 5. 9 - Best constant damping values from genetic algorithm optimization........................... 82

Figure 5. 10 - Best stiffness values form genetic algorithm optimization 82

Figure 5. 11 - Wave energy periods of the 14 generated sea states ... 83

Figure 5. 12 - Wave significant height of the 14 generated sea states ... 83

Figure 5. 13 - Expected Annual Energy Production over the 90-day simulation 84

Figure 6. 1 - Example of a simple neural network [67]. .. 86

Figure 6. 2 - Qualitative representation of the feed-forward neural network 91

Figure 6. 3 - Simulink model for point absorber and neural network simulation 93

Figure 6. 4 - Percentage mean power difference between using constant control parameters or neural

network parameters .. 95

Figure 6. 5 – Max and min peak power difference when using constant control parameters or neural

network parameters .. 96

Figure 6. 6 - Control signal of damping control parameter 'C' generated for sea state number 5 97

Figure 6. 7 - Control signal of stiffness control parameter 'K' generated for sea state number 5 97

Figure 6. 8 - Normalized damping, stiffness and heave force signal for sea state number 5 97

9

Figure 6. 9 - Control signal of damping control parameter 'C' generated for sea state number 4 98

Figure 6. 10 - Control signal of stiffness control parameter 'K' generated for sea state number 4 .. 98

Figure 6. 11 - Normalized damping, stiffness and heave force signal for sea state number 4 99

Figure 6. 12 - An unrolled LSTM network layer [75]. .. 100

Figure 6. 13 - Basic LSTM unit ... 101

Figure 6. 14 - Simulink model for point absorber and neural network simulation 103

Figure 6. 15 - Percentage mean power difference between using constant control parameters or

LSTM network parameters .. 105

Figure 6. 16 - Max and min peak power difference when using constant control parameters or neural

network parameters .. 105

Figure 6. 17 - Control signal of damping control parameter 'C' generated for sea state number 1 106

Figure 6. 18 - Control signal of stiffness control parameter 'K' generated for sea state number 1 106

Figure 6. 19 – Close-up of the control signal of the damping control parameter 'C' generated for sea

state number 1 .. 107

Figure 6. 20 – Close-up of the control signal of the stiffness control parameter 'K' generated for sea

state number 1 .. 107

Figure 6. 21 - Normalized damping and heave force signal for sea state number 1 108

Figure 6. 22 – Damping control signals generated by LSTM neural network for all 14 sea states 109

Figure 6. 23 – Stiffness control signals generated by LSTM neural network for all 14 sea states 109

Figure 6. 24 - Percentage power difference when using shifted and rescaled LSTM network damping

and constant stiffness ... 111

Figure 6. 25 - Max and min power difference when using shifted and rescaled LSTM network

damping and constant stiffness .. 112

Figure A. 1 - Pseudo code for a generic EA [58]. .. 119

Figure A. 2 - One point crossover [58] .. 128

Figure A. 3 - Two-point crossover [58] ... 128

Figure A. 4 - Uniform crossover [58] .. 129

Figure A. 5 - Simple arithmetic crossover [58] .. 131

Figure A. 6 - Single arithmetic crossover [58] ... 131

Figure A. 7 - Whole arithmetic crossover [58] .. 132

Figure A. 8 - Bitwise mutation ... 133

Figure A. 9 - Non uniform mutation with gaussian distribution of step size 134

Figure A. 10 - Comparison of different stopping times [58]. .. 138

10

Figure B. 1 - Basic structure of a feed-forward neural network... 140

Figure B. 2 - Working principle of an ANN neuron .. 141

Figure B. 3 - ReLU activation function ... 143

Figure B. 4 - Leaky ReLU activation function... 143

Figure B. 5 - Sigmoid activation function .. 144

Figure B. 6 - Hyperbolic tangent.. 145

Figure B. 7 - Linear activation function ... 146

Figure B. 8 - Mean absolute error .. 148

Figure B. 9 - Mean squared error ... 149

Figure B. 10 - Root mean squared error ... 150

Figure B. 11 - Trajectory for steepest descent with small α ... 154

Figure B. 12 - Trajectory for steepest descent with larger α .. 154

Figure B. 13 - Trajectory for steepest descent with unstable α .. 154

Figure B. 14 - Examples of trajectories taken from SGD and simple GD 157

Figure B. 15 - Examples of trajectories taken from SGD and simple Mini-Batch GD 157

Figure B. 16 – Basic idea behind recurring neural networks and LSTM networks [78]. 161

Figure B. 17 - An unrolled LSTM network [78]. ... 161

Figure B. 18 - Repeating module or cell for a RNN [78]. .. 162

Figure B. 19 - Repeating module of a LSTM neural network [78]. ... 162

Figure B. 20 - List of symbols for LSTM module [78].. 163

Figure B. 21 – Forget gate and operation on old cell state [78]. .. 163

Figure B. 22 - Ignore gate operation [78]. ... 164

Figure B. 23 - Updating the cell state [78]. .. 164

Figure B. 24 - Creating the output vector ht [78]. .. 165

11

12

1 – Wave energy and wave energy converters, an introduction

1.1 Introduction

As energy demands grow, due mainly to an increasing population and an increasing demand for

electrical energy to power an ever-increasing number of devices, new energy resources must be

exploited if such energy demands need to be met.

Predictions suggest that most of the population growth will be in non-OECD countries, i.e., presently

under-developed and with opportunities to build new energy infrastructures. This is thus a great

opportunity to create new energy infrastructures which heavily rely on renewable energy sources to

supply the required energy.

With an increasing pressure by worldwide governments to reduce greenhouse gas emissions and to

cut back on fossil fuels, the energy sector, which is responsible for two thirds of the global

greenhouse gas emissions [1], needs to transition to renewable energy sources to help combat climate

change.

Focusing on the energy sector may be one of the easiest ways to enforce the required changes. Other

sectors such as transport and household heating will be harder to tackle since the pollution sources

are more distributed and, because of an obvious human factor involved in the equation, change will

take a considerable amount of time.

According to the renewable capacity statistics report produced by IRENA in 2021 [2], global

renewable capacity as of 2020 is approximately 2800 GW, about a two-fold increase over the past

10 years. Whilst the major contribution to the total capacity still comes from hydropower, more than

80 per cent of all new electricity capacity added last year was from other renewable sources, with

solar and wind accounting for 91 per cent of new renewables.

Whilst the rate of growth of ocean energy has been slower than expected (with the exception of the

commissioning of the Sihwa Lake Tidal Power Plant in South Korea in 2011), predictions suggest

that ocean energy may experience similar rates of rapid growth between 2030 and 2050 as offshore

wind and solar experienced in the last 20 years.

Currently, a total capacity of 12.91 megawatts (MW) of tidal stream and wave energy is operational

of which 2.31 MW from wave and 10.6 MW from tidal stream [3]. In both fields a significant number

of new devices are being developed, with some units being able to reach 1 MW or higher. More

capacity additions can be expected in the upcoming years. As of 2020, wave and tidal stream projects

with total capacity of 2,83 GW were in the pipeline.

13

Figure 1. 1 - Active and projected tidal stream and wave energy capacity beyond 2020 [3].

Ocean energy is an abundant, yet relatively unexploited renewable energy source, which can be

tapped using offshore technologies including offshore wind, wave energy, tidal stream and tidal

barrage. Globally, 40% of the population live within 100 kilometres from the coast [4]. An obvious

choice as a main energy source used to provide for such communities would be to use some sort of

offshore renewable. Ocean energy is an abundant and greatly untapped resource which holds enough

potential to meet the current and projected global electricity demand well into the future. Based on

an analysis performed by IRENA in 2020 [3], the global potential ranges from 45.000 TWh to above

130.000 TWh annually.

At least theoretically, ocean energy alone has the potential to satisfy more than twice the current

global electricity demand, but the benefits that offshore renewables can provide are not limited to the

energy sector alone. Energy harnessed from the ocean has the ability to spark and drive a sustainable

global blue economy while providing a reliable and local energy source to small island developing

states (SIDS) and least developed countries (LDCs) bringing remarkable socio-economic benefits

through job creations and promotion of energy independence.

Despite all the benefits listed above, offshore renewables are generally still emerging technologies,

with most still in development stages. With the exception of offshore wind, offshore renewables like

wave energy and tidal stream technologies are still in the research and development phase with a

generally high degree of immaturity. The reduced pace at which the maturity of the ocean energy

sector has grown could probably mainly be attributed to the presence of other renewable energy

sources who outshined ocean energy due to larger funding, structured governmental policies and

simply because they have been looked in to for a longer period of time. A concrete example provided

by IRENA [5] shows how global funding for offshore wind amounted to 27,30 billion USD in 2006,

while global funding for marine renewables only capped at a mere 0,02 billion USD in the same year.

This clearly shows that although marine technologies hold great potential, additional funding and

policy support is needed to enable greater performance, reliability and especially cost reduction to

allow for the commissioning of larger commercial plants.

That said, an increasing number of companies, universities and investors outside the previously

mentioned countries are sponsoring the development of ocean technologies, consequently substantial

growth in the installed capacity is expected in the upcoming years.

14

1.2 Wave energy converter technologies and classification

Wave energy converters (WECs) are devices which harness the energy coming from ocean waves to

generate electricity. The main categories of wave energy converters produce electricity by either

exploiting the kinetic energy of the waves or the potential energy of the waves. The first kind usually

use moving bodies which thanks to the imparted energy, create electricity. The second type uses the

height of the wave itself to propel turbines thanks to overtopping or water column mechanisms.

As can be noticed, wave energy technologies have not yet converged towards a single type of

technological design. Instead, numerous different WEC technologies are being pursued, and unlike

tidal energy that aims at large-scale arrays, wave energy converters are currently following two

parallel paths: one leading to the deployment of largescale devices above 1 MW and possibly towards

deploying such devices in arrays, and the other aimed at smaller devices for specific offshore

applications such as water culture.

Although ocean energy is globally available, European costal countries, together with Australia,

Canada the United States and China, have been at the forefront of the ocean energy technological

development, with the largest number of projects deployed and the most device manufacturers.

An overview of the different wave energy converter technologies is presented in the following table:

Figure 1. 2 - Wave energy converter technologies [1].

15

In figure 1.2, TRL stands for Technology Readiness Level, which indicates the maturity achieved by

the given technology. Such scale goes from 1 to 9 where 1-3 represents a device in its research phase,

4-5 a device in its development phase, 6 the demonstration phase and finally 7-9 the deployment

phase where the bottom range, i.e.7, represents a prototype stage while 9 represents a fully deployed

stage.

Based on the classification in figure 1.2, a more in-depth description of different kind of devices and

some examples of physically deployed devices will follow.

A first classification of wave energy converters can be based on their location of dispatchment [6]

[7] [8]

- Onshore devices, as the name suggests, are devices which are rigidly connected to land.

These converters can be placed in shallow water, integrated in a dam or fixed to a manmade

structure such as a water breaker. The main advantages of such devices include their ease of

maintenance and the lack of long power lines to connect them to the mainland grid. The main

drawbacks for such devices instead are the lack of wave energy near the shoreline because

of interaction with the seabed and the limited number of sites in which such devices can be

installed. Typical examples of technologies adopted for such devices are oscillating water

column and overtopping devices.

- Nearshore devices are devices which are installed in waters of moderate depth, usually a

few hundred meters from the shore. Such structures can be either anchored on the sea bed or

floating. One of the advantages such devices have compared to onshore devices is their

placement in waters which naturally have higher power density. The main drawback might

be their negative impact on a social level. Because of their closeness to the shore and because

of their size, which does not go unnoticed, they might be seen as detrimental to the costal

landscape.

- Offshore devices are installed in deep waters far from the coast. These devices are most

often floating devices equipped with a mooring system. The advantage of such positioning

is the availability of waters with a high power density, allowing to potentially extract a large

amount of energy. The disadvantages are quite obviously due to the distance from the shore,

resulting in a long electrical connection line needed to connect to the mainland grid and in

difficult deployment, maintenance, and monitoring. For such devices, reliability and

sturdiness is of paramount importance in order to avoid excessive maintenance and to survive

the high loads they might be subject to.

16

Figure 1. 3 - Wave energy converter location classification and relative wave power

Another type of classification which can be made is based on the working principle of the device.

This type of classification allows to better understand how the device works and which physical

phenomenon it exploits to harvest energy from the wave motion.

- Oscillating Water Colum devices are devices composed by a partially submerged hollow

structure. Such structure is open to the sea below the water line, creating a chamber in which

water can enter from the bottom. Wave motion cause water to enter from such opening and

flow into the main chamber, creating a water column which rises and falls according to the

wave motion. This rising and falling of the water column within the device causes to air

above the water column to move across a turbine placed at the top of the device whose other

end is exposed to atmospheric pressure. Usually the turbine is bidirectional, meaning it will

rotate both when the air is being expelled from the chamber (water column rising) and when

air is being sucked into the chamber (water column falling). These devices are usually

onshore devices, but nearshore and offshore devices have also been conceived.

Figure 1. 4 - Oscillating water column devices

17

- Overtopping devices are devices which exploit a difference in potential energy which is

artificially created by raising a volume of water above the ocean’s surface. This can be

achieved thanks to structures which mimic the wave action you might find naturally on a

beach. As waves approach and hit the artificial beach they run up a ramp and into a storage

reservoir which is at a higher level than the average surround sea level. From this reservoir

the water then flows through a turbine back into the sea simply thanks to gravity. Examples

of these devices have been developed for onshore, nearshore, and offshore applications.

Figure 1. 5 - Overtopping devices

- Attenuator devices are devices whose most significant dimension is oriented parallel to the

direction of wave travel. Their working principle relies on wave motion to flex the joints

connecting the main bodies to generate power. Often these devices are modular, allowing

for multiple floaters to be attached in sequence. Some devices are also able to capture energy

utilizing multiple degrees of freedom of motion between the attached bodies, relying on

surge, heave and sway to capture energy. These devices are most commonly only found in

nearshore and offshore applications because of their working nature.

Figure 1. 6 - Attenuator devices

18

- Point absorbers are floating structures who usually, but not always, possess a small

horizontal dimension with respect to their vertical dimension. In most point absorber designs,

one end of the device is anchored to the seabed while the other end can freely float and move

vertically as the wave crests and throughs move the device up and down. This reciprocal

vertical motion between the two ends of the device is what is used to provide usable power.

As can be noticed, the main motion used to generate power is thus the heaving motion. These

devices are most prominently used in offshore applications since they can better exploit the

more powerful waves to extract more energy, but nearshore applications do exist.

Figure 1. 7 - Point Absorbers

- Oscillating water surge converter devices use the surge motion of waves to swing back

and forth. Most designs rely on a structure, hinged at it’s base which is able to pivot as the

wave motion acts on it, causing the whole pivoted structure to swing back and forth. This

motion resembles that of a large lever whose base is then linked to either a generator or a

pump to move fluid or to drive a hydraulic motor. These devices are usually completely

submerged and directly anchored to the sea floor. Such devices are usually deployed in

nearshore applications or even in breakwater areas.

Figure 1. 8 - Oscillating water surge devices

19

- Submerged pressure differential devices work by exploiting the pressure differential that

passing waves crate. By placing the device on the seabed, the motion of the waves causes

the sea level to rise and fall above the device, creating a pressure differential above the device

which can be used to compress a pliable material such as an air bladder, thus moving a fluid

which can be used to drive a turbine or some other power take off unit. These devices are

typically located nearshore.

Figure 1. 9 - Submerged pressure differential devices

- Bulge wave devices use wave forces to push a fluid along a flexible channel and through a

turbine. Such devices are aligned perpendicular to the wave and their shape can resemble

that of a sea snake. Such devices operate very close to the water’s surface and their design

must be carefully tuned based on the expected sea conditions.

Figure 1. 10 - Bulge wave devices

20

- Rotating mass devices can be of two generic kinds. The first design includes a closed hull,

which floats on the water’s surface like a vessel, enclosing multiple eccentric masses which

are able to rotate on different axis. With this design, if the device is excited in any direction

from the incoming waves, one or more of the eccentric masses will rotate. This rotation is

then used to generate energy.

The second kind of design uses a gyroscope instead of the eccentric masses. These devices

take advantage of the gyroscopic procession effect which takes place if the hull of the vessel

moves because of the interaction with the waves. This procession motion can then be used

to extract energy from different PTO technologies.

These devices can be placed nearshore or offshore but are most prominently used offshore

because of the more energetic waves.

Figure 1. 11 - Rotating mass devices

- Other: It must be noted that although the above classification of wave energy converters

based on their working principle does encapsulate most of the current designs being used,

other designs exist which do not fit in any of the above categories.

The above classification considers the most common working principles but also some of

the designs which are currently in the research phase but which show promising results and

in which funding is currently being invested.

21

2 – Wave energy
Understanding the medium with which a wave energy converter has to interact with is a key

requirement in designing efficient and reliable WECs. The study of sea behavior and of wave

characterization is not only related to the wave energy industry and has been a research area for other

industries for many years. Although wave-body interactions have also been a topic of study for any

floating device, such as ships, the peculiarity about the wave energy industry is the need to study

how this interaction might affect the power transfer from the sea to the wave energy converter device

in order to extract the most amount of energy for each condition encountered.

In the following chapters an overview of the wave energy resource will be given.

2.1 The global wave energy resource

Waves on the ocean surface are primarily created by wind passing across the surface of the ocean.

Initially, waves start as small ripples, but then grow in size thanks to the continuous energy provided

by the wind. If the wind blows for long enough, the waves will eventually reach a limit past which

they cannot grow any longer for that particular weather scenario because of internal energy losses.

This stage is known as a fully developed sea.

The average wave power density is very diverse from location to location depending on seasonal

average temperatures, winds, and many other local factors.

Figure 2.1 shows the global annual mean omni-directional wave power density.

As can be noticed, the most energetic regions occur in bands located in the north and southern

hemispheres.

 Figure 2. 1 - Annual mean omni-directional power [9].

These regions of high power-density are located for the most part far from coastal regions. This poses

the additional problem of choosing the most optimal position for a WEC.

22

Although more energetic regions would favor a greater energy extraction, they would also need

exceptionally long underwater cables to carry the produced electricity ashore. Furthermore, because

of their distance from the coast, any repair operation would be extremely costly.

In comparison, one might argue that deploying an offshore WEC in a region closer to the coast, at

the expense of a lower average wave power density, might be a better solution in the long run.

It must be noted that although average wave power density does give an insight on how much energy

might be extracted by a WEC in any given location, because of the complexity and different working

principles that each wave energy converter possesses, it is not possible to arbitrarily choose a single

factor describing wave energy that can singlehandedly define which location is most suitable for

energy extraction, no matter what WEC might be used.

2.2 Wave physical description

The most simplistic definition of a sea wave is a sinusoidal wave at the water surface with a

characteristic wave height or amplitude and a wavelength associated with a corresponding wave

period. This kind of wave is known as a regular linear wave.

Figure 2. 2 - Sinusoidal wave parameters [10]

Other wave parameters can be produced by using the fundamental parameters described above.

𝑠 = 𝐻/𝜆 , Wave steepness
(1. 1)

𝑘 = 2𝜋/𝜆 , Wave number
(1. 2)

𝜔 = 2𝜋/𝑇 , Wave frequency
(1. 3)

In particular, the wave steepness can be used as a reference to distinguish between linear and non-

linear waves and between which wave theory better describes the particular wave scenario.

Typically, if the wave steepness is smaller than 0.01, then linear wave theory can be used, but as the

wave steepness increases, linear theory becomes less valid and other wave model theories should

23

theoretically be used. Figure 2.3 shows the validity of different wave theories based on the wave

steepness (pictured on the vertical axis) and the relative water depth (on the horizontal axis) where h

is the mean water depth and τ the wave period.

Figure 2. 3 - Ranges of applicability of wave theories according to Le Méhauté [11].

It must be noted that although these guidelines exist, it is extremely complex to apply any theory

other than linear wave theory to irregular waves. It is thus common practice to use linear wave theory

even beyond the bounds shown in figure 2.3.

Figure 2.4 shows qualitative examples of different regular waves based on different wave theories.

Figure 2.4 - Qualitative wave profiles according to different wave theories

24

2.3 Spectral characterization of sea states

The natural behavior of sea waves is irregular, often also referred to as random sea. The sea rarely

shows a regular sinusoidal wave pattern, instead, a mixture of different contributions forms the final

waves that we observe.

One of the most used characterizations of a given sea condition is the definition of the sea using a

spectrum. This representation considers the variation in the elevation at the water surface (the waves)

as a linear superposition of sinusoidal waves of different frequencies, amplitudes, and phases. This

assumption is accompanied by considering the superimposed waves to have a random phase between

each other.

Figure 2. 4 - Irregular wave from sum of sinusoidal regular waves [12].

A generic irregular wave pattern ζ can be decomposed into the partial regular waves that form it

using Fourier analysis. If given a set of partial waves instead, an irregular wave can be created as the

sum of the partial waves according to [12]:

Where:

- ζ Wave ordinate expressing surface elevation

- 𝑖 Number of wave component

- 𝑐𝑖 Amplitude of the ith partial wave

- 𝜔𝑖 Frequency of partial wave

- 𝑥, 𝑡 Direction of progress, time

- 𝑘𝑖 Wave number

- 𝜀𝑖 Phase angle of partial wave

Where the phase 𝜀𝑖 is randomly distributed.

25

Given an irregular sea state, the variation of the wave energy with frequency, given the components

that for such irregular sea state is called wave spectrum.

Figure 2. 5 - Typical spectrum graph

The wave energy spectrum gives an understanding of the distribution of energy across the different

frequencies composing the irregular sea condition. This can give an insight of what are the

predominant frequencies in the current sea condition and how narrow or large banded is a given sea

state. This is especially important during the design phase of a WEC in order to match the design

characteristics with the desired deployment location.

2.3.1 Idealized wave spectra

In an attempt to characterize sea conditions given certain external meteorological conditions and

predefined assumptions, different standardized wave spectrum equations have been developed.

These equations are used to create wave spectrums under very specific assumptions, and thus do not

perfectly represent all possible sea conditions.

One of the most commonly used spectrums is the Pierson-Moscowitz spectrum [13]. This spectrum

was developed under the assumptions that the wind has been blowing across a sufficiently large and

deep body of water for enough time to create a fully developed sea. Under these assumptions, the

proposed spectrum now only depends on the wind speed at 19.5m above the water surface.

This idea was furtherly refined by Hasselman et al. after analyzing data collected during the Joint

North Sea Wave Observation Project (JONSWAP) [14].

The produced spectrum was an extension and refinement on the Pierson-Moscowitz spectrum for

conditions in which the sea is not fully developed and for limited fetch length.

26

𝑆(𝜔) =
𝛼𝑔2

𝜔5
𝑒𝑥𝑝 [−𝛽 (

𝜔𝑝

𝜔
)

4

]

PM spectrum

𝑆(𝜔) =
𝛼𝑔2

𝜔5
𝑒𝑥𝑝 [−

5

4
(

𝜔𝑝

𝜔
)

4

] 𝛾
𝑒𝑥𝑝[−

(𝜔−𝜔𝑝)2

2𝜎2𝜔𝑝
2]

 JONSWAP spectrum

Figure 2. 6 - Spectrum parameters [15].

Where:

- 𝑆(𝜔) Spectral variance density

- 𝜔𝑝 Peak frequency

- 𝜔 Wave component frequency

- 𝑔 Gravitational acceleration

- 𝑈19.5 Wind speed at 19.5 meters above water level

- 𝑈10 Wind speed at 10 meters above water level

- 𝐹 Fetch length

- 𝛾 Peak enhancement factor

The above discussion, and the spectrum in figure 2.6 were only referring to sea states that have been

generated by wind blowing in only one direction. However, there might be situations in which

multiple sources of wind act on the same location, or where swell and local wind conditions are

relatively uncorrelated. In these cases, spectra containing multiple peaks can occur.

Examples of how such sea states can be classified are given in figure 2.7.

27

Figure 2. 7 - Swell and wind wave classifications [12].

The variety of wave spectral shapes presents a big challenge when designing and controlling a WEC

since both the design and the control strategy could be much easier to develop if a narrow-banded

sea state was always present, allowing for optimal design for a small range of frequencies.

28

2.4 Sea state characterizing parameters and wave power density

Sea states can be generically described by using two important parameters, which in some sense

represent the wave height and the wave period.

Before measuring devices allowed for a precise local and statistical measurement of the sea state, the

wave heigh was historically based solely on the direct observation of an experienced observer.

This heigh was named Significant Wave Height, symbolized by 𝐻𝑠.

When technology allowed for a precise measurement of the water surface elevation, this method was

replaced by a more reliable and unbiased methodology. Because of the existing records of the

significant wave heigh, the new method had to be consistent with the historical reports, thus

producing a measurement equivalent to the 𝐻𝑠.

A good analogy to the old method was found to be given by considering the height of the third highest

waves considering a time series record of the measured surface elevation. To distinguish this method

from the previous one, the significant height was marked as 𝐻1/3.

𝐻1/3 =
1

1
3 𝑁

∑ 𝐻𝑚

1
3

𝑁

𝑚=1

Where N is the total number of measurements of the wave height and 𝐻𝑚 is the individual height

measurement.

The third, and most commonly used measurement of the significant wave height is represented by a

measurement based on the wave spectrum, denoted with 𝐻𝑚0.

𝐻𝑚0 = 4 √∫ 𝑆(𝜔) 𝑑𝜔
∞

0

Where 𝑆(𝜔), is the spectral variance density previously used when defining the sea state spectrum.

This method of measuring the significant wave height is useful since it’s directly related to the

average wave power density.

The power of a given sea state can be initially described by considering a single wave component at

a time. Using linear superposition, it is then possible to find the total average wave power density.

Considering a single wave component, the wave power is:

𝐽(𝜔) = 𝜌𝑔𝑆(𝜔) · 𝐶𝑔(𝜔)

Where 𝐶𝑔, is the velocity at which the energy is propagating known as the group velocity.

𝐶𝑔(𝜔) =
1

2

𝜔

𝑘(𝜔)
(1 +

2𝑘(𝜔)ℎ

𝑠𝑖𝑛ℎ 2𝑘(𝜔)ℎ
)

29

Using linear superposition, the average wave power density can be defined as

𝐽 = ∫ 𝜌𝑔𝑆(𝜔) ·
1

2

𝜔

𝑘(𝜔)
(1 +

2𝑘(𝜔)ℎ

𝑠𝑖𝑛ℎ 2𝑘(𝜔)ℎ
) 𝑑𝜔

∞

0

The other important parameter mentioned which is used to describe a sea state is the wave energy

period which can be defined as

𝑇𝑒 =
𝑚−1

𝑚0

Where 𝑚𝑛, are the moments of the spectrum defined as

𝑚𝑛 = ∫ 𝑆(𝜔)
∞

0

𝜔𝑛 𝑑𝜔

Using the definitions of wave energy period and significant wave height, the omnidirectional wave

power in deep water J can be defined as

𝐽 =
𝜌𝑔2

64𝜋
𝐻𝑚0

2 𝑇𝑒

Additionally, a final additional consideration may be made regarding the directionality

characteristics of the sea state. The directionally resolved wave power density 𝐽(𝜗)defines the wave

power in a particular direction and is an important parameter for directional WECs and for wave

farm deployments.

A directional wave spectrum 𝑆(𝜔, 𝜑) can be used to calculate 𝐽(𝜗) as

𝐽(𝜗) = 𝜌𝑔 ∫ ∫ 𝑆(𝜔, 𝜑
∞

0

)𝐶𝑔(𝜔)cos (𝜗 − 𝜑)𝛿 · 𝑑𝜔 · 𝑑𝜑
+𝜋

−𝜋

{
 𝛿 = 1, 𝑐𝑜𝑠(𝜗 − 𝜑) ≥ 0
𝛿 = 0, 𝑐𝑜𝑠(𝜗 − 𝜑) < 0

The above parameters used to describe a given sea condition and the power that accompanies such

state are just some of the many possible parameters that exist to characterize a given sea state.

For the purpose of this thesis, the above description of a sea state using the significant height 𝐻𝑚0

and the energy period 𝑇𝑒, in conjunction with the spectral characterization is enough.

It must be noted that for simplicity, the wave significant height will be referred to as 𝐻𝑠.

30

2.5 Characterizing Ocean sites

When considering deployment locations for a WEC, it is important to understand how the local sea

conditions may affect the performance of the wave energy converter. Some of the main aspects to

take into considerations can be considered to be the temporal, directional, and spectral characteristics

of the local ocean sea states and how these characteristics may affect the average power generation.

2.5.1 Temporal characteristics

Temporal characteristics show how the local sea state changes throughout a given period of time.

These changes are usually measured by considering the changes in significant wave height 𝐻𝑠 and

wave energy period 𝑇𝑒.

In general, it can be stated that, for a given average wave power, a wave climate which is more

consistent in time is desirable because there will be less need to overengineer the WEC components

to withstand extreme sea conditions. Furthermore, the working conditions in which the WEC will be

working in most of the time will be the conditions for which it was designed to have greatest

efficiency.

The temporal characteristics can be related to different time windows such as daily, monthly or

seasonal variations in the sea conditions. Each time span considered will have its own impact on the

WEC energy generation, with longer time span variations usually being more predictable than short

ones, allowing for possible preemptive measures to be taken.

An example of temporal variations in the wave significant height and energy period is given in figure

2.8.

Figure 2. 8 - Wave significant heigh and energy period yearly variations from the FINO1b dataset.

31

2.5.2 Directional characteristics

Directional characteristics of the local sea state are extremely important wen considering a

deployment location for a directional WEC or when designing a WEC farm. The only situation in

which directionality may not be of importance is for a single omni-directional WEC such as a heaving

point absorber.

In general, an increase in the variation of the wave directionality of a give site will lead to a decrease

in performance since it will be more likely that the directional dependent WEC or the wave farm will

be often oriented in a less optimal direction.

Directional measurements can be of many different kinds. One example of a commonly used

indicator is the wave rose shown in figure 2.9. This kind of graph can be used to represent average

wave power or significant wave height measurements divided in different directional sectors. The

length of each coloured sector radiating out in a given direction gives the percentage average

occurrence of a given power or significant wave height it that specific direction.

An example of a wave rose is given in figure 2.10.

Figure 2. 9 - Wave rose for significant wave height [15].

32

2.5.3 Spectral characteristics

Spectral characteristics of wave climate add a frequency component to the measurements taken.

Measurements based on the frequency at which such conditions occur may include wave

directionality, wave significant height and other wave measurements varying across a frequency

range. Spectral characteristics can be associated to spectral variations of a single sea state or spectral

variations of a given site, considering all possible sea states together.

Spectral characteristics of wave climate are particularly important both when designing a WEC and

also when analyzing a possible deployment site because the efficiency of most WECs is frequency

dependent. Thus, for example, two sites having the same average power density may produce

significantly different power outputs because of the different frequency ranges associated with each

site.

Figure 2. 10 - Average directional wave spectrum from SBF7-1A GPS wave buoy [16].

2.5.4 The scatter diagram

One of the most used diagrams to characterize a location is the scatter diagram. The scatter diagram

consists of a grid of occurrences of sea states characterized by the significant wave height and wave

energy period.

This kind of diagram allow to understand which sea conditions occur most often for the location

under analysis but they are also prone to some potential issues.

Firstly, because of their discrete nature, sea states may vary significantly from one cell to the next,

especially if the resolution is poor and the significant wave height is small, it is thus usually desirable

to produce a scatter table with a good resolution, this although will take a larger number of samples

and more precise measurements.

33

Another issue with the scatter table is that it does not give any indication on the directional

distribution or spectral shape of the sea state contained within each cell which as discussed above are

important factors when evaluating a location.

Although it does present some possible flaws, the scatter diagram is one of the most used tools to

conduct a preliminary examination of a given site. Other techniques which take in to account

frequency, temporal and directional dependencies are then used to get a better understanding of the

sea behavior for the selected site.

Figure 2. 11 - Scatter table produced from occurrences off the coast of Pantelleria [17].

Summarizing, it is important to note that although wave climate characterizations as the ones

presented above do give a good insight on the wave climate at a given location and on how well a

given WEC might perform at such location, they cannot give a complete picture of how the WEC

will behave and cannot be used to properly estimate the power generation of a WEC. However, these

diagrams do provide an overview of the potential a site might have. This is especially true if these

characterizations are coupled with a strong knowledge of how the given WEC works, allowing to

choose the most appropriate information to analyze a give location.

When possible, it is always recommended to use the full time series of directional wave spectra to

estimate the power generation of a WEC for a given site and time span [18].

34

2.6 Generating Sea states in MATLAB

In most sea conditions, ocean waves can be modelled as a stationary, zero-mean Gaussian process.

This is trues as long as the water is deep enough and the waves are not too extreme, which are the

conditions in which most offshore WECs will find themselves in most of the time during their

deployment. For this reason it is thus desirable to have a wave generation method which is able to

reproduce the statistical properties of a Gaussian Sea condition.

For the purpose of this work, the sea states and related sea state forces used to simulate the behavior

of the point absorber at sea were modelled following the Random Amplitude Scheme presented by

Mérigaud and Ringwood in their work in [19].

The Random Amplitude Scheme (RAS) for generating finite length numerical simulations of

Gaussian seas belongs to the class of wave superposition methods to produce free-surface time-

series. This method consists in adding up harmonic sinusoidal components with random phases and

component amplitudes which are chosen randomly with a variance which depends on the sea

spectrum.

The discrete sequence generated when using RAS can be written as follows:

𝜂𝑡𝑖 = ∑ 𝑎𝑘 cos(2𝜋𝑓𝑘𝑡𝑖) + 𝑏𝑘sin (2𝜋𝑓𝑘𝑡𝑖)

𝑀/2

𝑘=1

Where 𝑎𝑘 and 𝑏𝑘 are independent normally distributed random variables with zero mean and with

variance 𝑆(𝑓𝑘)Δ𝑓.

The sequence can also be equivalently written as:

𝜂𝑡𝑖 = ∑ 𝐴𝑘 cos(2𝜋𝑓𝑘𝑡𝑖 + 𝜙𝑘)

𝑀/2

𝑘=1

Where 𝜙𝑘 is chosen randomly according to a uniform distribution in [0;2π] while 𝐴𝑘 follows a

Rayleigh distribution with variance 2𝑆(𝑓𝑘)Δ𝑓.

It is possible to show that RAS is able to reproduce the true statistical properties of a Gaussian Sea

and is able to reflect how short-term WEC performance varies with respect to its long-term average

allowing to realistically assess how the WEC power output may vary when measured over a finite

duration. Because the basis of this work relies on finite measurements of the average WEC power

output which will then be directly used as a driver to select the appropriate control strategy for each

sea state, RAS provides the right tool for a probabilistic analysis of a finite length time domain

simulation.

35

3 – Point absorbers
As mentioned in chapter 1, point absorbers are wave energy converter devices that have the ability

to extract energy from the heaving motion of the incoming waves from all directions.

Currently, most attention worldwide is being focused on the point absorber design as it’s one of the

most promising designs thanks to its reduced complexity and ability to harvest energy form different

wave directions. Additionally, this design is efficient, reliable, and also one of the first wave energy

converter designs to be conceived.

One of the earliest recorded patents for a point absorber dates back to 1885 by Leavitt [20]. His

design exploited wave forces through a heaving buoy connected to a gear system used to pump water.

Not only is the point absorber design one of the most popular as suggested by the chart below [21],

but some research suggests that it is currently one of the stronger candidates to be the standout WEC

to harvest energy from highly energetic locations [22].

A more in depth overview of point absorber technology will follow in the next chapters.

Figure 3. 1 - Popularity of developed wave energy converter devices

3.1 Point absorber technology

Point absorbers are constituted by a spherical or cylindrical buoy which oscillates predominantly in

the vertical direction with respect to a fixed reference which can either be the seabed, or another

submerged body with much higher inertia with respect to the floater. In general, point absorbers

present fewer moving joints than other WECs, thus reducing the complexity of the device.

Additionally, if linear wave theory is assumed, point absorbers can be modelled with fewer degrees

of freedom, which simplifies the computations and the problem layout in general.

The reciprocating motion between the buoy and the fixed reference is then used to harvest energy

through a PTO placed between the buoy and the fixed reference as can be seen in the figure below.

36

Figure 3. 2 - Example of one body point absorber model [23].

3.2 Power take off

The purpose of the PTO system is to transform the reciprocal motion created by the moving floater,

into electrical energy suitable for being distributed on the main electrical grid. Because the electricity

entering the main grid needs to meet certain standards, especially regarding the wave form, a

significant challenge that the complete PTO system must overcome is to transform the irregular

power input from the incoming waves into a smooth sinusoidal electrical power output.

This requirement is thus one of the main requirements to consider when designing a PTO for a wave

energy converter.

PTO systems are also most often required to convert a slow motion accompanied high forces, coming

from the interaction with the waves, into a fast rotational motion to drive an electric motor.

Throughout the years, efforts have been made to meet such requirements by including storage

systems (mechanical, hydraulic, or electric) and rectifiers in the PTO design.

The main challenges a PTO has to face are mainly due to the intrinsic properties of the energy source.

Ocean energy presents a high variability both in the short and in the long term which in turn means

that the displacements, accelerations and forces induced may vary greatly over time. These large

possible working ranges will induce different dynamic loadings on the structure, and it is thus

mandatory for the PTO design to be robust and reliable, but at the same time, be able to be as efficient

as possible in all sea conditions.

It is generally possible to recognize four types of PTO technologies as represented in the figure below

[24]: hydraulic with hydraulic rectifier, hydraulic with electrical rectifier, mechanical with

mechanical rectifier and direct drive.

37

Figure 3. 3 - Block diagram of four different PTO configurations [24].

3.2.1 Hydraulic PTOs

Hydraulic converters are a popular solution to interface the external forces acting on the wave energy

converter with the electrical generator since they are well suited to absorb energy coming from large

forces with low frequencies and can provide good energy storage and rectification capacity.

The movement of the prime mover, the buoy in the case of a point absorber, is used to drive fluid

through a hydraulic circuit with two parallel branches. Valves are used to ensure that the fluid moves

always in the same direction within the circuit, no matter the direction of motion of the floater. High

and low pressure accumulators are used to ensure a smooth hydraulic flow before the fluid reaches

the hydraulic motor which then translates the energy into a fast rotation that can be used by an

electrical rotary generator. A radial piston hydraulic motor is often used as it is capable of

withstanding high loads for low velocity applications.

A depiction of a PTO hydraulic system follows below.

Figure 3. 4 - Example of a hydraulic PTO with hydraulic rectifier [7].

38

Hydraulic PTOs with electrical rectifiers use the hydraulic part of the system to transform the low

velocities of the prime mover into higher velocities which can then be used to move a rotary electrical

generator while the storage elements are instead represented by batteries

Particular considerations must be made regarding the possible issues when choosing a hydraulic PTO

for a wave energy converter. Some of the main topics on which to reflect are:

- Fluid containment in the hydraulic system and possible environmental issues.

- Maintenance. Hydraulic systems are composed of numerous moving parts, where many are

equipped with seals which will wear over time, producing the need for maintenance.

- The hydraulic circuit must be designed to work even in extreme conditions characterized by

high forces and fluid pressures.

3.2.2 Mechanical PTOs

In mechanical PTOs the increase in speed which in hydraulic PTOs was achieved by a hydraulic

motor is instead achieved through a mechanical conversion system such as a gearbox. This gearbox

is then linked to a rotary electrical generator to produce electrical energy. A flywheel can be used as

a mechanical accumulator to smoothen out power variations.

An advantage of this kind of system is its high efficiency, but because of the high number of cycles

and forces that the mechanical conversion system has to bear, the reliability and robustness of such

system is crucial.

3.2.3 Direct drive PTOs

Direct drive PTOs are able to directly convert the kinetic energy of the reciprocating motion of the

prime mover straight into electrical energy through a linear generator with permanent magnets [25].

Because of the large forces and low velocities involved, the design and manufacturing of these

devices is usually performed ad-hoc for the specific application, but advancements in the fields of

power electronics and permanent magnets have made this solution attractive in the most recent years.

Since the alternating wave motion is directly converted in to electricity, rectification must be carried

out by a power electronics system before conversion to a sinusoidal waveform with fixed voltage

and frequency can be performed.

An example of this technology is given in the following figure coming from [7].

39

Figure 3. 5 - Example of a direct drive PTO [7].

3.3 Point absorber model

For this work, the considered point absorbers consist of simple heaving point absorbers constituted

of 2[m] radius speres with an internal mechanical PTO directly anchored to the seabed. This kind of

point absorber was chosen since it represents a simple but realistic model on which to test the devised

control strategy. A graphical representation of the point absorber model is shown in figure 3.6.

Figure 3. 6 - Graphical scheme of a point absorber [26].

The considered device is limited to extract power in the vertical direction only, meaning that we are

considering a 1 Degree of Freedom (DoF) device. For this kind of vertical heaving point absorber

the system dynamics can be modelled as [27]:

𝑚𝑧̈ = 𝑓𝑟 + 𝑓ℎ𝑟 + 𝑓𝑒𝑥 − 𝑓𝑃𝑇𝑂

40

Where 𝑧(𝑡) is the device vertical displacement, 𝑓𝑟(𝑡) is the radiation force, 𝑓ℎ𝑟(𝑡) is the hydrostatic

restoring force, 𝑓𝑒𝑥(𝑡) is the external heave force, and 𝑓𝑃𝑇𝑂(𝑡) is the controllable force exerted by

the power take off.

The hydrostatic force can be written as:

𝑓ℎ𝑟(𝑡) = −𝑘ℎ𝑧(𝑡)

Where 𝑘ℎ is the hydrostatic stiffness constant of the device.

The radiation force instead can be expressed following the Cummins’ equation as:

𝑓𝑟(𝑡) = −𝑚∞�̈�(𝑡) − ∫ ℎ𝑟(𝜏) �̇�(𝑡 − 𝜏)𝑑𝜏

Where ℎ𝑟 is the impulse radiation response and 𝑚∞ is the added mass at infinite frequency.

The convolution term can be approximated by using an LTI system using proper

identification techniques [28] which in turn lead to the following input-output state space

representation:

{
�̇�𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟�̇�
𝑓𝑟 = 𝐶𝑟𝑥𝑟 + 𝐷𝑟�̇�

Where 𝑥𝑟 are the additional radiation states and the matrices 𝐴𝑟 , 𝐵𝑟 , 𝐶𝑟 , 𝐷𝑟 are the state-space

matrices used to approximate the convolution term, identified using the FOAMM toolbox.

As stated in chapter 2.6 instead, the 𝑓𝑒𝑥 term has been modelled using the Random Amplitude

Scheme (RAS) allowing a force representation which realistically depicts a Gaussian Sea

state.

Finally, in a realistic scenario, WEC interactions might need to be considered for a compact

array of devices. For this work the devices are considered far enough (at least 160[m] apart)

so to not affect each other’s dynamics.

3.4 Control of wave energy converters

3.4.1 Introduction

Wave motion is characterized by a broad frequency band that changes over both relatively short time

spans (hours) and across larger time spans (seasons). This is an important consideration since wave

energy converters are most efficient at absorbing energy when their natural frequency is close to the

dominant frequency of the incident wave [29] [30].

In order to increase the power output of a wave energy converter, in response to the continuously

changing wave spectrum, the behavior of the wave energy converter needs to be changed so that it’s

frequency will be in resonance with the incoming waves. This can be done by using an appropriate

control strategy.

41

The physical properties of the device, like mass and shape are difficult if not impossible to vary

according to the incident wave. Instead, the behavior of the wave energy converter can be tuned by

acting on the stiffness and damping coefficients of the system, which can be accessed through the

power take-off.

The main purpose of control is to produce a wave energy converter which is as efficient as possible

at capturing energy from the incoming waves, but control can also become useful in the event of

extreme sea conditions.

In case of such an event, the device could switch to a safe mode in order to prevent any damage to

the structure, ensuring it’s survivability.

The design of a control strategy to be implemented on a WEC is usually performed using a model of

the system. This is obviously true for model-based control strategies, but it can also be true for model

free control strategies since, to both design and to validate the viability and performance of the

implemented control strategies, a numerical simulation is needed which in turn involves a model of

the WEC. This model will usually not perfectly reflect the dynamic behavior of the device because

of approximations made when constructing the model (e.g., reducing the DOFs of the model) and

because of unmodelled unknown dynamics.

The design of the control strategy can then be defined as the task of using the model to design a

control function, together with its parameters, to satisfy and optimize some desired performance

objective, usually energy capture maximization.

Different control strategies have been proposed, and in the following chapters some of the most

important strategies will be described.

3.4.2 Discrete (slow) vs Continuous (fast) control

As stated in the previous chapter, optimal damping and stiffness coefficients with the goal of

maximizing energy absorption depend on the incoming wave frequency [31].

Thus, it is desirable for the control parameters to adapt to the current wave conditions.

This is usually approached from two perspectives: a discrete, also known as “slow” control or a

continuous, also known as “fast” control.

3.4.2.1 Discrete control

Discrete control is currently one of the most used classes of control because of its simplicity.

It involves identifying discrete sea states determined by statistical measures of the wave amplitude

and wave period. In particular, the significant wave height (Hs) and the wave energy period (Te) are

most commonly used as the identifying parameters of the sea state.

42

Once sea conditions have been adequately gridded, numerical simulations are run offline to

determine the optimal control coefficients in each sea state by using a numerical model of the wave

energy converter. These discrete control coefficients for each sea state in the grid are then stored in

a lookup table.

With the wave energy converter deployed, the current sea state is determined by wave buoys placed

in the vicinity of the WEC and the optimal control coefficients can simply be selected by using the

lookup table.

Although this approach is rather simple, it has been shown to be effective compared to fixed damping

control which has made it rather popular in the past because of its relatively good performance and

inherent simplicity.

The main drawbacks of using discrete model-based strategies are caused by model accuracy and the

discretization strategy.

Because optimal energy capture of a WEC can be achieved only if the WEC changes its control

parameters on a wave-by-wave basis, the discretization strategy is clearly non optimal. That said, a

discrete control strategy may vary widely in performance based on the information used to tune the

device which in turn depends on how fine of a gridding was used to define the sea states.

Additionally, it is also important to correctly measure and define which sea state the device is

currently in so to correctly select the control parameters.

Finally, for sea conditions in which linear wave theory starts to break down, the highly nonlinear

interactions will lead to suboptimal control parameter choices. This can be mitigated by either using

a more robust or accurate model or by using model-free techniques

3.4.2.1 Continuous control

Differently from a discrete control strategy, continuous control aims at developing a control strategy

which can adapt the control parameters in real time based on the current incident wave acting on the

device. These strategies try to either directly measure or to estimate the current and future wave

parameters characterizing the incident waves on the device. In this manner a precise and fine control

can be applied based on the specific wave which is currently affecting the wave energy converter.

The measurements or estimations used usually regard either parameters which directly characterize

the wave, such as period and amplitude, or which describe the forces acting on the device, such as

heave, surge and sway forces.

Although this might lead improvements in the amount of energy harvested, this kind of control is

usually accompanied by difficulties in measuring or predicting the exact wave profile which is

currently affecting the exact position of the WEC.

43

3.4.3 Optimal control of WECs

In the case of an unconstrained point absorber in a sinusoidal wave, two conditions are necessary in

order to achieve optimum energy absorption [32]:

- The velocity of the oscillator must be in phase with the dynamic pressure of the incident

wave.

- The amplitude of motion of the oscillator needs to be tuned in order that the amplitude of the

radiated wave from the oscillator is half that of the incident wave.

The first condition is related to the adjustment of the phase of the velocity of the oscillator to match

that of the incoming wave and is thus often referred to as phase control.

The second condition instead can be met by adjusting the damping factor of the device in order to

achieve maximum energy efficiency.

If the damping were to be set too high, then the motions are limited, and a low efficiency would be

the result. If instead the damping were to be set too low, then little power would be absorbed and

again this would result in low efficiency.

The above conditions can be summed up in the frequency domain as:

𝑍𝑃𝑇𝑂(𝜔) = 𝑍𝑖
∗(𝜔)

Where:

- 𝑍𝑃𝑇𝑂(𝜔) is the frequency dependent PTO impedance

- 𝑍𝑖
∗(𝜔) is the complex conjugate of the WEC’s frequency dependent intrinsic impedance

This is equivalent to saying that the maximum absorbed energy for an oscillating body in one mode

is obtained by imposing that the intrinsic WEC reactance 𝑋𝑖(𝜔) is cancelled out by the PTO reactance

𝑋𝑃𝑇𝑂(𝜔) while the resistance 𝑅𝑃𝑇𝑂(𝜔) must match the intrinsic resistance 𝑅𝑖(𝜔).

This is what is known as impedance matching [33].

This result gives rise to a number of important considerations to be made [34]:

- The above result is frequency dependent, meaning that there is an optimal impedance value

for each frequency, which raises a problem on how to specify the PTO resistance for irregular

waves which, by definition, are formed by a mixture of different frequencies.

- In some cases, the PTO system may need to supply power for some parts of the cycle (an

analogy to reactive power). This adds additional design constraints on the PTO which needs

to be able to facilitate bidirectional power flow and must also be designed to handle peak

reactive power surges which may be greater than peak active power values. This condition

puts the optimal control condition of the above equation in the category of reactive control.

44

- The optimal impedance matching control does not take in to account the physical limitations

imposed by the WEC and PTO constructions. These limitations include force limitations on

the PTO, displacement limitations and even electrical limitations.

To achieve impedance matching, different strategies have been proposed [30]:

- Complex conjugate control

- Phase and amplitude control

Complex conjugate control involves choosing 𝑍𝑃𝑇𝑂(𝜔) as equal to the intrinsic WEC impedance 𝑍𝑖
∗.

By considering the force to velocity model of a WEC as:

𝑉(𝜔)

𝐹𝑒𝑥(𝜔) + 𝐹𝑢(𝜔)
=

1

𝑍𝑖(𝜔)

Where:

- 𝑉(𝜔) = Fourier transform of the velocity v(t)

- 𝐹𝑒𝑥(𝜔) = Fourier transform of the excitation force 𝑓𝑒𝑥(𝑡)

- 𝐹𝑢(𝜔) =Fourier transform of the control force 𝑓𝑃𝑇𝑂(𝑡)

It is easy to see that a feedback of the measured buoy velocity is needed.

This represents a problem since the transfer function from velocity to force becomes anticausal.

This implies that the optimal force to be applied depends on future values of the buoy velocity which

renders this approach impossible to implement in practice since the velocity itself depends on the

applied force. Because of this, many control techniques are based on a realizable but suboptimal

approximation of complex conjugate control.

The condition expressed in equation 3.1 can also be equivalently expressed as:

𝑉𝑜𝑝𝑡(𝜔) = 𝐹𝑒𝑥(𝜔)/(2𝑅𝑖(𝜔))

This creates the foundation for phase and amplitude control.

The optimal velocity 𝑉𝑜𝑝𝑡(𝜔) is calculated thanks to a feedforward of the excitation force yielding

an optimal velocity reference signal which can then be tracked by a controller with the restriction of

having 𝑣𝑜𝑝𝑡(𝑡) in phase with 𝑓𝑒𝑥(𝑡).

Again though, the excitation force transfer function 𝐻𝑣(𝑠) = 1/(2𝑅𝑖(𝑠))becomes non causal. This

problem can be approximately solved if the future excitation force can be predicted or by

approximating the transfer function 𝐻𝑣(𝑠) with a causal counterpart.

In the next chapters, some examples of commonly applied control strategies will be presented.

The presented strategies will be divided in two groups, reactive control, and resistive/bang-bang

control.

45

3.4.4 Resistive/bang-bang control strategies

This first generic category of control strategies includes control strategies which no not require

reactive power flow. Although this inherently causes the control strategy to deviate from what would

be the optimal control model, they allow to design simpler PTOs which do not need to handle

reversible power flows or high reactive power peaks.

3.4.4.1 Resistive control

Resistive control consists of tuning the PTO force based of the value of the PTO velocity. The control

variable in this technique is thus represented by the proportionality constant between the PTO

velocity and the PTO force (the damping coefficient). The main drawback of using this technique is

that only the amplitude and not the phase of the velocity can be controlled.

This technique is the simplest control technique which can be devised and can be seen as an

approximation of impedance matching in which only the resistive part of the PTO impedance is used

while the reactance is set to zero. This technique thus avoids the need for the PTO to be able to supply

power but results in suboptimal control.

The PTO or machinery force can be written as:

𝐹𝑃𝑇𝑂(𝑡) = −𝑅𝑃𝑇𝑂 ∙ 𝑣(𝑡)

Where, 𝑣(𝑡) is the velocity measurement and 𝑅𝑃𝑇𝑂 is the proportionality constant to be controlled.

The optimal frequency dependent passive resistive control law objective can be written as:

𝑅𝑃𝑇𝑂(𝜔) = |𝑍𝑖(𝜔)|

For irregular waves, the value of 𝑅𝑃𝑇𝑂(𝜔) is usually set to a fixed value for each sea state, creating

a discrete control strategy.

3.4.4.2 Latching Control

This control strategy was first introduced by Budal and Falnes in their work concerning heaving

buoys [35]. The basis of latching control is to try and satisfy the phase condition described previously

when talking about phase and amplitude control.

In latching control, the motion of the device is blocked at specific points during a cycle, usually at

the two extremum points of the displacement when the device velocity is null. This blocking of the

device is performed in order to impose the device velocity to be in phase with the excitation force.

Although this causes the velocity to be zero in parts of the cycle, it still allows for a greater energy

capture because of the phase alignment of velocity and excitation force.

For regular waves, the frequency for latching and unlatching will be fixed, but for irregular waves,

the time interval between force maxima varies in time, not allowing a fixed latching and unlatching

scheduling. Additionally, this technique requires the knowledge or at least a prediction of the future

46

wave excitation force since the unlatching must obviously occur before the peak force in order to

allow the velocity profile to build up so to obtain matching peaks in time (same phase).

An example of the evolution of system variables under latching control subject to a regular wave is

presented in the following image where:

- Red line = Excitation force

- Blue line = Velocity

- Black line = Heave position

Figure 3. 7 - System variables under Latching control [33].

It can be easily understood that latching control works best when the excitation period is larger than

the intrinsic resonant period of the device.

The latching technique described above is also known as peak-matching latching control since it

tries to match the peaks of the velocity and force signals [36] [37].

Another variation of latching control was suggested in the works of Falcão [38] and Lopes et al. [39].

Instead of aligning the peaks, which requires a prediction of the future excitation force, an estimation

of the instantaneous force is used to trigger latching and unlatching. The proposed principle simply

involves releasing the buoy once a certain force threshold has been passed. This technique is also

known as threshold unlatching control.

Whatever the latching implementation may be, during the unlatched period of the motion, the PTO

resistance 𝑅𝑃𝑇𝑂 is usually kept constant at a value which is optimized based on the current sea state

which resembles resistive control.

This is obviously an improvement over simple resistive control since although the resistance value

may still be calculated and optimized in the same manner, the devices motion is tried to be kept in

phase with the excitation force which is one of the conditions for optimal control, allowing for greater

energy capture.

Po
sit

io
n

Time

47

3.4.4.3 Clutching Control

Clutching control, also sometimes known as declutching control, has the same goal as latching

control, to achieve phase matching between the excitation force and the device velocity. The

difference between latching and clutching is how this is achieved. In latching, the PTO resistance is

switched between a constant value and a value ideally equal to infinity which causes the device to

halt. In Clutching instead, the device is not clamped, but instead the PTO is clutched or decoupled in

specific point of the cycle causing the PTO resistance to switch from a constant value to a value equal

to zero.

An example of the evolution of system variables under clutching control subject to a regular wave is

presented in the following image:

Figure 3. 8 - System variables under Clutching control [33]

Clutching control is most effective when the WECs intrinsic resonant period is larger than the period

of the excitation force. This is the opposite working condition as for latching control.

Again, as in latching control, when the device is not clutched, the control law is resistive.

For both latching and clutching, the control goal is to apply the correct switching sequence to

maximize power absorption subject to the constraints imposed by the latching or clutching

mechanisms and the WECs dynamics.

3.4.4.4 Joint Latching and Clutching Control

As stated earlier, latching control is most suitable when the device intrinsic resonant period is smaller

than that of the excitation force, while for clutching the opposite is true. Because of these conditions,

both latching and clutching are most suitable only in a well-defined excitation force frequency band

based on the intrinsic resonant period of the WEC. A substantial increase in energy absorption can

be achieved if both techniques are applied on the same system depending on weather the current

excitation force has a larger or smaller period with respect to the device intrinsic period.

This technique has been successfully implemented in [40].

Po
sit

io
n

Time

48

3.4.5 Reactive control strategies

As the name suggests, reactive control strategies are those control strategies which involve reactive

power flow.

3.4.5.1 Reactive loading control

By adding a stiffness control term to resistive control, it’s possible to obtain what is known as reactive

loading control.

𝐹𝑃𝑇𝑂(𝑡) = −𝑅𝑃𝑇𝑂 ∙ 𝑣(𝑡) − 𝐾𝑃𝑇𝑂 ∙ 𝑥(𝑡)

Where, 𝐾𝑃𝑇𝑂 is the additional stiffness coefficient.

In this work the damping coefficient (𝑅𝑃𝑇𝑂) will be referred to as C while the stiffness coefficient

(𝐾𝑃𝑇𝑂) will be referred to as K.

Reactive loading control, in principle, allows for perfect phase and amplitude control. As stated by

Slater et.al [31], when incoming waves have a constant frequency equal to the resonant frequency of

the WEC, the behavior only depends on the damping factor of the device, which, if set correctly,

allows for maximum efficiency.

Thus potentially, reactive loading control has the ability to provide optimal control, but this is an

easy task only if the ideal condition of sea states composed of linear single frequency sinusoidal

waves. As stated in chapter 3.4.3, optimal WEC control leads to a non-causal problem which in turn

requires the prediction of the future excitation force values.

Another difference between ideal impedance matching and what can be achieved using reactive

loading is that ideal impedance matching may require optimal damping and stiffness coefficients

which may not be feasible because of inherent constraints of the WEC which in turn leads to

saturation phenomena of the achievable forces and displacements. Additionally, for point absorbers

the optimal stiffness coefficient is likely to be negative [38]. Although this can be achieved with the

use of power electronics, the resulting system may become unstable if the control stiffness exceeds

the hydrostatic and mooring stiffness of the wave energy converter. For these reasons, limitations on

the control parameters must be imposed, which in turn may lead to sub-optimal control in some

scenarios.

With all of the above considerations, reactive control is usually not used in the continuous time form

to try to achieve optimal energy extraction through time varying damping and stiffness coefficients,

instead it is most often used in a tabular manner involving an offline optimization procedure to

calculate the most effective damping and stiffness coefficients for a given range of sea states defined

by statistical measures of the wave period and amplitude. Hence, sub-optimal values for the control

parameters are used. Clearly, a finer gridding of the scatter table and an accurate modelling procedure

will produce a higher overall efficiency, still, because of the discrete nature of the gridding strategy

49

and because of inherent differences between the model and the physical device, this technique is

prone to modelling errors.

A solution to the modelling errors is to optimize the control parameters online or over a specified

time horizon through a model free strategy. An example of such kind of implementation is given in

this thesis. Omitting the use of a model and using an online model-free strategy avoids modelling

errors, allowing for a more accurate parameter optimization. Additionally, most model free

techniques are able to continuously adapt to changing external variables affecting the relation

between sea state, control parameters and power absorption such as phenomena caused by the aging

of the device.

An additional further improvement could be achieved if the WECs response was adapted on a wave-

by-wave basis. Machine learning techniques such as those used in [41] can be used to predict future

wave height and period, which, together with a model free approach and an online optimization of

the parameters could potentially allow to firstly learn the optimal parameters for a given wave

condition and to then dynamically change the control parameters based on the predicted incoming

wave, potentially resulting in a much larger energy capture than what can be obtained with discrete

reactive control. The topic of wave forecasting has been extensively studied by Fusco and Ringwood

[42].

3.4.5.2 Model predictive control (MPC)

In recent years, one of the most promising control methods to be used on WECs has been model

predictive control. Model predictive control uses a dynamic model of the system together with a

feedback of the controlled variables to select an optimal control action at each sample time. This is

achieved through a quadratic optimization of a cost function based on the predicted model behavior

over a specified time horizon with a moving window, which in turn allows a certain degree of

prediction. Additionally, MPC has the inherent ability to handle constraints in the values of the

control variables, which as stated before is fundamental when dealing with control of WECs.

Model predictive control applied to WECs was first proposed Gieske in 2007 [43].

Dozens of other studies have been performed since, with many showing promising results [44], [45].

For all it’s good attributes, model predictive control also has its flaws. Under energetic wave

conditions, the accuracy of linear wave theory decreases, and non-linear interactions between the

WEC and the impacting waves become significant. Under such conditions the accuracy of the model

used by model predictive control will most probably drop significantly, causing the control strategy

to become less efficient. Furthermore, Tona et al. have shown that MPC can suffer from measurement

noise in the wave elevation measurement and in its forecast [46].

50

3.5 Challenges

The main challenges with WEC control can be usually traced to different root causes, with the most

evident being the non-causal nature of the control problem itself, the highly non-linear interactions

for rough and uneven sea states, the inherent modelling inaccuracies within model-based strategies.

As stated in the previous chapter, optimal WEC control is frequency dependent, which requires the

need to continuously vary the control parameters on a wave-by-wave basis in order to obtain the

highest possible energy absorption. A solution not the problem of wave forecasting with the aim to

then be able to apply a wave-by-wave (fast) control has been extensively studied through techniques

such as machine learning, neural networks or autoregressive models [42] [47].

A possible solution to the problem of the highly non-linear interactions which then inevitably lead to

modelling errors and consequently suboptimal control actions, is to use a model-fee approach.

The advantage of these approaches is that no model is used as a basis of the calculation of the control

parameters to be used, thus avoiding modelling errors and also having the possibility to adapt to any

changes in the behavior of the WEC. A parallel to this strategy is to define the model of the WEC

with the use of machine leering techniques as proposed by Valério et al. [48].

3.6 Proposed control solution

The proposed control solution aims at resolving some of the issues presented in chapter 3.5 by using

a model free approach. This approach will be focused in finding the optimal control parameters of a

reactive control law. A reactive control law was chosen because it has two clear control parameters

which can be tuned based on the sea condition, which makes it a perfect candidate for the work which

needed to be performed, and also because reactive control laws have proven to be good candidates

as WEC control laws [33].

The proposed solution starts by considering each point absorber in the deployed array of point

absorbers as an individual of the population of a genetic algorithm [49]. In this framework, each

individual carries as genetic information the control parameters (stiffness and damping) currently in

use.

Regarding the fitness measure of each individual, the control system in a WEC aims at maximizing

the energy absorbed by the device over a certain period of time T. Since the instantaneous gross

power for a point absorber is given by the product between the wave energy converter heave velocity

�̇�(𝑡) and the force applied by the PTO 𝑓𝑃𝑇𝑂(𝑡), the final control aim can be expressed as:

51

To this end, the fitness of each individual in the genetic algorithm was defined as the average

absorbed power over a predefined and fixed time span.

With each individual carrying as genetic information the control parameters used to obtain a certain

fitness, i.e., a certain average power output, the genetic algorithm framework could be used as an

optimization algorithm to find the optimal control parameters in a collaborative manner, with the

population of the algorithm evolving over time to reach increasingly better control parameters.

To achieve this, an optimization procedure corresponding to an independent genetic algorithm was

performed for each discrete sea state encountered, considering for example, the use of a wave buoy

to provide the information of what the current sea condition affecting the array is.

This procedure had to be performed on discrete sea states instead of on a global perspective of all the

encountered sea conditions since the latter procedure would lead to a single couple of control

parameters which would be optimal in a global sense but would be sub optimal in whatever sea

condition they encountered. Furthermore, the optimum of such global landscape would be

continuously changing based on the encountered sea states and thus on the encountered information,

leading to a continuously morphing optimization landscape.

The solution proposed until now has the goal of finding the optimal control parameters of a reactive

control law for each discrete sea condition considering the average power absorbed over a predefined

timespan. As can be noticed this can be categorized as “discrete control”, where the control

parameters are not chosen on a wave-by-wave basis.

To try and improve the control strategy, a continuous control was then implemented with the use of

feed forward and long short term memory (LSTM) neural networks.

Once the optimization in each sea state has reached satisfactory results and the algorithms have

converged, the data acquired during the optimization procedure can then be used to train a neural

network to produce the control parameters in a continuous and real time manner, independently of

the current sea state.

This can be achieved by training the network using as inputs to the net the wave force data recorded

during the optimization procedures, and as outputs, the optimal control parameters for that specific

force sequence.

This will allow the network to learn dependencies which are not directly related to the specific sea

state, allowing for a continuous control instead of a discrete control.

The whole purpose of using a genetic algorithm as an online optimization strategy is to not rely on a

model to optimize the control parameters, but to rely on physical data.

Although the whole approach is thus based around a model free ideology, for the purposes of this

thesis, a model of the point absorber was used instead of a real physical point absorber to simulate

the optimization procedure.

52

It must be noted that this does not in any manner impact the structure of the problem itself, and the

developed strategy may be directly applicable to a real-world scenario.

With the above framework in mind, the next chapters will be dedicated at giving an in-depth

explanation of how the genetic algorithm and neural networks were developed and lastly, how they

were used together to control in a collaborative and model free manner an array of point absorbers.

53

4 – The genetic algorithm

4.1 Considerations to be made when designing a genetic algorithm

Genetic algorithms are optimization algorithms belonging to the family of metaheuristics,

specifically in the subfamily of population based, nature inspired algorithms.

This family of algorithms employ a population of individuals each carrying a set of genes

representing a candidate solution to the optimization problem. These individuals interact with each

other and with the environment with the aim of increasing the average quality of the solutions that

the population carries, i.e., the fitness of each individual. To achieve this, mechanisms which try to

mimic natural evolution and selection are used. Some of the main processes used are parent selection,

reproduction, mutation and survivor selection.

The above-mentioned mechanisms all need to contribute to the final goal, evolving the population

such that one or more of the individuals reach an optimal or quasi optimal solution in the optimization

landscape.

Because genetic algorithms belong to the family of metaheuristics the algorithms are, by nature,

stochastic.

Because of this natural stochasticity introduced in these algorithms, two driving forces to success

can be distinguished, exploration and exploitation.

Generally speaking, exploration can be seen as the tendency of an algorithm to let its individuals

explore the space of solutions, without using any knowledge of the optimization space. Exploration

is an important facet of the optimization algorithm since it allows individuals to explore the solution

space and to possibly find new solutions with higher quality and to then share this information to

other individuals. Without exploration, an optimization algorithm would only focus on the current

knowledge of the optimization space and would most probably converge very quickly to a local

optimum or would stall, a phenomenon called premature convergence.

Exploitation instead is the opposing force to exploration. Exploitation, as the word suggests, is used

to exploit current knowledge of the optimization landscape to drive further improvement of the

population fitness. If no exploitation was introduced into the algorithm, the result would be a

completely stochastic algorithm driven by random sampling and would probably fail to converge to

a solution for the problem at hand.

It is thus important for these kind optimization strategies to always keep both exploration and

exploitation of the solution space in use. The degree of exploration vs exploitation depends on the

optimization problem and may even be changed during the run of a single problem as the landscape

evolves in time or the population reaches a certain position in the parametric space.

54

For a simpler, unimodal optimization space, the algorithm may be tailored to focus more on

exploitation instead of exploration since there would be less danger of trapping in local minima. For

highly multimodal problems instead, a careful balance between exploration and exploitation may be

needed to prevent both a quasi-random sampling of the space and to prevent trapping in local minima,

known as premature convergence. The issue of exploration and exploitation has been reviewed in

depth in [50].

In a genetic algorithm, the main drivers of exploration and exploitation will be both the qualitative

parameters chosen, like the kind of crossover operator or the kind of parent selection operator, and

the quantitative parameters used by such operators, such as tournament size or mutation probability.

Most importantly though, the quantitative parameters will mostly affect the explorative and

exploitative behavior of the algorithm.

Operators used within a genetic algorithm can be divided in two broad categories depending on what

they promote, exploration or exploitation.

- Variation operators, such as crossover and mutation, add an exploratory behavior and create

the necessary diversity within a population to prevent stagnation or premature convergence.

- Selection instead is used to exploit the current knowledge and to drive the quality of the

solutions carried by the population.

The quantitative parameters behind the variation operators which drive exploration are specific to

the kind of crossover and mutation implementation, but generally the most effective way of

increasing exploration in a genetic algorithm is to increase the mutation rate.

A higher mutation rate increases the probability that newly produced offspring get mutated, randomly

changing their genome thereby exploring new random solutions.

Regarding selection operators, depending on the specific selection operator chosen for both parent

selection and for survivor selection, there usually exists a quantitative parameter defining the

selection process which can be used to vary what is known as the selection pressure.

An example of such parameter is the tournament size for tournament selection.

Selection pressure can be seen as the pressure driving better solutions to be picked for both

reproductive purposes and for survival. As selection pressure increases, solutions with a higher

fitness will be more likely to reproduce and survive and less-fit solutions are correspondingly more

likely to be discarded.

Selection pressure can be measured in many different ways [51] but as stated above, the driver behind

selection pressure can always be related to the setup of the selection mechanisms

According to how much selection pressure is acting on the GA, the search mechanism may present

two extremes.

One extreme occurs when selection pressure is null. In this situation the search is completely

stochastic and may resemble a Monte Carlo method [52], randomly sampling the solution space.

55

On the other extreme, when the selection pressure is very high, the stochasticity in the problem

becomes almost insignificant and the algorithm will closely resemble a local hill-climbing search

method.

In the case of the former extreme, the search will obviously become more inefficient since the

knowledge of the fitness of each individual will simply be wasted, leading to a very long execution

time of the algorithm.

In the latter case instead, the algorithm will blindly follow the fitness information of the most fit

individual of each generation, and with a reduction of the introduced stochasticity this will lead to

confinement to a local optimum point, also known as “premature convergence”.

In both cases the fundamental workings and benefits of how a genetic algorithm, and in general, how

an evolutionary algorithm works, will be lost.

It is thus important to always have a balance between selection pressure and the stochasticity

introduced into the problem.

Historically, it was common practice to try and produce an algorithm which would exhibit low

selection pressure at the beginning of the run, and a strong selection pressure at the end of the run.

The idea behind this method was that this would allow the algorithm to initially explore more of the

solution landscape, while at the end of the run, when close to the optimum, it would allow to fully

exploit the current knowledge to reach such optimum.

Although this might seem like a sound reasoning, a few problems with this approach might arise:

- Unless dynamic feedback is given on how close the run is from completion, or a priory

knowledge is used to determine approximately how long run is going to take, there is no way

of precisely implementing predetermined rise in selection pressure over a complete run.

- Evolutionary learning, especially if the optimization landscape is highly multimodal, is a

more dynamic process than what the previously described technique would seem to propose.

In some stages of the run, high selection pressure may be beneficial because the population

may find itself on a mostly smooth optimization surface to be climbed, and a strong selection

pressure may be beneficial to exploit the current situation.

In other stages of the run, the population may risk trapping in a local minimum, and a low

selection pressure is beneficial to explore solutions outside the local minimum valley so that

premature convergence does not occur.

Considering these possible scenarios, it is obvious that there is no certainty about at what

point during the run they may occur. Additionally, the order in which they occur will most

certainly be mixed in most cases.

As can be noticed, tuning the selection pressure of an algorithm is still a difficult task and remains

an important factor to be studied in the field.

56

Setting up the algorithms to have a well-balanced selection pressure is not the only way to ensure

that the algorithm will converge without risking either a premature convergence or no convergence

at all.

As stated before, the selection operators are only part of the complete process needed to evolve a

population of a genetic algorithm.

The other equally important parameters that need to be set correctly are those of the variation

operators which are mainly responsible for the exploratory behavior of the individuals within the

population. These parameters include the right choice of crossover operator and the quantitative

parameters defining it, the right choice of mutation operator and the quantitative parameters defining

it, and in general a correct setup of the algorithm structure.

All of the above considerations are needed in order to produce an algorithm which is neither too

explorative, which would lead to a very sparse and diverse population and a failure to converge to a

solution, nor too exploitative which would lead to a population whose individuals become very

similar very quickly, causing a loss in diversity in the population which then consequently leads to

the population converging to a suboptimal region of the search space.

4.1.2 System stability for C and K values

Because a genetic algorithm does not inherently have any boundaries within which it should generate

candidate solutions, particular attention had to be placed on whether the generated solutions of the

parameters for the reactive control law led to a stable or unstable system.

To this end, the 1 DOF model of the point absorber was used to test for which couples of C and K

would the system become unstable.

This information could then be used to properly design the genetic algorithm so that it would not

generate solutions outside the stability bounds.

The aim of the test was to evaluate for which couples of the control constants would the eigenvalues

of the “A” matrix of the state space representation of the point absorber have a real part larger than

zero.

An initial range of the parameters to perform the test was chosen as:

Parameter Min Max
C -100 [Ns/m] 3 ∗ 106 [Ns/m]
K -2*kh 3*kh

Where kh is the hydrostatic stiffness parameter whose values is 1,9743*10^5 N/m for the considered

point absorber model.

57

Using the above ranges, two vectors of C and K values to be fed to the pint absorber model, together

with a reference sea condition, were created.

These two vectors were then used to create a gridding of the two C and K parameters allowing to see

for which ranges was the system stable (real part of eigenvalues of A matrix < 0) or unstable (real

part of eigenvalues of A matrix > 0).

Because only one positive eigenvalue is needed to render the system unstable, and because the A

matrix is a square matrix of dimension eight, at each iteration with a couple of control parameters,

only the eigenvalue with largest real part was plotted. This procedure saved time and was more

accurate than plotting the real parts of all eight eigenvalues.

The resulting plot is the following:

Figure 4. 1 - Plot of the largest eigenvalue of A matrix with varying stiffness and damping parameters

Results showed that the whole range of C parameters did not cause instability, while for a K value

lower than -kh, the system became unstable.

These results allowed to limit any individual within the genetic algorithm to have Genene within the

predefined stable bounds.

For what would concern a possible real application, this test could be done on a meta model of the

real device. The final results could then be used as guidelines to design bounds with a given degree

of conservativeness in order to prevent possible unstable working conditions.

58

4.2 Genetic algorithm design

Although the underling idea and goal is usually common between all forms of a genetic algorithm,

the mechanisms and strategies which form the algorithm itself vary based on the kind of problem

that needs to be solved and on the variables that the algorithm needs to handle.

In the following sections, a description will be given concerning which operators were chosen to set

up the genetic algorithms for the problem of optimizing the control parameters of the reactive control

law, namely the damping coefficient C and the stiffness K, for each sea condition.

4.2.1 Representation

The first step to take when designing a genetic algorithm is to link the real-world problem with the

genetic algorithm. This procedure entails translating or “representing” the variables of interest for

the given optimization problem, into variables which can be manipulated by the genetic algorithm.

Solutions in the variable space of the original problem are called phenotypes while solutions encoded

in the optimization space of the genetic algorithm are called genotypes. The purpose of the

representation strategy is to find a mapping between the phenotypic solutions and their genotypic

counterparts which will then form the genes belonging to the individuals of the population of the

genetic algorithm.

When choosing or designing a representation strategy, a few important considerations need to be

made:

- Each solution of the phenotypic space needs to be explorable: It’s important to have a

mapping between phenotypes and genotypes that does not inherently limit the exploration of

the phenotypic space unless specified. This would quite obviously be a limitation in such

that possible good solutions may never be explored simply because they were not accessible.

In some applications although, the phenotype space is naturally discrete, or may be limited

by design. In such cases, a representation may perfectly fit such limitations without causing

a loss of potential solutions.

- The mapping of elements must be an injective mapping: When a solution of the

optimization problem (a genotype) needs to be translated back into a solution of the real

physical problem (a phenotype) it’s important for this mapping to be injective, meaning that

the genotypic solution must correspond to one and only one phenotypic solution.

- The mapping must be meaningful: Lastly it is important to note that when choosing a

mapping, it is important to make sure that each possible solution generated by the genetic

algorithm can be translated back into a meaningful solution to the original real-world

problem.

59

Following the above guidelines, the chosen representation was a real representation strategy.

Real representation in our case entailed directly using the genotypic variables as phenotypic

variables. Since the variables in the phenotype space were the two control variables for the reactive

control law, namely C and K, these two variables were directly used as the genes which each

individual of the genetic algorithm would carry.

This approach allowed to easily follow all three guidelines proposed above, but it also allows the

designer to have a good tangible feel of all the following design steps he must take since the variables

witch the genetic algorithm will manipulate are the same variables used in the real physical problem.

4.2.2 Evaluation function (Fitness Function)

The purpose of the fitness function is to take the gene of an individual and to evaluate how well it

fulfills the criterions for which the algorithm is optimizing for. So simply put, it takes as input the

gene of a candidate solution previously decoded in to its phenotypic equivalent and gives as output

how fit the solution to the problem at hand is when using that particular phenotypic solution.

This function is of particular importance since it’s the driver for improvements in the population and

it’s the basis of one of the main mechanisms within the genetic algorithm structure, selection.

To give an example, if the problem were to maximize the function 𝑥2, and for example we were

considering a binary representation, an individual with gene 1001, which would correspond to a

phenotypic solution equal to 9, would have a fitness of: 92 = 81.

For the specific problem of maximizing the absorbed energy over a predefined period of time, a

simple fitness function that may be used is the average power output over such period of time.

In order to correctly choose a time period over which base the fitness function, a spectrum analysis

of the wave conditions under consideration had to be performed.

4.2.2.1 Spectrum analysis of wave conditions

An analysis of the wave conditions considered and the noise that affects them was needed in order

to properly choose the time over which evaluate the fitness function.

This parameter would not only affect the fitness function itself but would also affect the simulation

running time of the algorithm, or in a physical application, the optimization time needed by the

algorithm to reach a solution. This is because the timespan to be chosen coincides with the time each

generation will be tested for to retrieve the fitness of each individual. Since the fitness of each

individual must be evaluated at each generation, the time over which the average power must be

evaluated is obviously of great importance to assure both a good solution to the problem, but also to

converge in a timely manner to such solution and to take full advantage of a possibly short sea state.

The main considerations which needed to be considered were

60

- Too short of a time span would lead to a fast algorithm, with each generation elapsing quickly

and with the algorithm being able to fit many generations in a short time window, allowing

for fast convergence. The downside would be that the average power reading over a very

short time window would firstly not consider the full dynamics of a given sea state and

secondly, it would strongly be affected by the random noise components affecting the sea

state. This would most probably guide the genetic algorithm to a suboptimal solution.

- A very long timespan instead would do the very opposite. A long time to evaluate the average

absorbed power would allow to fully appreciate the dynamics of the given sea state and

would make the random noise affecting the reading insignificant, leading to a robust fitness

evaluation of the individual. The downside to having a very long time span is that it would

take a very long time for the algorithm to converge to a solution. This would be particularly

detrimental for sea conditions which are rarely observed.

The spectral analysis showed that a 20-minute time window would be a good trade-off between a

fast algorithm, and an algorithm where the random waive noise components wouldn’t greatly affect

the average power measurement.

This consideration is also supported by previous work from the research team of the MOREnergy

Lab which can be read in [53].

4.2.3 Population

The population of a genetic algorithm is composed of individuals, each carrying a set of genes

representing a single solution in the genotype space. As generations elapse, the population will

evolve to reach the optimum of the fitness function.

An important parameter to be chosen is the population size, which refers to the number of individuals

which are present in each generation.

For the specific problem at hand, a fixed population size had to be chosen since each individual in

the population represents an actual physical point absorber of the array.

Regarding the population size itself, an array of 16 point absorbers was considered. This choice

comes from both an implementation and a computational point of view. Sixteen point absorbers is a

reasonable compromise which strikes a balance between a realizable project, with a reasonably small

number of devices, and having enough devices to be able to solve the optimization problem using a

genetic algorithm.

61

4.2.4 Initialization procedure

With the representation and fitness function defined, the initialization procedure for the first

generation of individuals had to be chosen.

To create the first generation of a genetic algorithm, an initialization procedure must be defined since

no previous generation exists from which the first generation can evolve from.

Different initialization techniques exist in the literature, with some techniques taking advantage of

partial knowledge of the optimization landscape to initialize part of the population in strategic points

of the landscape.

When considering evolutionary algorithms (EAs) in general it has been shown that good initial

guesses can facilitate EAs to locate the optimum [54] [55].

When dealing with black box optimization, there exists no a priori knowledge about the search

landscape of the given problem, therefore it is not possible to label an initial population as good or

bad. For these classes of problems, the most common initialization procedures employ pseudo-

random number generators (PRNGs) to create the initial population.

For this work, in order to generalize the process as much as possible, the initial candidate solutions

were generated by picking the gene values from the continuous uniform distributions of the variables

C and K using the know stable ranges previously computed by testing the values of the eigenvalues

of the A matrix belonging to the state space representation of the 1DOF model of the pint absorber.

Specifically, the utilized MATLAB function was the “unifrnd” function.

4.2.5 Parent selection

Parent selection is the stage at which parents are selected from the individuals of the current

generation so that they can then be used to produce new individuals, the offspring.

The parent selection strategy has to be carefully chosen since it’s one of the main operators of the

genetic algorithm and it has been shown to be one of the main influences on the performance of the

algorithm [56] [57].

Different selection strategies were tested for this work, including fitness proportionate selection [58],

deterministic tournament selection [59] and stud selection [60].

The final choice fell on tournament selection for a number of reasons:

- Tournament selection allows to easily choose or tune the selection pressure it applies by

choosing the size of the tournament.

A large tournament size will have a high probability of including the fittest member of the

population or equivalently, a member with relative high fitness.

This means that by using a deterministic tournament strategy, such individual will be chosen

to be one of the parents that will produce offspring. A can be clearly understood, having a

62

large tournament will promote parents with high fitness, resulting in a large selection

pressure.

Taking the concept to the extreme, if the tournament size was equal to the population size,

all parents would be equal to the best individual in the generation. This is obviously not

desirable since only mutation would be capable of producing new genetic material, but it’s

simply a boundary case scenario.

Conversely, a small tournament size will have a smaller chance of having high fitness

individuals within it, allowing for individuals with lower fitness to have a better chance to

being chosen as parents. This strategy would then lead to a lower selection pressure.

Again, considering a boundary case scenario, if the tournament size was equal to one, no

selection pressure would be present, and all individuals would have equal chance of being

selected as parents.

- Tournament selection allows to maintain the selection pressure constant even as the run

progresses and solutions become more and more similar.

Although as explained in a previous section this might not be the perfect trend for selection

pressure, and a dynamically changing selection pressure may deliver better performance, a

constant selection pressure is definitely an improvement over a selection strategy which

suffers from decreasing selection pressure such as fitness proportionate selection.

- It has been shown that tournament selection is a robust selection scheme for noisy

environments [61].

- Tournament selection has a good propensity to be tuned and to thus adapt to the optimization

problem at hand. It was shown by Volker et al. [56] that tuning an algorithm equipped with

tournament selection as a parent selection strategy returned remarkable result in terms of

solution quality, algorithm speed and tuning effort.

Once the selection strategy had been chosen, the number of parents to be picked and how many

offspring they will produce needs to be decided.

For the current implementation, I decided to pick sixteen parents for each generation and to have

each couple of parents produce two offspring, so that the final number of offspring matched the fixed

population size.

It was obviously important to have the offspring population size to be equal to the predetermined

population size since each offspring was directly linked to one of the physical point absorbers in the

array. This would then allow to measure the fitness of each offspring with the usual reading of the

average power absorbed over a twenty-minute time span.

63

It must be noted that although the total number of parents to be picked equaled the number of

individuals from which the parents were picked, it does not mean that each member of the population

got to become a parent, otherwise the parent selection strategy would be useless.

Instead, each parent was picked by a single independent deterministic tournament selection strategy,

allowing for each member of the population to be picked multiple times, or possibly none, in a given

generation.

To implement this strategy, a total of sixteen tournaments were run for each generation to pick the

sixteen parents. Each time a couple of parents was selected, a corresponding couple of offspring

would be produced. This process would repeat until all sixteen offspring were generated.

Figure 4. 2 - Qualitative representation of deterministic tournament selection

4.2.6 Crossover (Recombination)

After each couple of parents had been selected using a tournament selection scheme, crossover was

deterministically applied to produce two offspring from each parent couple.

Crossover is used to merge the information contained in the parent’s genes to produce new genetic

material, the offspring.

Crossover is linked to the parent selection stage since, the purpose of the two operators combined is

not to blindly produce offspring, but to produce offspring who most likely will have a higher fitness

with respect to the parents which gave birth to them. This can be achieved by providing a healthy

selection pressure throughout the algorithm, and by using an appropriate crossover mechanism to

properly blend the genetic information of the two parents.

A binary crossover strategy was used since, although crossover operators using more than two

parents exist, the binary option is the most popularly used and additionally it provides a direct link

to most biological reproduction mechanisms.

64

In particular, a whole arithmetic recombination strategy was used as crossover.

Whole Arithmetic Recombination is a fully arithmetic recombination strategy. It simply involves

taking the weighted sum of each gene from the two parents. This weighted sum is controlled by the

parameter α which tells which parent will influence the weighted sum more greatly [62].

Two offspring can be produced by using:

Where �̅� and �̅� are the gene sequences of the two parents.

The parameter α is used to tune the weight each parent has when forming the two offspring.

It must be noted that when 𝛼 = 1/2 the two offspring will be exactly identical, thus it is usually

preferred to maintain 𝛼 ≠ 1/2.

4.2.7 Mutation

After the offspring had been produced, a mutation procedure was used to produce the final mutated

offspring.

Mutation takes the original gene sequence from an offspring and slightly modifies it to produce the

mutated version of the original offspring. This operator is used to introduce some additional

stochasticity in the algorithm which helps in delivering a more effective search procedure in the

optimization landscape.

In general, it is desired to design a mutation operator such that the change it causes is random,

unbiased and most often small rather than large.

To meet the requirements listed above, the chosen mutation operator was a Nonuniform Mutation.

The nonuniform mutation operator adds a value drawn from a Gaussian distribution with zero mean

and with a predefined standard deviation. This kind of mutation assures that the additional value

added to the gene is most likely small, and the probability of having a large mutation decreases as a

function of the standard deviation chosen.

The standard deviation of the Gaussian distribution will dictate how large will the mutation be on

average and is thus often referred to as mutation step size.

For this work, mutation was not applied deterministically to each offspring, instead a mutation

probability was accounted for in order to only apply mutation with a certain probability distribution.

This is generally the most common way to use mutation since it allows to benefit from mutation by

exploring new solutions in the search space with an unbiased and randomic pattern, but, because it

is not applied deterministically on all individuals, it also allows to prevent a disruption of the

65

evolution mechanisms of the genetic algorithm, which would then behave similar to a random search

procedure.

After mutation has occurred, the offspring should be theoretically ready to be evaluated, and their

fitness function defined. Because the problem at hand needs to work with finite and well defined

ranges of the optimization variables, before this evaluation could be performed, a truncation of the

offspring gene values to the bounds of the optimization variables had to be performed.

4.2.8 Survivor Selection

Survivor selection is used to select the individuals which will “survive” and will go and form the

next generation, from which parents can be picked, which will then produce offspring and the cycle

repeats itself until a termination condition in met.

Because the population size is fixed for this work, selection is needed in order to prevent the

population size from continuously growing and it is also used to try and keep the better individuals

while discarding the worst ones.

The process of discarding the worst individuals although might need to be carefully regulated since

in some scenarios, simply discarding all the lesser fit individuals and only allowing the fittest to

survival may cause premature convergence to a local optimum.

The main driving factors that are used for survival selection are either age or fitness. Age can be used

to discard the “n” oldest individuals each time selection has to be performed while fitness-based

selection usually discards the “n” less fit individuals. Stochasticity can be added if needed to make

the processes nondeterministic.

Different kind of survivor selection methods are available but generally, the offspring can either:

- Directly form the next generation (if the number of offspring is equal to the population size).

- Compete against each other only (if the number of offspring is larger than the population

size).

- Compete against each other and the previous generation.

- No fitness-based competition occurs, the age of the solutions is used to determine who

continues to the next generation (youngest) and who is left out (oldest).

Since for the current implementation age is not seen as a driver to a good solution, competition based

on fitness has been used in order to drive survivor selection. In particular, a competition between the

previous generation and the relative offspring generation was used.

As a mechanism to implement survivor selection, tournament selection was used. Differently from

when used for parent selection, the individuals which participate in the tournament are now picked

from the joint parent and offspring populations. In this way, parents and offspring are pit against each

66

other for survival. At each tournament, the winner is allowed to be one of the members of the next

generation of individuals. Tournaments are run until the next generation is completed.

Tournament selection was chosen because of all the good characteristics it possesses which were

previously listed in section 3.2.5 related to parent selection.

Additionally, it has been shown that, just as tournament selection shows good tuning characteristics

for parent selection, it also shows a good ability to be tuned for survivor selection [56].

4.3 Tuning the genetic algorithm

4.3.1 Introduction

With the structure of the genetic algorithm defined, the next step to be taken was to define the various

hyperparameters to be used within each step and operator of the genetic algorithm.

Historically, hyperparameters such as mutation rate, mutation step size and tournament size were

chosen without any specific empirical data showing that the chosen parameters would allow the

algorithm to perform well on the specific problem.

This practice was common since evolutionary algorithms in general were considered vary robust

with respect to variations on the hyperparameters characterizing their operators, allowing

practitioners to be confident that choosing hyperparameters that were in the general neighborhood of

the optimal hyperparameters was good enough to achieve good performance from the algorithm.

The following image shows how evolutionary algorithms were seen in the 1980s after Goldberg [63].

The image shows how evolutionary algorithms were seen as good search algorithms over a wide

range of problems, and thus did not need additional tailoring to the specific problem to be solved.

Figure 4. 3 - View of Evolutionary algorithm performance in the 1980s [62].

Although evolutionary algorithms are still considered quite robust with respect to variations in their

hyperparameters, it was soon understood that by tailoring the evolutionary algorithm to the problem

at hand, adding problem specific knowledge to the design of the algorithm would allow for a much

67

more performing optimization procedure. In this vie it is possible to transform the above graph by

adding problem specific knowledge to a basic evolutionary algorithm in order to achieve better

performance for a specific range of problems.

Figure 4. 4 - View of evolutionary algorithms with added problem specific knowledge [62].

In order to achieve the above result, the hyperparameters (also called quantitative parameters) a

tuning procedure was applied.

In the following section the basic notions on tuning and the tuning method utilized in the genetic

algorithm for this work will be presented.

4.3.2 Tuning notions

After the framework for the genetic algorithm has been decided, the parameters governing this

framework and its operators must be selected. In these terms, designing a genetic algorithm is about

selecting possibly good values for the parameters involved. It must be noted that the choice of such

parameters is fundamentally different from the choice of the operators that made up the structure of

the genetic algorithm. In other words, choosing between different parent selection strategies such as

tournament vs stochastic universal sampling is different than choosing a crossover rate 𝑝𝑐 ∈ [0, 1].

This fundamental difference comes from the fact that the main operators belong to a finite domain

with no ordering or distance metric, e.g., crossoveroperator ∈ {one point, averaging, uniform}, while

the hyperparameters used by such operators belong to a subset of real numbers, thus having a natural

structure with ordering and distance metrics. This notion is fundamental for searchability. For

parameters that belong to an ordered structure, and which have a distance metric, heuristic search

and optimization methods can be used in order to find optimal parameter values given a performance

function to maximize or a cost function to minimize. For parameters that do not belong to this

category, such as crossover operators or selection strategies, the only option to find the optimal

operator is sampling.

68

As suggested by Eiben et.al [64] it is thus important to differentiate the two kinds of parameters, and

the naming convention used from here on will be qualitative parameters for operators such as

tournament selection, roulette wheel selection etc. while quantitative parameters will be used for the

parameters which belong to a numerical structure such as the mutation step size.

4.3.3 Tuning vs control

Regarding the choice of qualitative parameters, as stated previously, this procedure was often

performed choosing the values to be used simply through experience, or by using values which were

thought to allow good performance over a wide variety of problems, meaning that the chosen

parameters were never specifically tailored to the problem to be solved.

An opposite view on the problem of choosing qualitative parameters is to use information about the

problem in order to make an informed decision on the parameters to be used.

In the filed of evolutionary computing, this procedure can usually be distinguished in two

approaches:

- Parameter tuning: Where the qualitative parameters are established before the run of the EA

by optimizing such parameters through the use of a performance function for the EA.

Additionally, the parameters do not change for the entire run.

- Parameter control: Where the qualitative parameters are established during the run thanks to

feedback from the algorithm state. In this case, parameters are given an initial value, and are

then allowed to evolve as the algorithm is running.

Both techniques have been extensively studied in recent years and are both a definite improvement

over using “standard” settings.

For this work, parameter tuning was chosen over parameter optimization since parameter tuning was

deemed to provide good results with relatively small effort compared to parameter control, which

would have also added an extra layer of complexity to be managed online during the algorithm run.

Finally, the choice of using parameter tuning is also justified by the fact that the additional

complexity of parameter control is usually justified for performance landscapes which dynamically

change during the run [65], while for the purpose of this work, the performance landscapes are static.

4.3.4 Tuning procedure layout

The tuning procedure involves tuning the genetic algorithm quantitative parameters while allowing

the underlying genetic algorithm to use such parameters to solve a target problem in order to get

feedback on how the used quantitative parameters allowed the algorithm to perform on the

optimization problem. This feedback is then used to optimize the quantitative parameters through a

secondary optimization procedure. This process is represented in the flow chart below [64].

69

Figure 4. 5 - Control flow (left) and information flow (right)

Using the nomenclature in the image above, it is possible to distinguish:

- The Design Layer, responsible for the optimization of the quantitative parameters of the

algorithm layer below. As information, the design layer receives a value from the algorithm

layer representing the quality of the parameter vector being optimized (in this case the quality

of the parameter vector fed to the genetic algorithm). The Design layer then uses this

information in order to optimize the vector of quantitative parameters.

- The Algorithm Layer, which corresponds in this case to the genetic algorithm. As

information the genetic algorithm receives feedback from the Application Layer about the

solution quality (or fitness) each individual currently possesses during the run and uses this

information to try and solve (optimize) the problem at hand.

- The Application Layer, which contains the original problem which the genetic algorithm is

being designed to solve. This layer is obviously responsible for giving information to the

genetic algorithm about the current fitness of each individual in the optimization landscape.

To avoid confusion regarding the quality of the individuals of the genetic algorithm and the quality

of the parameter vector used by the genetic algorithm we denote as fitness the quality of a given

individual in the original problem optimization landscape, while we denote as utility the quality of a

given parameter vector being used by the genetic algorithm.

A fundamental difference between the fitness of the individuals of the genetic algorithm and the

utility of the parameter vectors is that the fitness of each individual in the genetic algorithm is

deterministic, meaning that if two separate calculations of the fitness of an individual carrying a

given set of genes is performed using the underlying function to be optimized, the fitness value will

not change in time since the fitness landscape for the problem at hand does not dynamically change

in time. On the other hand, the utility value of a given vector of quantitative parameters will be

necessarily stochastic because of the stochasticity of the genetic algorithm using such vector of

parameters. If two runs of a genetic algorithm are performed using the same vector of parameters,

the resulting utility measure will differ between the two runs, this is due to the fact that because

genetic algorithms are stochastic in nature, two runs with identical setup will evolve differently,

giving different utility measure values.

Because of this, the utility measure needs to be defined in some statistical sense.

70

Furthermore, the utility measure must be defined in order to reflect the target performance of the

genetic algorithm. Based on the problem at hand and on the user’s preference, one might define a

utility measure more focused on algorithm speed, or for example more focused on algorithm

performance in terms of quality of the final solution.

In the next section, algorithm quality and performance functions will be addressed, which will form

the basis of the definition of the utility measure.

4.3.5 Algorithm performance and utility measure definition

When defining the performance of a given algorithm using a vector of quantitative parameters there

are two main factors influencing performance: algorithm speed and solution quality.

Most often the performance metric and thus utility measure will take into account both of these

factors when evaluating an algorithm implementation.

Solution quality can be easily related to the fitness function of the genetic algorithm, while algorithm

speed is usually related to either the running time or the number of elapsed evaluations (generations).

These two factors can then be used to define different performance measures used to evaluate the

performance of an algorithm on a single run:

- Given a predefined maximum running time or number of elapsed evaluations, the algorithm

performance is defined as the best fitness value in the population at termination

- Given a predefined fitness level, algorithm performance is defined as the time needed to

reach such fitness level

- Given a predefined maximum running time and a target fitness level, the algorithm

performance is defined through the notion of success. If the algorithm reaches the fitness

target within the predefined time window, the run is marked as successful.

Because of the stochastic nature of genetic algorithms, the performance measure needed to be

evaluated not on a single run, but on multiple runs in order to have a statistically relevant measure.

Considering multiple runs of the genetic algorithm and by taking the average performance over all

runs, the performance measured defined above for a single run take the names of:

- Mean Best Fitness (MBF)

- Average Number of Evaluations to Solution (AES)

- Success Rate (SR)

For this work, the performance measure, which corresponded to the utility measure of the parameter

vector used for the run, was chosen as the mean best fitness.

When using mean best fitness, two important considerations need to be addressed:

- The time measure to be used

- The maximum running time limit

- The number of evaluations over which the MBS is calculated

71

Regarding the time measure to be used, many options are available and have been used in the

literature. Some examples include the number of fitness evaluations, the CPU time or the wall-clock

time. For this work, the number of fitness evaluations was chosen as a time measure. This choice

was made in order to eliminate the effects coming from the particular hardware and software

implementations that were used for the optimization procedure [66], but more importantly because

in a real world implementation of the proposed algorithm, what really defines the time needed to

reach a good solution is the number of fitness evaluations, since each fitness evaluation may last

anywhere from 15 to 40 minutes, depending on the implementation strategy proposed by the used.

In this work, each fitness evaluation is considered to take 20 minutes, thus the driving factor behind

algorithm speed will be the reduction of the number of fitness evaluations needed.

The maximum running time limit in order to define the performance function through MBS had to

be carefully chosen since it would define the stopping time at which each optimization would be

evaluated. If a large number of maximum evaluations were to be chosen, algorithm instances which

reached a good solution, without much regard for speed would be favored, on the other hand, if a

really small number of maximum evaluations were to be chosen, algorithms which quickly improved

the fitness of individuals would be favored, but without any guarantee that such algorithm

implementations would guarantee steady improvement over a longer time period.

A balance had to be struck between favoring algorithm instances which reached good solutions

quickly, and algorithm instances which reached good solutions, given a very long computational time

window.

A basic idea of how many generations would a genetic algorithm need to reach a good solution had

already been acquired through different tests with various GA implementations before the tuning

procedure was used, furthermore, another driving consideration to be taken in to account was the

duration of each sea state, and the occurrence of each sea state in a yearly scatter table.

With all the above considerations, a maximum number of fitness evaluations of 15 was chosen as it

allowed a good balance between favoring swift algorithms, but also considering that within 15

generations a good solution was expected to be found.

Finally, the number of statistical evaluations in order to calculate the MBF had to be decided. This

number corresponds to the number of times a genetic algorithm with a given quantitative parameter

vector was allowed to run to completion (15 generations), before calculating the MBF, which would

then translate in the utility of the used parameter vector which in turn could then be used by the top-

level optimizer (in the design layer) in order to optimize the parameter vector values.

72

Ideally, the larger the number of evaluations, the more statistically robust will the utility of the

parameter vector be, and more reliable the results, but on the other hand, each additional evaluation

meant that the computation time would grow considerably.

A number of statistical evaluations equal to 5 was chosen for this work.

Another consideration which needed to be made was the application layer function that the genetic

algorithm would be tested on.

The choice of the function used for this layer will greatly impact the outcome of the result of the

tuning procedure of the qualitative parameters since the tuned parameters will be optimized to

produce good results, in terms of speed of convergence and quality, on that specific function.

A possibility which was considered was to produce a test suite with all the sea states considered in

this work and to optimize the parameter vector over all sea states. Although this would guarantee a

performing algorithm over all sea states, it would also mean that the algorithm would be optimized

considering feedback from each sea state to have equal importance, unless some sort of weighting

procedure was added. This is obviously undesirable since it would be more useful to reach excellent

optimization results in the sea states which are most frequent instead of good results for all sea states.

Furthermore, the shape of the power curves under the influence of each of the sea states considered

had the basic same shape. With the above considerations in mind, the choice was made to use the

power curve of the most frequently encountered sea state to optimize the quantitative parameter

vector. This would allow to focus performance on the most frequent sea state while still guaranteeing

good performance on other sea state power curves because of the shared similarities between curves.

The final piece of the puzzle is the optimizer used to optimize the quantitative parameter vectors

being fed to the genetic algorithm below. For this work two options were considered, either use

another genetic algorithm to optimize the parameter vectors [67] [68] [69] or use a surrogate

optimization strategy.

Both techniques were tested, but the choice fell on the surrogate optimization strategy because of its

capability of handling time consuming objective functions. For reference, the surrogateopt Matlab

function was used.

To summarize the procedure, a surrogate optimization was used to optimize the quantitative

parameters characterizing the genetic algorithm in order to obtain a configuration of the GA which

would perform well in its task of finding the optimal control parameters for a given average power

optimization landscape in each sea condition. The surrogate optimization considered 5 independent

runs of the GA with a given vector of parameters before it could evaluate the utility value of the used

parameter vector, which was directly associated to the MBF over the 5 runs, with a predefined

73

computational effort of 15 generations to be elapsed in each GA iteration. The utility measure was

then the driving factor behind the surrogate optimization.

In the following table, a summary of the parameters used for the optimization of the GA parameters

is presented.

Design
Layer

Algorithm
Layer

Application
layer

Performance
function

Time limit
algorithm

layer

Number of
statistical

evaluations
for MBF

Surrogate
optimization

Genetic
algorithm

Power curve
of most

frequent sea
state

MBF 15
generations 5

4.3.6 Tuning results

With the described tuning setup, it was now possible to tune the quantitative parameters belonging

to the genetic algorithm structure described in section 4.2.

The parameters to be tuned were:

- Parent selection tournament size; 𝜂𝑝𝑎𝑟,𝑡𝑜𝑢𝑟𝑛

- Mutation step size; 𝜎𝑚𝑢𝑡

- Whole arithmetic crossover weight; 𝛼

- Mutation probability; 𝑃𝑚𝑢𝑡

- Survivor selection tournament size; 𝜂𝑠𝑢𝑟𝑣,𝑡𝑜𝑢𝑟𝑛

The setup of the surrogate includes lower and upper bound options for its optimization variables and

an option to limit some variables to only integer solutions.

These options are very handy for the variables described above in order to limit the search space and

to prevent unfeasible solutions such as a non-integer tournament size.

The setup included as bounds for the variables:

- 2 < 𝜂𝑝𝑎𝑟,𝑡𝑜𝑢𝑟𝑛 < 15

- 500 < 𝜎𝑚𝑢𝑡 < 2500

- 0.01 < 𝛼 < 1

- 0.05 < 𝑃𝑚𝑢𝑡 < 1

- 2 < 𝜂𝑠𝑢𝑟𝑣,𝑡𝑜𝑢𝑟𝑛 < 30

While the tournament sizes were both limited to be integer numbers.

74

Additionally, a maximum number of function evaluations equal to 60 was used as a stopping criterion

of the optimization procedure.

The results of the tuning procedure are summarized in the following table

Figure 4. 6 - Tuning results

Some of the above results fell in a range of expected values, while others did not fall within what

could generally be considered a canonical range for genetic algorithm setup parameters.

Starting from the parent selection tournament size and the survival selection tournament size, which

together create the selection pressure which drive progressive evolution, having a small tournament

size for the parent selection and a large tournament size for survival selection creates a balanced

selection pressure. This result was somewhat expected since it is generally recommended that the

two selection pressures coming from the parent selection scheme and from the survival selection

should balance each other out.

With the above settings, a small parent selection pressure allows for most individuals to have a good

chance of being picked as parents, thus allowing even sub optimal genotypes to reproduce, while a

high selection pressure in the survivor selection section is useful to strongly favor the fittest

individuals as candidates for the next generation.

The mutation step size is about in the middle of the chosen range. This indicates that the chosen range

was adequate for the optimization procedure. A step size close to one of the imposed bounds might

indicate that the chosen range should be extended to find the optimal value for such parameter.

The arithmetic crossover weight factor is the weighting factor used to select how much of each of

the parent’s genes is used to create the offspring. A value of exactly 0.5 would create two identical

offspring each having a gene value halfway between the two parent gene values.

An optimal value of 0.5324 indicates that the created offspring are not equal but are quite similar.

Additionally, both of the genetic materials from each parent will approximately have the same

weight, and thus the same importance, resulting in a good mix of the genetic material from both

parents.

Finally, the mutation probability was the most surprising factor. In the literature, it is most common

to find mutation probability values close to 10 times less than the optimal value found during the

optimization procedure.

75

A large value of mutation probability indicates that the genetic algorithm will have a large explorative

proportion to its behavior, creating offspring which mutate quite often to better explore the

environment. This behavior will then be mitigated by a strong selection pressure in the survivor

selection section, only allowing stronger candidates to form the next generation.

4.3.7 Tuning procedure for physical application

The whole reason for using genetic algorithms to find optimal control parameters in each sea state

for the point absorber array is to disregard the modelling of the point absorber and use a model free

approach. But as stated above, a model of the point absorber was used for hyperparameter tuning of

the genetic algorithm. This was the only option for this work because of obvious restrictions both in

the accessibility to an actual device and also because of time constraints.

In a physical implementation of the device and control algorithm, different possibilities exist

regarding the tuning procedure of the parameters of the genetic algorithm.

- A first possible solution is to not tune the genetic algorithm at all, and to use a “standard”

genetic algorithm setting. This solution will most probably save setup time, but the main

drawback is that the solution found might be suboptimal, leading to suboptimal power

extraction.

- A second solution is to use a model as close as possible to the real point absorber in order to

perform the tuning phase offline. Having a model which is close to the actual physical point

absorber model will allow to tune the genetic algorithm parameters on a fitness function

(power curve in this case) very similar to the one from the actual point absorber. This will

definitely allow to get into the ballpark of good hyperparameter settings even for an

application with a real point absorber. This is a good solution for practitioners who might

not have a great knowledge of the relation between the hyperparameter settings and the

behaviour of the genetic algorithm on the specific function given by the point absorber used.

In any case this method should still give better performance than just manually setting

hyperparameters.

- Finally, the third solution is to optimise the genetic algorithm online. This involves an initial

deployment phase where the only goal is to tune the parameters of the genetic algorithm. In

this scenario, the quantitative parameters of the GA will be changed every so often, and the

optimisation results in terms of optimisation speed and result quality can be compared with

different implementations of the GA. These results can then be used to determine the quality

of the parameter vector used by a given GA implementation, which in turn can then be used

to optimise the parameters of the GA itself.

Although this solution is feasible, the time needed to optimise the parameters online would

probably render this solution unfeasible in a real application.

76

5 – Optimization through the genetic algorithm
With the genetic algorithm structure chosen and the quantitative parameters tuned, it was possible to

deploy the genetic algorithm to optimize the two control parameters (C and K) of the reactive control

law for the control of the resistive force that the PTO of the point absorber should apply in each

separate sea state.

The test setup consisted of the same genetic algorithm structure, previously tuned, to be used to

optimize the control parameters in all sea states while still maintaining all optimization procedures

separate. This was achieved by using a memory management strategy, allowing each specific

population belonging to a given sea state to evolve separately and only when the corresponding sea

state was encountered. This setup thus consisted of one isolated population of individuals for each

sea state evolving side by side as different sea states presented themselves and interacted with the

point absorber array. As the sea state changes, the memory management system calls on the

corresponding population which can carry on the evolution process from where it left off when the

given sea state was last seen.

5.1 Sea state generation

To test the optimization procedure, a 90-day simulation window was considered in which the sea

state occurrence was regulated by the following lookup table.

Figure 5. 1 - Lookup table from Pantelleria site

The values in the above lookup table come from physical data acquired from wave buoys off the

coast of Pantelleria in the Mediterranean Sea.

Each sea state was considered to last for one hour and the succession of sea states was considered to

be random.

With each sea state lasting one hour and with each genetic algorithm generation taking twenty

minutes to evaluate the average power absorbed to be used as a fitness value, each time a sea state

77

presented itself, three generations of individuals could elapse in the genetic algorithm dedicated to

the current sea state. In other words, every three generations elapsed correlates to one hour of elapsed

corresponding sea state.

Using the occurrence table, a vector of random sea states was created, with a total duration of 90

days. The vector was simply a vector of couples of Te an Hs values representing a given sea state.

The vector was then fed to the memory management system which used the Te an Hs values to trigger

the correct genetic algorithm optimization process related to the given sea state and also to generate

the simulated sea state with which the point absorber model had to interact with in order to calculate

the average absorbed power for each individual.

It must be noted that no stopping condition was imposed since the sea state vector is limited to a 90-

day vector. In a real scenario, a stopping condition should be imposed to decide on when the

optimization procedure should stop and pure exploitation with the optimized control parameters

should begin. The stopping condition could impose a limit on the total days of optimization, or it

could impose a limit on the optimization time on each single sea state, may that be through a bound

on the generations elapsed or on the number of times a certain sea state is encountered.

The first option would guarantee a well-known stopping time for all optimization procedures, but it

would not guarantee satisfactory results for all sea states, especially for the less frequent ones. The

second option instead guarantees that a certain number of generations has elapsed in each of the

separate genetic algorithms before the optimization procedure stops, thus guaranteeing a certain level

of performance but with an unknown time horizon in which all optimization procedures will end.

5.2 Simulation results

The most important values to be evaluated from the results of the optimization test were the average

number of generations needed for the genetic algorithms to converge and the optimality of the best

solution obtained at the end of the simulation in terms of average absorbed power.

The aim of the optimization was thus to reach peak performance in terms of average absorbed power

in the least time possible.

The following figure shows an example of one of the power plots for a given sea state with different

values of C and K control parameters. The Z axis represents the average absorbed power in a 20-

minute time window.

78

Figure 5. 2 - Point absorber power plot

One of the tools which was used to visually evaluate performance was the power absorption of the

best individual in the population as the generations elapsed for a given sea state.

Because of how the optimization in the genetic algorithm was setup, the inverse of the absorbed

power was used as the cost function to be minimized, thus the plots which were analyzed show a

decreasing trend, meaning an increase of power as generations elapse.

Figure 5. 3 - Examples of evolution of cost of best solution in two different sea states

As can be seen, the above plots show a steep descent at the beginning of the evolution process,

meaning a fast initial progress towards optimal regions of the search space.

After only a few generations/iterations, the cost function has practically converged, meaning that the

best member of the population is currently using stiffness (K) and damping (C) parameters close to

the optimal ones for the given sea state.

Considering that each generation is equivalent to 20 minutes of the corresponding sea state, and that

in just over 10 generations the algorithms converged, it would only take approximately 4 hours in a

given sea state to find the optimal stiffness and damping factors for that particular sea state.

79

The convergence graphs shown above do show a fast convergence, but no information is shared on

how the whole population evolves. To better understand how the population evolves it was useful to

visualize the single individuals evolve over the optimization landscape. An example of three

instances during a whole evolution process are proposed.

Figure 5. 4 - First generation population

The first image shows the randomly generated initial population over the power plot of a given sea

state. Each dot represents an individual with its own specific couple of stiffness (K) and damping (C)

parameters.

The following images show different stages of the evolution process of the same population on the

same power plot, but from a slightly different prospective in order to better visualize the location of

the individuals.

Figure 5. 5 - Fifth generation population

80

After 5 generations the population has already started to converge towards the top of the power curve

while still maintaining some diversity.

Figure 5. 6 - Fully converged population after 12 generations

Finally, after 12 generations the population has converged to the top of the power curve with most

individuals sharing the same genes (K and C). In the above image this translates into what seems to

be a single individual, whilst in reality it’s multiple individuals sharing nearly identical genes.

These results alone show how well this method works and how after only a few generations the

individuals manage to reach optimal locations in the search space.

Other graphical data used to evaluate the evolution progress of the individuals were the convergence

plots of the stiffness and damping factors of each individual in the population for a given sea state as

generations elapse. These plots show how well the individuals coalesce towards a common set of

control parameters for a give sea state as generations pass.

Figure 5. 7 - Evolution of damping values

81

Figure 5. 8 - Evolution of stiffness values

Each line represents the evolution of the control parameter for a single individual in the population.

Both graphs show how quickly can the population adapt to the newly encountered sea state and

correctly converge to optimal control parameters.

Finally, another important result that was analyzed was the overall best fixed control parameters

obtained for each sea state.

These results were picked as the best performing individual in terms of absorbed power for each sea

state throughout the whole 90-day simulation.

The following table and graph report the findings for each of the 14 sea states.

Sea state
number

C value
[Ns/m]

K value
[N/m]

1 2,0567*10^4 -1,1788*10^5
2 1,3886*10^4 -1,5681*10^5
3 9,0838*10^3 -1,7266*10^5
4 7,2034*10^3 -1,8010*10^5
5 2,1256*10^4 -1,1059*10^5
6 1,3617*10^4 -1,5666*10^5
7 7,8073*10^3 -1,7337*10^5
8 6,2768*10^3 -1,8046*10^5
9 1,9589*10^4 -1,0172*10^5

10 1,3376*10^4 -1,5624*10^5
11 8,5141*10^3 -1,7255*10^5
12 1,2176*10^4 -1,4903*10^5
13 8,7092*10^3 -1,7320*10^5
14 8,3835*10^3 -1,7076*10^5

82

Figure 5. 9 - Best constant damping values from genetic algorithm optimization

Figure 5. 10 - Best stiffness values form genetic algorithm optimization

0

5000

10000

15000

20000

25000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[N
s/

m
]

Sea states

Best damping values (C) for the analyzed sea states

Damping values (C)

-200.000

-180.000

-160.000

-140.000

-120.000

-100.000

-80.000

-60.000

-40.000

-20.000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[N
/m

]

Sea states

Best stiffness values (K) for the analyzed sea states

Stiffness values (K)

83

Figure 5. 11 - Wave energy periods of the 14 generated sea states

Figure 5. 12 - Wave significant height of the 14 generated sea states

By comparing the results of the optimization process with the graphs related to the wave energy

period and significant wave height of each sea state it’s clear how the wave period is the driving

force behind the most significant changes in both the stiffness and damping control parameters.

0,000

2,000

4,000

6,000

8,000

10,000

12,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[s
]

Sea states

Wave energy period of the analyzed sea states

Wave energy period (Te) [s]

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

[s
]

Sea states

Wave significant height of the analyzed sea states

Wave significant height (Hs) [m]

84

5.3 Expected Annual Energy Production

To understand what impact the above results would have on energy production in the long term the

Expected Annual Energy Production (EAEP) was computed.

𝐸𝐴𝐸𝑃𝑡𝑠 =
3600 ⋅ 24 ⋅ 365

100
 ∑ 𝑂𝑐𝑐%𝜔 𝑃𝑎𝑏𝑠𝜔

(𝐶𝜔,𝑡𝑠 , 𝐾𝜔,𝑡𝑠
)

𝑁𝜔

𝜔=1

Where EAEPts is the Expected Annual Energy Production computed at time 𝑡𝑠 and where:

- ω : Sea state indicator

- 𝑂𝑐𝑐%𝜔 : Occurrence percentage of sea state ω

- 𝑁𝜔 : Total number of sea states

- 𝑃𝑎𝑏𝑠𝜔
(𝐶𝜔,𝑡𝑠

, 𝐾𝜔,𝑡𝑠
) : Power absorbed in sea state ω with the best C and K parameters

obtained until time 𝑡𝑠.

This parameter represents the annual productivity that would be obtained if for each sea state

characterizing the deployment site the best control action seen until time 𝑡𝑠 was fixed and used over

an entire year. In other words, it’s as if the optimization procedure was stopped at a given time, and

whatever best results had been found up until such time were then used each time a sea state was

encountered, over a whole year of deployment with mixed and random sea states.

The resulting productivity is reported in the following graph.

Figure 5. 13 - Expected Annual Energy Production over the 90-day simulation

As can be seen, after only a few days at sea, the Expected Annual Energy Production has nearly

peaked. This is due to both the ability of the genetic algorithm to quickly hone in to the optimal

control parameters for each sea state, but also due to the structure of the problem itself. Most of the

85

absorbed power for the considered deployment location comes from the most frequently encountered

sea states, even though they might not necessarily be the most energetic. Thus, although after a short

period of time the most energetic sea states might not have been encountered often or at all, the

parameters related to the most frequent sea states have already been optimized, which in turn means

that most of the power production over a whole year is at near optimal performance.

86

6 – The neural network

6.1 Introduction

Having achieved excellent performance with a discrete model free control strategy through the use

of genetic algorithms to optimize the control parameters of a reactive control law, the focus was now

shifted on developing a continuous control strategy based on the same reactive law.

The idea is to train a neural network to produce the optimal time-varying sequence of control

parameters, no longer based on a description of the current sea condition through discrete sea states

as used by the genetic algorithms but based on the current forces acing on the point absorber.

This approach could ideally create a continuous control over the control parameters on a wave-by-

wave basis, potentially allowing for much greater energy extraction thanks to a tailored and specific

control compared to an averaged control obtained when describing the current sea conditions using

statistical variables such as significant height and energy period.

The modern concept of artificial neural networks (see appendix B) was first introduced in the 1940s

with the work of McCulloch and Pitts [70] who showed that artificial neural networks possess, at

least in principle, the ability to compute any logical function.

Neural networks are mathematical computing systems inspired by the biological neural networks

present in our brains. Similarly, to a biological neural network, ANNs are composed of multiple

interconnected nodes called artificial neurons or simply neurons which are capable of receiving and

processing information which can then be passed through to other neurons in the network.

Figure 6. 1 - Example of a simple neural network [71].

87

Given a certain input, the network is able to process the information to produce a corresponding

output. To achieve the desired network behavior, may it be image classification, pattern recognition

or any other of the many applications in which ANNs can be used, the network must first be trained.

Training involves using a set of know inputs and desired corresponding outputs to teach or train the

network to be able to correctly match the training set inputs to the correct desired training outputs.

This training process can be achieved by feeding the network with the training input samples and by

comparing the current output with the ideal desired output. The error between these two values is

then used in what is known as a performance or loss function to determine how well the network is

behaving on the assigned task. The magnitude of the loss function indicates if the network is

performing well or badly with the given training set. With the loss function known, the gradient

information of the loss function is then used to update the weights and biases of all the neurons in

the network with the goal of decreasing the loss function at each iteration, in turn producing a neural

network which performs well in the desired task. A more detailed explanation of the internal

workings of neural networks and how they are trained can be found in appendix B.

Crucially then, the most important aspects of using a neural network for a given task lie within two

main categories. The first consists in choosing the correct neural network structure, including layer

size and number, layout, performance function metric, optimization algorithm, learning rate and

many other hyperparameters affecting the network performance. The second important aspect to

consider is the training set used to train the network. A correct training set is fundamental since it’s

the only external information that will be used to train the network, where a badly chosen training

set may cause the network to underperform during its deployment on the field.

The first step towards a functioning neural network is to decide what structure and type of network

is needed for the problem at hand.

Several types of networks exist, each with its own specific structure and working principle based on

the problem to be solved.

The problem faced in this work can be considered a sequence-to-sequence regression problem where

for a given time series sequence of inputs, a corresponding sequence of outputs must be produced.

For this kind of problem, two network architectures were used and tested: a deep feed-forward neural

network and a Long-Short Term Memory (LSTM) neural network.

 In the next chapters the chosen neural network architecture will be presented together with the how

training set was conceived and used.

88

6.2 The Feed-forward neural network

A deep feed-forward neural network is one of the simplest forms of neural network. It consists of

multiple successive network layers where all the layers are fully connected (i.e., each neuron in a

given layer is connected to all the neurons in the successive layer) and where information can only

flow forwards, so from the input towards the output.

The number of layers and the number of neurons in each layer is a design specification, as are the

activation functions used in each layer, the number of neurons in the input and output layer, and

many other parameters which will be listed and described later on.

The choice of using a feed-forward network comes from the fact that this kind of network is one of

the most versatile but simple networks, and also one of the most diffused.

6.2.1 The network structure

Multiple preliminary tests were performed to gage the ability of these networks to map a time varying

input to a desired output. These tests were performed using a time varying sequence of forces

measured on a WEC device and using these forces as an input to a network which was tasked to map

such forces to the corresponding time varying vertical displacement of the WEC.

These preliminary tests suggested that using a deeper network, usually with a number of layers larger

than 5, allowed to learn more complex dependencies between the inputs and the corresponding

outputs, resulting in a smaller final learning error.

All of the tests were performed using MATLAB’s Experiment Manager app, which allows to design

and run experiments to train and compare deep learning networks. During the tests, both the

parameters regarding the structure of the net and the training parameters such as solver type, input

normalization and activation functions were evaluated and compared to find a network layout with

good performance for a sequence-to-sequence regression problem.

The final network structure was composed of:

- a sequence input layer

- 7 fully connected hidden layers each with 256 neurons

- a fully connected output layer with two outputs

- a scaling layer to scale the outputs so to match the bounds on the stiffness and damping

control parameters presented in chapter 4.1.2

- a regression layer.

The whole neural network structure was built in MATLAB using the “layers” function to define the

needed layers and their hyperparameters. For more information, please refer to the official

MathWorks web page at: https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-

layers.html.

https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html
https://www.mathworks.com/help/deeplearning/ug/list-of-deep-learning-layers.html

89

The sequence input layer, as its name suggests, is a specific layer used to feed a sequence as an input

to the neural network. The main parameters to be set for this layer are the input size, which refers to

how many inputs are fed to the network simultaneously at any given time step, and the normalization

type. The normalization chosen by analyzing the preliminary tests was a ‘zscore’ normalization

where each input has the mean subtracted before being divided by the standard deviation value.

Both the mean and standard deviation of the whole training set are calculated automatically at

training time. The value of the chosen input size will be covered in the chapter related to how the

network was trained.

Immediately after the sequence input layer, 7 fully connected layers were placed as the hidden layers

of the network. These layers act as basic neural network layers which multiply the input by a weight

matrix and then add a bias vector. All the hyperparameters related to the fully connected layers, such

as weight and bias initializer, weight and bias learn rate factor and weight and bias L2 factors were

left in their default mode.

Weight
Initializer

Bias
Initializer

Weight learn
rate factor

Bias learn
rate factor

Weight L2
factor

Bias L2
factor

glorot zeros 1 1 1 0

After each fully connected layer, an activation function layer was placed acting as the non-linearity

function in the layer. For all layers, a reluLayer was used as activation function.

After the seven hidden layers, the output section was composed by a fully connected layer with two

outputs (C and K of the reactive control law) accompanied by a tanhLayer as a squishing activation

function. After the fully connected layer, a scaling layer was used to scale the bounded output from

the tanhLayer from values ranging between -1 and 1 to values ranging from the minimum to the

maximum admissible values for C and K calculated in chapter 4.1.2.

As a last layer, a regression layer was used so to compute the half-mean-squared-error loss for the

regression task.

90

6.2.2 Training the feed forward network

The training of a neural network is the process which allows a neural network to learn how to perform

a given task by examining examples of how such task should be executed and by modifying its

internal parameters to try and perform the desired function as best as possible.

Training is achieved by feeding a network with a training set of input data which has a known

corresponding desired set of outputs.

For a sequence-to-sequence regression problem, an input sequence is fed to the network, and the

output produced by the network is then compared to the known desired output sequence.

The error between the desired output and the actual output is then used as information on how well

the network is currently performing. An optimization procedure which uses the gradient information

of the error function is then used to update the weights and biases of the network to try and minimize

the error. This process of feeding inputs, comparing the produced output to the desired output, and

updating the weights and biases is performed iteratively until a predefined stopping condition is met,

eventually leading to a more performing network. For a more detailed description of how the training

process occurs, please refer to appendix B.

When training a network, the most important considerations to be made are those regarding the

training input/output sequence and the hyperparameters to be used for the training process.

The training input, and the corresponding desired output, must be carefully chosen since they will be

the driving force behind the training of the network and will be the only information seen by the

network before deployment, so it’s crucial that the chosen training set input allows the network to be

able to learn a correct mapping to the desired output.

With the above considerations in mind, an analysis of the problem at hand is needed to understand

the choice of the training set used.

The goal for the neural network is to map the varying force input to the corresponding optimal control

parameters for the given sea state and to possibly learn interdependencies between the sea state and

corresponding control parameters so to be able to handle any force input which was not directly

shown in the training examples, or which does not belong to any of the sea states seen before.

To achieve this, it is not sufficient to feed the network with a single input sequence representing the

force time series and mapping such force to the control values because this would mean mapping a

single force input value to a single corresponding couple of control parameters at each time step.

This is obviously not the goal since past force inputs influence the current WEC dynamics, thus the

current force acting on the WEC is not sufficient to determine what the correct control values should

be. A solution to this problem was to feed at each time step, not a single input representing the current

force acting on the point absorber, but multiple inputs representing present and past values of force

acting on the point absorber.

91

This process creates a sort of memory of the past force values which is then used in conjunction with

the present force to determine the correct output values for the two control parameters.

What needed to be determined was how many inputs were needed, which translates in how much

past information was needed at each time step to train the network.

Preliminary tests were performed with MATLAB’s Experiment Manager which indicated that taking

multiple periods of the exciting force yielded better output mapping, hence, considering a sampling

frequency of 0.1s and the wave heave forces generated in the sea states presented in chapter 5.1, 600

inputs were used at each time step in order to guarantee that even for the wave excitation forces with

lower frequency, at least 4 whole periods of the varying force would be used as inputs to the net.

Figure 6. 2 - Qualitative representation of the feed-forward neural network

With the network structure and training input strategy defined, the necessary data for training had to

be defined and collected.

The devised strategy consisted in training the network every seven days with the information

gathered by the top three performing point absorbers for each sea state, right from the beginning of

the launch of the point absorbers when using the genetic algorithm to optimize the control parameters

in each sea state.

As each week passes, the information on how each tested control strategy for each sea state

encountered is gathered, and for each discrete sea state encountered in the given week, the top three

performing control strategies, together with the relative measured heave force values are registered

and stored. This information is then used to create a training set composed of an input vector of all

the successive measured forces and two corresponding output vectors of the most effective control

values related to each of the input force vectors.

92

The input force vector is then rearranged in a matrix form in order to fit a network paradigm which

includes 600 inputs.

The resulting training set is thus composed of a matrix of input forces which were recorded for each

sea state encountered during the week from the top three performing point absorbers in a given sea

state over the duration of a single generation of the genetic algorithm, which in turn is related to a

single sea state evolving for twenty minutes. Each of the recorded force vectors lasting twenty

minutes is then associated to two corresponding vectors of the same length which represent the fixed

control parameters used by the selected top performing point absorbers during the twenty-minute

time period. The training procedure thus associates the input force vector, to the corresponding

control parameters which for the given sea state and corresponding force were the best performing

parameters found in the given week.

The above considerations result in a vector of recorded forces for each given sea state encountered

in the week which has 36003 entries, which corresponds to three stacked vectors, one for each of the

top three performing point absorbers in the given sea state each with 12001 entries, which correspond

to a twenty-minute force reading, with a sampling frequency of 0.1s.

As stated before, all the vectors for all the sea states encountered are then stacked and placed in

matrix for to allow for a 600-input net structure.

The goal of this training setup is to create a network which can map input heave forces in to

instantaneous and continuous control parameters by learning possible interdependencies between all

the forces seen and the corresponding optimal control parameters found by the populations in the

genetic algorithm.

With the network structure, training set and training strategy defined, only the hyperparameters used

for training had to be defined before training could commence.

As for the network structure, different network training hyperparameter values were evaluated using

the Experiment Manager tool available on MATLAB in the Machine Learning and Deep Learning

toolbox. The main hyperparameters tested were:

- Initial learning rate

- Solver type

- Mini-Batch size

- Input normalization type

The final hyperparameters chosen for training were:

Initial
learning rate Solver type Mini-Batch

Size
Input

normalization Shuffle Max Epochs

0.001 Adam 128 zscore Never 150

93

Where all the other many hyperparameters for training a neural network were kept standard according

to the standard MATLAB ‘trainingOptions’ function when training a neural network.

The training process was performed using the ‘trainNetwork’ function and simply involved the

definition of the input training input sequence, output sequence, layer types and training options

defined in this chapter. The training process was performed on a workstation belonging to the

MOREnergy research lab because of the computation weight was too much for a standard PC.

6.2.3 Testing the feed forward network

The trained network could finally be used to verify its capabilities in mapping an input heave force

reading in to control parameters which would potentially allow for a greater energy absorption than

what could be obtained with the genetic algorithms.

To test the neural network, a Simulink model was built which would simulate the behavior of the

point absorber model in conjunction with the neural network. A wave scenario was generated in

MATLAB and the resulting heave force was fed to the neural network as an input, thus generating a

corresponding vector of control parameters. This vector was then used in Simulink together with the

original wave heave force vector to simulate how the point absorber would behave under such a wave

scenario if it adopted as control parameters, the parameters created by the neural network.

The Simulink environment setup was as follows.

Figure 6. 3 - Simulink model for point absorber and neural network simulation

Where C_input and K_input are the control parameter vectors created by the neural network when

fed the wave heave force Fz. Both vectors were created through a MATLAB script separately from

the Simulink model.

Tests were performed for each of the fourteen sea states to compare the behavior of the model when

using the control vectors generated by the neural network and when using the constant control

parameters obtained during the optimization phase involving the genetic algorithms.

94

The tests were conducted one sea state at a time, and for each sea state, a force vector Fz was

generated. This force vector was then used both directly in the Simulink environment and also as an

input to the neural network so to obtain the corresponding control parameter vectors to be used in

the Simulink simulation. A comparison was drawn between either using the generated control

parameter vectors as control inputs in the model or using the best constant control parameters for the

sea state under test found during the previous optimization using genetic algorithms.

The generated force vector corresponded to a 20-minute representation of the sea state, which is the

same time span used by each generation of the genetic algorithm to evaluate a population.

The analysis of the results will mainly focus on the comparison of the mean power output between

the two methods, while also taking into account features like maximum and minimum power peaks.

Sea
state

number

Te & Hs
values
[s]; [m]

Mean
power

constant
C & K

[W]

Mean
power

with N.N
control

[W]

Max
power

constant
C & K

[W]

Max
power

with N.N
control

[W]

Min
power

constant
C & K
 [W]

Min
power

with N.N
control

[W]

1 4,17; 0,1
7,953*
10^1

7,932*
10^1

2,013*
10^3

2,284*
10^3

-1,354*
10^3

-1,703*
10^3

2 6,13; 0,1
2,166*
10^2

2,105*
10^2

1,904*
10^4

2,063*
10^4

-1,599*
10^4

-1,820*
10^4

3 8,08; 0,1
3,981*
10^2

3,937*
10^2

6,916*
10^4

7,744*
10^4

-6,768*
10^4

-7.063*
10^4

4 10,04; 0,1
5,860*
10^2

5,483*
10^2

1,376*
10^5

1,181*
10^5

-1,366*
10^5

-1,249*
10^5

5 4,17; 1,08
9,480*
10^3

9,451*
10^3

2,400*
10^5

2,697*
10^5

-1,482*
10^5

-1,829*
10^5

6 6,13; 1,08
2,527*
10^4

2,472*
10^4

2,260*
10^6

1,755*
10^6

-1,900*
10^6

-1,376*
10^6

7 8,08; 1,08
4,609*
10^4

3,964*
10^4

9,794*
10^6

8,718*
10^6

-9,684*
10^6

-7,295*
10^6

8 10,04; 1,08
6,872*
10^4

5,483*
10^4

1,893*
10^7

1,966*
10^7

-1,884*
10^7

-1,664*
10^7

9 4,17; 2,06
3,440*
10^4

3,408*
10^4

8,210*
10^5

7,982*
10^5

-4,898*
10^5

-4,881*
10^5

10 6,13; 2,06
9,220*
10^4

9,256*
10^4

8,358*
10^6

7,166*
10^6

-7,010*
10^6

-5,926*
10^6

11 8,08; 2,06
1,689*
10^5

1,630*
10^5

3,047*
10^7

5,954*
10^7

-3,056*
10^7

-5,781*
10^7

12 6,13; 3,04
2,223*
10^5

2,062*
10^5

2,431*
10^7

1,948*
10^7

-2,167*
10^7

-1,788*
10^7

13 8,08; 3,04
3,667*
10^5

2,835*
10^5

6,979*
10^7

1,113*
10^8

-6,755*
10^7

-1,285*
10^8

14 8,08; 4,02
6,908*
10^5

3,222*
10^5

1,914*
10^8

1,582*
10^8

-1,833*
10^8

-1,560*
10^8

95

The above results show that in most cases, the constant control parameters outperform the continuous

control vector produced by the neural network. A summary of the percentage difference in mean

absorbed power, peak positive power and peak negative (reactive) power between the constant

control strategy versus the continuous control produced by the neural network is presented in the

following table where a positive percentage indicates a higher power reading for the neural network

implementation.

Sea state
number

Percentage
mean power
difference

Percentage max
positive power

difference

Percentage min
reactive power

difference
1 -0,2641 13,4625 25,7755
2 -2,8163 8,3508 13,8211
3 -1,1052 11,9722 4,3587
4 -6,4334 -14,1715 -8,5652
5 -0,3059 12,3750 23,4143
6 -2,1765 -22,3451 -27,5789
7 -13,9944 -10,9863 -24,6696
8 -20,2125 3,8563 -11,6773
9 -0,9302 -2,7771 -0,3471

10 +0,3905 -14,2618 -15,4636
11 -3,4932 95,4053 89,1688
12 -7,2425 -19,8684 -17,4896
13 -22,6888 59,4784 90,2295
14 -53,3584 -17,3459 -14,8936

Figure 6. 4 - Percentage mean power difference between using constant control parameters or neural network parameters

-60

-50

-40

-30

-20

-10

0

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n

ta
ge

 %

Sea states

Percentage mean power difference in each sea state

Percentage mean power difference

96

Figure 6. 5 – Max and min peak power difference when using constant control parameters or neural network parameters

As the above tables and graphs clearly show, the performance in terms of mean absorbed power is

better in all but one case when using constant control parameters.

Despite this, in most cases the difference in the mean absorbed power is actually pretty small, with

differences of only a few percent. On the other hand, some sea state scenarios, particularly scenarios

8, 13 and 14, showed a tremendous drop in performance, up to the point where in sea state number

14 the mean absorbed power with the neural network configuration was less than half of what was

obtained with constant control parameters.

Although these results may seem disappointing, it is interesting to point out how in most sea states,

a basic implementation of a simple feed forward neural network is able to produce a time varying

control signal which is able to nearly match the performance of a carefully optimized pair of constant

control parameters and in one of the sea states (number 10), it is even able to produce a control signal

which leads to a slight increase in the mean absorbed power. Additionally, the neural network was

also able to produce a control input which resulted in a smaller overall peak to peak power output in

seven out of the fourteen sea states, which brings the obvious benefits of hardware downsizing and

also the need to handle a smaller reactive power flow.

Another interesting result produced by the neural network is the shape of the produced control

signals. In the next few graphs, some examples of the produced signals, together with the

corresponding input heave force will be presented and analyzed.

-40

-20

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n

ta
ge

 %

Sea state

Comparison of peak positive and negative power flow

Percentage Max positive power difference Percentage Min reactive power difference

97

Figure 6. 6 - Control signal of damping control parameter 'C' generated for sea state number 5

Figure 6. 7 - Control signal of stiffness control parameter 'K' generated for sea state number 5

Figure 6. 8 - Normalized damping, stiffness and heave force signal for sea state number 5

98

Analyzing figure 6.6 it is possible to notice how the two control signals seem to be strongly related

to one another, often following each other creating two nearly symmetrical shapes. This is surprising

since the two control signals were not linked in any way during the training phase.

Another interesting feature to point out is how the control signals have a principal frequency

component which seems to be quite similar to the principal frequency of the wave heave force

represented in yellow. This suggests that, to some extent, the neural network is actually able to follow

the incoming wave force and select an appropriate control signal on a sample-by-sample basis.

To confirm this, another plot was drawn using the data collected from sea state number 4, which

compared to sea state number 5 has a wave energy period more than twice as long. The following

plots show the control signals and force reading corresponding to sea state number 4.

Figure 6. 9 - Control signal of damping control parameter 'C' generated for sea state number 4

Figure 6. 10 - Control signal of stiffness control parameter 'K' generated for sea state number 4

99

Figure 6. 11 - Normalized damping, stiffness and heave force signal for sea state number 4

As confirmed by figure 6.9, when the input heave force has a larger period, also the respective control

signal generated by the neural network will have a corresponding larger oscillating period.

This result is something that might seem quite unremarkable at first sight, but it must be noted that

at training time, each oscillating wave force signal was only coupled with a corresponding constant

pair of optimal control parameters obtained from the genetic algorithms. This means that no

information was given on how the control parameters should change in time on a wave-by-wave

basis. It is thus quite remarkable that the neural network was able to produce a control signal which

varied in time with a frequency very similar to the corresponding input wave heave force and that

additionally, the produced control signal actually oscillated close to the optimal value obtained

during the heuristic optimization, signifying that the neural network was actually able to distinguish

wave scenarios and use both the optimal static control information as well as the time varying force

to produce the control signal.

100

6.3 The Long Short Term Memory Neural Network

A long-short term memory neural network (LSTM neural network) is a type of recurrent neural

network which, unlike feed forward neural networks, is able to store information and even feedback

such information instead of only being able to pass information forwards from the input to the output

nodes. LSTM neural networks were specifically developed to handle sequential data inputs and to

solve problems related to these kinds of inputs, such as weather forecasting, stock market predictions,

text translation, and many other similar applications. The main idea behind a LSTM neural network

is to create a network which is able to operate in a manner which is close to how a human mind

operates. As humans process information, they do not start their thinking from scratch at every time

step, but instead, information is stored, and in some cases reused in order to process the current

information not only on the basis of the current input, but also on the basis of past inputs which help

to give the information context. Traditional feed forward networks cannot do this since they have no

memory storing capability and also no feedback capability. On the other hand, LSTM neural

networks have the ability to store, forget and reuse past information at each time step in order to help

the process of deciding the current predicted output.

These processes are achieved through a system of gates, each with its own specific task, which

ultimately allow the LSTM unit to hold on to what is considered as relevant past information and to

discard other information which is not as relevant and to use such information to make decisions on

the upcoming outputs. For a more detailed explanation of the workings of a LSTM neural network,

please refer to the appropriate chapter in appendix B.

6.3.1 The network structure

When dealing with LSTM neural networks, the classic shape and structure seen for feed forward

neural networks is no longer valid. Instead, each LSTM layer is composed of cells.

Figure 6. 12 - An unrolled LSTM network layer [75].

Each cell represents the LSTM layer for a given time instant. For this reason, LSTM layers are said

to unroll to match the length of the input vector. This is simply an easier manner to visualize a LSTM

layer. So instead of thinking of it as a layer which feeds back information to itself, we can imagine

an LSTM cell for each time step, where information is passed from one cell to the next as time passes.

101

The number of cells in a LSTM layer, is thus a variable which does not need to be explicitly defined

since it will depend on the length of the input vector.

What does need to be defined instead, is the number of hidden units.

Within each LSTM cell, the user can define how many hidden units are needed for the problem at

hand. Hidden units can be thought of as basic LSTM building blocks where each hidden unit contains

the basic elements needed for a LSTM network to work.

Figure 6. 13 - Basic LSTM unit

Within each cell, the hidden units are concatenated, so that information is processed by all the units

at each time instant.

Each LSTM cell can work perfectly with just one hidden unit per cell, in fact in appendix B, each

cell is only shown to have one hidden unit within it. But just as a feed forward neural network can

work with only one neuron per layer, this is often not enough to have a structure which is able to

solve more complex problem. So just as in feed forward neural networks the user might decide to

increase the number of neurons, for LSTM layers the number of hidden units can be increased as

well based on the problem complexity. For this work, each LSTM layer was equipped with 128

hidden units.

Just as for the feed forward network, the Experiment Manager tool was used to setup tests to gauge

the performance of the network on a sequence regression task while varying some network

hyperparameters.

The chosen network structure was composed of:

- a sequence input layer with rescale-symmetric normalization

- 3 bidirectional LSTM layers, each having 128 hidden units and set to sequence output mode

- a fully connected output layer with 2 outputs and a tanh activation function

- a scaling layer to scale the outputs so to match the bounds on the stiffness and damping

control parameters

- a regression layer

Just as for the feed forward neural network, the LSTM network was built in MATLAB using the

“layers” function to define the different network layers.

102

6.3.2 Training the LSTM network

Just as for the feed forward neural network, training was performed by gathering data every seven

days from the top three performing point absorbers for each sea state during the optimization

performed by the genetic algorithm. This meant that the used training set was exactly the same as for

the feed forward network, with the difference that LSTM networks are inherently able to store past

information, so there was no need to rearrange the heave force data into matrix form.

With the network structure, training set and training strategy defined, only the hyperparameters used

for training had to be defined before training could commence.

As for the network structure, different network training hyperparameter values were evaluated using

the Experiment Manager tool available on MATLAB in the Machine Learning and Deep Learning

toolbox. The main hyperparameters tested were:

- Initial learning rate

- Solver type

- Mini-Batch size

- Input normalization type

The final hyperparameters chosen for training were:

Initial
learning rate Solver type Mini-Batch

Size
Input

normalization Shuffle Max Epochs

0.001 Adam 1 rescale-
symmetric Never 200

Where all the other many hyperparameters for training a neural network were kept standard according

to the standard MATLAB ‘trainingOptions’ function when training a neural network.

The training process was performed using the ‘trainNetwork’ function and simply involved the

definition of the input training input sequence, output sequence, layer types and training options

defined in this chapter. The training process was performed on a workstation belonging to the

MOREnergy research lab because of the computation weight was too much for a standard PC.

6.3.3 Testing the LSTM network

To test the neural network, the same Simulink model used for the feed forward neural network test

was used. A wave scenario was generated in MATLAB and the resulting heave force was fed to the

neural network as an input, thus generating a corresponding vector of control parameters. This vector

was then used in Simulink together with the original wave heave force vector to simulate how the

point absorber would behave under such a wave scenario if it adopted as control parameters, the

parameters created by the neural network.

103

The Simulink environment setup was as follows.

Figure 6. 14 - Simulink model for point absorber and neural network simulation

Tests were performed for each of the fourteen sea states to compare the behavior of the model when

using the control vectors generated by the neural network and when using the constant control

parameters obtained during the optimization phase involving the genetic algorithms.

The tests were conducted one sea state at a time, and for each sea state, a force vector Fz was

generated. This force vector was then used both directly in the Simulink environment and also as an

input to the neural network so to obtain the corresponding control parameter vectors to be used in

the Simulink simulation. A comparison was drawn between either using the generated control

parameter vectors as control inputs in the model or using the best constant control parameters for the

sea state under test found during the previous optimization using genetic algorithms.

The generated force vector corresponded to a 20-minute representation of the sea state, which is the

same time span used by each generation of the genetic algorithm to evaluate a population.

The analysis of the results will mainly focus on the comparison of the mean power output between

the two methods, while also taking into account features like maximum and minimum power peaks.

Sea
state

number

Te & Hs
values
[s]; [m]

Mean
power

constant
C & K

[W]

Mean
power

with N.N
control

[W]

Max
power

constant
C & K

[W]

Max
power

with N.N
control

[W]

Min
power

constant
C & K
 [W]

Min
power

with N.N
control

[W]

1 4,17; 0,1
7,870*
10^1

1,523*
10^1

2,013*
10^3

1,131*
10^3

-1,354*
10^3

-9,868*
10^2

2 6,13; 0,1
2,185*
10^2

5,647*
10^1

1,901*
10^4

5,979*
10^3

-1,596*
10^4

-5,225*
10^3

3 8,08; 0,1
4,097*
10^2

1,435*
10^2

6,916*
10^4

2,281*
10^4

-6,768*
10^4

-2,119*
10^4

4 10,04; 0,1
6,384*
10^2

3,043*
10^2

1,745*
10^5

5,258*
10^4

-1,571*
10^5

-4,823*
10^4

104

5 4,17; 1,08
9,391*
10^3

1,724*
10^3

2,400*
10^5

1,325*
10^5

-1,482*
10^5

-1,094*
10^5

6 6,13; 1,08
2,549*
10^4

6,583*
10^3

2,256*
10^6

6,960*
10^5

-1,895*
10^6

-6,086*
10^5

7 8,08; 1,08
4,753*
10^4

1,672*
10^4

9,794*
10^6

2,669*
10^6

-9,684*
10^6

-2,471*
10^6

8 10,04; 1,08
7,489*
10^4

3,543*
10^4

2,324*
10^7

6,157*
10^6

-2,117*
10^7

-5,638*
10^6

9 4,17; 2,06
3,542*
10^4

5,849*
10^3

1,100*
10^6

4,443*
10^5

-6,295*
10^5

-3,523*
10^5

10 6,13; 2,06
9,295*
10^4

2,396*
10^4

8,333*
10^6

2,531*
10^6

-6,981*
10^6

-2,213*
10^6

11 8,08; 2,06
1,738*
10^5

6,070*
10^4

3,047*
10^7

9,772*
10^6

-3,056*
10^7

-8,997*
10^6

12 6,13; 3,04
2,215*
10^5

4,753*
10^4

2,431*
10^7

7,590*
10^6

-2,167*
10^7

-6,617*
10^6

13 8,08; 3,04
3,779*
10^5

1,318*
10^5

6,979*
10^7

2,145*
10^7

-6,755*
10^7

-1,963*
10^7

14 8,08; 4,02
6,993*
10^5

2,258*
10^5

1,914*
10^8

4,638*
10^7

-1,833*
10^8

-4,323*
10^7

Sea state
number

Percentage
mean power
difference

Percentage max
positive power

difference

Percentage min
reactive power

difference
1 -80,6480 -43,8152 -27,1196
2 -74,1556 -68,5481 -67,2619
3 -64,9744 -67,0185 -68,6909
4 -52,3340 -69,8682 -69,2998
5 -81,6420 -44,7917 -26,1808
6 -74,1742 -69,1489 -67,8839
7 -64,8222 -72,7486 -74,4837
8 -52,6906 -73,5069 -73,3680
9 -83,4867 -59,6091 -44,0349

10 -74,2227 -69,6268 -68,2997
11 -65,0748 -67,9291 -70,5596
12 -78,5418 -68,7783 -69,4647
13 -65,1230 -69,2649 -70,9400
14 -67,7106 -75,7680 -76,4157

105

Figure 6. 15 - Percentage mean power difference between using constant control parameters or LSTM network parameters

Figure 6. 16 - Max and min peak power difference when using constant control parameters or neural network parameters

From the above graphs it is clear that the performance obtained with the LSTM configuration is by

far the worst between the two neural network configurations.

Analyzing the mean power difference graph, it is possible to pick out a noticeable efficiency trend

as the wave energy period changes. As the period increases, the relative loss decreases, signifying

that this current configuration of the neural network has difficulty in producing a control signal for

wave forces with higher energetic frequencies.

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14
P

er
ce

n
ta

ge
 %

Sea state

Percentage mean power difference in each sea state

Percentage mean power difference

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n

ta
ge

 %

Sea State

Comparison of peak positive and negative power flow

Percentage Max positive power difference Percentage Min reactive power difference

106

To better understand this phenomenon, the control signals produced by the neural network and the

corresponding wave heave force which was used as an input to produce the control signal will be

plotted together to better understand if there may be any relationship between the input force

frequency and the control signal frequency which ultimately led to a drop in mean absorbed power

as the force frequency increased.

Figure 6. 17 - Control signal of damping control parameter 'C' generated for sea state number 1

Figure 6. 18 - Control signal of stiffness control parameter 'K' generated for sea state number 1

For both the damping and the stiffness control signals, the LSTM neural network produces a control

signal which has a large transient spike both at the beginning and at the end of the run, which spoils

the graphical analysis of the plotted control signals. The next two plots will show a close up of the

two control signals once the transient sections have been removed.

107

Figure 6. 19 – Close-up of the control signal of the damping control parameter 'C' generated for sea state number 1

Figure 6. 20 – Close-up of the control signal of the stiffness control parameter 'K' generated for sea state number 1

The close-up graphs reveal how the LSTM network produced a constant control signal for the

stiffness and a time varying signal for the damping values. This is quite in contrast to what was

produced by the feed forward neural network which produced time varying signals for both control

variables. Additionally, the produced signals from the LSTM do not seem to be anywhere near the

corresponding optimal fixed control signals found by the genetic algorithm optimization.

To get a better understanding of how the control signal is produced and how it matches the force

input, a closeup plot of the control and the heave force is presented next for both the damping and

stiffness control values.

108

As for the feed forward neural network, the following plots will show the normalized values of the

heave force and control signals. To better appreciate the variations on the control signals, the transient

sections were truncated.

Figure 6. 21 - Normalized damping and heave force signal for sea state number 1

The above image suggests that, even for sea states with a small energetic period such as sea state

number 1, for which the energy losses were much worse compared to sea states with a larger energy

period, the LSTM network is able to produce a control signal for the damping parameter which is

completely able to follow the oscillating input heave force, while also varying the magnitude of such

control signal according to the magnitude of the input force.

This leads to the conclusion that it is not a problem related to the ability to follow the input heave

force, but rater most likely linked to the magnitude itself of the control signals for both the damping

and stiffness parameters.

A quick look at the optimal static control parameters obtained for sea state 1 by the genetic algorithm

optimization shows how far both the constant stiffness and the mean of the varying damping

produced by the LSTM network are for the parameters found by the genetic algorithm.

This is most likely the reason for the pore performance since, although a variation on a wave-by-

wave basis was expected for the control parameter vectors produced by the neural network, the

general working area should probably be in the same region as the static parameters obtained from

the optimization process.

Further proof of this is the trend of the power loss in figure 6.15 where it’s clear that performance

improves as the sea state energy period increases. This is not because of some intrinsic problem with

the frequency of the generated control signal for the damping control parameter, but it’s simply due

to how far the magnitude of the generated stiffness control signal is from the different static optimal

stiffness signals for each sea state.

109

The next image shows all the different control signals for all the 14 sea states plotted on a single

graph for the damping and stiffness control parameters with the transients removed.

Figure 6. 22 – Damping control signals generated by LSTM neural network for all 14 sea states

Figure 6. 23 – Stiffness control signals generated by LSTM neural network for all 14 sea states

From the two graphs it’s clear how the LSTM network somehow had bound all the control signals

to be centered around two very specific locations for both the varying damping control signal and

the constant stiffness signal; was now clear that this was the main driver of the poor performance.

In particular, the greatest contribution to this poor performance was given by the constant stiffness

signal, which for some sea states was very far from the optimal constant stiffness found by the genetic

algorithms, while for other sea states (see table at page 78) it was much closer.

It was now clear how the main cause of the bad performance and of the power loss trend which varied

as the sea state energy period varied was the produced stiffness control signal and that although also

110

the damping signal seemed to be bound to a region in which it most likely should not be, it was not

the main driver of the bad performance.

This theory was put to the test by shifting the damping control signal so that it’s mean would lie

around the optimal value produced by the genetic algorithm and by amplifying the control signal so

that the oscillations would be more prominent. A simulation was then run with the modified damping

control alongside with the constant optimal stiffness produced by the genetic algorithm. This mix of

control signals was done to ensure that the comparison between the constant control signals and the

time varying damping control would be a fair comparison without taking in to account the value of

the stiffness produced by the neural network. The results showed that with a constant stiffness but a

time varying damping factor the mean absorbed power actually increased with respect to the control

using constant control variables in some sea states.

Sea
state

number

Te & Hs
values
[s]; [m]

Mean
power

constant
C & K

[W]

Mean
power

with N.N
control

[W]

Max
power

constant
C & K

[W]

Max
power

with N.N
control

[W]

Min
power

constant
C & K
 [W]

Min
power

with N.N
control

[W]

1 4,17; 0,1
7,987*
10^1

8,031*
10^1

2,013*
10^3

3,015*
10^3

-1,354*
10^3

-2,291*
10^3

2 6,13; 0,1
2,048*
10^2

2,048*
10^2

1,901*
10^4

1,713*
10^4

-1,596*
10^4

-1,413*
10^4

3 8,08; 0,1
3,982*
10^2

3,921*
10^2

6,916*
10^4

7,837*
10^4

-6,768*
10^4

-6,545*
10^4

4 10,04; 0,1
5,783*
10^2

5,809*
10^2

1,376*
10^5

1,675*
10^5

-1,366*
10^5

-1,730*
10^5

5 4,17; 1,08
9,213*
10^3

9,234*
10^3

2,400*
10^5

3,015*
10^5

-1,482*
10^5

-1,885*
10^5

6 6,13; 1,08
2,390*
10^4

2,393*
10^4

2,256*
10^6

2,096*
10^6

-1,900*
10^6

-1,765*
10^6

7 8,08; 1,08
4,514*
10^4

4,522*
10^4

9,794*
10^6

1,062*
10^7

-9,684*
10^6

-9,512*
10^6

8 10,04; 1,08
6,799*
10^4

6,802*
10^4

1,893*
10^7

1,915*
10^7

-1,884*
10^7

-1,908*
10^7

9 4,17; 2,06
3,642*
10^4

3,644*
10^4

1,086*
10^6

1,052*
10^6

-6,173*
10^5

-6,68*
10^5

10 6,13; 2,06
8,723*
10^4

8,747*
10^4

8,333*
10^6

8,270*
10^6

-6,981*
10^6

-6,880*
10^6

11 8,08; 2,06
1,639*
10^5

1,669*
10^5

3,047*
10^7

3,765*
10^7

-3,056*
10^7

-3,130*
10^7

12 6,13; 3,04
2,282*
10^5

2,287*
10^5

2,431*
10^7

2,856*
10^7

-2,167*
10^7

-2,441 *
10^7

13 8,08; 3,04
3,599*
10^5

3,639*
10^5

6,979*
10^7

1,056*
10^8

-6,755*
10^7

-9,140*
10^7

14 8,08; 4,02
6,862*
10^5

6,879*
10^5

1,914*
10^8

2,074*
10^8

-1,833*
10^8

-2,003*
10^8

111

Sea state
number

Percentage
mean power
difference

Percentage max
positive power

difference

Percentage min
reactive power

difference
1 0,5509 49,7765 69,2024
2 0 -9,8895 -11,4662
3 -1,5319 13,3169 -3,2949
4 0,4496 21,7297 26,6471
5 0,2279 25,6250 27,1930
6 0,1255 -7,0922 -7,1053
7 0,1772 8,4337 -1,7761
8 0,0441 1,1622 1,2739
9 0,0549 -3,1308 8,2132

10 0,2751 -0,7560 -1,4468
11 1,8304 23,5642 2,4215
12 0,2191 17,4825 12,6442
13 1,1114 51,3111 35,3072
14 0,2477 8,3595 9,2744

Figure 6. 24 - Percentage power difference when using shifted and rescaled LSTM network damping and constant stiffness

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n

ta
ge

 %

Sea state

Percentage mean power difference in each sea state

Percentage mean power difference

112

Figure 6. 25 - Max and min power difference when using shifted and rescaled LSTM network damping and constant stiffness

The above graphs suggest that the problems of the control signals produced by the neural network

were mainly two:

- Firstly, both the damping and stiffness signal were centered around a single value for all sea

states. This is particularly detrimental especially considering that, since the produced

stiffness signal was constant, this meant that, whatever the sea state, the stiffness would not

change. This problem was fixed in the last test by shifting the signals produced by the LSTM

network to be centered around the optimal vales found by the genetic algorithm optimization

procedure.

- Secondly, the variation in the damping control signal actually seemed to produce some

positive effects in terms of produced mean power in most of the sea state scenarios tested.

Thus, it might have also been positive to have a varying stiffness signal instead of a constant

one.

Although the above results were obtained by shifting the damping control signal around a working

point which was known a priori to be efficient, it is still a positive result to see that in all sea states

but one, the varying damping signal produced by the neural network actually managed to achieve a

higher mean power reading than when using a constant damping signal. So, despite having to

manually manipulate the signal position, this result still shows that a neural network does have the

potential to create a time varying control signal able to increase the power absorption of a point

absorber.

-20

-10

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n

ta
ge

 %

Sea State

Comparison of peak positive and negative power flow

Percentage Max positive power difference Percentage Min reactive power difference

113

7 – Conclusions and future work
In this thesis, a collaborative learning strategy for model-free control of an array of wave energy

converters has been analyzed and tested in a simulation environment.

The aim of this work was to test a model-free learning strategy which would allow an array of heaving

point absorbers to collaborate to reach the common goal of optimizing the control strategy variables

and to use the acquired data to further learn how to change the control parameters in a continuous

manner in order to adapt the control strategy on a wave-by-wave basis.

The simulations involved 14 separate sea states, each characterized by its own couple of significant

wave height (Hs) and wave energy period (Te). Each sea state was considered to last 20 minutes in

order to get a robust statistical evaluation of the point absorber performance.

The control strategy chosen was of the reactive type which implied the use of two independent control

parameters to be tuned, namely the damping factor (C) and the stiffness (K).

Genetic algorithms were initially used as a metaheuristic collaborative learning strategy to optimize

the two control parameters for each sea state. Each point absorber in the array represented a single

individual in the population of the genetic algorithm carrying as genes the control parameters used

for the current generation and as fitness, the mean absorbed power over the simulation time window

of 20 minutes.

Before deploying the genetic algorithm, a tuning procedure was used which would promote

algorithm structures who’s internal hyperparameters resulted in algorithms with enough exploratory

behavior to not trap in local minima but enough exploitative behavior so to not take too much time

to converge.

A ninety-minute simulation comprised of a mixture of all the sea states taking in to account their

specific occurrence was created and used as a testing ground for the genetic algorithm evolution.

A memory management system was then used to create individual meta populations of a single

genetic algorithm structure where each population was linked to a single sea state and could evolve

independently to reach optimal control parameters for the given sea state.

The results showed how a population of 16 individuals was able to converge to optimal static control

parameters for a given sea state in just over 12 generations, which in turn meant that the array would

only need about 4 hours in a given sea state to find the optimal damping and stiffness parameters

which would maximize the mean power output of the device.

With the genetic algorithm structure complete, the next step was to find a means to achieve a model-

free continuous control over the control variables of the reactive control law so to achieve a control

signal which could vary on a wave-by-wave basis so to continuously adapt to the current scenario.

114

The adopted strategy tested both feed-forward neural networks and LSTM neural networks as means

to learn how to map the input heave wave force into a meaningful continuous control signal for both

the damping factor and the stiffness parameters of the reactive control law.

The two network structures showed remarkably different behavior.

The feed forward neural network was fed, at each time instant, with multiple inputs which

represented the current and past 600 heave force values read and as output, the vectors corresponding

to the two control parameters had to be produced.

The network showed that it was able to produce signals with a similar frequency to the input heave

force, signifying that it was actually able to correctly follow the oscillating wave input force.

Besides this positive remark, in all but one wave scenario the mean produced power was lower than

what was obtained with the constant control parameters and the peak power flow values were in

some cases lower and in other higher.

Summarizing, the feedforward neural network showed potential in its ability to map the force signal

in to the two control signals, but the results showed that the produced signals didn’t actually cause

any appreciable increase in the produced mean power.

A second but similar test was carried out using a long-short term memory (LSTM) neural network.

This kind of network has the ability to crate feedback loops within itself and to store past information

in order to make more significant predictions about the current input. For these reasons there was no

need to feed the network with a matrix of inputs, instead a simple single force vector of the time

series heave force was used.

Unfortunately, the network by its own wasn’t able to improve on the feed forward neural network,

but actually produced worst results in terms of the mean absorbed power. This was mainly due to the

produced control signals all being bound in a region which was sub optimal in terms of produced

power. The reason behind this most likely resides in the chosen network structure.

Additionally, to having all the signals bound to a fixed common mean value, an unexpected behavior

from the LSTM network was the constant stiffness control signals it produced. This was particularly

surprising since, at least to the authors knowledge, no bias was given between one output and the

other and both outputs were treated in the same manner in the final processing phases of the neural

network. These two major malfunctions ultimately caused the LSTM network to perform poorly with

respect to the feed forward network.

To understand if the network could have potentially still produced a control signal which could have

increased the mean absorbed power of the device, the damping control signals were manually shifted

so that their mean would match the optimal control values produced by the genetic algorithm

115

optimization. The results showed that in this scenario the mean absorbed power actually increased in

all but one sea state signifying that the varying damping signal produced by the LSTM network could

have had the potential to improve the performance over the constant control signals. Unfortunately,

since the stiffness signal produced by the network was constant, the same could not be said for the

stiffness parameter, although one might speculate that also a varying stiffness control signal might

also increase the systems performance.

As a final consideration, the first half of the proposed strategy, involving the online optimization of

the control parameters through a metaheuristic approach employing genetic algorithms can be

considered a success. The designed genetic algorithm proved to be a valid tool to optimize the

parameters of a reactive control law over multiple sea state scenarios in a repeatable, fast and reliable

manner while never using any model of the system during the optimization process.

On the other hand, the second half of this work, which involved the use of neural networks to further

learn interdependencies between the input heave force and the corresponding control parameters to

try and achieve a continuous control over such parameters did not produce exceptional results.

The main problem with the neural network approach will obviously lie either in the training set used

or in the structure of the neural nets themselves. Both of these fields may be subject of further study

to try and accomplish better results.

Future work which may spawn form this preliminary research might include:

- Further work on the genetic algorithms to make the optimization process even faster and

more reliable by trying to implement adaptive control over the genetic algorithm structure

and self-adaptation [72], [73], [74].

- Testing and developing neural network structures to try and achieve better performance and

to try and uncover the possible causes of the shapes of the signals produced by the LSTM

network.

- Additional work may also try and achieve continuous data driven control through other

machine learning techniques asides from neural networks.

- Finally, the actual dataset used to train the neural networks might be revised and modified

to try and give the neural networks, or any other tool used, more information about how the

input signals are linked to the desired output control signals, and to try and gather more

meaningful data about what the networks are actually trying to achieve.

116

117

Appendix A: Evolutionary algorithms
Evolutionary computing is a branch of computer science which, as the name suggests, takes

inspiration from evolutionary processes occurring in nature. More precisely we can think of

evolutionary computing as a parallel to a scenario where in nature, a population of individuals in a

given environment is competing for survival and reproduction.

The competing individuals can be somehow ranked based on their fitness. In evolutionary computing

such fitness relates to how well and individual is performing at achieving the desired goal. Just as in

nature, the probability of survival and reproduction of an individual depends on how fit such

individual is.

When talking about evolutionary computing, we still use the term individual and fitness, but it must

be noted what such terms mean. For individual we intend a candidate solution to our optimization

problem, this solution may be a single parameter, or a set of parameters based on the dimension of

the optimization problem. For fitness of an individual, we mean the quality (how well it solves the

problem at hand) of a solution that uses the given parameters that the individual carries.

Under the main category of Evolutionary Computing, over the years many branches stemming from

the same basic concepts have emerged.

In the 1960s three different families of Evolutionary Computing emerged:

- In the USA, Fogel, Owens and Walsh introduced Evolutionary Programming (EP).

- In the USA, Holland introduced his version called Genetic Algorithm (GA).

- In Germany, Reichenberg and Schwefel introduced Evolution Strategies (ES).

Each of these methods use the same basic principles of evolution but differ in their implementation.

The basic underlying idea behind all Evolutionary Computing algorithms is the same: given a

population of individuals and a measure to evaluate the fitness of such individuals, as generations

pass and natural selection takes place, thanks to the principle of survival of the fittest, the average

fitness of the population will grow as populations elapse.

This concept can easily be translated into function maximization (using a fitness function) or

minimization (using a cost function). We can imagine a simple example with a 3D surface and only

2 optimization variables, while the vertical axis corresponds to the fitness of the candidate solutions

(individuals). An initial population of candidate solutions is initialized randomly, as populations

elapse and reproduction and mutation between solutions occurs, the average fitness of the population

will increase thanks to reproductive and survival selection strategies which favour the fittest

individuals. Eventually the population should move to a position in the landscape which is correlated

to high fitness (a peak in the fitness function), leading to a solution very close to the function’s

maximum. Thus, it’s easy to see that in an Evolutionary Algorithm scenario, the fitness function

which gives a measure of how fit each individual is, must correspond to the function we want to

maximise (or minimise if using a cost function).

118

In the next chapter, a detailed view of how an Evolutionary Algorithm operates is given referencing

the main operators that are used. Later, focus will be shifted on specific operators and mechanisms

for Genetic Algorithms, which as stated earlier, are a specific family of Evolutionary Algorithms.

A.1 How does and Evolutionary Algorithm work?

As stated in the previous paragraphs, an Evolutionary Algorithm takes inspiration from evolutionary

theory by using an analogy of survival of the fittest to a population of candidate solutions, in order

to possibly reach the optimum solution to our underlying problem.

At the beginning of an algorithm run, a set of candidate solutions is randomly produced in the space

of optimization variables specific to the problem, and within the predefined bounds of such variables.

To give an example, if the function we were trying to minimize was the sphere function, each

individual would carry in its genome the X and Y coordinates of its position in the X-Y plane.

Depending on the problem dimensionality, the number of optimization variables will vary.

It must be noted that the number of candidates solutions randomly generated is chosen a priory and

is referred to as population size. Generally, the population size will remain constant throughout the

run, while the individuals making up the population will change.

Once the initial population has been initialised, each member of the population is assigned a fitness

value which depends on the function value we are trying to minimise/maximise if the optimization

parameters of such individual were plugged in to such function. Usually, the fitness is chosen to be

exactly equal to the function value.

At this point the initial individuals will be ranked by fitness and the first generation is now complete.

All further steps are needed to give life to the next generation of individuals which will either replace

or will in some cases compete against the current generation for survival.

Firstly, form the pool of current individuals, parents are picked for reproduction, this is known as

parent selection. Usually, each couple of parents gives life to 2 offspring so that the number of

offspring can easily match the population size. This is not always the case since in some

implementations the total number of offspring is larger than the population size. Competition

between offspring or between offspring and current population is then used to reduce the number of

survivors to the selected population size. In other cases (steady state algorithms) at each generation

only one offspring is produced. Whatever the total number of chosen offspring may be, once such

number has been reached, the offspring undergo mutation. Mutation allows the genotype of an

individual to mutate randomly in order to create a new mutated version of the initial gene. In other

words, the optimization parameters which an individual is carrying are mutated, forming a new

individual which replaces the non-mutated child. Mutation is not always applied to all the offspring,

usually the offspring undergo mutation with a certain probability often referred to as mutation

probability or mutation rate. Once the offspring have been created, their fitness is evaluated.

119

Now that a new set of offspring has been created and mutated, competition for survival must occur.

Different kind of survival selection methods are available but generally, the offspring can either:

- Directly form the next generation (if the number of offspring is equal to the population size).

- Compete against each other only (if the number of offspring is larger than the population

size).

- Compete against each other and the previous generation.

- No fitness-based competition occurs, the age of the solutions is used to determine who

continues to the next generation (youngest) and who is left out (oldest).

Competition can be either completely deterministic, only choosing the best candidates at each cycle,

or it can have some stochasticity introduced, thus giving a chance to suboptimal solutions to also

pass in the next generation.

The process that has just been described then continues until either a predefined termination

condition is met or when a solution of sufficient quality is found.

A pseudo code for an EA might look something like:

Figure A. 1 - Pseudo code for a generic EA [62].

A simple high-level explanation of the main forces acting on an Evolutionary Algorithm can help

explain how each operation within the above pseudocode can help the population to increase its

average fitness and finally reach an adequate solution

The main forces acting on an Evolutionary Algorithm are Variation and Selection:

- Recombination and Mutation are both variation operators. Their purpose is to create new

genetic material thus allowing the exploration of new solutions and thus of the optimization

space.

- Selection is instead the driving force which utilises the fitness information of each individual

to drive the increase of the average population fitness, thus allowing the population to exploit

the fitness information that is known.

120

A balance between exploration and exploitation is usually needed to properly reach a good solution.

Typically, at the beginning of a run, exploration must be predominant in order to allow the collection

of data about the optimization landscape and to explore new solutions. As time passes, exploitation

usually takes over in order to use the gathered information to reach an optimal solution.

The balance and trade-off between exploration and exploitation obviously depends on the type of

landscape we are facing (unimodal/multimodal, simple/complex etc) and on the specific

implementation details of the EA.

In general, if exploration is kept too high, the algorithm will act as a random search algorithm, losing

all the good traits of an EA, if instead exploitation is too high, the algorithm might make ill-suited

decisions based on too little information and may end up stuck in a local minimum.

A.2 Evolutionary Algorithms: Why?

When looking for new ideas on how to solve problems, scientists and engineers have often resorted

to nature, looking for inspiration from natural processes or living beings.

Regarding problem optimization and problem solving, two obvious candidates from which we might

take inspiration from are:

- The human brain.

- The naturally occurring evolutionary processes.

The first candidate led to the evolution of the field of neurocomputing, while the second led to the

field of evolutionary computing. Thus, as a first motivation for how and why evolutionary algorithms

came to be we can simply say, nature inspired human curiosity. This curiosity can be then directly

linked to the use of evolutionary computing not only for problem solving but used directly to better

understand natural evolution processes. Evolutionary processes can be simulated using a wide range

of parameters, simulating different population traits and different set of initial circumstances within

a matter of a few hours or days, giving researchers insights of how evolutionary processes might

have shaped passed populations or how they might shape future ones.

Obviously, such simulations have to be performed very carefully, paying attention to all

implementation details in order to get a realistic performance. But even so, this will not always ensure

that the obtained results can be directly linked to real world processes.

A second motivation for the use of evolutionary algorithms is the fast pace at which new problems,

requiring new solutions, are emerging. This fast growth pace although is accompanied by a smaller

and smaller time window to solve these problems in, thus preventing ad hoc solutions to be

developed, which would obviously take time and resources to implement. Thus, the trend is to look

for a robust general solver which can perform well under a variety of problems with only minor

adjustments. This is exactly what evolutionary algorithms are capable of, making them ideal

121

candidates for a wide variety of problems that can then be solved with minor adjustments in a

relatively short time.

A.3 Components of Evolutionary Algorithms

The main components that make up the most important parameters to be chosen when constructing

an Evolutionary Algorithm are:

- Representation

- Population

- Initialization

- Parent selection

- Recombination (or Crossover)

- Mutation

- Survival selection

- Termination condition

- Performance measure

A.3.1 Representation

The first step to take when designing an Evolutionary Algorithm is to decide which representation

type will be used to define the population members. Representation consists in finding a way to map

the solutions of our real-world problem into the population of our Evolutionary Algorithm, such that

this population can then be manipulated by the algorithm to evolve in time.

Objects forming the solution space of the original “real world” problem are referred to as phenotypes

while the encoded solutions that are then manipulated by the Evolutionary Algorithm are called

genotypes.

In this stage it is important to select a proper encoding in order to assure firstly that all possible

solutions to our problem may be explored without limitations (unless specified) and also that the

final solution of our Evolutionary Algorithm (the final genotype) then can be meaningfully translated

back into a solution of our optimization problem (a phenotype).

The type of representation used mainly depends on the problem at hand, even though in some cases,

different types of representations may work on the same problem.

Binary representation

Binary representation is one of the earliest types of representation used, especially when dealing with

Genetic Algorithms (GAs).

Binary representation simply consists in encoding a solution in a bitstring of predetermined length.

This type of encoding is quite a natural type of encoding when dealing with Boolean decision

problems where the complete solution is a simple set of a certain number of either yes or no. An

122

example of these kind of problems is the Knapsack problem, which is a sort of generalization of

many industrial problems. Imagine having a set of n items each with its own value vi and cost ci. The

problem consists in selecting a subset of such items that will maximise the sum of the single values,

while keeping the sum of the costs below a certain a priori defined threshold Cmax. It is thus natural

to use binary encoding for such kind of problems where each candidate carries a binary string where

a 1 means to keep the corresponding item while a 0 means to discard such item.

Binary encoding was also heavily used in early genetic algorithms whose phenotype solution space

was made of real numbers. For example, an individual might carry a binary string of length 32 where

each 8 bits represented an encoded real valued variable, thus in this specific example, allowing up to

256 possible values to each variable in a range defined a priori.

One of the main problems in representing real numbers using a binary encoding is that not all bits

have the same importance, thus when mutation occurs (random change of individual’s value) the

magnitude of such mutation strongly depends on which bit is mutated. This can be reformulated in

the fact that the Hamming distance between consecutive integers, mapped as binary strings, is often

not equal to one.

Ideally, during mutation, the probability of changing a 5 in to a 6 or in to a 4 should be the same,

however changing a 0101 to 0110 requires 2 bits to be flipped while changing it in to a 0100 only

requires 1 bit to be flipped. Thus, when dealing with real valued phenotypic variables, the extra work

of mapping into binary is usually not worth the effort.

Integer representation

Integer representation can be naturally used if out problem deals with the optimization of variables

which take on integer values. An example might be of moving along a path on a square grid, we

might encode North, East, South, West as {0, 1, 2, 3}.

As can be seen from the example above, integer representation can be used both wen our variables

actually represent real integers, and thus phenotype to genotype mapping is straight forward, or it

can also be used to represent a list of actions or a list of attributes on which our optimization problem

is based on.

Real valued representation

When the values we need to represent come from a continuous distribution instead of a discrete one,

it is obvious that neither binary nor integer representations are well suited to our needs. The most

natural representation in this case is a real valued representation where variables might represent

continuous physical quantities like a length, temperature, power etc.

In the early days of Evolutionary Algorithms, especially when dealing with Genetic Algorithms,

problems whose phenotypic variables were real valued numbers were often encoded using a binary

123

representation instead of a real valued representation. This was often done simply because

historically Genetic Algorithms were born using a binary representation scheme. Encoding real

valued variables as binary strings obviously causes a loss in precision since a binary string can only

be decoded in an integer number. This number can then be used to represent a position within a

predefined range, which can then lead to a floating-point number in some cases, but still, only a

limited number of floating point numbers in the predefined range can be represented in such manner,

causing a loss in precision. The other problem with binary representations of real valued numbers

was already presented previously when it was shown that the Hamming distance of two consecutive

binary numbers is not always 1, thus leading to favourable directions of mutation.

Permutation Representation

Permutation representation is used when the problem at hand requires the optimiser to decider an

ordering in which a sequence of events should happen. Permutation encodes the events as a fixed set

of integer values but differs from integer representation since it does not allow a given integer to be

repeated twice in the sequence (so any given event can only occur once in the sequence).

A classic example of this type of representation may be used when dealing with a production

scheduling problem where the problem may ask to decide in which order should some components

be produced based on the set-up times, production times etc.

A.3.2 Population

The population of Evolutionary Algorithms can be seen as a group of individuals whose role is to

hold the representation of possible solutions. Initially, the population is usually initialized at random,

thus the values of the variable that each individual carries in its genes are randomly chosen within a

predefined range. The population can then evolve in time leading to an increasing fitness and finally

a near optimal solution to the n dimensional fitness landscape on which it’s evolving on.

The population size is a key parameter to be chosen when dealing with any Evolutionary Algorithm.

The population size is usually chosen to be fixed during a single run, thus creating the competition

for survival, but in some case studies, researchers have experimented with varying population size

in order to obtain better performance from the given algorithm. Generally, a fixed population size is

a good choice for most problems.

Usually, a larger population size is preferred for complex landscapes and multimodal problems in

order to allow for better exploration. A smaller population is instead preferred for simpler landscapes,

which also allows a smaller computational cost with respect to a large population.

Population diversity is a measure of how diverse the population is, or in other words, how many

different solutions are present in the population and how different such solutions are from one

another. It is usually desirable to keep population diversity high at the beginning of a run, in order to

124

better explore the landscape and to avoid getting trapped in local minima. As the run progresses,

population diversity should drop as the population converges to a minimum, hopefully being a global

minimum.

A.3.3 Initialization

Initialization is a procedure used only once at the beginning of the run of a genetic algorithm to create

the first population of individuals. All the methods used in future generations do not apply to the first

generation since they are all based on evolutionary concepts, while the first generation has nothing

to evolve from.

Generally, a good initial population can help the algorithm to locate the optima while a bad guess

may hinder the evolution. While this topic may be intuitive, some researchers sustain that the effort

put in to finding an optimal initialization strategy may be in some sense not particularly well placed

since evolutionary algorithms can in general increase the average fitness of the population very

quickly in the first few generations. Thus, a good initialization strategy, which would cause the initial

average fitness of the first population to be higher, may only save a few elapsed generations with

respect to any other initialization technique.

Although the above statement may be true, choosing the right initialization technique may help in

solving particularly hard and large-scale problems with a relatively small population.

For a problem regarding a black-box optimization, no information about the optimization landscape

can be used by the initialization procedure to select favourable location in which to initialize the

population. In these cases, the most common initialization procedure involves a random initialization

of the initial individuals. An example is the use of pseudo-random number generators.

Many other techniques and categorizations of initialization procedures exist, and an extensive survey

can be found in the work from Borhan et al. [75].

A.3.3 Parent selection

Parent selection is the procedure of selecting a number of parents for reproduction which will yield

their offspring which will then form the next generation. Parent selection is usually not completely

stochastic, in other words, individuals with higher fitness have a higher chance of being selected with

respect to individuals with a lower fitness level. The probability distribution of parent selection over

the whole population determines what is known as selection pressure.

A high selection pressure means that low fitness candidates have a low probability of being selected

while a lower selection pressure starts to even out the field and makes parent selection tend towards

a stochastic process. It is usually preferrable to avoid the extremes of selection pressure since a

pressure which is too high will lead to an algorithm which is too greedy and not very explorative,

causing the population to get stuck in a local minimum, while a selection pressure which is too low

will cause parent selection to be stochastic and will not drive the population to increase its fitness

125

since individuals with poor performance have the same chance of reproducing as individuals with

high performance.

Selection pressure can usually be tuned based on the parent selection mechanism chosen.

The parameter through which selection pressure can be tuned is usually chosen to be constant

throughout a run, but research indicates that often, a varying selection pressure may lead to better

performance both in terms of quality and in terms of speed. The commonly chosen option when

varying selection pressure is to increase selection pressure in time since this will allow the population

to initially explore a larger solution space and not get trapped in local minima, then in time, selection

pressure can be increased in order to focus on a specific location in the search space where the

optimum probably lies.

Different parent selection schemes exist, and most of these can also be used for survival selection.

Fitness proportional selection (Roulette wheel selection)

In fitness proportional selection the probability that an individual i is chosen for mating depends on

its absolute fitness value related to the absolute fitness values of the rest of the individuals in the

population.

Given an individual i with fitness fi the selection probability of such individual using fitness

proportional selection is:

𝑃𝐹𝑃𝑆(𝑖) =
𝑓𝑖

∑ 𝑓𝑖
𝑢
𝑗=1

Over the years this selection method has been studied intensively and some of the problems which

have been discovered include:

- When fitness values are very close to one another, selection pressure is practically null. Thus,

when the run has passed the initial phase and the population starts to converge, population

fitness will usually increase very slowly because of vanishing selection pressure.

- Outstandingly fit individuals can take over the population very quickly. This causes the

search to focus on a specific location of the search space where the very fit individual lies,

causing the population to initially converge quickly thus reducing the explorative traits of

the algorithm which are desirable early on in order to properly assess the search space. This

will lead to premature convergence.

- The selection pressure changes if the fitness function is transposed. Because the fitness

proportional selection works on the relative difference of fitness between individuals, if for

126

example the fitness function is transposed, the relative difference in fitness of each individual

with respect to the others will change.

Ranking selection

Ranking selection was conceived to try and fix some of the issues present in fitness proportional

selection.

In ranking selection, the selection probability is not directly proportional to the absolute fitness of

the individual, instead, individuals are ranked based on their fitness level. This ordered list of

individuals can then be used to allocate selection probabilities to each individual based on their rank,

not directly on their fitness value.

Mapping a rank number to a selection probability can be done in different ways, the most common

are a linearly decreasing probability or an exponentially decreasing probability of selection.

Exponentially decreasing selection pressure provides a stronger selection pressure with respect to

linear selection.

Considering a population of μ individuals the selection probability of an individual with rank i where

the best individual has rank μ-1 and the worst has rank 0 can be expressed using either linear ranking

or exponential ranking:

𝑃𝑙𝑖𝑛𝑒𝑎𝑟(𝑖) =
(2 − 𝑠)

𝜇
+

2𝑖 (𝑠 − 1)

𝜇 (𝜇 − 1)

𝑃𝑒𝑥𝑝(𝑖) =
1 − 𝑒−𝑖

𝑐

Where 1 < s ≤ 2 ensures that the worst individual does not have a probability below 0.

C instead ensures that the sum of the probabilities is 1, thus C is a function of population size.

Tournament selection

Tournament selection works by picking a predefined number of individuals randomly from the

population and then selecting the best individual form such group. The size of the selected sample is

called tournament size.

Tournament selection does not require any global knowledge of the whole population and it does not

need an ordered population to work. It is therefore conceptually simple to understand and to

implement.

Selection pressure can easily be tuned in tournament selection by tuning the size of the tournament.

A large tournament will most likely include the best individual in it; thus, a high selection pressure

will result since the best individual will often be chosen. A small tournament instead will have a

127

lower chance of including the best individual, and might even only include poor individuals, thus

allowing for a lower selection pressure.

An individual within a tournament can be selected depending on the following factors:

- It’s rank in the population. This does not need to be known a priori, but it is obvious that a

higher-ranking individual has a higher chance of being selected if it is included in a given

tournament.

- The tournament size. As stated above, the tournament size can be used to vary the selection

pressure.

- The probability that the most fit member of the tournament is selected. In the classic

tournament selection format, the probability that the most fit member of the tournament is

selected is 1 (Deterministic tournament), but variants exist where the probability is <1

(Stochastic tournament).

The ease of implementation at the ability to control selection pressure simply through the tournament

size make tournament selection one of the most widely used selection methods.

Stud selection

Stud selection is a selection strategy which involves always selecting the fittest member of the

population as one of the parents used for reproduction. In other words the fittest member of each

generation acts as the Stud. Once the Stud has been identified, the next generation created by mating

the stud with all the remaining individuals in the current population.

This mating procedure will cause the number of offspring to be one less than the current number of

individuals in the population. If we want the populations to have constant size, one option is to simply

carry the stud to the next generation directly, in this way all generations will have equal size.

This method of selection and reproduction obviously has its roots in animal breeding where the fittest

individual is chosen to mate in order to hopefully produce the fittest offspring as possible.

 A.3.4 Recombination (or crossover)
After parent selection has been performed, the selected parents are then combined to produce

offspring, such procedure is known as recombination or crossover. The crossover operator takes the

genotypes from two parents and combines them to form a given number of children. Often this

number is equal to two in order to have the population size equal to the offspring number, such that

the offspring directly become the new population.

Crossover is not a deterministic operation in the sense that the portions of genetic information

exchanged by the two parents are not chosen a priori, instead the genetic information exchanged is

randomly chosen. The structure itself of the crossover operation, meaning how the genetic

128

information is chosen and later combined to form the offspring, depends on the chosen crossover

operator.

The structure of a crossover operator mainly depends on the representation chosen for the population.

Here are a few examples of crossover operators depending on the chosen representation:

1) Recombination for Binary Representation

- One Point Crossover: initially a random number is selected in the range [1, l -1] where l is

the length of the binary string encoding. This random number indicated the position where

the binary string of the two parents will be cut. Two children can be then created by

exchanging the tails of the binary encoding of the two parents after the cutting point.

The random number indicating the cutting point is chosen at random within the given range

for each set of parents. Obviously for a given couple of parents the cutting point must be

equal otherwise this would cause children with encodings of different length.

Figure A. 2 - One point crossover [62]

- n Point Crossover: n point crossover is simply the variant of one point crossover in which

instead of having only one cutting point, multiple cutting points are used. Offspring are then

created by taking alternate segments from the two parents.

The most common form of n point crossover is two-point crossover (n = 2).

Figure A. 3 - Two-point crossover [62]

129

- Uniform Crossover: Uniform crossover differs from n point crossover in such that it does

not consider sections of the genomes to be exchanged between parents, but it randomly

selects single genes from each parent that will then form the new offspring.

This procedure can be implemented by creating a random binary bitstring of the same length

of the parent’s bitstring, which is then used to decide from which parent each gene should

come from. If at a given position in the newly generated bitstring a 1 is present, then the first

child will inherit such gene from the first parent, if instead a 0 is present, the first child will

inherit the gene from the second parent.

A second child can be created from the two parents by either creating a new bitstring and

repeating the procedure, or by simply flipping the already generated bitstring so that the

second child takes its genes in a mirror like manner with respect to the first child.

In the image below, uniform crossover is performed using the second option (only one

bitstring)

Figure A. 4 - Uniform crossover [62]

By analysing the proposed crossovers for binary representations, we can notice that each

crossover presents a so-called Bias.

As an be noticed, n Point crossover has an inherent bias in that it keeps together genes that

are close to each other in the original parents. This effect is known as Positional Bias.

Differently, Uniform Crossover does not display any Positional Bias since there is no

mechanism that inherently prevents or favours a group of genes from sticking together and

being passed on to the offspring. However, Uniform Crossover does present a tendency of

transmitting approximately 50% of genes from each parent and usually hinders a large

number of genes coming from the same parent from being transmitted to the offspring. This

is known as Distributional Bias.

Generally, it is not directly possible to state which crossover operator works best on any

given problem. But knowing how the crossover operators work and knowing their biases can

130

sometimes give an insight on which crossover operator might work best for a given kind of

problem.

For example, in ordering problems where an ordering of actions or items is the output of our

problem, we might consider using n Point Crossover since it might help keep together parts

of the sequence which work well together. This is then obviously subject to the number of

objects in the list, the weight/impact each object has on the fitness function, the number of

crossover points etc.

2) Recombination for Real Valued Representation

For what concerns Real Valued Representations, three main families of recombination

operators are available.

The first option consists in recombination operators which simply assign to each of the

child’s gene, one of the corresponding genes form one of the two parents. Thus, a given gene

of a child is either the gene of one parent or the gene of the other. This is then repeated for

all genes an individual might carry. This option has the disadvantage that no new values can

be added to a gene through crossover, but only through mutation. Crossover in this case acts

kind of like a selector of genes and does not produce any new genetic material.

Recombination operators of this kind are called discrete recombination operators.

The second option are recombination operators which create new genes whose values lie

between the parent genes used for crossover.

This can be seen as creating a new gene z from the genes x & y of the two parents as:

𝑧𝑖 = 𝛼𝑥𝑖 + (1 − 𝛼)𝑦𝑖

Where α Є [0,1].

This method has the advantage of being able to create new gene values but has the drawback

that this new value is restricted to be in between the values of the genes used from the two

parents.

Recombination operators of this kind are called intermediate or arithmetic recombination

operators.

The third kind of operator involves creating new genetic material from the parent genes with

values which may also lie outside the range defined by the parent’s genes.

Recombination operators of this kind are called blend recombination operators.

Next, some of the most common operators for real valued representations are illustrated:

131

- Simple Arithmetic Recombination: Simple Arithmetic Recombination is a mixture of

discrete recombination strategy and an arithmetic recombination strategy. It involves simply

picking a random number between one and j-1 where j is the number of genes in each

individual, that is, the number of optimization variables (since each optimization variable

will be represented by a real valued number for real valued representations). To perform

crossover, simply perform the arithmetic average of all genes after the selected point, all

genes before such point come from the 2 parents.

Figure A. 5 - Simple arithmetic crossover [62]

- Single Arithmetic Recombination: Single Arithmetic Recombination is again a mixture of

discrete recombination strategy and an arithmetic recombination strategy. For this

recombination, simply pick a random gene, at that gene perform an arithmetic average of the

two parents, the other genes come directly from the parents.

Figure A. 6 - Single arithmetic crossover [62]

- Whole Arithmetic Recombination: Whole Arithmetic Recombination is a fully arithmetic

recombination strategy. It simply involves taking the weighted sum of each gene from the

two parents. This weighted sum is controlled by the parameter α which tells which parent

will influence the weighted sum more greatly.

Two offspring can be produced by using:

132

If α= 1/2 the two offspring generated will be identical, thus usually α is chosen different from

1/2.

Figure A. 7 - Whole arithmetic crossover [62]

- Blend Recombination: Blend recombination vas created in order to have the possibility to

create offspring with genes whose values can lie outside of the range of the parent’s genes.

To create an offspring, we firstly need to sample a random number u from [0, 1], then we

can calculate

𝛾 = (1 − 2𝛼)𝑢 − 𝛼

The final offspring gene value can be calculated as:

𝑧𝑖 = (1 − 𝛾)𝑥𝑖 + 𝛾𝑦𝑖

The term α can be used to control how likely it is for the child’s gene to fall in a range within

that of the parent’s genes or outside. Using α=1/2 gives equal probabilities of the two events

happening.

A.3.5 Mutation

In a conventional Evolutionary Algorithm, after the crossover operation, mutation is performed on

either the whole offspring population or on only part of it based on a given probability of mutation.

Mutation in the process of taking a single genotype and slightly modifying it according to a

predefined mutation strategy. It must be noted that mutation is a stochastic operator in the sense that

the change it causes to the genotype is random and unbiased.

What can be controlled in some sense while performing mutation is with what probability will

mutation occur, and, if mutation takes place, approximately how large will this mutation be. These

two parameters are usually referred to as mutation probability and mutation step size.

Mutation probability can vary widely from problem to problem, but in general, different Evolutionary

Algorithms use mutation differently, and thus have a different take on what ranges should the

mutation probability be in. For example, Genetic Algorithms use mutation as a secondary search

operator, leading to low mutation probabilities, while in Evolutionary Programming, mutation is

133

considered it is used as the main search operator, solely responsible for the generation of new

individuals.

Another argument that can be made while choosing the mutation probability is whether the specific

problem requires all the members of the population to reach the optimum or if only one member (the

fittest) is required to reach the optimum solution. In the former case, a smaller mutation probability

might be preferred in order to avoid disruption of a good solution of the whole population, while in

the latter case, a larger mutation might allow a better exploration of the search space.

Mutation step size instead varies according to the problem to be solved and to the ranges of the

optimization variables in question. Obviously, a large mutation step will be preferred when the search

space is very large and when the optimum might have a “soft” shape, while is the search space has a

very small range, small mutation steps are needed.

The operator through which mutation takes place depends on the type of representation used. Some

of the main mutation operators for different representation classes are presented next.

1) Mutation for Binary Representation

- Bitwise mutation: Bitwise mutation consists in creating a vector of random numbers

uniformly distributed between 0 and 1 of the same length as the genotype binary vector. This

random vector is then compared with the mutation probability 𝑝𝑚. At each position in which

the randomly generated number is smaller than the mutation probability, a bit flip is

performed in the binary genotype. Thus, on average, an increase in mutation probability will

cause an increase in the number of bits flipped. An example is presented with a probability

of mutation of 50%.

𝒑𝒎 = 𝟎. 𝟓

Figure A. 8 - Bitwise mutation

134

2) Mutation for Real Valued Representation

For real valued representations, the value that a genotype can take is no longer discrete, thus

mutation operators simply involve mutating each original genotype to a value within a

predefined domain given by a lower bound and an upper bound for each gene.

The lower and upper bounds are obviously problem dependent.

- Uniform Mutation: For uniform mutation, the mutated values (xi’) are drawn from a

uniform random distribution with bounds [Li, Ui]. This is very simple to implement but has

the disadvantage that the size of the mutation cannot be controlled since is equally probable

to pick any value within the range. Thus, depending on what the original gene value was, the

step caused by mutation might be very small or very large and anywhere in between.

- Non-Uniform Mutation: Non uniform mutation is designed so that the size of the mutation

step can somehow be controlled and is most likely to be small than very large. This is

achieved by adding to the current gene a value drawn randomly form a Gaussian distribution

with zero mean. The size of the step can be controlled by appropriately choosing the standard

deviation of the Gaussian distribution. Increasing the standard deviation will increase the

likelihood of picking larger mutation values while reducing the standard deviation will

ensure that the mutation step size will most likely be small. In the literature, the standard

deviation of the Gaussian distribution is in fact referred to as mutation step size.

After adding the value picked from the Gaussian distribution, if necessary, a truncation can

be performed to respect the predefined gene bounds [Li, Ui].

Figure A. 9 - Non uniform mutation with gaussian distribution of step size

135

A.3.6 Survivor Selection

Survivor selection is used in order to decide which members of the current child population and

parent population are going to go and form the next parent population, thus survival selection is used

at the end of a single evolutionary cycle, before a new cycle begins.

Selection is needed in order to prevent the population size from continuously growing and can be

also used to try and keep the better individuals while discarding the worst ones.

The process of discarding the worst individuals although might need to be carefully regulated since

in some scenarios, simply discarding all the lesser fit individuals and only allowing the fittest to

survival may cause premature convergence to a local optimum.

In principle any of the mechanisms used for parent selection can also be used for survival selection

but over the years many tailored solutions for survival selection have been proposed.

The main driving factors that are used for survival selection are either age or fitness. Age can be used

to discard the “n” oldest individuals each time selection has to be performed while fitness-based

selection usually discards the “n” less fit individuals. Stochasticity can be added if needed to make

the processes nondeterministic.

1) Age-Based Survival Selection

Age-based survival mechanisms are designed to ensure that each individual exists in the

population for the same number of EA iterations. This kind of survival mechanism does not

use any fitness information of the individuals, and thus might seem to be detrimental to the

goal of reaching an optimum through fit individuals. But as long as it is coupled with a

sufficient selection pressure from the parent selection stage and with a variation operator

(mutation and crossover) which is not too disruptive, a steady increase in the average

population fitness should be observed.

Age based survival selection may take different forms based on the number of offspring (λ)

and the number of members of the population (μ).

μ = λ : When the number of offspring is exactly equal to the number of members of the

population, at each cycle the parents are discarded, and the offspring form the new

population. Each individual exists for one generation only.

λ < μ: When the number of offspring is smaller than the number of members of the

generation the λ offspring are simply inserted in each generation by eliminating λ individuals

to make space. Initially the individuals eliminated are picked at random until the initial

population disappears. After μ/λ cycles, it will be possible to deterministically eliminate the

oldest λ individuals at each cycle.

136

2) Fitness Bases Selection

Fitness based survival selection mechanisms use the fitness information of the μ individuals

plus the λ offspring to decide which individuals should pass to the next generation.

Some examples of fitness-based selection strategies are presented next.

- Elitism: This technique is usually used in conjunction with age based survival selection

schemes in order to prevent the loss of the fittest member in each generation. Simply, each

time survival selection takes place, whatever method for selection is used, the currently fittest

member of the population is always inserted in the next generation.

- (μ + λ) Selection: For this selection scheme, the parent and offspring population are merged

together and ordered according to their fitness. The top μ individuals of the newly merged

population will then go and form the next generation.

This kind of selection introduces a very large selection pressure since only the best

individuals are kept. Because of this it is usually coupled with parent selection methods

which offer relatively low selection pressure. Furthermore, this kind of selection is often

detrimental if a self-adaptation of the EA parameters is in place.

- (μ, λ) Selection: This selection scheme is used when λ ≥ μ, thus when the number of

offspring is larger or equal to the number of members of the population. This strategy

involves discarding the parents and only keeping the offspring. If the number of offspring is

equal to μ, then no further computation for the selection is needed, instead, if the number of

offspring is larger than μ, the offspring are ranked according to their fitness and only the top

μ are selected as the next generation. Because at each generation, all the parents are

discarded, this kind of selection may be useful for optimization problems involving

multimodal landscapes, allowing the population to escape a local minimum more easily.

A.3.7 Termination Condition

The above steps that were previously discussed form the backbone of a single cycle/generation of an

evolutionary algorithm. The algorithm will then continuously run through generations until a

termination criterion is met. Ideally such termination criterion would be that the algorithm has found

the solution leading to the optimum of the function it is trying to optimize. But since EAs are

stochastic by nature, there is no guarantee that the optimum will be reached, and furthermore, such

optimum may not be known a priori. For these reasons a termination condition is needed in order to

stop the algorithm from running indefinitely. The main termination conditions used are:

137

- The number of generations reaches a certain limit.

- The fitness improvement remains below a predefined threshold for a predefined time.

- The population diversity is below a predefined threshold.

The first condition is usually the most widely used condition for termination.

If the function optimum was known, another termination condition may be the arrival to the target

solution.

A.3.8 Performance Measure

As a user designs an EA, a need to assess its performance compared to other optimization algorithms

or compared to different implementations of the same EA is needed.

Because EAs are stochastic by nature, a single run cannot be used to empirically determine the

performance of an EA, instead a number of experiments needs to be performed to gain sufficient

experimental data to assign a certain performance measure to the EA.

The main solution measures are based on:

- Success rate

- Solution quality

- Speed

- Success rate (SR) involves defining or knowing a priory a target solution to the problem at

hand. This is usually straight forward in standard academic problems where the optimum

solution is known, while it can also be defined for a real-world problem if enough

information about the problem is known.

An example of a possible target for a real-world problem in which the optimum is not exactly

known is to mark as a successful run, a run ending below a certain fitness threshold within a

given number of generations. If a run manages to stay within the predefined conditions, it

can be marked as successful, if it does not it is not successful.

The success rate is then simply the rate of successful runs within all the runs tested. As stated

earlier, a good number of runs must be performed to obtain a reliable performance measure.

In general, SR is used when the solution to our problem is known a priory so that the success

rate is the rate of successful runs that have found the optimum of the selected function.

- Mean best fitness (MBF) is another performance measure which is instead directly linked

to solution quality. To calculate MBF, the fitness of the best individual at each complete run

of an EA is recorded, the MBS is then the average of such values over all runs.

138

- Average number of Evaluations to a Solution (AES) considers as a performance measure

the speed of an algorithm by using the time it has taken, on average, to reach a predefined

solution. It must be noted that only successful runs (runs which manage to reach the

predefined solution) are used to calculate the AES since if also the runs which did not find

the solution were used, their number of evaluations would depend on the stopping criterion

and not at all on the target solution set, thus skewing the AES result.

- Best Ever Fitness and Worst Ever Fitness: Additionally, to the previously mentioned

fitness measures, which are the most used fitness measures since they give a statistical result

over a number of runs, best ever fitness and worst ever fitness can be two additional

performance measures which may be particularly useful in scenarios in which a single

excellent or terrible run may be important to log. For example, for one off design problems,

the best ever fitness may be the most important measure since one very good solution is all

we are looking, on the other hand, the worst ever fitness may give an insight on how bad the

worst case scenario might be for an algorithm that is running a repetitive problem and needs

to run multiple optimization cycles in real time, in which each obtained result must be used

and cannot simply be discarded.

Regarding SR and MBF it must be noted that both these measures can be used to compare algorithm

runs and implementations for a predefined limit on the computational time. If the maximum

computation time is changed, obviously the SR and MBF will change, not allowing a fair

comparison. This can be intuitively seen in the graph below where two stopping times are chosen

and based on the stopping time, algorithm A and B actually swap position in their performance

ranking. Obviously both results are valid if we are comparing A and B with the same maximum

computation time, what must be avoided in order to have a fair comparison, is to compare the two

algorithms with different maximum computation times.

Figure A. 10 - Comparison of different stopping times [62].

139

Thus recapping, for SR and MBF we define a priori a maximum computation time (e.g. generations)

and measure the algorithms effectiveness within this time window. For AES instead, the user must

first define a suitable level of target fitness, AES then considers how much time is needed on average

to reach such predefined level of fitness.

Although AES can generally give a good indicator of how fast an algorithm is, it can sometimes be

misleading depending on the structure of the EA.

Since in general AES only takes in to account the number of evaluations or of generations elapsed

until a solution is found, the total algorithm run time may vary widely depending on how long a

single evaluation (or generation) takes. This will obviously depend on how the EA is structured and

if any ‘hidden labour’ is present in any of the operators of the EA (e.g., some form of local search in

the mutation operator).

An argument can be made of then replacing the number of evaluations to solution for another time

dependent parameter, for example the CPU run time to solution, but this would cause problems in

comparing EA on different platforms since the run time would now depend on the hardware on which

the EA is running and on how such hardware is being currently utilised.

- Progress Plot: Another interesting performance measure which can be used to analyse the

performance of an EA is a plot showing the progress of the fitness measure of the most fit

individual over time. The plot can either represent a single run or can represent an averaged

value of fitness in time over multiple runs, giving more robustness to the comparison. This

kind of plot can be very useful to compare the performance of EAs since it can give a lot of

information to the user such as the number of runs until convergence, or the steepness of the

curve at the end of the run, giving an indication if a possible improvement could be made by

extending the run time, etc.

140

Appendix B: Neural Networks
Artificial Neural Networks (ANNs) are a tool which can be used to perform machine learning, such

that an algorithm learns to perform a certain task by analysing training examples of the same class

of the task we later need it to perform autonomously.

ANNs are used anywhere from speech recognition, image classification, to data regression.

Their name stems from the fact that their structure is inspired by the human brain, mimicking the

way that biological neurons transmit signals to one another.

Many types of neural networks currently exist based on their structure and internal workings.

The Feed Forward Neural Network can be considered as the simplest neural network and was the

first kind of Artificial Neural Network to be conceived.

Feed Forward Neural Networks are networks in which information can only be passed forwards, so

from input to output and not vice versa.

The basic building block of any neural network is a Neuron. In Feed Forward neural networks

neurons are stacked to produce what is called a Layer.

Layers can then be placed in a sequential manner in order to produce the basic structure of a Feed

Forward Neural Network.

Figure B. 1 - Basic structure of a feed-forward neural network

As can be seen from the above image, in Feed Forward Neural Networks (FFNNs) the output of each

neuron is passed on as information to each neuron on the next layer. This produces what is known as

a Fully Connected Layer (each neuron passes its output to all neurons in the next layer).

Notice that the number of neurons in any given layer does not depend on the number of neurons in

the other layers. The number of neurons in a given hidden layer is a design specification which can

be set in order to create a Neural Network with the desired working characteristics.

What is important though, is the number of neurons in the input layer and in the output layer. As can

be assumed from their names, the neurons in the input and output layers represent the inputs we feed

141

to the neural network and the corresponding outputs we need the net to produce. Thus, it is obvious

that the number of neurons in the input and output layers is problem dependant.

B.1 Neurons

As stated earlier, the basic building block of an Artificial Neural Network is called a neuron.

Neurons are simply nodes whose purpose is to take an input and produce and output based on the

activation function and bias assigned to such neuron.

Figure B. 2 - Working principle of an ANN neuron

As we saw earlier, the input to any given neuron is coming from the neurons in the previous layer.

To produce the output of a neuron, firstly the weighted sum of all the inputs is performed. This

implies having a certain weight assigned to each connection between neurons. To such sum a bias,

which is simply a number, can be added in order to shift the result of the sum preferentially towards

a given direction or in order to create a threshold based on such bias. After the weighted sum is

performed, the resulting number is passed through an Activation Function whose purpose is to add a

nonlinear behaviour to the algorithm or also to simply bound the output value of the neuron within a

certain range. The resulting output from the activation function is then the final output of the neuron,

this output is then passed on to all neurons in the next layer and the cycle continues until the

information gets to the final layer, the output layer.

The equation for the output of a neuron with activation function g and bias w0 can be written as:

�̂� = 𝑔 (𝑤0 + ∑ 𝑥𝑖 𝑤𝑖

𝑚

𝑖=1

)

142

B.2 Activation functions

Many types of activation functions have been proposed through the years [76]. Each has its own

advantages and disadvantages, and many are only suited for a particular class of problems.

B.2.1 Hidden layer activation functions

Typically, nonlinear and differentiable functions are used as activation functions in hidden layers.

Nonlinear functions allow the network to have non linearities in its governing equations and in turn

allows to learn more complex functions. Differentiability is key since the derivative of the activation

function will be later used by the backpropagation algorithm.

The most commonly used activation functions for a hidden layer are:

- Rectified Linear Unit (ReLU)

- Sigmoid

- Hyperbolic Tangent (Tanh)

1) ReLU
The rectified linear activation function is one of the most commonly used for the hidden

layers in modern Neural Networks and was popularized in 2010 by Nair and Hinton for

Restricted Boltzmann machines [77] .

Its recent popularity is due to the fact that it is less susceptible to the vanishing gradient

problem which prevents deep networks from improving their learning abilities [78] [79].

For all its advantages, the ReLU function does suffer from what is called the dying ReLU

problem [76].

This occurs when a large number of ReLU neurons only output 0 and thus the gradient will

fail to flow during back propagation (which is how Neural Networks learn) since the

function’s gradient is zero in the left half plane. This will cause a large part of the network

to become inactive or die.

This phenomenon can be prevented by either using smaller learning rates or by simply

replacing the ReLU function with a Leaky ReLU.

The Leaky ReLU adds a small slope for negative inputs. This allows the output to be non-

zero and thus it prevents neurons from dying off.

143

The mathematical definition of the ReLU function is as follows

𝑔(𝑥) = max(0, 𝑥) = {
 𝑥 𝑖𝑓 𝑥 ≥ 0
 0 𝑖𝑓 𝑥 < 0

Figure B. 3 - ReLU activation function

The mathematical definition of the Leaky ReLU function is as follows

𝑔(𝑥) = {
 𝑥 𝑖𝑓 𝑥 ≥ 0
 𝑎𝑙𝑝ℎ𝑎 ⋅ 𝑥 𝑖𝑓 𝑥 < 0

 Figure B. 4 - Leaky ReLU activation function

144

Some of the advantages of using this activation function can be [80]:

• Neural networks using ReLU activation functions are computationally cheaper than

networks using sigmoid or tanh activation functions.

• Neural networks that use ReLU activation functions usually converge much faster

than networks using saturating activation functions with gradient descent.

• The derivative of the ReLU activation function is equal to 1 in the right-hand plane

of the function. This can help avoid trapping into local optima and resolves the

vanishing gradient problem.

The main problem which accompanies ReLU functions is that the function derivative in the

left plane is equal to 0, meaning it’s left-hard-saturating. This may lead to what is known as

the dying neuron phenomenon which causes the affected neurons to shut down and their

weights and biases to not be updated and the neurons will not be activated any longer.

2) Sigmoid
The sigmoid activation function, sometimes called a “squishing” function, maps all input

values in a range between 0 and 1. This activation function is inspired from the activation

functions found in the neurons of our brain where often neurons fire following a sigmoidal

trend.

As can be seen, the sigmoid is a non-symmetric function, thus all neurons will have only

positive outputs. This can sometimes be a problem which can be addressed by using a Tanh

function.
The mathematical definition of the sigmoid function is as follows.

𝑔(𝑥) =
1

1 + 𝑒−𝑥

 Figure B. 5 - Sigmoid activation function

145

Because of its inherent saturation for large magnitudes of inputs, the sigmoid (and also tanh)

function is seldomly used for the hidden layers of deep neural networks because of the

vanishing gradient problem it can cause. The sigmoid function is thus usually used for

shallower networks or even as an output layer activation function because of its bounding

abilities with a smooth transition between 0 and 1.

3) Tanh
The Hyperbolic Tangent (Tanh) activation function is very similar to the sigmoid function,

the only difference is that it’s symmetric with respect to the origin. This allows the output of

neurons to take both positive and negative values between -1 and +1.

The mathematical definition of the tanh function is as follows.

𝑔(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

Figure B. 6 - Hyperbolic tangent

The hyperbolic tangent activation function is usually preferred over the sigmoid function

because of its symmetry with respect to 0 which means that most of its outputs will usually

be small. In addition, nets using the tanh function converge faster than those using sigmoid

activation functions [81].

146

B.2.2 Output layer activation functions

The most commonly used activation functions for the output layer are:

- Linear activation function

- Sigmoid activation function

- Softmax activation function

1) Linear activation function
The linear activation function, as its name suggests, linearly transposes the input to the

output. When using this function, the output is not bonded and thus can take any value.

This function is only usually used in output layers since as stated earlier, to map complex

data, a non-linearity must be introduced in our net, and this being a linear function it could

not serve such purpose. It is instead often used as an output activation function in regression

problems where we don’t want the output data to be altered in scale.

 Figure B. 7 - Linear activation function

2) Sigmoid activation function

This function was already presented earlier as a candidate for a hidden layer activation

function. It can also be used as an output function when we need our output to be scaled

between 0 and 1. This might happen when for example we are facing a multilabel

classification problem and need to know to which categories our inputs belong to, or when

we need to for example predict a probability

3) Softmax activation function
A softmax activation function outputs a vector of values which sum to 1. The size of the

output vector is equal to the size of the input vector thus, this function is especially useful in

multiclass classification when we need to classify an object and select the appropriate class.

Softmax thus returns the single probabilities that such object belongs to a certain class, a

decision can then be made from the obtained probability values.

147

B.3 How neural networks are trained

Before ANNs can be used to solve actual problems, ANNs must be trained.

Training involves using a training dataset which is comprised of a series of inputs and a series of

known desired outputs that we wish the net to produce when it is fed the corresponding inputs.

An example might be a classification problem in which we show the net a series of images of cats

and dogs, each of which is labelled with the correct name, either cat or dog. We then show the neural

network such image inputs and we also tell the net which are the correct outputs it should produce,

so which name corresponds to which image. This is known as the training phase of the network.

During this phase, the network updates its internal weights and biases, based on the training set it is

provided with, in order to learn whatever task it was assigned to solve. In the simple case above it

learns to sort images of cats and dogs.

The process of updating the biases and weight during training occurs through an optimization of the

loss function or error function or performance function which tells the user how well (or badly) the

network is doing on the training data, so how close is the output of the network to the desired output.

Since Artificial Neural Networks learn to map inputs to desired outputs from the examples proposed

during the training session, an adequate loss function must be used depending on the specific problem

at hand, may it be for example a classification or a regression problem.

Choosing the right loss function for the problem at hand is a critical step, a bad choice of the loss

function might lead to unsatisfactory results simply because the loss function is not adequately

representing the performance of our neural network.

In this text, only loss functions suited for regression problems will be analysed since no classification

problems are faced in this discussion.

B.3.1 Loss functions for regression problems

In a regression problem, the network is tasked to learn how to predict real valued quantities.

One example might be the prediction of the remaining milage in a car given a set of signals coming

from the accelerator, how much fuel is left in the tank etc. The most common loss functions used for

regression problems are:

- Mean absolute error loss (MAE)

- Mean squared error loss (MSE)

- Root mean square error loss (RMSE)

148

Mean absolute error (MAE)

The mean absolute error loss is probably the easiest error function to implement because it is simply

the mean of the absolute error (difference) between the actual and predicted output values during

training.

The equation for the MAE can be written as:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − �̂�𝑖|

𝑛

𝑖=1

From the above formula we can see that the MAE increases linearly with the size of the error.

 Figure B. 8 - Mean absolute error

Advantages

- Easy to implement

- Computationally inexpensive

- Robust to outliers

Drawbacks

- MEA does not consider the order of magnitude of the outputs. If the Neural Network under

consideration has multiple outputs and they have different orders of magnitude, when

computing the MEA this will not be considered. This is obviously a drawback since MAE

of 1 on a scale of 10 is very different than on a scale of 1000.

- MAE presents a large gradient even for small error vales. This is detrimental for the learning

process in ANNs.

149

Mean squared error (MSE)

The mean squared error (MSE) is the go-to loss function when dealing with regression problems.

The MSE is calculated by computing the square of the errors and then taking it’s mean.

This created a quadratic scoring method which is not proportional to the error as in MAE but it’s

proportional to the square of the error. This causes the loss to be much greater for relatively larger

errors while smaller errors are not penalized so much.

This behaviour can be understood by looking the MSE equation and the graph correlating MSE to

loss.

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

 Figure B. 9 - Mean squared error

Advantages

- The gradient reduces gradually as the error shrinks, thus allowing the optimization algorithm

to converge to the minimum efficiently.

Drawbacks

- The very large loss caused by a large error might cause drastic jumps during backpropagation

and the update of weights and biases, which is usually undesired.

- MSE is sensitive to outliers

150

Root mean squared error (RMSE)

As the name suggests, RMSE is simply the MSE with an additional square root applied.

This renders RMSE a linear loss function, similar to MAE.

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦�̂�)

2

𝑛

𝑖=1

Figure B. 10 - Root mean squared error

Advantages

- Penalizes larger errors more than MAE. This is a desirable trait if we are facing a problem

where the seriousness of the error grows faster than the error itself. So having an error of 10

is more than double as bad as having an error of 5.

Drawbacks

- Just like MAE, it’s a linear function of the error, thus its gradient is large even when small

errors are present.

151

B.4 Optimization techniques for neural networks

Once a performance function/loss function has been defined, an optimization procedure must be

performed to minimise the function in order for the network to increase its performance and learn

how to solve a specific set of tasks. This process is an iterative process where many training examples

are fed to the network and where the network’s parameters (weights, biases etc) are modified in order

to minimise the chosen performance/loss function which in turn reflects the performance of the

network.

There are several different classes of network learning laws, such as associative, competitive learning

and performance learning. Many different learning laws exist that fall under the category of

performance learning. These learning laws are distinguished by the fact that during training the

network parameters are adjusted in an effort to optimize the “performance” of the network.

The general setup for performance learning involves two steps.

The first step is to choose the performance/loss function which will define what is meant by network

“performance”. The performance index must be chosen so that it guarantees that the corresponding

performance surface has a minimum point (the target optimum).

 The second step is to the perform a search of the parameter space of the network in order to try and

reduce the performance index and hopefully reach a minimum of the performance function.

Note that the performance function will be a function of the network parameters, i.e., the weights

and biases.

B.4.1 Conditions for optimality

Now that the general setting of the problem ah hand has been defined it is possible to define some

necessary conditions for optimality of a candidate point on the performance surface.

Considering F(x) as a multivariable function representing the performance function whose variables

represent the variables in the neural network structure (weights and biases) and considering 𝑥∗ as a

candidate point for a minimum of the performance function, we may write multiple conditions in

order to ensure that such point is a minimum of the performance function.

1) First order conditions

A first order condition is for the gradient at 𝑥∗ to be equal to zero. This is a necessary but

not sufficient condition for 𝑥∗ to be a local minimum point.

𝛻𝐹(𝑥)|𝑥=𝑥∗ = 0

Any points satisfying the above equation are called stationary points.

152

2) Second order conditions

Assuming now that point 𝑥∗ is a stationary point a new condition is needed to verify that

such point is a minimum point.

- A necessary condition for 𝑥∗ to be a minimum (strong or weak minimum) point is that the

Hessian matrix related to F(x) must be positive semidefinite. This condition can be tested by

verifying that all the eigenvalues of the matrix are non-negative.

𝛻2𝐹(𝑥)|𝑥=𝑥∗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑠𝑒𝑚𝑖𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒

- A sufficient condition for 𝑥∗ to be a strong minimum point is that the Hessian matrix related

to F(x) must be positive definite.

𝛻2𝐹(𝑥)|𝑥=𝑥∗ = 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒

B.4.2 Performance optimization: basic optimization algorithms

In the first part of this chapter, the main basic optimization strategies will be presented, namely

gradient descent with steepest gradient, conjugate gradient and the stochastic/minibatch variants.

Again, in this chapter we consider the performance function as a given without specifying which

performance function is used.

Given a performance function F(x) which in some sense reflects the performance of the neural

network, the objective of the optimization algorithm is find a value of x (where x represents the

vector variables on which F is dependent on) that minimizes F(x).

Most optimization algorithms are iterative algorithms. These algorithms begin their search from an

initial guess 𝑥0 and then update the guess based on an equation of the form:

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑝𝑘

Where 𝑝𝑘 is a vector representing a search direction and 𝛼𝑘 is a positive scalar called learning rate

which determines the size of the step in the 𝑝𝑘 direction.

The algorithms discussed from here on are distinguished by how each chooses the search direction

𝑝𝑘.

153

Steepest Descent

The steepest descent algorithm entails moving at each step always in the direction of steepest descent.

Calling 𝑔𝑘 the gradient evaluated at the “old” guess

𝑔𝑘 = 𝛻𝐹(𝑥)|𝑥=𝑥𝑘

Any vector 𝑝𝑘 that satisfies:

𝑔𝑘
𝑇𝑝𝑘 < 0

Is called a descent direction. In practice this means that if we take a small enough step in this direction

the function will decrease. Although taking enough adequate steps in a given set of generic descent

directions would bring to the minimization of the performance function, a better solution would be

to choose the descent direction of steepest descent at each iteration. The direction of steepest descent

occurs when 𝑔𝑘
𝑇𝑝𝑘 is most negative.

Therefore, the vector 𝑝𝑘 that points in the direction of steepest descent is given by:

𝑝𝑘 = −𝑔𝑘

From this definition it is possible to define the method of steepest descent:

𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘

Regarding the learning rate 𝛼𝑘 different techniques can be used to select its value. The simplest

methods use either a fixed learning rate throughout the run or a variable learning rate that changes

according to a predetermined rule (e.g., 𝛼𝑘=1/k).

The size of the learning rate is an important hyperparameter that must be chosen carefully in order

to obtain good performance from the algorithm.

Consider an example of a 2-variable performance function F(x1, x2) for which we can draw the

contour plot. For small leering rates, the steepest descent trajectory will follow a path that is

practically always orthogonal to the contour lines. This will guarantee a precise and efficient path

towards the minimum but might take a long time because of the very small steps taken at each

iteration.

154

Figure B. 11 - Trajectory for steepest descent with small α

Although a larger learning rate might be desired to speed up convergence, if the learning rate was set

too high the result might be an oscillating trajectory which in turn will not save time.

Figure B. 12 - Trajectory for steepest descent with larger α

If the learning rate is still increased at this point, an unstable learning rate might eventually be reached

for which convergence will not be possible and the algorithm’s oscillations will not decay but will

grow.

Figure B. 13 - Trajectory for steepest descent with unstable α

The α value which guarantees an upper stability limit to the algorithm cannot be fund for any arbitrary

performance function, but it is possible to show that for quadratic functions such limit is:

α <
2

𝜆𝑚𝑎𝑥

Where 𝜆𝑚𝑎𝑥 is the larges eigenvalue of the Hessian matrix of the performance function F(x).

155

Conjugate Gradient

The conjugate gradient method is similar to the steepest descent method but instead of using

directional vectors pointing in the direction of steepest descent it uses conjugate vectors.

It can be shown that if a sequence of linear searches is performed along a set of conjugate directions,

then the exact minimum of any given quadratic function will be reached in at most n steps, where n

corresponds to the number of parameters characterizing the quadratic function. This property is

known as quadratic termination. This property makes the conjugate gradient method much more

efficient that the simple steepest descent method.

Other search algorithms such as Newton’s Method also possess this characteristic, but the conjugate

gradient method possesses the advantage (compared to Newton’s Method) that it does not need to

calculate and store the second derivatives of the performance function. This is particularly

advantageous when dealing with functions of a large number of variables as in neural networks since

the Hessian of a function of n elements requires the calculation of 𝑛2 elements.

It can be shown that search directions are conjugate if they are orthogonal to the changes in the

gradient at successive iterations of the algorithm:

𝛥𝑔𝑘
𝑇𝑝𝑗 = 0 𝑘 ≠ 𝑗

It must be noted that the first search direction is chosen arbitrarily. It is thus common practice to

choose the first search direction in the direction of steepest descent:

𝑝0 = −𝑔0

As for the steepest gradient method, the step at each iteration can always be defined as:

𝛥𝑥𝑘 = 𝛼𝑘𝑝𝑘

The size of the learning rate 𝛼𝑘 must be chosen so that we minimise the performance index with

respect to 𝛼𝑘 at each iteration. For a generic performance function this requires a line search, but for

a quadratic function it can be shown that given a certain direction 𝑝𝑘, the value of 𝛼𝑘 which

minimises 𝐹(𝑥𝑘 + 𝛼𝑘𝑝𝑘) is:

𝛼𝑘 = −
𝑔𝑘

𝑇𝑝𝑘

𝑝𝑘
𝑇𝐴𝑘𝑝𝑘

156

Where:

- 𝐴𝑘: Hessian matrix evaluated at old position 𝑥𝑘

- 𝑔𝑘: Gradient direction

- 𝑝𝑘: direction vector for kth step

Finally, at the successive iterations, it is necessary to compute the next vector 𝑝𝑘 which must be

orthogonal to {𝛥𝑔0, 𝛥𝑔1, 𝛥𝑔2, … . . , 𝛥𝑔𝑘−1}.

It can be shown that such a vector can be constructed as:

𝑝𝑘 = −𝑔𝑘 + 𝛽𝑘𝑝𝑘−1

The values of 𝛽𝑘 can be canonically chosen from the following most common choices:

𝛽𝑘 =
𝛥𝑔𝑘−1

𝑇 𝑔𝑘

𝛥𝑔𝑘−1
𝑇 𝑝𝑘−1

𝑓𝑟𝑜𝑚 𝐻𝑒𝑠𝑡𝑒𝑛𝑒𝑠 𝑎𝑛𝑑 𝑆𝑡𝑖𝑒𝑓𝑒𝑙

𝛽𝑘 =
𝑔𝑘

𝑇 𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

𝑓𝑟𝑜𝑚 𝐹𝑙𝑒𝑡𝑐ℎ𝑒𝑟 𝑎𝑛𝑑 𝑅𝑒𝑒𝑣𝑒𝑠

𝛽𝑘 =
𝛥𝑔𝑘−1

𝑇 𝑔𝑘

𝑔𝑘−1
𝑇 𝑔𝑘−1

𝑓𝑟𝑜𝑚 𝑃𝑜𝑙𝑎𝑘 𝑎𝑛𝑑 𝑅𝑖𝑏𝑖é𝑟𝑒

157

Stochastic gradient descent / mini batch stochastic gradient descent

Gradient descent in its simplest form uses the gradient information of the individual losses of each

training example in the whole training dataset before making a single well-informed step in the

direction of steepest descent. Although this allows for a precise step based on all training information,

it increases training time. A solution to the problem, is to use either stochastic gradient descent or

mini batch stochastic gradient descent where the gradient is not calculated using the whole dataset,

but only a subset of it (mini-batch) or one single training example (stochastic).

Stochastic gradient descent works just as gradient descent does, but instead of using the whole dataset

before making a decision, weights and biases are updated at each training example.

This in turn makes the whole training process take steps much more often.

The drawback is that since each step is taken while considering only a single training example, the

direction of the step is only based on the gradient delivered by such training example. This causes

the step to very likely be in a direction that is not exactly optimal for the whole dataset.

Figure B. 14 - Examples of trajectories taken from SGD and simple GD

In general, this is not a problem since the combined effect of many steps will eventually lead in the

correct direction. Thus, in general, the gradient descent method used to train neural networks is still

Stochastic Gradient Descent since it delivers huge time savings with respect to simple GD.

Mini batch stochastic gradient descent is middle option between stochastic gradient descent and

simple gradient descent. At each iteration, a group of training examples called mini batch is used to

update the weights and biases of the net. This in turn allows the average effect of more than one

training example to be used to make a decision in which direction to move. This allows for a slightly

longer time to train with respect to stochastic gradient descent, but a more informed decision when

taking a step.

Figure B. 15 - Examples of trajectories taken from SGD and simple Mini-Batch GD

158

B.4.3 Performance optimization: improvements on basic optimization algorithms

Over the years, many improvements have been suggested to increase the performance of the basic

implementations of gradient descent proposed in the previous chapter. The main improvements

presented here fall within two main categories: momentum and adaptive learning rate. From these

two improvements, different algorithms implementing these two main ideas have spawned.

Momentum

Momentum was added to the simple gradient descent by borrowing the concept of momentum from

physics. This is achieved by enforcing each step in the newly calculated direction to also have a

contribution coming from the direction of the previous timestep. In practical terms this is achieved

by calculating what is known as velocity and by adding a term which acts as friction.

Velocity v is simply computed by adding to the currently calculated step (learning rate * gradient) a

portion of the previously computed step weighted by the friction factor γ.

𝑣𝑘 = 𝛾 ⋅ 𝑣𝑘−1 + 𝛼𝑘𝑔𝑘
The descent step is then calculated as:

𝑥𝑘+1 = 𝑥𝑘 − 𝑣𝑘
The addition of momentum helps to prevent large oscillations in stochastic gradient descent thanks

to the fact that there is now also a contribution coming from the previous training example.

Note that if the friction parameter γ is set to zero, the algorithm returns to simple steepest gradient

descent.

Other more complicated implementations of the same basic idea of momentum have also been

developed throughout the years such as the Nesterov Accelerated Gradient Descent (NAG)

Adaptive learning rate

The second main addition to the basic steepest descent algorithm was to adapt the learning rate on

the fly based on how often a given parameter actually influences the performance function. Some

parameters may be “active” in the function minimisation process more often than others, by adapting

the learning rate to how often a given parameter is used/updated allows to dynamically optimise the

size of the steps based on the single current optimization step. This is a powerful tool for data sets

containing data ranging from sparse to very dense.

Some of the main algorithms that use adaptive learning rates are Adagrad, RMSProp and Adam.

159

Adaptive gradient descent (Adagrad)

The key idea behind Adagrad is to have an adaptive learning rate for each of the weights. It performs

large updates for parameters which are less frequent, and small steps for parameters which are

frequently observed.

Adagrad adjusts the learning rate in time, not by considering the overall elapsed time or the overall

iterations, but it proposes a schedule based on the number of times a particular feature is seen.

Parameters associated with infrequent features could potentially only receive updates whenever these

features occur. Thus, if a learning rate is decreased based on a total elapsed time, parameter control

for the infrequent features might reach a very low learning rate before the infrequent feature can be

observed properly. The advantage of counting the number of times a feature is observed is now

obvious.

In Adagrad, instead of an actual count, an aggregate of the squares of the previously observed

gradients is used. We define 𝒔𝒕 as a variable to accumulate past gradient variance. In the following

example the per-parameter update formulations are proposed which can then simply be put in vector

form to account for all the remaining variables.

𝑠𝑘,𝑖 = 𝑠𝑘−1,𝑖 + 𝑔𝑘,𝑖
2

The weights can then be updated as:

𝑥𝑘+1,𝑖 = 𝑥𝑘,𝑖 −
𝛼

√𝑠𝑘,𝑖 + 𝜀
𝑔𝑘,𝑖

Where α is the initial learning rate, ε is an addition constant so that it’s impossible to divide by zero,

k is the time step and i is the variable index.

Advantages

- Learning rate is different for each parameter independently

- No need for manual tuning of the learning rates

- Parameters which are infrequent won’t risk having small learning rates prematurely

Drawbacks

- Computationally expensive

- Since the learning rate is continuously decreasing, if the number of computations needed to

find a solution is very large, training might get very slow.

- For deep learning problems, Adagrad might decrease learning rate too fast

160

RMSProp

One of the problems with Adagrad is that the learning rates might become very small when the

number of iterations is large. Also, for deep learning problems, Adagrad might reduce the learning

rate far too quickly. The problem is that Adagrad accumulates the squares of the gradient 𝑔𝑘 into a

vector 𝑠𝑘 = 𝑠𝑘−1 + 𝑔𝑘
2 which causes 𝑠𝑡 to keep growing due to the lack of normalization. In turn

the weights keep decreasing. To fix this problem RMSProp uses a leaky average to accumulate the

squares of the gradient.

𝑠𝑘 = (1 − 𝛾)𝑔𝑘
2 + 𝛾𝑠𝑘−1

𝑥𝑘+1 = 𝑥𝑘 −
𝛼

√𝑠𝑘 + 𝜀
𝑔𝑘

Where γ is > 0. This additional freedom allows to prevent the denominator beneath the learning rate

α to become too large and cause learning to become extremely slow.

Adaptive Moment Estimation (Adam)

Adam can be considered as a combination of RMSProp and stochastic gradient descent with

momentum. Adam uses leaky averaging to obtain an estimate of both the momentum and also the

second moment of the gradient. In addition to storing the decaying average of past gradients, it also

stores a decaying average of past gradients used for momentum. This is done individually for each

variable, allowing to have individual learning rates and individual momentum changes.

𝑣𝑘 = (1 − 𝛽1)𝑔𝑘 + 𝛽1𝑣𝑘−1

𝑠𝑘 = (1 − 𝛽2)𝑔𝑘
2 + 𝛽2𝑠𝑘−1

The new step becomes:

𝑥𝑘+1 = 𝑥𝑘 −
𝛼

√𝑠𝑘 + 𝜀
𝑣𝑘

Where 𝛽1 and 𝛽1 are non-negative weighting parameters often set to 𝛽1 = 0.9 and 𝛽2 = 0.999.

Thanks to the combination of the best different aspects from different optimization algorithms, Adam

presents itself as one of the most robust and effective optimization algorithms used in deep learning.

Advantages

- Fast convergence to minima

- Robust

Drawbacks

- Possible failure to converge when second moment estimate 𝑠𝑡 blows up

- Computationally costly

161

B.5 Long Short-Term Memory (LSTM) neural networks

LSTM neural networks are a particular kind of neural networks belonging to the class of recurrent

neural networks. These kinds of networks are particularly useful at processing data linked to a

timeseries such as video, speech data or any other sequential data. The peculiarity of these kind of

networks with respect to traditional neural networks is their ability to store or discard past

information that has been fed to the network up until a certain moment. This can be seen as a sort of

memory of past events used to better process current event which is similar to how a human would

take decisions. When we think or when we process information, we do not only rely on the current

information being fed to our brains, but we use past information, both long and short term, in order

to take better decisions.

From this point of view, LSTM networks can be seen as networks which have internal loops within

them to allow a given set of information of past events to persist.

Figure B. 16 – Basic idea behind recurring neural networks and LSTM networks [82].

In the above image an input 𝑥𝑡 is fed to a cell A which then produces an output ℎ𝑡, with the addition

of an internal loop to feed information back to the cell. This concept may be hard to grasp, so it can

be easier to imagine the looping network as a succession of multiple copies of the same network,

each copy dealing with the inputs at a given time step and then passing on information to the next

network used for the next time step.

Figure B. 17 - An unrolled LSTM network [82].

162

As can be seen in the above image, an LSTM network, or any other recurrent network for that matter,

naturally “unrolls” or “unfolds” to the length of the input sequence fed to the network.

The peculiarity of LSTM networks with respect to standard recurrent neural networks lies within the

repeating cell.

Standard recurring neural networks usually possess very simple repeating modules, such as modules

only containing a single tanh network layer.

Figure B. 18 - Repeating module or cell for a RNN [82].

This simplicity of the repeating module or cell is one of the reasons why RNNs suffer from long-

term dependency learning difficulties where they struggle to connect relevant information from

previous time steps to current events if the time gap to the past information is too large.

LSTM networks instead were conceived with this problem in mind, and what results is a much more

complex repeating module than what is found in standard RNNs.

LSTM networks were introduced by Hochreiter and Schmidhuber in 1997 [83] and through the years

have been refined by many others to avoid the long-term dependency problem of standard RNNs,

making them extremely well suited to tackle problems related to long time series, especially when

relevant information needs to be stored and kept relevant for long periods of time.

LSTM networks achieve this behavior thanks to the specially designed repeating module composed

of four neural network layers and different pointwise operations at different points in the information

flow.

Figure B. 19 - Repeating module of a LSTM neural network [82].

163

Where in the above diagram we have:

Figure B. 20 - List of symbols for LSTM module [82].

The information that is passed from one cell to the next (so from one time step to the next) is both

the current output ℎ𝑡 and what is known as the cell state 𝐶𝑡.

The cell state can be considered as the mechanism used to keep memory of past information, or past

outputs/predictions and let it flow to the next cells, carefully regulated by structures called gates.

Gates allow to select which information and how much of it to let through, so they act as a sort of

memory management where they decide which information is relevant and thus should be kept and

which information can be discarded.

As can be seen in figure B.19, the processed and gated information in a concatenation of the past

output and the current input. This information is then passed simultaneously to multiple gates, each

performing a specific operation in order to produce the next output and next cell state.

B.5.1 Forget gate layer

The forget gate is responsible to interpret the current input and past output information in order to

decide what information needs to be discarded form the cell state.

This operation is achieved thanks to a sigmoid layer which produces a value between 1 and 0 for

each variable in the merged input and past output vector. This vector then multiplies the past cell

state, effectively gating each value. If the sigmoid layer outputs a value equal to 1 for a given position

in the vector, the subsequent multiplication will translate in to letting all the information through in

that position, while if a 0 is outputted from the sigmoid layer, the vector wise multiplication will

translate in to forgetting all the information in the corresponding position of the cell state vector.

Figure B. 21 – Forget gate and operation on old cell state [82].

164

B.5.2 Ignore gate layer or input gate layer

The ignore gate layer is used to gate the newly created or predicted cell state so to ignore part of this

new vector. First, the new vector 𝐶�̃� of candidate values for the cell state is created through the use

of a tanh layer. In parallel, a sigmoid layer is used to produce a vector of values spanning between 0

and 1 which are then used in a vector multiplication operation to decide how much of each of the

new candidates in 𝐶�̃� to let through. This operation of using a vector from a sigmoid layer to gate

another vector is the basis of the gating operations used in LSTM neural networks.

Figure B. 22 - Ignore gate operation [82].

B.5.3 Updating the cell state

Finally, after forgetting the unwanted information form the old cell state and creating new gated

candidates, the cell state can be updated. This is simply achieved through simple vector addition of

the old, gated cell state, rid of what was deemed forgettable, and the new gated candidates.

Figure B. 23 - Updating the cell state [82].

165

B.5.4 Creating the output of the cell

With the cell state created it is now possible to create the output of the cell, which is the actual output

that out neural network is trained to produced. The output is based on the cell state, but it will be a

filtered version of it.

Again, similarly to what was done in the forget and ignore gates, a sigmoid layer is used to produce

a vector of values ranging from 0 to 1 which will be used to decide which and how much of each

value in the cell state is going to be used to produce the output ℎ𝑡.

The cell state is then passed through a tanh pointwise operation in order to compress all the values

within the cell state between -1 and 1. The resulting squashed cell state is then multiplied by the

vector coming from the sigmoid layer. The resulting filtered or gated values represent the output ℎ𝑡.

Figure B. 24 - Creating the output vector ht [82].

166

167

Bibliography

[1] IRENA, "Offshore renawables: An action agenda for deployment," International Renewable

Energy Agency, Abu Dhabi, 2021.

[2] IRENA, "Renewable capacity statistics," International Renewable Energy Agency , Abu

Dhabi, 2021.

[3] IRENA, "Innovation outlook: Ocean energy technologies," International Renewable Energy

Agenecy, Abu Dhabi, 2020.

[4] U. Nations, "The Ocean Conference," in Factsheet: People and Oceans, New York, 2017.

[5] IRENA, "irena.org," 2020. [Online]. Available: https://www.irena.org/Statistics/View-Data-

by-Topic/Finance-and-Investment/Investment-Trends.

[6] J. A. S. C. I. M. d. A. I. K. Iraide Lòpez, "Review of wave energy technologies and the

necessary power-equipment," in Renewable and Sustainable Energy Reviews, volume 27,

2013, pp. 413-437.

[7] A. R. P. M. N. S. B. Drew, "A review of wave energy converter technology.," Institution of

Mechanical Engineers, Part A: Journal of Power and Energy, pp. 887-902, 2009.

[8] P. B. Balazs Czech, "Wave enrgy converter concepts: design challanges and classification,"

IEEE Industrial electronics magazine, pp. 4-16, 2012.

[9] C. S.-W. Kester Gunn, "Quantifying the global wave power resource," Renewable Energy, vol.

44, pp. 296-304, 2012.

[10] G. Komen, "Guide to Wave Analysis and Forecasting," Journal of fluid mechanics, vol. 234,

no. 1, 1992.

[11] B. L. Méhauté, An Introduction to Hydrodynamics & Water Waves, Springer Science, 1976.

[12] A. F. Molland, The Maritime Engineering Reference Book, Butterworth Heinemann, 2008.

[13] L. M. Willard J. Pierson Jr, "A prooposed spectral form for fully developed wind seas based

on the similarity theory of S. A. Kitaigorodskii," Journal of Geophysical Research , vol. 69,

no. 24, pp. 5181-5190, 1964.

[14] e. a. Klaus Hasselmann, "Measurement of wind-wave growth and swell decay during the joint

North Sea wave project (JONSWAP)," 1973.

[15] J. P. K. Arthur Pecher, Handbook of Ocean Wave Energy, Springer Open, 2017.

168

[16] S. L. M. L. C. D. D. S. D. Z. N. L. S. Z. Zhanhui Qi, "Research on the Algorithm Model for

Measuring Ocean Waves Based on Satellite GPS Signals in China," Sensors - High-Precision

GNSS in Remote Sensing Applications, 2019.

[17] E. Pasta, Model-Free Control System Architecture for the ISWEC, 2020.

[18] IEC/TS 62600-101: Marine energy. Wave, tidal and other water current converters. Wave

energy resource assessment and characterization, 2015.

[19] J. V. R. Alexis Mérigaud, "Free-Surface Time-Series Generation for Wave Energy

Applications," IEEE JOURNAL OF OCEAN ENGINEERING, vol. 43, no. 1, pp. 19-35, 2018.

[20] C. Leavitt, "Mechanism for Utilizing Wave-Power". U.S.A Patent US321229A, 30 June 1885.

[21] "The Liquid Grid," [Online]. Available: https://theliquidgrid.com/marine-clean-

technology/wave-energy-converters/.

[22] R. Z. X. W. Elie Al Shami, "Point Absorber Wave Energy Harvesters: A Review of Recent

Developements," energies, vol. 12, no. 1, 2018.

[23] J. A. O. S. R. W. Valeria Castellucci, "Algorithm for the calculation of the translator position

in permanent magnet linear generators," Journal of Renewable and Sustainable Energy , no. 6,

2014.

[24] E. Anderlini, Control of wave energy converters using machine learning strategies, 2017.

[25] M. M. Nick J. Baker, "Direct drive wave enrgy converters," Revue des Energies

Renouvelables: Power Engineering, vol. 36, pp. 1-7, 2001.

[26] T. V. G. P. F. C. G. B. G. M. Edoardo Pasta, "Collaborative strategy for model-free control of

arrays of wave energy converters: A genetic algorithm approach," in OCEANS 2021:San Diego

- Porto, 2021.

[27] P. D. E. P. G. B. P. N. G. M. A. P. S. B. Luca Parrinello, "An adaptive and energy-maximizing

control optimization of wave energy converters using an extremum-seeking approach," Physics

of Fluids, vol. 32, no. 11, 2020.

[28] Y. P.-S. a. J. V. R. N. Faedo, "Finite-order hydrodynamic model determination for wave energy

applications using moment matching," Ocean Engineering, vol. 163, pp. 251-263, 2018.

[29] U. Korde, "Efficient primary energy conversion in irregular waves," Ocean Engineering, vol.

26, no. 7, pp. 625-651, 1999.

[30] J. Falnes, Ocean Waves and Oscillating Systems: Linear Interactions Including Wave Energy

Extraction, Cambridge University Press, 2002.

[31] J. R. M. T. N. J. C. S. H. Salter, "Power conversion mechnisms for wave energy," Journal of

Engineering for the Maritime Environment, vol. 216, 2002.

169

[32] J. F. K. Budal, "A resonant point absorber of ocean-wave power," Nature, pp. 478-479, 1975.

[33] J. F. T. M. Jørgen Hals, "A Comparison of Selected Strategies for Adaptive Control of Wave

Energy Converters," Journal of offshore mechanics and Arctic engineering, vol. 133, no. 3,

2011.

[34] G. B. F. F. John V. Ringwood, "Energy-Maximising Control of Wave-Energy Converters,"

IEEE CONTROL SYSTEMS MAGAZINE, 2014.

[35] K. F. J. Budal, "The Norwegian wave-power buoy project," in Second international Symposium

on Wave enrgy Utilisation, 1992.

[36] K. F. J. H. T. I. L. C. a. O. T. Budal, "Model Experiment with a Phase Controlled Point

Absorber," in Proceedings of the Second International Symposium on Wave and Tidal Energy,

1981.

[37] G. D. A. C. A. Babarit, "Comparison of latching control strategies for a heaving wave energy

device in random sea," Applied ocean research, vol. 26, no. 5, pp. 227-238, 2004.

[38] A. F. O. Falcão, "Phase Control Through Load Control of Oscillating Body Wave Energy

COnverters With Hydraulic PTO System," Ocean Engineering, vol. 35, no. 3, pp. 358-366,

2008.

[39] J. H. R. G. T. M. L. G. A. O. F. M.F.P. Lopes, "Experimental and numerical investigation of

non-predictive phase-control strategies for a point-absorbing wave energy converter," Ocean

Engineering, vol. 36, no. 5, pp. 386-402, 2009.

[40] M. W. T. Folley, "The control of wave energy converters using active bipolar damping,"

Journal of engineering for the maritime environment, vol. 223, no. 4, pp. 479-487, 2009.

[41] D. F. E. B. M. A. E. Anderlini, "Reactive control of a wave enery converter using artificial

neural networks," International Journal of Marine Energy, 2017.

[42] J. V. R. Francesco Fusco, "Short-Term Wave Forecasting for Real-Time Control of Wave

Energy Converters," IEEE transactions on sustainable energy, vol. 1, no. 2, pp. 99-106, 2010.

[43] P. Gieske, Model predictive control of a wave energy converter: Archimedes Wave Swing,

2007.

[44] M. E. M. O. S. T. K. B. Markus Richter, "Power optimisation of a point absorber wave energy

converter by means of linear model predictive control," IET Renewable Power Generation ,

vol. 8, no. 2, pp. 203-215, 2011.

[45] J. F. T. M. J. Hals, "Constrained Optimal Control of a Heaving Buoy Wave-Energy Converter,"

Journal of Offshore Mechanics and Arctic Engineering, vol. 133, no. 1, 2011.

170

[46] H. N. N. G. S. Y. C. Paolino Tona, "An Efficiency-Aware Model Predictive Control Strategy

for a Heaving Buoy Wave Energy Converter," in 11th European Wave and Tidal Conference,

Nantes, 2015.

[47] A. M. J. V. R. Yerai Peña-Sanchez, "Short-Term Forecasting of Sea Surface Elevation for

Wave Energy Applications: The Autoregressive Model Revised," IEEE Journal of Oceanic

Engineering, vol. 45, no. 2, pp. 462-471, 2020.

[48] M. J. M. P. B. J. S. d. C. Duarte Valério, "Identification and control of the AWS using neural

network models," Applied Ocean Research, vol. 30, no. 3, pp. 178-188, 2008.

[49] J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.

[50] A. S. A.E. Eiben, "On evolutionary exploration and exploitation," Fundamenta Informatice,

vol. 35, pp. 1-16, 1998.

[51] M. Z. Huayang Xie, "Tuning Selection Pressure in Tournament Selection," 2009.

[52] D. P. K. Reuven Y. Rubinstein, Simulation and the Monte Carlo Method, III ed., John Wiley

& Sons, 2016.

[53] F. C. P. B. L. P. G. M. E. Pasta, "A Model-Free Control Strategy Based on Artificial Neural

Networks for PeWEC," in 14th European Wave and Tidal Energy Conference (EWTEC),

Plymouth, UK, 2021.

[54] H. R. T. M. M. S. Shahryar Rahnamayan, "Quasi oppositional differential evolution," in IEEE

Congress on Evolutionary Computation, Singapore, 2007.

[55] M. Clerc, "clerc.maurice.free.fr," 24th December 2008. [Online]. Available:

http://clerc.maurice.free.fr/pso/Initialisations.pdf.

[56] S. S. A. E. Volker Nannen, "Costs and Benefits of Tuning Parameters of Evolutionary

Algorithms," in Parallel Problem Solving from Nature - PPSN X, Springer-Verlag, 2008, pp.

528-538.

[57] J. F. A. H. K.L. Mills, "Determining Realative Importance and Effective Settings for Genetic

Algorithm Control Parameters," Evolutionary computation, vol. 23, no. 2, pp. 309-342, 2015.

[58] J. H. Holland, Adaptation in Natural and Artificial Systems, 1975.

[59] A. Brindle, Genetic algorithms for function optimization, Ph.D dissertation, Department of

COmputing Science, University of Alberta, 1981.

[60] P. j. F. Wael Khatib, "The Stud GA: A Mini Revolution?," in Lecture Notes in Computer

Science, 1998.

[61] D. E. G. Brad L. Miller, "Genetic Algorithms, Tournament Selection, and the Effect of Noise,"

Complex Systems, vol. 9, no. 3, pp. 193-212, 1995.

171

[62] J. S. A.E. Eiben, Introduction to Evolutionary Computing, Second Edition ed., Springer, 2015.

[63] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-

Wesley, 1989.

[64] S. S. A.E. Eiben, "Parameter tuning for configuring and analysing evolutionary algorithms,"

Swarm and Evolutionary Computation, vol. 1, pp. 19-31, 2011.

[65] K. D. Jong, "Parameter Setting in EAs: a 30 Year Perspective," in Parameter Setting in

Evolutionary Algorithms, Springer, 2007, pp. 1-18.

[66] M. J. A.E. Eiben, "A critical note on experimental research methodology in EC," in Congress

on Evolutionary Computation, Piascataway, 2002.

[67] M. H. Bernd Freisleben, "Optimization of Genetic Algorithms by Genetic Algorithms," in

Artificial Neural Nets and Genetic Algorithms, 1993, pp. 392-399.

[68] J. J.Grefenstette, "Optimization of Control Parameters for Genetic Algorithms," in IEEE

TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, 1986.

[69] A. E. S.K. Smith, "Comparing Parameter Tuning Methods for Evolutionary Algorithms," in

IEEE Congress on Evolutionary Computation, Trondheim, Norway, 2009.

[70] W. P. Warren S. McCulloch, "A logical calculus of the ideas immanent in nervous activity,"

Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[71] "intel newsroom," 21 May 2018. [Online]. Available: https://newsroom.intel.com/news/many-

ways-define-artificial-intelligence/#gs.p31uvw.

[72] M. H. a. A. E. E. Giorgos Karafotias, "Parameter Control in Evolutionary Algorithms: Trends

and Challenges," IEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, vol. 19, no.

2, 2015.

[73] J. M. C. O. a. F. M. Brian Mc Ginley, "Maintaining Healthy Population Diversity Using

Adaptive Crossover, Mutation, and Selection," IEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, vol. 15, no. 5, 2011.

[74] R. K. *. P. C. Sandip Aine, "Adaptive parameter control of evolutionary algorithms to improve

quality-time trade-off," Applied soft computing, pp. 527-540, 2009.

[75] X. L. A. K. Q. Borhan Kazimipour, "A Review of Population Initialization Techniques for

Evolutionary Algorithms," IEEE Congress on Evolutionary Computation, pp. 2585-2592,

2014.

[76] T. Szandala, "Review and Comparison of Commonly Used Activation Functions for Deep

Neural Networks," Studes in COmputational Intellignece; Bio-inspired Neurocomputing, no.

903, pp. 203-224, 2020.

172

[77] G. E. H. V.Nair, "Rectified linear units improve restricted boltzmann machines," in

International Conference on Machine Learning, 2010.

[78] M. Nielsen, Neural Networks and Deep Learning.

[79] J. Brownlee, "Machine Learning Mastery," 11 January 2019. [Online]. Available:

https://machinelearningmastery.com/how-to-fix-vanishing-gradients-using-the-rectified-

linear-activation-function/.

[80] Y. B. Xavier Glorot, "Understanding the difficulty of training deep feedforward neural

networks," Journal of Machine Learining Research, vol. vol. 9, pp. 249-256, 2010.

[81] L. B. G. B. O. K. M. Y. Lecun, "Efficient Backprop," in Neural Networks: Tricks of the trade,

1998, pp. 9-50.

[82] C. Olah, "colah's blog," 27 August 2015. [Online]. Available:

https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[83] J. S. Sepp Hochreiter, "LONG SHORT-TERM MEMORY," Neural Computation, vol. 9, no.

8, pp. 1735-1780, 1997.

173

Grazie Yummy

