
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

DEPTHWISE ADDERNET:
Energy-efficient deep neural networks for

edge devices

Supervisors

Prof. Luciano LAVAGNO

Prof. Mihai LAZARESCU

Candidate

Teodoro URSO

APRIL 2022

Abstract

Today machine learning techniques and, in particular, deep neural networks
are widely used for multiple tasks. Convolutional neural networks improve the
performance of artificial intelligence algorithms in many applications (e.g. image
recognition, object detection, natural language processing); but tend to be energy-
intensive due to the large amount of multiplications involved.
This type of model is unsuitable for IoT devices or edge devices (such as smart-
phones) which are limited in terms of memory and computational capacity.
For this reason, many studies are focusing on developing more efficient deep network
architectures.

This thesis analyses two modern techniques: depthwise separable convolution
and Addernet. The first allows designing deep networks with fewer parameters
while the second reduces the usage of hardware resources and decreases the compu-
tational and energy cost by substituting multiplications with additions.

In particular, a new layer is presented which combines the strengths of the
two models. It is compatible with many networks in use today and it presents
opportunities for further enhancements.

Training and testing are performed on a GPU using the PyTorch framework.
The DNN architectures employing the proposed layer present a reduction up to
75% in the parameters memory occupation. Moreover, when implementing the
models on a dedicated hardware platform (e.g., FPGA) an improvement in terms
of computational resource utilization and power consumption can be expected.

Results obtained on different networks against the CIFAR-10 and CIFAR-100
datasets show the feasibility and potential of this new "depthwise adder kernel".

i

Ai miei nonni Anna Maria, Rocco e Rosa

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Machine Learning and Deep Dearning 1
1.2 Artificial Neural Networks . 3

1.2.1 Activation layer . 4
1.2.2 How a neural network learns 5

1.3 Convolutional Neural Networks . 8
1.3.1 Convolutional layer . 8
1.3.2 Batch Normalization layer 11
1.3.3 Pooling layer . 12
1.3.4 Fully connected layer . 13

1.4 Neural Networks on edge devices 13

2 Depthwise Separable Convolutions 15
2.1 Depthwise Convolution . 16
2.2 Pointwise Convolution . 17
2.3 Comparison with standard convolutions 18
2.4 MobileNet . 19

3 AdderNet 21
3.1 The adder layer . 21
3.2 Gradient computation in AdderNets 21
3.3 Adaptive learning rate . 23
3.4 Comparison with CNN . 24
3.5 Hardware implementation . 26

iv

4 Depthwise Separable AdderNet 28
4.1 Depthwise Adder Layer . 28

4.1.1 The proposed adder layer 28
4.2 CUDA kernel . 29

4.2.1 Inference and Input Gradient Kernels 29
4.2.2 Weight Gradient Kernel . 30

4.3 Training setup . 32
4.4 Experiment on Resnet20 . 32
4.5 Experiment on Mobilenet . 34
4.6 Considerations on the results . 36

5 Conclusions 37
5.0.1 Future work . 38

A Framework Pytorch 39
A.1 Common modules . 39

B The CUDA Programming Model 41

C ResNet 43

D Mobilenet 46
D.1 MobileNet . 46
D.2 MobileNetV2 . 47

D.2.1 Bottleneck Layer . 47
D.2.2 Inverted residual . 48

E Datasets 51
E.1 CIFAR10 . 51
E.2 CIFAR100 . 51
E.3 ImageNet . 52

Bibliography 54

v

List of Tables

2.1 Comparison between MobileNet and CNN on ImageNet. 19

3.1 The L2-norm of gradient of weight in each layer using different
networks at 1st iteration [12]. 23

3.2 Comparison of AddResNet-20 with and without depthwise separable
adder layers. 24

4.1 Comparison of AddResNet-20 with and without depthwise separable
adder layers. 32

4.2 Comparison of MobileNetV2 with and without adder layers. 34

C.1 ResNet-20 architecture for CIFAR10. 45

D.1 MobileNet architecture. 47
D.2 MobileNetV2 architecture. The table does not show the 1x1 filters

of the bottleneck blocks. 50

E.1 Superclasses and classes of CIFAR-100. 53

vi

List of Figures

1.1 Machine learning approaches. 2
1.2 Schematic structure of neural network.[4] 3
1.3 ReLU. 5
1.4 ReLU6. 5
1.5 Typical structure of a convolutional neural network. 8
1.6 Example of 2D Convolution. 9
1.7 Padding. 10
1.8 Stride example with sw = 2 and sh = 3. 11
1.9 Pooling methods. 12

2.1 Sobel kernel. 15
2.2 Spacial Separable Convolution. 16
2.3 Multi-channel convolution. 17
2.4 Depthwise Convolution. 17
2.5 Pointwise Convolution. 18
2.6 Comparison between filters in differet types of convolution. 20

3.1 Convolutional kernel(left) and adder kernel(right). 22
3.2 Comparison between basic block in the standard ResNet-20 (left)

and the AddResNet-20 (right). 25
3.3 Two typical design of adder convolution kernel in 1C1A and 2A,

respectively [17]. 26
3.4 Universal AdderNet accelerator. 27

4.1 Comparison between basic block in AddResNet-20 (left) and Depth-
wise Separable AddResNet-20 (right). 33

4.2 Comparison between inverted residual block in the standard Mo-
bileNetV2 (left) and the AddMobileNetV2 (right). 35

B.1 CUDA memory programming model. 42

C.1 Residual block with skip connetion. 44

vii

D.1 Standard convolutional layer (left) with batch normalization and
ReLu and Depthwise Separable Convolution (right). 46

D.2 Visualization of the intermediate feature maps in the inverted resid-
ual layer [26]. 48

D.3 Basic blocks of MobileNetv2. 49

E.1 First 25 labeled images from CIFAR10. 52

viii

Acronyms

AI
artificial intelligence

BN
batch normalization

CNN
convolutional neural network

DL
Deep Learning

DNN
Deep Neural Network

DS-CNN
Depthwise separable convolutional neural network

DS-conv
Depthwise separable convolution

DW-conv
Depthwise convolution

FPGA
Field programmable gate array

GPU
graphics processing unit

x

IoT
internet of things

MAC
Multiply and accumulate

ML
machine learining

PW-conv
Pointwise convolution

ReLU
Rectified linear unit

SM
Streaming multiprocessor

xi

Chapter 1

Introduction

1.1 Machine learning and deep learning
Artificial intelligence (AI) [1] is a computer science field in which a machine (i.e. a
computer) is instructed to perform tasks that that maximize its chance of achieving
its goals. The advancements in this field have brought enormous progress in recent
years in a broad field of applications, such as image recognition, object detection,
language understanding and problem solving.

Machine Learning (ML) [1] is one of the methods for performing AI tasks. De-
pending on the interpretation, it can be considered as subset of artificial intelligence
or a separate field. It is based on the ability of machines to process data and learn
autonomously, modifying variables and algorithms based on the information they
receive.
ML can be divided in three main categories [2]:

• Supervised learning : the computer system is trained to autonomously predict
the output value, which can be a continuos (regression) or discrete (classifica-
tion) one, corresponding to a certain input. The training phase is based on
a set of examples, consisting of input and output pairs, which are provided
to instruct the machine about which output has to be assigned to a certain
input.

• Unsupervised learning : the machine does not predict an output value; instead,
it searches for common patterns and similarities in the data in order to organise
them in categories/groups.

• Reinforcement learning : this approach deals with sequential decision problems,
where the action to be taken depends on the current state of the system and
determines its future state. The algorithm aims at creating autonomous
agents capable of choosing actions to be performed in order to achieve certain

1

Introduction

objectives through interaction with their environment. The quality of an
action is associated to a numerical value of "reward", inspired by the concept
of reinforcement, which encourages the correct behaviour of the agent.

Figure 1.1: Machine learning approaches.

Other approaches [3] have been developed that do not fit into the above list,
and sometimes more than one can be used by a machine learning system.
When machine learning (whether supervised or unsupervised) is performed using
multi-layered structures, it is called deep learning (DL) [1], which is characterised
by the fact that the high-level features of the inputs are autonomously extracted
by the machine itself, instead of being hand-crafted by humans as in conventional
ML algorithms. Other approaches are clustering, logic programming and Bayesian
networks [1].

2

Introduction

1.2 Artificial Neural Networks
An artificial neural network (ANN) is a mathematical model inspired by the human
brains neurons structure. In particular, in feedforward neural networks, each
neurons performs an algebric operation on its input xi, which equation is reported
in (1.1).

yi = wi · xi + bi (1.1)

wi represents the weight of the i-th neuron, while bi its bias. One can notice that
the output yi is a linear function of the input xi.

An ANN is a collection of neurons, that are organized in layers, i.e. groups of
neurons that are interconnected in a sequence-like structure, as shown in Figure 1.2.
It can be noticed that the neurons of two layers are all inteconnected to each other.

Figure 1.2: Schematic structure of neural network.[4]

Considering a neuron with multiple inputs, (1.1) can be rewritten in the following
way:

yi =
nØ

j=1
wij · xj + bi (1.2)

n is the number of neurons which outputs are connected to the i-th neuron under
consideration. One can derive a matrix-like description of the network from (1.2),

3

Introduction

in which each layer is described by a matrix of weights, Wl, and a vector of biases,
bl. In particular, given the l-th layer, one can write:

yl = Wl · xl + bl

An ANN can be divided in three sections: the input layer, the hidden layer (i.e.
the intermediate one) and the output layer. When multiple hidden layers are used,
the model is called Deep Neural Network (DNN).

1.2.1 Activation layer
The main purpose of an activation function is to introduce non-linearity into the
model and thus increase the ability to handle more complex patterns.
A good activation function should be zero centered (to avoid that the gradient
tends towards a particular direction during backpropagation phase). It should be
differentiable at least in parts, computationally cheap and should not shift the
gradient towards zero (vanishing gradient problem).

Relu and Relu6

Rectified Linear Unit(ReLU) is one of the most commonly used activation functions,
especially in convolutional networks. It is defined as:

ReLU(x) = max(0, x) (1.3)

The advantages of this function are that it is not affected by the vanishing gradient
and it requires low computational effort.
The main disadvantage is that it is non-zero centered and also assumes null value
for negative input values. This causes "dying ReLU" problem so that some nodes
in the network do not learn anything.
Another drawback of ReLUs is the lack of an upper limit, which leads to some

output values "exploding". A solution to the gradient explosion (and other minor
ReLU problems) is to use ReLU 6 defined as follows:

ReLU6(x) = min(max(0, x),6) (1.4)

Hence, for the single neuron, (1.2) can be modified as follows:

yi = g(
nØ

j=1
wij · xj + bi) (1.5)

where g(x) is the non linear function employed.

4

Introduction

Figure 1.3: ReLU.

Figure 1.4: ReLU6.

1.2.2 How a neural network learns
Consider a classification problem. A training set is provided in order to "teach" the
network to correctly assign a set of inputs, x, to a set of labels, y. To achieve this,
the set of inputs is provided to the network.
The following naive equation can be written:

ŷ = NN(x)

where ŷ is the output provided by the network.
The training process consists in updating the weights and biases of the network

5

Introduction

through multiple iterations across the training set so that ŷ ≈ y. In order to
achieve this, a metric has to be defined to measure the "distance" between the
provided output, ŷ, and the desired one, y. This function is referred to as the loss
function [1].
Depending on the application, different loss functions can be used. Usually, for
regression the mean-squared error (MSE) is used, while, in classification tasks,
the cross entropy is employed [1], which formula for a binary classification task is
reported in (1.6) :

CE(y, ŷ) = − 1
N

NØ
i=1

yi · log(1− ŷi) + (1− yi) · log(1− ŷi) (1.6)

where N represent the training set size.
Once the loss function is chosen, a way to update the weights of the networks

so that the loss (also called cost function) is minimised, has to be found. In neural
networks, the gradient descent [1] algorithm is employed: the backward derivatives
of each layer with respect to the loss value are computed, and their values are used
to update the weights. This operation is carried out by an optimization algorithm
called optimizer.
The most commonly used optimization algorithms (e.g. SGD and Adam [1]) require
the calculation of the gradient with respect to the weights in order to find the
minimum of the cost function.
The gradient represents the variation of the output with respect to the variation
of the single weight and consequently establishes the intensity of its contribution
to the loss function. These gradients are calculated through an algorithm called
back-propagation which involves the recursive application of the chain rule from
calculus starting from the output layer and proceeding backwards.
The chain rule of calculus is used to compute the derivatives of functions formed
by composing other functions whose derivatives are known.
This process is usually performed several times (epochs) on the entire dataset.
In algorithm 1, an example of optimizer, Adam, is reported.

Once the network has been trained, a metric has to be defined to evaluate the
network performance on a certain task. For classification, the accuracy metric [1]
is usually employed, which can be computed as the ratio between the correctly
classified samples and the dataset size.

6

Introduction

Algorithm 1 Adam optimizer algorithm. All operations are element-wise, even
powers. Good values for the constants are α = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−8.
ϵ is needed to guarantee numerical stability[5].

1: procedure Adam(α, β1, β2, f, θ0)
2: ▷ α is the stepsize
3: ▷ β1, β2 ∈ [0, 1) are the exponential decay rates for the moment estimates
4: ▷ f (θ) is the objective function to optimize
5: ▷ θ0 is the initial vector of parameters which will be optimized
6: ▷ Initialization
7: m0 ← 0 ▷ First moment estimate vector set to 0
8: v0 ← 0 ▷ Second moment estimate vector set to 0
9: t← 0 ▷ Timestep set to 0

10: ▷ Execution
11: while θt not converged do
12: t← t + 1 ▷ Update timestep
13: ▷ Gradients are computed w.r.t the parameters to optimize
14: ▷ using the value of the objective function
15: ▷ at the previous timestep
16: gt ← ∇θf (θt−1)
17: ▷ Update of first-moment and second-moment estimates using
18: ▷ previous value and new gradients, biased
19: mt ← β1 ·mt−1 + (1− β1) · gt

20: vt ← β2 · vt−1 + (1− β2) · g2
t

21: ▷ Bias-correction of estimates
22: m̂t ←

mt

1− βt
1

23: v̂t ←
vt

1− βt
2

24: θt ← θt−1 − α · m̂t√
v̂t + ϵ

▷ Update parameters
25: end while
26: return θt ▷ Optimized parameters are returned
27: end procedure

7

Introduction

1.3 Convolutional Neural Networks
Convolutional neural networks (CNN or ConvNet) are one of the most widely used
classes of network, especially for image and video recognition.
The name "convolutional neural network" indicates that the network employs a
mathematical operation called convolution [1].
Usually the convolution operation is performed by the hidden layers.
In Figure 1.5, a description of the most common layers in a CNN is reported.

Figure 1.5: Typical structure of a convolutional neural network.

1.3.1 Convolutional layer
The core of CNNs is the convolutional layer. This type of layer is made up of filters
that perform convolutions with the aim of extracting and identifying features from
the input data. In the case of images, can be identified straight lines, particular
shapes or colours.
In mathematics, in particular in functional analysis, convolution is an operation
between two functions of one variable that consists of integrating the product
between the first and the second after the latter has been translated by a certain
value.
Consequently, it is a special type of integral transformation defined as:

(f ∗ g)(t) :=
Ú +∞

−∞
f(τ)g(t− τ)dτ (1.7)

This operation could be performed between two matrices. For example, considering
A and B both of size 3x3:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 B =

b11 b12 b13
b21 b22 b23
b31 b32 b33

8

Introduction

In this case the convolution between A and B will be given by :

A ∗B =
3Ø

i=1

3Ø
j=1

aijbij

Thus, each element in A is multiplied by the corresponding element in B and then
the output value is calculated as the sum of all multiplications.
In image processing, the convolution is performed between an input matrix consist-
ing of the image and a filter also called kernel. The latter is usually small and of
odd size (1x1,3x3,5x5) because it is important to identify the centre of the kernel
matrix.
Usually, the input image would be bigger than the filter. In this case the output
matrix is computed gliding through the input and performing the scalar product
between a sub-matrix with the same dimensions of the kernel (called sliding window)
and the filter (Figure 1.6).

Figure 1.6: Example of 2D Convolution.

Stride and padding

In Figure 1.6, a convolution is performed between a matrix of size 4 × 4 and a
3× 3 kernel, obtaining as output a 2× 2 matrix. In general, supposing that the
dimensions of the input are nh and nw and the kernel has dimensions kh and kw,
the output size can be expressed as (nh − kh + 1)× (nw − kw + 1).
A convolution operation leads to a reduction in the image size from one layer to
the other; as a consequence, information is lost through the network; in particular,
the pixels on the edges are removed.
To overcome this problem, a commonly used technique is to surround the input
matrix with a frame of extra pixels (usually zeros) as shown in the Figure 1.7.

9

Introduction

This approach is called padding.
Considering the insertion of ph rows (usually half on top and half on bottom) and
pw columns (usually half on the left and half on the right) the output shape can be
easily derived as:

(nh − kh + ph + 1)× (nw − kw + pw + 1)

Padded convolutions can be useful to preserve the shape of the input after the
operation (ph = kh− 1 and pw = kw− 1) bringing some benefits in calculations and
model performance.

Figure 1.7: Padding.

For computational efficiency reasons or to shrink the sample, it may be neces-
sary to reduce the feature matrix size from one layer to the other. Usually the
convolutions are carried out shifting the input sliding window of 1 pixel (to the
right or bottom). By increasing the displacement factor called "stride", the strided
convolution is carried out.
In these cases, assuming a vertical stride equal to sh and a horizontal stride equal
to sw, the output shape will be:

(nh − kh + ph + sh)
sh

× (nw − kw + pw + sw)
sw

10

Introduction

Figure 1.8: Stride example with sw = 2 and sh = 3.

1.3.2 Batch Normalization layer

In CNNs, data are often processed in groups called "batches".
Batch normalization (BN) is a technique first introduced in 2015 [6], which allows
to make the training phase of a deep neural network faster and more stable.
BN can be inserted immediately before or after the activation function and in AI
frameworks this method is often used as a standard layer.
For each hidden layer the mean value µB (1.8) and the variance σ2

B (1.9) of the
activation value on the batch are computed.

µB = 1
m

mØ
i=1

xi (1.8) σ2
B = 1

m

mØ
i=1

(xi − µB)2 (1.9)

Then the input is normalized

x̂i = xi − µBñ
σ2

B + ϵ
. (1.10)

The parameter ϵ is used to prevent division by zero if σB becomes null during the
training phase.
Finally the output of the layer is calculated using two trainable parameters (γ and
β) to perform a linear transformation:

yi = γx̂i + β (1.11)

11

Introduction

In each step the model calculates µ and σ2 and trains γ and β using the gradient
descent. During the evaluation phase the mean value and the variance are computed
using the values obtained during the training phase.
The reason why this technique is so efficient in many models is still a matter of
debate and more recent studies [7] have formulated different hypotheses from the
first paper.

1.3.3 Pooling layer

The pooling layer consists of a filter that reduces the size of the feature map allowing
the reduction of the number of operations, trainable parameters and complexity.
It is also helpful to summarise the information of a given input and make the
network more robust to changes.
There are essentially two methods:

• Average pooling - The average of the input features covered by the filter is
calculated.

• Max pooling - The output corresponds to the highest values among the regions
of the input feature map.

Figure 1.9: Pooling methods.

12

Introduction

1.3.4 Fully connected layer
The output of the last pooling layer (or convolutional) layer is usually flattened into
a 1D vector. This is followed by a fully connected (FC) layer, i.e. a feedforward
network, in which each input is associated to each output through a trainable
weight.
In classification problems usually the last fully connected layer has a number of
outputs equal to the classes to be identified.

1.4 Neural Networks on edge devices
With the development of modern Graphics Processing Units (GPUs), it has been
possible to use deeper and deeper neural networks with more parameters and to
reduce training and inference time.
However, GPUs have a high power consumption that makes them unusable on
edge devices such as mobile phones or cameras. These types of devices have low
memory and computational capacities, which makes them unsuitable for deep neural
network models. Consequently, many models still depend on cloud computing,
which for some applications presents problems of weak privacy, long latency and low
reliability. Moreover, on-device computing is essential for some IoT applications
that demand real-time data.
In order to meet these needs, studies aimed at analysing on-device computing focus
mainly on three fields:

• Pruning : in deep learning this technique is used to develop more efficient
deep learning models. DNNs have redundancy, pruning allows the elimination
of "neurons" or links between them, reducing the memory occupation and
speeding up the training of the model.
The usage of pruning depends on the application and methods used. Sometimes
fine-tuning or multiple iterations of pruning may be unnecessary, based on
how much the network is pruned.

• Quantization : this approach focuses on optimizing the representation of data
and weights. It is based on the trade off between occupied memory and loss
of accuracy of the metrics.
By using fewer bits, the operations are less computationally demanding but
the resolution of the inputs and outputs deteriorates, degrading performance.
Different types of quantization have advantages and disadvantages that often
depend on the type of model considered.

• Design of model architecture : this field explores possible alternative backbones
or layer structures that allow the development of efficient models.

13

Introduction

The goal of this thesis is to combine two techniques used to reduce the memory oc-
cupation of the parameters and the computational cost of the operations performed
by implementing a new type of layer that can replace the classical convolutional
layers. The above mentioned techniques are respectively the depthwise separable
convolutions (Chapter 2) and the addernet (Chapter 3).

14

Chapter 2

Depthwise Separable
Convolutions

Depthwise separable convolutions were first introduced in a PhD thesis [8] in 2014
and have subsequently been used in DNNs such as MobileNet [9] and Xception
[10].
This technique makes possible a considerable reduction in the number of parameters
and multiplications compared to a classical convolution with an acceptable loss of
accuracy (or other metrics).
This is why it has attracted a lot of interest in recent years in order to optimize
the architecture of CNNs and make them more "lightweight".
The origin of this approach can be traced back to Spatial Separable Convolutions
which consist of dividing a 2D kernel (w × h) into two one-dimensional kernels.
The classic example is the Sobel filter used for edge-detection [11].

1 0 −1
2 0 −2
1 0 −1

 =

1
2
1

 × è
1 0 −1

é

Figure 2.1: Sobel kernel.

Using this method, instead of performing a convolution with a 3 × 3 kernel (i.e.
9 multiplications for each output pixel), 2 kernels are used, each performing 3
multiplications (6 multiplications for each output pixel), getting the same result.
Unfortunately, not all kernels can be divided in this way and consequently this
method is not widely used in deep learning.
Depthwise Separable Convolutions (DS-convs) also apply to kernels that are not

separable into two smaller ones and owe their name to the fact that they act not

15

Depthwise Separable Convolutions

Figure 2.2: Spacial Separable Convolution.

only on the spatial dimension but also on depth.
A colour image has several channels (e.g. RGB), i.e. it is represented by several
matrices, each showing the colour intensity value of the pixels. When layer oper-
ations are performed, the number of channels in the feature map may vary (e.g.
according to the number of filters used).
When DS-conv are used, the classical convolution is replaced by two stages of
convolutions, the first acting individually on each channel (depthwise) and the
second intersects the information along the depth dimension (pointwise).

2.1 Depthwise Convolution
In DW-conv, a single Cin×K ×K filter is used (usually K is equal to 3 or 5), with
a number of channels Cin equal to that of the input. On each channel of the input
feature map a 2D convolution is performed with the corresponding channel of the
filter. This generates an output with same number of channels of the input.
Consider a feature map of size Cin × D × D (here W = H = D for simplicity)
and padding and stride equal to 1; the computational cost in terms of number of
multiplications (additions are considered negligible) can be derived:

DWop = Cin ×D ×D ×K ×K (2.1)

This operation makes it possible to search for patterns in the channels considered
separately but, unlike convolution, it does not intersect the information between
them.

16

Depthwise Separable Convolutions

Figure 2.3: Multi-channel convolution.

Figure 2.4: Depthwise Convolution.

2.2 Pointwise Convolution
A convolution is called pointwise when it is performed using 1x1 filters.
In the case of the DS-conv this takes the output of the DW-conv as input and
preserves the width and depth dimensions by performing a linear combination

17

Depthwise Separable Convolutions

along the channels.
The number of filters (of dimension Cin × 1× 1) varies depending on the number
of desired output channels Cout.
In this case the number of multiplications performed is given by:

PWop = Cin × Cout ×D ×D (2.2)

The chaining of DW-conv and PW-conv makes it possible to generate an output
with dimensions coinciding with those obtainable from a multi-channel convolution.
Therefore in CNNs the Conv2D layers can be replaced by DS-conv layers without
changing the global structure of the model.

Figure 2.5: Pointwise Convolution.

2.3 Comparison with standard convolutions
The advantages of depthwise separable convolution can be quantified by considering
the number of operations performed (multiplications) with respect to standard
convolution.
Consider an input of size Cin ×D ×D; to obtain as output a feature map of size
Cout ×D ×D, N = Cout filters of size Cin ×K ×K have to be used; consequently,
the number of multiplications required is:

Convop = Cin × Cout ×D ×D ×K ×K (2.3)

By combining (2.1) , (2.2) and (2.3), the ratio between the computational costs of
a DS-conv and a CNN is given by:

DS− convop

CNNop

= Cin ×D ×D ×K ×K + Cin × Cout ×D ×D

Cin × Cout ×D ×D ×K ×K
=

= 1
Cout

+ 1
K2 (2.4)

18

Depthwise Separable Convolutions

A similar estimation regarding the filters parameters can be made, which leads to
the following cost ratio:

DS− convparam

CNNparam

= Cin ×K ×K + Cin × Cout

Cin × Cout ×K ×K
=

= 1
Cout

+ 1
K2 (2.5)

2.4 MobileNet
In order to provide a clearer view of depthwise separable convolution technique,
the results of one of the first article [9] analysing this type of deep neural network
are reported in Table 2.1.
The detailed structure of the DNN in question, called MobileNet, is described in
the Appendix D.1.

Model Dataset Method # param (M) Mult-Adds (M) Accuracy

Mobilenet ImageNet CNN 29.3 4866 71.7%
DS-CNN 4.2 569 70.6%

Table 2.1: Comparison between MobileNet and CNN on ImageNet.

It can be observed that the MobileNet has about 85% fewer parameters on the
same backbone.
Besides the direct advantage on the memory occupation, the strong reduction of
multiplications leads to a saving on the computational resources and therefore
reduces the energy consumed by the hardware device.
This network can be used in solving many tasks such as image classification, object
identification, fine grained recognition and large scale geolocalization.

19

Depthwise Separable Convolutions

Figure 2.6: Comparison between filters in differet types of convolution.

20

Chapter 3

AdderNet

3.1 The adder layer
Multiplications constitute the most computationally intensive part of CNNs; as
mentioned in Section 1.3 this type of networks exploits the convolution operation
to find patterns within the feature map.
Recent studies have attempted to explore new techniques for replacing multiplication
with addition by developing a new distance metric that does not significantly degrade
performance.
Addernets [12] have been proposed for this purpose, replacing convolutional layers
with adder layers.Additive kernels essentially calculate the L1 distance between
weights and inputs according to (3.1) :

Y (m, n, t) = −
dØ

i=0

dØ
j=0

cinØ
k=0
|X(m + i, n + j, k)− F (i, j, k, t)| (3.1)

This expression computes the similarity between the weights and the feature map.
It can be seen that while the output of a convolutional layer can be positive or
negative, adder kernels always generate negative output.
In order to use the same activation functions as in CNNs, these layers are followed
by batch-normalization layers to obtain values in a suitable range. Nowadays,
many network structures already have built-in normalization layers, so these new
modules can be inserted directly to replace the standard Conv2D layers.

3.2 Gradient computation in AdderNets
In the training phase, in order to update the weights, backpropagation is carried
out and the gradients are calculated. The partial derivative of the outputs of the

21

AdderNet

Figure 3.1: Convolutional kernel(left) and adder kernel(right).

convolutional layers can be easily derived:

∂Y (m, n, t)
∂F (i, j, k, t) = X(m + i, n + j, k) (3.2)

On the other hand, in adder networks the derivative of the output Y with respect
to the filter F is given by:

∂Y (m, n, t)
∂F (i, j, k, t) = sgn(X(m + i, n + j, k)− F (i, j, k, t)) (3.3)

Due to the sign function, (3.3) only allows 1, 0 or -1 as a result, and its use leads
to a singSGD [13]. This approach is inefficient for networks with many parameters
and has convergence problems as the size increases [14]. Consequently in the
original AdderNet paper [12] it is proposed to use the L2-norm derivative (3.4) to
perform the weight update.

δY (m, n, t)
δF (i, j, k, t) = X(m + i, n + j, k)− F (i, j, k, t) (3.4)

When using the full-precision gradient to calculate the gradient of the output with
respect to the Xi input, it must be borne in mind that it will not only affect the
calculation for the i-th layer but also the previous layers according to the chain-rule.
As a result, the modulus of the gradient increases in the previous layers and this
leads to instability and convergence problems.
In order to solve this issue the gradient is clipped between -1 and 1 using the
HardTanh function (3.5, 3.6).

δY (m, n, t)
δX(m + i, n + j, k) = HT (F (i, j, k, t)−X(m + i, n + j, k)) (3.5)

22

AdderNet

HT (x) =

x, if -1<x<1
1, if x>1
−1, if x<-1

(3.6)

3.3 Adaptive learning rate
Considering the weights and inputs as independent and identically distributed, the
variance in classical CNNs can be estimated as:

V ar[YCNN] = d2cinV ar[X]V ar[F] (3.7)

Instead, the variance of the adder layers [12] can be roughly approximated as:

V ar[YAdderNet] =
ò

π

2 d2cin(V ar[X] + V ar[F]) (3.8)

Usually the variance of the filters Var(F) is very small [15], consequently the
variance of the output of Addernets is higher than in CNNs.
The high value of the variance causes the value of the gradient with respect to the
input X in the AdderNets to be much lower than in the standard convolutional
layers. Consequently, due to the chain rule, the gradient with respect to the filters
of the adder kernels also decreases [12].
If the gradient magnitude is too low, the update of weights in the Addernet may
slow down and network convergence may not be achieved.
A first approach would consist of increasing the learning rate, i.e. the hyper-
parameter that determines the step size at each iteration while moving towards a
minimum of a loss function [16]. Learning rate can be imagined as the speed at
which an ML algorithm "learns".
However, it is worth noting that there is considerable variation in the modulus of
the filter gradients across different layers (Table 3.1) of the network and so a more
specific technique is needed.

Model Layer 1 Layer 2 Layer 3
AdderNet 0.0009 0.0012 0.0146

CNN 0.2261 0.2990 0.4646

Table 3.1: The L2-norm of gradient of weight in each layer using different networks
at 1st iteration [12].

In order to avoid this unwanted effect, an adaptive learning rate is introduced
[12]. In particular, a local learning rate is computed to take account of the filter

23

AdderNet

modules.

αl = η
√

k

||∆L(Fl)||2
(3.9)

In (3.9) η is a tunable hyperparameter, k is the number of elements in kernel Fl

and ∆L(Fl) represent the gradient of the filter in layer l.
Then the update of the filter F to the adder layer l is calculated as follows:

∆Fl = γ × αl ×∆L(Fl) (3.10)

Where αl is the local learning rate and γ is the global learning rate of the entire
neural network.

3.4 Comparison with CNN
Various articles have proved the potential of the Addernet, in order to have a start-
ing point for working on the adder kernels it was necessary to initially replicated
the results of the original layer.
In particular PyTorch is used (an open source framework used for AI applications
with python as interface described in Appendix A) and trained Resnet-20 (Ap-
pendix C) on CIFAR10 and CIFAR100 (Appendix E).
In Table 3.2 are the results obtained, which are congruent with those of the reference
article.

Model Dataset Method param param. size (MB) Accuracy

Resnet-20
CIFAR10 CNN 272,484 1.09 92.5%

AddNN 272,484 1.09 91.4%

CIFAR100 CNN 278,424 1.11 68.7%
AddNN 278,424 1.11 67.6%

Table 3.2: Comparison of AddResNet-20 with and without depthwise separable
adder layers.

In contrast to DS-convs, addernets do not provide a direct reduction in the
number of parameters and in memory occupation. The main advantage is that, if
batch normalization layers are neglected, this model contains no multiplications.
At the cost of a reasonable loss of accuracy, AdderNet provides a faster model.
Compared to multiplication, the results of addition operation (or subtraction in
this case) does not need to be rescaled because weights, input and output tend
to be in the same range. This saves logic resources and further reduces power
consumption.

24

AdderNet

Figure 3.2: Comparison between basic block in the standard ResNet-20 (left) and
the AddResNet-20 (right).

25

AdderNet

3.5 Hardware implementation
It should be noted that modern GPUs are optimised for convolution, and in partic-
ular have modules that perform MAC operations. As a result, AdderNet is slower
than CNN on this type of device, especially in the training phase.
However, graphics cards are particularly expensive hardware from an energy point
of view and the power they require to run is far greater than what mobile and
edge devices can provide at the moment. By implementing an adder kernel on a
device capable of performing additions more efficiently (such as FPGAs/ASICs),
the time required and resources used are significantly reduced compared to CNNs.
In fact, the core of a convolutional kernel is a MAC unit, whereas in the case of the
adder layer, a comparator and an adder (1C1A) or two adders (2A) can be used,
as shown in Figure 3.3 [17].

Figure 3.3: Two typical design of adder convolution kernel in 1C1A and 2A,
respectively [17].

A possible implementation of FPGA accelerator structure for convolutional
kernels is shown in Figure 3.4. It is divided in 4 parts: data storage unit and
Input/Output port, data path control module,structures for other operations (such
as the Pooling and BN unit) and parallel kernel operation core. The latter is
usually the most expensive in terms of logic resources due to the Single Instruction
Multiple Data (SIMD) architecture organization of FPGAs [18]. In fact, with
a 16 bits data parallelism and 64 input channels to be summed in the adder
tree, AdderNet theoretically uses 81.6% less logical resources and power than
convolutional networks [17].
However, an appropriate estimation of the energy benefits of AdderNet is still
a challenge. Data overhead is of great importance in the implementation of the
model on FPGAs, as the data transfer from DRAM to computational resources
constitutes the most important energy and time bottleneck.

26

AdderNet

Figure 3.4: Universal AdderNet accelerator. (a) Detailed structure of the FPGA
accelerator that can be used for universal Convolutional Neural Networks. (b)
Parallel computation on the convolution kernel. The AdderNet convolutional kernel
mainly contains two adders and one multiplexer, and the CNN kernel contains one
multiplier. Though the AdderNet kernel seems to be more complex, actually it is
much lightweight than that of CNN[17].

27

Chapter 4

Depthwise Separable
AdderNet

4.1 Depthwise Adder Layer
Both DS-CNN and AdderNet have energy, memory and efficiency advantages,
especially when considering edge devices as application platforms.
These techniques are not mutually exclusive, but can be used simultaneously by
constructing a new "depthwise separable adder" neural network. In order to combine
Addernets with depthwise separable convolutions two blocks have to be used: a
depthwise adder layer and a pointwise adder layer.
The first step in order to verify the feasibility of the idea is to develop this two
layers in Python and train a model with them on a GPU.
GPUs are more suitable for the model development and characterization: once
the architecture and its parameters are obtained, the VHDL/Verilog code for the
hardware platform (e.g, FPGA) is generated using high-level synthesis CADs, and
the model performance can be properly evaluated.

4.1.1 The proposed adder layer
The pointwise layer is created by employing an Adder2D layer with 1× 1 kernels.
From now on, this layer is called "pwAdder2D".
The adder-depthwise part is developed using PyTorch, by inheriting the class Layer
and constructing the new operator on top of it. As discussed in Chapter 3, the
forward operation is not differentiable; consequently, the backpropagation function
is rewritten in order to correctly perform the wieights update during training.
Moreover, in this implementation, unbiased kernels are used, as in the reference
work [12].

28

Depthwise Separable AdderNet

4.2 CUDA kernel
One of the major drawbacks of using a high-level PyTorch descripition of the layer is
the long training time. This is due to the fact that GPUs are optimized to perform
MAC operations, typical of standard convolutions. Even if, in principle, an addition
operation is characterized by a lower latency with respect to the multiplication one,
longer training times are registered switching from a CNN to an AdderNet.
One way to reduce the problem is to use custom C++ and CUDA extensions with
which PyTorch allows to write kernels using a customized implementation on GPU
hardware [19].
The basic structure of the code used to parallelize and improve the calculation of
additive kernels proposed in [20] is presented; this is then modified to be used also
for the Depthwise Adder Layer.
In order to produce the output feature map, Depthwise operation iterates over 6
dimension: batch size (b), channels (c_in = c_out), output width (o_w), output
height (o_h), filter width (f_w), filter height (f_h).
The used GPU is an NVIDIA GTX 1070, which has a maximum number of 1024
threads per block parallelizable over a maximum of three dimensions.
There are three different kernels:

• Inference kernel.

• Input gradient backpropagation kernel.

• Weight gradient backpropagation kernel.
To decide how to assign computations to thread and blocks the following procedure
is performed.

4.2.1 Inference and Input Gradient Kernels
For inference/input gradient kernels, each thread computes a set of output val-
ues/input gradient values of the feature maps considered; this means that the
kernel iterates over dimSET, f_h, and f_w.
dimSET represents the total number of elements calculated by one single thread
and depends from computation partitioning over threads.
The number of pixels of the output feature map is given by :

n_pxs = b * c_in * o_w * o_h.
Considering a maximum number of blocks MAX_BLOCKS, the number of blocks used
is given by:

29

Depthwise Separable AdderNet

n_blks=min(MAX_BLOCKS, (n_pxs-MAX_THREADS+1)/(MAX_THREADS+1))
Where the constant MAX_THREADS is 1024 for the GPU. This formula ensures that
at least one block and at most MAX_BLKS blocks are allocated.
Given:

• Gi = grid index

• Bn = n_blks

• Ti = thread index

• Tn = MAX_THREADS

It follows that:

k=0
SET=0
offSET = B_i*T_n + T_i
addSET = B_n*G_i
for all k > 0 with SET < n_pxs do

SET = offSET + k*addSET
end for

Where SET represents the index of output element computed by a specific thread,
offSET and addSET are respectively the index of the first ouput element and the
distance (in terms of memory address) between two consecutive elements computed
by the thread.
This means that each thread will compute the output values that correspond to
a multiple of the n_blks shifted by the thread number, given a 1D view of the
output feature map.

4.2.2 Weight Gradient Kernel
For Weight gradient backpropagation kernel, each thread will compute part of one
element of the weight gradient tensor. Each thread will iterate over b_p and k_p,
where b_p is a portion of the batch size and k_p is a portion of the feature map of
each single image of the batch.
The number of elements of the weight tensor is c_in * f_w * f_h and is equal to
the grid dimension (n_blks).
Differently from previous kernels, in this case the concept of warp is introduced.
The warp is a group of threads in a block that cannot run concurrently if the
execution flow diverges (i.e. if a conditional statement is used and they are not
following the same branch).

30

Depthwise Separable AdderNet

In NVIDIA GPUs usually the WARP_SIZE is equal to 32. This concept is necessary
because the element is not computed entirely in a thread and there is an "if"
statement in the kernel to take care of the padded values. Efficiently allocation of
warps allows to reduce the groups of thread which are not completely parallelized
by the scheduler.
The number of threads per block used is:

num_threads = min(MAX_THREADS, (batch_size * WARP_SIZE))

It is important to ensure that each thread is assigned a specific amount of feature
maps per batch needed to compute the gradient value.
Given:

• Bi = block index

• Ti = thread index

• Tn = num_threads

It follows that:

k=0
offBATCH = T_i div WARP_SIZE
addBATCH = T_n div WARP_SIZE
for all k > 0 with xBATCH < batch_size do

xBATCH = offBATCH + k*addBATCH
end for

The formula below ensures that each thread of each warp is assigned a specific set
of batch elements for computations:

k=0
offELEM = T_i div WARP_SIZE
addELEM = WARP_SIZE
for all k > 0 with xELEM < o_w*o_h do

xELEM = offELEM + k*addELEM
end for

After the calculation of the branches, the threads are synchronized again. The
partial values sum up in order to obtain the final gradient of the element.
The thread with index 0 of each block will store it in global memory.

31

Depthwise Separable AdderNet

4.3 Training setup
Model training and testing is performed using Pytorch as framework and developed
on the GeForce GTX 1070 GPU.
The networks were trained for 400 epochs using a batch size of 256.
For data augmentation, the same approach as in [21] is used: 4 pixels are padded
on each side, and a 32×32 crop is randomly sampled from the padded image or its
horizontal flip.
For testing,it is evaluated the single view of the original 32×32 image.
The optimizer used is SGD and the models are trained using a cosine learning rate
decade [22].
In particular, the learning rate scheduling is calculated using (4.1):

lr = kl ·
1
1 + cos e

emax

· π
2

(4.1)

Where e represents the epoch considered, emax is the number of total epochs and
kl is a parameter to establish the starting value of the learning rate.
This value constitutes the global learning rate η which is then used in (3.9) to
calculate the local learning rate.
For the ResNet-20 model, the learning rate starts from a value of 0.1, while in the
case of MobileNetV2 0.01 is used.

4.4 Experiment on Resnet20
As shown in Chapter 3, Resnet20 is one of the first networks in which AdderNets were
used. In order to make the model "depthwise separable" is suffficient to substitute
the Adder2D layer with a sequence of dwAdder2D, BN, Relu, pwAdder2D.
So the structure of the basic block of the ResNet-20 with the depthwise separable
additive convolutions will be the one in Figure 4.1.

Model Dataset Method param param. size Accuracy

Resnet-20
CIFAR10 DS-AddNN 61,732 0.25 (MB) 86.6%

AddNN 272,484 1.09 (MB) 91.4%

CIFAR100 DS-AddNN 67,672 0.27 (MB) 59.3%
AddNN 278,424 1.11 (MB) 67.6%

Table 4.1: Comparison of AddResNet-20 with and without depthwise separable
adder layers.

32

Depthwise Separable AdderNet

Figure 4.1: Comparison between basic block in AddResNet-20 (left) and Depthwise
Separable AddResNet-20 (right).

Observing the results it is possible to notice how the contribution of the deptwhise
separable convolution leads to a reduction of about 70% in the memory occupation
of the parameters.
In the case of CIFAR-10 there is a loss of accuracy equal to 5% while considering
CIFAR-100 as a dataset the accuracy decreases by 8%.
In spite of the metric decrease, the results demonstrate the convergence of the
algorithm and, considering the large memory savings it represents a good starting

33

Depthwise Separable AdderNet

point for the development of models suitable for edge computing.

4.5 Experiment on Mobilenet
As discussed in Chapter 2, MobileNet is a network that uses natively the deptwhise
separable convolutions so in this case there are no advantages in terms of memory
occupation by parameters (considering the same quantization).
Therefore, it is sufficient to replace the existing pointwise and depthwise convolu-
tional kernels with the corresponding addition kernels without the need to introduce
any further changes to the structure of the model.
For these tests, an improved version of the network called MobileNetV2 [22] is
used, details of which can be found in Section D.2.

Model Dataset Method param param. size Accuracy

MobileNetV2
CIFAR10 DS-AddNN 2,296,922 9.19 (MB) 89.5%

CNN 2,296,922 9.19 (MB) 93.8%

CIFAR100 DS-AddNN 2,412,212 9.65 (MB) 64.6%
CNN 2,412,212 9.65 (MB) 72.5%

Table 4.2: Comparison of MobileNetV2 with and without adder layers.

In the standard convolutional model the layers perform the same number of
multiplications and additions, in the Adder version the operations are all additions.
As seen in the previous chapter, this leads to a strong reduction in the power
consumption and the logical resources used.
Consequently, the loss in accuracy is acceptable, considering that the results can
be further improved in this case as well.

34

Depthwise Separable AdderNet

Figure 4.2: Comparison between inverted residual block in the standard Mo-
bileNetV2 (left) and the AddMobileNetV2 (right).

35

Depthwise Separable AdderNet

4.6 Considerations on the results
It is necessary to highlight that these results have been obtained by performing few
trainings (for time reasons) and without a proper fine tuning (only few different
values of learning rate have been tested).
The different type of model may require special reasoning with regard to the
selection of the hyper-parameters and consequently the results obtained have room
for improvement.
Furthermore, estimating the energy benefits of the contribution of the depthwise
separable Adder2D layers requires further tests on FPGAs considering quantized
models.
The advantages can however be expected to be similar to those found with Adder-
Net.

36

Chapter 5

Conclusions

In this work, two DL techniques called AdderNet and Depthwise Separable Convolu-
tions are used to improve the efficiency of two DNNs, ResNet-20 and MobileNetV2,
in image classification tasks. The results highlight that by substituting the conven-
tional convolutional layer with an Adder one, it is possible to completely replace the
multiplications with additions. This leads to reduced inference latency and power
consumption on edge devices, which are characterized by lower computational
capabilities, when compared with modern GPUs.

In particular, when deployed on FPGA platforms, the proposed AdderNet is
expected to produce a 5x reduction of the hardware resource utilization. The
introduction of DS-Conv, moreover, leads to a drastic reduction in the number of
parameters and operations for the architecture.
The proposed architecture is trained and tested on two datasets, CIFAR-10 and
CIFAR-100, by implementing the DNNs cited above. In particular:

• the ResNet-20 has been compared with the AdderNet version proposed in [12].

• the MobileNetV2 has been compared with the standard CNN implementation.

• on CIFAR-10, an accuracy of 86.6% and 89.5% for the ResNet-20 and Mo-
bileNetV2, respectively, are obtained.

• on CIFAR-100, an accuracy of 59.3% and 64.6% for the ResNet-20 and
MobileNetV2, respectively, are obtained.

• on the ResNet-20, the substitution of the Adder layer with a DS-Adder one
allows to reduce the memory occupation due to the parameters by 70%.

Hence, it is shown that the proposed DS-AdderNet converges during training and
provides an acceptable accuracy, if one considers that the model is deployed on
devices with reduced hardware capabilities. Moreover, for some architectures (e.g.
ResNet-20), a large reduction in memory resource utilization can be obtained.

37

Conclusions

5.0.1 Future work
This work can be improved from different points of view:

• fine-tuning can be performed to furtherly improve classification accuracy and
training time.

• more datasets and classification tasks (e.g. object detection, tracking etc.) can
be used to consolidate the proposed architecture performance and drawbacks.

• actual deployment of the proposed DNN would allow to measure more precisely
the impact of the new layer on resources utilization, power consumption and
inference latency.

38

Appendix A

Framework Pytorch

Pytorch [23] is a Python-based framework aimed at research prototyping and
production implementation in the field of machine learning[22].
This library has become a popular resource in the deep learning research community
by integrating a focus on user friendliness with careful performance considerations.
This scientific computing package serving two broad purposes:

• A replacement for NumPy to use the power of GPUs and other accelerators.

• An automatic differentiation library that is useful to implement neural net-
works.

It uses dynamic computation graphs and allows to run and test portions of the code
in real-time. Thus, users don’t have to wait for the entire code to be implemented
to check if a part of the code works.
The most important data type is the tensor, which is a container that can hold
data of various sizes. It can be a number, a vector, or a matrix and can be easily
handled by the CPU or GPU to make calculations faster and more efficient.
By default PyTorch uses 32-bit Float as the data type for the tensor elements, so
when we talk about unquantized data, this representation is intended.

A.1 Common modules
A short description of the modules that were useful for the realization of this work
is presented:

• nn : the nn module includes various classes that help to build neural network
models. All modules in PyTorch subclass the nn module.

39

Framework Pytorch

• Optim : the Optim module is a package with pre-written algorithms for
optimizers that can be used to build neural networks.

• Autograd : the autograd module is PyTorch’s automatic differentiation engine
that helps to compute the gradients in the forward pass in quick time. Autograd
generates a directed acyclic graph where the leaves are the input tensors while
the roots are the output tensors.

PyTorch provides a plethora of operations related to neural networks, arbitrary
tensor algebra, data wrangling and other purposes.
In addition, the ability to use C++ extensions to create operators defined out-of-
source (separate from the PyTorch backend) is included.

40

Appendix B

The CUDA Programming
Model

The CUDA programming model [19] represents an abstraction of the GPU hardware
structure that connects an application to its possible implementation on the GPU.
It divides the computational structure in:

• Grids: group of blocks

• Blocks: group of threads, a streaming multi-processor

• Threads: computational unit

The CUDA kernel is a function that runs on the GPU. The parallel part of
applications is executed K times in parallel by K separate CUDA threads, as
opposed to only once as normal C++ operations.
Each CUDA block is executable by a streaming multiprocessor (SM) and cannot
be moved to other SMs (except during dynamic CUDA parallelism, preemption, or
debugging). One SM can run several CUDA blocks depending on the amount of
resources required by the CUDA blocks. Each kernel runs on one GPU and CUDA
supports running multiple kernels on one device at one time.
Each thread has its own local memory and registers, shares the "shared memory"
with the other threads of his block and the constant/global memory with the
threads of the other blocks (Figure B.1).

41

The CUDA Programming Model

Figure B.1: CUDA memory programming model.

42

Appendix C

ResNet

ResNet[21] is a deep convolutional neural network which uses a technique known
as skip connection paved the way for residual networks.
This type of architecture was introduced in 2015 and won in the ILSVRC (ImageNet
Large Scale Visual Recognition Challenge).
A problem common to many DNNs [24] is summarised by two concepts:

• Vanishing gradient : the gradient becomes too small resulting in minimal
updating of the weights and causing a slowdown in the training process.

• Exploding gradient : the gradient becomes excessively large causing instabil-
ity problems and generating weights that exceed those manageable by the
computer (overflow) resulting in values that cannot be updated further.

These issues become progressively important as the number of layers in the network
increases and the gradient tends to degrade due to the chain rule.
In order to circumvent this issue, residual blocks have been introduced.
These structures consist of sequences of standard convolutional layers (usually two
or three) that contain nonlinearities (ReLU) and batch normalisation in between
with the addition of skip connectors.
The basic structure of the residual block is shown in Figure C.1, the skip connections
perform identity mapping without adding parameters or increasing computational
cost.
Thus the function representing the otput of a residual block can be expressed as:

y = F (x) + x (C.1)

Considering a loss function L(y(x)) then its partial derivative will be given by:

dL

dx
= dL

dy

dy

dx
= dL

dy

1dF

dx
+ 1

2
= dL

dy

dF

dx
+ dL

dy
(C.2)

43

ResNet

The Equation C.2 approximates the calculation of the gradient during backpropa-
gation and allows us to appreciate the benefit of the skip connetion.

Figure C.1: Residual block with skip connetion.

This method allows the development of very deep models that do not suffer
from the stability problems caused by the gradient calculation.
Models with several parallel skips are referred to as DenseNets [25].
The Table C.1 shows the structure of the ResNet-20 used in this work, the structure
of the residual block is presented in the Figure 3.2.
In the residual block 4 and in the residual block 7 the skip connection is carried
out through a convolutional layer that downsamples the input (increasing the size
of the channels) in order to make it compatible with the dimensions of the output
and carry out the addition.
Each convolutional operation is followed by a batch normalization and ReLU.

44

ResNet

Type / Stride Filter Shape Input Size
Conv 3 × 3 × 3 × 16 32 × 32 × 3

Residual Block 1 3 × 3 × 16 x 16 32 x 32 x 16
3 × 3 × 16 x 16 32 x 32 x 16

Residual Block 2 3 × 3 × 16 x 16 32 x 32 x 16
3 × 3 × 16 x 16 32 x 32 x 16

Residual Block 3 3 × 3 × 16 x 16 32 x 32 x 16
3 × 3 × 16 x 16 32 x 32 x 16

Residual Block 4 3 × 3 × 16 x 32 32 x 32 x 16
3 × 3 × 32 x 32 16 x 16 x 32

Residual Block 5 3 × 3 × 32 x 32 16 x 16 x 32
3 × 3 × 32 x 32 16 x 16 x 32

Residual Block 6 3 × 3 × 32 x 32 16 x 16 x 32
3 × 3 × 32 x 32 16 x 16 x 32

Residual Block 7 3 × 3 × 32 x 64 16 x 16 x 32
3 × 3 × 64 x 64 8 x 8 x 64

Residual Block 8 3 × 3 × 64 x 64 8 x 8 x 64
3 × 3 × 64 x 64 8 x 8 x 64

Residual Block 9 3 × 3 × 64 x 32 8 x 8 x 64
3 × 3 × 64 x 64 8 x 8 x 64

Avg Pool / s1 Pool 8 × 8 8 x 8 x 64
FC / s1 64 × 10 1 x 1 × 64

Softmax / s1 Classifier 1 x 1 x 10

Table C.1: ResNet-20 architecture for CIFAR10.

45

Appendix D

Mobilenet

D.1 MobileNet
The first version of MobileNet[9] replaced the classic convolutional layers with a
sequence of depthwise and pointwise layers, as shown in the Figure D.1.

Figure D.1: Standard convolutional layer (left) with batch normalization and
ReLu and Depthwise Separable Convolution (right).

46

Mobilenet

The complete network structure is presented in Table D.1, it has more than 4
million parameters and achieves an accuracy of 71.7% on ImageNet.

Type / Stride Filter Shape Input Size
Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3

Conv dw / s1 3 × 3 × 32 dw 112 × 112 × 32
Conv / s1 1 × 1 × 32 × 64 112 × 112 × 32

Conv dw / s2 3 × 3 × 64 dw 112 × 112 × 64
Conv / s1 1 × 1 × 64 × 128 56 × 56 × 64

Conv dw / s1 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 128 56 × 56 × 128

Conv dw / s2 3 × 3 × 128 dw 56 × 56 × 128
Conv / s1 1 × 1 × 128 × 256 56 × 56 × 128

Conv dw / s1 3 × 3 × 256 dw 56 × 56 × 128
Conv / s1 1 × 1 × 256 × 256 56 × 56 × 128

Conv dw / s2 3 × 3 × 256 dw 56 × 56 × 128
Conv / s1 1 × 1 × 256 × 512 14 × 14 × 256

5x Conv dw / s1 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 512 14 × 14 × 512

Conv dw / s2 3 × 3 × 512 dw 14 × 14 × 512
Conv / s1 1 × 1 × 512 × 1024 7 × 7 × 512

Conv dw / s2 3 × 3 × 1024 dw 7 × 7 × 1024
Conv / s1 1 × 1 × 1024 × 1024 7 × 7 × 1024

Avg Pool / s1 Pool 7 × 7 7 × 7 × 1024
FC / s1 1024 × 1000 1 × 1 × 1024

Softmax / s1 Classifier 1x1x1000

Table D.1: MobileNet architecture.

D.2 MobileNetV2
An improved version of MobileNet[22] was introduced in 2018 based on an "inverted
residual block" in which the shortcut links are between the "bottleneck layers".

D.2.1 Bottleneck Layer
In [21] a residual block (Appendix C) is introduced with a three-layer structure
instead of the standard one with two layers.
This design choice, called bottleneck, was mainly aimed at improving the training

47

Mobilenet

time for very deep networks and larger datasets.
The three layers that form the block (bottleneck) are respectively 1×1, 3×3, and
1×1 convolutions.
The 1×1 layers are responsible for reducing and then restoring the dimensions,
leaving the 3×3 layer a bottleneck with smaller input/output sizes.
In the version of the bottleneck block used in the ResNets, each convolutional layer
is followed by a batch normalization and a ReLU, the skip connection is made
between the input of the block and the output of the last layer, immediately before
the activation function.

Figure D.2: Visualization of the intermediate feature maps in the inverted residual
layer [26].

D.2.2 Inverted residual
MobilenetV2 uses a block very similar to Residual Bottleneck called Inverted resid-
ual.
The latter, however, replaces the standard 3x3 convolution with its depthwise
counterpart.
Inspired by the intuition that the bottlenecks actually contain all the necessary
information, while an expansion layer acts merely as an implementation detail
that accompanies a non-linear transformation of the tensor, this architecture use
shortcuts directly between the bottlenecks.[22]
The structure of the MobileNetV2 basic blocks is presented in the Figure D.3, while
the complete architecture is schematized in the Table D.2

48

Mobilenet

Figure D.3: Basic blocks of MobileNetv2 : the inverted residual block with
stride = 1 (left) and the depthwise bottleneck with stride = 2 for downsizing
(right). Note that the third layer (1×1 convolution) has no non-linearity.

49

Mobilenet

Type / Stride Filter Shape Input Size
Conv / s2 3 × 3 × 3 × 32 224 × 224 × 3

bottleneck / s1 3 × 3 × 16 dw 112 × 112 × 32
bottleneck / s2 3 × 3 × 24 dw 112 × 112 × 16
bottleneck / s2 3 × 3 × 32 dw 56 × 56 × 24
bottleneck / s2 3 × 3 × 64 dw 28 × 28 × 32
bottleneck / s1 3 × 3 × 96 dw 14 × 14 × 64
bottleneck / s2 3 × 3 × 160 dw 14 × 14 × 96
bottleneck / s1 3 × 3 × 320 dw 7 × 7 × 160

Conv / s1 1 × 1 × 320 × 1280 7 × 7 × 320
Avg Pool / s1 Pool 7 × 7 7 × 7 × 1280

FC / s1 1280 × 1000 1 × 1 × 1280
Softmax / s1 Classifier 1x1x1000

Table D.2: MobileNetV2 architecture. The table does not show the 1x1 filters of
the bottleneck blocks.

50

Appendix E

Datasets

E.1 CIFAR10

CIFAR-10 (Canadian Institute For Advanced Research) is a dataset mainly used
to train machine learning algorithms for computer vision.
It consists of 6000 colour images of size 32x32 divided into 10 classes.
Each class comprises 6000 images and the data is divided into 50000 samples for
training and 10000 for testing.
The 10 classes are: airplane, automobile, bird, deer, dog, frog, horse, ship, truck.
They are completely mutually exclusive (there is no overlap between automobiles
and trucks).
CIFAR-10 is a labeled subset of the 80 million tiny images dataset. When the
dataset was created, students were paid to label all of the images [27].

E.2 CIFAR100

CIFAR-100 is very similar to CIFAR-10 in that it consists of the same number of
images with the same format.
However, this dataset is divided into 100 classes, each including 600 images (500
for training and 100 for testing).
The 100 classes are grouped into 20 superclasses. Each image comes with a "fine"
label (the class it belongs to) and a "coarse" label (the superclass to which it
belongs). In Table E.1 lists the classes of the dataset.

51

Datasets

Figure E.1: First 25 labeled images from CIFAR10.

E.3 ImageNet
ImageNet is a large image database, realized for artificial vision and object recog-
nition. The dataset consists of more than 14 million images which have been
annotated manually with an indication of the objects represented in them and the
bounding box that delimits them[28].
The identified objects have been classified into more than 20,000 categories.
The database with third-party image annotations is available for download from
ImageNet, even though the images are not part of the project (only the link to the
images is provided).
Since 2010, a competition called ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) has been held every year, where programs compete to classify and
correctly detect objects and scenes in the images.
A reduced list of images with objects from a thousand non-overlapping categories
is used in the competition.

52

Datasets

SUPERCLASS CLASSES
aquatic mammals beaver, dolphin, otter, seal, whale

fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips

food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet

peppers
household electrical devices clock, computer keyboard, lamp, telephone,

television
household furniture bed, chair, couch, table, wardrobe

insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf

large man-made outdoor things bridge, castle, house, road, skyscraper
large natural outdoor scenes cloud, forest, mountain, plain, sea

large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm

people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle

small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow

vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor

Table E.1: Superclasses and classes of CIFAR-100.

53

Bibliography

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:
//www.deeplearningbook.org. MIT Press, 2016 (cit. on pp. 1, 2, 6, 8).

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006 (cit. on p. 1).

[3] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach
(2nd Edition). Prentice Hall, Dec. 2002. isbn: 0137903952 (cit. on p. 2).

[4] Wikimedia Commons. File:Neural network.svg — Wikimedia Commons, the
free media repository. [Online; accessed 24-March-2022]. 2021. url: https:
//commons.wikimedia.org/w/index.php?title=File:Neural_network.
svg&oldid=606652357 (cit. on p. 3).

[5] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Opti-
mization. cite arxiv:1412.6980Comment: Published as a conference paper at
the 3rd International Conference for Learning Representations, San Diego,
2015. 2014. url: http://arxiv.org/abs/1412.6980 (cit. on p. 7).

[6] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift. 2015. arXiv: 1502.
03167 (cit. on p. 11).

[7] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How Does Batch Normalization Help Optimization? 2019. arXiv: 1805.11604
(cit. on p. 12).

[8] Laurent SIfre and Stéphane Mallat. Rigid-Motion Scattering for Texture
Classification. 2014. arXiv: 1403.1687 (cit. on p. 15).

[9] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications. 2017.
arXiv: 1704.04861 (cit. on pp. 15, 19, 46).

[10] François Chollet. Xception: Deep Learning with Depthwise Separable Convo-
lutions. 2017. arXiv: 1610.02357 (cit. on p. 15).

54

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://commons.wikimedia.org/w/index.php?title=File:Neural_network.svg&oldid=606652357
https://commons.wikimedia.org/w/index.php?title=File:Neural_network.svg&oldid=606652357
https://commons.wikimedia.org/w/index.php?title=File:Neural_network.svg&oldid=606652357
http://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1805.11604
https://arxiv.org/abs/1403.1687
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1610.02357

BIBLIOGRAPHY

[11] Irwin Sobel. History and Definition of the Sobel Operator. 2014 (cit. on p. 15).
[12] Hanting Chen, Yunhe Wang, Chunjing Xu, Boxin Shi, Chao Xu, Qi Tian,

and Chang Xu. «AdderNet: Do We Really Need Multiplications in Deep
Learning?» In: CVPR (2020) (cit. on pp. 21–23, 28, 37).

[13] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima
Anandkumar. signSGD: Compressed Optimisation for Non-Convex Problems.
2018. arXiv: 1802.04434 (cit. on p. 22).

[14] Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Anima
Anandkumar. Convergence rate of sign stochastic gradient descent for non-
convex functions. 2018 (cit. on p. 22).

[15] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feed-
forward neural networks. 2010 (cit. on p. 23).

[16] Kevin P. Murphy. Machine learning : a probabilistic perspective. Cambridge,
Mass. [u.a.]: MIT Press, 2013. isbn: 9780262018029 0262018020 (cit. on p. 23).

[17] Yunhe Wang, Mingqiang Huang, Kai Han, Hanting Chen, Wei Zhang, Chun-
jing Xu, and Dacheng Tao. AdderNet and its Minimalist Hardware Design
for Energy-Efficient Artificial Intelligence. 2021. arXiv: 2101.10015 (cit. on
pp. 26, 27).

[18] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing fpga-based accelerator design for deep convolutional neural
networks. ACM, 2015 (cit. on p. 26).

[19] NVIDIA Corporation. NVIDIA CUDA C Programming Guide. Version 3.2.
2010 (cit. on pp. 29, 41).

[20] Haoran You, Xiaohan Chen, Yongan Zhang, Chaojian Li, Sicheng Li, Zihao
Liu, Zhangyang Wang, and Yingyan Lin. «ShiftAddNet: A Hardware-Inspired
Deep Network». In: CoRR abs/2010.12785 (2020). arXiv: 2010.12785. url:
https://arxiv.org/abs/2010.12785 (cit. on p. 29).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. 2016. doi: 10.1109/CVPR.2016.90 (cit. on
pp. 32, 43, 47).

[22] Mark Sandler, Andrew G. Howard, Menglong Zhu, Andrey Zhmoginov,
and Liang-Chieh Chen. «Inverted Residuals and Linear Bottlenecks: Mo-
bile Networks for Classification, Detection and Segmentation». In: CoRR
abs/1801.04381 (2018). arXiv: 1801.04381. url: http://arxiv.org/abs/
1801.04381 (cit. on pp. 32, 34, 39, 47, 48).

55

https://arxiv.org/abs/1802.04434
https://arxiv.org/abs/2101.10015
https://arxiv.org/abs/2010.12785
https://arxiv.org/abs/2010.12785
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381
http://arxiv.org/abs/1801.04381

BIBLIOGRAPHY

[23] Adam Paszke et al. «PyTorch: An Imperative Style, High-Performance Deep
Learning Library». In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E.
Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035. url:
http : / / papers . neurips . cc / paper / 9015 - pytorch - an - imperative -
style-high-performance-deep-learning-library.pdf (cit. on p. 39).

[24] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. Ed. by Yee Whye Teh and D. Mike Titterington.
2010. url: http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#
GlorotB10 (cit. on p. 43).

[25] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. «Densely Connected
Convolutional Networks». In: CoRR abs/1608.06993 (2016). arXiv: 1608.
06993. url: http://arxiv.org/abs/1608.06993 (cit. on p. 44).

[26] Andrew Howard et al. «Searching for MobileNetV3». In: CoRR abs/1905.02244
(2019). arXiv: 1905.02244. url: http://arxiv.org/abs/1905.02244 (cit.
on p. 48).

[27] Alex Krizhevsky. «Learning Multiple Layers of Features from Tiny Images».
In: University of Toronto (May 2012) (cit. on p. 51).

[28] John Markoff. «For Web Images, Creating New Technology to Seek and Find».
In: (2012). url: https://www.nytimes.com/2012/11/20/science/for-
web-images-creating-new-technology-to-seek-and-find.html (cit. on
p. 52).

56

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10
http://dblp.uni-trier.de/db/journals/jmlr/jmlrp9.html#GlorotB10
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
http://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1905.02244
http://arxiv.org/abs/1905.02244
https://www.nytimes.com/2012/11/20/science/for-web-images-creating-new-technology-to-seek-and-find.html
https://www.nytimes.com/2012/11/20/science/for-web-images-creating-new-technology-to-seek-and-find.html

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Machine Learning and Deep Dearning
	Artificial Neural Networks
	Activation layer
	How a neural network learns

	Convolutional Neural Networks
	Convolutional layer
	Batch Normalization layer
	Pooling layer
	Fully connected layer

	Neural Networks on edge devices

	Depthwise Separable Convolutions
	Depthwise Convolution
	Pointwise Convolution
	Comparison with standard convolutions
	MobileNet

	AdderNet
	The adder layer
	Gradient computation in AdderNets
	Adaptive learning rate
	Comparison with CNN
	Hardware implementation

	Depthwise Separable AdderNet
	Depthwise Adder Layer
	The proposed adder layer

	CUDA kernel
	Inference and Input Gradient Kernels
	Weight Gradient Kernel

	Training setup
	Experiment on Resnet20
	Experiment on Mobilenet
	Considerations on the results

	Conclusions
	Future work

	Framework Pytorch
	Common modules

	The CUDA Programming Model
	ResNet
	Mobilenet
	MobileNet
	MobileNetV2
	Bottleneck Layer
	Inverted residual

	Datasets
	CIFAR10
	CIFAR100
	ImageNet

	Bibliography

