
POLITECNICO DI TORINO
Master’s Degree in Data Science & Engineering

Master’s Degree Thesis

Log Analysis: Topic Modeling
applications on fine-features data

processing system

Supervisors

Prof. DANIELE APILETTI

EMANUELE GALLO

Candidate

DAVIDE NAPOLITANO

April 2022

Summary

Nowadays an ever-increasing number of operations is performed with the help of
computer systems. They are everywhere around us and each of them produces a
huge quantity of log files for each operation carried out.
In this context, the aim of this project is to study and create an architecture able to
read and categorize the logs produced by computer systems based on logs content.
The outcomes of this project form the foundation of a subsequent task of anomaly
detection, which is highly requested since lets companies to detect malicious attacks
or failures and whereby the focus is moved towards the most relevant events.
As previously mentioned, I deal with log files. They contain the sequential and
chronological records of the operations done by computer systems. Since new
systems are extremely complex, the interaction of their software components causes
the registration of a big number of operations. Accordingly, analyse and extract
useful information from this incredible amount of textual data is complex and
it requires many efforts, because both field expertise and cutting-edge technolo-
gies must be involved inside the process. The starting point of this thesis is the
LogHub dataset repository, where several computer system log types are collected.
Specifically, for this research the focus is on logs coming from “HDFS” and “Spark”
distributed systems.
One of the issues of this study is the object manipulated: the log. Differently from
common texts like books, logs are short texts with a lot of technical words and
unavailing elements like path or web keys. For this reason, the manipulation and
the cleaning phases are essential to provide useful information to models adopted.
Therefore, the first part of the project is the process of making the data more
suitable and it is made by several steps. They are principally based on NLP and
Regular Expression crafting, which allow to obtain meaningful words from unstruc-
tured logs. Some of these techniques are common when dealing with text mining,
like the removal of accents and special characters, the expansion of contractions,
the tokenization and the PoS tagging. In addition, detailed studies have been
conducted on log structure. Indeed, several recurring patterns, corresponding to
meaningless elements, have been identified and, through their removal, it is possible
to trace logs back to similar structures, reducing differences.

ii

These operations regard reformatting logs error, since usually they are divided into
multiple lines, the applications of the Camel Case Split, due to Object based nature
of the systems, the upper-case split for exceptions and the removal of patterns like
parentheses with their content and variable value association. Moreover, a personal
implementation is proposed to lemmatize words that, due to their rare proposition
in common texts, are not properly tagged and conducted to their root.
The final steps in the data processing phase are the removal of words depending on
their frequency among documents and the production of multi-grams. The last one,
provided a sentence, makes mono-gram, bi-gram and tri-gram, while considering to
not create elements that contain the same word multiple times or elements with
overlapping meaning.
Provided this data processing system, for both “HDFS” and “Spark” three different
datasets are made: ORIGIN+MESSAGE, that considers both the source and the
message elements of logs, MESSAGE, that takes only the message part, and SPLIT,
a version in the middle that considers both the message and the origin but for the
latter only monograms are created, in order to decrease its weight in the algorithms.
Afterward, the topic models are implemented. Concisely, they consist in annotating
documents with thematic information and in grouping together documents that
share similar contents.
About the chosen algorithms, the project is split into two branches. The first one
investigates standard approaches, based on probabilistic or algebraical operations,
where the models analysed are LDA, NMF and LSA. The second branch, instead,
follows a modern approach based on Neural Network and Feature Embedding.
For this part the proposed algorithms are ProdLDA, Top2Vec/BERTopic and, by
combining many of their approaches, my custom model called GEAC. About the
training phase, the datasets final structure must be considered. They are all made
by few short entries, making the job hard for the models. For this reason, for all
the models a very extensive finetuning had to be carried out, otherwise wrong or
meaningful solutions would have been found. All models have been tested with
the CV coherence score. Inside the world of coherence scores, the CV is the most
meaningful to evaluate the goodness of topic clusters since it provides results close
to the human ones, the ground truth for this task.
One issue with Topic Models is about the quality, since the models cited do not
always guarantee that each topic cluster is independent from the others. For this
reason, I perform an analysis about the similarity between topic clusters by exploit-
ing the spatial representation of each word inside a topic through the Word2Vec
feature embedding model. Different possible solutions have been proposed to
achieve this result. One aim to keep the model that obtains the highest CV score
but, at the same time, it does not have too similar topics. Another solution tries
to achieve a good score with a greedy approach: starting from a good result, it
decreases the number of topics, depending on the number of similar topics, until

iii

all the topics are not too similar. The last proposal, instead, merges the similar
topic, decreasing as consequence the number of topics and their similarity.
These proposals have been tested with classical models, in order to explore and
understand many behaviours. Instead, for the algorithms based on neural network,
these solutions have been directly included in the training pipeline, since the differ-
ent training phase combined with the dataset used, required this reasonings.
As consequence, for this project have been necessary the above considerations.
However, it must be noticed that the final aim is not to obtain completely dissimilar
topics, but topics that can have a level of similarity which does not exceed a
threshold beyond which a human would consider the different topic as one. About
the value of the threshold, it has been fixed to 85%, since it allows to discriminate
topics that are close but, at the same time, different in few details.
Thanks to this analysis, I can select a model that has a high CV metric score and
that is also optimal for what the supervisor might infer regarding similarity.
For what concerns results, the performances in classical models are good for NMF
and LDA, while LSA is not able to provide meaningful topics. Some issues related
to these models are the high number of similar topics when the best model has
a high number of topics, and their predisposition to find generally better models
with a small number of topics, making them unusable in these cases. Therefore, the
nature of the datasets, combined with their short composition, makes the creation
of topics difficult, in particular about logs whose topic is unique and that are made
up of few terms.
The introduction of Neural Network models introduces several benefits and im-
provements. ProdLDA seems to be in line or slightly better than LDA, however
its utilization is not straightforward. Indeed, it is common to produce mixtures of
topics that do not provides a real meaning, but rather make it more challenging to
understand the quality of the models as the metric provides good values due to the
fit of topics to multi-sentences.
The introduction of BERT marks a positive turning point. BERTopic allows higher
scores, however, it has problems related to its formulation. Indeed, the use of
HDBSCAN for clustering involves having at least two elements per group. This is a
problem for all logs whose corresponding topic is uniquely associated to them, that
in this implementation are common to be mis-labelled as outliers. To overcome this
drawback, I propose two solutions: in the first one I take each outlier as a cluster
with unitary size, in this way those elements are kept rather than being discarded.
However, with this solution, it may happen, when the model makes an error, to
consider independent clusters when an existing topic is suitable. Directly from this
consideration, I present the second solution. For those logs considered as outliers,
before assigning a new label, I check if a match with found topics exists. This
control is done by looking at the similarity, by using the same approach already
proposed in other algorithms. Considering all models analysed so far, I present my

iv

custom implementation. It is based on the combination of classical models, such
as LDA and NMF, and modern approaches, represented by BERT and Word2Vec.
Then, I follow a workflow similar to BERTopic, for dimensionality reduction I use
an AutoEncoder rather than UMAP, and finally I apply a clustering algorithm to
group data. Unlike BERTopic, I use two different types of algorithms: K-Means,
a standard model that is based on Euclidean distance, and K-Medoids, a similar
model that allows to explore the space through cosine similarity.
In this personal proposal, the results further improve, both in terms of coherence
and predictions. Indeed, until now the models had several problems on creating
some clusters and on making the right associations, while now it is possible to
obtain correct topics for all logs analysed. Overall, at the end of this project, a
generic log line can be labelled with an almost black box approach that provides
optimal outputs both under human and machine perspectives.

The thesis text is structured as follows. After the short introduction on Chapter
1, Chapter 2 provides a global vision about the Application domain and the dataset.
Chapter 3 presents a discussion about textual data analysis. Here are presented
all the considerations and the steps done to obtain meaningful features from the
unstructured logs.
Chapter 4 introduces the readers to Topic Modelling. Here are first explained the
algorithm coming from standard approaches based on Algebra and on Probability,
like LDA, LSA and NMF. Then are shown the newest approaches that rely on
neural networks and new different features manipulation. They are ProdLDA,
Top2Vec/BERTopic and, thanks to the reasoning done on them, my personal
proposal GEAC done by combining some of their techniques. On Chapter 5 the
results on the datasets proposed coming from the different models are disclosed,
showing the pros and the cons and, at the same time trying also to overcome same
issues related to some of them.
Finally Chapter 6 summarize the whole project in the conclusion, looking into the
key contributions and into possible further works.

v

Acknowledgements

I would like to thank all the people who have been close to me during these months,
who have given me advice and supported me during the whole journey.
In particular, I want to thank my supervisors, Daniele Apiletti and Emanuele Gallo,
who, through the collaboration between the Politecnico di Torino and Reply Data,
gave me the possibility to face this project.
I want to thank my co-supervisor Valerio Volpe, who guided me during this journey,
offering me advices and suggestions.
I thank my family, without their support and their love it would have been
impossible to start and finish this journey.
Finally, I would like to thank all my friends and the people closest to me, who in
these difficult years have shared the various moments of my life, always with joy
and love.

vi

Table of Contents

List of Tables x

List of Figures xii

Acronyms xvi

1 Introduction 1

2 Application Domain 3
2.1 What are System Logs . 3
2.2 What is Log Analysis . 4
2.3 Natural Language Processing . 4

2.3.1 Statistical Methods . 5
2.3.2 Neural Networks . 5

2.4 What is Topic Modeling . 6
2.5 Dataset - LogHub . 6

3 Textual Data Analysis 9
3.1 Data Cleaning . 10

3.1.1 Reformat Log Errors . 11
3.1.2 Remove Accented Characters 11
3.1.3 Remove Special Characters and Patterns 12
3.1.4 Camel Case Split . 15
3.1.5 Merge Improper words divisions 16
3.1.6 Expand Contractions . 16
3.1.7 Tokenization . 17
3.1.8 StopWords Removal . 17
3.1.9 PoS Tagging . 17
3.1.10 Lemming . 19
3.1.11 Regex . 21
3.1.12 Plural to Singular . 22

viii

3.2 Data Manipulation . 22
3.3 Feature Creation . 24

4 Topic Modeling 27
4.1 Classic Approaches . 27

4.1.1 LDA . 28
4.1.2 NMF . 31
4.1.3 LSA . 35

4.2 Modern Approaches . 39
4.2.1 ProdLDA . 49
4.2.2 Top2Vec & BERTopic . 52
4.2.3 GEAC . 58

5 Results 61
5.1 Coherence Score . 61
5.2 Topic Similarity . 63
5.3 Results . 66

5.3.1 LDA . 67
5.3.2 NMF . 75
5.3.3 LSI . 83
5.3.4 ProdLDA . 90
5.3.5 BERTopic . 93
5.3.6 GEAC . 102

6 Conclusion 115
6.1 Future Implementations . 116

Bibliography 117

ix

List of Tables

5.1 LDA Results on ORIGIN+MESSAGE Spark dataset 68
5.2 LDA Results on SPLIT Spark dataset 70
5.3 LDA Results on MESSAGE Spark dataset 71
5.4 LDA Results on ORIGIN+MESSAGE HDFS dataset 73
5.5 LDA Results on SPLIT HDFS dataset 73
5.6 LDA Results on MESSAGE HDFS dataset 75
5.7 NMF Results on ORIGIN+MESSAGE Spark dataset 76
5.8 NMF Results on SPLIT Spark dataset 76
5.9 NMF Results on MESSAGE Spark dataset 78
5.10 NMF Results on ORIGIN+MESSAGE HDFS dataset 80
5.11 NMF Results on SPLIT HDFS dataset 81
5.12 NMF Results on MESSAGE HDFS dataset 82
5.13 LSI Results on ORIGIN+MESSAGE Spark dataset 83
5.14 LSI Results on SPLIT Spark dataset 84
5.15 LSI Results on MESSAGE Spark dataset 85
5.16 LSI Results on ORIGIN+MESSAGE HDFS dataset 87
5.17 LSI Results on SPLIT HDFS dataset 88
5.18 LSI Results on MESSAGE HDFS dataset 89
5.19 ProdLDA Results on all Spark datasets 91
5.20 ProdLDA Results on ORIGIN+MESSAGE HDFS dataset 92
5.21 BERTopic Results on ORIGIN+MESSAGE Spark dataset 95
5.22 BERTopic Results on SPLIT Spark dataset 97
5.23 BERTopic Results on MESSAGE Spark dataset 97
5.24 BERTopic Results on ORIGIN+MESSAGE HDFS dataset 99
5.25 BERTopic Results on SPLIT HDFS dataset 100
5.26 BERTopic Results on MESSAGE HDFS dataset 101
5.27 GEAC Results on ORIGIN+MESSAGE Spark dataset 104
5.28 GEAC Results on SPLIT Spark dataset 105
5.29 GEAC Results on MESSAGE Spark dataset 107
5.30 GEAC Results on ORIGIN+MESSAGE HDFS dataset 109

x

5.31 GEAC Results on SPLIT HDFS dataset 111
5.32 GEAC Results on MESSAGE HDFS dataset 113

xi

List of Figures

2.1 Example of an event created by HDFS 3

3.1 Log formatting in case of errors . 11
3.2 Brackets Removal . 12
3.3 Paths Removal . 13
3.4 Words with Numbers inside Removal 13
3.5 Values assignment Removal . 14
3.6 Single or Double quotes Removal 14
3.7 Upper Case Split. Can be appreciated also the removal of special

characters as described in the point before. 15
3.8 Words that presents the Camel Case Capitalizion structure are

divided into their inner words . 16
3.9 Words split on Camel Case or Upper case are allign with existing

words made by their concatenation 16
3.10 Representation of a generic sentence where each word is label with

the corresponding PoS . 18
3.11 PoS Markov Chain representation 18
3.12 PoS Markov Transaction Matrix . 19
3.13 Lemming Example . 19
3.14 Data Manipulation implementation - HDFS 23
3.15 Data Manipulation implementation - Spark 23
3.16 N-gram example . 24

4.1 LDA graphical model . 30
4.2 LSA Decomposition . 37
4.3 ANN representation . 39
4.4 VAE basic represetation . 41
4.5 RT basic representation . 43
4.6 Word2Vec Continous Bag of Word and Skip Gram architecture . . . 44
4.7 Attention mechanism representation 45
4.8 Transformer Implementation . 46

xii

4.9 Scale Dot-Product Attention vs Multi-Head Attention 47
4.10 Complete Transformer Architecture 47
4.11 Overall pre-training and fine-tuning procedures for BERT 48
4.12 Twin Network architectures of Sentence-BERT. On the right, the

architecture for the classification is represented, while on the right
the one used at inference . 48

4.13 An example of a semantic space. The purple points are documents
and the green points are words. Words are closest to documents
they best represent and similar documents are close together. 52

4.14 Top2Vec UMAP-reduced document vectors 55
4.15 Top2Vec dense areas of documents identified by HDBSCAN 55
4.16 The topic vector is the centroid of the dense are of documents

identified by HDBSCAN, which are the purple points. The outliers
identified by HDBSCAN are not used to calculate the centroid. . . . 56

4.17 The topic words are the nearest word vectors to the topic vector. . . 57

5.1 Overview over the unifying coherence framework - its four parts and
their intermediate results . 63

5.2 Predictions LDA on Spark - ORIGIN+MESSAGE 69
5.3 Predictions LDA on Spark - SPLIT 70
5.4 Predictions LDA on Spark - MESSAGE 71
5.5 Predictions LDA on HDFS - ORIGIN+MESSAGE 72
5.6 Predictions LDA on HDFS - SPLIT 74
5.7 Predictions LDA on HDFS - MESSAGE 75
5.8 Predictions NMF on Spark - ORIGIN+MESSAGE 77
5.9 Predictions NMF on Spark - SPLIT 78
5.10 Predictions NMF on Spark - MESSAGE 79
5.11 Predictions NMF on HDFS - ORIGIN+MESSAGE 80
5.12 Predictions NMF on HDFS - SPLIT 81
5.13 Predictions NMF on HDFS - MESSAGE 82
5.14 Predictions LSI on Spark - ORIGIN+MESSAGE 84
5.15 Predictions LSI on Spark - SPLIT 85
5.16 Predictions LSI on Spark - MESSAGE 86
5.17 Predictions LSI on HDFS - ORIGIN+MESSAGE 87
5.18 Predictions LSI on HDFS - SPLIT 88
5.19 Predictions LSI on HDFS - MESSAGE 89
5.20 Predictions ProdLDA on Spark - SPLIT 91
5.21 Predictions ProdLDA on HDFS - ORIGIN+MESSAGE 92
5.22 Example of sentences assigned to existing topics, rather than creating

new ones. 94
5.23 Predictions BERTopic on Spark - ORIGIN+MESSAGE 95

xiii

5.24 Predictions BERTopic on Spark - SPLIT 96
5.25 Predictions BERTopic on Spark - MESSAGE 98
5.26 Predictions BERTopic on HDFS - ORIGIN+MESSAGE 99
5.27 Predictions BERTopic on HDFS - SPLIT 100
5.28 Predictions BERTopic on HDFS - MESSAGE 101
5.29 Predictions GEAC on Spark - ORIGIN+MESSAGE 103
5.30 Predictions GEAC on Spark - SPLIT 106
5.31 Predictions GEAC on Spark - MESSAGE 108
5.32 Predictions GEAC on HDFS - ORIGIN+MESSAGE 110
5.33 Predictions GEAC on HDFS - SPLIT 112
5.34 Predictions GEAC on HDFS - MESSAGE 114

xiv

Acronyms

AI
Artificial Intelligence

TC
Topic Cluster

LDA
Latent Dirichlet Allocations

NMF
Non-Negative Matrix Factorization

LSA
Latent Semantic Analysis

HDFS
Hadoop Distributed File System

NLP
Natural Language Processing

SGD
Stochastic Gradient Descent

VAE
Variational AutoEncoder

AE
AutoEncoder

xvi

BERT
Bidirectional Encoder Representations from Transformers

W2V
Word2Vec

D2V
Doc2Vec

xvii

Chapter 1

Introduction

Every day in our lives and society, an incredible quantity of data is produced.
Being able to analyse and gather useful information from this huge amount of
collected data is a very demanding task, because both experts and computational
cutting-edge technologies are needed to approach the issue.

Data mining is the process of extracting high-quality information from row
datasets and discovering implicit and hidden knowledge from data. This is done
by analysing the structures of the datasets to find relevant patterns between the
data items, and this involves methods leaning on machine learning, statistics and
database systems.

Over the years, data mining has become increasingly important due to the
constant generation of large amounts of data. This higher production of data
applies also to textual data. From the social networks to digital libraries, from the
e-learning platforms to technical-sources, everything today is based on a e-content
and, as consequence, the amount of text documents that is daily produced grows
continuously.

After collecting data, data mining techniques are applied to textual data, aiming
to extract useful information: more in detail, these techniques belongs to text
mining, a subsection of data mining that aims to gather useful information from
texts. Since textual data are spread among a wide range of applications and among
different type of structures, text mining is one of the most challenging activities in
the data mining field.

Due to these reasons, text mining techniques, including topic modelling, are
currently areas of great interest both for the scientific community and many big tech
companies. Indeed, being able to process correctly the data gathered is crucial for
many major tech companies, since several services depends on those data. However,
text analysing is complex and resource intensive. This occurs because a relevant
chunk of data is produced by people, and since the human language differs from
person to person and from language to language. Thanks to natural language

1

Introduction

processing and analytical methods we can mine texts. These techniques aim to
create models and structures from textual sources by means of syntax and semantic
analysis, allowing data analysis and investigation.

In the scientific research, different models have been proposed to represent
and to retrieve information coming from the textual data. Depending on the
techniques, different approached in the scientific literature exist: algebraic models,
that represent texts as document-matrices, models relying on probability and the
latest models based Deep Learning approaches, in particular on Transformers and
AutoEncoders.

Moreover, making this techniques automatic is a challenging task due to the
huge production of data that takes place nowadays. Indeed, using data processing
techniques would be impossible if human supervision were needed. This is applied
also to text mining since every involved process requires specific configurations and
parameters. To overcome this problem, innovative technologies and approaches to
make text analysis and mining automatic have already been proposed in scientific
field, but many additional efforts are needed to improve and to make them more
effective.

The goal of this thesis is to implement and to study a framework able to process
unstructured systems logs and then, based on the features extracted, to cluster
logs documents into cohesive and well separated groups, based on the content of
the data.

The framework should be able to be independent, as much as possible, from
the work of the analyst, reducing the interaction where needed. In detail, neural
language processing techniques will be used to retrieve information from the two
data collections, while probabilistic, algebraic, and neural network topic models,
combined with a similarity analysis to determine the optimal number of topics,
will be used to cluster data.

2

Chapter 2

Application Domain

2.1 What are System Logs
In computer science, logs are made up of unstructured text printed by instructions
software. The types of events logged by a system can arise from interactions
of a user, by internal conditions relating to the execution of the program, by
communications received from other systems and much more. The information
contained by a message of logs vary from system to system; there are some features,
however, that a message almost always contains. The log message, taken as
example and represented in Figure 2.1, records an event of specific system and it
is characterized by a series of fields: the timestamp (the instant when the event
occurred, 2021-02-09 20:46:55), the verbosity level (the level of gravity of the event,
eg. INFO), the origin that launched the message and the description of the event
in textual form.

Figure 2.1: Example of an event created by HDFS

As regards the timestamp, although it is important to determine the order of
events, it is uncertain this reflects the exact instant when the event happened,

3

Application Domain

especially in modern distributed systems. Usually, the description in textual form
is made up of two types of information: a constant textual part that describes the
action performed and a variable part that records the value of some parameters. A
common practice to facilitate analysis phase is reducing each log message to the
event, which corresponds to the fixed part. System logs have always been the best
source for checking the status of systems. There are several factors that could be
monitored: some hardware components can break, some applications can result
in unwanted states, some components may be misconfigured. A science called log
analysis deals with their interpretation and management.

2.2 What is Log Analysis
Log analysis [1] is the process of reviewing, interpreting and understanding records
generated by the computer, called logs. The log files are generated by a range of
technologies, including network devices, operating systems, applications and more.
Thanks to the advent of the Artificial Intelligence and with the advancement of
Machine Learning techniques, the extraction of useful information from logs is
an increasingly asset for end users. The most frequently methodologies used are
summarized below to extract value from logs:

• Collection, centralization and indexing: through installation of a collector, all
the logs coming from the different sources that compose the stack are collected
in one place and indexed for ease of research and analysis process;

• Monitoring and warning: through Machine Learning techniques, it is possible
to implement real-time monitoring techniques aimed at generating alert under
certain conditions;

• Dashboard: Real-time reports and custom dashboards work great visual
indicators for log controllers.

2.3 Natural Language Processing
Natural language processing [2] (NLP) is a sub-field of linguistics, computer science,
and artificial intelligence dealing with the interactions between computers and
human language, focusing on programming computers to process and analyse
natural language data. The goal is to be able to understand the contents of
documents, considering the different aspects of human languages. These processes
are able to acquire information from documents, in order to categorize documents
themselves. Different research fields exist in NLP, including speech recognition,
natural language understanding and generation.

4

Application Domain

In the first steps in NLP, many processing systems were designed by handmade
symbolic methods, like coding rules with dictionary lookup. Nowadays, machine-
learning systems have many advantages over hand-produced rules. They learn
automatically by focusing on the common cases, reducing the time needed by
hand written rules, since it is not immediate where the effort should be directed.
This approach also reduces errors that can occur when the hand-written rules are
too specific, making machine-learning models more robust, and making easier the
managing of huge quantity of data as happens these days.

Although the common use of machine learning in NLP, classical methods, like
symbolical one, are still commonly used:

• When the amount of training data is insufficient to apply machine learning
methods;

• For pre-processing in NLP pipelines, e.g., tokenization;

• For post-processing and transforming the output of NLP pipelines;

2.3.1 Statistical Methods
NLP research has relied heavily on the machine-learning paradigm, that uses
statistical inference to automatically learn rules through the analysis of large set of
documents. Different classes of machine-learning algorithms, which take as input
the features extracted from input data, have been used in NLP. Many researches
have been led on statistical models, which weight each input feature thanks to
soft probabilistic decisions. These models allow to express the relative certainty of
many different possible outputs, providing more reliable results when the model is
placed inside a larger system. At the beginning, many machine learning algorithms
were based on the production of the same if-then set of rules making system,
while other algorithms, like hidden Markov models for part-of-speech tagging, were
introduced later. Nowadays many speech recognition systems relies on “cache
language models“, an example of such statistical models, that are generally more
robust when given real-world data. After the introduction of Neural Network,
statistical methods started to be replaced, however, they continue to be relevant
for contexts in which statistical interpretability and transparency are required.

2.3.2 Neural Networks
As described above, a drawback of statistical methods is the need of features
engineering. In the latest years, the research field has moved from statistical
methods towards neural networks for machine learning. Word embeddings is a
popular example, it tries to capture semantic properties of words, allowing an

5

Application Domain

end-to-end learning of a higher-level task rather than relying on a pipeline of
different intermediate tasks. In some fields, the introduction of Neural Network
changed the design of NLP systems, making this new approaches viewed as a new
distinct paradigm.

2.4 What is Topic Modeling
In NLP, Topic Modeling [3] indicates a typology of statistical model used to retrieve
the topics from textual data. This is known as ‘unsupervised’ machine learning
because it does not require a predefined list of tags or training data that has been
previously classified by humans. Topic modelling is a text-mining tool used to
discover hidden semantic structures inside textual data. To know by intuition,
a document is about a particular topic, anybody would expect particular words
to appear in the document more or less frequently: "popcorn" and "movie" will
appear more often in documents about cinema, "car" and "bike" will appear in
documents about vehicles, "the" and "have" will appear approximately equally in
both. Typically a document concerns multiple topics in different proportions; thus,
in a document regarding drive-in theater is 10% about vehicles and 90% about
cinema, probably there would be about 9 times more cinema words than vehicle
words. The output produced by Topic models are clusters of similar words, called
topics. A topic model captures mathematically the above intuition by examining a
set of documents and, from the statistics found, it figures out what the topics might
be, with the relative balance inside documents. For this reason, Topic models are
also referred to probabilistic topic models, since statistical algorithms are used to
discover the latent semantic structures from texts. At the same time, this view is
starting to be overtaken by neural network approaches, where many researchers try
to combine probabilistic knowledge with already existing AI models. Topic models
implementation is straightforward in the age of information. Due to the huge
amount of the written material, they can help to organize and provide information
to understand large collections of unstructured text bodies.

2.5 Dataset - LogHub
The dataset used in the case study is provided by LogPAI and it is included
in LogHub dataset repository collection [4]. This collection contains a set of
log datasets produced by various different systems (supercomputers, distributed
systems, systems operational etc.). The choice of this dataset over the others is
guided by its wide use in literature, both from researchers and companies, and
overall it provides logs coming from different sources with a huge variety of contents.

Among the different categories, in this project the focus is on data coming from

6

Application Domain

“Distributed Systems”. In detail, the dataset of HDFS and Spark are taken into
consideration.

The logs examined coming from HDFS [5] are produced by a Hadoop cluster
consisting of approximately 200 EC2 (Elastic Compute Cloud - Amazon). Apache
Hadoop software is an open-source framework that enables distributed storage and
processing of large, clustered datasets of computers using simple programming
templates. Hadoop is designed to scale up from a single computer to thousands of
clustered computers, where each machine provides local computation and storage.
This allows Hadoop to efficiently store and process large data sets that they range
from gigabytes to petabytes. The Hadoop Distributed File System (in acronym
HDFS) is a distributed file system, portable and scalable written in Java for the
Hadoop framework. A cluster in Hadoop typically owns one or more name nodes
(on which the files metadata reside) and a set of data nodes (on which the files
HDFS).

Instead, the Spark logs come from Apache Spark [6], a unified analytics engine
for big data processing, with built-in modules for streaming, SQL, machine learning
and graph processing. It is widely used to unify the processing of data in batches
and real-time streaming, using different languages like Python, SQL, Scala, Java or
R. Moreover, it allows to execute fast, distributed ANSI SQL queries for dashboard-
ing and ad-hoc reporting and to perform Exploratory Data Analysis (EDA) on
petabyte-scale data without having to resort to downsampling. Finally, in machine
learning it is appreciated since allows to scale machine learning algorithms scale to
fault-tolerant clusters of thousands of machines. Spark Core [7] is the foundation
of the Spark project. It provides distributed task dispatching, scheduling, and
basic I/O functionalities. These functionalities are exposed through an applica-
tion programming interface centered on the RDD abstraction, which mirrors a
functional/higher-order model of programming: a "driver" program invokes parallel
operations on an RDD by passing a function to Spark, which then schedules the
function execution in parallel on the cluster. Currently, thanks to the aforemen-
tioned pros, Spark has been widely deployed in industry. In this case, the Spark
log dataset was collected by aggregating logs from the Spark system in LogPai lab
at Chinese University of Hong Kong, which comprises a total of 32 machines. The
logs are aggregated at the machine level, they have a huge size (over 2GB) and
they are provided as-is without further modification or labelling, which involve
both normal and abnormal application runs.

7

Chapter 3

Textual Data Analysis

As briefly seen with the description of the structure of logs, it is crucial to understand
how to properly extract meaningful words from texts plenty of irrelevant elements.
To approach this task, I base my analysis on the main NLP techniques combined
with some methods created ad-hoc for this type of data. A general preamble
must be done to underline that normally this process is really human dependant,
making the results subjective, and, as consequence, a supervision must be provided.
However, my goal is to reduce as much as possible the human intervention, for
this reason the whole data manipulation process has been developed as an almost
black box. It takes in input the logs, then the judgement of an expert in NLP is
asked where needed, who should provide some feedback about the best choices to
implement, and finally the output is saved inside a folder. In any way, to have a
better comprehension about what the algorithm does inside, intermediary files are
saved, in order to have the comparison between input and output.

The starting point inside this process is to understand how to manage the
different parts that make a log record. As described in Chapter 2, the structure of
logs is in many cases similar between systems, indeed we find always timestamp,
verbosity level, origin and message. The first two can be considered irrelevant to
understand the topic since they do not bring any useful information. Different
reasonings must be done on the origin and on the message. If the message is
essential to understand the content of the record, instead, some considerations on
the origin are needed about how and if it is needed. There are different possibilities
about how to manage it. Indeed, as first possibility the origin can be discarded, in
this way all the contents are collapsed together without making any distinction.
So, if different records have the same message but it comes from different origins,
we loose any trace of this differentiation. On the other hand, if I keep the origins,
the same message will be considered different.

An important source that helps to figure out which direction is better can be
found inside the anomaly detection phase. Many algorithms, considered today as

9

Textual Data Analysis

the state of the art for log anomaly detection like DeepLog[8] and LogAnomaly[9],
state that their goal is to separate log entries for different tasks in a log file.
Following this reasoning the origin can be important to understand the workflow
that has produced those key sequences. After considering the different possible
cases, I decide to proceed in any way with both the approaches. This conclusion
is based on the idea that best approach can be appreciated only after the topic
modeling and anomaly detection phases, with their corresponding results.

3.1 Data Cleaning
In this first part all the operations regard the deletion of irrelevant elements and
about the reduction and the alignment of the different tokens that otherwise would
be considered as different objects inside topic models. As described within the
introduction to NLP in Chapter 2, the overall goal to process data is to find the
best way to transform and to retrieve information from data without making the
whole process too related to the data analysed. For this reason, I try to capture
the most relevant pattern that are frequent inside logs. To implement it, I opt
for many techniques and libraries today considered as the state of the art when
dealing with text mining. Since the difficulties in managing this types of dataset,
although in the latest year some text mining tools based on neural network have
been created, I decide to proceed with more common and consolidated techniques,
since this is the first time I deal with this type of data and of structures. In this
context, the ground truth of the task is the human supervisor, making necessary
to understand each step and the best way to handle the main situations.

In the following list I present the main points implemented to retrieve useful
information:

• Reformat Log Errors;

• Remove Accented Characters;

• Remove Special Characters and Patterns;

• Camel Case Split;

• Merge Came Case repetitions;

• Expand Contractions;

• Tokenization;

• StopWords Removal;

• PoS Tagging;

10

Textual Data Analysis

• Lemming;

• Regex;

• Plural to Singular;

Now, I am going to explain more deeply all the processing done inside each of them.

3.1.1 Reformat Log Errors
When an error occurs in the system, the file log records the message error, in which
part of the code it occurs and for which reason. Many times the part of the code
in interest is placed inside a class that is called in cascade by many others. For
this reason, when the whole path is printed, this output can be really long and it
can be splitted in multiple lines. Indeed, to have a better comprehension about the
issues, inside each class programmers print a message linked to the error and then
let the error to walk back the call stack until it is caught and handled. So there
may be multiple prints with very long messages and it is important to understand
how to properly manage them. Many considerations can be done but, in general,
only after a check on the topic clusters we can understand which is the best way to
manage them. Starting from this, different trials have been done, by cutting all the
nested messages, by truncating part of them or by collapsing all inside a single row.
After some results, the best approach results in cutting them and keeping only the
first row. This can be motivated by considering that, even if there may be words
that are relevant with respect to the entire corpus, these words are not linked with
the topic of error and so they let the topic model to move towards wrong decisions.

Figure 3.1: Log formatting in case of errors

3.1.2 Remove Accented Characters
In this step the processing of texts begins, where I try to make textual data
uniform by removing errors and differences. In this point, the process is about

11

Textual Data Analysis

removing possible accented characters. In both spoken and written languages,
accented characters are used to emphasize a particular word during pronunciation
or understanding and, in some cases, they clarify the meaning of a word, which
might be different without the accent. Accents might be also inserted because of
someone keyboard default setting or typing style. While their are almost not use in
English, it is very common to face accents in a text corpus, in particular in other
languages. Hence, I need to make sure that these characters are converted and
standardized into ASCII characters. A simple example is the conversion of é into e.

3.1.3 Remove Special Characters and Patterns
In almost any texts we can find special characters, described as non-alphanumeric
characters, in comments, references, currency numbers etc. These elements add
no value to text-understanding and they induce noise into algorithms. Thankfully,
regular-expressions can be used to get rid of these characters and numbers.

Other than special characters, inside logs frequent structures are present, that
do not bring any useful information. The search of this structure is heavily human
dependent since, without adequate functions, classical textual analysis would bring
to a data processing where the words inside those structures are kept.

The choice to identify and to delete them comes from several and different
analysis. I have tried also to keep the words inside them, but non high quality
topic cluster would have obtained, since some structures, although irrelevant, are
quite frequent inside the different log entries.

This is the pipeline created to achieve this purpose:

• First of all, all the brackets are deleted with their content since usually
inside brackets people put marginal words or proper noun with or without
values assignment. So, these elements are discarded. This operation can be
appreciated in Figure 3.2.

Figure 3.2: Brackets Removal

• In system logs name of folders, directories, hyperlinks, websites and many
specific structures, that can be generalized as paths, are quite frequent. These
structures are quite irrelevant since they do not bring any information about

12

Textual Data Analysis

what is going on related to that log key, but rather they would make that
record too specific due to particular names there located.
Although those names could be considered quite rare, this is not true for log
files that are focused on some operations related to specific paths, making
them quite frequent and causing a poor generalization of the topic models.
Indeed the models would collapse those log keys together for those common
and shared elements, while the different actions are not considered.
Following this thoughts and after some the trials, I come to the consequence
to delete them.

Figure 3.3: Paths Removal

• Then the removal of words that contains words is applied. These words are in
general keys or specific names used internally in the system. Many times this
pattern is connected to the assign of a value to a parameter with the following
structures: words=/:numbers. In general these words can be considered too
specific and so not relevant.

Figure 3.4: Words with Numbers inside Removal

13

Textual Data Analysis

• Following the previous point, the assign of values can happen also with string
and not only with numbers. The structure is now words=/:word and it is
discarded for the same aforementioned reason.

Figure 3.5: Values assignment Removal

• Sometime, some words or group of words are put inside quotes or double
quotes. Differently from the reasoning on brackets, using quotes is more
common to underline rather than make less relevant annotations. For this
reason, if this structure is present, the quotes or double quotes are removed.
It is important to mention that this is done by avoiding single quotes linked
to contractions, that otherwise would be discarded. An example is shown in
figure 3.6.

Figure 3.6: Single or Double quotes Removal

• Then there comes the removal of special characters. Only characters inside
the alphabet plus the single quote are kept, since linked to contractions. So,
special elements like punctuation, except apostrophes, are deleted.

14

Textual Data Analysis

• There are some cases, linked with log entries related to errors, where some
words are made as the concatenation of two different words: one of the two
is all written in upper case. If I would consider this case as single token, its
frequency would be really low, but if I would examine as two separated words
the result would be different. Indeed, I can extract words that are shared and
that can help to group and cluster related words.

Figure 3.7: Upper Case Split. Can be appreciated also the removal of special
characters as described in the point before.

All of these analysis are largely done with regular expressions, since the individuation
of this structures with other tool would be more difficult to obtain. I have to say
that these steps are optional, so if any of them is not necessary, anyone can be
easily avoided by specifying the one desired at the beginning. Lastly, there may
be other patterns in other logs or datasets, depending on the type of system they
coming from.
Thanks to the modular approach of each function, a possibilities is offered to the
domain experts that are going to use this tool. Additional regex can be added at
the beginning of the program, without the necessity to know and see the other
functions.

3.1.4 Camel Case Split
As anticipated in the introduction, today many infrastructures run on Object based
systems. Hence, many classes and methods use the approach called Camel Case
Capitalization. It is the practice of writing phrases without spaces or punctuation,
indicating the separation of words with a single capitalized letter, and the first
word starting with either case depending if it is a class (capital), or a method (not
capital). To avoid keeping this long sequences of words as a single token, I decide
to split them using this structures since inner words can also be frequent as single
elements. Other than this processing, in this phase all the words are also put to
their correspondence lower case.

15

Textual Data Analysis

Figure 3.8: Words that presents the Camel Case Capitalizion structure are divided
into their inner words

3.1.5 Merge Improper words divisions
Although the Camel Case and the upper case split implemented are a really powerful
tool for this type of dataset, with particular utility to analyze better the origin of
the message where are common those structures. Sometimes the split words, if
merged, make another word inside the general corpus of the file. In context where
it is important to make uniform the words inside the corpus, since many further
analysis are based on frequencies and probabilities, it is relevant to collapse those
words as a singe element, made by their merging.

Figure 3.9: Words split on Camel Case or Upper case are allign with existing
words made by their concatenation

3.1.6 Expand Contractions
Contractions are shortened versions of words or syllables. They are created by
removing one or more characters from words. In writing, an apostrophe is used to
indicate the place of missing letters and in case of English language, contractions
often exist in both written or spoken forms. Nowadays, contractions are used by
default in many context, including professional and educational ones. Common
examples are do not to don’t, I would to I’d, you are to you’re. Converting each
contraction to its original form helps with text standardization, an important step
to delete possible differences [10]. For the seek of this project, since the simpler
form of the texts, the removal of contractions is done by leveraging a standard set
of contractions available in the contractions library [11].

16

Textual Data Analysis

3.1.7 Tokenization
Tokenization is a common task in Natural Language Processing. A tokenizer splits
unstructured data and natural language text into chunks of information, which can
be single words o groups of words and they are considered as discrete elements.
The token occurrences in a document can be used directly as a vector representing
that document [12]. On the basis of this operation many other NLP processig
methods take place. Indeed, many of them require to manipulate elements in order
to focus into a small parts rather than entire sentences.

3.1.8 StopWords Removal
Among the several tokens produced in the previous step, there are words that
needs to be filtered out before processing a natural language and they are called
stop words. Actually these are the most common words in any language (like
articles, prepositions, pronouns, conjunctions, etc) since added to sentences to
make them grammatically correct and they do not provide much information to the
text. Common examples of English stop words are “the”, “a”, “an”, “so”, “what”
and so on.

Stop words are available in abundance in any human language. By removing
these words, we remove the low-level information from text in order to give more
focus to the important elements. In other words, the removal of such words does not
cause any negative consequences on the models, but it rather helps to avoid poor
performances caused if they would be skewed upon those words. This operation
is also important since it reduces the dataset size and, as direct consequence, it
reduces the training time due to the fewer number of tokens involved in the training.

Inside the project, the list of stop words coming from nltk.corpus [13] is used
and this list can further be enhanced by adding or removing custom words based
on the situation at hand. In particular, in my case all the stop words related to
negative sentiments are kept and similar ones like "not", "nor" or "no" are conduct
to the same token in order to avoid many rare tokens rather that one more frequent.
In this way, ideally, topics related to negative sentiments can be created.

3.1.9 PoS Tagging
Part-of-speech (POS) tagging is a natural language process which aims to categorize
words in a text in correspondence with a particular part of speech, taking into
consideration the definition of the word and its context [14]. Indeed, this process
can not be summarized as a list of words and with the corresponding part-of-speech
since many words can represent more than one part-of-speech at different times.

In the figure above, each word has its own lexical term written underneath,
however, if all these full terms should be written every time, text analysis quickly

17

Textual Data Analysis

Figure 3.10: Representation of a generic sentence where each word is label with
the corresponding PoS

become unfeasible, especially with many data. Therefore, the representation of the
categories is done by the mean of a short representation referred as “tags”. As earlier
mentioned, this process of assigning a specific tag to a word is referred to as part-of-
speech tagging (PoS tagging). They describe the characteristic structure of lexical
terms within a sentence or text and they are used to assumptions about semantics.
Many times these informations are used as essential part in text processing, as we
will see later.

To assign these tags, some computation are needed, in particular the Markov
Chains are the main structure behind. The principal idea, as depicted below, is
that the POS tag, that is assigned to the next word, is dependent on the POS tag
of the previous word, recurring principle of Markov models.

Figure 3.11: PoS Markov Chain representation

In this way it is built a direct graph with all the possible paths and the linked
transition matrix is obtained, where each cell express the probability to move
between the chosen node pair, that inside the graph is represented by a weighted
edge. These probabilities come from count occurrences of tag pairs in the training

18

Textual Data Analysis

dataset and can be formulated as:

P (ti|ti−1) = C(ti−1) + ϵqJ
j=1 C(ti−1, tj) +N ∗ ϵ

(3.1)

Figure 3.12: PoS Markov Transaction Matrix

3.1.10 Lemming
In Spoken and written languages several words are often derived from others. When
it happens, as in spoken language, it is called Inflected Language [15]. In grammar,
inflection is a process that consists on modifying a word to express different
grammatical categories such as tense, case, voice, aspect, person, number, gender,
mood, animacy and definiteness. An inflection can express differet grammatical
categories with a prefix, suffix or infix, or another internal modification such as a
vowel change. As stated by this explanation, it is understandable that inflected
words can be conducted to a common root form. Following few examples.

Figure 3.13: Lemming Example

In this context, Stemming is the process of reducing inflected words to their
root forms by leading a group of words to the same root, i.e the stem, even if

19

Textual Data Analysis

the root does not exist in the Language [16]. The stem is the part of the word
where the inflectional affixes is added. So, stemming a word may results in a
not-existing word, since they are created by truncating the suffixes or prefixes used.
Unlike Stemming, Lemmatization is the linguistic process of grouping together
the inflected words such that they can be analysed as a single item, identified by
the words root. In Lemmatization root word is called Lemma, a canonical and
dictionary form of a set of words belonging to the Language. In order to use a
lemmatizer, it is necessary to provide the context where you want to lemmatize by
means of POS tags.

Other than this differentiation, it is important to understand which is the
best implementation, depending on the situation. Indeed, Stemming is preferable
if speed is a requisite but, if the task is strictly focused on language like topic
modeling, Lemmatization is preferable since it brings a word to its corresponding
lemma rather than a common root hardly to understand. So, several thoughts and
trials have been done with both the approaches. My conclusion is that Stemming
produces less relevant root, in particular it generalizes too much, deleting words
that in reality are different. For this reason, I choose the Lemmization, but some
consideration are needed about how it works and how to manage specific cases.

The Lemmatizer used for this project is WordNet [17], a large, freely and publicly
available lexical database for the English language, aiming to establish structured
semantic relationships between words. It offers lemmatization capabilities as well
and it is one of the most commonly used lemmatizers. NLTK [13] offers an interface
to it, as for many other approaches. Although, WordNet [17] is one of the best
lemmatizer available today, it has several shortcomings for words that are not that
common. Indeed, with the two dataset analysed, the words are mainly technical
and tech related and, as consequence, the lemmatizer is not able to always produce
correct lemmas.

Another issue is leading words to their lemma by using the PoS tags. They
hugely influence the lemmatizer and in some situations the proposed lemma is not
in line with the human expectations.

From this two issues I try to propose a possible solution. First of all, I decide to
process only a subset of PoS tags, in particular the ones related to nouns, verbs
and adjectives. All the others are discarded since they are not considered linked
to words that provide a significant meaning. Before implementing it, a quality
control is performed. As anticipate, sometimes the tags assigned are not correct,
so I decide to make interaction with the supervisor to confirm or correct some tags
assigned. This could be an expensive process with common type of texts, but, since
inside log files many times there are the same entries with just few modifications,
the total number of words are feasible to manage. To be even more focused and
to restrict the subset of possible wrong tags to check, only the words with a tag
related to adverbs are taken into consideration. Indeed, from my studies, this is

20

Textual Data Analysis

the most typical tag error committed in PoS phase. In any case this analysis can
be extended to all tags.

Then follows the correction of some tags related to word deriving from verbs.
Indeed, depending on the placement inside the sentence, verbs at past participle or
ending with –ing are considered as adjectives or nouns. In general, this tags are
correct but, for my purpose, the differentiation coming from the different lemma is
unnecessary for the seek of this task. Indeed, without generalizing with the infinite
form of the verb they come from, I would obtain many different words with the
same meaning.

Many times it happens the same word has multiple tags and it could cause to
obtain different lemmas. So, also with another interaction with a supervisor, we
ask to keep only one tag, correcting it or keeping the different tags as been found
automatically. After all the corrections on the tags, the lemmization phase arrives.
It is applied on all verbs, while instead for nouns and adjectives only the words with
a length larger than three characters are kept and lemmatized, since the shorter
ones are in general eventual less common stopwords or words not relevant in the
context of these datasets. In any case, the supervisor can pass a list of words that
must be taken, independently from the analysis done.

Among all this processing, I have to keep in mind that both the Pos Tagger
and the Lemmatizer are not perfect, so in some cases the results are completely
wrong. For this reason at this point the raw log keys are saved with list of stemmed
tokens to understand if the level of quality is good or further considerations are
needed. Someone could argue it results in comparing thousands of pairs, but this
is not true since, before the PoS Tagging phase, only the unique rows are taken.
This step is essential since it reduces the size of the file for over the 99% due to
the general composition of log files, where there are the same row but with only
constants or specific names that differs. For example the analysed HDFS file goes
from almost 200k to 99 unique rows, while the Spark file from over 400k to 45.
So, the comparison is way more feasible with fewer rows. With this comparison it
is possible to see eventual errors and, to let the algorithm avoid those ones, the
supervisor can pass a list of words to keep and a dictionary to use as personal
lemmatizer to change words that WordNet [17] is not able to bring to their simpler
form.

3.1.11 Regex
At the end of the processing, some dirty words are still present as trace of the
operations done above. For this reason, I delete these words with regexes in order
to capture patterns that do not correspond to any real word. These patterns are
made by the concatenation of three or more consonants or vowels followed by other
consonants or vowels depending on the case.

21

Textual Data Analysis

3.1.12 Plural to Singular

After all the steps done inside the data processing pipeline, there may be some
words that are still different depending on their form, if singular or plural. Mainly
it happens because of the PoS Tagging and Lemmization phases, that are not
capable to analyze correctly all the words. I can find this behaviour in words ending
with -s and unusual inside the common language, even though specific inside a
particular domain. So, the PoS Tagging and Lemmization are not able to properly
identify them and so they are not conduced to their root. For this reason and to
still minimize the different tokens, if there are words that are different for this
behaviour, they are conducted all to their singular form.

3.2 Data Manipulation

After the cleaning of data, the extraction of the relevant words is implemented. In
this intermediate step, words that are not relevant to distinguish topic are discarded,
therefore all the ones whose frequency among documents it too high. Following,
the words that are averagely shared are kept only at their original form, i.e the
monograms, and, finally, the variations by creating the n-gram are produced for
the remaining. Hence, the first analysis is to find the words that can be considered
as stop words for the dataset, i.e the words that are so common that they do not
bring any information [18, 19, 20], and they are quite frequent inside many rows.
The technique is based on the frequency of the words in documents, it is applied
a CountVectorizer on a corpus where each line is made by unique words. In this
way it’s possible to appreciate in how many documents that word can be found. In
general, the words that have a really high or really low frequency are considered as
stop words, for the reason presented above. Following this principle, I decide to
discard the words whose frequency is over the 80% of the documents, since they
are not useful to distinguish topics but instead they could be noise for algorithms.
Instead, I come to the conclusion to keep the less frequent ones due to the small
size of the dataset and since they could be related to a rare document and as
consequence to a rare topic. Many other words, instead, have a frequency in the
middle are not considered as stop words. After several trial and analysis coming
directly from the results of the topic models, those words can still cause some issues
with the creation of the topic clusters, creating topics too similar that generalize
too much. For this reason those words having a frequency below 80% but higher
than 20% are kept only in their variation. It must be considered that, also in this
situation, the end user can specify the desired thresholds. Since in many cases it is
not easy to know in advantage which are the best values, a plot is printed with the
frequencies in order to make easier the choice.

22

Textual Data Analysis

Figure 3.14: Data Manipulation implementation - HDFS

Figure 3.15: Data Manipulation implementation - Spark

23

Textual Data Analysis

3.3 Feature Creation
The variation implemented to extend the tokens for each row is one of the most
known in literature, it is the creation of the n-grams for the tokens of each row, by
taking into consideration also the application of the aforementioned frequency rules.
In this function, other than keeping the monograms, the bi-grams and the tri-grams
of the tokens are created. Longer concatenations are possible but it is common
to avoid them, since they would take too many words, creating specific tokens,
whose meaning could not be high due to mixed unrelated parts of the sentence.
Then, some important rules are applied. With logs, particularly when the origin is
considered, some bi-grams could be made as the pair A-B (where A and B are two
tokens/words) and then other pairs as B-A are created , i.e the mirror of A-B. This
causes a differentiation between them, even if the meaning of the two bi-grams
is the same under the human prospective. For this reason, in this situation, the
B-A bi-gram are replaced with the A-B form, considered as the ground truth when
this check is performed. A similar thought could be done on tri-grams, however,
since the meaning can change depending on the combinations of three words and
since tri-grams are rarer than bi-grams, I decide to keep them as they are, without
particular modifications Another possibility is that both bi-gram and tri-grams
have more than one time the same word (so for the bi-gram is made by two times
the same words). These ones, taken in isolation, are not relevant since they do
not transmit a meaningful message. From this thought, they are not taken into
consideration. Overall, the addition of n-gram is crucial for this task since, given
the shortage of words in each row due to the nature of data, the expansion of the
corpus let the topic model to create better and more significant topics both under
the human and machine point of view as explained by the score metric.

Figure 3.16: N-gram example

24

Textual Data Analysis

This study executes all the aforementioned steps to process data, further con-
siderations are proposed later inside the Results section, where more advanced
considerations are done on the basis of the results.
It is important to underline how this whole pipeline is created with the objective
to have an almost black box where the supervisor can interact but, at the same
time, this interaction is limited as much as possible. This is a significant goal since,
even if the supervision is always essential when dealing with textual data, a tool
able to adequately clean log data is crucial in this context of Topic Modeling.
The goodness of the proposed method is evaluated later by looking at the words
inside the topic clusters, the only option to understand the quality of the data.
In general, all the variations and the analysis come from hundreds of trials, that
allowed to understand the best way to approach a task that is really hard. In final,
it must be remembered that several slightly variations could be implemented and
that the optimal results keeps a subjective part in the judgement.

25

Chapter 4

Topic Modeling

In this section I am going to explore different Topic Modeling algorithms, explaining
them theoretically, to better understand the behaviours in Chapter 5, assigned to
the results. As anticipated, there are two main branches about Topic Modeling
algorithms. The first one follows more statistical and algebraic way, based on pure
mathematics. The second one, instead, chases the actual trend of Deep Learning.
Indeed, thanks to the introduction of Neural Networks, we can inspect new ways
to accomplish the task of Topic Modelling.

4.1 Classic Approaches

In this first section, the classical algorithms are proposed, based on two main distinct
concepts. The first one is about conditional probability, used inside LDA; the
second one regards matrix decomposition, used in NMF with Matrix Multiplication
and in LSI with Singular Values Decomposition.

Singular Value Decomposition

Singular value Decomposition (SVD) is a factorization method for matrices. Given
a real matrix M = m × n, it is decomposed as UΣV T where U = m × m is an
orthogonal matrix with the left singular vectors, V = n is the orthogonal matrix
with the right singular vectors and Σ is a diagonal matrix whose values σi,i are the
singular values of M .

27

Topic Modeling

4.1.1 LDA
In natural language processing, the Latent Dirichlet Allocation (LDA) [21] is an
generative statistical model, that allows collections of data, such as text corpora, to
be described by unobserved groups, i.e topics, that provide an explicit representation
of documents. D. Blei, A. Ng and M. Jordan created LDA [22], a model able to
describe large collections of data without using and, at the same time, improving
existing text modeling approaches, based on dimensionality and feature reduction.
Indeed, they structured LDA as a three-level hierarchical Bayesian model, where
each item of a collection is a finite mixture over an underlying set of topics. The
final objective is to find a probabilistic model of a corpus, that not only assigns high
probability to members of the corpus, but also high probability to other similar
documents.

Before going into more technical details, we need some information about
notation and terminology. Formally, the following terms are defined:

• A word is the basic unit of discrete data, defined as an item of the vocabulary
indexed by 1, ..., V.

• A document is a sequence of N words denoted by w = (wi,1, wi,2, ..., wi,N)
where wi,n is the nth word in the iTH sequence.

• A corpus is a collection of M documents denoted by D = (w1, w2, ..., wN)

Latent Dirichlet Allocation Generative Process

LDA, as text modeling approaches, is based on the assumption and on the utilization
of the Bag-of-Words representation. This representation allows documents to be
described as sparse vectors, containing the counting of the tokens that occur on
each document. This document representation assumes the order of the terms
in a document is irrelevant and, at the same time, the documents order in the
corpus is not relevant. On these basis, the LDA algorithm takes in consideration
the exchangeability property of both terms and documents. LDA is a generative
probabilistic model whereby corpora of documents are created. In order to create
them, topics and words have to be characterized as probabilistic distributions, since
the model draws the elements of the documents based on these probabilities.
LDA asssumes the followig generative process for each document wi in a corpus D:

1. Choose N ∼ Poisson(ξ), that represents the distribution of the documents
lengths;

2. Choose θ ∼ Dirichlet(α). θ is vector where each element θk represent the
topic proportion for the topic k inside that document;

28

Topic Modeling

3. For each of the N words in wn:

(a) Choose a topic zn ∼ Multinomial(θ), which denotes the topic assignment.

(b) Choose a word wn from p(wn|zn, β), a multinomial probability conditioned
on the topic zn.

In other words, each LDA document is represented as a mixture of topics, where
each topic is a probability over the entire vocabulary: this is encoded with k-
dimensional vector β. The topic proportion for a document is denoted with θ, also
a k-dimensional vector, where each element is the topic proportion for that topic
inside the document and it is computed using as prior the Dirichlet distribution of
parameter α. Accordingly, for each word the topic-word assignment is made on the
basis of sampling from the document-topic vector z, extracted from a Multinomial
distribution of parameter θ.

From this explanation, we can see how the model considers provided a fixed k,
the number of topic, and the parameters α and β, which respectively represent the
prior belief on document-topic distribution and on topic-word distribution. These
parameters are the ones of interest when the goal is to obtain the best model.

Given α and β, the joint multivariate distribution of the topic mixture θ, the
set of N topics z and the set of N terms w is given by:

p(θ, z, w|α, β) = p(θ|α)
NdÙ
n=1

p(zn|θ)p(wn|zn, β) (4.1)

Integrating over θ and summing over z, we obtain the marginal distribution of
the document:

p(w|α, β) =
Ú
θ
p(θ|α)

A
NDÙ
n=1

kØ
zd,n=1

p(zn|θ)p(wn|zn, β)
B
dθ (4.2)

while, taking the product of the marginal probabilities of single documents, we
obtain the probability of a corpus D:

p(D|α, β) =
MÙ
d=1

Ú
θ

A
NÙ
n=1

Ø
zn

p(zd,n|θd)p(wd,n|zd,n, β)
B
p(θd|α)dθd (4.3)

where we can appreciate how the topic zd,n depends on the per-document topic
proportion θd and the observed word wd,n depends on the topic assignment zd,n
and all of the topics β. These dependencies make the definition of LDA.

Other than the mathematical representation just explained, LDA can be also
explained as a probabilistic graphical model.

29

Topic Modeling

Figure 4.1: LDA graphical model

As shown in figure 4.1, there are 3 levels, which go from outside towards inside
the corpus, the document and the terms. Starting from the outer level, we can see
how α and β are sample once for the generative process. By going in the middle
level, θ is obtained from alpha, sample for each document, at last, in the most
inner box, there are z, obtained from θ, and w, coming from z and β.

Inferential Problems

Other than being a generative model, LDA can be used to do the inference of the
posterior distribution of latent variables for a given corpus and then it recovers its
structure. The variables that describe the document are the distributions of the
topic mixture and the set of N topics z:

p(θ, z|w, α, β) = p(θ, z, w|α, β)
p(w|α, β) (4.4)

However, the computation of the integral in the equation 4.2, done to obtain
that distribution, is unfeasible and so it is impossible to exactly solve this posterior
Bayesian inferential problem. To overtake this issue, several approximate inference
algorithms have been presented for the LDA inferential problem. The original Latent
Dirichlet Allocation paper itself implements a Variational Bayes approximation,
but, over the years, other alternatives, such as the Monte Carlo simulation and
Gibbs Sampling, have been proposed to approximate the probability distributions.

30

Topic Modeling

4.1.2 NMF
Non-negative matrix factorization (NMF) [23] is an algorithm in multivariate anal-
ysis and linear algebra, where a matrix V is factorized into two matrices W and H,
with all three matrices have non-negative elements as property. NMF is included
among the state of the art feature extraction algorithms and it is very useful when
there are many ambiguous attributes or with weak predictability. By combining
attributes, NMF can produce meaningful patterns, topics, or themes.
Due to the factorization, each feature created by NMF is a weighted linear combi-
nation of the original attributes, where the weight coefficients represent the weight
of each attribute on the feature. In particular, a separate coefficient exist for
each numerical attribute and for each distinct value of each categorical attribute.
NMF is used in many different fields. In text mining application, like in this
project, a document-term matrix is built with the weight of various terms from
a set of documents. Then, this matrix is factorized into two different matrices: a
term-feature, derived from the contents of the documents, and a feature-document
matrix, that describes data clusters of related documents. Other than text mining,
thanks to its properties, NMF is hugely adopted in many different fields:

• Astronomy, for dimension reduction of astrophysical signals, and to study
common properties of astronomical objects, by the means of spectroscopic
and imaging observations;

• Data Imputation for missing data, NMF can take missing data while min-
imizing its cost function, rather than treating these missing data as zeros;;

• In Bioinformatics, NMF has been successfully applied for clustering gene
expression and DNA methylation data. In the cancer mutations analysis,
NMF has been used to identify sources of variations, as cell types, tissue
composition and tumor clonality;

• Speech denoising when the noise is non-stationary. The key idea, differently
from classical statistical approaches, is clean speech signal can be sparsely
represented by a speech dictionary, but non-stationary noise cannot. Similarly,
non-stationary noise can also be sparsely represented by a noise dictionary,
but speech cannot. This is applied by separating the STFT via NMF;

Structures

The starting point is a matrix V , described by the product of the matrices W and
H, such that V = WH. In this way, each column of V can be computed as the
linear combination of the column vectors in W , by using the provided coefficients
by the columns of H. More in detail, the previous formulation can be described as

31

Topic Modeling

vi = Whi, where vi is the iTH columns of v and hi is the ith column vector of the
matrix H. A NMF important property is the dimension of the factor matrices, that
can be lower than the dimension of the product matrix; indeed, NMF generates
factors with lower dimensions, compared with the original matrix.
This point is NMF basis, since we can consider each original document as being
built from a small set of hidden features, generated by NMF. To better understand
those matrices, we can start with W : it is the feature matrix where each column,
which represents the feature, can be seen as a set of words. Each cell in this set has
a value that defines the importance of the corresponding word in that feature: in
detail higher is the value, more relevant is that word. Instead, H is the coefficient
matrix where each column corresponds to an original document, with a cell value
that associates the document rank for a feature. It is possible to reconstruct a
document from the input matrix, as the linear combination described above.

Clustering Properties

NMF has an important clustering property, indeed it is able to automatically group
the columns of input data V . More specifically, the reconstruction of V as V ∼ WH
is achieved by finding W and H such that the error function ||V −WH||F , subject
to W ≥ 0 and H ≥ 0, is minimized.
Adding the orthogonality constraint on H, i.e HHT = I, the previous minimization
is mathematically equivalent to the minimization of K-means clustering. In detail,
the matrix H provides the cluster membership, indeed, if Hk,j > Hi,j for all i /= k,
the input data vj belongs to k-th cluster, while W gives the cluster centroids, where
the k-th column gives the cluster centroid of k-th cluster. When the orthogonality
constraint HHT = I is not explicitly imposed, the orthogonality holds on a large
extent, and also the clustering property holds on. Clustering is the main objective
of most NMF data mining applications.
When the error function used is Kullback–Leibler divergence is an interesting
consideration: NMF is identical to the Probabilistic Latent Semantic Analysis [24].

Online NMF with Outliers

For this problem, different types of solution exist, like the ones based on Approxi-
mated NMF, where the columns of W and the number of rows of H are selected
such that the product WH will become an approximation to V , or the ones based
on Convex NMF, where it restricts the columns of W to convex combination of the
input data vectors vi. Overall, different types of non-negative matrix factorizations
can be implemented, that come from using different cost functions to measure the
divergence between V and WH, and from the W and/or H matrices regulariza-
tion. Two of the most common divergence functions are the squared error and the
extension of the Kullback–Leibler divergence to positive matrices. Overall, each

32

Topic Modeling

divergence is linked to a different NMF algorithm, that minimizes the divergence
by iteratively updating rules. Many NMF standard algorithms analyze all the data
together, given the whole matrix available from beginning. These algorithms are
not usable in applications where data do not fit into memory or where data are
provided in streaming fashion.

Following this way, in 2016 R. Zhao and V. Tan proposed an online algorithm
for NMF [25], where they consider the presence of outliers: it is called Online
Nonnegative Matrix Factorization with Outliers - ONMFO.

The canonical NMF problem can be stated by the minimization problem

minW∈C,hi
N
i=1≥0

1
N

NØ
i=1

1
2 ||vi −Whi||22 (4.5)

where C is the constraint set for W and N is the number of data samples.
When there are outliers inside data, many algorithms unsatisfactorily perform:
Robust NMFs have been proposed to overcome this problem. There are two possible
categories of solution: the first one suggests to replace the L2 loss with another loss
measure; the second model suggests the outlier vector r and the associated outlier
matrix R. In general, these proposals do not admit strong recovery guarantees of
the original data matrix, since the new formulations are not convex. Starting from
the previous works, the authors explicitly modelled the outlier vectors and they
assumed data generation distribution P is time-invariant. They first define the loss
function with respect to v and W

l(v,W) = minh≥0,r
1
2 ||v −Wh− r||22 + λ||r||1 (4.6)

Given a finite set of data samples vi, they defined the empirical loss associated
with vi but, following the convention of the online learning literature, instead of
minimizing the empirical loss, they aimed to minimize the expected loss, leading
the solution to a non convex stochastic program.

minW
è
f(W) = Ev[l(v,W)]

é
(4.7)

To tackle this problem, they leverage the stochastic majorization-minimization
framework [26] proposed by J. Mairal in 2013, already used in different previous
works on online matrix factorization. This framework decomposes the optimization
problem in two step: non-negative encoding and dictionary update. Concretely,
at a time instant t, the algorithm learns the coefficient vector ht and the outlier
vector rt based on the newly acquired data sample vt and the previous dictionary
matrix Wt−1 and in specific it solves the convex optimization problem.

(ht, rt) = argminh≥0,r l̃(vt,Wt−1, h, r) (4.8)

33

Topic Modeling

The initial basis matrix W0 is randomly chosen in C, then on the past statistic
the basis matrix is updated as

Wt = argminW
1
2tr(W

TWAt) − tr(W TBt) (4.9)

where A and B are the sufficient statistics defined as

A = 1
t

tØ
i=1

hih
T
i , B = 1

t

tØ
i=1

(vi − ri)hTi (4.10)

To solve the last two equations, the authors proposed two solvers based on Proper
Generalized Decomposition and on Alternating Direction Method of Multipliers
and they followed this algorithm:

Algorithm 1 Online NMF with outliers (ONMFO)
linenosize=

1: Input: Data samples vi,i∈[N], penalty λ, initial dictionary matrix W0
2: Initialize sufficient statistics: A0 := 0, B0 := 0
3: for t = 1 to N do

1. Acquiring a data sample vt
2. Learning the coefficient vector ht and the outlier vector rt based on Wt−1,

using the solver, based on PGD or ADMM

(ht, rt) = argminh≥0,r l̃(vt,Wt−1, h, r) (4.11)

3. Update the sufficient statistics

At := 1
t

î
(t− 1)At−1 + hth

T
t

ï
, Bt := 1

t

î
(t− 1)Bt−1 + (vt − rt)hTt

ï
, (4.12)

4. Learning the dictionary matrix Wt based on At and Bt, using the solvers
based on PGD or ADMM

Wt = argminW
1
2tr(W

TWAt) − tr(W TBt) (4.13)

4: end for
5: Output: Final dictionary matrix WN

This algorithm proved that the sequence of objective values almost surely
converge by appealing to quasi-martingale convergence theorem and they also
showed the sequence of learned dictionaries converges to the set of stationary points

34

Topic Modeling

of the expected loss function.
Overall, this NMF implementation can be easily seen for text mining as follow:

• W is a word-topic matrix;

• H is a topic-document matrix;

• V is an input corpus batch, word-document-matrix;

• A, B the matrices that accumulate information from every consecutive chunk;

So, by replicating the previous algorithm, it can now be rewritten as:

Algorithm 2 Gensim - Online NMF with outliers (ONMFO)
1: Initialize W , A and B matrices
2: Input: Corpus
3: Split: Corpus into batches
4: for v in batches do

1. Infer h:
Do coordinate gradient descent step to find h that minimizes ||v −Wh||22
Bound h so that it is non-negative

2. Update A and B:
A = h.dot(ht)
B = v.dot(ht)

3. Update W:
Do gradient descent step to find W that minimize 1

2tr(W
TWAt) −

tr(W TBt)
5: end for
6: Output: Final dictionary matrix WN

4.1.3 LSA
Latent semantic analysis (LSA) [27] is a natural language processing technique
coming from the field of distributional semantics, that analyze relationships between
a set of documents and their terms by producing a set of concepts related to the
documents and terms. The base assumption of LSA is that words that have
similar meaning will occur in similar pieces of text. The principal operation

35

Topic Modeling

is the decomposition of the input matrix. It is a Word Count matrix where
each rows represent unique words and each columns represent a document, and
the mathematical technique called Singular Value Decomposition to reduce the
number of rows, while preserving the similarity structure among columns is applied.
Afterwards, the documents are compared by the mean of the cosine similarity, that
provides values close to 1 for similar documents, while close to 0 for dissimilar one.

Formulation

As anticipated, LSA uses a sparse document-term matrix which describes the
occurrences of terms in documents. different techniques exist to create this matrix,
among which the most common are the Bag-of-Word and the TF-IDF. As explained
previously in LDA section, Bag-of-Word makes a sparse matrix where in each row
there are the frequencies for the features that are inside that row. TF-IDF, instead,
weights each element of the matrix to be proportional to the number of times the
term appears in each document: in this way, rare terms are up-weighted to reflect
their relative importance.

As shown with the previous models, this matrix is shared by standard semantic
models, though in many cases it is sufficient keeping the tuples corresponding to
the words and their values, since the mathematical properties of matrices are not
always used.

After the creation of the occurrence matrix, LSA finds a low-rank approximation
to the term-document matrix. About these approximations, there are different
reasons about this choice:

• When the original term-document matrix is too large for the computing
resources, the approximated low rank matrix is necessary to carry out all the
processing.

• The approximation can help with term-document matrix since in many cases
are noisy; in this way, the produced approximated matrix is interpreted as a
de-noisified matrix.

• The original term-document matrix is overall more sparse with respect to
what could be the "true" term-document matrix. Indeed the original matrix
shows up only words that are in each document, whereas the focus could be
in all words related to each document.

The consequence of the rank lowering is some dimensions are combined and the result
depends on many terms: for example (pizza), (pasta), (sea) can be approximate as
follow (1.5638 ∗ pizza+ 0.3104 ∗ pasta), (sea) The approximation helps to reduce
the issue related to synonyms since it is expected that dimensions linked with
similar meaning terms are merged. Other than synonymy, this behaviour comes

36

Topic Modeling

handful also with polysemy of words. In this last case, components of polysemous
words, that point in the "right" direction, are added to the components of words
with similar meaning. On the other hand, components that point in other directions
are deleted or made smaller than components in the directions corresponding to
the intended sense.

About the derivation of LSA, we can take a matrix X where each element (i, j)
describes the occurrence of term i in document j. The row tTi of this matrix is the
vector corresponding to a term, giving its relation to each document, each column
instead represent a document with all the relations with each term. If we take two
term vector ti and tp, with their dot product tTi tp, it is obtained the correlation
between terms over the set of documents. As follows, the matrix product XXT

contains all these product with the property tTi tp = tTp ti, analogously the matrix
XTX provides the document correlation over terms dTj = dq = dTq dj.

The algebrical method can be applied on X, method called Singular Value
Decomposition that allows to decompone the matrix X in two orthogonal matrices
U and V and a diagonal matrix Σ such that X = UΣV .

With this decomposition the two previous dot matrices done on X can be written
as XXT = UΣΣTUT and XXT = UΣΣTUT . Since ΣΣT and ΣTΣ are diagonal,
as consequence U contains the eigenvectors of XXT while V the eigenvectors of
XTX and both have the same non-zero eigenvalues due to the absence of non-zero
entries on both.

Figure 4.2: LSA Decomposition

As summarized in the last figure, the σ values are the singular values while the
u and v values are correspondingly the left and the right singular vectors. Also
from the picture can be appreciated how only the ith row (̃t)Ti of U contributes to
ti and, at the same time, only the jth column (d)j of V T contributes to dj. Hence,
if we take the k largest singular values and their corresponding singular vectors
from U and V , we get rank k approximation of X with minimal possible error
that allows to consider term and document vectors as a semantic space. Indeed,
the previous row term vector t̃Ti has k entries mapping it to a lower-dimensional
space and the same thing for d̃j, which they allow to rewrite the approximation as

37

Topic Modeling

Xk = UkΣkV
T
k .

Provided this last equation, it is possible to do different operations:
• Check the relation between a pair (j, q) of documents by looking at the

similarity between the vectors ΣK d̃j and ΣK d̃q in the lower dimensional space;

• Comparing a pair (i, p) of terms by comparing their vectors ΣK t̃
T
i and ΣK t̃

T
p

in the lower dimensional space;

• For Topic modeling we can cluster documents and terms using cluster algo-
rithms by the usage of similarity measures;

• Given a query q it is possible to compare it in the lower dimensional space by
using the same transformation done on documents d̃k = Σ−1

K UT
k dj, obtaining

q̃ = Σ−1
K UT

k q;

• The reasoning in the previous point can be extended also to terms, obtaining
t̃i = Σ−1

K V T
k ti;

Limitations

LSA has also some important drawbacks:
• It might be difficult to interpret the resulting dimensions. For instance,

in [(pizza), (pasta), (flower)], approximated as [(1.3452 ∗ pizza + 0.2828 ∗
pasta), (sea)], the (1.5638 ∗ pizza+ 0.3104 ∗ pasta) component could be inter-
preted as "food". However, it is very likely that cases close to (pizza), (bottle), (sea)
are approximated as (1.5638 ∗ pizza+ 0.3104 ∗ bottle), (sea). So, many times
produced results are not understandable under human point of view.

• As stated before, LSA can help with polysemy since if a word has different
meaning, it is only considered with a single form due to the used representation.
So, the vector representation can be considered as an average of all the word
different meanings in the corpus, that can make it difficult for comparison.

• With Bag of words representation it is lost the order of the words. For this
reason, the utilization of multi-gram dictionary is a possible solution to find
direct and indirect association as well as higher-order co-occurrences among
terms.

• LSA assumes that words and documents form a joint Gaussian model, while a
Poisson distribution has been observed, causing a mismatch on observed data.
Due to this, different alternatives have been proposed to overcome this issues
among which probabilistic latent semantic analysis for example.

38

Topic Modeling

4.2 Modern Approaches

Nowadays, many algorithms, in almost any field of Data Science, are based on
Artificial Neural Networks. They introduced many improvements with respect to
previous approaches, in particular about feature extraction, letting these improve-
ments to spread and substitute many classical algorithm, considered as the state of
the art previously. Artificial neural networks (ANN) [28] are computational models,
composed of artificial “neurons”, so called since inspired by the biological structure
of the brain neural network.
ANNs were theorized in the late 1940s but only recently they have gained a lot
of interest due to higher computational power; with the latest GPUs it is indeed
possible to model them and carry out the training phase more efficiently. The
adoption of neural networks has contributed to achieve high performance in terms
of efficiency and precision in many Machine Learning and Data Mining tasks.
The basic principle of neural networks is to emulate biological neurons with artificial
ones by means of nodes; each node can transmit a signal to other neurons, as it
happens in the synapses of the biological brain. Each node receives values as input
coming from the other neurons and emits a real value in output, received in input
from other neurons. Typically, the neurons, i.e. the nodes are organized in layer.
Each neuron carries out different transformations of the input. The first layer is the

Figure 4.3: ANN representation

input layer, the last one is called the output layer and the others are called hidden
layers. In their simpler representation, the output of each neuron is calculated by
applying an activation function to the weighted sum of its inputs plus a bias. The
weights W and the biases b are the parameters of the layer. The calculation of the
output is shown below for the jth node given its inputs x, applying the sigmoid

39

Topic Modeling

activation function:
yj = sigmoid(

Ø
i

wijxi + bj) (4.14)

In most cases an Artificial Neural Network is an adaptive system that changes its
structure based on external or internal information that flows through the network
itself during the learning phase. Through the training, the network takes a series
of input examples and a series of expected values; automatically the parameters
are progressively adjusted with the aim of minimizing a cost function C. The
parameters are updated using gradient descent to reduce the classification cost of
each instance.

The network learns by dividing the training examples into groups, called batches.
The weights are updated with each batch and the cost function is computed based
on them, for example with the average of the costs over all the examples in the
batch. There are several hyper-parameters that can be fine-tuned to improve the
learning of a network: number of hidden layers, which describe the network depth,
number of nodes in each layer, activation function used in each layer (sigmoid,
softmax, linear, ecc...), structures of the network and many others.

From this brief introduction, now I will explain in detail the architecture used
in following models.

Neural Networks architectures

Concerning the neural networks used inside the different models, the main focus is
placed on AutoEncoders [29],[30] and their variations. An AutoEncoder [30] is an
Artificial Neural Network used in unsupervised context to learns efficient codings.
The encoding is validated and refined by attempting to rebuild the input from
the encoding. In dimensionality reduction AutoEncoders are used to learn a data
representation by training the network to ignore noisy data.
The basic architecture of AutoEncoder can be described in two main elements:
an encoder that maps the input into the code, and a decoder that rebuild the
input from the code. Instead of copying directly the input signal, AutoEncoders
reconstruct the input approximately, keeping only the most relevant details of the
data in the copy.
The simplest model is a feed-forward neural network similar to a multi-layer
perceptron, where the input layer and an output layer, which have the same
number of nodes, are connected by one or more hidden layers. So, the aim is to
reconstruct the inputs by minimizing the difference between the input and the
output, instead of making a prediction.
More in detail, AutoEncoder can be represented with two parts, the encoder and
the decoder, which can be defined as transitions ϕ : X → F and ψ : F → X such
that ϕ, ψ = argminϕ,ψ||X − (ψ ◦ ϕ)X||2.

40

Topic Modeling

In the case of one hidden layer, the encoder takes the input x ∈ R = X and maps
it to h = F as h = σ(Wx + b), where h is usually referred to as code, latent
variables, or a latent representation, σ is an element-wise activation function and
W and b are accordingly the weight matrix and the bias vector. Weights and
biases are usually initialized randomly, and then updated iteratively during training
through back-propagation. Afterwards, the decoder reconstructs x′ from h as
x′ = σ(W ′h+ b′) where σ′, W ′ and b′ for the decoder could not be related to the
corresponding values for the encoder. Considered the coding and the reconstruction
equation, AutoEncoders are trained to minimise reconstruction errors, known as
the "loss", and its performed through back-propagation of the error.

L(x, x′) = ||x− x′|| = ||x− σ′(W ′(σ(Wx+ b)) + b′)||2 (4.15)

The feature vector ϕ(x) can be seen as a compressed representation of the input,
due to the lower dimensionality of the feature space F with respect to the input
space X. This implementation is called undercomplete AutoEncoders, where the
hidden layers are smaller than the input. Instead, if they are larger, they are called
overcomplete AutoEncoders and they can potentially learn the identity function,
becoming useless, even though experimental results found that they might still learn
useful features. In the ideal setting, the code dimension and the model capacity
are set depending on the complexity of the data distribution to be modeled.

In literature different variations of AutoEncoder exist, and, among them, one
of interest is the Variational AutoEncoders (VAE) [31],[32]. In machine learning,
a Variational AutoEncoder, also known as VAE, is an Artificial Neural Network
architecture belonging to the family of probabilistic graphical models and varia-
tional Bayesian methods. Often, It is associated with the AutoEncoder model due
to architectural affinity, however they are different since Variational AutoEncoders
compress the input information into a constrained multivariate latent distribution
(encoding) to reconstruct it as accurately as possible (decoding).

Figure 4.4: VAE basic represetation

41

Topic Modeling

Given an input dataset x, with an unknown probability function P (x) and a
multivariate latent encoding vector z, the goal is to model the data as a distribution
pθ(x), with θ defined as the set of the network parameters. This distribution can
be defined as

pθ(x) =
Ú
z
pθ(x, z)dz =

Ú
z
pθ(x|z)pθ(z)dz (4.16)

If we assumes z with a finite dimension and pθ(x|z) modeled as a Gaussian
distribution, then pθ(x) is a mixture of Gaussian. In this way the relationship
between input data and its latent representation can be defined, with pθ(z) as
the prior, pθ(x|z) as the likelihood and pθ(z|x) as the posterior. However, the
computation of the prior is almost in any case unfeasible, for this reason is common
to use an approximation qΦ(z|x) ≈ pθ(z|x) to translate the problem into the
AutoEncoder domain, in which pθ(x|z) is carried by the probabilistic decoder, while
the approximation by the probabilistic decoder.

For Variational AutoEncoders the idea is to jointly minimize the generative
model parameters to reduce the reconstruction error between the input and the
output of the network, and Φ to have qΦ(z|x) as close as possible to pθ(z|x).

To define the distance loss, the Kullback-Leibler divergence represent a good
option to squeeze qΦ(z|x) under pθ(z|x).
It can be defined as:

DKL(qΦ(z|x)||pθ(z|x)) =
Ú
qΦ(z|x)log qΦ(z|x)

pθ(z|x)dz

= log(pθ(x)) +DKL(qΦ(z|x)||pθ(z)) − Ez∼qΦ(z|x)(log(pθ(x|z)))(4.17)

If we move DKL(qΦ(z|x)||pθ(z)) to the left side, we can maximize the whole
left hand side of the equation in order to minimize the distances between the
real posterior and the estimated one. This minimization is equal to minimize the
negative log likelihood, which allows to obtain the following loss function, known
as evidence lower bound (ELBO):

Lθ,Φ = DKL(qΦ(z|x)||pθ(z)) − Ez∼qΦ(z|x)(log(pθ(x|z))) (4.18)

The optimal parameters are the ones that minimize this loss function. The
problem can be rewritten as

Θ∗,Φ∗ = argminΘ,ΦLΘ,Φ, (4.19)

providing the advantage to be jointly optimized with respect both Θ and Φ.
In order to use the ELBO for training, some modifications are necessary both on
the formulation and on the structure. Indeed to make the application of back-
propagation processes possible, the reparameterization trick (RT) is introduced to

42

Topic Modeling

make it differentiable by removing the stochastic sampling. When dealing with the
latent space, we can make the assumption to consider it as a set of multivariate
Gaussian distribution which describe it as z ∼ qΦ(z|x) = N(µ, σ2).
Given a random variable = N(0, I) and ⊙ defined as the element-wise product, the
reparameterization trick modifies the above equation as z = µ+ σ⊙ ϵ, enabling the
training of VAE. Indeed, through this transformation, the probabilistic encoder
learns how to map a compressed representation of the input into the two latent
vectors µ and σ, while the stochastic part is excluded from the updating process
since it is injected in the latent space as an external input .

Figure 4.5: RT basic representation

Feature Embedding

Feature transformation is one of the main aspects where textual data is manipu-
lated, since models require a numerical representation to manage those type of data.
Although, many different textual processing techniques exist, like the already cited
Bag of Word or Term Frequency – Inverse Document Frequency, due to the higher
level of difficulty achieved inside many tasks in the latest years, there was a need
to improve and enhance textual data transformations. For this reason, after the
introduction of neural network, there were introduced new advanced model in which
are taken into account many other characteristics. In particular, word embedding
is a term used for the representation of words for text analysis. Typically, language
models and feature learning techniques provide a real-valued vector that encodes
the meaning of the word such that the words that are closer in the vector space
are expected to be similar in meaning. Conceptually it involves the embedding
from an high dimensionality space per word to a continuous vector space with a

43

Topic Modeling

lower dimension. For the seek of this project I am going to explore two different
algorithms, Word2Vec [33] and Bert [34], with the correlated sentence-BERT [35].

In 2013 T. Mikolov et al. published Word2vec [33][36], a NLP technique that uses
a neural network model to learn word associations from a large corpus of text. After
training, this model can detect synonymous words or suggest additional words for a
partial sentence. As expressed in its name, Word2Vec represents each distinct word
with a numerical vector representation that allows to use mathematical function,
like the cosine similarity, to check the level of semantic similarity between words.
Word2Vec can be modelled as two different model architectures: the continuous

Figure 4.6: Word2Vec Continous Bag of Word and Skip Gram architecture

bag-of-words (CBOW) model, that predicts the current word from a window of
surrounding context words where the order of context words does not influence pre-
diction, and the continuous skip-gram where model, that uses the current word to
predict the surrounding window of context words, weighting nearby context words
more heavily than more distant ones. Overall, CBOW is faster, while skip-gram
performs better for infrequent words.

Although the useful property to make close similar words, one of the main limita-
tions is words with multiple meanings, relegated into a single shared representation,
making hard to handle the concept of polysemy and homonymy.
In order to overcome this problem, recently, contextually-meaningful embeddings
such as ELMo[37] and the most recent BERT[34] have been developed. These
embeddings use a word’s context to disambiguate polysemes thanks to the usage
of LSTM and Transformer architectures.

44

Topic Modeling

Bidirectional Encoder Representations from Transformers (BERT) [34] is
a transformer-based machine learning technique for NLP textual data processing.
Unlike other language representation models, "BERT is designed to pre-train deep
bidirectional representations from unlabeled text by jointly conditioning on both left
and right context in all layers. As a result, the pre-trained BERT model can be
fine-tuned with just one additional output layer to create state-of-the-art models for
a wide range of tasks, such as question answering and language inference, without
substantial task specific architecture modifications".
The base architecture is the same proposed in the paper “Attention in all you need”
[38], the Transformer, a model architecture that completely relies on an attention
mechanism to draw global dependencies between input and output, as represented
in Figure 4.7.

Figure 4.7: Attention mechanism representation

The Transformer [39][40] is the first model entirely relying on self-attention
to compute representations of its input and output without using Recurrent or
Convolutional Neural Network. Self-attention is a sequence-to-sequence operation
where there are input vectors x and the corresponding output vectors y, both with
the same dimension. To produce an output vector, the self attention operation
takes a weighted average over all the input vectors yi = q

j wi,jxj, where j indexes
over the whole sequence and the weights, that sum to one over j, are derived from
x as wi,j = exp(xT

i xj)q
j
exp(xT

i xj) . Every input vector is used in the self-attention mechanism

45

Topic Modeling

for the Query, the Key and the Value. In every role, it is compared to the other
vectors to get its own output yi(Query), to get the j-th output yj(Key) and to
compute each output vector once the weights have been established (Value).

Figure 4.8: Transformer Implementation

These three matrices are usually known as K, Q and V , three learnable weight
layers that are applied to the same encoded input. Consequently, due to the
derivation from the same input, we can apply the attention mechanism of the input
vector with itself, calling it “self-attention”. Afterwards the attention scores, a
measure about how much focus to place on other words of the input sequence with
respect to a word at a certain position, are computed on Q, K and V matrices.
the attention score is defined as

Attention(Q,K, V) = softmax(QK
T

√
dk

)V (4.20)

So far, the attention scores are focused on the whole sentence at a time, causing
the production of the same results even if two sentences contain the same words
in a different order, when instead we would like to use different segments of the
words. To enable this use, several self attention heads are combined, dividing the
words vectors into a fixed number h of chunks, and then self-attention is applied
on the corresponding chunks, using Q, K and V sub-matrices.

Since the model contains no recurrence and no convolution, the model needs
some information about the relative or absolute position of the tokens in the
sequence must be injected to use the order of the sequence. Hence, it is added

46

Topic Modeling

Figure 4.9: Scale Dot-Product Attention vs Multi-Head Attention

positional encodings to the input embeddings at the beginnning of the encoder and
decoder stacks.

Figure 4.10: Complete Transformer Architecture

Provided the description of BERT base structure, BERT is pre-trained in two
different mode: Masked Language Model, where some percentage of the input
tokens are masked and it has to predict those masked tokens, and Next Sentence
Prediction, where provided a group of sentences it determines the order of those
sentences. Following, usually a fine-tuning phase is applied, to focus on specific
tasks like Question Answering.

47

Topic Modeling

Figure 4.11: Overall pre-training and fine-tuning procedures for BERT

Sentence-BERT (SBERT) [35] is a modification of the pre-trained BERT
network. It uses Siamese and triplet network structures to derive semantically
meaningful sentence embeddings, that can be compared using cosine-similarity,
allowing better computational performance with the same accuracy of BERT.
SBERT is a so-called twin network which allows it to process two sentences in the
same way at the same time. These two twins are identical in every parameter (their
weight is tied), which allows to think about this architecture as a single model used
multiple times.

Figure 4.12: Twin Network architectures of Sentence-BERT. On the right, the
architecture for the classification is represented, while on the right the one used at
inference

BERT makes up the base of this model, where a pooling layer has been appended.
This pooling layer enables to create a fixed-size representation for input sentences of
varying lengths. Since the purpose of creating these fixed-size sentence embeddings
is to encode the semantics, the authors fine-tune the network on Semantic Textual

48

Topic Modeling

Similarity data with a dataset of over 1.000.000 sentence pairs. To achieve this
aim, they trained the network on the classification task of assigning a label to
each pair u and v of sentences between contraddiction,entailment and neutral.
In detail this is done by using the classification objective function defined as
o = softmax(Wt(u, v, |u− v|)).

The other approach instead is base on training the network on Triplet Objective
function. Given a base sentence a, a positive sentence p, and a negative sentence n,
the network is tuned with the triplet loss such that the distance between a and p is
smaller than the distance between a and n. Mathematically, it is formulated with
following loss function max(||sa − sp|| − ||sa − sn||+, 0), where sx is the generic
sentence embedding and the margin that ensures that sp is at least closer to sa
than sn.

Both the implementations overcome the previous state of the art methods,
making a new baseline for this task. For the implementation SBERT can be used
with its framework based on the load of a pre-trained model. Indeed, depending
on the task, the most adequated model can be used, made on the best architecture
considered by their author.

4.2.1 ProdLDA
In 2017, A.Srivastava and C.Sutton proposed ProdLDA [41] tyring to address those
issues related to LDA [22], and also to try, at the same time, to obtain better
clustered topics. In the section about LDA, we have seen how in the generative
model, the marginal likelihood of posterior inference over the hidden variables θ
and z is intractable, due to the coupling between θ and β under the multinomial
assumption. An approximation to compute that inference more efficiently in topic
models is mean field variational inference, which breaks the coupling between β
and z by adding the variational parameters γ over θ and ϕ over z. It enables
to substitute the posterior p(θ, z|w, α, β) with the best possible approximation
q(θ, z|γ, ϕ) = qγ(θ)

r
n qϕ(zn) that move the optimization problem to minimize that

so called ELBO

L(γ, ϕ|α, β) = DKL

è
q(θ, z|γ, ϕ)||p(θ, z|w, α, β)

é
− log(p(w|α, β)) (4.21)

Since the mean field method optimizes each document over an independent set
of variational parameters, for LDA this optimization has closed form coordinate
descent equations due to the conjugacy between the Dirichlet and Multinomial
Distribuitions. This issue limits its flexibility, due to necessity to rely on the ability
of the supervisor to derive the closed form updates.

49

Topic Modeling

To overcome this issue Auto-Encoding Variational Bayes (AEVB) [31] can be
used to reformulate the ELBO as

L(γ, ϕ|α, β) = DKL

è
q(θ, z|γ, ϕ)||p(θ, z|α)

é
+ Eq(θ,z|γ,ϕ)

è
log(p(w|z, θ, α, β))

é
(4.22)

where the first part tries to match the variational posterior to the prior, while the
second term is the reconstruction term used to ensures the variational posterior
choose good values for the data.

Other than re-writing the ELBO, AEVB uses an inference network that computes
the variational parameters, provided the data in input. The variational parameters
γ can be obtained by optimizing the ELBO where, to compute the expectation with
respect to q, the re-parameterization trick (RT) is used, which defines a variate U
and a re-parametrization function F such that F (U, γ) has distribution over qγ.

Applying AEVB to topic models is not straight forward. Indeed, to use the RT
it is needed to determine the re-parameterization function for q(θ) and q(zn), while
the second issue is the problem of component collapsing.

First of all, the re-parameterization can be problematic with discrete variable
like z, drawback that in LDA is avoided by summing out the variable z, making to
deal with only θ for the sample.
The Dirichlet prior to obtain topic proportions θ is difficult to handle with AEVB
for the RT. However, RT can be used with Gaussian distribution, so the issue can
be solved by constructing a Laplace approximation to the Dirichlet prior with the
modification of doing in the softmax basis instead of the simplex.
It results in an approximation as a multivariate normal with mean µi and covariance
matrix Σ1

µ1k = log(αk) − 1
K

Ø
i

log(αi),Σ1kk = 1
αk

1
1 − 2

K

2
+ 1
K2

Ø
i

1
αk

(4.23)

By bringing this appoximation back to the simplex basis, p(θ|α) is approximated
with a logistic normal distribution of parameter µ1 and Σ1, LN(θ|µ1,Σ1).

With this assumption, the variational objective function can be modified by
using the logistic normal variational distribution. Two inference networks fµ and fΣ
with parameters δ are defined , then for a document w is defined q(θ) to be logistic
normal with mean µ0 = fµ(w, δ) and the covariance matrix Σ0 = diag(fΣ(w, δ).

50

Topic Modeling

With them the ELBO can be rewrited as:

L(Θ) =
DØ
d=1

C
−
11

2{tr(Σ−1
1 Σ0) + (µ1 − µ0)TΣ−1

1 (µ1 − µ0) −K + log(|Σ1|
|Σ1|

}
2

+ E∼N(0,1)
è
wTd log(σ(β)σ(µ0 + Σ

1
2
0))
éD

(4.24)

where Θ represents the set of all the model and variational parameters, w1...wD
are the documents and σ(...) is the application of the softmax.
In the equation above, the first term is the variation of the KL divergence between
the two logistic normal q and p̃ while the second term is the reconstruction error.

As already announced, AEVB has the problem related to component collapsing,
which is a particular type of local optimum very close to the prior belief, early on
in the training. Since the latent dimensionality of the model is increased, the KL
term dominates collapsing the outgoing decoder weights for the components of the
latent variable close to the prior and it do not show any posterior divergence.

In this case, this behaviour happens because of the softmax used to produced
θ, and it is overtaken by training the network with the ADAM optimizer [42] and
high values for both moment weight and learning rate. In additions, the problem
the optimizer diverges due to those higher values arises, but also in this case these
issues can be avoided by adding batch normalization and dropout units.

Summing up, in LDA the distribution p(w|θ, β) is a mixture of multinomials. A
problem with this assumption is that better predictions than the mixed components
cannot be made. As consequence, topics that have poor quality and do not
correspond well with human judgment are produced. Regarding this issue, ProdLDA
model replaces the mixture assumption at the word-level in LDA with a weighted
product of experts, which is capable to make sharper predictions, improving in
topic coherence.

Hence, the ProdLDA model can be described as Latent Dirichlet Allocation
where the topic matrix is not constrained to exist in multinomial simplex prior to
mixing. The only changes, done from LDA, are that β is unnormalized, and the
conditional distribution of wn is defined as wn|β, θ ∼ Multinomial(1, σ(βθ)).

The connection to a product of experts is direct, as for the multinomial, a
mixture of natural parameters corresponds to a weighted geometric average of
the mean parameters. If we consider two N dimensional multinomials with mean
vectors p and q, the corresponding natural parameters are σ(r) for p and σ(s) for
q. If we also take into consideration δ ∈ [0,1], we obtain

P
1
x|δr + (1 − δ)s

2
=

NÙ
i=1

σ(i+(1 − δ)si)xi =
NÙ
i=1

[rδi s1−δ
i]xi (4.25)

In conclusion the ProdLDA model can be described as a product of experts
p(wn|θ, β) = r

k p(wn|zn = k, β)θk .

51

Topic Modeling

4.2.2 Top2Vec & BERTopic
In the world of topic modeling the most widely used methods are LDA and LSA
that, despite their popularity, have several weaknesses like knowing the number of
topics in advance and poor performances. In the last years, advanced documents
and words representations have become popular, since they are able to capture
semantics aspects of words and documents. By using these techniques, Top2Vec
[43] combines document and word semantic embedding to find topic vectors. In
addition, it does not advanced pre-processing and it is able to automatically find
the number of topics.

Create Semantic Embedding

For the purpose of extracting topics, the author decides to implement a solution
based on jointly embedding document and word vectors. Specifically, the embedding
is used to project document and words inside a space where distances between
document vectors represent semantic associations or dissimilarities and word vectors
are close to document vectors they best describe. Thanks to this embedding into a
semantic space, it is possible to a continuous representation of topics by computing
their equivalent topic vectors.

Figure 4.13: An example of a semantic space. The purple points are documents
and the green points are words. Words are closest to documents they best represent
and similar documents are close together.

52

Topic Modeling

The joint learning of embedded document and word vectors is done by means
of Doc2Vec [44]. In particular, a Distributed Bag of Word (DBOW) model uses
the document vector to predict words within a context window in the document,
similarly to the mechanism used in the word2vec skip-gram model. The only
difference between them is DBOW uses the document vector rather than the
context word, allowing to predict the surrounding words in the context window.
This similarity allows for the training of both to be interleaved, thus simultaneously
learning document and word vectors which are jointly embedded.
The DBOW model consists of a matrix Dc,d, where c is the number of documents
in the corpus and d is the size of the vectors to be learned for each document. Each
row of the matrix contains a document vector d ∈ Rd . It requires a further matrix
W

′
n,d for the context words, whose values come from a Word2Vec model trained

on the same vocabulary of n words. Afterwards, for each document d the context
vector wc ∈ Wn, d

′ is used to predict the document vector d, where this prediction
is done by applying the softmax(wcDc,d), that generates a probability distribution
over the corpus for each document that has that word. The learning phase is done
by using back-propagation, while stochastic gradient descent is used to update
each document vector in Dc,d and wc from W

′
n,d such that the greatest probability

P (d|w) is achieved in the probability distribution over the entire corpus.
This process requires document vectors close to word vectors of words inside them,
while distant from word vectors of words not belonging to them. As consequence, a
semantic space where documents are closest to the words that belonging to them and
far from words not place in them is produced. At the same time similar documents
are placed close to each other in this space since pulled into the same region by
similar words, conversely dissimilar documents are far apart since attracted into
different regions of the semantic space by different words.
The resulting semantic space can be described as a continuous representation of
topics. This model learns a matrix where each vector describes a d dimensional
context word vector for all n words it is trained on, and where each word provides
relative similarity to other word vectors in the matrix.
So, the d dimensional embedding space is a continuous representation of topics
since the matrix W

′
n,d can be seen as a linear transformation. Indeed, when the

transformation is applied to a d dimensional vector from the embedding space, a n
dimensional vector containing the strengths of each of the n words with respect to
the point in the d dimensional space is generated. So, the model actually learns how
to transform a point p in the d dimensional space into probability distributions over
the n words and it is done by computing the softmax(půW ′

n,d). Hence, any point
p in the d dimensional space represents a different topic that can be represented
semantically by the nearest word vectors, since the corresponding words have the
highest probability in its that topic in the d dimension space.

53

Topic Modeling

Find Number of Topics

The semantic embedding provides the advantage of learning a continuous represen-
tation of topics. Indeed, thanks to the joint embedding, documents and words can
be represented as positions in the space, where each document vector describes the
topic of the document.
As previously anticipated, the word vectors closer to a document vector better
describe the document topic. As consequence, in the semantic space, a dense area of
documents is associated to an area of highly similar documents, and so it indicates
the underlying common topic of the documents.
The centroid of the area can be calculated on the document vectors, thus defining
the topic vector. The closest words to this topic vector are the words that best
describe it semantically. The main consideration on this formulation is that the
number of dense areas is equal to the number of topics.
To create dense cluster in the space, the author implemented a density based
clustering called Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN) [45]. However, the transformation of documents in high
dimensional vectors causes some issues related to the curse of dimensionality, since
those vectors are very sparse. This sparsity makes really difficult the creation of
dense clusters with poor results and high computational costs.
As possible solution to alleviate this problem, a dimensionality reduction technique
called Uniform Manifold Approximation and Projection for Dimension Reduction
(UMAP) [46] is used to reduce the semantic space and, as consequence, to use
satisfactorily the HDBSCAN cluster algorithms.
The dimensionality reduction applied enables the creation of more accurate clusters
of documents. The choice to use UMAP among the many different reduction
algorithms lies on its strong theoretical foundations that allow to preserve original
local and global structure in the reduced space. Figure 4.14 shows UMAP-reduced
document vectors: a lot of global and local structure is preserved in the embedding.

So, the goal of clustering is to find dense areas where high similar documents lie,
that identify the underlying topic. With this approach there are some challenges,
since document vectors have different density in the space and there are areas where
documents are dissimilar, that can be seen as noise. To overcome these issues,
HDBSCAN is used to find dense areas of document vectors, since it is designed
to handle both noise and variable densities clusters. Indeed, it assigns a label to
dense cluster, that later will be used to compute topic vectors, while a noise label
to document vectors that are not in a dense cluster as no being descriptive of a
possible topic. Figure 4.15 shows an example of dense areas of documents identified
by HDBSCAN.

54

Topic Modeling

Figure 4.14: Top2Vec UMAP-reduced document vectors

Figure 4.15: Top2Vec dense areas of documents identified by HDBSCAN

Calculate Topic Vectors

Hence, HDBSCAN, on the space reduced by UMAP, identifies the dense cluster of
documents by labeling each document in the semantic embedding space as noise
or with the label of the dense cluster it belongs. After assigning the label to
each cluster, the topic vectors are computed. Among the possible ways, they are
obtained by taking the centroid as the arithmetic mean of all document vectors
in the same cluster. Figure 4.16 shows a visual example of a topic vector being

55

Topic Modeling

calculated from a dense area of documents.

Figure 4.16: The topic vector is the centroid of the dense are of documents
identified by HDBSCAN, which are the purple points. The outliers identified by
HDBSCAN are not used to calculate the centroid.

As already described, in the semantic space a topic is described by its nearest
word vectors, where the closest to the topic vector are the ones that represent it
semantically and their similarity with respect to the topic vector is represented by
the distance of each word vector to the topic vector. So, the most closest words to
the topic vector are the most similar to all documents into that area, since the topic
vector represents the centroid, and so they summarize the common topic of those
document. Common words appear in almost all documents and, as consequence,
they often are in a semantic space region equally distant from all documents. As
result, the closest words to a topic vector will rarely be stop-words, so making not
necessary the stop-word removal. Figure 4.17 shows an example of a topic vector
and the nearest words.

Topic Size and Hierarchical Topic Reduction

The topic and document vectors can be used to compute the size of topics. Document
vectors are partitioned by the means of the topic vectors, such that each of them
belongs only to the closest topic vector. By doing this association of documents
clusters, the size of each topic is computed as the number of documents that belongs
to it. Thanks to the representation of topics in the semantic space, there is the
huge advantage to reduce the topics to a smaller value, with respect to the one
automatically found. This is done by merging the smallest topic by size and its
nearest topic vector for semantic meaning with an iterative approach, where the

56

Topic Modeling

Figure 4.17: The topic words are the nearest word vectors to the topic vector.

arithmetic mean, weighted by the topic size, is taken. When a merge is done, the
topic sizes are recomputed. Overall, this approach finds the most representative
topics of the corpus, as it biases topics with greater size.

BERTopic

From the idea proposed in Top2Vec, a slightly different algorithm called BERTopic
[47] has been developed, based on BERT and transformers embeddings. The main
covered steps are the same as in Top2Vec, however two major differences are
introduced. The first one is that the layer of Doc2Vec embeddings is replaced:
documents are now converted by using BERT, as it extracts different embeddings
based on the context of the word. In particular, sentence-BERT is used, since the
resulting embeddings have shown to be of high quality and typically they work
quite well for document-level embeddings. The next steps are the same done on
Top2Vec, with the dimensionality reduction applied with UMAP and the clusters
created by the means of HDBSCAN. When the topic creation comes, here we find
the second difference. To derive topics from clustered documents, a class-based
variant of TF-IDF (c-TF-IDF) has been used. The intuition behind is the same
of the classical TF-IDF, where the importance of words between documents are
compared, but all documents in a single category are treated as a single document
here. It results in a very long document per category, and the resulting TF-IDF
would demonstrate the important words in a topic. It also allows to implement the
same posterior topic reduction on the output of HDBSCAN, indeed by comparing
the c-TF-IDF vectors among topics, the most similar ones are merged, and finally
the c-TF-IDF vectors are re-calculated to update the representation of topics.

57

Topic Modeling

4.2.3 GEAC

At this point, after all introductions on many important models of the literature, I
try to explore and to propose my custom implementation. Until now, methods based
on probability or on neural network have been studied and proposed: starting
from them, I work on making a model that tries to absorb the most relevant
characteristics found on them and, at the same time, that tries to overcome all the
issues seen both on theory and on experiment results.

This idea is expressed by the name of the model, GensimEncodingAutoencoder-
Clustering (GEAC). This name comes from the utilization inside the model of the
Gensim library [48], while the Encoding is used to extract features, moving from
textual data to numerical data. Instead, the Autoencoder and the Clustering are
used to create meaningfully topics, by first reducing the data dimension and finally
by applying a cluster algorithm.

More in detail, the basic idea is to use both the probabilistic output produced
by Gensim model and the features produced by a word embedding model. Indeed,
classical algorithms, based on document representation like Bag-of-Word, can be
used to create topics in situations where texts are large and words inside are
coherent concerning the topics. So, if words are incoherent, due to the multiple
themes addressed or for the low quantity of input data, some extra information can
be used to understand the meaning of texts. Another reason lies on the datasets
used in this project: they are difficult to handle properly due to their a-typical
structure, with both few sentences and few words. Considering the major drawbacks
of both classical and modern models, I decide to do a further step by considering
them not as separate parts, but trying to connecting them. This is done by the
taking into account many different model outputs and by concatenating them to
do further operations.

In practice, the probability outputs of LDA or NMF, the word representation
coming from BERT and the word vectors produced by Word2Vec are taken. Then,
by combining them, I am able to enhance the output of the Gensim model by
contextualizing it with the information coming from word embedding. About this
concatenation, the three variables delta, epsilon and gamma come into play to
weight each of the three components, allowing to create models with different
concatenations. This is done to balance the three part to fine-tuning the model.

After the creation of the global vector as the combination of the three distinct
ones, it is relevant to reduce the high dimensionality of the final vector that otherwise
can create some issues related to the curse of dimensionality. Given the experience
with UMAP, although it is a really powerful tool to reduce data dimension, from
the implementation of BERTopic comes clear that it is too dependant on the several
hyperparameters needed to build it properly. For this reason and to avoid a too
expensive fine-tuning in terms of time and resources, I decide to take inspiration

58

Topic Modeling

from the idea proposed in ProdLDA to use an AutoEncoder. Indeed, for the
dimensionality reduction I choose an AutoEncoder, a standard one in my case
rather than a Variational. In this way the focus is only on its dimension, making
the whole train way faster.

Following the implementation of a clustering algorithm, on Top2Vec/BERTopic
there are some drawbacks related to HDBSCAN, so I decide to explore this step
with other two algorithm, K-Means [49] and K-Mededoids [50]. K-Means is one
of the most famous algorithm that use the Euclidean distance to compute the
closeness between points and cluster. K-Medoids is a similar algorithm to K-Means
but, rather than using as the centroid a point which could be not real, it uses
the medoid, a real point of the dataset. Thanks to this consideration, K-Medoids
is more robust to outliers and, due to the possibility to cover the whole spatial
representation of points with different metrics, it is able to achieve better results,
depending on the situation.
Overall, both of them find cluster by grouping together vectors that are close to
each other, creating, as consequence, topics made by the the words inside the
corresponding sentences. Those words and so the vectors are expected to have
similar semantic meaning due to the transformation applied to vectorize the words.

Some strict assumptions related to HDBSCAN led me to move towards other
clustering algorithms. Indeed, even if it is a really powerful algorithm that, en-
hancing DBSCAN, is able to explore the hierarchy between topics, in order to
change the granularity of detail, the necessity of having at least two points in each
cluster and the difficult management of outliers in a context where all sentences
are relevant, make it really difficult to use in my specific contex. So, although
same possible solution can be explored as we will see later, more practical cluster
algorithms are preferable.

With such pipeline I face a problem, indeed growing the number of topics, the
model will make independent cluster associated to each single sentence, causing an
higher score that I will explain in the next section. In general, it happens since
making 1:1 association is for clear reasons a type of division that works in all cases.
Nevertheless, making many separate clusters does not take into consideration the
meanings of each topic and of the words that compose it. If there are sentences
about the same topic, but with slightly different words, under a human point of
view it is straightforward to group them together. To reproduce this reasoning and,
as consequence, to obtain the desired model, it is implemented a pruning. More in
detail, it is taken as the best model the one that achieves the best score but also
that ensures that the topic clusters do not exceed a certain level of similarity, fixed
by the user. More detailed information about the implementation will be provided
later but, in few words, this method allows to avoid to keep separate topics that
are similar among themselves.

59

Chapter 5

Results

In this section I am going to analyse and to discuss the output of each model
described in Chapter 4, showing how many issues are now overtaken with newer
approaches. In detail, about these issues, an analysis to understand the goodness
of each topic is performed. Indeed, a common problem with Topic Models regards
the quality, since the cited models do not always guarantee independence between
topic clusters. For this reason, I perform an analysis about the similarity between
topics by exploiting the spatial representation of each word inside a topic through
Feature Embedding. Inside this chapter, the used score metric is presented and
explained; it is an important point inside the world of Topic Modeling, since using
a score able to express a judgement in line with a possible valuation done by a
human is essential.

5.1 Coherence Score
Dealing with Topic Modeling, different possible metrics exist to evaluate the models
with their corresponding outputs. The perplexity measure is considered by many
being the starting point. Perplexity is an intrinsic evaluation metric, widely used for
language model evaluation. It captures the behaviour of a model when it faces new
data and it is measured as the normalized log-likelihood. However, recent studies
[51] have shown that perplexity and human judgment are always not correlated,
but rather sometimes even slightly anti-correlated. This limitation motivated many
works to model the human judgment, arriving at Topic Coherence. Topic Coherence
measures [52] score a single topic by measuring the level of semantic similarity
between words in the topic. These measurements help to distinguish between
meaningful topics and topics that are artifacts [53]. Regarding the meaning of
coherence, a set of sentences is coherent if they support each other, thus, sharing
similar themes. An example of a coherent fact set is “pizza is an italian food”,

61

Results

“pizza comes from Naples”, "spaghetti and meatballs is an American food”, where
they share a thematic, in this case food.

Many coherence measures exist, presented over the years. Here a short list with
the principal ones:

• Cv measure is based on a sliding window, one-set segmentation of the top
words and an indirect confirmation measure that uses normalized point-wise
mutual information (NPMI) and the cosine similarity [54];

• Cp is based on a sliding window, one-preceding segmentation of the top words
and the confirmation measure of Fitelson’s coherence; [55][54];

• Cuci measure is based on a sliding window and the point-wise mutual informa-
tion (PMI) of all word pairs of the given top words [52];

• Cumas is based on document co-occurrence counts, a one-preceding segmen-
tation and a logarithmic conditional probability as confirmation measure
[56];

• Cnpmi is an enhanced version of the Cuci coherence using the normalized
point-wise mutual information (NPMI) [57];

• Ca is based on a context window, a pairwise comparison of the top words
and an indirect confirmation measure that uses normalized point-wise mutual
information (NPMI) and the cosine similarity[54].

Among them, today Cv is the most widely used, since it provides results close to
the human ones. For this reason it is main metric used inside this project. Before
moving forwards, here a quick explaination.

Roder et all [54] proposed a framework of coherence measures made by four
parts, where it can be constructed existing measures as well as unexplored ones.

The first part is about the Segmentation of word subsets. Following [58],
coherence of a word set measures the support level between two subsets. The
segmentation of a word set W produces a set of pairs of subsets of W . The definition
of a subset pair consists in two parts, where the first one is the subset for which
the support by the second part of the pair is determined when computing the
confirmation measures. Different pair typology exist, like made of single words
with UCI coherence or where one or both subsets contain more words.

Follows the part of probability estimation, where the authors moved from
Boolean document, which estimates the probability of words as the number of
documents in which they occur divided by the total number of documents, to a
Boolean sliding window. It determines word count using a sliding window that

62

Results

Figure 5.1: Overview over the unifying coherence framework - its four parts and
their intermediate results

moves over the documents one word token per step, where each step defines a new
virtual document.

A confirmation measure takes a single pair S = (W ′,W ∗) of words or word
subsets as well as the corresponding probability to compute how strong the con-
ditioning word set W ∗ support W ′. Among the possible different confirmation
measures, they follow [57], where the largest correlation to human topic coherence
ratings were found when the elements of the vectors are normalized PMI (NMPI).

mnlr(Si) =
log
1
P (W ′,W ∗)+ϵ
P (W ′)∗P (W ∗)

2
−log(P (W ′,W ∗) + ϵ) (5.1)

The last step is made by the Aggregation, indeed all confirmations ϕ of all subset
pairs Si are aggregated to a single coherence score by taking their arithmetic mean.
The final score is inside a range between 0 and 1, whit acceptable values that are
above 0.6/0.7 usually. In the results table below, the scores are reported with the
confidence interval computed on 10 run with a confidence level of 0.95.

5.2 Topic Similarity
Topic modeling have several issues, some of them already mentioned. Among these
issues, an important one is the quality of the created topic. Since the number of
topics is not known in advance, extensive searches are necessary. For this project,
due to the nature of the datasets, the most logical approach is to propose a level of
search that goes from the distinct number of sources of the logs, until the number
of unique logs provided as inputs to models. This is the consequence of the type
of text analysed because, differently from long documents, where each one could
be made by different topics, with logs we have short texts that makes explicit a

63

Results

single operation done inside the system. This operation is strictly linked to a topic,
underlined also by the fact that log texts are not long and so the few used words
convey the message directly.

From these reasonings, if the number of topics on which the model is trained is
higher, with respect to the real number of topics inside a corpus, the topic clusters
may overlap each other. This would make the assigned label to each sentence less
significant, since very similar things would be considered different. The same issues
happens even if the number of topics is lower compared to the real number of topics,
since the topic cluster composition depends on the model used. In particular, this
behaviour is quite frequent on classical algorithms, where I ascertain that they
have many issues with short sentences.

So, it is important to obtain a model where the topics do not overlap and, to
guarantee it, I move the focus on Topic Similarity. At the same time, the idea is
quite simple but powerful, after I created the topic clusters, I look for the words
inside each of them and I check the similarity between them. In order to implement
this check, I exploit the spatial representation of each word inside a topic through
Feature Embedding. In detail, I have opted for a Word Embedding approach, based
on a Word2Vec skip-gram model. As anticipated, in this project I deal with a very
short corpus, so training and fine-tuning a feature embedding model from scratch
would make the train too expensive. For these reason, I took the pre-trained model
coming from Google [33] and I transfer its learning on a new model that I do
further train to represent words that are not inside Google model. Provided this
model, the words of all the topics are vectorized. Then, by taking topic clusters in
pairs, I look for the similarity. Among the different measures, I opt for the cosine
similarity, since it measures the similarity between two vectors of an inner product
space since it considers not only the distance between point, but also the angle
between them.

sim(x, y) = x · y
||x||||y||

(5.2)

In this implementation the similarity measures between topics are obtained by
taking the cosine similarity of the average vectorial representation of the words
vector coming from Word2Vec. Then, if pairs have similarity above a provided
threshold, I consider that topic model not optimal. Hence, it is really important
to choose the right threshold, considering it is quite human dependant. Different
values can be more appropriate depending on the input sentences. In analysed cases
in this project, a good value have been found in 85% of similarity, since it is able to
distinguish topics that are close but, at the same time, different for few details, like
actions or subjects of those actions. Higher values have been tested but, in general,
they result in too similar topics, while lower values make too strict the cut, without
allowing topics with words in common. Given the similarity of the topics, I focus

64

Results

on obtaining a model without similar clusters. So, on the topic models training
phase, I look for a model whose combination of parameters guarantees it has both
a high metric score and it is also optimal on the base of what a supervisor could
infer, by looking directly at each cluster.

The choice about the best model is done on three different analysis:

1. The first one consists on decreasing the number of topic, depending on how
many are similar, with a greedy approach, so with this new value I look
recursively for the best model. For example, If the best model has 20 topics
and 3 of them are correlated, by removing 2 topics I look for a model that
could not have any correlated topics. If it still has similar topics, I recursively
decrease the actual number of topics, depending on the number of similar
topics, until I obtain an acceptable model;

2. The second option, instead, tries to exploit the metric score used by finding
the model with the highest score which does not contain similar topics;

3. Finally, it is done an analysis by merging the similar topic between themselves.
The idea is that if two or more topics are very similar between themselves,
we can take them together. So, all the sentences that should be labelled
differently with those topics labels, they will be label in the same way;

All these operations have been performed on the classical model, trying to
compensate some poor generalizations and results. On the Topic Models based on
Neural Network, instead, the second option inside the training pipeline has been
directly implemented, since required. In this way, the best output model provides
directly not too similar topics.

By anticipating the behaviours, for the first two implementations sometimes I
obtain similar or a bit lower score results, but more meaningful for the supervisor.
Indeed, the coherence metric normally is fine to obtain a general comprehension
of the model, but, at the same time, in more precise situations the supervision of
a user is required. Instead, with the last one I obtain many time better results,
and it happens since the merge operation is done by taking the word in common
and then by choosing among the remaining the ones that are more similar to ones
already considered. However, the goodness depends also on the initial number of
topics, indeed, if the number is very high and over the half of topic clusters are
correlated, this operation would not provide good results in case of the real number
of topics is high.

To represent this concept of similarity, in the results tables below I directly show
the number of topics to be dropped in order to avoid similar topics, preventing
to represent all the groups of similar topics. This value refers to the mean of
the number of topics to drop when computing the Confidence Intervals for the

65

Results

coherence score; I explicitly avoid to compute the confidence interval for this value
since otherwise the computations would have been too expensive due to the higher
number of trial for the similarity analysis.

5.3 Results

In this section the results produced by the different algorithms are presented. Each
of them have been trained exploring all the hyper-parameter on different versions
of the datasets. In details, as anticipated on Chapter 3, for each source (Spark
and HDFS) different versions of the dataset are made: ORIGIN+MESSAGE and
MESSAGE.

Besides them, during the hundreds of trials operated, it has been found that
the absence of the ORIGIN has a negative impact on the classical algorithms and,
at the same time, the ORIGIN can act as noise, producing models with too generic
topic clusters. Indeed, if many logs have the same source origin, the classical models
will be prone to cluster together those sentences even if the message is different.
For this reasons, it has been also tried a modified version of the datasets, based on
ORIGIN+MESSAGE. It is called SPLIT and it tries to reduce the impact of the
ORIGIN part by taking only the monogram, avoiding to reduce the dataset to the
same version of MESSAGE, that has fewer words. This additional version is an
insight of possible considerations that could be implemented in future to better
balance the dataset and to produce, as consequence, better topic models.

Another important consideration must be done on the metric. Indeed, by
default, the Topic Modelling Gensim library [48], used in this project, computes
the coherence on the top 20 words. By thinking on common text types, this is
considered a good trade-off, however due to the nature of my data, in some cases
the coherences computed on the top 10 and 15 words for each topic clusters are also
needed. This reasoning is crucial since, on the outputs produced by the algorithms,
the first words have more strength inside the topic, while the following are less
relevant. So, the expected behaviour is the coherence on the top 10 words will
be higher than the coherence on the top 15. As consequence, this last one will
be higher than the one on the top 20. By applying this triple confirmations, it is
possible to obtain a model that provides useful outputs. During the experiments,
it has been found essential since, without doing this operation, in some cases it
is possible to obtain a model with an high coherence on the top 20 words, which
is not linked with higher score on the top 10 and 15 words. This happens since
the coherence can provide good score when the output is a mixture of words that
matches many input sentences. Hence, the topic clusters can be seen as a mix of
different word that are good for different sentences.

66

Results

The results are proposed both on terms of coherence and on predictions. Re-
garding the predictions, for both Spark and HDFS a subset of log that represents
different possible cases and behaviour have been chosen, aiming to cover all situa-
tions. To better understand predictions quality, I have used a color schema, that
goes from red, which indicates wrong predictions, to yellow, the output neither
bad or good, and to green, which encodes a good label. The shades in the middle
of these three colors are used to indicate intermediate labels. About this color
mapping, it must be remember that the associations are handmade after a judgment
based on the experiences coming from several trials. So, these links can not be
perfect and subjected to the readers.

About the datasets, all the models have been trained on the output coming
from the data processing phase, while, regarding the parameters, the range for
the number of topics goes from the number of distinct sources, respectively 10 for
Spark and 12 for HDFS, to the number of distinct rows in input. I remember that,
even if log files are made by thousands or millions of lines, they can be restricted to
hundreds or even less lines by considering the shared structures as already explained.
In this case, for Spark the maximum number of lines is 45, while for HDFS is 99.
With respect to the results, coherences and predictions come from the best model
without similar topics for the neural network based models, while from the best
model for classical algorithms, aiming to understand the similarities of topics.

Concerning the implementations, the classical models have been implemented by
using the Gensim library [48], one of the best source available today for document
representation. The neural network models have been implemented by means of
different libraries. ProdLDA has been developed by starting from OCTIS [59],
a recent library focused on Topic Modeling. BERTopic [47], instead, has been
proposed starting from the code made available from the author on his GitHub
page. Finally, my custom model GEAC has been based on BERT [35], Gensim
[48] and Word2Vec [33] for the feature creation, while the AutoEncoder has been
developed by the means of Keras [60]. For final clustering phase, K-Means comes
from the scikit-learn libreary [61] and K-Medoids from scikit-learn-extra [62], a
library focused on implementing interesting models still not included in the standard
library. Regarding the machines, for the classical models the cluster provided by
Smart Data PoliTO [63] in the maximal configuration (up to 48 CPU cores and 120
GB of RAM) is used, instead the models based on neural network have been trained
on a Nvidia Tesla P100 provided by the Google Colaboratory service [64][65].

5.3.1 LDA
LDA, as the other classical Topic Modelling algorithms, takes as input a corpus,
structured as a Bag of words, and the corresponding dictionary. The hyper-
parameters needed to fine-tune a model are K, the number of topics, α, the

67

Results

prior belief on the document-topic distribution, and β, the prior belief on topic-
word distribution. For K, i.e the number of topics, the select range is the one
presented above. The ranges for α and β are the almost the same, the share part
is [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, symmetric, auto], in addition
for α is added asymmetric. About these three non-numeric values, symmetric
and asymmetric retrieves the value from the number of topics, respectively they
are 1

K
and 1

topicindex+
√
K

. Auto instead tries to learn an asymmetric prior from the
corpus.

Spark

As we can see from Table 5.1, the highest score during training is obtained with a
number of topics of 31, that resembles a possible human evaluation. Indeed, since I
start with a very restricted number of distinct entries, I do not expect to obtain a
number of topics too far from the number of input sentences. However, the model
has a very high number of similar topics. By applying the three similarity analysis
to overcome this issue, it is possible to obtain a better value when the correlated
topics can be considered as ones.

Results - Spark - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=31, α = 0.4, β = 0.6 0.6953±0.0351 13
Best Model Analysis 1 K=18, α = 0.05, β = 0.7 0.5805±0.0228 0
Best Model Analysis 2 K=12, α = 0.9, β = 0.5 0.6575±0.0261 0
Best Model Analysis 3 K=18, α = /, β = / 0.7262±0.0278 0

Table 5.1: LDA Results on ORIGIN+MESSAGE Spark dataset

The best model without similar topics is obtained with 18 topics, causing, as
consequence, the production of topic clusters that do not match properly the
sentences. The other two analysis, instead, do not produce any improvements.
On the predictions we can see how the best model is able to cluster similar logs,
however, some of them, especially the ones with few rare words, are not labelled
correctly. The other observable behaviour has been already anticipated, i.e. the
origin causes the collapsing of different logs in a topic cluster defined by the words
inside the ORIGIN part of the logs.

68

Results

Figure 5.2: Predictions LDA on Spark - ORIGIN+MESSAGE

In the case of SPLIT dataset, the behaviour is different for the best model.
Rather than providing a model with a big value for K and many similar topics, in
this situation the best model provides a smaller value for K of 17, with 2 similar
topics. The outputs coming the three analysis are instead in line with the previous
situation, so better only for the third analysis. An important difference can be
appreciated with the outputs. In this version of the dataset, I have less words inside
each sentence, increasing the difficulties of LDA when it deals with small datasets
[66][67]. Indeed, many predictions are comparable, however, some of them are now
labeled incorrectly sometimes. In addition this observation, it is also relevant to
see that the topic clusters are less clean than before, with less coherent words. This
behaviour is also underlined by the values of the coherence with top 10 and top 15,
they are lower or similar than the one with the top 20 words.

69

Results

Results - Spark - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=17, α = 0.4, β = 1 0.6948±0.0236 2
Best Model Analysis 1 K=15, α = 1, β = 0.01 0.6121±0.0257 0
Best Model Analysis 2 K=15, α = 1, β = 0.01 0.6121±0.0257 0
Best Model Analysis 3 K=15, α = /, β = / 0.7238±0.0226 0

Table 5.2: LDA Results on SPLIT Spark dataset

Figure 5.3: Predictions LDA on Spark - SPLIT

In the dataset composed by only messages, we can see how the results are in
general lower compared to previous values. This result is expected, since the already
mentioned problem in the SPLIT dataset is further increased, due to the fewer
words in each line. This behaviour is recurrent for all the classical models, for this

70

Results

reason further considerations and comparisons with the models based on Neural
Network will be relevant. For what concern the predictions, the produced clusters
contain words coming from different thematics. So, even if the prediction is almost
acceptable, it can been directly seen how the meaning is not easily understandable.

Results - Spark - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=43, α = 0.3, β = 0.5 0.6582±0.0097 27
Best Model Analysis 1 K=16, α = 1, β = 0.01 0.5715±0.0243 0
Best Model Analysis 2 K=40, α = 1, β = 0.1 0.6382±0.0127 0
Best Model Analysis 3 K=16, α = /, β = / 0.5450±0.0206 0

Table 5.3: LDA Results on MESSAGE Spark dataset

Figure 5.4: Predictions LDA on Spark - MESSAGE

71

Results

HDFS

The behaviour with HDFS is very similar to Spark. Indeed, the shortcomings
are similar, but the results increase due to the higher quantity of input data.
Nevertheless, the persistence presence of problems suggests that more advanced
algorithms are needed to accomplish this task.
From Table 5.4, on ORIGIN+MESSAGE dataset the highest score during training
is obtained with a number of topic equal to 91, a value acceptable with respect
to a plausible human judgement. However, that model has a very high number of
similar topics, as well as Spark. About the three similarity analysis, the trends
reflect a similar behaviour as in table 5.1, but this time also the third analysis
provides worse results. Instead, the first analysis produces a final output too low
to be acceptable.

Figure 5.5: Predictions LDA on HDFS - ORIGIN+MESSAGE

72

Results

Results - HDFS - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=91, α = 0.1, β = 0.6 0.7109±0.0240 47
Best Model Analysis 1 K=44, α = 0.4, β = 0.5 0.5872±0.0162 0
Best Model Analysis 2 K=22, α = 0.2, β = 1 0.6996±0.0383 0
Best Model Analysis 3 K=42, α = /, β = / 0.7974±0.0219 0

Table 5.4: LDA Results on ORIGIN+MESSAGE HDFS dataset

In the case of SPLIT dataset, the best model provides a lower value of K and
coherence score is higher with respect to the best model on ORIGIN+MESSAGE,
however, there still are many similar topic, even if less than ORIGIN+MESSAGE,
as for Spark. Contrary to the same implementation done on Spark, here the
drawbacks are more visible since the final number of topics, obtained as best K
minus the number of topics to drop, is too low in proportion to the same results
on Spark and with respect the possible real number of topics.
The outputs coming the three similarity analysis are in line with the previous
situation, with the same reasoning done before and with lower results. Nevertheless,
as can be appreciated from Figure 5.6, the predictions seem to be more reasonable
compared to ORIGIN+MESSAGE. Indeed, for this case, the implementation
to weight differently the words coming from the ORIGIN seem to pay off. An
interesting observation can be done about the data processing implemented to
extract meaningful words from raw sentences. In the 6TH row can be appreciated
how, since the presence of a single token, it is not discarded but rather kept after
the removal of unnecessary characters. In this way, I can keep all input logs, even
those that with standard processing would be discarded, since it is essential to keep
all elements.

Results - HDFS - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=43, α = 0.4, β = 1 0.7432±0.01887 25
Best Model Analysis 1 K=16, α = 0.2, β = 1 0.6679±0.0288 0
Best Model Analysis 2 K=20, α = 0.3, β = 0.7 0.6756±0.0419 0
Best Model Analysis 3 K=17, α = /, β = / 0.6877±0.0286 0

Table 5.5: LDA Results on SPLIT HDFS dataset

73

Results

Figure 5.6: Predictions LDA on HDFS - SPLIT

Considering the last dataset of messages, this time the results are higher than
in the other two datasets and the number of topics found is acceptable, even by
removing the similar topics. The applications of the three analysis provide good
results, although they are not improved. Indeed, even if the coherence scores
decrease with respect to the best model, they are still comparable with the best
one. Also the number of topics is acceptable, excluded the second analysis which
choose a model with too low number of topics.
The predictions seem to confirm this trend, allowing to match sentences with
clusters that have same themes. The behaviour, similar to SPLIT, is to create
topics made by words that humanly are not coherent, but that allows to provide
a more reasonable label. Therefore, even if the assignments are better that in
ORIGIN+MESSAGE, this result is still not ideal for a real case implementation.

Overall, LDA provides good results, in particular among classical algorithms.
However, it has some drawbacks since it is not able to find all topics and it
generalizes too much when in texts irrelevant but common words are found.

74

Results

Results - HDFS - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=98, α = 0.3, β = 1 0.7837±0.0199 47
Best Model Analysis 1 K=78, α = 0.4, β = 0.4 0.7248±0.0154 0
Best Model Analysis 2 K=52, α = 0.4, β = 0.7 0.7533±0.0124 0
Best Model Analysis 3 K=78, α = /, β = / 0.7723±0.0164 0

Table 5.6: LDA Results on MESSAGE HDFS dataset

Figure 5.7: Predictions LDA on HDFS - MESSAGE

5.3.2 NMF

For this project NMF has been trained with several combinations of parameters.
Differently from LDA, NMF accepts various transformations of the input data. To
explore this possibility, I have tried both Bag-of-Words and Tf-Idf to transform
data, however the best result has been achieved with the first proposal.

Provided these transformed data, the models have been fine-tuned by searching

75

Results

both the number of topics K, inside the usual range, and kappa, the parameter
that regulate the gradient descent step size.

Spark

Results - Spark - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=22, kappa=0.1 0.8072±0.0186 5
Best Model Analysis 1 K=16, kappa=0.1 0.7590±0.0216 0
Best Model Analysis 2 K=16, kappa=0.1 0.7590±0.0216 0
Best Model Analysis 3 K=17, kappa=/ 0.8129±0.0453 0

Table 5.7: NMF Results on ORIGIN+MESSAGE Spark dataset

In the table regarding ORIGIN+MESSAGE, It can be noticed how NMF is
able to provided higher coherences with respect to LDA. However, at the same
time the number of topics is smaller. This behaviour happens for the same reasons
already explained. Rather the providing many clusters good both for the origin
and the message, due to the higher relevance of the words inside the origin, which
they are more common if that origin occur many times, the algorithm will create a
single cluster focused on the origin. At the same time, the lower values of K are a
sign of the poor generaliziotions done by the algorithm. These issues are perfectly
represented in the picture about predictions where this behaviour is underlined by
the rows in yellow. For the more difficult ones, like the last two, NMF is still not
able to obtain the corresponding topic clusters. For what concerns the similarity
analysis, only the third approach based on merging similar topics provides better
results.

Results - Spark - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=14, kappa=0.05 0.7497±0.0196 0
Best Model Analysis 1 K=14, kappa=0.05 0.7497±0.0196 0
Best Model Analysis 2 K=14, kappa=0.05 0.7497±0.0196 0
Best Model Analysis 3 K=14, kappa=/ 0.7497±0.0196 0

Table 5.8: NMF Results on SPLIT Spark dataset

76

Results

Figure 5.8: Predictions NMF on Spark - ORIGIN+MESSAGE

The application on SPLIT is particular since it does not provide any similar
topic. This is due to the lower starting value for the number of topics. Since the
lower number of words, in this case the model is able to find good coherences
without exploiting the whole space of possible clusters. This is a drawback coming
from the combination of the algorithm with this modified version of the dataset.
These reasonings are underlined by the predictions with poor associations and a
general lower quality of the topic clusters.

77

Results

Figure 5.9: Predictions NMF on Spark - SPLIT

Results - Spark - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=39, kappa=0.01 0.7019±0.0231 23
Best Model Analysis 1 K=16, kappa=0.01 0.6256±0.0176 0
Best Model Analysis 2 K=16, kappa=0.01 0.6256±0.0176 0
Best Model Analysis 3 K=16, kappa= / 0.5713±0.0183 0

Table 5.9: NMF Results on MESSAGE Spark dataset

For what concern MESSAGE dataset, the initial number of topics is high but
linked to an high number of similar topics. However, the coherence for the best
model is higher with respect to the one obtained with LDA. Differently from SPLIT,
in this case the application of the different analysis can be done, however, as shown
in the table, they do not provide better results.

78

Results

Figure 5.10: Predictions NMF on Spark - MESSAGE

From Picture 5.10 we can see how the results are indeed better than in the
analogous case of LDA. Regarding the issues, they are the same as in ORI-
GIN+MESSAGE; The models create fuzzy cluster in some cases, while in the
other, mainly link with short logs, it is not able to find a group.

79

Results

HDFS

The results change significantly with HDFS. Thanks to the higher quantity of
content located in the input data, NMF is able to find reasonable models, althought
not optimal, in all the three versions of the dataset.

Results - HDFS - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=63, kappa=0.05 0.7805±0.0176 15
Best Model Analysis 1 K=48, kappa=1 0.7486±0.0076 0
Best Model Analysis 2 K=30, kappa=1 0.7799±0.0236 0
Best Model Analysis 3 K=48, kappa=/ 0.7269±0.0114 0

Table 5.10: NMF Results on ORIGIN+MESSAGE HDFS dataset

Figure 5.11: Predictions NMF on HDFS - ORIGIN+MESSAGE

In ORIGIN+MESSAGE the best results is obtained with 63 topics, where 15
need to be dropped. By searching a model without similar clusters, in all cases the

80

Results

results are lower but comparable to the best score. This high number of clusters
affects the prediction in a good way, making the model to commit an error when it
finds few rare words in the input sentences. Differently from LDA, in this situation
I obtain good labels even with the interference caused by the ORIGIN.

Results - HDFS - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=30, kappa=0.1 0.8172±0.0344 2
Best Model Analysis 1 K=28, kappa=0.5 0.7795±0.0257 0
Best Model Analysis 2 K=23, kappa=1 0.8145±0.0214 0
Best Model Analysis 3 K=28, kappa=/ 0.7777±0.0228 0

Table 5.11: NMF Results on SPLIT HDFS dataset

Figure 5.12: Predictions NMF on HDFS - SPLIT

The models on SPLIT reflect exactly the same reasoning just done on ORI-
GIN+MESSAGE, with the only difference in a lower number of topics, as usual for
this case. All the searches to avoid similar topics do not provide best results. Only

81

Results

the best model with no similar topics has a coherence score close to the best one,
however, in this case the value of K is to low to be taken into consideration.

Results - HDFS - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=49, kappa=0.05 0.7699±0.0216 47
Best Model Analysis 1 K=40, kappa=0.1 0.7408±0.0192 0
Best Model Analysis 2 K=30, kappa=1 0.7603±0.0198 0
Best Model Analysis 3 K=40, kappa=/ 0.7476±0.0212 0

Table 5.12: NMF Results on MESSAGE HDFS dataset

Figure 5.13: Predictions NMF on HDFS - MESSAGE

As in LDA, the MESSAGE dataset provides good result with HDFS. Other
than good values of coherence, althougth obtained with a number of topic than in
my judgement is too low, the predictions depict this goodness. Indeed, in many
situations where the results are light green or in red in the LDA, now better results

82

Results

are associated. Worse results are still present for the most difficult cases, however
topic clusters are way better and more coherent.

Other than LDA, also NMF is a suitable algorithm for this task, since it pro-
vides both reasonable number of topics and predictions. These experiments show
how a simpler algorithms like NMF can provide good results in situation where the
data in input are not incumbent [68].

5.3.3 LSI
LSI is considered one of the first technique for topic modeling. As described in the
corresponding theoretical section of Chapter 4, its core operation is based on the
decomposition of the input analysis by mean of their singular values.

Among the possible drawbacks, it has been mentioned that the probabilistic
model of LSI is not able to match the observed data. This behaviour is confirmed
by my experiments, where it is directly visible from the output produced. For
this reason I decide to consider this model as a baseline and to keep it among my
proposals since it represents a first step in the field of topic modeling.

All the models have been trained by finetuning the number of topics with the
same ranges explained before in this chapter. The input parameters are also the
same since the implementation of other techniques, like explained in NMF, to
represent the dataset rather than Bag-of-Word did not lead to better results.

Spark

Results - Spark - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=16 0.7197±0.0460 1
Best Model Analysis 1 K=15 0.6996±0.0399 0
Best Model Analysis 2 K=15 0.6996±0.0399 0
Best Model Analysis 3 K=14 0.6756±0.0477 0

Table 5.13: LSI Results on ORIGIN+MESSAGE Spark dataset

Looking at the results we can see how in ORIGIN+MESSAGE the coherence is
in line with previous methods, however, the number of topic is too low. This is
reflected in predictions that are not acceptable for most of the cases.

83

Results

Figure 5.14: Predictions LSI on Spark - ORIGIN+MESSAGE

Results - Spark - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=15 0.6705±0.0477 241 0
Best Model Analysis 1 K=15 0.6705±0.0477 0
Best Model Analysis 2 K=15 0.6705±0.0477 0
Best Model Analysis 3 K=15 0.6705±0.0477 0

Table 5.14: LSI Results on SPLIT Spark dataset

For SPLIT the result is similar to ORIGIN+MESSAGE, with a comparable
coherence score and a low number of topic. In this case, the predictions seem to be
worse. In detail, we can see a clear example of the discussed problems in the 6TH
row. Indeed, it is associated to a cluster which is strictly related to the first two
rows. It shows how, even if the model is able to create meaningful clusters, it is

84

Results

Figure 5.15: Predictions LSI on Spark - SPLIT

not able to always do the proper associations. A peculiarity due to the low value
of K is the absence of similar topics, making unnecessary further analysis.

Results - Spark - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=15 0.5401±0.0629 0
Best Model Analysis 1 K=15 0.5401±0.0629 0
Best Model Analysis 2 K=15 0.5401±0.0629 0
Best Model Analysis 3 K=15 0.5401±0.0629 0

Table 5.15: LSI Results on MESSAGE Spark dataset

The results obtained on MESSAGE are the lowest seen so far. The coherence
suggests the need of further reasonings, however, by contrast, the predictions seem

85

Results

Figure 5.16: Predictions LSI on Spark - MESSAGE

to be a little more reasonable with respect to the previous two cases. Also in this
version the similarity analysis are not needed.

HDFS

The behaviour expressed with the HDFS datasets follows the same pattern seen
in Spark. In all cases the number of topics is too low with respect to a possible
human judgement. However, the predictions are more acceptable, thanks to the
higher amount of input data that helps the models to better perform.

The coherence score for the best model on ORIGIN+MESSAGE is obtained
with 22 topics. It causes the production of too generic topics, with the recurrent
issue related to the higher influence of the ORIGIN. The poorer quality of the
algorithm is reflected in the second row, where both LDA and NMF are able to
cluster that sentence properly. Due to the lower value of K, the number of similar
topics is small, letting the first and the second analysis to obtain the same score,

86

Results

Results - HDFS - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=22 0.7590±0.0412 3
Best Model Analysis 1 K=17 0.7143±0.0735 0
Best Model Analysis 2 K=17 0.7143±0.0735 0
Best Model Analysis 3 K=19 0.5433±0.0573 0

Table 5.16: LSI Results on ORIGIN+MESSAGE HDFS dataset

Figure 5.17: Predictions LSI on HDFS - ORIGIN+MESSAGE

while for the third one decreases drastically.

87

Results

Results - HDFS - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence model K=17 0.6934±0.0197 0
Best Model Analysis 1 K=17 0.6934±0.0197 0
Best Model Analysis 2 K=17 0.6934±0.0197 0
Best Model Analysis 3 K=17 0.6934±0.0197 0

Table 5.17: LSI Results on SPLIT HDFS dataset

Figure 5.18: Predictions LSI on HDFS - SPLIT

In SPLIT the situation related to the predictions improves. Indeed, in this case
the second row is correctly labeled, however, the lower cohesion of the words inside
the topics persists.

88

Results

Results - HDFS - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence model K=22 0.6365±0.0163 0
Best Model Analysis 1 K=22 0.6365±0.0163 0
Best Model Analysis 2 K=22 0.6365±0.0163 0
Best Model Analysis 3 K=22 0.6365±0.0163 0

Table 5.18: LSI Results on MESSAGE HDFS dataset

Figure 5.19: Predictions LSI on HDFS - MESSAGE

In the application on MESSAGE the quality, instead, drops drastically. Both
coherence and number of topics are low, causing poor topic clusters and, as
consequence, wrong labeling. As in SPLIT, this version do not provide similar
topics so the similarity analysis is not needed.

As explained in the beginning of this subsection, LSI is not able to provide good
topics, making it not usable for a real case scenario.

89

Results

In general, we have seen how classical algorithms are good in many common
cases, but they start to have some issues when the number of words are lower.
This behaviour is perfectly represented by the two dataset sources. Although both
provide datasets with few word for each line, the higher number of rows in HDFS
helps the algorithms to produces better models, connected to acceptable value of
K and predictions.

5.3.4 ProdLDA
ProdLDA is one of the first proposal to use Neural Network in Topic Modelling.
As described in Chapter 4, it tries to overcome some issues related to the classical
formulation of LDA, concerning the component collapsing and the Dirichlet prior
not being a location scale family. For my implementation, the core algorithm comes
from OCTIS and it has been fine-tuned in order to be adapted to my situation.
The model, as indicated by the authors, uses ADAM as optimizer, while the choice
for the activation functions has fallen on softplus. All the other parameters have
been fine-tuned to obtained the best model. In detail, the number of hidden
layers is chosen between 1 and 2, since higher values could have increase to much
the complexity. Following the advice inside the paper, since utilization of Batch
Normalization layers, the value for the momentum is chosen between [0.8, 0.9, 0.99],
where its recommended a value greater than 0.8. For the same reason, the learning
rate has been tested in the range [0.001, 0.005, 0.01, 0.05, 0.1, 0.5], considered the a
recommended range between 0.001 and 0.1. For what concerns the dropout, it has
been chosen between [0.1, 0.2, 0.3], while the number of neurons and the number
of epochs between 100 and 200. The last parameters is, as usual, the number of
topics, here implemented in the same range as for the other algorithms.

Regarding the results, as anticipated in the introduction of this section, they
describe the best combination that provides the highest coherence score and, at
the same time, with a level of similarity among clusters lower than 85%.

In the following tables the hyper-parameters are represented as: the number
of topics K, the number of layer η, the number of neurons γ, the dropout π, the
number of epoch ρ, the momentum ω and the learning rate ν.

Spark

Beginning on Spark, on ORIGIN+MESSAGE the coherence score is higher respect
to LDA. This is reflected also in the predictions, which are good but, in some cases,
they are not correct or partially correct. Indeed, in some situations the label is
assigned considering only the ORIGIN part, in other cases, instead, the sentence is
assigned to a cluster which clearly represent a mixture of themes, making it not
acceptable.

90

Results

Results - Spark - All Versions
Dataset Hyperparameters Coherence
O+M K=17,η = 1, γ = 100, π = 0.2, ρ = 100, ω = 0.9, ν = 0.1 0.7131±0.0194

S K=33,η = 2, γ = 100, π = 0.1, ρ = 100, ω = 0.9, ν = 0.001 0.7391±0.0215
M K=23,η = 2, γ = 200, π = 0.3, ρ = 100, ω = 0.9, ν = 0.001 0.7485±0.0261

Table 5.19: ProdLDA Results on all Spark datasets

Figure 5.20: Predictions ProdLDA on Spark - SPLIT

On the other two cases the situation is different, even if the metric scores are
higher than in LDA, the consideration is flipped by looking at the predictions. It is
clear that the aim of ProdLDA is achievable for common implementation, however,
in situation with few data, it still has some troubles about finding good clusters
and correctly assigning the labels. In SPLIT, this reasoning is depicted in the first
four rows. The first two are wrongly assigned, while, from the following two, we can

91

Results

see that the topic cluster would have been more reasonable for the first two cases.
This poor generalization is perfectly represented also in the MESSAGE version.
Moreover, this condition is underlined by the coherence scores on the top 10 and 15
words. In both two cases they are lower with respect to the on 20 words, meaning
that, in general, the topic clusters are a mixture that fits well all sentences, but
no-one is perfectly suitable.

HDFS

Results - HDFS - All Versions
Dataset Hyperparameters Coherence
O+M K=39,η = 1, γ = 100, π = 0.2, ρ = 100, ω = 0.9, ν = 0.005 0.7329±0.0321

S K=23,η = 2, γ = 200, π = 0.2, ρ = 100, ω = 0.8, ν = 0.005 0.7251±0.0087
M K=23,η = 2, γ = 100, π = 0.1, ρ = 100, ω = 0.9, ν = 0.01 0.7256±0.0164

Table 5.20: ProdLDA Results on ORIGIN+MESSAGE HDFS dataset

Figure 5.21: Predictions ProdLDA on HDFS - ORIGIN+MESSAGE

92

Results

The quality in HDFS, instead, is comparable between LDA and ProdLDA,
both in terms of scores and predictions. The main difference with respect to the
implementation with Spark is the better clusters made in SPLIT and MESSAGE
datasets. Due to the higher quantity of data the coherences with respect to the
different top words follow the correct growing trend. However, by looking at the
number of topics found, the conclusion is that some drawbacks linked to this
proposal still exist. Indeed, as LDA, it finds the best model with a small value of
K, in conflict with the human judgement. This affects the predictions, since many
sentences are not correctly labeled because the model was not able to find all the
necessary topic clusters.

5.3.5 BERTopic
In Chapter 4 BERTopic is proposed as an evolution of Top2Vec. Indeed, rather
that relying on a Doc2Vec model to transform words, it uses BERT to embed
sentences into a numerical representation. This approach is more practical than
the one proposed in Top2Vec. Indeed, the training of a complete and meaningful
Doc2Vec model is an expensive process, requiring time, computational power and
huge quantity of data. Regarding this last one, the situation in my project makes
its implementation unfeasible, as observed in different trials. For this reason the
focus is placed exclusively on BERTopic. The core of the BERTopic algorithm is
made by 3 steps. In the first one the pre-trained model to embed the sentences is
chosen, in my case the best performing is all-MiniLM-L6-v2.
As second step, the dimensionality reduction is applied on the features obtained.
UMAP is a powerful tool but it requires many parameters to be tuned properly.
For this project both the number of neighbors and the number of components have
been fine-tuned. The first one controls how UMAP balances local versus global
structure in the data. It is done by constraining the size of the local neighborhood
UMAP will look when attempting to lean the manifold structure of the data. In this
way UMAP concentrates on very local structure. The second one, instead, is used
to determine the dimensionality of the reduced space where data are embedded.
Other parameters have been used with fixed values. The metric distance used is
the cosine, while the minimum distance, which allows how tightly UMAP can pack
points together, is equal to 0. For my cases, the number of neighbors is used a range
from 5 to 20, avoiding large value since otherwise too many data are taken into
account. Regarding the number of components, instead, I choose among 5, 10 and
15, since with higher dimensions the computation cost starts to be too expensive
Once data are reduced, HDBSCAN is applied on them. It is implemented using
the euclidean distance and with a fixed value for the minimum cluster size equal
to 2. About this last one, some considerations are necessary. Due to the nature
of HDBSCAN, cluster with unitary size are not allowed. This is a huge problem

93

Results

for my situation, since many line logs have to be taken independently. With the
classical implementation, many of these logs are labelled as outliers, making the
whole algorithm not suitable. To overcome this issues I propose two solutions
regarding the logs considered as outliers. In the first solution I take each outlier as
a cluster with unitary size, in this way those elements are kept rather than being
discarded. However, with this solutions, it may happens, when the model makes
an error, to consider independent clusters when an existing topic suitable for those
logs exists. Directly from this consideration, I present the second solution. For
those logs considered as outliers, before assigning a new label, I check if a match
exists with the topics found. This control is done by looking at the similarity, by
using the same approach already proposed in other algorithms. With this solution
I am able to cluster even better those logs, furtherly improving coherence score
with respect to the initial one. The proposed pictures regarding the predictions are
obtained with the second solution proposed.

Figure 5.22: Example of sentences assigned to existing topics, rather than creating
new ones.

Spark

In table 5.21 we can appreciate the big improvements in the results compared to
the algorithms seen so far. On ORIGIN+MESSAGE BERTopic finds 19 topics
as starting point, however, by applying the first proposed solution, I obtain a
coherence of 0.89 with 29 topics, a good value for Spark. With the second solution
the coherence score decreases, but this is expected since I force the model to chose
a similar existing topic rather than creating a new one with a perfect match, as
shown in Figure 5.22.

94

Results

Results - Spark - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=19, NC=10, NN=15 0.8437±0.0258 /
Best Model w Outliers K=29, NC=10, NN=15 0.8903±0.0176 1

Best Model w Similarity K=28, NC=10, NN=15 0.8876±0.0113 0

Table 5.21: BERTopic Results on ORIGIN+MESSAGE Spark dataset

Figure 5.23: Predictions BERTopic on Spark - ORIGIN+MESSAGE

At the end the best model achieves a similarity of 0.8876 with 28 topics and the
high quality is reflected in the predictions. Indeed in these samples, all of them

95

Results

have an acceptable quality, with topics linked to similar logs. All the input data are
associated to meaningful topics, where the only issues are related to topic clusters
that cover more than one possible theme. This is depicted in the last two row
of Figure 5.23, where we can see how the topic is firstly made by common words
belonging to the ORIGIN parts, secondly made by all the words related to the
messages of different logs.

Figure 5.24: Predictions BERTopic on Spark - SPLIT

In SPLIT the behaviour is close to the one explained in ORIGIN+MESSAGE.
In the proposed solutions, the final model, after aggregating outliers with existing
clusters, provides a score similar to ORIGIN+MESSAGE. Regarding the predictions,
the rebalancing of the ORIGIN does not provide any improvements for the last
two rows, so the model is in line to the good model in ORIGIN+MESSAGE

96

Results

Results - Spark - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=18, NC=10, NN=15 0.8327±0.0062 /
Best Model w Outliers K=30, NC=10, NN=15 0.8893±0.0217 3

Best Model w Similarity K=28, NC=10, NN=15 0.8849±0.0301 0

Table 5.22: BERTopic Results on SPLIT Spark dataset

Results - Spark - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=31, NC=10, NN=15 0.9618±0.0226 /
Best Model w Outliers K=41, NC=10, NN=15 0.9670±0.0189 3

Best Model w Similarity K=38, NC=10, NN=15 0.9660±0.0213 0

Table 5.23: BERTopic Results on MESSAGE Spark dataset

The almost optimal situation is presented also in the MESSAGE dataset, with
a really high coherence, linked to a final number of topic equal to 38. About
this high value of coherence is needed a note; in many cases an high CV score
indicates a perfect match, i.e that the topic model has created a cluster for each
input sentence. This usually should be avoided, however, some considerations are
needed depending on the situation. Indeed, only with a human check the real
quality of the associations done can be inferred. For example, in the context of
different messages, an high score is a sign that the models has been able to find
many appropriate clusters, rather that making poor generalizations. In terms of
coherence score, this is represented by the fact that the bi-grams and tri-grams are
usually linked to one or few sentences, so if they are matched between clusters and
sentences, the final score increases. The clusters made by this model have an high
quality and in many cases they are able to generalize similar topics. However this i
not always the case, as shown in the 4TH and 5TH rows. The models have made
two different topics for two almost identical logs.
On this behaviour some reasonings are needed. Indeed, this higher level of discrim-
ination is object of interest in many cases where a topic model provides good value
of coherence. Several discussions are done in the research field, where many asserts
that is better to provide more generic topic, avoiding over-fitting. At the same
time it is important to take into account the final goal and what will be done on
the outputs produced. Depending on it, an higher level of precision can be useful,
taking always into account to avoid making perfect matches between topic and
sentences. For this project I decide to follow this last reasoning, since I want really

97

Results

Figure 5.25: Predictions BERTopic on Spark - MESSAGE

precise topics when needed due to the future application in the anomaly detection
field.

HDFS

The results obtained in HDFS follows the same trend of Spark. BERTopic also in
this case is able to provide good models that creates clusters which cover almost
all logs properly.

On ORIGIN+MESSAGE, after applying the second solution, the final number
of topic is equal to 72, a good measure for HDSF. Also the topics have a better
quality and it is underlined by the high coherence score. This is translated into

98

Results

Results - HDFS - ORIGIN+MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=48, NC=10, NN=9 0.8414±0.0142 /
Best Model w Outliers K=77, NC=10, NN=9 0.8904±0.0257 5

Best Model w Similarity K=72, NC=10, NN=9 0.8856±0.0098 0

Table 5.24: BERTopic Results on ORIGIN+MESSAGE HDFS dataset

Figure 5.26: Predictions BERTopic on HDFS - ORIGIN+MESSAGE

predictions that are excellent for many situation, even the hardest ones. However,
this is not always the case, like depicted in the last two rows of Figure 5.26. Indeed
the first one of the two is correctly associated, while the second one is associated

99

Results

to the same topic mainly for the common origin, making it not acceptable.

Results - HDFS - SPLIT
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=50, NC=10, NN=14 0.8152±0.0196 /
Best Model w Outliers K=78, NC=10, NN=14 0.8769±0.0284 5

Best Model w Similarity K=73, NC=10, NN=14 0.8649±0.0201 0

Table 5.25: BERTopic Results on SPLIT HDFS dataset

Figure 5.27: Predictions BERTopic on HDFS - SPLIT

100

Results

In this situation, instead, the modifications done on SPLIT provide better results
for what concern the predictions. Indeed, although the coherence is lower with
respect to the one of ORIGIN+MESSAGE, the lower impact of the ORIGIN part
in this case helps for the last two rows, here associated to topics which represent
properly both themes.

Results - HDFS - MESSAGE
Result Type Hyperparameters Coherence To drop

Best Coherence Model K=44, NC=10, NN=9 0.8153±0.0121 /
Best Model w Outliers K=69, NC=10, NN=9 0.8669±0.0087 5

Best Model w Similarity K=64, NC=10, NN=9 0.8601±0.0129 0

Table 5.26: BERTopic Results on MESSAGE HDFS dataset

Figure 5.28: Predictions BERTopic on HDFS - MESSAGE

101

Results

Regarding MESSAGE version, instead the drawbacks are the same expressed in
ORIGIN+MESSAGE. Both score and value of K are good, but on the third and
fourth rows we can see how the models still generalize some cases.

Overall, the application of BERTopic in situations represented in project is not
straightforward. The solution proposed by me help to overcome a big problem
related to HDBSCAN, making BERTopic eligible for real case utilization.

5.3.6 GEAC
My custom model has been developed in three principal parts. The first one
concerns the transformation of textual data into numerical vectors. This operation
is done by the concatenation of three optional components. The first one are the
output probabilities coming from NMF or LDA. Differently from what implemented
in their section, they are not trained exploiting all the possible variable, since
otherwise the training phase would have been incumbent. At the same time, I decide
to not use the best parameters found since my goal is to obtain a fast model from
scratch, which is able to generalize the output. The second and third components
regard the extraction of useful information by means of Word Embedding. The
chosen algorithms are the ones already presented, BERT, where the pre-trained
model with the best performance is all-mpnet-base-v2, and Word2Vec, extended
from the Google pre-trained model. The goal is to combine these three components
in order to improve each of them.
Once data are vectorized, the final dimensionality is in the order of thousands. To
avoid possible issues related to the curse of dimensionality, I use an AutoEncoder
for this second part. It is trained on 0-1 scaled data with a number of epochs equal
to 100, by means of the ADAM optimizer and the binary cross-entropy loss. The
architecture is composed by the stack of the encoder and of the decoder, where the
latent dimension is being searched in the range [32, 64, 96, 128].
In the last part the clustering algorithm is implemented. After standardizing the
data, an algorithm between K-Means and K-Medoids is chosen. About the first,
the model is taken from scikit-learn [61] and it is initialized with k-means++,
the second one, implemented from [62]scikit-learn-extra, uses the k-medoids++
initialization combined with the pam method, to obtain more accurate predictions.

Spark

On table 5.27 the results coming from different combinations are represented. The
workflow is simple: I start with the simpler model of Words Embedding, then,

102

Results

for each of them, I do different combinations with both other Words Embedding
models and Classical algorithms. The coherence values are in general higher than
BERTopic and, as consequence, the best seen so far. In detail, the best model
on ORIGIN+MESSAGE has 33 topics, in line with my expectations, and it is
made with BERT, LDA and Word2Vec. It is obtained with K-Medoids, while a
dimensionality of 64 is chosen for the AutoEncoder.
A particularity can be noticed on K-Medoids results. Indeed, the application of
LDA, rather than NMF, produces higher scores, showing the different contribution
provided. The high quality is depicted in the predictions: improvements are
consistent, however, minor issues could still happen. Some clusters skewed towards
the origin, indeed, the drawback is the higher relevance on the words coming from
the origin than a bad quality of topics, since the relevant words are always found.

Figure 5.29: Predictions GEAC on Spark - ORIGIN+MESSAGE

103

Results

Results - Spark - ORIGIN+MESSAGE
Model Cluster K AE dim Coherence

BERT+LDA+W2V K-Means 31 96 0.9359±0.0153
BERT+NMF+W2V K-Means 32 64 0.9263±0.0205

BERT+W2V K-Means 29 128 0.9328±0.0238
BERT+LDA K-Means 31 64 0.9342±0.0174
W2V+LDA K-Means 30 128 0.9149±0.0169

BERT+NMF K-Means 28 96 0.9116±0.0302
W2V+NMF K-Means 29 64 0.9091±0.0271

BERT K-Means 30 96 0.9228±0.0214
W2V K-Means 29 96 0.9218±0.0092

BERT+LDA+W2V K-Medoids 33 64 0.9554±0.0149
BERT+NMF+W2V K-Medoids 28 64 0.9092±0.0317

BERT+W2V K-Medoids 31 128 0.9461±0.0301
BERT+LDA K-Medoids 31 64 0.9472±0.0154
W2V+LDA K-Medoids 23 128 0.8084±0.0221

BERT+NMF K-Medoids 25 64 0.8954±0.0294
W2V+NMF K-Medoids 24 32 0.8399±0.0266

BERT K-Medoids 28 64 0.9214±0.0301
W2V K-Medoids 28 96 0.9258±0.0144

Table 5.27: GEAC Results on ORIGIN+MESSAGE Spark dataset

On the SPLIT dataset the best result is comparable with ORIGIN+MESSAGE.
They both share the same value of K and K-Medoids built on BERT, NMF and
Word2Vec combination of elements, while the dimension for the AutoEncoder is
fixed to 128. Nevertheless, the coherence score is lower than before, but it does not
have repercussions on the predictions: the model seems to provide more meaningful
topics. Regarding this difference in values, my consideration is that for very high
scores, the predictions are in general very good and they are different only for few
details. In this context, the data processing makes the difference. Indeed, the less
weight, given to the origin, in this case can overcome the problems highlighted in
the previous analysis.

104

Results

Results - Spark - SPLIT
Model Cluster K AE dim Coherence

BERT+LDA+W2V K-Means 33 128 0.9224±0.0136
BERT+NMF+W2V K-Means 32 128 0.9239±0.0210

BERT+W2V K-Means 33 64 0.9101±0.0197
BERT+LDA K-Means 29 96 0.9172±0.0154
W2V+LDA K-Means 28 96 0.8067±0.0299

BERT+NMF K-Means 32 32 0.9167±0.0291
W2V+NMF K-Means 32 128 0.9187±0.0183

BERT K-Means 33 32 0.9173±0.0174
W2V K-Means 31 128 0.9094±0.0166

BERT+LDA+W2V K-Medoids 33 96 0.9219±0.0195
BERT+NMF+W2V K-Medoids 32 128 0.9242±0.0134

BERT+W2V K-Medoids 30 128 0.8948±0.0092
BERT+LDA K-Medoids 28 68 0.9016±0.0162
W2V+LDA K-Medoids 28 128 0.8380±0.0312

BERT+NMF K-Medoids 32 128 0.9123±0.0244
W2V+NMF K-Medoids 32 96 0.9166±0.0213

BERT K-Medoids 32 128 0.9123±0.0199
W2V K-Medoids 32 128 0.9150±0.0204

Table 5.28: GEAC Results on SPLIT Spark dataset

105

Results

Figure 5.30: Predictions GEAC on Spark - SPLIT

For what concerns the MESSAGE dataset, the best solution is obtained with
39 topics, K-Medoids and 96 dimensions for the AutoEncoder. As in the previous
analysis, this time the best model is still made by BERT, Word2Vec and NMF. The
predictions are good, but in some cases the model seems that it makes distinctions
with a too fine granularity, resulting in distinct topics when it could be only one.

106

Results

Results - Spark - MESSAGE
Model Cluster K AE dim Coherence

BERT+LDA+W2V K-Means 37 32 0.9564±0.0114
BERT+NMF+W2V K-Means 39 64 0.9665±0.0165

BERT+W2V K-Means 39 64 0.9552±0.0165
BERT+LDA K-Means 38 64 0.9489±0.0203
W2V+LDA K-Means 37 32 0.9214±0.0109

BERT+NMF K-Means 40 64 0.9605±0.0116
W2V+NMF K-Means 40 64 0.9478±0.0226

BERT K-Means 39 128 0.9552±0.0286
W2V K-Means 37 96 0.9589±0.0341

BERT+LDA+W2V K-Medoids 38 96 0.9631±0.0110
BERT+NMF+W2V K-Medoids 39 96 0.9715±0.0118

BERT+W2V K-Medoids 38 128 0.9529±0.0273
BERT+LDA K-Medoids 38 32 0.9598±0.0088
W2V+LDA K-Medoids 37 128 0.9187±0.0158

BERT+NMF K-Medoids 37 128 0.9600±0.0317
W2V+NMF K-Medoids 37 64 0.9460±0.0302

BERT K-Medoids 37 128 0.9516±0.0192
W2V K-Medoids 37 64 0.9446±0.0185

Table 5.29: GEAC Results on MESSAGE Spark dataset

107

Results

Figure 5.31: Predictions GEAC on Spark - MESSAGE

The conclusion on Spark is that the K-Medoids clustering algorithm seems to
provide better results, helping to overcome the low dimensionality of the input
data.

108

Results

HDFS

The versions obtained on HDFS dataset re-affirm the goodness of the algorithm,
already observed in Spark. The coherence values are in general better than those
obtained with BERTopic and this is represented in the predictions. In fact, they are
in general comparable or better, resulting as the best among the models analyzed
in this thesis.

On ORIGIN+MESSAGE the best model is obtained with 75 topics on the
combination made by BERT, NMF and Word2Vec, based on K-Means clustering.
The predictions are comparable to the ones obtained on BERTopic. On the 4TH
and 5TH rows GEAC assigns the logs to the same cluster, making this decision
acceptable. Indeed, differently from BERTopic, this time the topic cluster is more
coherent, with words coming from both sentences, and inside the same cluster the
secondo to last log, since the theme is shared. On the last log of the table, the
performance is better, with a topic more aligned with the theme expressed in the
raw sentence, although it could have been included in the same cluster of the 5TH
due to the common words.

Results - HDFS - ORIGIN+MESSAGE
Model Cluster K AE dim Coherence

BERT+LDA+W2V KMeans 73 64 0.9457±0.0184
BERT+NMF+W2V KMeans 75 96 0.9509±0.0080

BERT+W2V KMeans 71 64 0.9353±0.0313
BERT+LDA KMeans 73 64 0.9478±0.0099
W2V+LDA KMeans 65 128 0.8803±0.0174

BERT+NMF KMeans 75 128 0.9427±0.0082
W2V+NMF KMeans 67 32 0.9072±0.0310

BERT KMeans 70 64 0.9259±0.0196
W2V KMeans 73 96 0.9355±0.0269

BERT+LDA+W2V KMedoids 77 96 0.9468±0.0264
BERT+NMF+W2V KMedoids 72 96 0.9311±0.0149

BERT+W2V KMedoids 71 128 0.9368±0.0119
BERT+LDA KMedoids 76 96 0.9361±0.0232
W2V+LDA KMedoids 72 64 0.9389±0.0080

BERT+NMF KMedoids 72 64 0.9311±0.0219
W2V+NMF KMedoids 74 64 0.9348±0.0268

BERT KMedoids 63 32 0.7923±0.0234
W2V KMedoids 70 128 0.9379±0.0286

Table 5.30: GEAC Results on ORIGIN+MESSAGE HDFS dataset

109

Results

Figure 5.32: Predictions GEAC on HDFS - ORIGIN+MESSAGE

Regarding SPLIT, the chosen model is composed as in the previous case by
BERT, NMF and Word2Vec and it is made by 79 topics and it is built with
an AutoEncoder with 128 dimension and K-Means clustering. On K-means, a
peculiarity can be observed in the combinations of W2V with classical models. In
fact, in both cases the performance is lower than with W2V alone but, with the
introduction of BERT, the values increase again. The results provided by K-Medoids
are, instead, all very similar between them, the only difference is represented by
BERT with a lower value, associated with a consequent lower number of topics. As
far as predictions are concerned, in general the performance are good, with specific
and correctly assigned topics, even similar thoughts to ORIGIN+MESSAGE could
be done.

110

Results

Results - HDFS - SPLIT
Model Cluster K AE dim Coherence

BERT+LDA+W2V KMeans 78 128 0.9155±0.0216
BERT+NMF+W2V KMeans 79 128 0.9410±0.0184

BERT+W2V KMeans 75 64 0.9276±0.0306
BERT+LDA KMeans 73 128 0.8929±0.0296
W2V+LDA KMeans 60 64 0.8638±0.0210

BERT+NMF KMeans 62 64 0.8762±0.0253
W2V+NMF KMeans 68 96 0.9019±0.0251

BERT KMeans 72 128 0.9115±0.0207
W2V KMeans 67 64 0.9087±0.0187

BERT+LDA+W2V KMedoids 78 128 0.9304±0.0172
BERT+NMF+W2V KMedoids 75 128 0.9292±0.0202

BERT+W2V KMedoids 75 64 0.9288±0.0293
BERT+LDA KMedoids 73 32 0.9143±0.0269
W2V+LDA KMedoids 73 64 0.9173±0.0338

BERT+NMF KMedoids 73 32 0.9059±0.0302
W2V+NMF KMedoids 74 64 0.9089±0.0160

BERT KMedoids 75 96 0.9133±0.0201
W2V KMedoids 70 96 0.9172±0.0341

Table 5.31: GEAC Results on SPLIT HDFS dataset

111

Results

Figure 5.33: Predictions GEAC on HDFS - SPLIT

In last table 5.32 the results are still obtained with the same combination of
the two cases above, but this time with 80 different topics. Some trends can be
observed in this case. On K-Means, the best models are skewed towards NMF,
indeed, on LDA the performance are overall worse. On K-Medoids the results are
similar but with better performance on the models based on LDA and, in general,
the addition of other techniques to BERT/Word2Vec increases always the score.
Regarding the predictions, the associations are good, with clusters able to group
together logs that are really similar.

112

Results

Results - HDFS - MESSAGE
Model Cluster K AE dim Coherence

BERT+LDA+W2V KMeans 77 64 0.9176±0.0160
BERT+NMF+W2V KMeans 80 64 0.9581±0.0136

BERT+W2V KMeans 75 128 0.9336±0.0282
BERT+LDA KMeans 73 128 0.9121±0.0259
W2V+LDA KMeans 70 96 0.8301±0.0186

BERT+NMF KMeans 75 128 0.9355±0.0258
W2V+NMF KMeans 70 128 0.9161±0.0259

BERT KMeans 78 128 0.9321±0.0201
W2V KMeans 81 64 0.9569±0.0126

BERT+LDA+W2V KMedoids 77 96 0.9288±0.0212
BERT+NMF+W2V KMedoids 82 96 0.9528±0.0212

BERT+W2V KMedoids 81 32 0.9439±0.0290
BERT+LDA KMedoids 77 128 0.9218±0.0172
W2V+LDA KMedoids 69 128 0.8703±0.0311

BERT+NMF KMedoids 77 64 0.9428±0.0308
W2V+NMF KMedoids 78 64 0.9427±0.0223

BERT KMedoids 75 32 0.9085±0.0270
W2V KMedoids 75 96 0.9189±0.0113

Table 5.32: GEAC Results on MESSAGE HDFS dataset

113

Results

Figure 5.34: Predictions GEAC on HDFS - MESSAGE

Overall, on HDFS the best models are obtained all with the same combination
and with K-Means. By comparing with Spark, K-Means seems to perform better
or similar to K-Medoids in situations where the datasets is quite big. Conversely,
K-Medoids seems to produce better topics on small datasets, due to the better
exploration of the space with the cosine similarity.

The final conclusion on this custom model is that in all cases, for both Spark
and HDFS, the best results are obtained with the combination of the 3 elements,
BERT, Word2Vec and a classical algorithm. The other results do not follow a
precise trend, since, in many cases, a combination with less elements provides
better results than more complex ones. Finally, the scores are all improved with
respect to all the other models, making this proposal as the best suited for this
case study.

114

Chapter 6

Conclusion

This thesis represents a first step to tackle the complex tasks of Topic Modeling
and data processing. The nature of the data makes the analysis challenging. It is
important to understand how to manage an uncommon textual structure as log
and how to implement topic models in uncomfortable context, where there are few
words and sentences.

The proposed data processing framework is able to clean logs with a satisfying
level. Indeed, extracting useful words from those data requires many efforts to
understand which elements have to be considered as noise and which are instead
the crucial parts to figure out the theme expressed in that log.

Then, the deep analysis on the different algorithms depicts how, over the
year, there have been several improvements in this field. The performance are
quite acceptable in classical proposals, even if their drawbacks make them not
recommended for a real case scenario. Instead, the newer options available in the
latest years highlight the possibility to use Topic Modeling in situation unfeasible
before. The study on the different versions of the datasets underlines this aspect.
Indeed, the MESSAGE ones are really hard to process correctly and we have seen
how with BERTopic and GEAC are possible to manage.

About these last two models, the considerations on BERTopic extend its usage
in situations where the input data are too low and all must be kept. Rather
than discarding such an interesting model due to its formulation, I can use its
shortcomings as an advantage with similarity analysis to produce really good level
of quality for predictions. Instead, my custom model GEAC, coming directly from
the other models techniques, shows how the combination of classical and modern
approaches can provide high results, whit additional support for this task.

Nevertheless, today many issues are still present in Topic Modeling. In this
context, the analysis of the topics depending on the similarity score represents
an important consideration: it helps to focus on the real meaningful models only.
Overall, the analysis about similarity is incredibly useful in all the models. It makes

115

Conclusion

easy the choice of the best model, avoiding situations that could compromise the
future step of anomaly detection and letting the comprehension of the outputs
more feasible.

6.1 Future Implementations
Although the analysis and the study have achieved top-level results, many improve-
ments are still possible.

About the Data processing phase, today other solutions exist to manage the
steps implemented in better ways. As discussed in Chapter 3, in this project it
is essential to use algorithms human readable, due to the novelty of data used.
However, techniques based on neural networks can be useful and provide additional
help for the steps of POS tagging and Lemmization, making them less dependant
on the supervisor.

For topic models, the focus has been placed on Neural networks, in particular
on AutoEncoders and their variations. In the latest years, however, the research
begins to propose other networks like GAN, as shown in the detailed analysis in
[69]. This network can be helpful for many other situations of Topic Modeling, also
outside the context of log analysis.

Regarding the score used, the CV coherence is suitable for this task but, from
the experience acquired, it seems clear the need of improvements. Indeed, the
perfect matching or the presence of mixtures of words make this metric not reliable
at a first glance. For this reason, different studies and proposals are possible to
achieve better results, when those situations occur.

116

Bibliography

[1] SumoLogic. Log Analysis. url: https://www.sumologic.com/glossary/
log-analysis/ (cit. on p. 4).

[2] Wikipedia. Natural language processing. url: https://en.wikipedia.org/
wiki/Natural_language_processing (cit. on p. 4).

[3] Wikipedia. Topic model. url: https://en.wikipedia.org/wiki/Topic_
model (cit. on p. 6).

[4] Shilin He, Jieming Zhu, Pinjia He, and Michael R. Lyu. «Loghub: A Large
Collection of System Log Datasets towards Automated Log Analytics». In:
CoRR abs/2008.06448 (2020). arXiv: 2008.06448. url: https://arxiv.
org/abs/2008.06448 (cit. on p. 6).

[5] K. Shvachko, Hairong Kuang, S. Radia, and R. Chansler. «The Hadoop
Distributed File System». In: Mass Storage Systems and Technologies (MSST),
2010 IEEE 26th Symposium on. May 2010, pp. 1–10. doi: 10.1109/MSST.
2010.5496972. url: http://ieeexplore.ieee.org/xpl/articleDetails.
jsp?tp=&arnumber=5496972&contentType=Conference+Publications&
queryText%3Dthe+hadoop+distributed+file+system (cit. on p. 7).

[6] Matei Zaharia et al. «Apache Spark: A Unified Engine for Big Data Process-
ing». In: Commun. ACM 59.11 (Oct. 2016), pp. 56–65. issn: 0001-0782. doi:
10.1145/2934664. url: https://doi.org/10.1145/2934664 (cit. on p. 7).

[7] Wikipedia. Apache Spark. url: https://en.wikipedia.org/wiki/Apache_
Spark (cit. on p. 7).

[8] Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. «Deeplog: Anomaly
detection and diagnosis from system logs through deep learning». In: Proceed-
ings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2017, pp. 1285–1298 (cit. on p. 10).

117

https://www.sumologic.com/glossary/log-analysis/
https://www.sumologic.com/glossary/log-analysis/
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Topic_model
https://en.wikipedia.org/wiki/Topic_model
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448
https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5496972&contentType=Conference+Publications&queryText%3Dthe+hadoop+distributed+file+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5496972&contentType=Conference+Publications&queryText%3Dthe+hadoop+distributed+file+system
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5496972&contentType=Conference+Publications&queryText%3Dthe+hadoop+distributed+file+system
https://doi.org/10.1145/2934664
https://doi.org/10.1145/2934664
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Apache_Spark

BIBLIOGRAPHY

[9] Weibin Meng et al. «LogAnomaly: Unsupervised Detection of Sequential and
Quantitative Anomalies in Unstructured Logs». In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence, IJCAI-19.
International Joint Conferences on Artificial Intelligence Organization, July
2019, pp. 4739–4745. doi: 10.24963/ijcai.2019/658. url: https://doi.
org/10.24963/ijcai.2019/658 (cit. on p. 10).

[10] Towards Data Science. NLP: Building Text Cleanup and PreProcessing Pipeline.
url: https://towardsdatascience.com/nlp-building-text-cleanup-
and-preprocessing-pipeline-eba4095245a0 (cit. on p. 16).

[11] P.V. Kooten. Contractions. 2017. url: https://github.com/kootenpv/
contractions (cit. on p. 16).

[12] Neptune.AI. Tokenization in NLP. url: https://neptune.ai/blog/token
ization-in-nlp (cit. on p. 17).

[13] Edward Loper and Steven Bird. «NLTK: The Natural Language Toolkit».
In: CoRR cs.CL/0205028 (2002). url: http://dblp.uni-trier.de/db/
journals/corr/corr0205.html#cs-CL-0205028 (cit. on pp. 17, 20).

[14] Towards Data Science. Part Of Speech Tagging for Beginners. url: https:
//towardsdatascience.com/part-of-speech-tagging-for-beginners-
3a0754b2ebba (cit. on p. 17).

[15] DataCamp. Stemming and Lemmatization. url: https://www.datacamp.
com/community/tutorials/stemming- lemmatization- python (cit. on
p. 19).

[16] Medium. NLP- Text Preprocessing Techniques. url: https://medium.com/
swlh/nlp-text-preprocessing-techniques-ea34d3f84de4 (cit. on p. 20).

[17] Christiane Fellbaum, ed. WordNet: An Electronic Lexical Database. Language,
Speech, and Communication. Cambridge, MA: MIT Press, 1998. isbn: 978-0-
262-06197-1 (cit. on pp. 20, 21).

[18] Antoine Blanchard. «Understanding and customizing stopword lists for en-
hanced patent mapping». In: World Patent Information 29.4 (Dec. 2007),
p. 308. doi: 10.1016/j.wpi.2007.02.002. url: https://hal.archives-
ouvertes.fr/hal-01247971 (cit. on p. 22).

[19] W. John Wilbur and Karl Sirotkin. «The automatic identification of stop
words». In: Journal of Information Science (1992), pp. 45–55 (cit. on p. 22).

[20] Serhad Sarica and Jianxi Luo. «Stopwords in Technical Language Processing».
In: CoRR abs/2006.02633 (2020). arXiv: 2006.02633. url: https://arxiv.
org/abs/2006.02633 (cit. on p. 22).

[21] Wikipedia. Latent Dirichlet Allocation. url: https://en.wikipedia.org/
wiki/Latent_Dirichlet_allocation (cit. on p. 28).

118

https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658
https://doi.org/10.24963/ijcai.2019/658
https://towardsdatascience.com/nlp-building-text-cleanup-and-preprocessing-pipeline-eba4095245a0
https://towardsdatascience.com/nlp-building-text-cleanup-and-preprocessing-pipeline-eba4095245a0
https://github.com/kootenpv/contractions
https://github.com/kootenpv/contractions
https://neptune.ai/blog/tokenization-in-nlp
https://neptune.ai/blog/tokenization-in-nlp
http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028
http://dblp.uni-trier.de/db/journals/corr/corr0205.html#cs-CL-0205028
https://towardsdatascience.com/part-of-speech-tagging-for-beginners-3a0754b2ebba
https://towardsdatascience.com/part-of-speech-tagging-for-beginners-3a0754b2ebba
https://towardsdatascience.com/part-of-speech-tagging-for-beginners-3a0754b2ebba
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://www.datacamp.com/community/tutorials/stemming-lemmatization-python
https://medium.com/swlh/nlp-text-preprocessing-techniques-ea34d3f84de4
https://medium.com/swlh/nlp-text-preprocessing-techniques-ea34d3f84de4
https://doi.org/10.1016/j.wpi.2007.02.002
https://hal.archives-ouvertes.fr/hal-01247971
https://hal.archives-ouvertes.fr/hal-01247971
https://arxiv.org/abs/2006.02633
https://arxiv.org/abs/2006.02633
https://arxiv.org/abs/2006.02633
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation
https://en.wikipedia.org/wiki/Latent_Dirichlet_allocation

BIBLIOGRAPHY

[22] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. «Latent Dirichlet
Allocation». In: J. Mach. Learn. Res. 3.null (Mar. 2003), pp. 993–1022. issn:
1532-4435 (cit. on pp. 28, 49).

[23] Wikipedia. Non-negative matrix factorization. url: https://en.wikipedia.
org/wiki/Non-negative_matrix_factorization (cit. on p. 31).

[24] Thomas Hofmann. «Probabilistic Latent Semantic Analysis». In: Proc. of
Uncertainty in Artificial Intelligence, UAI’99. Stockholm, 1999. url: http:
//citeseer.ist.psu.edu/hofmann99probabilistic.html (cit. on p. 32).

[25] Renbo Zhao and Vincent Y. F. Tan. «Online Nonnegative Matrix Factorization
With Outliers». In: IEEE Transactions on Signal Processing 65.3 (Feb. 2017),
pp. 555–570. issn: 1941-0476. doi: 10 . 1109 / tsp . 2016 . 2620967. url:
http://dx.doi.org/10.1109/TSP.2016.2620967 (cit. on p. 33).

[26] Julien Mairal. «Stochastic Majorization-Minimization Algorithms for Large-
Scale Optimization». In: Advances in Neural Information Processing Systems.
Ed. by C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger. Vol. 26. Curran Associates, Inc., 2013. url: https://proceedin
gs.neurips.cc/paper/2013/file/4da04049a062f5adfe81b67dd755cecc-
Paper.pdf (cit. on p. 33).

[27] Wikipedia. Latent Semantic Analysis. url: https://en.wikipedia.org/
wiki/Latent_semantic_analysis (cit. on p. 35).

[28] Wikipedia. Artificial Neural Network. url: https://en.wikipedia.org/
wiki/Artificial_neural_network (cit. on p. 39).

[29] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
internal representations by error propagation». In: 1986 (cit. on p. 40).

[30] Wikipedia. AutoEncoder. url: https://en.wikipedia.org/wiki/Autoenc
oder (cit. on p. 40).

[31] Diederik P. Kingma and Max Welling. «Auto-Encoding Variational Bayes».
In: 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. 2014.
arXiv: http://arxiv.org/abs/1312.6114v10 [stat.ML] (cit. on pp. 41,
50).

[32] Wikipedia. Variational AutoEncoder. url: https://en.wikipedia.org/
wiki/Variational_autoencoder (cit. on p. 41).

[33] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient Esti-
mation of Word Representations in Vector Space. 2013. arXiv: 1301.3781
[cs.CL]. url: https://code.google.com/archive/p/word2vec/ (cit. on
pp. 44, 64, 67).

119

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
https://en.wikipedia.org/wiki/Non-negative_matrix_factorization
http://citeseer.ist.psu.edu/hofmann99probabilistic.html
http://citeseer.ist.psu.edu/hofmann99probabilistic.html
https://doi.org/10.1109/tsp.2016.2620967
http://dx.doi.org/10.1109/TSP.2016.2620967
https://proceedings.neurips.cc/paper/2013/file/4da04049a062f5adfe81b67dd755cecc-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/4da04049a062f5adfe81b67dd755cecc-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/4da04049a062f5adfe81b67dd755cecc-Paper.pdf
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Autoencoder
https://en.wikipedia.org/wiki/Autoencoder
https://arxiv.org/abs/http://arxiv.org/abs/1312.6114v10
https://en.wikipedia.org/wiki/Variational_autoencoder
https://en.wikipedia.org/wiki/Variational_autoencoder
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781
https://code.google.com/archive/p/word2vec/

BIBLIOGRAPHY

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding».
In: CoRR abs/1810.04805 (2018). arXiv: 1810.04805. url: http://arxiv.
org/abs/1810.04805 (cit. on pp. 44, 45).

[35] Nils Reimers and Iryna Gurevych. «Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks». In: CoRR abs/1908.10084 (2019). arXiv:
1908.10084. url: http://arxiv.org/abs/1908.10084 (cit. on pp. 44, 48,
67).

[36] Wikipedia. Word2Vec. url: https://en.wikipedia.org/wiki/Word2vec
(cit. on p. 44).

[37] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. «Deep contextualized word
representations». In: CoRR abs/1802.05365 (2018). arXiv: 1802.05365. url:
http://arxiv.org/abs/1802.05365 (cit. on p. 44).

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. «Attention Is All
You Need». In: CoRR abs/1706.03762 (2017). arXiv: 1706 . 03762. url:
http://arxiv.org/abs/1706.03762 (cit. on p. 45).

[39] Peter Bloem. Transformers from scratch. url: http://peterbloem.nl/
blog/transformers (cit. on p. 45).

[40] Jay Alammar. The Illustrated Transformer. url: http://jalammar.github.
io/illustrated-transformer/ (cit. on p. 45).

[41] Akash Srivastava and Charles Sutton. «Autoencoding variational inference
for topic models». In: arXiv preprint arXiv:1703.01488 (2017) (cit. on p. 49).

[42] Diederik P. Kingma and Jimmy Ba. «Adam: A Method for Stochastic Opti-
mization». In: CoRR abs/1412.6980 (2015) (cit. on p. 51).

[43] Dimitar Angelov. «Top2Vec: Distributed Representations of Topics». In:
ArXiv abs/2008.09470 (2020) (cit. on p. 52).

[44] Quoc V. Le and Tomas Mikolov. «Distributed Representations of Sentences
and Documents». In: ArXiv abs/1405.4053 (2014) (cit. on p. 53).

[45] Ricardo J. G. B. Campello, Davoud Moulavi, and Joerg Sander. «Density-
Based Clustering Based on Hierarchical Density Estimates». In: Advances
in Knowledge Discovery and Data Mining. Ed. by Jian Pei, Vincent S.
Tseng, Longbing Cao, Hiroshi Motoda, and Guandong Xu. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 160–172. isbn: 978-3-642-37456-2 (cit.
on p. 54).

120

https://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://en.wikipedia.org/wiki/Word2vec
https://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://peterbloem.nl/blog/transformers
http://peterbloem.nl/blog/transformers
http://jalammar.github.io/illustrated-transformer/
http://jalammar.github.io/illustrated-transformer/

BIBLIOGRAPHY

[46] Leland McInnes and John Healy. «UMAP: Uniform Manifold Approximation
and Projection for Dimension Reduction». In: ArXiv abs/1802.03426 (2018)
(cit. on p. 54).

[47] Maarten Grootendorst. BERTopic: Leveraging BERT and c-TF-IDF to create
easily interpretable topics. Version v0.9.4. 2020. doi: 10.5281/zenodo.43817
85. url: https://doi.org/10.5281/zenodo.4381785 (cit. on pp. 57, 67).

[48] Radim Rehurek and Petr Sojka. «Gensim–python framework for vector space
modelling». In: NLP Centre, Faculty of Informatics, Masaryk University,
Brno, Czech Republic 3.2 (2011) (cit. on pp. 58, 66, 67).

[49] James MacQueen et al. «Some methods for classification and analysis of
multivariate observations». In: Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability. Vol. 1. 14. Oakland, CA, USA. 1967,
pp. 281–297 (cit. on p. 59).

[50] «Partitioning Around Medoids (Program PAM)». In: Finding Groups in Data.
John Wiley Sons, Ltd, 1990. Chap. 2, pp. 68–125. isbn: 9780470316801.
doi: https://doi.org/10.1002/9780470316801.ch2. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2. url:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.
ch2 (cit. on p. 59).

[51] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan Boyd-graber, and
David Blei. «Reading Tea Leaves: How Humans Interpret Topic Models».
In: Advances in Neural Information Processing Systems. Ed. by Y. Bengio,
D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta. Vol. 22. Curran
Associates, Inc., 2009. url: https://proceedings.neurips.cc/paper/200
9/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf (cit. on p. 61).

[52] David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. «Auto-
matic Evaluation of Topic Coherence». In: Human Language Technologies: The
2010 Annual Conference of the North American Chapter of the Association
for Computational Linguistics. HLT ’10. Los Angeles, California: Association
for Computational Linguistics, 2010, pp. 100–108. isbn: 1932432655 (cit. on
pp. 61, 62).

[53] Towards Data Science. Evaluate Topic Models. url: https://towardsdat
ascience.com/evaluate-topic-model-in-python-latent-dirichlet-
allocation-lda-7d57484bb5d0 (cit. on p. 61).

[54] Michael Röder, Andreas Both, and Alexander Hinneburg. «Exploring the
Space of Topic Coherence Measures». In: Proceedings of the Eighth ACM
International Conference on Web Search and Data Mining. WSDM ’15. Shang-
hai, China: Association for Computing Machinery, 2015, pp. 399–408. isbn:

121

https://doi.org/10.5281/zenodo.4381785
https://doi.org/10.5281/zenodo.4381785
https://doi.org/10.5281/zenodo.4381785
https://doi.org/https://doi.org/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470316801.ch2
https://proceedings.neurips.cc/paper/2009/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/f92586a25bb3145facd64ab20fd554ff-Paper.pdf
https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0
https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0
https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0

BIBLIOGRAPHY

9781450333177. doi: 10.1145/2684822.2685324. url: https://doi.org/
10.1145/2684822.2685324 (cit. on p. 62).

[55] Branden Fitelson. «A Probabilistic Theory of Coherence». In: Analysis 63.3
(2003), pp. 194–199. doi: 10.1111/1467-8284.00420 (cit. on p. 62).

[56] David Mimno, Hanna M. Wallach, Edmund Talley, Miriam Leenders, and
Andrew McCallum. «Optimizing Semantic Coherence in Topic Models». In:
Proceedings of the Conference on Empirical Methods in Natural Language
Processing. EMNLP ’11. Edinburgh, United Kingdom: Association for Com-
putational Linguistics, 2011, pp. 262–272. isbn: 9781937284114 (cit. on p. 62).

[57] Gerlof Bouma. «Normalized (pointwise) mutual information in collocation
extraction». In: 2009 (cit. on pp. 62, 63).

[58] Igor Douven and Wouter Meijs. «Measuring coherence». In: Synthese 156
(May 2007), pp. 405–425. doi: 10.1007/s11229-006-9131-z (cit. on p. 62).

[59] Silvia Terragni, Elisabetta Fersini, Bruno Giovanni Galuzzi, Pietro Tropeano,
and Antonio Candelieri. «OCTIS: Comparing and Optimizing Topic models
is Simple!» In: Proceedings of the 16th Conference of the European Chapter
of the Association for Computational Linguistics: System Demonstrations.
Online: Association for Computational Linguistics, Apr. 2021, pp. 263–270.
doi: 10.18653/v1/2021.eacl-demos.31. url: https://aclanthology.
org/2021.eacl-demos.31 (cit. on p. 67).

[60] Francois Chollet et al. Keras. 2015. url: https://github.com/fchollet/
keras (cit. on p. 67).

[61] Lars Buitinck et al. «API design for machine learning software: experiences
from the scikit-learn project». In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning. 2013, pp. 108–122 (cit. on pp. 67, 102).

[62] R. Yurchak. Scikit-Learn-Extra. https : / / github . com / scikit - learn -
contrib/scikit-learn-extra/. 2020 (cit. on pp. 67, 102).

[63] Politecnico di Torino. Smart Data PoliTO. https://smartdata.polito.it/
(cit. on p. 67).

[64] Ekaba Bisong. «Google Colaboratory». In: Building Machine Learning and
Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for
Beginners. Berkeley, CA: Apress, 2019, pp. 59–64. isbn: 978-1-4842-4470-8.
doi: 10.1007/978-1-4842-4470-8_7. url: https://doi.org/10.1007/
978-1-4842-4470-8_7 (cit. on p. 67).

[65] Google. Google Colaboratory. url: https://colab.research.google.com/
(cit. on p. 67).

122

https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1145/2684822.2685324
https://doi.org/10.1111/1467-8284.00420
https://doi.org/10.1007/s11229-006-9131-z
https://doi.org/10.18653/v1/2021.eacl-demos.31
https://aclanthology.org/2021.eacl-demos.31
https://aclanthology.org/2021.eacl-demos.31
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://github.com/scikit-learn-contrib/scikit-learn-extra/
https://github.com/scikit-learn-contrib/scikit-learn-extra/
https://smartdata.polito.it/
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://doi.org/10.1007/978-1-4842-4470-8_7
https://colab.research.google.com/

BIBLIOGRAPHY

[66] Liangjie Hong and Brian D. Davison. «Empirical Study of Topic Modeling in
Twitter». In: Proceedings of the First Workshop on Social Media Analytics.
SOMA ’10. Washington D.C., District of Columbia: Association for Computing
Machinery, 2010, pp. 80–88. isbn: 9781450302173. doi: 10.1145/1964858.
1964870. url: https://doi.org/10.1145/1964858.1964870 (cit. on p. 69).

[67] Rania Albalawi, Tet Hin Yeap, and Morad Benyoucef. «Using Topic Modeling
Methods for Short-Text Data: A Comparative Analysis». In: Frontiers in
Artificial Intelligence 3 (2020). issn: 2624-8212. doi: 10.3389/frai.2020.
00042. url: https://www.frontiersin.org/article/10.3389/frai.
2020.00042 (cit. on p. 69).

[68] Zhikui Chen, Shan Jin, Runze Liu, and Jianing Zhang. «A Deep Non-negative
Matrix Factorization Model for Big Data Representation Learning». In: Fron-
tiers in Neurorobotics 15 (2021). issn: 1662-5218. doi: 10.3389/fnbot.2021.
701194. url: https://www.frontiersin.org/article/10.3389/fnbot.
2021.701194 (cit. on p. 83).

[69] He Zhao, Dinh Phung, Viet Huynh, Yuan Jin, Lan Du, and Wray L. Bun-
tine. «Topic Modelling Meets Deep Neural Networks: A Survey». In: CoRR
abs/2103.00498 (2021). arXiv: 2103.00498. url: https://arxiv.org/abs/
2103.00498 (cit. on p. 116).

123

https://doi.org/10.1145/1964858.1964870
https://doi.org/10.1145/1964858.1964870
https://doi.org/10.1145/1964858.1964870
https://doi.org/10.3389/frai.2020.00042
https://doi.org/10.3389/frai.2020.00042
https://www.frontiersin.org/article/10.3389/frai.2020.00042
https://www.frontiersin.org/article/10.3389/frai.2020.00042
https://doi.org/10.3389/fnbot.2021.701194
https://doi.org/10.3389/fnbot.2021.701194
https://www.frontiersin.org/article/10.3389/fnbot.2021.701194
https://www.frontiersin.org/article/10.3389/fnbot.2021.701194
https://arxiv.org/abs/2103.00498
https://arxiv.org/abs/2103.00498
https://arxiv.org/abs/2103.00498

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Application Domain
	What are System Logs
	What is Log Analysis
	Natural Language Processing
	Statistical Methods
	Neural Networks

	What is Topic Modeling
	Dataset - LogHub

	Textual Data Analysis
	Data Cleaning
	Reformat Log Errors
	Remove Accented Characters
	Remove Special Characters and Patterns
	Camel Case Split
	Merge Improper words divisions
	Expand Contractions
	Tokenization
	StopWords Removal
	PoS Tagging
	Lemming
	Regex
	Plural to Singular

	Data Manipulation
	Feature Creation

	Topic Modeling
	Classic Approaches
	LDA
	NMF
	LSA

	Modern Approaches
	ProdLDA
	Top2Vec & BERTopic
	GEAC

	Results
	Coherence Score
	Topic Similarity
	Results
	LDA
	NMF
	LSI
	ProdLDA
	BERTopic
	GEAC

	Conclusion
	Future Implementations

	Bibliography

