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Abstract

Deep learning algorithms, specifically those related to computer vision such as object
detection, are increasingly used in various disciplines. However, these models have
a very high computational cost and execute them (in inference phase) on devices
with limited resources, in order to exploit them for real-time decision making, is a
growing challenge. The simplest approach to bring intelligence to the edge is to
use the device only for data acquisition and leave the computation to the cloud.
However this approach is limited for near-real time applications because of the high
latency of the network round-trip, and also can lead to problems of consumption and
environmental impact of datacenters. The goal is to analyze, apply and evaluate the
main optimization and compression techniques of object detection models (based
on convolutional neural networks) to make them suitable for deployment on an
embedded arm-based device. Specifically, two main techniques have been analyzed:
Quantization, which purpose is to improve performance in terms of inference speed
and reduce the model size, and Knowledge Distillation which aims to improve
performance in terms of accuracy of a small network supervised by a larger one.
Several experiments were carried out with different methods and combinations of
networks, some evaluated directly on the edge device. The results suggest that
with these techniques it is possible to optimize object detectors models, improving
the inference time, accuracy and reduce the model size.

iii



Sometimes it is the
people who no one

can imagine anything of,
who do the things that

no one can imagine.
Alan Turing
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Chapter 1

Introduction

Machine learning is a branch of artificial intelligence that includes several algorithms
and methodologies that aim to solve a problem through past experience (data)
without being manually programmed to solve that particular task. We could say
that a software can learn when its performance in solving a Task T improves with
experience E while it is measured with metric P [1].
Compared to a traditional algorithm approach we delegate to a software the
duty of find patterns and schemas from the data, this approach is convenient to
solve problems that are too complex to be modelled manually, e.g: classification,
regression, clustering on data but also object detection, autonomous driving, natural
language processing, pathfinding.
Deep learning is that sub-set of machine learning techniques and algorithms inspired
by the way the human brain works, so we can introduce the concept of artificial
neural network as the basis of deep learning.
Unlike machine learning techniques where features of interest are explicitly defined
in the data (problem specific features) the purpose of artificial neural networks is
to extract these features of interest from data that have not been explicitly defined.
Artificial neural networks are widely used in contexts such as computer vision,
natural language processing, speech recognition, bioinformatics.
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Introduction

Figure 1.1: The Evolution of AI over time, from www.nvidia.com

Artificial Neural Networks are not a new concept, we can find the first neural
network abstractions since the 60’s [2] but in the last decade, since 2012 thanks
to the disruptive advent of the use of GPUs for training Neural Networks and a
better data availability [3] there ’s been a significant increase in scientific research
and its application fields, this has led to the development of models capable of
performing perfectly tasks of computer vision as: image-classification, object-
detection, segmentation and others.

Figure 1.2: Alexnet architecture [3]

In parallel with the growth of computing power, these models have become
increasingly accurate and resource intensive and at the same time there has been
a strong increase of iot devices (internet of things), for iot device we can mean
hardware such as sensors, actuators, and more, programmed for a specific purpose
and able to transmit data over the network (not necessarily internet), this type of
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1.1 – Edge AI Application Segments

device normally have low computational performance, in fact the first approach to
bring artificial intelligence on these devices is to use them only as a final node and
delegate to the cloud the processing of data.
Recently, the performance of these devices is growing, and devices capable of na-
tively supporting AI applications have been introduced into the market, according
to a research: "Global shipments of edge AI devices to reach 2.5 billion by 2030" [4].
However, running (in the inference phase) complex deep learning models, specifi-
cally those related to computer vision on this type of device is a growing challenge.
The purpose of this thesis in collaboration with Links Foundation is to explore
and test methods and best practices of compression of deep learning models, more
specifically of object detection models in order to be deployed efficiently on an arm
device, optimizing performance and used resources. In the following chapters we will
find a background on deep learning and artificial neural networks, object detection
networks and the main compression methods, the tools I used, the framework I
created, a series of tests and benchmarks of the tried methodologies and finally
conclusions.

1.1 Edge AI Application Segments
Today, artificial intelligence combined with IOT and embedded devices is used in
virtually every market sector, from mission critical to less important applications.
the common goal is the use of artificial intelligence to make people’s lives easier
with automation of decision-making processes.
Bringing intelligence closer to the edge can benefit many areas of application, some
examples:

• Self-Driving cars (Detection, localization, control, ... )

• Smart Buildings (Non intrusive load monitor, smart BMS, ... )

• Smart Industry (Predictive maintenance, Monitoring , ... )

• Smart Home (Natural language processing, Domotics ... )

• Smart Farming (Decision support system, ... )

• Drones (Autonomous flight, Obstacle detection, ... )

• Security (Public surveillance, detection, recognition, ... )

• Healtcare (Disease diagnosis by data analysis, ... )

• Wearable (Body activity analysis, ... )
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1.2 Cloud AI Approach
To solve artificial intelligence tasks through devices with relatively few hardware
resources (iot, mobile, ..) one of the approaches commonly used is to use the device
only for data acquisition (sensors, photos, audio, ..) and delegate to the cloud the
computation of data, and then return to the device the result of the task.
This solution has pros and cons, depending on the application context;
We have to consider the costs and efforts to manage an application that scales as
the number of users grows, perhaps using SAAS (Software-As-A-Service), because
managing the load of a few devices is computationally efficient, but as the number
of users grows, the load can become an unsustainable engineering challenge for
datacenters, not only in terms of performance and cost, but also in terms of
environmental pollution.

1.2.1 Pros and Cons
• Low power consumption

Embedded devices basically only need to send information through the network,
this results in devices with low power consumption that are potentially cheaper
and more efficient.

• Easy to update and maintain
Developing a backend AI application is relatively easier for developers because
they don’t have to deal with hardware/software constraints. It is also very
easy to upgrade and maintain, as there is no need to deploy the application
to the embedded device. However, it does require some engineering effort to
manage scalability.

• Latency: no realtime application
Although network architectures have achieved great speed in terms of latency
and bandwidth, the round trip time for a single device communication remains
too slow and unstable to support real-time applications, there are contexts
where the responsiveness requirement is fundamental, just think of autonomous
driving, where it is unthinkable to have to wait for a response from a server
to make a decision.

• Privacy and safety
In the domain of deep learning, privacy is a hot topic. Taking an object
detector algorithm as an example, a photo will have to travel over the network
to data centers, which will probably save it to process a result and send it back
to the sender. There is a need to assure the user that appropriate use will be
made of those photos and data. Moreover, sending data over the network can

4
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expose the application to various attacks such as man in the middle, reply
attack and others.

• Connection overhead
The use of a network connection brings with it some overhead, for example the
amount of data to be exchanged can be too large and saturate the available
bandwidth, in addition, comparable response times are not guaranteed. Some
iot devices don’t use the WiFi/Ethenet protocols to connect to the internet,
but they can use special low power and long distance network protocols, e.g
the LoRa protocol, this kind of protocols support very small payloads, in the
order of tens of bytes.

• Datacenter energy consumption Since the workload of AI applications is
proportionally greater than the normal workload of data centers, there is a
need for a lot of computational power and this will lead to use more energy
and pay more for cloud services, also in many contexts are required machines
with GPUs that lead the expense to rise more and more, especially if you want
to scale with the number of users. This surplus of energy used in the long run
can turn into problems of environmental pollution.

1.3 From the cloud to the edge
Being able to process through AI the data directly on the edge can unlock the way
to applications that can make a decision in real-time and solve some of the problems
with the cloud approach. We will see that implementing this kind of approach from
a developer’s point of view is much more complex than implementing a cloud based
solution, due to hardware constraints, and that’s why optimizations are necessary.
Moreover there is the need of more performing and specific hardware than off the
shelf hardware used with cloud approach, since the workload moves from the cloud
to the device itself and you need more powerful (and more expensive) devices.

1.3.1 Pros and cons
• Low latency: Real Time Application

Executing the computation locally allows the device to make a choice or
solve a type of problem without waiting for the response of the server, this
unlocks the road to many applications in real-time as autonomous driving,
flight control systems, error control in smart industries, cybersecurity etc.. It
also guarantees a better user experience.

• Privacy
Since the data is processed locally this drastically reduces the chances of a

5
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data beach, and in some contexts it is important to ensure that the acquired
data does not leave the device.

• Expensive embedded devices and not so easy to deploy
Since in a cloud application theoretically there are few constraints regarding
the development of the model, when you have to run in inference an AI model
on an embedded device, especially if it is a deeplearning model, there are
many constraints to respect for the deployment; - performance - compatibility -
memory impact - operating system and programming languages - heterogeneous
hardware
Devices able to satisfy these characteristics are a small part of all iot devices,
and therefore more expensive.

1.3.2 Mixed Approach
There is also a mixed approach that is increasingly used, i.e. delegating to the
cloud the part of the computation that is heavier, while executing on the device
the part of the computation that needs low latency.

An example can be the home voice assistants like google home or amazon alexa,
where the logic to recognize the keyword of initialization is directly on the hardware
of the device to allow a fast activation, while the subsequent analysis of the phrases
is performed on the cloud of the producers. Another growing hybrid approach
is to use intermediate nodes between the cloud and the edge for certain types of
computation, we call them edge (or fog) nodes.

Figure 1.3: Edge and Fog computing, we can see the distribution of these devices.
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Chapter 2

Background

In this chapter will be briefly explained the fundamentals of deep learning in order
to understand this thesis work, will be initially made an introduction on neural
networks and their training process. It will be analyzed some models of object
detection important for this kind of study and finally there will be an analysis of
the main methodologies and techniques of optimization and compression of neural
networks.

2.1 Introduction to Deep Learning
2.1.1 Artificial Neuron and Activation Function
The artificial neuron is the smallest building block of a neural network, the first
notion of an artificial neuron is from 1943 by McCulloch and Pitts taking inspiration
from biology and how real neurons work. [5]

Abstractly we can define an artificial neuron as a function that takes multiple
inputs and produces an output, each input Xi is associated with a weight Wi, as
you can see in 2.1

Initially is performed a dot product between neuron’s inputs and relative weights
d, eventually summed by a bias factor b and then the result will go through an
activation function. We can then represent the transfer function of an artificial
neuron in this way:

f(x) = ϕ((
nØ

i=0
wixi) + b) (2.1)

In equation 2.1 ϕ is the Activation function , which is used to bring an unbounded
input into a bounded output,initially one of the most used activation functions was
the sigmoid :

7



Background

Figure 2.1: Representation of an artificial neuron (Perceptron Model), we can see
the vector of inputs with related weights and the activation function, that can be a
sigmoid.

f(x) = 1
1 + e−x

(2.2)

in equation 2.2 x = qn
i=0 wixi

Notice that the domain of sigmoid function is [−∞, +∞], while the codomain
is [0,1],this guarantees that whatever is the input the output is limited between 0
and 1.

Figure 2.2: Sigmoid function

8



2.1 – Introduction to Deep Learning

Sigmoid is also a nonlinear function, which is why it is often used to intruduce
a non-linearity in Artificial Neural Networks.
However, its use is not recommended because it runs into the problems of vanishing
or exploding gradient [6]. For this reason currently are more used activation
functions like ReLU or leaky ReLU.

Figure 2.3: ReLU and Leaky ReLU activation functions

2.1.2 Artificial Neural Networks
Artificial Neural networks are widely used for their ability to autonomously learn
from data patterns and decisions needed to solve a problem. We can consider an
artificial neural network as a black box with inputs, a bit of maths and outputs,
in the most basic way Neural networks are formed by more layers of interconnected
neurons (2.1.1):Input Layer,Hidden Layer,Output Layer.
A Input (usually a multidimensional vector,tensor) starts from the input layers,
passes through intermediate (hidden) layers and finally to the output layers, this
kind of networks are called Feed Forward Neural Networks.
When there are many (dozens) hidden layers, we can call them Deep Neural
Network (DNN).

All the neural connections are associated with a weight, weights determines the
strength of the signal on that connection,in each node will be processed the scalar
product between the input signals and relative weights and next the information
will be processed through an a Non-Linear function (activation function) 2.1.1
that will determine (also through a bias value) whether to "wake up" the neuron
connection and forward the signal to the next layers. Finally the output layers will
produce a prediction in terms of probability distribution.

In order to enable the learning phase of the network weights will be modified
during the training phase through the back propagation in a stochastic way,i.e

9
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the information about the error on the prediction will be back-propagated from
output layers to input layers in order to optimize the weights for each network
nodes. From here we understand that the main goal of an artificial neural network
is to optimize the weights in order to minimizing the sum of the errors of output
neurons .

Figure 2.4: Example of Feed Forward and fully connected neural networks

According to the universal approximation theorem [7], an artificial neural
network can be able to approximate any arbitrarily complex function, however, the
theorem only guarantees the existence of a network that satisfies certain conditions,
but does not provide a way to find the ideal structure or the weights of the model.

2.1.3 Training
The learning process of an artificial neural network can be achieved through the
training process,there are two main macro-approaches: Supervised and Unsuper-
vised learning. In supervised learning during the train phase, the network will be
fed with a lot of examples in form of labeled data(i.e. input data and the desired
output, ground truth). His goal is minimize the error (calculated by a loss function)
of the predicted outputs respect the ground truth in order to find the optimal
weights. After the training phase the network will be tested with a unlabeled data
in order to understand if the network is able to generalize and perform even with
never-before-seen data.
Otherwise in unsupervised learning, the network will be fed with unlabeled exam-
ples and his goal is to extract feature from the data in order to learn more about
the data itself, there is no correct output to mimic, some type of applications of
unsupervised learning: Clustering,Data Generation,Associations.

10



2.1 – Introduction to Deep Learning

In this thesis work we will only deal with supervised learning, So the recipes
for supervised training of an Artificial neural network are: labeled data , a loss
(cost) function, a backpropagation algorithm and a optimal way to update network
weights.

Loss function

Loss function in artificial neural networks quantifies the difference between the
expected output (ground truth) and the network output, this difference is called
Loss. Loss function determine the performance of a artificial neural network, there
are no universal loss functions but there are different types, and there are different
factors involved in choosing a function for specific problem, we can basically classify
loss functions in two main categories: Regression Loss and Classification Loss.
Regression problem deals with predicting a continuous value i.e given data with
past market activity predict the next BTC conversion rate. Classification, on the
other hand, deals with predict output into a set of finite categories i.e Given a
dataset of properties of a plants,the network will predict the plant species.
As an example of regression loss function we can consider the Mean Square Error
(identified also as Quadratic Loss or L2 Loss):

MSE L(y, ŷ) =
qn

i=1(yi − ŷi)2

n
(2.3)

As the name suggest she measure the average of squared difference between
predictions and ground truth,In the equation 2.3 y represent the ground truth,y
with hat represent the network predictions,i is the index of the current example
data,square instead is used for deal with negative value.

In a classification problem the network output is a probability distribution,the
conversion between digit and probability is made in output layers by a SoftMax
function. Cross entropy loss (or Negative Log Likelihood) measure the distance
between these probabilities to the ground truth:

Cross Entropy Loss L(y, ŷ) = −
nØ

i=1
yi ∗ log(ŷi) (2.4)

Back Propagation

Backpropagation algorithm is a foundamental building block of artificial neural
network,was introduced in the 1960s, but became popular much later, in the late
1980s . Backpropagation, according to [8]:
repeatedly adjusts the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the net and the desired
output vector.
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In order to minimize the outputs of loss function (2.1.3) we need to tune the
network’s weights and biases,this tune operation is achieved by computing the
negative gradient of the loss function respect to each weight. Remember that
our goal is minimize loss. Mathematically,the gradient is the vector of partial
derivatives of a function f in a point x,in other words it defines how the value of f
will change with a modification (in positive or negative direction) of x, it is used to
found a local minimum of a multi variable function.

In a neural network we need to compute gradient from last layers to initial
layers,this is done by the chain rule, that allow us to find the derivative of a
composite function,consider h = g(f(x)), its derivative are :

dh

dx
= dh

du
∗ du

dx
(2.5)

During training phase,initially weights and biases are randomly initialized for
each network node,consider:

• C: Loss function e.g:CrossEntropy 2.4

• w, b weights and biases

• (x, y) inputs and target outputs

• η learning rate

• epoch: an entire dataset samples feedforward process

weights and biases will be modified in the following way:

w1 = w − η
dC

dw
(2.6)

b1 = b − η
dC

db
(2.7)

.
There may be different kind of timelines in which weights and biases are updated,

the simplest consist of update weights for each sample at time,this mean that the
forward propagation as well as the back propagation are run sequentially for
each training sample at time, another kind is batch mode where the gradient is
accumulated with respect of all training sample, forward propagate all samples in
batch and backpropagate just once with accumulated results of the entire batch,this
process is performed for multiple iterations, which we will call epochs.
The most used way is the stochastic mode,in which fixed size mini batches are
defined randomly from the entire dataset for each training epoch.
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The stochastic mode (Stochastic gradient descend - SGD) is preferable because
if you choose randomly the mini batches you risk less to incur in a local optima,
because at each iteration weights are updated considering an ever-changing mini
batch of dataset,moreover it has better performance and converges quickly

Figure 2.5: Example of Stochastic Gradient descent optimizer process.

Figure 2.6: How Learning rate can affect the optimization
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2.1.4 Dataset handling
Datasets play an important role in artificial neural networks, the way that the data
are used during training can affect the behavior and the model performance. It
is important to use the dataset to reduce as much as possible the phenomenon of
overfitting and try to create a network that can generalize independently from the
data on which it has been trained. Regardless of whether it is pure descriptive
data or more complex data like images it is commonly used to split the dataset
into multiple distinct parts:

• Train split labeled: it is the split used during train phase, the model will see
only samples coming from here and the learning process refer to this data.

• Validation split is used for evaluate the model during train phase in order
to tune model’s hyperparameters.

• Test split unlabeled: Are data never seen by the network, are used to evaluate
the performance of the final model after the train phase.

The proportions between the different splits depend a lot on the type of problem
and the type of model, but also on the availability of data itself.

However, in order to obtain a robust train process there are extensions to the use
of these splits, like K-fold and cross validation,which consists in further splitting
the train dataset in k splits of equal size, for each split and for each iteration, k-1
splits will become the train dataset and the current split the validation dataset.
However this technique can be very computationally expensive in case of large
datasets.

It is also used apply normalization to data samples,e.g. mean = 0andstd = 1
in order to have comparable inputs. If we deal with an unbalanced dataset we
need to balance it with over-sampling or under-sampling tecnique, to ensure that
the network is not trained with to many, or to few, examples of a particular class.
Instead, if the dataset has few samples, we can use data augmentation techniques.

2.1.5 Evaluation metrics
In order to estimate a model, is that it is a pure analytical model or an artificial
neural network, different metrics are necessary,these metrics help us to understand
how much is good and performant the model in solving a problem,like classification.
for simplicity of exposure we will use a binary classification problem, whose the
output of the model can be only: Positive or Negative, This prediction can be:
True Positive: TP ,False Positive: FP , False Negative: FN The True and False
words refeer to the ground truth
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• Accuracy: it is the simplest metric,is the proportion of the number of correct
prediction (True positive and True negative) to the total. e.g in email spam
detection all emails correctly predicted as Spam or Non-spam compared to
the total emails

• Precision
TP

TP + FP
(2.8)

Note that the denominator indicates the total of positive predicted,precision
tell us how precise/accurate is your model , e.g in email spam detection how
many emails were correctly predicted as spam compared to all emails that are
predicted as spam this metric doesn’t keep in mind of false negative, this
mean that if an actual spam mail is predicted as normal mail the value of
precision is not affected.

• Recall (True Positive Rate)

TP

TP + FN
(2.9)

It is the ratio between true positive and the total of actual positive samples,
often is called sensitivity or True Positive rate e.g how many emails were
correctly predicted as spam compared to all emails that are actually spam

Figure 2.7: Representation of Precision and Recall through confusion matrix
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• F1 Score

TP

TP + F N+F P
2

(2.10)

F1 score is a harmonic mean between precision and recall,refer to an arith-
metical mean, harmonic mean gives more weight to small values,that mean
an high F1 Score can be achieved only if both Precision and Recall are high.
This metric is very useful when there is an a imbalanced dataset and it is
more robust than previous ones.

• ROC Curve and AUC This is another aggregated metric which gives us a
lot of information about the model performance, ROC is a probability curve
generated by true positive rate and false positive rate. AUC represent the area
under ROC curve and it tells how much the model is capable of distinguish
between classes. An AUC near to 1 represent an ideal classifier that is able
To predict correct actual spam email as spam email and actual safe email as
safe email

Figure 2.8: ROC is the green curve and AOC the area under it

All metrics have been exposed referring to a binary classification problem, but are
easily extensible for a multi-class classification problem for example by calculating
the same metric for each class.
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2.1.6 Convolutional Neural Networks
Convolutional neural networks (CNNs) are a specialized type of neural networks,
widely used in the field of computer vision, perfect for tasks related to images or
videos such as: Image Classification, Object Detector, Image Segmentation, Pose
Estimator and others. CNN’s were inspired by the animal visual cortex, as neural
networks are not a modern concept, but recently thanks to the disruptive advent of
gpu for computing but also thanks to the availability of large datasets have become
the de facto standard for computer vision applications. For simplicity of exposition
from now on we will deal only with image classification, but CNNs are also applied
in different areas such as natural language and audio processing.

Figure 2.9: Example of a typical CNN architecture

Abstractly their purpose is to extract low and high level features from images,
the main difference with feedforward networks is that CNN’s doesn’t have fully
connected layer in input and inner layers,but just in the outputs layer, the input
layers instead are replaced with convolutional layers.
Convolutional layers are used to extract information similar to that of fully con-
nected layers, but using far fewer parameters. Images are just multi-dimensional
arrays of pixels, we can consider a grayscale 128x128 image 2-dimensional array as
input,the convolution process consists in multiplying a "sliding" filter (e.g 4x4)
over the input image. The multiplication applied between filter and input is a dot
product, that the result of a product is a single value. All the values you get by
sliding the filter over the image is the extracted feature map which has reduced
the input dimensionality. Different convolutions are performed on same input with
different filters, the output of convolutional layer is formed by all the extracted
feature maps,as we saw earlier with artificial neural network we will use a activation
function like ReLu [2.3] to make non linear output of convolution. The amount
that determines the sliding step of a filter over the input image is called stride.
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In a CNN there can be more convolutional layers, usually the first ones have
the task of extracting low-level features such as edges,cornes,curves, in different
location of the image while the inner ones extract higher order features.

Figure 2.10: Example of the convolution process with a 3x3 filter on a 7x7 input,
that output is obtained by sliding the filter along the input with 1x padding aka
add 1 layer of zero to input

As we can see in 2.9 the feature extraction is performed by a sequence of same
operations in block:

• Conv -> ReLu -> Pool

ReLu is used as Activation function in output of convolution block, already seen
in 2.3,the reason why ReLu is so popular is that it is easy to calculate, it is simply
the maximum value between the function’s input and 0,and its derivative can
be only 0 or 1, this mean that calculating the gradient during back propagation
is computationally inexpensive, as a consequence the use of Relu as activation
function prevent the exponential growth of computation required by the neural
network.

Pooling layer instead is used to reduce the dimensionality of feature map
in order to shrink the total number of weights and parameters needed by the
network,consequently less computation effort, it is a sort of summary of previous
layers information, also pooling help to keep overfitting under control. There
are different type of pooling, the most frequent is max pooling which take the
maximum value of each window of feature map,e.g: we can reduce with max
pooling a 4x4 matrix into a 2x2 matrix where each element is the maximum value
of each 2x2 quadrant of input matrix. At the end of the feature extract phase,
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in a classification problem, there is always a fully connected layer and a softmax
function that map the outputs of the network in a probability distribution of the
N classes to classify.

The training phase works as already described for artificial neural networks
[2.1.3], Filters are matrices of weights (and related biases), they too will be adjusted
during train;

The optimizer used during train of a CNN often is SGD [2.5] or Adam (adaptive
moment estimation, an SGD extension/alternative) and Cross Entropy[2.4] as
loss function that can be expanded for binary and multi-class problem.

Dropout [9] is often used to reduce overfitting, during train,usually one time
for epoch, some neuron outputs are randomly ignored (or dropped out), their
contribution will be null in the network output of that epoch, at the next epoch
dropped-out neurons are restored, and then other randomly neurons are dropped-
out,and so on. We can see this operation as a sort of ’mask’ applied to the network’s
layers that change in every epoch of the train that prevent the network to adapting
to much to the data.

Figure 2.11: Visual example of low-level and high level feature maps from several
conv layers
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2.2 Object Detection
The term object detector refers to a process that involves two main tasks in
computer vision:

• Image Classification it is the main and simple task of computer vision,
predict the class label (from a fixed list) of an object in a image,usually fit well
with images with one main object,the main purpose of convolutional networks.

• Object Recognition locate the presence of one or more relevant objects in a
image and then indicate the position of these objects with bounding boxes,
algorithm is not able to understand what kind of object it is, but is able only
to identify the location of a possible objects in a image. Usually a Bounding
Box is expressed in term of box center,width and height,expressed in pixel
and normalized.

Object detection perform both recognition and classification; given an image the
goal is to extract different object and then predict their class label, so the network
output will be a set of bounding boxes with related label.

Figure 2.12: Difference between classification,recognition and detection.

Object detection process can be achieved in two main ways:

• Two Stage detectors: Detection process is executed in two different stages,
in first stage there is a network (often called region proposal network) that
generate region of interest inside the image, in the second stage will be another
distinct network that will classify these proposed regions. This kind of detector
usually are slower in inference phase but more accurate than single stage,this
architecture is used in RCNN-family “Region-Based Convolutional Neural
Network” (2014-2015). [10]
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• One Stage: Whole detection process is executed by just a single network
that take the full resolution image at input and will predict bounding boxes
without the region proposal phase. The process it is generally possible thanks
to the use of fixed boxes of different aspect ratios in different part of the image,
networks with this architecture are usually faster in inference phase than two
stage detector,however are less accurate. These networks can fit well in a
real-time applications, some examples of this architecture:

– SSD Single Shot MultiBox Detecor (2015) [11].

– YOLO You look Only Once (2016-2021) [12].

2.2.1 Object detection metrics
Since as we seen, object detection concerns two distinct problem: Classification
and Regression, order to evaluate object detector performance, we need metrics
that in some ways combines these two problems.Some of these metrics are similar
to those described here 2.1.5 .

Intersection over the union: IoU

IoU describe the amount of overlap of two boxes,is used to calculate the distance
between bounding boxes generated by the model and ground truth ones. With two
distinct box define:

IoU = Area of intersection
Area of union (2.11)

IoU can have values between 0 and 1,higher IoU mean that two boxes are almost
overlapping. We can use a IoU Threshold value to display only the bounding
boxes that have an IoU value above that threshold.

Figure 2.13: Example of different values of IoU
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mAP, mAP@.5, mAP@.5:.95

The precision-recall curve, similarly to already seen in 2.1.5 is the curve generated
by the plot of precision 2.1.5 on y-axis and recall 2.1.5 on x-axis across many
threshold values. Threshold is that minimum probability value for which a sample
can be classified as positive (or belonging to a certain class) like a confidence, the
PR curve show us the tradeoff between precision and recall for different confidence
values,We can see it as a tradeoff between false positives and false negatives. Object
detection often deal with multi-class problem,this mean that the PR curve must
be calculated for each class.

AP (average precision) is the area under the PR-curve, An high value of AP
means high precision and high recall for a certain class.

mAP instead is the average of AP calculated for each class:

mAP = 1
n

mØ
i

APi for n classes (2.12)

Usually mAP is evaluated with different values of IoU threshold,e.g mAP@.5
mean the mean of AP calculated for each class with a IoU Threshold > 0.5, if
not specified mAp is calculated across IoU values. Generally we can consider a
positive result an IoU >0.5, the metric that gives us the most information about
the goodness of an object detection and the most used in competitions [13] is the
mAP@.5:.95 that mean the mAp calculated over IoU threshold between 0.5 and
0.95. Having an high score in this metric implies that the model is effective in
recognizing the objects in an image and is also able to correct classify them.

2.2.2 R-CNN,Fast R-CNN and Faster R-CNN

R-CNN

Region-based Convolutional Neural Networks are one of the first approach that that
applied deep learning models to object detection,RCNN mean Regions with CNN
features and it is a two stage detector. The main idea behind R-CNN [10] is that
the first stage propose some regions of interest from an image,indipendent from the
category and then send those regions at second stage that is a fully convolutional
neural network, in order to compute features from each proposed region,then the
final stage is a fully connected layer (SVM in original paper).

Region proposals can be generated in several ways, in the original paper
was used selective search that is a segmentation algorithm,which generates a
segmentation map of the image based on pixel intensity using a graph based
segmentation method [14]. This segmentation map gives us an idea of potential
objects in the image, the bounding boxes are generated by the iterative merge of
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Figure 2.14: Example of Region proposal network pipeline

the segmentation map,and will be drawn from the generated bigger areas, this
process can be seen in fig 2.15.

Figure 2.15: Example on how bounding box are generated by a segmentation
map

Bounding boxes generated by the segmentation map may not be centered to
respect of where the subject is,for this reason the author also has included at the
end of first stage a bounding box classifier in order to refine the bounding box
coordinates. Next,each proposed region is cropped in order to be compatible with
CNN input layer; In the second stage there is an CNN that will extract features
from each proposed regions. In the paper the author use the convolutional part of
AlexNet and then an SVM that classify the CNN output.

To deal overlapping of two bounding boxes that have same class,a bounding box
will be reject if has an high IoU with another box that has an higher confidence
score.
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Although R-CNN achieves very good results in terms of accuracy, the limitation
of the architecture is easy to see: If there is a single CNN processing a single
region, and in an image there can be hundreds, it requires a lot of computation and
consequently a lot of time, this does not make it suitable for real time applications.

The train of a R-CNN has as distinct train phases:

• CNN network with softmax classidier

• SVM classifier

• Bounding-box regressions

The training phase is very slow (about 84h) and inference phase it also slow,
about 50s at image.

Fast R-CNN

In order to solve the problems and drawbacks of R-CNN the same author proposed
Fast R-CNN [15], the basic idea is very similar, but instead of use a CNN to
extract feature map from each region proposal, which is a very expensive process,
a sort of context switching is performed: The CNN is used to extract feature map
from the entire image and then regions will be proposed from this feature map,
this mean that in fact the CNN phase is executed only once for image. A new layer
has been inserted between the convolutional and the fully connected layers ROI
Pooling layer, that map regions of interest in a fixed size input for the output
fully connected layers,for the classification task instead,SVM is replaced with a
softmax function. The bounding box regressor also is used.

During train from a single image,Fast-R-CNN process mini-batches of ROI
The result is that Fast R-CNN is much more efficient than a regular R-CNN,

reporting a boost of performance in terms of inference speed of 10x than old one,
has also increased performance in terms of mAP.

The train of a FAST R-CNN unlike R-CNN,is single step with multi-loss problem:

• CNN network (classification loss)

• Bounding-box regressions (localization loss)

Training phase of Fast R-CNN is about 10x factor less than original R-CNN, the
test time,instead has been reduced from more than 50s to about 2 seconds, on gpu.
We are talking huge improvements compared to R-CNN,like a 10x improvement.

24



2.2 – Object Detection

Figure 2.16: Fast R-CNN architecture from original paper [15]: An input image
and multiple regions of interest (RoIs) are input into a fully convolutional network.
Each RoI is pooled into a fixed-size feature map and then mapped to a feature
vector by fully connected layers (FCs). The network has two output vectors per
RoI: softmax probabilities and per-class bounding-box regression offsets. The
architecture is trained end-to-end with a multi-task loss.

Faster R-CNN

Faster R-CNN is the latest model belonging to the R-CNN family, developed in
2016 and as the name suggests is also the fastest and performing of the family.
Although Fast-RCNN has optimized execution times by reduce convolutional layers
for feature map extraction, the region proposal part remains computationally
intensive, and is considered the bottleneck while CNN phase can be achieved easy
with GPU but the region poroposal method was implemented on CPU. The author
of Faster R-CNN [16] proposed as a solution a Region Proposal Network
(RPN) to predict proposals from feature map, RPN share convolution layers with
the convolutional network.RPN receive at input the feature map generated from
convolutional layers and generate a list of possible proposal by sliding a small CNN
over the feature map. For each sliding window, RPN predict if the portion of the
image over window is an object or not, the prediction on each window is made on
K fixed size boxes called Anchors.

RPN model is trained separately from the classification part, but the differ-
ence,thanks to the use of anchors is that the ROI pooling has a fixed size determined
by the K number of anchors. Faster-R-CNN achieves even better results than the
previous ones, with an inference time of about 300ms.
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Figure 2.17: Faster-RCNN architecture

2.2.3 SSD: Single Shot Multibox Detector

Like the name suggest,and unlike the previous models, SSD is a single shot detec-
tor,this mean that the tasks of object recognition and classification are achieved
by a single forward pass of the image in a single network. Proposed in late 2016
[11], The author of SSD speeded up the object detection process by eliminating
the need of a region proposal network by a simple idea: compute both boxes and
classification by the use of small (3x3) convolution filters applied to feature map
for a fixed set of default bounding boxes for each image cell,similar concept to
anchor boxes in Faster-R-CNN however in SSD are applied to several feature maps
of different resolutions. Since the number of generated bounding boxes and relative
classes can be really a lot and they can overlap,there is also a non-maximum
suppression step that produce final detections aggregating these boxes. The base
network of the original SSD is VGG-16 Training is executed end to end, ans also
here the training objective is a multi loss problem; localization loss and confidence
loss.
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Figure 2.18: SSD architecture from the original paper

2.2.4 YOLO: You Only Look Once
YOLO (You Only Look Once) is a very fast object detection architecture born in
2016 by Joseph Redmon [12], Like the SSD network,yolo perform both classification
and localization with a single convolutional neural network. The operation is
similar to that seen for the SSD network: The input image is divided into a grid of
S ∗ S cells,and for each cell the network predict B bounding boxes with relative
confidence scores and C class probabilities. These confidence scores reflect how
confident the model is that the box contains an object,if no object present in that
cell the value should be 0,otherwise the objective will be the IoU 2.13 between
above box and ground truth box.

The C class probabilities are related to grid cell,regardless of the number of
bounding boxes that it contains,represent the probability that the object belongs
to a certain class.In order to generate the final network output will be a Non-
Maximum suppression layer, as already seen for ssd, which will aggregate the
bounding boxes that seem overlapping in terms of coordinates and class probabilities
based by an IoU 2.2.1 threshold. over time this architecture has evolved and new
models have been introduced:

• YOLO v2: It is not a radical change of architecture, but several improve-
ments have been made to the original model in order to improve speed and
accuracy,like biggest input size (416*416),use of Anchor boxes,and the C class
probabilities are now calculated at box level instead of the cell level.

• YOLO v3: Others small improvements, like the change of loss function,more
bounding box predicted by the network and multiscale box prediction

These three versions of yolo are the latest from the original author,are based on
a framework that he created: Darknet. The author, for ethical reasons abandoned
the development of the yolo family and darknet framework, but subsequently the
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Figure 2.19: Example of YOLO process, we can see how the high number of
bounding boxes predicted and the class probability map, are associated in order to
generate final result

work with this architecture continued with several forks no longer based on darknet
original framework e.g: yolov4, yolov5, yoloX.
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2.3 Edge/Embedded Devices
As embedded device we identify all that series of special purpose systems, that are
programmed to perform a specific task in a larger system. The Embedded device
integrates all the hardware and software necessary for its operation and are often
used to control the system that hosts it, simple examples could be: the control unit
of a car, traffic light controller, digital medical system, avionics system etc.
We need to make a first major separation in:

• Embedded device based on microcontrollers (MCU) , a microcontroller
self-contain cpu, memory and peripherals on same chip,typically MCUs are
to be programmed at low level as they are designed to be special purpose.
Device based on MCU are extremely energy efficient but typically have low
computational power, they are not exactly suitable for artificial intelligence
applications, however there is growing interest in this area, an interesting
project is tinyML (https://www.tinyml.org/) An organization that grows
ultra-low power machine learning technologies.
Some examples of MCUs can be Arduino, STM32, ESP8266, ...

• Embedded device based on microprocessors This type of devices are more
complex, based on microprocessors, which use memory and external peripherals.
In this case ARM architecture is the main market player for low power
microprocessors. It is also possible to integrate several microprocessors with
memory, peripherals and possibly a gpu into a single chip called system-on-chip.
Typically devices based on microprocessors or SOCs allow the creation of real
"mini-computers" (Single Board Computer SBC) with a real operating system
in execution and several input/outputs interfaces, this means that they can be
programmed in a general purpose way, they are more powerful devices but less
efficient than the previous ones and they are the subject of this thesis. Some
examples of this kind of devices: Raspberry pi, Nvidia jetson nano, Coral Dev
Board

ARM

ARM are a family of processors designed to have a low energy impact, dominating
the mobile and embedded sector where energy saving is fundamental. Arm does
not sell the hardware directly but licenses the production of ARM architecture
cores.

It’s a RISC (reduced Instruction Set) architecture as opposed to CISC (x86)
architectures commonly used in desktops, the main difference is that RISC use
only simple and fixed length instructions that can be executed in one clock cycle,
this makes predictable the behavior of the system from the energy point of view.
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2.3.1 NXP iMX8M-Plus
The board that I had available to carry out the experiments is based on the NXP:
imx8m plus processor. It is a quad core arm-based device,at cpu level comparable
with a raspberry pi4. According to nxp: The i.MX 8M Plus family focuses on
machine learning and vision, advanced multimedia, and industrial automation with
high reliability. It is built to meet the needs of Smart Home, Building, City and
Industry 4.0 applications. features:

• Quad-Core 1.8 Ghz arm based Cortex-A53 CPU

• NPU (Neural processing unit) operating at up to 2.3 TOPS

• Dual image signal processors (ISP) and two camera inputs

• H.265 Encode/Decode

Specifically I used the nxp evaluation kit for the i.MX 8M that exploit
processor performance,is a SOM (system on module) which houses the processor,and
it includes:

• RAM 4GB LPDDR4

• eMMC 16 GB and support for microsd

• HDMI, Bluetooth 4.1, Ethernet, Wi-Fi AC

A first class equipment for this type of devices, on the board is possible to run an
embedded linux distribution with the yocto project.

Yocto

OpenEmbedded is a software framework used for creating Linux distributions
aimed for, but not restricted to, embedded devices. The build system is based on
BitBake recipes which behave like Gentoo Linux ebuilds.
The Yocto Project is a set of templates, tools and methods that allow to build
custom embedded Linux-based systems. Yocto is not to be seen as a ready-made
embedded linux distribution, but we can see it as a base that allows you to create
a custom one according to your needs. Core components:

• BitBake: It is the build engine, it interprets metadata in order to to configure
and build packages and images.

• OpenEmbedded-Core is a set of base layers shared beween all openEmbed-
ded based systems.
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Figure 2.20: i.MX8M plus evaluation kit

• Poky Distribution it is the reference embedded OS.

I’ve build the official nxp recipes related to iMX8 family in order to update the
evaluation kit packages.

NXP eIQ®

NXP offers custom versions of machine learning libraries optimized for their pro-
cessors, and it is contained in a custom yocto layer, this layer integrates execution
providers that allow machine learning libraries to take advantage of the integrated
NPU, for example a custom version of tensorflow lite or onnxruntime, unfortunately
free access to NPU computation is still immature,and today we can access NPU
only through these custom libraries and not directly from a library that you can
get in official python repositories.
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Figure 2.21: eiQ Supported inference engines for i.MX 8M Family
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2.4 Network Optimizations
Some of the information in this section was obtained from [17], [18] ,[19] and [20].

Edge Devices, such as the one the subject of this thesis introduced in 2.3.1,
have limited performance and memory compared to desktop computers, to deploy
deep object detection models such as those described in 2.2 on these devices in
real-time application is a great challenge, compression and acceleration techniques
are therefore necessary so that such models can be run within device memory and
performance constraints.
The purpose of these methods is to perform model compression/optimization
without significantly decrease the model accuracy, we can summarize recent work
in the area of efficient deep neural network optimizations [21] into:

• Quantization: Reducing the number of bits required to represent each
model’s weights. e.g from float32 to uint8. [22]

• Knowledge distillation: Training a compact neural network with distilled
knowledge of a large model, Teacher and Student. [23]

• Parameter Pruning untreated Reducing redundant parameter that are not
sensitive to the performance,e.g cut from the network weights close to 0 value.

• Low-Rank factorizaztion untreated : Using matrix/tensor decomposition to
estimate the informative parameters.

• Transferred/compact convolutional filters untreated : Design special structural
convolutional filters to save parameters.

In this thesis work, we have primarily focused on quantization and knowledge
distillation, The pruning method has untreated, because if it is theoretically useful,
pruning is done by zeroing model’s weights close to zero, so the tensor become
sparse, and’ relatively easy therefore to compress the model in terms of dimension
(since there are so many zeros), however in the common frameworks the operations
on the tensors by default assume dense tensor representation, unfortunately there’s
not a lot of hardware and software that can benefit directly from sparse Tensors.

2.4.1 Quantization
Quantization is an approach that has shown great and consistent success in both
training and inference of DNN models. While the problems of numerical represen-
tation and quantization are as old as digital computing, deep learning networks
offer unique opportunities for improvement [19].
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After the training phase of an artificial neural network, its weights (parameters)
are stored as 32 bit floating-point values, reducing the number of bits used to
represent network’s weights and activation, can lead to a significant reduction in
MAC (Multiply–accumulate) operations required for an inference and reduce the
size of the network. Quantization, then, consist into mapping float32 (weights
or/and activations) into a lower precision ones (e.g. uint8,int8).

Uniform Quantization

First we need a function that takes the floating point values of the models and maps
them to a lower precision range, a good choice would be the following function:

Q(r) = int( r

S
) − Z (2.13)

where:

• Q is the quantization operator

• r is the real input value (of activation or weights)

• S is the scale factor

• Z is the zero point

Int operator a real value to a integer value by the rounding operation (e.g round
to nearest integer and truncate), this type of quantization is called Uniform Quan-
tization, since the resulting quantized values (quantization levels) are uniformly
spaced, as we can see in figur 2.23 on the left side. It is possible to do the reverse
operation, that is from a quantized value back to the real value, with an operation
called de-quantization (nota that the real values will not exactly match r, due to
tounding operation):

r = S(Q(r) + Z) (2.14)

Symmetric and Asymmetric quantization

It is important the choice of the scaling factor, since it essentially divides a range
of real values r into a number of partitions ([24])

S = β − α

2b − 1 (2.15)

[α,β] represent the bounded clipping range, b value represent instead the quan-
tization bit width. So to identify the scaling factor, we need to determine the
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Figure 2.22: Comparison between uniform quantization (left) and non-uniform
quantization (right). Real values in the continuous domain r are mapped into
discrete, lower precision values in the quantized domain Q, which are marked with
the red bullets. Note that the distances between the quantized values (quantization
levels) are the same in uniform quantization, whereas they can vary in non-uniform
quantization. [19]

Figure 2.23: Comparison of symmetric and asymmetric quantization, Symmetric
quantization with restricted range maps real values to [-127, 127], and full range
maps to [-128, 127] for 8-bit quantization.

clipping range, this process is often called calibration. The simplest choice is to
use the min/max of the signal to determine the clipping ranges, this approach
is called Asymmetric, since the range is not necessarily centered on the origin
(when −α /= β). If −α = β it is considered symmetric quantization, we can see a
comparison in figure 2.23 If we use symmetric quantization we can set Z=0 in the
equation2.13, which become:

Q(r) = int( r

S
) (2.16)

Basically, applying symmetric quantization method is easier because of the zero
point Z=0, however it is not the optimal approach when the ranges are skewed and
asymmetric, in this case asymmetric quantization is preferred.
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Static and Dynamic quantization

So far we have discussed how to determine the clipping range [α,β] to perform the
quantization, this process can be done in different times and modes, there are two
main classes of range calibration algorithms: Static and Dynamic.
After the process of training a model, its weights have fixed values during inference,
which makes it relatively easy to perform offline clipping range calculations, however
the activation maps are different for each input,hence the need for two different
approaches to calculate the clipping range. In dynamic quantization the range is
calculated dynamically at runtime inference, for each activation map, which can
result in a performance overhead, given by the extra computation, however this
method is the most accurate, since the range is calculated for each activation. In
static quantization the clipping range is pre-calculated offline and is static during
inference. To pre-calculate the range, one method used is to use "mini-datasets"
of calibration, to be given as input to the network in order to calculate the fixed
values of clipping range. Static quantization has less computational overhead than
dynamic quantization, but is less accurate because the clipping ranges are fixed,
and may be different for each activation.

Quantization aware training

So far we have discussed the quantization of a pre-trained model, this process
is defined as Post Training Quantization (PTQ), however it is possible to
perform the quantization process during the model’s training phase , this approach
is called Quantization Aware Training (QAT).
In QAT forward and backwarard phases are performed on the floating point model,
but the model parameters are quantized after each gradient update. It is important
that the quantization is executed after the weights update (performed in floating
point precision) as the accumulated gradient can result in zero or high error
gradients [25][19].
The int (rounding) operation in equation 2.13, is not-differentiable and without
any approximation the gradient will be zero almost everywhere. To approximate
the gradient of this operator, a Straight Through Estimator (STE) was introduced,
which essentially ignores the rounding operation and approximates it with an
identity function, the process is described in the figure 2.25. Despite the coarse
approximation introduced by the STE operator, QAT it often works well in practice,
except for ultra low-precision quantization such as binary quantization, however,
the main disadvantage of QAT is the computational cost of retraining the model,
and it may take several epochs to recover the original accuracy.
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Figure 2.24: Comparison between Quantization-Aware Training (QAT, Left)
and Post-Training Quantization (PTQ, Right). In QAT, a pre-trained model is
quantized and then finetuned using training data to adjust parameters and recover
accuracy degradation. In PTQ, a pre-trained model is calibrated using calibration
data (e.g., a small subset of training data) to compute the clipping ranges and the
scaling factors. Then, the model is quantized based on the calibration result. Note
that the calibration process is often conducted in parallel with the finetuning process
for QAT. [19]

Figure 2.25: Quantization-Aware Training with Straight Through Estimator
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2.4.2 Knowledge Distillation
Knowledge distillation is a set of methods whose purpose is to distill knowledge
from a large deep neural network into a smaller network [23].
In order to address the issue of deploying deep models on low power devices,
respect to quantization, knowledge distillation methods uses a different point of
view/approach : instead of optimizing in terms of perfomance speed an existing
model, we intervene during the training of a lighter model to improve its performance
in terms of accuracy by introducing the "suggestions" of a more accurate model.
In Knowledge distillation Teacher and Student networks are formally introduced,
the basic idea is that the student model must mimic the teacher model, in order
to achieve competitive performance, compared to stock-trained student model,
However, the main problem is how and in what way, to transfer the knowledge.
Basically, there are three core of Knowledge Distillation:

• Knowledge

• Distillation Algorithms

• Teacher-Student Architecture

In this thesis work we will focus on two main types of knowledge distillation: output
based and feature based.

Response (Output) based Knowledge Distillation

In Response based knowledge distillation, the student is only affected by the
response of the last output layer of the teacher model. It is the simplest method
of knowledge distillation, the core concept is to mimic the final prediction of the
teacher [20].
Given a vector of logits (predictions) z as the output of final network layer, we can
define a distillation loss for response-based kd in this way:

LRBD(zt, zs) = L(zt, zs) (2.17)

Where L is the divergence loss of predictions, and zt and zs are the logits of teacher
and student. Response-based knowledge distillation can be applied in different
contexts, for example in object detection task, the response may contain the
predictions in addiction with the bounding box coordinates [26]. We can formally
introduce soft targets in the context of image classification, as the probability
that the input belong to a certain class, and can be expressed with a softmax
function (as already described in previous chapters). Essentially, the total loss of
the kd process is the join of the distillation loss and the student loss, we can see
the process in figure 2.26, please note that the student loss is always defined as

38



2.4 – Network Optimizations

cross entropy loss (2.4) between the ground truth label and the soft logits of the
student model.

Figure 2.26: Detail of Output Based Knowledge Distillation architecture, we can
see the total loss is the combination of distillation loss (calculated from soft targets
of both teacher and student) and the student loss calculated from student soft target
and ground truth. Please Note that it is possible to intervene on the influence of
the teacher, using a multiplication factor on the distillation loss. [23]

Feature Based Knowledge Distillation

As we have seen in the previous chapters, deep neural networks are able to learn
different levels of feature representation, called feature maps, which the representa-
tion is more and more abstract going deep along the network layers. Therefore,
as well as the output of last layer of the teacher model, we can use also the out-
put of intermediate layers as knowledge to supervise the training of the student
model. This knowledge representation is often called Feature Based or Feature
Imitation and we can see in figure 2.27 the generic architecture of feature-based
knowledge distillation. We can define the distillation loss for feature based
knowledge distillation that use feature maps as knowledge as follows:

LF BD(ft(x), fs(x)) = L(Φt(ft(x)), Φs(fs(x))) (2.18)

Where the ft(x) and fs(x) are the feature maps of intermediate layers between
teacher and student models. When the intermediate layers doesn’t have the same
shape among the two networks, we need a transformation function, shown in
the equation as Φ.
L instead is the similarity function that match feature maps from teacher and
student models. Over time, different combinations of loss functions (l2-norm,
l1-norm, cross-entropy and maximum mean discrepancy), knowledge types (feature
maps, attention maps, feature representation, ..) have been explored, however, the
biggest focus, is in how to effectively choose the hint layers from teacher model
and the guided layers from the student model. [27].
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Figure 2.27: Generic Feature-based knowledge distillation [23]
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Chapter 3

Model Compression Box

Model compression box is a custom python framework that I developed in order
to provide useful tools for compression, export, test and validate object detection
models with different engine/format.
It has been designed in a completely modular and configurable way in order to
easily and quickly expand it with new features like supported models, inference
engines, input sources, and more. At the architecture level of the software to make
it modular I followed the
Strategy Pattern: "Strategy is a behavioral design pattern that turns a set of be-
haviors into objects and makes them interchangeable within original context object."
[28].

For the development of this framework have been used some of the most famous
libraries related to machine learning and deep learning such as: numpy, opencv,
sklearn, pytorch, onnxruntime, tensorflow and others. It is possible to use the
framework both in desktop and embedded environment, obviously the embedded
device must be able to run python code and resolve dependencies.
Model compression box is formed by two main distinct module: Detector and
Compressor that perform very different but complementary tasks.

3.1 Detector
The main goal of the detector module is to provide robust tools to evaluate both
qualitatively and quantitatively object detector models in inference. Natively it
supports several object detection models and inference engines such as onnxruntime,
tensorflow lite and pytorch. It is easy to update with new models, you only need
to define the pre and post process phases.
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Where supported, the inference phase can be performed on both cpu and gpu, several
metrics will be tracked such as: inference latency, pre/post process latency, accuracy,
mAp (on coco dataset), model size and others device hardware informations.
It is possible to archive the inference results, both in terms of performance reports
and images/live video with bounding boxes. All detector features are configurable
by startup arguments or by configuration file.

Figure 3.1: High-level architecture of the detection module

3.1.1 Configurations

In order to get orderly and schematic results I decided to make the whole framework
parametric, the detector can be configured through command line arguments or
from a configuration file in the project root (I chose yaml format for compactness
and readability). Supported configurations are:
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Model

This field defines which model to use for inference, the file extension determines
which engine to use for inference,available engines:

• .onnx - Onnxruntime

• .tflite - TensorFlow Lite

• .pt .pth (WIP) - Pytorch or OpenCV-dnn
All object detection models with weights in this format are compatible, however
must be specified the phases of pre and post process that can vary according to
the architecture of the model,hose currently available are:

• Yolo v5

• Yolo v2

• SSD Mobilenet v1

• Faster-RCNN

Images folder

Indicates the path to the image directory to be used as a dataloader for inference
phase (detections). all major image extensions and any resolution are supported,
all images in the folder will be processed. this option is mutually exclusive with
video and webcam.

Video

Indicates the path of a video on which perform inference, as video formats are
supported: .mov, .avi, .mp4, .mpg, .mpeg, .m4v, .wmv, .mkv .
Alternatively you can specify a url of a youtube or RTMP video to do streaming
video detection. this option is mutually exclusive with image folder and webcam.

Webcam (Boolean)

Flagging this value the detections will be made directly live from the webcam,
a window will be automatically opened with the webcam live output with the
detected bounding boxes.

Labels

Indicates which labels to associate to the detected classes, currently the labels of
the VOC and COCO datasets are supported.
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Resolution

Images during pre-processing will be resized with this value. this value can depend
on the model used, some models accept any type of resolution as input, while in
most models the resolution is fixed.

Threshold

Indicates the minimum detected class accuracy allowed, detected classes with an
accuracy below the threshold value will be discarded.

IoU threshold

Indicates the value of Intersection over union to be used, a value close to 1 indicates
an almost total overlapped area of the predicted bounding box compared to the
real one, so very close. Bounding boxes with IoU below the set threshold value will
be discarded. for more information refer to [2.2.1]

Test (Boolean)

Enabling this flag allows to benchmark the performance of a model in terms of
accuracy and mAp [2.2.1], this option is valid only on models trained on the COCO
dataset and on any subset of COCO-2017 images and labels. However all other
performance metrics will always be recorded regardless of this flag.

Show (Boolean)

Displays an on-screen output of the generated images with their detected bounding
boxes and classes.

Save (Boolean)

Save the generated images with their detected bounding boxes and classes. The
function is available only if the data sources are images. The feature of saving
videos with added bounding boxes is under development.
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3.1.2 Session Result: Report and Benchmarking
Tracking all the performances of the tested models is essential for the analysis that
I will do in the next chapters, it is a fundamental aspect of the Model Compression
Box because the detector module allows us to analyze the models in different
contexts but representative of reality.
Regarding the inference speed metrics we will average the results on all the images
of the inference session (or frames if we are using a video) both for the inference
time and the pre and post process time and then we will calculate the total FPS.
Regarding accuracy metrics like accuracy, mAp 0.5 and mAp 0.5-0.9, available only
if you use a subset of the images of the COCO dataset and its annotations file, first
will be saved a .json file with all the detected detections and then will be processed
with the official tools of the COCO dataset (pycocotools) in order to have results
comparable with the community.
Then a summary of the information of the inference session in tabular format
will be append in a single .CSV file containing all the information of the past
experiments, in order to create a single dataset containing all the information that
I will need for analysis.
{

" model_name " : " yo l ov5 l " ,
" node_name" : "DESKTOP−U10∗∗∗ " ,
" dev i c e " : "GPU" ,
" r e s o l u t i o n " : 640 ,
" runtime " : " onnx " ,
" f p s " : 17 .54 ,
" average_inference_time " : 0 . 057 ,
" average_preprocess_time " : 0 . 003 ,
" average_postprocess_time " : 0 . 006 ,
"mAP@0. 5 : 0 . 9 5 " : 0 . 526 ,
"mAP@0. 5 " : 0 . 706 ,
" data " : " . / data / nanoval2017 / images " ,
" model_size " : 177 .973 ,
" System In fo " : {

" System In fo " : { . . . } ,
"CPU In fo " : { . . . } ,
"RAM In fo " : { . . . } ,

}
}

Listing 3.1: Detail of information tracked for each inference session.
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3.2 Compressor/Exporter
In the Exporter/compressor module i developed tools to compress, optimize and
finally export object detection models. I choose .onnx as output format for the
models, because in my tests it was found to be the most compatible and versatile
format. More info about onnx and onnxruntime in ??.

This module will mainly deal with quantization 2.4.1 and pruning
UINT8 Dynamic Quantization is available for any input .onnx model,

through onnxruntime there are three ways of quantizing a model:

• Dynamic quantization
Quantization parameters (scale and zero point) are calculated dynamically
on-flight for each activation.

• Static quantization untreated
Quantization parameters are calculated offline with an calibration dataset,all
the activations have same parameters.

• Quantize-Aware training quantization untreated
Quantization parameters are calculated in the training phase.

The dynamic quantization obtains better results even if it is computationally more
expensive. Since the main way, and also the way used in this thesis, to represent a
quantized model in onnx is to convert the operators into a quantized counterpart
defined by onnx standards, it is very important to pay attention to the op-set
used for export model from another framework to .onnx format,since many 8-bit
operators are unavailable for older onnx op-set. It is not possible to update the
op-set of an onnx model but you need a re-train the and then an export to onnx
with updated op-sets. Another way to represent quantized models is through the
quantize and de-quantize paradigm, however it is not treated in this work.

The pruning phase is carried out by the pytorch framework
Whether you want to apply pruning, quantization or simply export a model,

the output of this module will always be an .onnx model.

3.2.1 Configurations
As with the detector module, all behaviors of the exporter module are configurable
from startup parameters or by a configuration file.

Model

The input model of exporter, can be any model in .onnx format or one of these
models on torch-hub:
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Figure 3.2: High-level architecture of the export module

• Yolov5 family (n-s-m-l)

• FasterRCNN

Res

The resolution (in terms of pixels) of the input images to the model, this option
will change the input layers of the model fixing the input tensors to the given
resolution.

nb: on some models through onnxruntime is possible to define dynamic axes
input range, this allow to use images of any resolution as input of the model.

Quant (Boolean)

This flag indicates whether to quantize the model, it is available for all supported
models (both torch and onnx). Quantization will be applied to all operators of the
model with these properties:

• Uint8 Weights and Uint8 activation
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• Dynamic Quantization

• Per channel Quantization

Simplify (Boolean)

This flag allow us to simplify an onnx model; Analyzes the entire computational
graph created and replaces redundant operations with their constant outputs.
Powered by onnx-simplifier python library .

Gpu (Boolean)

Use gpu in compression/export computation phase,pay attention that some quan-
tized operators cannot be compatible with GPU computation.

Prune-u (Number)

Applies l1 unstructured per-layer pruning on a pytorch model, with the specified
sparsity value. It is the easiest way to do pruning,as a unstructured will be pruned
weights per-layer. L1 means that is used L1-distance (Manhattan) to measure the
the contributions of the weights to be pruned with a given sparsity.

Prune-ug (Number)

Like the previous command, it applies unstructured pruning to the model, But now
the pruning parameters are not calculated for each layer, but for the whole model.

Prune-s (Number)

Applies l1 structured prune on a pytorch model, with the specified sparsity
value,with structured prune approach weights will be removed in group for channel.
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Chapter 4

Processes, Methodologies
and Tools

The main purpose of this thesis work is to analyze the behavior and possible
optimizations of object detection models in order to perform the inference operation
(i.e predict bounding boxes and relative classes) on an image or a video stream
as quickly as possible in an embedded device context, in our case the device is
i.Mx 8M plus (more details in the appropriate chapter). The device is able to
run python code and consequently different deep learning frameworks,however as
we will see not all frameworks and the respective representation of the model’s
weights are suitable for this context. The analysis was performed by dividing the
problem into two macro categories.

• Optimizations that are unaware of the training process: testing of the
behavior of mainly quantized pre-trained models on different engines.

• Optimizations that require re-train the model: Train from scratch
models to apply different types of knowledge distillation.

For both phases different metrics will be used to evaluate performances of the models,
both in terms of purely speed and mAp,almost all operations will be performed on
a split of the COCO dataset in order to have comparable and replicable results. I
developed the Model compression Box (3) to help me in both phases in order
to easily evaluate on the board different models and optimizations, the evaluation
phase will be carried out directly on the board by the detector module (3.1), the
unaware training optimization instead by the Exporter module (3.2). As for the
optimizations that need to retrain the model, I’ve been fork project from the
original model’s repository and modified the original training operations,all the
code written in this thesis is purely Python.
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4.1 Post-Training Optimizations:
Quantization

In this phase I was mainly involved in applying quantization and other training
unaware optimizations to different pre-trained object detection models with the
purpose of evaluating the differences between quantized and not quantized models
in the inference phase on the embedded board. It will be also evaluated the
behavior of the same models to vary of the used engine, e.g. TFlite or Onnx
Runtime.

Although in theory the i.Mx 8M plus board has a NPU (neural process unit)
that would greatly speed up inference times, all tests on the device were
performed on CPU.This is because to access the NPU computationally you need
different execution providers (like VSI NPU/NNAPI/VX ), that will be the engine
of the different deeplearning frameworks, however the support for this type of NPU
and providers is limited for both onnxruntime and tensorflow lite, in summary
the NPU computation is possible through the use of operators supported by the
execution provider. for some operators there is a 1 to 1 conversion with pytorch
models, while other operators are still not supported, this implies that if we want
to run a model on the NPU of the board we must act and modify the network
topology possibly modifying or removing unsupported operators.

Object detection models used in this comparision:

• YOLO v5 (s, n)

• SSD Mobilenet v1.10

• Faster-R-CNN

In these models a quantization will be applied, typically a per-channel dynamic
quantization,after the quantization additional optimizations will be applied if
necessary (such as node-graph simplify 3.2.1) it will be applied a fixed input to
the model, that is it will be fixed the resolution in terms of pixels of the images
that the model accept,then model will be exported in .onnx or .tflite format. for
each model (both quantized and non quantized) will be evaluated on-device these
metrics:

• FPS (frame per second)

• Average Inference time ms

• Average pre process time ms

• Average post process time ms
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• mAP@0.5 percentage

• mAP@0.5:0.95 percentage

Time-related metrics can be collected for all types of images, including for example
from the camera. However, metrics related to model accuracy can only be analyzed
on supervised dataset,of course. Subsets of the coco dataset were used for both
types in the tests, but the tests regarding the mAP to be at least comparable with
the literature were done on the official coco validation split, which is too heavy
to be loaded on the board, for this reason the mAP calculation was done on a
desktop machine.

In order to understand which is the more suitable engine for the inference on
device, the same quantized model will be evaluated on:

• OnnxRuntime

• TensorflowLite

Performance evaluations in this phase are performed by the model compression
box reports, as already described here 3

4.2 Training aware optimizations:
Knowledge Distillation

In this type of optimization, unlike the previous ones, we don’t try to optimize an
already (and possibly deep and accurate) existing network in terms of execution
speed, but the focus is different;
We start from a very small network, already fast but not so much accurate who will
be the student and we train it with the support of a bigger and accurate network
that will be the teacher. The goal of the training process is to make the accuracy
of the student network tend to that of the teacher.

In this second phase I analyzed different forms of knowledge distillation during
training of different combinations of teacher-student networks. Different trainings
were performed to analyze the behavior as the hyperparameters related to knowledge
distillation varied.

Specifically I focused on the YOLO v5 family, since they are already very fast
and well documented object detection networks, the basic idea is to use a deep
version of YOLO v5 as teacher network and a smaller one as student network, used
networks are:

• YOLO v5 L (46.5 M params) as teacher network

• YOLO v5 M (21.2 M params) as teacher network
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• YOLO v5 N (1.9 M params) as student network

Using the same basic network architecture for both student and teacher has
several advantages, the networks (barring the use of different resolutions) share the
same pre- and post-processing steps for images, this implies that the manipulations
required to make the two networks "talk" is minimal.

Instead of rewriting the training process from scratch, I created a fork from the
official repository:https://github.com/ultralytics/yolov5
that you can find in my public repository: https://github.com/CuriousDolphin/
yolov5-knowledge-distillation I have modified the train script by including
the loading of a pre-trained teacher network from the yolo v5 family, which will
perform the prediction that would affect the student training, specifically we will
be working with two different kind of knowledge distillation:

• Output-Based:the student will only be influenced by the final outputs of
the teacher model, in order To do this I have implemented in training process
the loss functions described in this paper:[29], more info in relative chapter.

• Feature-Imitation: The student will also be affected by the behavior of the
intermediate layers of the teacher network, needs "anchor points" between the
intermediate layers of the teacher and student,Is an implementation of this
paper: [30] , more info in relative chapter.

Pre-trained yolo family networks are trained with 300 epochs,since the train
phase is very slow (about 10 days with the hardware that I have available) and
since the training process is not a precise science but we needs to find the right
hyperparameters with different iterations, I have done some testing on shorter
trainings for example 80 epochs.

Wandb: Weights and Biases

In order to evaluate and track all training experiments I’ve used a tool called
Wandb: Weights and Biases (https://wandb.ai/site), wandb integrates
perfectly with pytorch, and through the web interface allows you to monitor and
track experiments, compare different experiments (with a lot of metrics defined
in train process) and versioning models and hyperparameters. Creates visual
plots that allow us, for example, to compare the performance of the loss of two
distinct training sessions, also stores in the cloud all the information that it tracks,
allowing us to analyze it at any time.
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4.3 Dataset: Microsoft COCO
Most of the tests in this thesis use images coming from the COCO dataset, COCO is
the acronym for Common Objects in Context and it is a large-scale object detection
and segmentation dataset widely used in computer vision challenges,it consists of a
collection of images that include 80 different classes of common objects.

It contains more than 200k images annotated for different tasks, not only
object detection,including:

• Object Detection: bounding boxes and instance segmentation with 80 classes

• Captioning: caption descriptions for each image

• Keypoints detections: about 200k images with person istances labeled
with keypoints.

• DensePose: annotation, like points on a person instance, that map person
with a 3d model.

The first version was launched in 2015 [31], then updated in 2017 based on
community feedback. In the tests present in this thesis was used the 2017 release
that contains the following splits:

• Train: 118k samples (18GB) this split has been used to train networks with
knowledge distillation .

• Val : 5k samples (1GB) this split has been used to evaluate the different
networks performance in term of accuracy and mAP, most data in the
literature refer to this split.

• Test: 41k samples (6GB) The annotations of this split are not public, it’s
possible to upload the network results and run a benchmark in the coco
servers,used for competitions, but not used in this work.

I also created a mini-val split (1000 samples) and nano-val split (500 samples),
both are random subset of stock val split, in order to evaluate directly on the
board the performance in terms of speed and latency. This because even just
evaluating very heavy models on a hardware with reduced performance could take
several hours, and as far as performance in terms of speed is concerned an average
on a few samples is sufficient.
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Figure 4.1: This plot shows the number of instances for each of the 80 classes,
compared to the dataset VOC (Visual Object Classes) which is another important
dataset in computer vision, we can see 80 classes for COCO and only 20 for VOC.
The number of instances for the same class is on average 10 times higher for coco,
this makes us understand that it is a relatively large dataset.
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Chapter 5

Experiments and Results

5.1 Post Training Dynamic Quantization
In this section will be exposed the experiments concerning quantization, specifically
post-training dynamic quantization on different types of object detection
models, introduced in 2.2.
Latency, model size and mAP performance will be analyzed on the nxp imx8mp
evaluation board 2.3.1, it will also analyze the behavior of the main engines
optimized for Edge AI: OnnxRuntime and TensorflowLite, all metrics collected
and the quantization process is done by the framework introduced in 3. For
each quantization model, the baseline for comparison is the same model but not
quantized, and both refer to the same engine.

Experiment Config

• Quantization type: post-training dynamic uint8 (both on activation and
weights)

• Device: imx8mp (cpu) 2.3.1

• Models: [Yolov5n, Yolov5s, SSD-mobilenet, faster-RCNN]

• Input Resolution: [640px, 320px]

• Runtime: [OnnxRuntime, TensorFlow Lite]

• Metrics: average latency (ms), mAP .5:.95, model size (MB)

• Dataset (mAP measures): coco-val2017 (5000 samples)

• Dataset (Latency measures) : nano-val (500 samples subset from coco-val)

55



Experiments and Results

5.1.1 Yolo v5n
The nano version is the smallest model of the yolo v5 family, it has only 1.9 million
parameters. It’s a model already highly optimized on performance, and we expect a
slight increase with quantization. This model was quantized with the two different
engines, tensorflow lite and onnx, including a quantized onnx version with the
input image size fixed to 320px (compared to 640px for the other models).
In figure 5.1 we see the average results obtained from running the models on the
board, grouped by inference time, mAP and model size, next, the results are
represented in terms of percent improvement from baseline.
We can see that in all experiments the weight of the model has decreased dra-
matically for both onnx and tflite models. The mAP metrics , as we expected,
decreased in all experiments, with a negative peak in the network with 320px input.
Also the inference speed increased in all experiments, in this field (with input at
640px) the quantized tensorflow lite model performed better, with a 30% decrease
of inference time. The onnx model with input at 320px instead improved in speed
by 4x, however with a notable loss in accuracy.

Figure 5.1: Yolo v5n dynamic metrics quantization comparison on imx8mp
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Onnx Quantization

• Latency: -3% (20 ms faster)

• mAP.5:95: -6%

• Size: -71% (From 7.8MB to 2.26MB)

Onnx Quantization with 320px

• latency: -72% (480ms faster)

• mAP.5:95: -25%

• Size: -74% (From 7.8MB to 1.97MB)

TensorFlow Lite Quantization:

• latency: -34% (435ms faster)

• mAP.5:95: -7%

• Size: -42% (From 3.7MB to 2.13MB)

5.1.2 Yolo v5s
In this experiment we are going to quantize the small version of the family yolov5,
it is larger, accurate and slower than the nano version and contains 8 million
parameters, however this model is already highly optimized and we expect results
in line with previous ones. As in the previous experiment, the model was quantized
with the two different engines, tensorflow lite and onnx, including a quantized onnx
version with the input image size fixed to 320px (compared to 640px for the other
models).
In figure 5.2 we see the average results obtained from running the models on the
board, grouped by inference time, mAP and model size, next, the results are
represented in terms of percent improvement from the baseline.
We note, as in the previous experiment a strong reduction in weight for all models
tested. Compared to the Nano version, the s-version quantized with onnx has
achieved much better performance, since although the latency is reduced by almost
20%, the loss in accuracy is only 2%, all with a model whose size is less than half of
the original. The quantized model with tensorflow lite has similar inference times
as onnx, but significantly lower accuracy.
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Figure 5.2: Yolo v5s dynamic quantization comparison

Onnx Quantization

• Latency: -17% (300 ms faster)

• mAP.5:95: -2%

• Size: -61% (From 27.8MB to 10.9MB)

Onnx Quantization with 320px input

• Latency: -79% (1.6s faster! from 2s to 0.4s)

• mAP.5:95: -17%

• Size: -74% (From 27.8MB to 7.1MB)

TensorFlow Lite Quantization:

• Latency: -34% (665ms faster)

• mAP.5:95: -7%

• Size: -42% (From 14MB to 7.5MB)
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5.1.3 SSD Mobilenet
The network ssd-mobilenet, as the name suggests is designed for use on low
performance devices, is a single shot network like the previous ones and it has 4.2
million parameters. The model in this experiment has been quantized only with
the onnx runtime, and has been tested with input at 640px and 340px.
In figure 5.3 we see the average results obtained from running the models on the
board, grouped by inference time, mAP and model size, next, the results are
represented in terms of percent improvement from the baseline.
We note that the model weight reduction is in line with past experiments, however
compared to the yolo family the quantization with onnx has deteriorated a lot the
performance in accuracy, almost by 1/3. The model was on average faster than
35ms per inference, the curious fact to note is that the model with input at 320px
was on average slower than the model with input at 640px.

Figure 5.3: SSD Mobilenet onnx dynamic quantization comparison

Onnx Quantization

• Latency: -8% (35 ms faster)

• mAP.5:95: -32% (very bad)

• Size: -68% (From 27.9MB to 9MB)
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Onnx Quantization with 320px input

• Latency: -1% (5ms faster)

• mAP.5:95: -34% (very bad)

• Size: -68% (From 27.8MB to 9MB)

5.1.4 Faster-RCNN
FasterRCNN is the largest model analyzed, its size is about 160 MB (the size of
previous models was less than 30MB). It is also the slowest, taking 20 seconds for
a single inference on the test board, it is a multiphase model, less optimized than
the previous ones, in fact the accuracy is not the best.
Although it is not a model designed for use on low performance devices, FasterRCNN
can be a good benchmark to test how quantization affects such heavy and slow
models. The model in this experiment has been quantized only with the onnx
runtime, and has been tested with input at 640px and 340px.
In figure 5.4 we see the average results obtained from running the models on the
test board, grouped by inference time, mAP and model size, next, the results are
represented in terms of percent improvement from the baseline.
We immediately notice the incredible weight reduction, in fact it behaved better
than all other experiments reaching, a weight reduction of 75%, reducing the weight
of the model of 120MB, the inference time was reduced by 5 seconds with a loss in
mAP .5:95 really negligible of 1%.
Input at 320 px further reduced the inference time by as much as 13 seconds,
however, accuracy dropped dramatically by 42%.

Onnx Quantization

• Latency: -25% (4.7s faster, from 19s to 14s)

• mAP.5:95: -1% (very very good)

• Size: -75% (From 160MB to 40MB)

Onnx Quantization with 320px input

• Latency: -69% (13s faster, from 19s to 6s)

• mAP.5:95: -42% (very bad)

• Size: -75% (From 160MB to 40MB)
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Figure 5.4: Faster-RCNN onnx dynamic quantization comparison

5.1.5 General results

The table 5.1 shows in detail the results of all the experiments performed, remember
that the accuracy tests refer to coco-val 2017 and the latency test refer to 500
sub-samples. In the next page we find the bubble chart, which gives us a visual
information of all the models analyzed in the metrics of interest: latency, accuracy,
size. Inference times decreased in all tests, and mAP metrics decreased too (as
expected), It is necessary to evaluate the cost/benefit ratio, which in some cases is
really convenient as in the case of FasterRCNN and Yolo v5s where the benefits in
terms of performance are much greater than what is lost in accuracy. This suggests
that post-training quantization can give excellent results on both medium and
large models. In all the experiments performed, the weight reduction of the models
is significant, both with onnxruntime and tensorflow lite. Quantized Tensorflow
Lite models has slightly lighter than the quantized onnx models, however yolo v5 n
in tensorflow is both slower and less accurate than the onnx version. In addition,
onnx proved to be more portable and practical than tensorflow lite, also in terms
of hardware compatibility. If you need more performance you can consider half the
input to 320px, however the decrease in accuracy can be significant, the best drop
recorded is 17% in the case of yolo v5s, in all other cases it is worse.
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Onnx quantization average results 640px and 320px

Average results over all tested models, mAP is heavy affected by the negative result
of ssd-mobilenet (other models are under 6%.)

• Latency: -13% (-55% at 320px)

• mAp: -10% (-30% at 320px)

• Size: -69% (-73% at 320px)

TensorFlowLite Quantization average results

• Latency: -31%

• mAp: -9%

• Size: -44%

name res engine fps time mAP.5:.95 mAP.5 size
yolov5n 640 onnx 1.45 0.691 0.278 0.454 7.72
yolov5n_quant 640 onnx 1.49 0.671 0.26 0.438 2.26
yolov5n_quant_320 320 onnx 5.24 0.191 0.209 0.35 1.97
yolov5s 640 onnx 0.48 2.061 0.356 0.539 27.79
yolov5s_quant 640 onnx 0.59 1.702 0.349 0.533 10.898
yolov5s_quant_320 320 onnx 2.26 0.443 0.296 0.462 7.094
ssd 640 onnx 2.22 0.451 0.137 0.216 27.919
ssd_quant 640 onnx 2.4 0.416 0.095 0.155 8.982
ssd_quant_320 320 onnx 2.25 0.445 0.091 0.149 8.982
faster 640 onnx 0.05 19.337 0.266 0.443 159.58
faster_quant 640 onnx 0.07 14.569 0.264 0.439 40.20
faster_quant_320 320 onnx 0.16 6.074 0.155 0.268 40.20
yolov5n 640 tflite 0.79 1.259 0.278 0.454 3.699
yolov5n_quant 640 tflite 1.21 0.826 0.259 0.431 2.127
yolov5s 640 tflite 0.43 2.335 0.363 0.547 13.92
yolov5s_quant 640 tflite 0.59 1.7 0.325 0.529 7.522

Table 5.1: General comparison on models with post training dynamic quantization
executed on imx8mp, mAP refeer to coco-val2017, size is expressed in MB and
latency in milliseconds
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Experiments and Results

5.2 Knowledge Distillation
In this section we will expose all experiments regarding knowledge distillation,
we will start by defining a student network as a baseline, and experiments with
different combinations of knowlege distillation methodologies and teacher networks
will be performed.

5.2.1 Student Baseline: YOLO v5n train 80 epochs
I have chosen Yolo v5n as the baseline student network, it is the fastest model of
the YOLOv5 family and being able to improve the performance in terms of mAP of
this model is the goal of the experiments in this section. The authors recommend
a train of 300 epochs, however with the resources available it would have been
unthinkable to run all the experiments on 300 epochs due to time constraints, so it
was decided to use as a reference a training reduced to 80 epochs.

Hyperparameters

The hyperparameters used to train the baseline yolov5 are the official ones re-
leased by the yolov5 authors: https://github.com/ultralytics/yolov5/blob/
master/data/hyps/hyp.scratch.yaml

batch_size : 64
l r 0 : 0 .01 # i n i t i a l l e a r n i n g ra t e (SGD=1E−2, Adam=1E−3)
l r f : 0 . 1 # f i n a l OneCycleLR l e a r n i n g ra t e ( l r 0 ∗ l r f )
momentum : 0 .937 # SGD momentum/Adam beta1
weight_decay : 0 .0005 # opt imize r weight decay 5e−4
warmup_epochs : 3 . 0 # warmup epochs ( f r a c t i o n s ok )
warmup_momentum : 0 .8 # warmup i n i t i a l momentum
warmup_bias_lr : 0 . 1 # warmup i n i t i a l b i a s l r
box : 0 .05 # box l o s s ga in
c l s : 0 . 5 # c l s l o s s ga in
cls_pw : 1 .0 # c l s BCELoss pos i t ive_weight
obj : 1 . 0 # obj l o s s gain ( s c a l e with p i x e l s )
obj_pw : 1 .0 # obj BCELoss pos i t ive_weight
iou_t : 0 .20 # IoU t r a i n i n g th re sho ld
anchor_t : 4 . 0 # anchor−mul t ip l e th r e sho ld
fl_gamma : 0 .0 # f o c a l l o s s gamma ( e f f i c i e n t D e t d e f a u l t gamma=1.5)
# hyperparameters r e l a t e d to data augmentation are not d i sp layed
# . . .

Listing 5.1: Detail of Hyperparameters used to train baseline model, pretty stock
from yolo v5n authors.
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5.2 – Knowledge Distillation

Baseline Results after 80 epochs:

mAP .5:.95 0.2459
mAP .5 0.414
Precision 0.573
Recall 0.375
train box loss 0.0528
train cls loss 0.0286
train obj loss 0.0724

Table 5.2: Yolo v5n baseline metrics after 80 training epochs

Authors’ yolo v5n declared these results after 300 epochs: map.5:95: 0.284 map.5:
0.460 However, the hyperparameters used are not known.

Figure 5.5: Yolo v5n baseline training analysis
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Figure 5.6: Yolo v5n baseline loss analysis
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5.3 Output Based Knowledge Distillation (OBKD)
In this section will be exposed the experiments concerning output based knowledge
distillation, they will be divided into two approaches, train the student network
from scratch or starting from one already trained,also exploring transfer learning .

5.3.1 OBKD with Yolov5 M as Teacher
In this first experiment with output-based knowledge distillation I choose yolo v5m
as a teacher network, two different trainings were performed to evaluate the impact
of the distillation factor (the multiplier of the teacher’s influence for the student’s
predictions),both trainings are performed on 80 epochs.

• Student: Yolo v5n

• Teacher: Yolo v5m (mAP.5:.95 = 0.452 mAP.5 = 0.639)

• Distillation Factor: [1,2]

• Other Hyperparamters: same as 5.2.1

Training Results:

Between the two distillation factors , the network that has demonstrated more
performance in terms of mAP .5:.95, but also all the other metrics, has been the one
trained with a distillation factor of 1, this means that 2 is a parameter too high
and can be invasive for the training process of the student. However, the baseline
results are slightly better, except for recall, where the model with distillation
factor 1 is almost 1% better than the baseline ,that’s an encouraging result.

Metric OBKD dist2 OBKD dist1 Baseline
mAP 0.5:0.95 0.2396 0.2447 0.2459
mAP 0.5 0.3954 0.4034 0.4141
recall 0.3679 0.3833 0.3756
precision 0.5566 0.5476 0.5729
box loss 0.0549 0.0541 /
obj loss 0.0893 0.0834 /
cls loss 0.0339 0.0320 /

Table 5.3: OBKD comparative with different distillation factor after 80 epochs,we
can see that the results are very similar with the baseline.
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Training Analysis

In figure 5.7 we can see the mAP .5:.95 (evaluated on coco-val) trend of the different
models in the 80 train epochs, In the first 20 epochs the baseline has a steeper
course in comparison to the OBKD models, subsequently instead the course of the
model with dist 1 seems even to overtake the baseline for the remaining epochs, even
if of little, this indicates that effectively the OBKD method can improve
the performances of the model. Instead the model with factor 2 seems to
go on average worse than the others, this indicates that 2 is a too aggressive
parameter and therefore the teacher influences negatively on the training of the
student.
In figure 5.8 in addition to the mAP.5, we can see the loss analysis, it is normal
that the 3 different losses are always lower for the baseline, this is because in the
models with OBKD the total loss is given by the loss calculated between the output
of the student and the ground truth, to which is added the loss related to the
influence of the teacher. As before, the network that seems to learn best is the
one with distillation factor 1, the largest spread is found in the object loss, i.e
the confidence related to the presence of objects, in this case the baseline model
reaches very early the horizontal asymptote, which indicates that OBKD models
learn more slowly to predict the presence of an object.

Figure 5.7: OBKD mAP .5:95 analysis with different distillation factors.
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Figure 5.8: OBKD mAP.5 and loss analysis with different distillation factors, We
can see that roughly all the losses have the same trend, except for the one concerning
the confidence on object recognition, where the baseline network converges to the
horizontal asymptote much faster than the others.

69



Experiments and Results

5.3.2 OBKD and Transfer Learning:
Pre-trained Student with frozen backbone

In this experiment with output-based knowledge distillation I choose yolo v5l as
a teacher network, but this time with a different approach. The idea is to apply
transfer learning to knowledge distillation, i.e. starting from a pre-trained
student, freezing the backbone and training only the last layers of the network with
the help of the teacher’s predictions,This process is normally used to fine-tune a
network trained on a different dataset.
Since we start from a pre-trained student we need less epochs for the training, for
this reason I decided to make different training with different epochs [30-50-80]
and different distillation factors.

• Student: Yolo v5n pretrained with frozen backbone

• Teacher: Yolo v5L (mAP.5:.95 = 0.488 mAP.5 = 0.672)

• Distillation factor: [0.5 (80 epochs), 0.8 (50 epochs),1 (30 epochs)]

• Other Hyperparamters: same as 5.2.1

Training Results:

The results as we seen in 5.4 are worse than the previous experiment, even all the
networks trained in this way are worse than the starting network, this means that
transfer learning does not give us any improvement, in fact the influence of the
teacher deteriorate the performance of the base network. We must also
consider that the teacher is different from the previous experiment, and the greater
separation between the student network and the teacher network can influence
learning.

Metric 80e dist0.5 50e dist0.8 30e tl dist1 300e pre-trained*
mAP 0.5:0.95 0.2723 0.2674 0.2518 0.284
mAP 0.5 0.4447 0.4369 0.4332 0.460
recall 0.4115 0.4063 0.4014 /
precision 0.5791 0.5770 0.5960 /
box loss 0.0513 0.0516 0.0521 /
obj loss 0.0802 0.0843 0.0869 /
cls loss 0.0263 0.0269 0.0274 /

Table 5.4: OBKD and transfer learning comparative with different distillation
factor and different epochs,*unknown hyperparameters .
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Training Analysis

There is no baseline plot in the graph because the student’s model is pre-trained
and a comparison would not make sense with a train-from-scratch model. it is also
difficult to make an analysis on models with different distillation factors because
they are trained on different epochs and consequently different adaptations of
learning rate but all networks have in common that they have performed worse
than the starting network, however network that has performed better has been
the one with distillation factor 1 and 80 epochs.
With the transfer learning should be enough much less epochs to converge to the
result, this confirms that the contribution of the teacher in the learning of the
student with the freeze backbone affects negatively.

Figure 5.9: OBKD with transfer learning mAP .5:95 analysis with different
distillation factors and different epochs.
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Figure 5.10: OBKD with transfer learning loss analysis, like as previous experi-
ments we can see the major spread in obj loss,can be one of the most impactful
parameters from OBKD.
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5.3.3 OBKD and pre-trained student
In this experiment I want to compare one of the previous models (OBKD with
transfer learning) with another OBKD training with a always pre-trained student,
but without freeing his backbone, this should allow the student network to adapt
better to the presence of the teacher and should lead to results in less time than
the train from scratch.
The teacher is always Yolov5 L and both tests are evaluated over 80 epochs.

• Student: Yolo v5n pretrained

• Teacher: Yolo v5L (mAP.5:.95 = 0.488 mAP.5 = 0.672)

• Distillation factor: 0.5

• Other Hyperparamters: same as 5.2.1

Training Results:

They are not very good results if we compare them with the same model pre-trained
but without OBKD, both models have worse performance relative to mAP.
we can notice that after 80 epochs the model with transfer learning obtains better
results than the only pre-trained network, this can indicate that probably starting
from a pre-trained student is not the right approach for OBKD, evidently the
network needs to learn through the influence of the teacher directly
from scratch and not to be "confused" by the pre-trained weights.

Metric OBKD-p OBKD-tl 300e pre-trained*
mAP 0.5:0.95 0.2707 0.27237 0.284
mAP 0.5 0.4395 0.4447 0.460
recall 0.4101 0.4115 /
precision 0.5782 0.5791 /
box loss 0.0522 0.0513 /
obj loss 0.0814 0.0802 /
cls loss 0.0287 0.0263 /

Table 5.5: OBKD comparative with pretrained student and transfer learning,
both with dist 0.5 after 80 epochs,we can see that the results are very away from
the authors baseline.
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Training Comparative: pre-trained student vs transfer learning

In the figures 5.11 and 5.12 we can see that both the trend of the mAP and the
Loss of the OBKD network with only pre-trained student (the orange ones) is
much steeper than the network with transfer learning, this actually indicates that
using OBKD the network learns better when also the weights inside the
backbone are updated. Probably with a few more epochs the orange network
would have overtaken the blue, however even if it could pass the baseline it
is not a noteworthy result if a lot of epochs are needed to reach it.

Figure 5.11: OBKD map comparison between pre-trained student and pre-trained
student with frozen backbone

Figure 5.12: OBKD loss comparison between pre-trained student and pre-trained
student with frozen backbone
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5.4 Feature Imitation Knowledge Distillation (FIKD)
5.4.1 FIKD with Yolov5L and Yolov5L as Teachers
In this experiment we are going to analyze another method of knowledge distillation:
Feature Imitation, it is more invasive than output based, the student is not
influenced only by the output of the teacher but also by the behavior of intermediate
layers, more information about FIKD in the appropriate chapter.
In theory with this method the student should learn better to "imitate" the
teacher, specifically we will analyze the behavior of training from scratch with FIKD
models with different teachers (Yolov5M and Yolov5L), we will also analyze
the behavior with a pre-trained student network (no frozen backbone), but in this
case, it would not make much sense to apply transfer learning and freeze backbone,
because this method also exploits the intermediate layers of the student network.
All experiments are based on 80 training epochs and Yolov5N as a student.

• Student: Yolo v5n

• Teacher: [Yolo v5M,Yolo v5L]

• Other Hyperparamters: same as 5.2.1

Training Results:

From the results we can immediately see that the network that has performed better
is the one with yolov5L as teacher, this indicates that actually the knowledge
distillation methods perform better with a more robust and performing teacher.
Even if just a very little, the network FIKD-v5n-T-v5l exceeds the baseline in
the mAP.5:95 metric that we consider most important to evaluate the performance
of the model. This result shows us that the FIKD method can improve
the performance of a student network during his training.

Metric FIKD-v5m FIKD-v5l base 80e FIKD-v5l pre 300e pre
mAP .5:.95 0.2422 0.2465 0.2459 0.2748 0.284
mAP 0.5 0.4021 0.4079 0.4141 0.4451 0.460
recall 0.3763 0.3806 0.3756 0.4076 /
precision 0.5391 0.5347 0.5729 0.5713 /
box loss 0.0530 0.0529 / 0.0514 /
obj loss 0.0726 0.0725 / 0.07116 /
cls loss 0.0289 0.0287 / 0.0265 /

Table 5.6: FIKD metrics and methods comparison after 80 training epochs
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However exactly as in the previous experiments from 5.6 we notice that the
pre-trained approach does not work and even worsens the performance of
the basic network, this leads us to think that the presence of the teacher tends to
"forget" what the student has already learned.

Training Comparative

The dotted line in the figures 5.13 and 5.14 represents FIKD with a pre-trained
student, and it is interesting to note that although there is a lot of spread between
the "virgin" networks and the pre-trained ones, the slope of the latter is steeper.
This indicates that with knowledge distillation the models must start from the
scratch in order to learn efficiently from the teacher, otherwise there is a risk of
worsening the starting position.
Regarding instead the comparison with the baseline, practically in all the plots
the three networks have a similar trend, between the two networks with FIKD the
one that however perform a little bit better is the one with the greatest teacher:
yolov5L,this is not an obvious behavior, as a teacher network who is too distant
in term of performance from the student network may negatively affect them.

Figure 5.13: FIKD mAP .5:95 analysis with different teachers, we can see that
the trend of the trained-from-scratch fikd networks is steeper than the pre-trailed
one.
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Similar to the OBKD experiment we can see in the figure 5.13 that the baseline
trend is slightly above FIKD-v5l up to about 50-60 epochs, then FIKD behaves
slightly better. This transition in the experiment on obkd happens earlier,
close to 20 epochs as we can see in 5.7, this thing indicates that probably more
time is needed for feature imitation than output based in order to influence student
performance.

Figure 5.14: FIKD loss and map.5 analysis of diferent teacher networks.
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5.5 Knowledge Distillation Methods Comparison
In this chapter we are going to make a final comparison with all the knowledge
distillation methods previously analyzed, dividing it into two parts: train from
scratch student and pre-trained approach

Train Student From Scratch

Between the two approaches, OBKD and the more advanced FIKD, there is not
so much distance on the accuracy metrics, although the influence of the teacher
should be more invasive in the case of the feature imitation, which anyway seems to
be the method that has performed better, managing to increase (very slightly)
the score compared to the baseline network of mAP .5:95 that I consider the best
metric to evaluate an object detection algorithm in terms of accuracy.
It is interesting to note that the performance of the two different knowledge
distillation techniques is very similar, but the performance of the same method
(OBKD) with different distillation factors is very different, indicating that this is
an important parameter to consider.
While both knowledge distillation approaches, have shown that it is possible to
improve the training performance of a small network by the hint of a larger one,
but it may take a lot of effort and time in order to find the right configuration
of parameters and teacher networks to achieve tangible results with knowledge
distillation.

Model mAP.5:.95 mAP.5 recall precision
yolov5n-T-yolov5m dist2 OBKD 0.2396 0.3954 0.3679 0.5566
yolov5n-T-yolov5m dist1 OBKD 0.2447 0.4034 0.3833 0.5476
yolov5n-T-yolov5m FIKD 0.2422 0.4021 0.3763 0.5391
yolov5n-T-yolov5l FIKD 0.2465 0.4079 0.3806 0.5347
yolov5n baseline 80epochs 0.2459 0.4141 0.3756 0.5729

Table 5.7: Comparison between different Knowledge Distillation methods, all
networks are trained from scratch for 80 epochs

Pre-trained student

Both knowledge distillation methods, starting from a pre-trained student (even with
the backbone frozen in the case of OBKD) perform worse than the same network
without the re-train with knowledge distillation. Both knowledge distillation
methods, starting from a pre-trained student (even with the backbone frozen in the
case of OBKD) perform worse than the same network without the re-train
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with knowledge distillation. The idea of starting from a pre-trained student derives
from the fact that it is very likely to save time refining an already trailed model
rather than re-training the model from scratch for all the epochs needed, so even
if in twice the number of epochs used (80) the knowledge distillation approach
would perform better it would not be a great result compared to the total time
spent on training the network itself.We can therefore affirm that the techniques
of knowledge distillation have little sense if the student is already a trailed net,
therefore with a "knowledge" already defined, it could be a similarity with the fact
that a man learns in a better way in the first phases of his life, where he has not
yet learned to much.

Model mAP.5:.95 mAP.5 recall precision
yolov5n-T-yolov5l p FIKD 0.2748 0.4451 0.4076 0.5713
yolov5n-T-yolov5L dist0.5 p OBKD 0.2707 0.4395 0.4100 0.5781
yolov5n-T-yolov5l dist0.5 tl OBKD 0.2723 0.4447 0.4115 0.5791
yolov5n-T-yolov5l dist0.8 tl OBKD 0.2674 0.4369 0.4063 0.5770
yolov5n 300 epochs 0.284 0.460 / /

Table 5.8: Pre-trained Knowledge Distillation comparison, "p" stands for pre-
trained,"TL" stands from Transfer Learning.

Figure 5.15: Comparison between different KD networks trained from scratch for
80 epochs, we can see that yolov5L work better as a Teacher respect to Yolov5M

79



80



Chapter 6

Conclusion and Future Work

In this thesis we analyzed the challenge of optimizing deep learning models for
inference on edge devices, we took two different approaches: one is to optimize an
existing trained model in terms of execution speed and also compress its weight
with post-training quantization.
The second approach, instead, concerns to intervening during the training of a
lightweight and fast model to improve its performance in terms of accuracy with
knowledge distillation.
The target device of this thesis is a board based on multi-core arm cpu, with an
embedded linux os and all tests were performed on its cpu.
The experiments with post training quantization, have given positive results, the
performances have averagely improved in terms of execution speed on the board,
the weight of all tested models has been reduced significantly, usually with an
acceptable trade-off in terms of accuracy drop. In some cases it was possible to
achieve an increase in fps of more than 20%, a reduction in model weight up to 75%
and an accuracy trade-off (mAP.5:95) of 1-3%. To get more performance from the
quantization, we can use lower resolution inputs, but in some cases the trade-off
with accuracy has been high. We notice that higher is the model complexity, more
efficient is the quantizazion on that model, resulting in better improvement rates
than smaller models.
Results achieved, makes post-training quantization recommended for deployment
of object detection models on embedded devices, future tests could be a com-
parison with quantization-aware-training.
We consider onnx and onnxruntime a good almost universal support for exporting
and optimizing deep learning models, however, compatibility of quantized operators
with the original ones is not always available. Regarding knowledge distillation,
experiments were less successful than the quantization ones, however if only slightly,
in some cases the performance in terms of mAP of the student network was im-
proved compared to the baseline. Two different knowledge distillation methods have
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been tested, output based (the simplest) and feature imitation, their performances
alternate, however feature imitation seems more promising, training-from-scratch
approach proved to be significantly better than the pre-trained student ones.
Knowledge distillation is a method for those seeking extreme optimization of the
model training process, and with in-depth study and research of hyperparameters,
it is possible for this technique to improve the student model performance in a
more robust way. However, find the optimal configuration can take a lot of effort
and time. Future Knowledge distillation tests can be:

• Comparison of knowledge distillation with different datasets: COCO
(the dataset used in this thesis) is a very-large dataset, smallest or custom
dataset can give different results.

• Test different types of student-teacher combinations: The experiments
on kd were done with teacher and student of the same model family, it
would be interesting to see the differences with different teacher and student
architectures.

• Combine Knowledge Distillation and Quantization: The two optimiza-
tions are completely independent, combining them can bring to achieve model
optimization at 360°.

• Epochs Adjustment: To be able to test different configurations, trainings
have been performed on less epochs than those necessary to complete the
process, however the ideal would be to test these methods on all the necessary
epochs, but there is also to consider that the presence of the teacher in the
training process makes it slower than the vanilla training.

• Different Devices: Our experiments were tested on a single device, it would
be interesting to compare these methods on different types of same category
devices (and with and without tensor accellerator), even smartphones, where
the use of artificial intelligence is increasingly growing and close to the end
user.
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