%y
. w2V Politecnico
L di Torino
W 1859 ,,'

S

N e

POLITECNICO DI TORINO

Master’s Degree in Data Science and Engineering
2021/2022 Academic Year
March/April 2022 Graduation Session

Image Recognition Benchmark with
Different Embedded Solutions: Google
TPU, RockChip NPU, NVIDIA GPU

Supervisor Candidate

Prof. Andrea CALIMERA Davide Emanuele MICELI

Summary

Internet of Things has become more and more popular in recent years.
Smart devices can send messages through the network, transfer a large
variety of data, improve the quality of various services and security.
With the rise of edge computing, many different IoT systems have been
developed, and we now have the possibility to use them to work with
deep neural networks. To make proper use of these devices, we need to
know what are their limits and possibilities, and because each system has
its unique characteristics, what can help is a series of experiments that
make them in comparison under the same circumstances, to understand
what are the advantages and disadvantages for each configuration. This
work is an image recognition benchmark on different edge devices:
Raspberry Pi, Coral USB Accelerator, Coral Dev Board, Rock Pi,
and NVIDIA Jetson Nano. With the help of a test dataset and a
selection of convolutional neural networks, we created a framework to
compare the performances in terms of accuracy, inference time, and
power consumption. From the experiments, it emerged that the Coral
Dev Board is the fastest, Jetson Nano achieved the highest accuracy,
and Rock Pi is the system that consumes less power during inference.
Finally, we used what we learned to train a neural network with a
self-made dataset for a future deployment in one of the systems we
analyzed.

II

Acknowledgements

I would like to thank Giacomantonio Napoletano and Alessandro Stella,
Deepware srl co-founders, who offered me an internship and proposed
this thesis. Giacomantonio also followed me during the development of
this work, suggesting how to proceed with the experiments.

I thank Jose Jaramillo, who also followed me from the beginning of this
thesis. He helped me on all the technical difficulties and i learned a lot
from him.

I thank Professor Andrea Calimera, my supervisor, who put his trust
on this project.

I thank my parents, my grandmas, and my brother Alessandro, who
helped me despite all difficulties, who always believed in me and gave
their support in all my choices. Sharing this victory with you fills my
heart with joy.

I thank my friends, with which i spent my spare time and gave me
another reason to continue on this journey. In particular, I thank
Francesco, for all the patience he had when we were roommates, and
Enrico and Fadil, for the support they gave me in these five years and
a half.

Finally, I would like to thank my beloved Germana, the person who
knows the most about all my fears, my struggles, and the whole path
that has brought me this far, but also the person that by staying by
my side helped me overcome all the difficulties.

Thank you for all you have done. We finally did it.

v

Table of Contents

1 Introduction

2 Background

2.1 Machine Learning and Deep Learning

2.1.1 What is machine learning
2.1.2 Artificial Neural Networks
2.1.3 Deep Convolutional Neural Networks for Image

Classification

2.2 Neural Networks
221 ResNetbO
2.2.2 MobileNet
2.2.3 EfficientNet

2.3 Dataset
2.3.1 Imagenet.
2.3.2 ImageNetv2

24 Python

2.5 GitHub

2.6 What wetested
2.6.1 Coral USB Accelerator and Coral Dev Board . .
2.6.2 Raspberry Pi4 Model B

2.6.3 Rock Pi N10 A

2.6.4 NVIDIA Jetson Nano

2.6.5 Summary of technical specifications

3 Related Works

VI

~ Ot ot Ot

10
10
12
12
13
14
15
15
16
17
17
18
19
19
20

23

4 Implementation

4.1 Key Performance Indicators
4.2 Raspberry Piand Coral
4.2.1 Raspberry Pi setup for Coral USB Accelerator .
4.2.2 Coral Dev Board Setup
423 Modelso
4.2.4 About quantization
425 Code
4.3 Rock PINIOA
4.3.1 Setup
4.3.2 Modelsand code
4.4 NVIDIA Jetson Nano
441 Setup
442 Modelsand Code
4.5 Power consumption
4.6 Training neural networks for
rings dataset
4.6.1 About Transfer Learning
4.6.2 Training description
5 Results
5.1 Accuracy and Inference Time
5.2 Power Consumption
5.3 Rings Training

6 Conclusions and Future Work

Bibliography

VII

27
28
29
29
29
30
30
31
35
35
36
43
43
43
20

02
02
23

61
61
66
68

71

74

Chapter 1

Introduction

We live in the period of the spread of Industry 4.0. In recent years,
concepts like Big Data, Artificial Intelligence, and the Internet of Things
are becoming more common and have an impact on a lot of people’s
life. Think about all those devices of everyday life that from some
time have become “smart”. Thanks to technological progress, these
objects are now equipped with a processing unit, which allows them to
communicate with a network and carry out operations that some years
ago were considered impossible. IoT means this, now even "things" can
access the internet and this adds a completely new set of tools with
very high potential. If we combine the world of IoT with that of Al,
the result can be the application of deep learning algorithms, such as
image recognition or object identification, voice recognition, in devices
called Single-Board Computers (SBC), devices with very small size and
therefore easily combinable with common objects. For example, smart
cameras can identify the objects they are capturing and send a signal to
the network about what they see. This kind of camera could be part of
a safety system or it could be integrated into a car, which could be able
to detect pedestrians thanks to object detection and avoid accidents
(autonomous driving). It is therefore important to know more about
[oT devices, the possibilities are countless not only in terms of security
but also for other applications. Talking about Big Data, because the
amount of data that circulates on the network is becoming higher and
higher, if we let edge devices manage more operations we can create a

1

Introduction

better network with improved capacity and generally more efficient [1,
2].

To give a contribution to the IoT field, in the past months we did a set
of experiments to know more about this world and its current limits.
In particular, our research focuses on the study of SBCs that are used
to run deep learning algorithms.

In recent years we have seen the spread of numerous SBCs, developed
by specialized companies and by brands well known to the public
like Google. What many of the latest models have in common is the
presence within them of a Neural Processing Unit (NPU), additional
processors designed to run algorithms related to Machine Learning and
Deep Learning. The computational power of NPUs, therefore, allows
the boards to execute algorithms like image classification and object
detection with high performances.

Given the variety of architectures on the market and their recent
diffusion, we still don’t have a clear idea of their specifications and the
advantages that each board offers. It would be very useful to compare
the different boards in terms of speed, power consumption, and accuracy
of the neural networks, to understand what are the capabilities of the
tools we have at the moment and what is most useful for our future
projects. One solution could be to run tests on the boards of our interest,
and if the tests are done for all the boards under the same conditions,
so in the same environment and concerning the same variables, we
would refer to a system of experiments called benchmark.

The idea of this thesis comes from the need to have more data about
SBCs performances. Some of the boards already on the market have
been selected (Raspberry Pi [3], CoralUSB Accelerator [4], Coral Dev
Board [5], Rock Pi [6], NVIDIA Jetson nano [7]) and will be subject to
several tests that will lead to the creation of a benchmark dataset. The
task chosen for this research is image classification, when given an image
and a neural network, the latter can classify the image as one of the
classes of its knowledge. To do this benchmark, apart from the SBCs,
two more elements are important, which can be changed, generating
more sets of different experiments: the neural networks to be used and
the dataset. Only one dataset was chosen for this research, which is

2

Introduction

the famous ImageNet[8, 9], while three different neural networks were
selected: ResNet [10], MobileNet [11], and EfficientNet [12]. The goal
is therefore to collect enough data to be able to adequately compare
the different devices and have an idea as precise as possible of the
peculiarities of each board. For example, we could find that a certain
board is quite fast, while another can make very accurate predictions
or has very low power consumption. We hope the results will help
make better future decisions for IoT-related projects and further speed
up the development and the spreading of this new technology in the
market. These tests will be followed by an application on a real case,
with a completely different dataset created for the occasion and using
an appropriate combination of board and neural network, decided based
on the results obtained. All the experiments were performed using the
Python programming language, some of its most famous libraries such
as Keras [13], TensorFlow [14], NumPy [15] but also other libraries
created specifically to be able to comfortably use the boards in the
Artificial Intelligence context.

Chapter 2

Background

Before proceeding with the description of the experiments it is appro-
priate to make an explanation of all the arguments that will be treated.
This chapter will be used to describe the knowledge necessary for the de-
velopment of the experiments, the tools we have used, and the research
material to which we have easy access. Being able to combine all these
elements is the result of the past two years of study, in fact all the topics
we are going to describe were treated during the master’s degree course.
Also the computer engineering background I have proved to be useful,
as it made learning these concepts easier thanks to previous knowledge
of mathematics, statistics, and object-oriented programming.

2.1 Machine Learning and Deep Learning

2.1.1 What is machine learning

Let’s start by talking about the branch of computer science which is the
reason why we are interested in this benchmark, that is the possibility
of implementing artificial intelligence algorithms in edge devices. To
explain what machine learning is, it is appropriate to explain how it
differs from classic programming. To do that, Francois Chollet in his
book “Deep Learning with Python” [16] compares the classic paradigm
of programming with the machine learning one. He says that in the old
paradigm, humans create systems that, receiving an input and a set of

5)

Background

Artificial
Intelligence

Machine
Learning

Deep
Learning

Figure 1: programming diagram from [17]

rules, also defined by humans, have the objective to generate a result.
In Machine Learning, on the other hand, a system receives input and
the expected result, so its objective is to define the rules that relate
the input to the result. Machine learning is an evolution of the old
paradigm: a machine learning algorithm is used to create an intelligent
system that learns the rules autonomously, without humans having to
do it.

To make this happen, a machine learning algorithm must be trained,
that is, it must become aware of the type of input we are interested
in and, for each input, the result we expect. For example, if you want
to create an algorithm that can distinguish spam e-mails from good
ones (ham), you have to give the system several e-mails (input) with
the attached type, spam or ham (result), so that by analyzing the data
can understand what are the characteristics of the two classes of mail.
When the training is over we will have a system that, receiving an email
as input, will be able to tell us if it is a spam email or a ham email.
The operation of giving a result based on input and the rules learned
by the system is called inference, one of the core concepts for the next
chapters.

Background

Another example of the application of machine learning is the weather
forecast, where the algorithm receives temperature measurements taken
periodically and is able to predict what the next measurement will be.

2.1.2 Artificial Neural Networks

Machine Learning models use ad-
vanced statistical methods to de-
fine the rules we need. How-
ever, as the complexity of the Q§
task increases, these models turn Q<
out to be inadequate, there-
fore it is necessary to resort Qé
to other solutions, represented | mputae
in this case by mneural net- g ———
works.

Ne?
ORAOIN
RS

Output Layer

LA

Figure 2: Example of Artificial

Neural Network from [18§]
The name "neural” takes inspi-

ration from the neurons of the hu-

man brain, which by receiving stimuli can generate others. Similarly, a
neural network is made up of neurons that communicate with each other
creating a path through which input is transformed into an output.
Neurons, or nodes, are organized in groups called layers. Each layer
processes the data it receives and sends the result to the next layer
through the links between the nodes.

So we have an input layer, where the input is divided into different
portions. the nodes of the next layer receive some input portions and
assign a weight to each of them, after which if the total received value
exceeds a certain threshold, the node transfers the information to the
next layer, otherwise, it does not transfer anything. The data then
goes through all these filtering steps that define the importance of each
portion of the data, until it reaches the output layer where a result is
decreed. During training, the network receives numerous inputs that
are used to calibrate the weights assigned by the nodes and to define
the connections between the layers, so that each input can be converted

7

Background

into the correct output. The system just described is called an artificial
neural network, composed of an input layer output layer and 1 or 2
internal layers called hidden layers. These are hidden because we only
know the initial data and the result, while what happens inside the
network is unknown to us: we do not know what is the state of data in
the central part, because it is the result of operations that the network
defines autonomously during training, which is why we usually refer to
the inner part of a neural network as "black box".

2.1.3 Deep Convolutional Neural Networks for Im-
age Classification

As we said, artificial neural networks are very simple networks, made
by only a few number of layers. A more complex network, with a high
number of layers, is instead called a Deep Neural Network. These are
systems that are used for tasks where the input consists of a large
number of values, which cannot be simplified by a simple artificial
neural network.

One of the tasks for which it is necessary to use a deep neural network
is image classification. It consists in assigning the correct category or
class to which each input image belongs. Each image of the training
set is therefore associated with a class, and the network must learn the
rules that are used to recognize each class. For example, if we have a
training set with two different classes, the network output will consist
of two nodes, one corresponding to the first class and one to the second.
Only one of those nodes activates, determining the class of the image;
this is an example of binary classification.

For what concerns deep neural networks in the context of image classi-
fication, we can divide the neural network into two parts: the feature
extractor and the classifier. The feature extractor is the component
whose job is to extract crucial information from an input, which might
determine the class. We have already said that in an artificial neural
network, at each piece of data is given a weight. Following the same
reasoning, because in an image there are portions that are more im-
portant than others, the task of the feature extractor is to identify the

8

Background

most important characteristics of the input, and then pass them to
the classifier. The classifier, on the other hand, is the component that,
looking at the characteristics identified by the feature extractor, can
understand at which class they belong to and declare it in the last layer
of the neural network.

In the experiments carried out for this research, we used deep neural
networks which are also "convolutional", we will now explain what this
last term means. The term convolutional is used to refer to those neu-
ral networks that have convolutional layers, which are used to extract
features from an image. Convolutional layers apply filters to image’s
pixels. These filters are used to search for spatial properties between
neighboring elements, because they may suggest the existence of an
important feature in that area. Convolution is an operation that is
applied to the majority of numerical values of the image and consists
of a series of algebraic operations concerning the current pixel and a
variable number of pixels around it. The result of each convolution is
a single value that depends on the properties of the central pixel and
its neighbors. In figure 3 we can see an example of a 3x3 convolution,
done in the pixel in second row and second column.

(-1x3)+(0x0)+(1x1)+
(-2x2)+(0x6)+(2x2)+
(-1x2)+(0x4)+(1x1) =-3

Convolution filter
(Sobel Gx)
Destination pixel

A

A WA

AN AN\

AN N\

AV WA

AT WA WA

Figure 3: Convolution example from [19]

9

Background

Each selected cell is multiplied by the corresponding kernel value,

after which all values are added together to give a single final value. The
kernel values are defined during training, where the network understands
what filters it needs to find the features of each class. In a neural network
for image classification, each convolution layer usually reduces the size
of the image but highlights its main properties.
After the classifier has analyzed the features, it assigns to each class a
probability that the image belongs to it, so after the classification, we
will have a vector of n elements, where n is the number of classes of the
task, formed by values ranging from 0 to 1 representing the probability.
The predicted class is the one that has the highest value in this vector.
We can see in [20] one of the first approaches to image classification
with the use of neural networks.

2.2 Neural Networks

We will now proceed to a brief description of the three convolutional
neural networks that we used in our experiments. The first network
was the ResNet50 [10], while later we focused on more recent networks
and close to the state of the art, that is Mobilenet, both the first [11]
and the second version [21], and three different versions of EfficientNet
[12].

2.2.1 ResNet50

The ResNet is a convolutional neural network presented at the 2016
CVPR. It is available in different versions which differ by number of
layers and number of nodes. The size of a neural network must be
chosen based on the complexity of the task, therefore different versions
of the ResNet have been designed so that this network can be used in
as many situations as possible. Some examples are Resnet18, ResNet32,
ResNet50, ResNet 101, but knowing the structure of the layers that
make up the ResNet it is also possible to create a customized version
from scratch with the preferred number of layers. To give a general
idea of how to choose the width of a network, we can say that if in

10

Background

an image classification task where we have very small images as input,
such as 32x32, we can start with the experiments from a ResNet18 or
ResNet32 rather than a ResNet101. However, this is only a general
guideline that may not apply in all cases.

The version chosen for this research is the one with 50 layers, one of the
most used and with great support from the research community. The
feature extractor is composed of standard 3x3 convolutions, followed by
the classifier which consists of a single classification layer. The name
of this network is an abbreviation of Residual Network because the
concept of residuals is fundamental.

For a brief explanation, follow-
ing the nomenclature of ResNet
papers, we call x the input data
of a given layer, this data will be
transformed by one or more layers
by a function F (), which will lead
to having the result F(x), to which Fx) +x
the input data x, the residue, can
be added. Storing the data x in Figure 4: ResNet section from [10]
the form of a residue can help in
the optimization of the network, because in this way it is possible, if the
circumstances require it, to skip all the operations of a given layer by
setting its weights to 0 and continue in the network using the residue
as the next input.

After the first tests carried out on this network, it was considered
necessary to have other options, as will be shown in the results in the
following paragraphs.

weight layer

X
identity

11

Background

2.2.2 MobileNet

MobileNet was the second net-

work selected for this project. It

is a convolutional network much \%ﬂ %
lighter than ResNet50, both for Dx

the lower number of layers and D N
an effective technique that made
it possible to reduce the size. In
each layer, the standard convolu- @ @ @ @
tion has been replaced with the M
combination of a depthwise con-
volution and the 1x1 or pointwise

convolution. As the researchers %/ % /

who worked on this project say, A v

standard convolution borh filters (©) 1 1 Convoluiona Fiers clld Pintwise Con

and combines inputs into a new A e o

set of outputs in one step. The Figure 5: MobileNet convolutions
depthwise separable convolution from [11]

splits this into two layers, a layer

for filtering and one for combining. This method leads to a significant

lowering of computational costs while maintaining high-level accuracy
in the model.

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

2.2.3 EfficientNet

The last network analyzed is also the most recent. EfficientNet is a
family of convolutional neural networks of different sizes, all available
on Keras (from EfficientNetB0 to EfficientNetB7). The need to create
so many versions of the same network comes from the fact that, as we
have already said, different tasks require networks of different sizes,
so the creators, in their research, focused on finding the most efficient
way to modify the size of a network and make it a tool as versatile as
possible.

Starting from the basic model shown in the EfficientNet paper [12], to
create subsequent versions it is necessary to increase the depth, width,

12

Background

and resolution of the input according to a certain criterion, which in
this case is the same for all variants. After several experiments, the
creators have found that the most efficient method to increment the
three values just mentioned is to raise them to a common value ¢, as
shown in figure 6.

depth: d = o
width: w = 3%
resolution: 7 = ~¢
st.a-f2-4%2~2
a>1,>1y>1

Figure 6: EfficientNet equations from [12]

In this research, we will find results for EfficientNetB0 (S), B1 (M),
and B3 (L), as we have found to be the most popular versions. In
particular, EfficientNetB0 has a 224x224 input dimension, the same as
ResNet and MobileNet, which is great for comparing those networks
with each other.

2.3 Dataset

Another important choice for our image classification benchmark is the
dataset, which can be divided into training set, test set, and validation
set. In our context a dataset is a collection of data used to train
Machine Learning and Deep Learning algorithms, we will now describe
all the possible usages for image classification. The first possible use
of a dataset is to provide data for training, so that the network will
use it to learn to recognize the different classes, this data is part of the
training set. We remember that the goal of a neural network is, for each
class, to identify features that are common to all the images of that
class, so that if we provide as input an image that was not used during
training, the network is still able to identify the class, otherwise, we

13

Background

face the phenomenon called overfitting, which means that the network
works well only in with images used in training, i.e. it is not able to
generalize enough to recognize also other images. To determine if the
network has succeeded in the task of avoiding overfitting, we use a new
set of data that was not present during the training, called the test
set. The test set is given as input to the trained network, to see how
accurate it is with data never seen before. The ideal situation occurs
when the same accuracy results are achieved in both training and test
set, but this is too difficult and in many situations, it is normal to
accept lower accuracy results on the test set.

Sometimes a third type of dataset is used, to test the network in the
middle of training to avoid overfitting, this dataset is called validation
set. During training, the network takes into account the accuracy of the
test set, which is one of the factors that influence how the parameters
change during training.

2.3.1 Imagenet

Regarding our experiments, we need a difficult task to understand what
are the limits not only in terms of board speed but also in terms of
accuracy. In this regard, we have chosen the famous ImageNet [9] as
the dataset for all our tests. Imagenet is a dataset created to provide
the research community with a strong reference point for experiments
of various nature.

It was created following the WordNet hierarchy [22] Which contains
over 100,000 synsets, each describing a meaningful concept in English.
The goal for Imagenet was to provide a good number of images from
each synset, and as a result, Imagenet is a database made of millions of
images. For what concerns the image classification task, 1000 classes,
not hierarchically dependent on each other have been selected; this is
our reference dataset.

Although the original ImageNet was not used directly in this research,
all the neural networks of this project were pre-trained using the image
classification version of ImageNet.

14

Background

2.3.2 ImageNetv2

For the test dataset, the one used for our benchmark, we chose another
version of Imagenet, more recent and with a smaller size.

It is called Imagenetv2 [23], another set of images belonging to the
same 1000 classes of ImageNet, with 10 images per class. Imagenetv2
was created after a data collection process that began a decade after
Imagenet’s publication, which makes the two datasets distinct from
each other, so there is no risk of overfitting when using ImageNetv2
as a test set. After collecting all the images, 10 candidates per class
were selected, resulting in a total of 10,000 images. To choose the 10
candidates for each class, creators used three different criteria, resulting
in the creation of three different versions for ImageNetv2 [24].

2.4 Python

As already mentioned, this is a computer science project, so we need
a programming language to carry out all the experiments. For this
purpose, we have chosen Python.

Python is an object-oriented programming language, widely used in
Machine Learning and Deep Learning. Since it is a high-level pro-
gramming language, we have numerous libraries with pre-built classes
and functions that provide excellent tools to work easily in this field.
Among the most used libraries for this research we find:

o Numpy[15], which provides numerous mathematical functions and
methods of managing Python data structures;

» Keras [13] and Tensor Flow [14], which are libraries made for the
implementation of deep learning algorithms. They offer a series
of methods to manage the entire deep learning pipeline, from the
definition of a neural network to the setup for training and test of
neural networks;

 Pycoral [25], rknn-toolkit [26], and TensorRT [27] are the libraries
specifically designed to work with the boards we have selected.

15

Background

From them, we used all the functions necessary for the inference
tests.

2.5 GitHub

Now we can talk about a resource that turned up to be crucial for this
project. As for the code part, we must say that it was not written all
from scratch. On Web, we have the opportunity to find a huge amount
of work done by other programmers, which is available as open-source,
so for the base structure of a script, you can choose to start from
someone else’s work and then add your contribution. After all, it is not
necessary to reinvent the wheel, especially if it would lead to a delay
on the schedule and a waste of time that we could have used to do
more experiments. It is for this reason that most of the scripts that
we will see are made using as a starting point some works we found on
the Github platform [28]. GitHub is a place where numerous projects
are collected in the form of repositories. It is an interface that makes it
easier to access jobs that, for the versioning aspect, are based on git, the
most efficient system for coordinating different users who are working
on the same project. Inside GitHub, it is possible to find files made by
private users, code related to published papers, and official repositories
of various companies, which are published to provide examples and
tutorials for users who approach a particular topic for the first time.
This last category is what we are interested in. Each company that has
released a board that we have analyzed has a repository where we can
find several introductory examples, useful to familiarize ourselves with
the devices and their libraries.

We want to give credit to the original sources of the script we will see
later, so they are all grouped here [25] [26] [29] [30] [31] [32], although
before each script the source will be again specified.

16

Background

2.6 What we tested

To conclude this chapter, we will

show the systems we have analyzed.

For each of them, there will be a brief description of their characteristics,
followed by some technical specifications that allow us to make a first
estimate of the results we are going to obtain.

2.6.1 Coral USB Accelerator and Coral Dev Board

Google Coral is a family of devices
for Al acceleration. Among these,
we have selected the USB accel-
erator and the Dev Board. The
former is a device made only by a
Tensor Processing Unit (TPU), so
its only purpose is to do tensor op-
erations. For this reason, to use it,
it must be connected to a host de-
vice that redirects all the calcula-
tions to the accelerator. The Dev
Board is instead an SBC, so it can
be used autonomously. this is the
substantial difference we find be-
tween the two Coral devices. From
the benchmark perspective, the
two devices are more or less the
same, in fact we used the same
benchmark script for both. How-
ever, we will notice some differ-
ences in the results.

As the technical page says,
Both the USB accelerator and the

Dev Board have 4 Tensor Opera-
tions Per Second (TOPS) and 2

Figure 7: Google Coral USB Ac-
celerator and Dev Board

17

Background

TOPS per watt, while the Appli-

cation Programming Interface (API) used on python is pycoral, which
requires the use of neural networks in tflite format. Pycoral accounts
for all the operations required for inference: from loading the model to
printing the results.

2.6.2 Raspberry Pi 4 Model B

To carry out the experiments on
Coral USB Accelerator we have
chosen Raspberry Pi 4, which al-
lows the installation of pycoral. In
particular, the model we used is
the one with 4 GB of RAM. We de-
cided to run the experiments also
on the Raspberry alone, which is
an exception in the context of this
benchmark. The reasons are that
it is a very popular device, pretty
familiar to the public, and to have
the possibility to highlight the difference in terms of performances
between it and NPU devices. The Raspberry Pi is used for many appli-
cations in the IoT world, a lot of customization options are possible
through different sensors sold separately, which allow its use in many
situations. Among the most common we cite the temperature/humid-
ity sensor, microphone, and the PiCamera. As we will see later, the
experiments are carried out using the same framework as the Coral
devices.

Figure 8: My Raspberry Pi 4

18

Background

2.6.3 Rock Pi N10 A

Rock Pi N10 is one of the SBCs
with integrated NPU released by
Radxa. The model available to us
is version A, the smallest among
the three available, with 4 GB of
RAM, including 1 GB used for
NPU operations. The processor is
the RK3399pro, one of the best re-
leased by this manufacturer. The
board supports different types of
model formats (pb, tflite, onnx,
caffe) and the API used is rknn- Figure 9: Rock Pi N 10
toolkit, which has all the necessary

methods for inference.

2.6.4 NVIDIA Jetson Nano

One of NVIDIA’s proposals for
Deep Learning on embedded sys-
tems is Jetson Nano, the latest
board of our research. This com-
pany has been offering for sev-
eral years various solutions for
deep learning through the use of
GPUs, such as the GeForce series
for Personal Computers. This al-
lowed the creation of a common
framework for deep learning called ___
NVIDIA Jetpack SDK, also avail- Figure 10: NVIDIA Jetson Nano
able for our board, together with

the possibility of using CUDA kernels, another common system among
NVIDIA devices.

19

Background

2.6.5 Summary of technical specifications

Figure 11: A comparison of the size of the devices. From left to
right: Raspberry Pi, Coral Dev Board and USB Accelerator, Rock Pi,
NVIDIA Jetson Nano

Let’s now take a look at the technical specifications, with which it is
possible to make the first comments.

Raspberry Pi Coral USB Coral Dev Board Rock PiN10 A NVIDIA
Accelerator Jetson Nano
Hardware | Broadcom BCM2711, | ML Accelerator: CPU: NXP i.MX8M SoC | CPU: Dual Cortex-A72, | GPU: 128-core
Quad core Google Edge TPU | (quad Cortex-A53, frequency 1.8Ghz with | NVIDIA
Cortex-A72 (ARM \8) | coprocessor: Cortex-M4F) quad Cortex-A53, Maxwell ™
64-bit SoC @ 1.5GHz | 4 TOPS (int8); 2 GPU: Integrated frequency 1.4Ghz architecture-base
2GB, 4GB or 8GB TOPS per watt GC7000 Lite Graphics GPU: Mali T860MP4, d GPU
LPDDR4-3200 ML Accelerator: Google | OpenGL ES 1.1/2.0 CPU: Quad-core
SDRAM (depending Edge TPU coprocessor: | /3.0/3.1/3.2, Vulkan ARM® A57
on model) 4 TOPS (int8); 2 TOPS | 1.0, Open CL 1.1 1.2, NPU: 472
per watt DX11 GFLOPS

NPU: Support 8bit/16bit
computing, up to

3.0TOPs computing

power
API pycoral pycoral pycoral rknn-toolkit jetson-inference,

TensorRT

model int8 int8 int8 int8 fp32
precision
model tlite edge-tpu.tflite edge-tpu.tflite .pb, .onnx, .caffe, .onnx, .trt
format tilite

20

Background

Looking at the technical datasheet, we see that Jetson Nano has the
slowest NPU (472 GFLOPS), but it is the only device we can use to
work with floating-point numbers, for which we expect excellent results
in terms of accuracy.

We also expect good results in terms of speed from both Coral devices,
and we will see if Rock Pi flexibility on model format will play an
important role.

21

Chapter 3

Related Works

The world of System on Chip (SoC) and IoT is generally very complex
and full of challenges [33]. It is very important to explore this field, as
the development of edge computing, complementary to that of cloud
computing, facilitates the diffusion of many innovative applications [1,
2]. Many researchers have dedicated their time studying these tools
and analyzing the potential of both IoT systems and individual Boards.
This chapter is used to describe researches that are similar to ours.
The contribution of the researchers who published the following papers
allowed us to understand many of the limitations of IoT networks and
individual boards, some of which were also selected for our project.
First, we will see works that define a benchmark system for IoT devices,
then we will continue with the works more focused on the performance
of different SBCs, which are the most related.

[oT devices, apart from Deep Learning, can be used for many dif-
ferent applications, many of which involve the transmission of a large
amount of data. RIoTBench, described in [34] is a study on the use
of Distributed Stream Processing Systems (DSPS) for streaming loT
applications. This benchmark covers 27 different IoT tasks divided into
4 different categories. For each task, latency, throughput, jitter, and
memory utilization were analyzed, while for the implementation, they
used Virtual Machines with Intel Xeon processors.

IoTABench [35] Is an IoT benchmark toolkit that can be adapted to
23

Related Works

different use cases, based on the user’s needs. In the paper, its usage
is demonstrated in the application of smart metering, done after the
generation of a large amount of synthetic data. The experiments took
place in a cluster of 8 HP servers.

An important element of our research is the application of deep
learning models. This is important not only in SBCs but also in other
systems. [36] is a study about the application of deep learning models
in Leading-edge systems.

We now describe works that have an objective similar to ours. They
are not the first approach of deep learning in edge devices, like in [37],
but they follow the same line and add measurements about inference
time and power consumption. In [38] We see a Benchmark on SBCs
ASUS Tinker, Raspberry Pi 4, Coral Dev board, NVIDIA Jetson Nano,
Arduino Nano 33 BLE. They analyze the power consumption during
the experiments, while the MobileNet network is used to calculate
inference time and accuracy. The images for the tests are taken from
the Imagenet validation set. In particular, 5000 of the images of this
set are used.

The study in [39] focuses on Coral Dev Board, USB Accelerator,
Jetson Nano, and Intel NCS. They stored results for memory usage,
execution time, and energy consumption.

Finally, in [40] we can see a comparison between the Coral dev board
and Jetson Nano, for which they calculated memory and power con-
sumption, inference time, and accuracy. The accuracy is calculated
on 100 images using Inception and GoogleNet as neural networks.
These two networks were also used in inference time tests together with
different versions of MobileNet.

At this point, we can ask ourselves what is the goal of our work
compared to those just presented. The aim is to collect data that are
useful to better understand the boards and improve their usage. In this
regard, we created a framework that helps us understand the behavior
of different combinations of board models datasets and neural networks,
so that each test gives a result for each of these configurations. We

24

Related Works

analyze a model already seen in other works, which is Mobilenet, but we
introduce tests on ResNet50 and EfficientNet. Accuracy is calculated
on Imagenetv2 and a new board is introduced, which is Rock Pi N10.
For these last two elements, we are not aware of studies where they
have been applied before.

25

Chapter 4

Implementation

In this chapter we will first talk about the Key Performance Indicators,
that is the characteristics of the boards for which we are interested
in collecting data. Then we will show the implementation of the
experiments, where each paragraph is dedicated to a different board
and divided into an initial part about setup, followed by the description
of the code and the actual tests. Finally, we will talk about the training
carried out for our dataset of rings using the transfer learning technique.
Many times during this chapter, the term x86 will be used to refer
to the personal computer with Windows OS that was used for some
preliminary operations before the actual tests, and subsequently also
for the final training. All the boards are Linux-based systems, including
Debian and Ubuntu builds.

27

Implementation

4.1 Key Performance Indicators

As we have already said, our benchmark is concerned with measuring
several parameters simultaneously. We decided to focus our research
on measuring accuracy, inference time, and power consumption.

e Accuracy: it is the percentage of images in the test set that the
neural network can classify correctly. In our case, it is therefore
a ratio between the number of correct predictions and the 10.000
ImageNetv2 images. Although it may seem that the same neural
network gives the same results regardless of which board it is
deployed on, this is not always true, as the same network in different
formats can give different results. Measuring the accuracy will help
to understand if the limitations of our SBCs can affect the accuracy
of some neural networks.

o Inference time: for each image of the test set we measure the
time the neural network takes to give a result. We will then have
10,000 measurements for each experiment, for which we will show
the average value.

o« Power Consumption: There is a clear difference between the
consumption of a board in an idle state and the consumption while
running an application. With this metric, we want to identify the
amount of this increase, trying to understand what are the factors
that determine it. By doing that, we can also calculate the total
consumption during the entire inference cycle. This will help to
understand what are the limits in terms of autonomy.

28

Implementation

4.2 Raspberry Pi and Coral

Since the Raspberry Pi and Coral Devices are used in parallel for most
of the experiments involving them, for a better understanding, this
section will describe the work of all three of them.

4.2.1 Raspberry Pi setup for Coral USB Accelera-
tor

Before using the USB accelerator it is necessary to perform some setup
operations in the Raspberry. The first thing to do is to install Edge
TPU Runtime, adding the corresponding repository to the system,
and updating with sudo apt-get update. Then we can install the
libedgetpul-std library and connect the accelerator to the Raspberry.
Finally, we install the pycoral API with apt-get.

4.2.2 Coral Dev Board Setup

First, we need to download the image file containing the device’s
operating system. It is possible to use BalenaEtcher from a PC to
install the file inside a microSD. Meanwhile, the board, which has not
be alimented yet, must be set in microSD boot mode, correcting the
position of the dedicated four switches if necessary. When the microSD
is ready, it can be inserted into the board and the latter powered. In
this phase the board is installing the files contained in the microSD
into the eMMC memory, so that, after this operation, the eMMC boot
mode can be set, returning the switches in their original position. For
convenience reasons, we preferred to work with both the accelerator and
the Dev Board via Raspberry, to manage the two devices from a single
host and to be able to perform some actions in parallel. To do this it is
necessary to install Mendel-development-tool (mdt) on the Raspberry,
a command-line tool that allows interacting with the Dev Board. The
two devices are put into communication via USB/micro-USB cable.
After which we can use the mdt start command to access the Dev Board

29

Implementation

terminal from the Raspberry. !

4.2.3 Models

Pycoral is an API created from Tensor Flow Lite. For this reason,
there is a lot in common between the methods of the two libraries. For
example, to use pycoral the models has to be in tflite format. There is
a difference between the models used to test the Raspberry and those
used for Coral devices: we use standard tflite models for the Raspberry,
while for Coral we have to compile the models into edgeTPU format,
which is required by Coral TPUs. The MobileNets and EfficientNets
that we decided to use are available on GitHub [43], Both in tflite and
edge-tpu.tflite format. For the ResNet50, it was necessary to compile
the model manually, which can be done in two ways: it is possible to
install the edgetpu-compiler on the device of interest if it matches the
requirements, or we do the conversion on Google Colab with a specific
script [32]. From x86 we used a script to load the model directly from
Keras and convert it into tflite, while the second conversion in edgetpu
was made using Google Colab. Another very important requirement of
pycoral is quantization: all models must be converted into int8 precision
in order to be used. MobileNet and EfficientNet models were ready
to use, while for ResNet50 the quantization was done during the tflite
conversion.

4.2.4 About quantization

For a correct understanding of a factor that is important both in this
and in the following sections, it is convenient to do a small digression
to clarify the concept of quantization.

In the IoT world, memory and speed optimization are often important.
In our Deep Learning context, this means that we have to make sure
that neural networks are as efficient as possible. One of the techniques
that save memory and make networks generally faster is quantization.

for more information about setup, please visit [41] and [42]

30

Implementation

Quantization refers to the optimization process that involves the shift
of neural network elements from one type of precision format to another.
For example, it is possible to quantize a network from fp32 precision
to int8, which generally makes it more suitable for deployment on IoT
devices. As we will see later, quantization plays a very important role in
many of the tests performed. We have already seen that Coral devices
require int8 quantization, we will see what changes where we do not
have this constraint.

4.2.5 Code

The creation of the code starts from a script available in the official
GitHub repository of pycoral [25], where we can find examples about
image classification, object detection, semantic segmentation, and many
other tasks. After installing the repository requirements with install-
requirements.sh, we tried the script classify-image.py. It receives a
network and an image to be classified as arguments, then the inference
is done five times and we can see the time for each try. The chosen
class and the respective confidence are printed at the end. From this
point, we need to modify the code to let ImageNetv2 be the input,
calculate the inference times and total accuracy. To have an average
of the single inference times, the body of the code is put inside many
cycles as the number of images in the test set. To measure the inference
time, we store the execution time of the invoke() method, which is
used to perform the prediction. Each inference time does not take into
account the time needed to load the input and its preprocessing but
only the moment of prediction, as shown in the following code excerpt.

start = time.perf_ counter ()
interpreter .invoke ()
inference time += time.perf counter()—start

It is important to note that different models may have different output
ranges. For example, the ResNet output goes from 0 to 999, where the
first class is identified with 0 and the last with 999, while the range
of the MobileNet goes from 1 to 1000. Since the script is unique and

31

Implementation

receives the model path as an argument, it is necessary to check the
output range of the model we are going to use inside the code. It is
possible to obtain this information using getoutputdetails() and add the
appropriate offset to the result of the prediction since the ground truth
range is always (0.999). For example, if we are using a Mobilenet and
we are making a prediction for a class 0 image, a correct result of the
MobileNet would be 1, so you must always add 1 to the value of the
output to see if there is a match with the result.

The same code can be used for all three configurations described
in this paragraph: Raspberry Pi, Coral USB, and Coral Dev Board.
In the case of the Raspberry Pi + Coral tests, if the model received
from the command line is a standard tflite, the inference is done on
the Raspberry, while if the model is an edge-tpu.flite all the operations
are automatically redirected to the USB accelerator. With the Dev
Board, we only test edgetpu models, which are treated in the same
way as in USB Accelerator. This automation is possible thanks to the
pycoral framework, built to manage the calculations sending them to
the correct unit.

32

=W N =

ot

(=2}

~1

1C

11

12

13

w

14

15

16

17

18

19

2(

21

22

23

24

26

27

28

29

30

31

32

33

34

Implementation

Lint as: python3

Copyright 2019 Google LLC

#

Licensed under the Apache License, Version 2.0 (the '
License") ;

you may not use this file except in compliance with the

License.

You may obtain a copy of the License at

#

https://www.apache.org/licenses /LICENSE—2.0

#

Unless required by applicable law or agreed to in writing,
software

distributed under the License is distributed on an "AS IS
BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied.

See the License for the specific language governing
permissions and

limitations under the License.

import argparse

import time

import glob

import numpy as np

from PIL import Image

from pycoral.adapters import classify

from pycoral.adapters import common

from pycoral.utils.dataset import read_label_ file

sifrom pycoral. utils.edgetpu import make interpreter

import sys

def main () :

NUM_CLASSES = 1000
IMG_ PER CLASS = 10
offset = 0

top_k =1
threshold = 0.0

33

Implementation

inference time = 0
predicted = 0

parser = argparse.ArgumentParser(
formatter_ class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument (
'—m’, —model’, required = True, help = ’"File path of
tflite file.”)
parser.add_argument (

'—i 7, '—input’, required = True, help = ’"Dataset to be
classified.”)

args = parser.parse_args ()

interpreter = make_interpreter(xargs.model.split (’'@"))
interpreter.allocate tensors ()

#different models have different output range, the
following variable is used to check if the range is
(0:999) or (1:1000)
output range = interpreter.get output details() [0][’
shape_signature’][1]
if output_range > NUM_ CLASSES:

offset =1

Model must be uint8 quantized
if common.input_details(interpreter , ’dtype’) != np.uint8:
raise ValueError(’Only support uint8 input type.’)

size = common.input_size(interpreter)
for ¢l in range(1000):
class_images = glob.glob(f"{args.input}/{cl}/«")
for n in range(10):
image = Image.open(class images|[n]).convert('RGB").
resize (size , Image.ANTIALIAS)

common. set__input (interpreter , image)

Run inference
start = time.perf_ counter()

34

Implementation

interpreter.invoke ()

inference time += time.perf counter() — start

classes = classify.get_classes(interpreter , top_k,
threshold)

if classes [0].id = ¢l + offset:

predicted += 1

sys.stdout.write(f"\rdoing inference: {cl+1}/1000
classes done")

print ("\n\n—RESULTS———")
print (f '"AVG INFERENCE TIME:{ inference time /10} ms’)
print (f "ACCURACY: {predicted /NUM CLASSES«IMG PER CLASS} ")

if name =— ' main :
main ()

4.3 Rock Pi N10 A

4.3.1 Setup

All setup operations are described on the official Radxa forum [44],
Where we can also find links to the required .whl files. After downloading
the image file and preparing the microSD, we need to update the
operating system, including the Radxa repository. This is followed by
the installation of the NPU management unit and the initialization
of the NPU, required at each boot-up. We then proceed with the
installation of several python libraries, i.e. all TensorFlow and rknn-
toolkit requirements, before proceeding with the installation of these
two libraries. The version we choose for rknn-toolkit is 1.4.0. It is not
the latest, but it is the most stable in terms of dependencies with other
libraries. The TensorFlow version is 1.14.0 also for dependency reasons.
In fact, after trying to use a tensorflow2 build, which would have
facilitated some of the subsequent operations, we encountered numerous
conflicts that led to a fresh reinstallation of the operating system, after
which all the recommended versions were installed correctly.

35

Implementation

4.3.2 Models and code

For the MobileNets, we used the tflite version previously tested on
Coral, while for the ResNet50 we have to load it in .pb format and then
do the conversion in .rknn, which is required by rknn-toolkit.

By the time of writing, there is not a method to test the Efficient-
Nets on Rock Pi.

We can find a repository containing some introductory examples also
for this board [26]. In order to perform inference with rknn-toolkit
these are the steps to follow:

« creation of the RKNN() object, which will manage all the operations
related to inference;

o configuration and preprocessing with rknn.config(): allows to set
the values for normalization, rearrange the input channels, and
choose the type of quantization;

 loading the model: a different method is used for each format. For
tflite models we only need to specify the file path as argument,
while for models in .pb format we must also define the input name,
the output name, and input size;

ret = rknn.loadtensorflow (
tfpb = "ResNetb0.pb",
inputs = ["inputl"'],
outputs = ["fc1000/Softmax"],
inputsizelist = [[224,224 ,3]]

+ building of the model with rknn.build (), where the model is also
quantized if necessary;

« exporting the model in the required format (rknn) with rknn.exportrknn()

36

Implementation

o preprocessing of the input image with other libraries, in this case,
cv2;

« starting the runtime with rknn.initruntime ()

o inference with rknn.inference ()

The only differences between the code for ResNet and the MobileNet
one are the model loading function, the output range control, and the
quantization, which is needed only if we use ResNet, as MobileNets are
already quantized.

The quantization of ResNet50 is a process that takes several minutes
but is required only once, as the model is subsequently saved in .rknn
format so ready to be used for other code executions. Initially, the
quantization was never successful: after a few minutes from the begin-
ning of the quantization, the execution always got interrupted. After a
brief analysis of the code, it seemed like there weren’t any issues related,
so the next attempt was to monitor the RAM consumption while the
script was running. On Linux systems, we can use the top command,
which allows this type of control. In this way, we found that the RAM
consumption increases dramatically at the time of quantization and
that 4 GBs are not enough. So the process gets interrupted when the
RAM reaches its maximum capacity. The solution to this problem was
to use a swap file, which is a portion of memory used to store data
that cannot stay in the RAM because of its saturation. In this way,
we finally can finish the quantization. The swap file was created using
part of the microSD memory. It was initially 2GB large, but when we
found that the process requires around 6GB of RAM in total, we opted
for a 4GB swap file. Since this type of memory is significantly slower
than RAM’s, we have noticed a further slowdown in the process, but as
mentioned above, we do this operation one per model. Although it was
not necessary, I also tried to quantize MobileNet to see if we encounter
the same problem. Given the small size, I expected a lower RAM
requirement, as well as a shorter execution time. The quantization of
such a small model does not require the use of a swap file. We do not
have a precise threshold that indicates when it is necessary to use it,
but in general, we could say that if we plan to use a large network we

37

Implementation

should be prepared to address the RAM saturation issue.

After testing ResNet and MobileNets, the last group of networks re-
maining is the EfficientNets, but unfortunately, the experiments on
them have not been completed. Here we can see all the changes made
for EfficientNet, starting with the ones regarding the model structure:

As for MobileNet, for which we didn’t find any issues, we tried to
use the same tflite model used for the raspberry;

We tested a tflite EfficientNet made by converting a Keras model
from x86;

We tried to download the tflite version of EfficientNet directly from
TensorflowHub, both the int8 version and the fp32 to be quantized;

We tried to get the .pb version of the model with the same procedure
used for ResNet, but there was a problem with the output name,
which has to be specified in rknn.loadtensorflow(). During the
conversion to .pb it is possible to see the name of the network
output, but when the same name is declared in loadtensorflow(),
the program throws an error because it cannot find a layer with
that name;

All the tests described above were carried out in conjunction with the
following changes to the code

Since one of the first operations that EfficientNet does is to normal-
ize the input, We tried to remove normalization from rknn.config();

o We tried to change the channel order of the input image, both

from rknn.config() and with a cv2 method called during the input
definition phase;

o For the preprocessing before the inference we first used cv2, then

Pillow.Image() and finally the same preprocessing that is done for
EfficientNet on Jetson Nano

e The model was built with and without quantization.

38

=W N =

6

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

Implementation

We are currently waiting for a response from the Radxa Forum [45], The
only portal we have access to, where we have explained the problem.

Copyright 2020 Rockchip Electronics Co.,Ltd.
All rights reserved.

Redistribution and use in source and binary forms, with or
without

modification, are permitted provided that the following
conditions are met:

#

#

#

#

#

#

1. Redistributions of source code must retain the above
copyright notice ,

#

#

#

#

#

#

#

this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above
copyright notice ,

this list of conditions and the following disclaimer in the
documentation

and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names
of its contributors

may be used to endorse or promote products derived from
this software without

specific prior written permission.

#

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS"

AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE

ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF

39

25

26

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Implementation

SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS
. OR BUSINESS

INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY
, WHETHER IN

CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE)

ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

import time

import platform

import numpy as np

import cv2

from rknn.api import RKNN
import glob

import argparse

import sys

if name =— " mam ":
parser = argparse.ArgumentParser (formatter_ class =
argparse . ArgumentDefaultsHelpFormatter)
parser .add_argument (
‘—m’, —model’, required=True, help= ’"File path
of .tflite file.”)

parser .add_argument (

'—i’, ’—input’, default="./imagenetv2_ top", help
= ’Path of dataset directory.’)
parser .add_argument ("—quant"', action="store true’, help=

"whether of not to quantize the model with rknn framework,
only ResNet needs to be quantized")
parser .add_argument ('—mobilenet" jaction="store true")
args = parser.parse_ args|()
offset = 0
if args.mobilenet:

offset =1
Create RKNN object
rknn = RKNN()
img_height = 224
rknn. config (

quantized dtype="asymmetric quantized—u8",

40

YUt s W

o0 o) -~ -~ ~ ~ ~ ~ -~
= O © W N o cC)

® o
[V

90

92

Implementation

Direct Load RKNN Model

ret = rknn.load tensorflow (
tf_pb="ResNet50.pb",
inputs=["input 1"],
outputs=["fcl1000/Softmax"],
input_size list=[[224,224 3]]

)

if ret != 0:
print (f"Load {args.model} failed!")
exit (ret)
if args.quant:
ret = rknn.build (do__quantization=True, dataset
dataset —samples. txt")
else:
ret = rknn.build (do__quantization=False)
if ret!=0:
print (f"Build {args.model} failed!")
exit (ret)

init runtime environment
print ('"—> Init runtime environment")

if "aarch64' in platform.platform():
target = "rk3399pro”

else:
target = None

ret = rknn.init_runtime ()

it ret != 0:
print ("Init runtime environment failed")
exit (ret)

Set inputs
predicted = 0
times = []
for ¢l in range(1000):
files = glob.glob(f"{args.input}/{cl}/«")
for n in range(10):
img = cv2.imread(files [n])

41

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

—
N [~}
~1

—

Implementation

img = cv2.resize (img, dsize=(img_ height ,
img_height))

img = cv2.cvtColor (img, cv2.COLOR_BGR2RGB)

Inference

start__time = time.time ()
outputs = rknn.inference (inputs=[img])
delta = time.time() — start_time

times.append (delta)

pred = np.array (outputs).argmax()
print (pred,cl)
if pred = cl 4+ offset:

predicted += 1

sys.stdout.write(f"\rdoing inference: {cl+1}/1000
classes done")

Calculate the average time for inference.
mean__delta = np.array (times).mean ()
fps = 1 / mean_ delta

print ("\n\n—RESULTS———")

print ("average(sec):{:.3f} . fps:{:.2f}" . format(mean delta,
fps))

print (f"accuracy: {predicted/100}%")

rknn. release ()

42

Implementation

4.4 NVIDIA Jetson Nano

4.4.1 Setup

There are two ways to give power to the Jetson Nano. You can choose
whether to use the appropriate jack port or the micro-USB input. If
you choose the first option and keep the second free, it can be used
to communicate with a host using software like PuTTy [46]. After
installing the operating system via microSD we proceed with the initial
configuration, where we accept the terms of service and we set the
language, time, default keyboard, and administrator account. After
these steps, we will already have JetPack installed [47], a package
containing NVIDIA’s API, TensorRT. Another important element is
CUDA [48], installed separately: it is used to manage the tensor with
the use of GPU. Then we proceed with the download of the repositories
that we will use as a starting point for the inference.

4.4.2 Models and Code

The scripts are a modified version of examples taken from two different
repositories. The first one [29] is installed with c¢make, which offers
some customization regarding additional libraries and models to down-
load. Among the prebuilt models, we also find ResNet50. To test the
ResNet50 we need to modify the example script to receive ImageNetv2
as input and calculate the KPIs.

This script works with functions from the jetson-inference class, a high-
level wrapper of the original TensorRT API, which is written entirely
in C ++.

For the experiments on MobileNets and EfficientNets, we start from an-
other repository [30], which uses the actual Python API. Here is a brief
description of the pipeline that can be implemented with TensorRT: we
start with the creation of the logger, the unit used to print errors above
a certain severity. We proceed with the initialization of the builder,
which is used to load and build the onnx model. Models in onnx format
must be converted to engine format before being used on tensorRT, so

43

—

N

'S

11

Implementation

this is the next step. This is followed by the runtime creation, input
definition, and inference. The test script for EfficientNet and MobileNet
skips the conversion step from onnx to engine, so we need to have a
model in engine format before running the test. To do this I used two
other scripts from the same repository: the first performs the conversion
from pb. to onnx, while the second from onnx to engine. The pb model
can be obtained by saving a Keras model in saved model format. This
will generate a folder with a name defined by the user, where inside
we will find the file we are interested in called savedmodel.pb, which
is used as input for the first conversion. the entire conversion process
takes from 30 minutes for MobileNet to approximately 90 minutes for
EfficientNetB3. Between the two conversions, the one that converts a
.pb model to onnx is the slowest. The models are never quantized, so
we find them with fp32 precision in engine format.

#
Copyright (c¢) 2021, NVIDIA CORPORATION. All rights reserved

:’;#

Licensed under the Apache License, Version 2.0 (the '
License") ;
you may not use this file except in compliance with the

License.
i|# You may obtain a copy of the License at
i
http://www.apache.org/licenses /LICENSE—2.0
i

Unless required by applicable law or agreed to in writing,
software
distributed under the License is distributed on an "AS IS'

BASIS,

2|# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied.

3|# See the License for the specific language governing

permissions and
limitations under the License.

S|

import os

44

38

39

40

41

43

Implementation

sfimport sys
olimport argparse

import numpy as np
import tensorrt as trt

import pycuda.driver as cuda
slimport pycuda.autoinit

from image_ batcher import ImageBatcher
2s| import glob

import time

class TensorRTInfer:

nnn

Implements inference for the EfficientNet TensorRT engine

nnn

def __init__ (self, engine_ path):
:param engine_path: The path to the serialized engine
to load from disk.

nnn

Load TRT engine

self.logger = trt.Logger(trt.Logger .ERROR)

with open(engine path, "rb") as f, trt.Runtime(self.
logger) as runtime:

self .engine = runtime. deserialize cuda_engine(f.

read ())

self.context = self.engine.create_execution_context ()

assert self.engine

assert self.context

Setup I/O bindings

self.inputs = []

self.outputs = []

self.allocations = []

for i in range(self.engine.num_bindings):

is_input = False
if self.engine.binding is_input(i):
is_input = True

45

88

89

90

91

Implementation

name = self.engine.get_binding name (1)
dtype = self.engine.get_binding dtype(i)
shape = self.engine.get_binding shape(i)
if is_input:
self .batch size = shape([0]
size = np.dtype(trt.nptype(dtype)).itemsize
for s in shape:
size %= s
allocation = cuda.mem_alloc(size)
binding = {
“index 7 1,
‘name’: name,
"dtype ': np.dtype(trt.nptype(dtype)),
"shape ': list (shape),
"allocation ’: allocation ,
}
self.allocations .append(allocation)
if self.engine.binding is_input(i):
self .inputs.append(binding)
else:
self.outputs.append(binding)

assert self.batch size > 0
assert len(self.inputs) > 0
assert len(self.outputs) > 0
assert len(self.allocations) > 0

def input spec(self):

Get the specs for the input tensor of the network.
Useful to prepare memory allocations.

:return: Two items, the shape of the input tensor and
its (numpy) datatype.

return self.inputs [0]["shape’], self.inputs[0][dtype

']

def output_spec(self):

nnn

Get the specs for the output tensor of the network.
Useful to prepare memory allocations.

46

93

100

101

102

103

104

105

106

107

108

109

110
111

112

113

114

115

116

117

118

119

120

121

Implementation

:return: Two items, the shape of the output tensor
and its (numpy) datatype.

nnn

return self.outputs[0]['shape’], self.outputs[0][’
dtype "]

def infer (self , batch, top=1):

nnn

Execute inference on a batch of images. The images

should already be batched and preprocessed, as prepared by

the ImageBatcher class. Memory copying to and from
the GPU device will be performed here.

:param batch: A numpy array holding the image batch.
:param top: The number of classes to return as
top_predicitons, in descending order by their score. By

default .

setting to one will return the same as the maximum
score class. Useful for Top—5 accuracy metrics in
validation .

:return: Three items, as numpy arrays for each batch
image: The maximum score class, the corresponding maximum

score, and a list of the top N classes and scores.

R

Prepare the output data

output = np.zeros(xself.output_spec())

Process 1/0O and execute the network

cuda.memcpy htod(self.inputs[0]["allocation], np.
ascontiguousarray (batch))

start = time.time ()

self.context.execute v2(self.allocations)

delta = time.time ()—start

cuda.memcpy dtoh(output, self.outputs[0][allocation

Process the results

classes = np.argmax(output, axis=1)

scores = np.max(output, axis=1)

top = min(top, output.shape[l])

top_classes = np. flip (np.argsort (output, axis=1),
axis=1)[:, 0:top]

47

)

—

ot

—

—

—
N [\ N [~} [}
:] B

—

130

131

132

133

134

135

136

137

138

139

140
141

142

143
144

145

146

147

148

149

150

151

152

153

154

155

156

157

Implementation

top_scores = np.flip (np.sort (output, axis=1), axis=1)
[:, 0O:top]
return classes , scores, [top_classes, top_scores],
delta
def main(args):
NUM__CLASSES=1000
IMG_PER_CLASS=10
predicted = 0
total time = 0
offset = 0
if args.mobilenet:
offset =1 #mobilenets have output range (1,1000)
trt _infer = TensorRTInfer(args.engine)

for ¢l in range(NUM CLASSES) :
batcher = ImageBatcher(args.input + f"/{cl}", x
trt _infer.input spec(), preprocessor=args.preprocessor)
for batch, images in batcher.get_batch():
classes , scores, top ,delta= trt_infer.infer (
batch)
total time += delta
for i in range(len(images)):
if classes[i] = cl + offset: #adjust the
range of ground truth if the network is mobilenet
predicted += 1
if args.top = 1:
print (images[i]|, classes[i], scores|[i],
sep=args.separator)
else:
line = [images|[i]]
assert args.top <= top[0].
for t in range(args.top):
line .append (str(top[0][i][t]))
for t in range(args.top):
line .append(str(top[1][i][t]))
print (args.separator.join(line))
print (f"accuracy: {predicted /NUM CLASSES«IMG PER CLASS}")
print (f"inference time: {total time/10} ms")
if mname =— " main ":
parser = argparse.ArgumentParser ()

if|t
if|t

48

159

160

161

162

163

164

165

166

167

168

169

170

Implementation

n

parser .add_argument ("—e
engine to infer with")
parser .add_argument('—i", "—input",
help="The input to infer, either a
single image path, or a directory of images")
parser .add_argument('—t", "—top", default=1, type=int ,
help="The amount of top classes and
scores to output per image, default: 1")
parser .add_argument('—s", '—separator", default="\t",
help="Separator to use between
columns when printing the results, default: \\t")
parser .add_argument('—p", "—preprocessor", default="V2'
choices=["V1", "VIMS", "V2'"],
help="Select the image preprocessor
to use, either V2’ V1’ or 'VIMS’, default: V2")
parser .add_argument ('—mobilenet" jaction="store true")
args = parser.parse_ args|()
if not all([args.engine, args.input]):
parser.print help ()
print ("\nThese arguments are required: —engine and
—input")
sys.exit (1)
main(args)

, "—engine" , help="The TensorRT

49

Implementation

4.5 Power consumption

This section will describe the
methodology we used to measure
power consumption, which is the
same for all devices. Including the
power consumption measurements
is important to understand how
much energy we need for the task
we are interested in. We will see
the change in consumption from
idle to inference mode, as well as
if there is a relationship between
consumption and neural network size.

Figure 12: USB Tester

First, let’s see how the devices are powered. Since we are dealing
with modern SBCs, we only need one mobile phone power adapter. In
particular, the one we used has a USB port, in which we can connect
a USB/type-C or USB/micro-USB cable. With these tools, we can
power up all the boards of our research. At this point, we need a device
specifically designed to measure the power generated by this power
supply: the consumption analysis was possible thanks to an additional
instrument capable of detecting voltage, current, and consequently the
power consumed, the USB Tester by RuiDeng.

It has a USB input and output so that it can be inserted between
the power supply and the USB cable. Looking at the device display
(figure 13) we can see the values we are interested in, like the voltage
and current on the left, and in the lower part, from left to right, the
total power consumed and the current average power consumption.
Since it is not possible to save all
the readings of the device in a file,
the measurement of the power can
be considered an estimate, since it
is made by looking at the values 00417aWh 09.79W
in the display of the tester.

Fi 13: USB Tester displ
However, it can be said that the gure ester display

50

Implementation

following methodology is suitable

to get a clear idea of the power consumed by the devices: it is possible to
reset the counter of the total power consumed at the desired moment. In
our case, the counter is set to zero at the start of the inference script, so
that when it ends, the value we see on the counter will be the total power
consumed during the execution of the script, then we divide it by the
total execution time to get the average power consumption. Although
this method is subject to some human error, for our research we can
accept the uncertainty of a few mW that come with this measurement
method. The results we will see on consumption will be in Watts, with
a precision of one decimal place, so that we can guarantee the reliability
of the data we will see. For the measurements in idle state, we deal with
values that are much less subject to fluctuations, so a simple reading of
the current power from the tester is sufficient. With a decimal digit
precision, our measurements for the idle state are in line with what we
see in [39].

For each board, we can measure the consumption directly from the
link to the power adapter. The only exception is for the Coral USB
accelerator, connected to the raspberry which is then connected to the
power supply. Since there is no situation in which it is possible to
use the accelerator alone, we take as a reference the power from the
raspberry side, as shown in figure 14, although we measured also the
Accelerator consumption.

Figure 14: tester on raspberry side and on Coral side

51

Implementation

4.6 Training neural networks for
rings dataset

The last set of experiments is about an application on a real case of
some of the tools we explored during previous tests. The objective is
to deploy a deep learning model in an edge device for ring recognition.
For this purpose, we created a dataset of 100 classes one for each ring.
Each class has 32 images, one for different orientations and positions of
the ring, which were captured by two cameras that made the captures
in a controlled environment. In particular, the photos were all taken
at the same brightness and with the same background, to recreate the
environment in which we expect the model will be applied. The aim
of the following experiments is to understand the complexity of the
task using different neural networks, to finally choose the most suitable
board for the deployment.

4.6.1 About Transfer Learning

We now proceed by explaining a technique we used in this phase which
has facilitated the learning of the rings classes by neural networks.
Reminding some concepts explained in the background chapter, we
know that a neural network for image classification can be divided into
feature extractor and classifier, with the purpose of feature extractor
being to identify particular characteristics of the classes we analyze.
By doing that the feature extractor learns to recognize different shapes
and constructs, and because some of these features can be useful in
some other situations, experts have wondered if this kind of knowledge
can be transferred into another training for a new dataset [49]. This
is how transfer learning was born. It consists of training on a new
dataset using part or all of a feature extractor that has been previously
trained on another dataset, and what we practically do is to take a
pre-trained network, freeze a portion of layers and then train only the
final ones. When a layer is frozen its weights do not change in value
during training, we do it to maintain the knowledge that the network
has acquired by training with the old dataset.

52

Implementation

We tried to do transfer learning starting from the neural networks we
used for the benchmark, in their pre-trained version with ImageNet,
keeping all the layers of the feature extractor frozen and only training
the classifier. Transfer learning is particularly effective when the dataset
we want to train with has a small amount of data and it is in some
way similar to the one neural network was initially trained on. These
requirements fit particularly well with our situation.

4.6.2 Training description

We now give a brief description of the training script, run on x86.
The following training was possible thanks to the work made by Yixing
Fu in 2020 that we can find in [31].

the first few lines deal with loading the dataset. In particular, the
image dataset_from_ directory () method is used. For a correct use
of this method, the dataset was organized into a series of folders, each
containing a different class. We can see here the first part of the script,
where we can also have a look at some training images.

import tensorflow as tf

import tensorflow_datasets as tfds
import numpy as np

from tensorflow import keras

IMG_SIZE is determined by EfficientNet model choice
IMG_SIZE = 224

batch size = 32

NUM_CLASSES = 104

import pathlib

data_dir = "./Images'

data_dir = pathlib.Path(data_dir)

image_count = len(list (data_dir.glob(' «/*.jpg’)))

train_ds = tf.keras.preprocessing.
image dataset_from_ directory (
data dir,

validation_ split=0.2,

53

Implementation

n
)

subset="training
seed =42,
image_size=(IMG_SIZE, IMG_SIZE) ,
batch_size=batch_size)

val ds = tf.keras.preprocessing.image_ dataset from directory (
data dir,
validation_ split=0.2,
subset="validation"
seed =42,
image_size=(IMG_SIZE, IMG_SIZE) ,
batch_size=batch_size)

)

import matplotlib.pyplot as plt

plt . figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
for i in range(9):
ax = plt.subplot (3, 3, i + 1)
plt .imshow (images[i].numpy() .astype("uint8"))
plt.title (class_names|[labels[i]])
plt.axis("off")

54

Implementation

Figure 15: Some images from the rings dataset

The following part is where the network is loaded, in this example we
see EfficientNetB0. Note that the classifier is not included (include_ top
= False), we will recreate it from scratch, because we need to train the
classifier and because we have a different number of classes, 104 against
1000 classes for ImageNet.

After we freeze all the feature extractor layers, the new classifier is
created and linked to the rest of the network with tf.keras.Model ().
We then proceed with the compilation of the model and with the actual
training using fit().

from tensorflow.keras.applications import EfficientNetBO0
from tensorflow.keras.applications.efficientnet import (
preprocess__input ,
decode_predictions ,
)
from tensorflow.keras import layers
def build model (num classes):
inputs = layers.Input(shape=(IMG SIZE, IMG SIZE, 3))
X = preprocess_input (inputs)

99

Implementation

model = EfficientNetBO0 (include_top=False, input_tensor=x,
weights="imagenet")

Freeze the pretrained weights
model. trainable = False

Rebuild top

x = layers.GlobalAveragePooling2D (name="avg pool") (model.
output)
x = layers.BatchNormalization () (x)

top_dropout_rate = 0.2

x = layers.Dropout(top_dropout_rate, name="top dropout")
%)

outputs = layers.Dense(NUM_CLASSES, activation="softmax",

name="pred") (x)

Compile

model = tf.keras.Model(inputs, outputs, name="
EfficientNet ")

optimizer = tf.keras.optimizers.Adam(learning rate=le—2)

model . compile (
optimizer=optimizer , loss="
sparse_categorical crossentropy', metrics=["accuracy"]

)

return model

import matplotlib.pyplot as plt

def plot__hist(hist):
plt.plot (hist.history["accuracy"])
plt.plot (hist.history["val accuracy'])
plt.title ("model accuracy")
plt.ylabel ("accuracy")
plt.xlabel ("epoch")
plt.legend (["train", "validation'], loc="upper left")
plt .show ()

model = build_model (num_ classes=NUM_CLASSES)

epochs = 25

56

Implementation

hist = model. fit (train_ds, epochs=epochs,

val ds, verbose=2)
plot__hist (hist)

validation data=

Epoch 1/25
63/63 — 109s — loss: 3.7723
2.2509 — val accuracy: 0

s|Epoch 2/25

63/63 — 109s — loss: 1.1580
1.4438 — val accuracy: 0

Epoch 3/25

63/63 — 110s — loss: 0.7674
1.4389 — val accuracy: 0

Epoch 4/25

63/63 — 108s — loss: 0.5993
1.3991 — wval accuracy: 0

Epoch 5/25

63/63 — 109s — loss: 0.5186
1.4150 — val accuracy: 0

Epoch 6/25

2[63/63 — 108s — loss: 0.5347

1.4454 — val accuracy: 0

sl Epoch 7/25

63/63 — 109s — loss: 0.4763
1.6066 — val accuracy: 0

5| Epoch 8/25
163/63 — 118s — loss: 0.4595

1.3635 — val_ accuracy: 0

/| Epoch 9/25
163/63 — 109s — loss: 0.4158

1.4163 — val accuracy: 0
Epoch 10/25
63/63 — 110s — loss: 0.3992
1.5568 — val accuracy: 0
Epoch 11/25
63/63 — 115s — loss: 0.3342
1.6526 — val accuracy: 0

s|Epoch 12/25

63/63 — 123s — loss: 0.3676
1.6036 — val accuracy: 0

s|Epoch 13/25

— accuracy:

.4008

— accuracy:
5992

— accuracy:
.6052

— accuracy:
.6232

— accuracy:

6633

— accuracy:

7034

— accuracy:

.7054

— accuracy:

L7395

— accuracy:

L7395

— accuracy:

.7194

— accuracy:

7034

— accuracy:

L7355

o7

L3741

.7286

.8207

.8503

.8708

.8743

.8878

.8933

.9089

.9109

9129

.9084

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

val loss:

w
=

t

Implementation

163/63 — 125s — loss: 0.2876 — accuracy: 0.9284 val_loss:
1.6836 — val accuracy: 0.7315
Epoch 14/25
63/63 — 131s — loss: 0.3469 — accuracy: 0.9119 val_loss:
1.6859 — val accuracy: 0.7234
Epoch 15/25
63/63 — 126s — loss: 0.3176 — accuracy: 0.9214 val loss:
1.8548 — val accuracy: 0.7275
Epoch 16/25
63/63 — 118s — loss: 0.3010 — accuracy: 0.9309 val_loss:
1.6683 — val accuracy: 0.7415
33| Epoch 17/25
63/63 — 133s — loss: 0.3192 — accuracy: 0.9289 val_loss:
1.9135 — val accuracy: 0.7174
Epoch 18/25
16/63/63 — 124s — loss: 0.3474 — accuracy: 0.9269 val loss:
2.0325 — val accuracy: 0.7214
Epoch 19/25
63/63 — 121s — loss: 0.3540 — accuracy: 0.9234 val_loss:
2.0994 — val accuracy: 0.7315
Epoch 20/25
63/63 — 127s — loss: 0.3056 — accuracy: 0.9289 val_loss:
1.8089 — val accuracy: 0.7255
Epoch 21/25
63/63 — 133s — loss: 0.2721 — accuracy: 0.9349 val_loss:
2.0058 — val accuracy: 0.7134
;| Epoch 22/25
63/63 — 1158 — loss: 0.3344 — accuracy: 0.9259 val_loss:
1.9703 — val accuracy: 0.7154
s| Epoch 23/25
163/63 — 132s — loss: 0.2463 — accuracy: 0.9439 val_loss:
1.8110 — val accuracy: 0.7255
/| Epoch 24/25
5/63/63 — 131s — loss: 0.3256 — accuracy: 0.9279 val_loss:
1.9864 — val accuracy: 0.7214
Epoch 25/25
63/63 — 118s — loss: 0.3179 — accuracy: 0.9304 val_loss:
2.0116 — val accuracy: 0.7174

Transfer learning is already effective in the first training epochs. How-
ever, now that the classifier has adapted enough to the new task, it
is possible to carry out a second training, with the possibility for all

o8

Implementation

the layers to modify their weights but only by a small amount. The
second training cycle, therefore, involves all the network layers but with
a much smaller learning rate.

def unfreeze model (model) :
We unfreeze the top 20 layers while leaving BatchNorm
layers frozen
for layer in model.layers[—20:]:
if not isinstance(layer, layers.BatchNormalization):
layer.trainable = True

optimizer = tf.keras.optimizers.Adam(learning rate=le—4)
model . compile (
optimizer=optimizer , loss="
sparse_categorical crossentropy', metrics=["accuracy"]

)

unfreeze model (model)

epochs = 20 # @param {type: "slider', min:8, max:50}
hist = model. fit (train_ds, epochs=epochs, validation_ data=
val ds, verbose=2)

plot__hist (hist)

The same script was used for Resnet50 and Mobilenetv2. We will see
the results in the next chapter.

59

Chapter 5

Results

5.1 Accuracy and Inference Time

Here we can see the results for all models, in terms of accuracy and
inference times, starting from the Raspberry and proceeding with the
same order we saw in chapter 4.

| network | accuracy | inference time (ms) |
ResNet50 48.,58% 670
MobileNetv1 69.51% 128
MobileNetv2 70,96% 116,9
EfficientNetB0 (S) | 76,83% 443.3
EfficientNetB1 (M) | 78,81% 686,7
EfficientNetB3 (L) | 80,92% 1684,9

Table 1: Results on Raspberry Pi

The first comment should be made on the ResNet accuracy. We
remember that here the models are fully converted to int8, which can
be a problem for models that were initially designed to work in a more
precise format, such as ResNet. This is why there is this much difference
in accuracy between ResNet and other models, which maintain high
levels of accuracy despite quantization. About inference times, it’s
no surprise to see such slow results on the Raspberry. Since it hasn’t

61

Results

an NPU, all the tensor operations are managed by the CPU, which
we know is much less performing than the rest of the devices in this
research. However, it’s interesting to see how a board so widely used
nowadays behaves in such a difficult task.

‘ network | accuracy | inference time (ms) ‘
ResNet50 48,70% 60.8
MobileNetv1 69,44% 4.7
MobileNetv2 70,96% 5,1
EfficientNetB0 (S) | 76,85% 9.1
EfficientNetB1 (M) | 78,87% 13,3
EfficientNetB3 (L) | 80,95% 36

Table 2: Results on Coral USB Accelerator

| network | accuracy | inference time (ms) |
ResNet50 48,70% 48.9
MobileNetv1 69.44% 3,2
MobileNetv2 70,96% 3.4
EfficientNetB0 (S) | 76,85% 5.4
EfficientNetB1 (M) | 78,87% 9,2
EfficientNetB3 (L) | 80,95% 25,6

Table 3: Results on Coral Dev Board

For the inference time of the two Coral devices, we can immediately
note their potential: only a few milliseconds per inference for MobileNets
and EfficientNetB0. The other models report slower times, but this is
justified by their larger size. Given these results, we can say that the
two Coral devices provide enough computing power for complex image
classification tasks. This is also quite promising if we would use them
for object detection in the future, as they could reach a high number of
FPS.

62

Results

| network | accuracy | inference time (ms) |
ResNet50 46,15% 23
MobileNetvl | 68,89% 11
MobileNetv2 | 70,69% 12

Table 4: Results on Rock Pi

We can see the same problem as in Coral with the ResNet. Again, due
to quantization, the accuracy is quite low, but we notice a significant
improvement in inference time. Rock Pi registers the lowest inference
time for the ResNet.

‘ network | accuracy | inference time |
ResNet50 69,74% 29.1
MobileNetv1 73,34% 18,8
MobileNetv2 74,07% 19,3
EfficientNetB0 (S) | 78,93% 29.6
EfficientNetB1 (M) | 80,62% 46,2
EfficientNetB3 (L) | 83,07% 94 .4

Table 5: Results on Jetson Nano

With these results, we can appreciate the advantage of working with
floating-point numbers. For the first time, ResNet accuracy reaches
nearly 70%, which is in line with most of the previous results. We also
notice a slight improvement in all other models, with a maximum in
EfficientNetB3, reaching 83% accuracy.

To have a comparison between neural networks in their original form
and their modified versions, on x86 and with the use of Keras, we
carried out some accuracy tests with respect to ImageNetv2 dataset.
Here we can compare all the already seen accuracy values with the
baseline.

63

Results

network | baseline | Raspberry | Coral USB | Coral Board | Rock Pi [Jetson |
ResNet50 69,71% 48.58% 48,70% 48.,07% 46,15% | 69,74%
MobileNetv1 70,69% 69.51% 69,44% 69,44% 68,89% | 73,34%
MobileNetv2 70,46% 70,96% 70,96% 70,96% 70,69% | 74,07%
EfficientNetBO (S) | 74,78% 76,83% 76,85% 76.85% 78.93%
EfficientNetB1 (M) | 76,81% 78.81% 78.87T% 78.87% 80,62%
EfficientNetB3 (L) | 81,00% 80,92% 80,95% 80,95% 83,07%

Table 6: Comparison with the baseline

We already knew that ResNet gets penalized for switching to int8,
here we can see the amount of this loss is and how the Jetson Nano is
the only board capable of replicating the original results. Looking at
the results obtained by the other networks, we can see that they don’t
suffer from the quantization, an indication that these are networks
originally designed for the eventual use in int8 format.

Accuracy

48.58%

Raspberry Pi [, 70.96%
T s0.92%

48.70%

RPi + Coral USB [, 71.03%
T 80.95%

48.70%

Coral Dev Board I, 71.03%
e 80.95%

46.15%

Rock Pi I 70.96%

69.74%

Jetson Nano |, 72.07%
T a307%

0 10 100 1000

ResNet50 B VobiteNetv2 B EfficientNet L

Figure 16: Accuracy chart

64

Results

Inference Time (ms)

670

Raspberry Pi - | 122
0 43,3

60.8

RPi + Coral USB MR 4.7
]

9.1

5.4

Coral Dev Board [N 3.2
[]

23

Rock Pi I 11

29.1

Jetson Nano | 2.2
] 2.5
0 10

ResNet50 B VobiteNetv2 B EfficientNet L

100 1000

Figure 17: Inference time chart

Here we can see the results for inference time on a logarithmic scale.
Coral devices are generally the fastest, while in the last place, apart
from the Raspberry, we find the Jetson Nano. As we mentioned earlier,
this is what we expected when looking at the specifications declared by
the manufacturers.

65

Results

5.2 Power Consumption

The following results will refer to the average consumption of the SBCs
during the inference operations.

‘ usage ’ Raspberry ‘ Coral USB ‘ Coral Board ‘ Rock Pi | Jetson ‘
idle 2.5 3.9(1) 2.8 2.5 1.1
ResNet50 5.4 5.1(1.2) 4.2 3.3 4.2
MobileNetv1 5.4 5.2(1.1) 4.7 3.3 3.7
MobileNetv2 5.4 5.3(1.1) 4.7 3.3 3.9
EfficientNetBO (S) 5.4 5.4(1.2) 4.8 5.5
EfficientNetB1 (M) 5.4 5.4(1.3) 4.8 5.7
EfficientNetB3 (L) 5.5 5.6(1.5) 4.8 6.2

Table 7: Power consumption (W)

Let’s start by talking about the raspberry. Since the beginning of
this research, it has been the device with the least expectations, given
the absence of the NPU, and as we have already seen it is in last place
in terms of speed and average in terms of accuracy. For the power
consumption, the only field in which the raspberry could have a chance
to stand out compared to the other boards, we find results quite far
from optimality, confirming the inefficiency of this device in this spe-
cific context. In this regard, it is very interesting to note that power
consumption is lower during tests with the USB accelerator connected
to it. This happens because raspberry CPU requires a lot of effort for
doing so many operations, which results in high power consumption.
Raspberry is generally more suitable for smaller and easily manageable
neural networks. The lower power consumption given by the use of
the accelerator demonstrates its efficiency in the field for which it was
designed.

A small comparison could be made between the Coral Dev Board and
Jetson Nano: the first one is a device that gave very similar results,
which depend very little on the type of neural network that is used,
while Jetson Nano consumes less with small networks like MobileNet
but more with larger networks. It seems that in the Jetson Nano the

66

Results

power consumption is strictly related to the neural network. The reason
for that may regard the board’s architecture and how the operations
management system works, which may be different from the Dev Board.
The last device to discuss is Rock Pi. Its results are the most encour-
aging, as it is the board with the lowest average consumption for all
the three neural networks we have been able to test. We can’t know
whether the same trend would be followed also in the EfficientNet case,
but for the moment we can say that we have excellent results.

Power Consumption (W)

2.5

RSP DeITY Pl e —— .4
T 5.4

[— 3.9 (1)
5.1(1.2)

Rl -+ Tl U S B N 5.3 (1.1)
e 5.6 (1.5)

2.8
4.2

Coral Dy Board e .7
T 4.8
I 25

33

ROCK P o —— 33

[— 11

eSO AN O e 3.c
S .2

0 2 4 6 8
B e ResNet50 [VobileNetv2 B EfficientNet L

4.2

Figure 18: Power consumption chart

67

Results

The data just seen refer to the average power during the inference.
Another fact that we can show is the total energy consumption. The
reason why we show the next table is to have a measure that includes
inference time and power consumption at the same time, to understand
in terms of energy whether it is better to opt for a fast but consum-
ing board or another with opposite characteristics. Please note that
the results refer only to the consumption during inference,so without
counting all the other operations in between.

‘ network ‘ Raspberry ‘ Coral USB ‘ Coral Board ‘ Rock Pi | Jetson ‘
ResNet50 3.638 310 206 76 122
MobileNetv1 691 25 15 36 70
MobileNetv2 631 27 16 39 75
EfficientNetBO (S) 2.415 49 26 162
EfficientNetB1 (M) 3.741 72 44 264
EfficientNetB3 (L) 9.200 202 123 589

Table 8: Comsumption during inference (mJ)

5.3 Rings Training

| network | training accuracy | validation accuracy |
ResNet50 97,20% 61,92%
MobileNetv2 97.65% 65,93%
EfficientNetBO (S) 98,40% 75,95%

Table 9: Training results

Although we have tried all types of Networks used for the benchmark,
we noticed after the first tests that the EfficientNet achieved slightly
better results, which is why more tests were done on this network in
particular. We tried more changes on the number of epochs, learning
rate, and preprocessing, which led to more small improvements. The
following results are not a comparison between the networks, instead,
there are used as a report of the current state of the training, where we

68

Results

show the best results obtained so far. We cannot say that the study on
this dataset is finished, as many tests can be done to deal with the most
evident problem which is overfitting. The difference between training
accuracy and validation accuracy in the best result is 22.45%, which
cannot be ignored. Usually, we always try to find a balance between
the two accuracy, which in this case has not been achieved, so we hope
to further improve these results in the future.

69

Chapter 6

Conclusions and Future
Work

There are several conclusions that we can make from this research:

o The data gathered with these experiments prove to be useful in
choosing a configuration based on different constraints. It is very
interesting that for each of the 3 KPIs we have chosen we identify a
different board as the best. Coral devices are the fastest, in fact even
in our experiments we notice a certain consistency with the declared
specifications, reaching the best inference times. NVIDIA Jetson
Nano is the board with the highest accuracy, thanks to the use of
networks with high precision, while for the power consumption, if
we consider the values during inference, the best choice is Rock
Pi. Since all these devices are recent, we have not found any
critical issues in the boards, for example, a Jetson Nano offers
viable performance even for speed and consumption, and the same
thing also applies to the other devices. Therefore, for the image
classification task with the use of SBCs, Coral, Jetson, and Rock
Pi can all be taken into consideration, and the final choice in each
situation will depend on a 3-way trade-off that must be analyzed
case by case.

71

Conclusions and Future Work

e The ResNet50 is a neural network widely used for various projects.
However, since was not designed for the deployment on edge de-
vices, which in most cases requires model quantization, it has few
applications in the IoT field. However, we found valid alternatives,
including MobileNet and EfficientNet, able to work in int8 and
generally more versatile.

e It is important to note that all tests were performed on a very
difficult task. Not all image classification scenarios are of this
type: in many cases, we work with datasets with a fewer number
of classes, all distinguishable from each other. Therefore, using
the most accurate board, in our case the Jetson, is not always
the best solution. Some tasks do not need a neural network too
complex or fp32 precision to reach high accuracy values, and in
those situations, the choice of the board can be more related to
speed. Power consumption could also play a fundamental role in
some situations, especially if we want to use the device without a
direct power source. It is therefore essential to have a clear idea
of the problem and the tools in our possession, to make the best
choice in each situation.

We have come to the end of this thesis, where the last thing left to
ask is if this research can be improved, or what we would have done
if we had had more time available. We will then describe the possible
improvements, which could be made in the near future.

As in any other field, the state of the art of this project is in constant
evolution, which is why any future work has to involve the exploration
of new SBCs or new convolutional neural networks, also concerning the
results we have achieved these last months. Extending the analysis to
other tasks would be another great idea. Object detection, semantic
segmentation, and speech recognition could be some examples. It is
clear that to have a complete picture of the IoT world takes much more
time, and because of its importance, we will certainly see more works
by the research community which will further extend our knowledge.

We also hope that someday we will deploy EfficientNet on Rock Pi:
whether the issue was about compatibility or not, we are confident that

72

Conclusions and Future Work

we will get the answers we are searching for.

A more precise measurement of the average power is possible with
the appropriate tools and enough time to invest on. An idea could
be to use a device that can communicate with a host to transmit the
readings data, so we could be able to plot graphs regarding the power
trend or even get the confidence intervals for the average power.

For the training on the rings dataset, with more time we would
have tried to eliminate overfitting. We hope that by exploring other
techniques, such as different data augmentation, a different data split
between the training set and the validation set, or even expanding the
dataset with more, the overfitting problem will one day be solved.

As for me, this project signs the end of a journey that was five years
and a half long, so besides the project future work i also asked myself
how my future will be.

I've learned a lot in the last years, about the world surrounding me,
about all the things I've always wondered how they works, if they can
be improved, what my contribution can be, and all the other things
that make you an engineer.

I've also learned a lot about myself, my strengths, weaknesses, fears,
hopes and dreams.

I've experienced the failure of an exam gone wrong and the joy of one
that went as expected, I've experienced the 8 to 7 study sessions and
the relax days after a well done exam session, and now i know better
what is the cost needed to reach an objective and how it feels to achieve
it.

I'm closing an important chapter of my life, but i really hope to never
forget what brought me to this point. May this experience be a guiding
light for all that comes next to my master degree proclamation.

To conclude, besides all the acknowledgments, I'd like to dedicate this
work to my future me, hoping he will read again this message after
reaching our next milestone.

73

Bibliography

[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu.
«Edge Computing: Vision and Challenges». In: IEEE Internet
of Things Journal 3.5 (2016), pp. 637-646. pO1: 10.1109/JI0T.
2016.2579198 (cit. on pp. 2, 23).

[2] Blesson Varghese, Nan Wang, Sakil Barbhuiya, Peter Kilpatrick,
and Dimitrios S. Nikolopoulos. «Challenges and Opportunities
in Edge Computing». In: 2016 IEEE International Conference
on Smart Cloud (SmartCloud). 2016, pp. 20-26. DOI: 10.1109/
SmartCloud.2016.18 (cit. on pp. 2, 23).

[3] Raspberry Pi. https://wuw.raspberrypi.org/ (cit. on p. 2).

[4] Coral USB Accelerator. https://coral.ai/products/accelera
tor (cit. on p. 2).

[5] Coral Dev Board. https://coral .ai/products/dev-board
(cit. on p. 2).

[6] Rock Pi. https://wiki.radxa.com/RockpiN10 (cit. on p. 2).

[7] NVIDIA Jetson Nano. https://developer.nvidia.com/embed
ded/jetson-nano-developer-kit (cit. on p. 2).

[8] ImageNet Website. https://www.image-net.org/ (cit. on p. 3).

9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. «ImageNet: A large-scale hierarchical image databasey. In:
2009 IEEE Conference on Computer Vision and Pattern Recog-
nition. 2009, pp. 248-255. DOI: 10.1109/CVPR . 2009 . 5206848
(cit. on pp. 3, 14).

74

BIBLIOGRAPHY

[13]
[14]

[15]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. 2015. arXiv: 1512.03385
[cs.CV] (cit. on pp. 3, 10, 11).

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko|
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig
Adam. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications. 2017. arXiv: 1704 .04861 [cs.CV]

(cit. on pp. 3, 10, 12).

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. 2020. arXiv: 1905.
11946 [cs.LG] (cit. on pp. 3, 10, 12, 13).

Keras library. https://keras.io/ (cit. on pp. 3, 15).

Martin Abadi et al. TensorFlow: A system for large-scale machine
learning. 2016. arXiv: 1605.08695 [cs.DC] (cit. on pp. 3, 15).

Charles R. Harris et al. «Array programming with NumPy». In:
Nature 585.7825 (Sept. 2020), pp. 357-362. 1SSN: 1476-4687. DOI:
10.1038/s41586-020-2649-2. URL: http://dx.doi.org/10.
1038/s41586-020-2649-2 (cit. on pp. 3, 15).

Francois Chollet. Deep Learning with Python. Manning Publica-
tions, 2018 (cit. on p. 5).
Venn diagram source. https://levity.ai/blog/difference-

machine-learning-deep-learning (cit. on p. 6).

ANN image source. https://www.tutorialspoint.com/machin
e_learning/machine_learning artificial neural network
s.htm (cit. on p. 7).

Convolution image source. https://medium. com/ai-salon/
understanding-deep-self-attention-mechanism-in-convol
ution-neural-networks-e8f9c01cb251 (cit. on p. 9).

75

BIBLIOGRAPHY

[20]

[21]

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. «Ima-
geNet Classification with Deep Convolutional Neural Networks».
In: Advances in Neural Information Processing Systems. Ed. by F.
Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger. Vol. 25.
Curran Associates, Inc., 2012. URL: https : // proceedings .
neurips.cc/paper/2012/file/c399862d3b9d6b76c8436€924
a68c45b-Paper.pdf (cit. on p. 10).

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. MobileNetV?2: Inverted Residuals and
Linear Bottlenecks. 2019. arXiv: 1801.04381 [cs.CV] (cit. on
p. 10).

Wordnet. https://wordnet.princeton.edu/ (cit. on p. 14).

Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal
Shankar. Do ImageNet Classifiers Generalize to ImageNet? 2019.
arXiv: 1902.10811 [cs.CV] (cit. on p. 15).

Imagenetv? repository. https://github.com/modestyachts/
ImageNetV2 (cit. on p. 15).

pycoral repository. https://github.com/google-coral/pycora
1 (cit. on pp. 15, 16, 31).

rknn-toolkit repository. https://github.com/rockchip-linux/
rknn-toolkit (cit. on pp. 15, 16, 36).

TensorRT repository. https://developer.nvidia.com/tensor
rt (cit. on p. 15).

GitHub website. https://github.com/ (cit. on p. 16).

jetson-inference repository. https://github . com/dusty-nv/
jetson-inference (cit. on pp. 16, 43).

repository for EfficientNet and MobileNet benchmark. https://
github.com/NVIDIA/TensorRT/tree/main/samples/python/
efficientnet (cit. on pp. 16, 43).

Transfer Learning ezample. https://github.com/keras-team/
keras-io/blob/master/examples/vision/image classifica
tion_efficientnet_fine_ tuning.py (cit. on pp. 16, 53).

76

BIBLIOGRAPHY

[32]

[33]

[34]

Colab notebook for edgetpu conversion. https://colab.research.
google.com/github/google-coral/tutorials/blob/master/
compile_for_edgetpu.ipynb (cit. on pp. 16, 30).

Mi Zhang, Faen Zhang, Nicholas D. Lane, Yuanchao Shu, Xiao
Zeng, Biyi Fang, Shen Yan, and Hui Xu. Deep Learning in the Era
of Edge Computing: Challenges and Opportunities. 2020. arXiv:
2010.08861 [cs.LG] (cit. on p. 23).

Anshu Shukla, Shilpa Chaturvedi, and Yogesh Simmhan. «RIoT-
Bench: An IoT benchmark for distributed stream processing sys-
tems». In: Concurrency and Computation: Practice and Experience
29.21 (Oct. 2017), e4257. 1SSN: 1532-0626. DOI: 10.1002/ cpe . 4257.
URL: http://dx.doi.org/10.1002/cpe.4257 (cit. on p. 23).

Martin Arlitt, Manish Marwah, Gowtham Bellala, Amip Shah,
Jeff Healey, and Ben Vandiver. «loTAbench: An Internet of Things
Analytics Benchmarky. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering. ICPE "15.
Austin, Texas, USA: Association for Computing Machinery, 2015,
pp- 133—-144. 1SBN: 9781450332484. por: 10.1145/2668930.26880
55. URL: https://doi.org/10.1145/2668930.2688055 (cit. on
p. 23).

Yihui Ren, Shinjae Yoo, and Adolfy Hoisie. Performance Analysis
of Deep Learning Workloads on Leading-edge Systems. 2019. arXiv:
1905.08764 [cs.PF] (cit. on p. 24).

Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio
Forlivesi, and Fahim Kawsar. « An Early Resource Characteriza-
tion of Deep Learning on Wearables, Smartphones and Internet-of-
Things Devices». In: Proceedings of the 2015 International Work-
shop on Internet of Things towards Applications. loT-App ’15.
Seoul, South Korea: Association for Computing Machinery, 2015,
pp. 7-12. 1SBN: 9781450338387. DOI: 10.1145/2820975.2820980.
URL: https://doi.org/10.1145/2820975 . 2820980 (cit. on
p. 24).

77

BIBLIOGRAPHY

[40]

Stephan Patrick Baller, Anshul Jindal, Mohak Chadha, and Michael
Gerndt. DeepEdgeBench: Benchmarking Deep Neural Networks on
Edge Devices. 2021. arXiv: 2108.09457 [cs.AI] (cit. on p. 24).

Mattia Antonini, Tran Huy Vu, Chulhong Min, Alessandro Mon-
tanari, Akhil Mathur, and Fahim Kawsar. « Resource Characteri-
sation of Personal-Scale Sensing Models on Edge Acceleratorsy.
In: Proceedings of the First International Workshop on Challenges
in Artificial Intelligence and Machine Learning for Internet of
Things. AIChallengeloT’19. New York, NY, USA: Association for
Computing Machinery, 2019, pp. 49-55. 1SBN: 9781450370134. DOTI:
10.1145/3363347.3363363. URL: https://doi.org/10.1145/
3363347.3363363 (cit. on pp. 24, 51).

Pilsung KANG and Jongmin JO. «Benchmarking Modern Edge
Devices for Al Applications». In: IEICE Transactions on In-
formation and Systems E104.D (Mar. 2021), pp. 394-403. DOI:
10.1587/transinf .2020EDP7160 (cit. on p. 24).

Coral USB Accelerator setup. https://coral.ai/docs/acceler
ator/get-started/ (cit. on p. 30).

Coral Dev Board setup. https://coral.ai/docs/dev-board/
get-started/ (cit. on p. 30).

Coral models. https ://github . com/google - coral/test _
data/tree/104342d2d3480b3e66203073dac24f4e2dbb4c4l (cit.
on p. 30).

Rock Pi guide. https://forum. radxa.com/t/guide-how-
to-get -the-rock-pi-nl0-up-and-running-with-npu-
inference/4632 (cit. on p. 35).

Radza Forum. https://forum.radxa.com/ (cit. on p. 39).
PuTTy. https://wuw.putty.org/ (cit. on p. 43).

Jetpack. https://docs.nvidia.com/jetson/ jetpack/index.
html (cit. on p. 43).

CUDA. https://developer .nvidia.com/cuda-toolkit (cit.
on p. 43).

78

BIBLIOGRAPHY

[49] Chuangi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao
Yang, and Chunfang Liu. A Survey on Deep Transfer Learning.
2018. arXiv: 1808.01974 [cs.LG] (cit. on p. 52).

79

