
POLTECNICO DI TORINO &
EURECOM

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Developing a Proof-of-Concept Malware
Detection Engine for Cisco Secure

Endpoint

Supervisors

Prof. Davide BALZAROTTI

Prof. Cataldo BASILE

Dr. Jonas ZADDACH

Candidate

Alessandro PISANI

January 2022

Summary

In recent years, exploits for SMB vulnerabilities such as Eternal Blue and Eternal
Romance have been released and integrated into malware and attack frameworks.
Exploits for NTLM vulnerabilities such as Rotten Potato have been integrated
into tools like Juicy Potato, Mimikatz and Metasploit. While Cisco has been
asking to their customers to apply vendor patches to protect themselves from these
vulnerabilities, it was not providing any visibility into, or detection or prevention
from these. Even if an enterprise is patched against these attacks, customers expect
Cisco to detect an attempt. Therefore, the main challenge is to research how
Cisco Secure Endpoint may detect network based attack against the endpoint or
originating from it, while taking into account context, such as what local application
is the source or destination of the network traffic. In a second instance, investigate
whether the solutions could be used to prevent the attacks in addition to detecting
them.

The need to have a way to define some rules which can provide visibility into
specific protocol types or detect specific attack patterns can be perfectly handled
by Snort IPS/IDS. Currently this solution is not portable across all the Secure
Endpoint supported platforms, in particular on Windows. For this reason, the
goal is to build snort 3 on Windows to intergate it in the Cisco Secure Endpoint
in order to detect network-based attacks such as Eternal Blue, Eternal Romance,
Zerologon, DCShadow and DCSync.

ii

Acknowledgements

ACKNOWLEDGMENTS

iii

Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 2
1.1 Outline . 3
1.2 Cisco Systems . 3

2 Snort 3 and Related Work 5
2.1 Snort: Network Intrusion Detection & Prevention System 5

2.1.1 Snort Layout on the FileSystem 6
2.1.2 Snort Rules . 8
2.1.3 Snort Modes of Operation 9
2.1.4 Snort Dependencies . 11

2.2 Related Work . 12
2.2.1 Suricata . 13
2.2.2 Microsoft Defender for Identity 13
2.2.3 ClamAV . 14

3 Packet Capture 17
3.1 Windows Network Driver . 17

3.1.1 Windows Network Driver Architecture 18
3.1.2 NPF and NDIS . 19
3.1.3 Relationship of WPCAP.DLL and PACKET.DLL 20

3.2 LibPCAP . 21
3.2.1 MSYS2 and MinGW LibPcap 21

3.3 WinPCAP: Windows Packet Capture 22
3.4 Win10PCAP: WinPcap for Windows 10 25
3.5 NPcap: Windows Packet Capture Library & Driver 25

v

3.5.1 NPcap License . 26
3.6 WinDivert: Windows Packet Divert 26

3.6.1 WinDivert Architecture . 27
3.7 Which PCAP Module for Snort 3? 28

4 LibDAQ: The Data AcQuisition Library 31
4.1 LibDAQ Introduction . 31
4.2 LibDAQ Configuration . 32
4.3 DAQ Modules Features . 32
4.4 DAQ Modules . 33

4.4.1 BPF Module . 33
4.4.2 Dump Module . 33
4.4.3 Netmap Module . 34
4.4.4 PCAP Module . 34
4.4.5 Savefile Module . 35
4.4.6 Trace Module . 35

5 Porting Snort3 to Windows 37
5.1 Running Linux programs on Windows 37

5.1.1 MSYS2 . 38
5.1.2 MinGW-w64 . 38
5.1.3 Microsoft Visual C++ (MSVC) 38

5.2 Installing Snort Dependencies for MSVC 39
5.2.1 Npcap Install . 39
5.2.2 Libdnet Install . 40
5.2.3 Vcpkg Install . 40

5.3 Porting LibDAQ to Windows . 41
5.4 Re-writing Linux specific code into Windows specific code 42

5.4.1 Porting BSD sockets with Winsock API 42
5.4.2 Porting UNIX Signals in Windows 46
5.4.3 Data structure alignment . 48
5.4.4 Thread Local Storage (TLS) 49
5.4.5 SO_PUBLIC and SO_PRIVATE Snort Types 50
5.4.6 Miscellaneous MSVC Fixes 51

6 Automating Snort 3 Installation 55
6.1 Windows Container Base Images 55
6.2 Installing Snort Dependencies in a Windows Container 56
6.3 Installing Visual Studio Build Tools in a Windows Container 57
6.4 Installing Npcap in a Windows Container 57

vi

7 Conclusion and Future Work 59
7.1 Future Work . 60

Bibliography 62

vii

List of Tables

3.1 Summary of the PCAP Libraries and their key features. 28

4.1 Summary of the DAQ modules and associated DAQ types. 36

5.1 Snort dependencies and relative installation method on Windows. . 39
5.2 Signals supported in Windows and their meanings. 47
5.3 Signals used by Snort and their meanings. 47
5.4 MSVC unsupported keywords and their logical operators counterparts. 52

viii

List of Figures

2.1 Snort Layout on the FileSystem. 7
2.2 PulledPork v3.0.0-BETA Display Banner. 9
2.3 Suricata logo . 13
2.4 ClamAV logo . 15

3.1 Main components of the Windows Network Driver Architecture. . . 18
3.2 daq_pcap_start function hierarchy. 22
3.3 MSYS2 disassembled pcap_create_interface function. 23
3.4 MinGW disassembled pcap_create_interface function. 23
3.5 Win10Pcap device driver "Windows 10 Compatible" logo from Mi-

crosoft. 25
3.6 Npcap Silent Installation Error Banner. 27
3.7 The basic architecture of WinDivert. 28
3.8 Snort 3 banner on Windows. 29

5.1 Snort Analyzer’s Finite State Machine. 48

6.1 Windows container base images. 56

ix

Acronyms

API
Application Programming Interface

ATP
Advanced Threat Protection

AV
Anti Virus

BPF
Berkley Packet Filter

DAQ
Data Acquisition

DNET
Dumb Network Library

DoS
Denial of Service

FLEX
Fast Lexical analyzer

FST
Flow State Table

GCC
GNU C compiler

xi

GPL
General Public License

HWLOC
Hardware Locality

IDS
Intrusion Detection System

IEEE
Institute of Electrical and Electronics Engineers

IOCTL
Input Output Control

IPC
Inter Process Communication

IPS
Intrusion Prevention System

LINUX
Linus Torvald’s UNIX

LUAJIT
LUA Just-In-Time Compiler

LWF
Light-Weight Filter

MD5
Message Digest 5

MINGW
Minimalist GNU for Windows

MSDN
Microsoft Documentation

xii

MSVC
Microsoft Visual C++

NDIS
Network Driver Interface Specification

NFQ
NetFilter Queue

NIC
Network Interface Card

NIDS
Network Intrusion Detection System

NPF
Netgroup Packet Filter

NSM
Network Security Monitoring

OS
Operating System

OSI
Open System Interconnection

PCAP
Packet Capture

PCRE
Perl Compatible Regular Expressions

PDF
Portable Document Format

POSIX
Portable Operating System Interface for Unix

PP
PulledPork

xiii

PP3
PulledPork3

SHA
Secure Hash Algorithm

SMB
Server Message Block

SSL
Secure Sockets Layer

SWF
Shockwave Flash

TCP
Transport Control Protocol

TLS
Thread Local Storage

TTY
TeleTYpewriter

VLAN
Virtual Local Area Network

VM
Virtual Machine

WSL
Windows Subsystem for Linux

ZLIB
Z Library

xiv

Chapter 1

Introduction

Nowadays threat actors have rapidly increased in sophistication, using techniques
that make them harder to detect and that threaten even the savviest targets.

Back then, malware authors had already found ways to evade traditional antivirus
solutions, which rely on static analysis, by using techniques such as polymorphism,
metamorphism, encryption, obfuscation and anti-reversing protection.

Unfortunately, this increase in sophistication makes reliable malware detection
based on Signature-Based Detection (SBD), on Behavior-Based Detection, on
Heuristics-Based Detection, or network communication alone inadequate to reliably
detect malware completely and secure the target systems.

Cisco Secure Endpoint (formerly AMP - Advanced Malware Protection for End-
points) integrates prevention, detection, threat hunting and response capabilities
in a single solution, leveraging the power of cloud-based analytics to understand
which files are effectively malicious.

Cisco Secure Endpoint represents a holistic detection approach to tackle the issues
analyzed and to consolidate the detection of events through different collaborating
engines.

Achieving a binary distribution of Snort 3 NIDS for Windows will lay the
foundations for the integration of Snort 3 into the behavioral protection of Cisco’s
Secure Endpoint. This will provide huge benefits to the Security-in-depth principle
already adopted by the Secure Endpoint in order to deploy multiple layers of
security and effectively detect malware.

2

Introduction

1.1 Outline
The following work is divided in these chapthers:

• Chapter 2 illustrates the related work and Snort 3 features.

• Chapter 3 performs an in-depth analysis of the available PCAP libraries (and
their features) for Windows.

• Chapter 4 analyses the Data AcQuisition library (LibDAQ), which allows
Snort to be agnostic of how it gets its data.

• Chapter 5 is the core of Snort 3 porting to Windows, combines the various
implementation alternatives and the development achievements.

• Chapter 6 gathers all the final thoughts about this work and the future
improvements.

1.2 Cisco Systems
Cisco Systems, Inc. is an American multinational technology corporation head-
quartered in San Jose, California. Cisco develops, manufactures and sells networking
hardware, software, telecommunications equipment and other high-technology ser-
vices and products.

Cisco Systems was founded in December 1984 by Sandy Lerner along with her
husband Leonard Bosack from Stanford University seeking an easier way to connect
different types of computer systems.

Cisco Systems shipped its first product in 1986 and is now a multi-national
corporation, with over 35,000 employees in more than 115 countries. Today, Cisco
solutions are the networking foundations for service providers, small to medium
business and enterprise customers which includes corporations, government agen-
cies, utilities and educational institutions.

As part of a rebranding campaign in 2006, Cisco Systems adopted the short-
ened name "Cisco". Cisco acquired the cyber-security firm Sourcefire, in October
2013. On June 16, 2014, Cisco announced the acquisition of ThreatGRID, a com-
pany that provided dynamic malware analysis and threat intelligence technology.

Cisco provides IT products and services across five major technology areas: Net-
working (including Ethernet, optical, wireless and mobility), Security, Collaboration
(including voice, video, and data), Data Center, and the Internet of Things.

3

Introduction

Cisco Systems France is a daughter company counting on many company offices
throughout France: Mougins, Toulouse, Lyon, Rennes, Lille, Strasbourg and ILM
(Issy-les-Moulineaux).

4

Chapter 2

Snort 3 and Related Work

Snort is the foremost Open Source Intrusion Prevention System (IPS)
in the world. Snort IPS uses a series of rules that help define malicious
network activity and uses those rules to find packets that match against
them and generate alerts for users.

Snort can be deployed inline to stop these packets, as well. Snort has
three primary uses: As a packet sniffer like tcpdump, as a packet logger
— which is useful for network traffic debugging, or it can be used as a
full-blown network intrusion prevention system. [1]

2.1 Snort: Network Intrusion Detection & Pre-
vention System

SNORT® has released its new major version, Snort 3, in January 2021. This version
represents a sweeping upgrade to feature improvements and new features which
lead to enhanced performance, faster processing, improved scalability for users’
network and a range of more than 200 plugins so users can create a custom set-up
for their network.

• More Adaptable: Snort has changed the entire code base from C to C++1

making the code base more modular and easier to maintain on users’ network.

• More Efficient: Threading and shared memory allow to scale Snort 3 to
user’s network and create a much faster start-up. This allows multiple packet

1Moved from 470,000 lines of C (with an average of 400 lines per file) to 389,000 lines of C++
(with an average of 200 lines per file)

5

Snort 3 and Related Work

processing to free up more memory for more packet processing power.

• More Customizable: Plugins with Luajit allows users to write their own plugins
much easier than before to do things like add your own Snort Rule options,
in-depth file processing, and more.

• Better Performance: Snort Rule Syntax has been updated to make it easier
to write and to understand. The rule syntax is more concise with fewer rule
parts which will allow rules to run quicker.

As of today many versions of Snort 2.9 are reaching their End Of Life (EOL). For
example, Snort version 2.9.18.0, which had been initially released on the 15th of
June 2021, has reached its EOL on the 30th of November 2021 and upgrading to
Snort 3 is strongly recommended.

2.1.1 Snort Layout on the FileSystem
This section details where the Snort 3 configuration files live, where the rules live,
where the binaries are installed, and where databases, log files are.

The Snort 3 layout on the filesystem can be found in Figure 2.1 which shows
the directory tree of the snort installation. This is will be helpful to understand
where all these information need to be installed on a Windows system.

Snort Configuration

The configuration files are located in the etc sub-directory.
While Snort 2.X configuration files are written in Snort-specific syntax, Snort

3.0 configuration files are written in Lua. Hence, all Snort 3.0 configuration files
are written in the Lua language.

The main configuration file is snort.lua, it contains Snort’s main configura-
tion, allowing the implementation and configuration of Snort inspectors, rules files
inclusion, event filters, output, etc.

Instead, snort_defaults.lua contains default values for rules paths, networks,
ports, wizards, and inspectors, etc.

Another interesting configuration file is file_magic.lua because it contains
pre-defined file identities based on the hexadecimal representation of the files magic
headers. Thanks to these Snort can identify the file types traversing the network
(when applicable). Differently from the previous two files this one does not require
any modification.

6

Snort 3 and Related Work

snort
bin

appid_detector_builder.sh
snort
snort2lua
u2boat
u2spewfoo

etc
balanced.lua
file_magic.lua
max_detect.lua
snort_defaults.lua
talos.lua
connectivity.lua
inline.lua
security.lua
snort.lua
connectivity.lua

include
...
...

lib
snort/daqs/

daq_file.so
daq_hext.so

pkgconfig/snort.pc
share/doc/snort

...

Figure 2.1: Snort Layout on the FileSystem.

Snort Executables

The essential command binaries are placed in the bin sub-directory. Snort comes
with 4 executables, snort is the main executable, snort2lua is the tool used to
convert a valid Snort 2.X configuration into Lua, finally u2boat and u2spewfoo
are logging-specific and will be analyzed in section 2.1.3.

7

Snort 3 and Related Work

2.1.2 Snort Rules
Snort 3 uses a rule-based language combining signature, protocol, and anomaly
inspection methods to detect malicious activity such as denial-of-service (DoS)
attacks, Buffer overflows, stealth port scans, SMB probes, and OS fingerprinting
attempts. It is capable of performing real-time traffic analysis and packet logging
on IP networks.

Snort Rulesets

Rulesets are the backbone for Snorts intrusion detection engine. There are three
types[2] of Snort Rules:

• Community Rules: Rules that are either written by people who didn’t work for
Sourcefire or Cisco or rules that Snort developers want to release to everyone
immediately because they cover important vulnerabilities or malware that
they want people to have coverage for. This ruleset is updated daily and is a
subset of the subscriber ruleset. The Community Ruleset is a GPLv2 Talos
certified ruleset that is distributed free of charge.

• Registered Rules: This ruleset is also free for use for individuals and businesses.
This ruleset is 30 days behind the Snort Subscriber Rule Set and does not
contains zero-day threats under the “limited” provision of the Snort Subscriber
Rule Set License. This ruleset does contain the Community ruleset.

• Subscriber Rules: This is the full Snort Subscriber Ruleset, without delay.
Rules that are developed, tested, and approved by Cisco Talos. Subscribers to
the Snort Subscriber Ruleset will receive the ruleset in real-time as they are
released to Cisco customers to stay current with emerging threats.

By default Snort3 is installed without any ruleset. This is the main reason why the
users need to create a specific directory in which the downloaded ruleset will reside.

This particular directory should be named appropriately as it is the one described
by the ’snort_defaults.lua’ configuration file. This configuration file highlights
the default rules path (RULE_PATH) is ’../rules’.

PulledPork and PulledPork3

Pulledpork is a collaboration effort in the open source community between Cisco
and non-Cisco personnel that allows updating and managing Snort rules and Talos
open-source IP address block list in a consistent and regular manner.

Differently from its predecessor (written in Perl) Pulledpork3 is completely written

8

Snort 3 and Related Work

in Python. PulledPork3 has been tested on Windows, Linux and other Unix-
LIKE/BSD systems. This is why PP3 is not much an issue for a foreseeable Snort3
port to Windows.

To correctly set up PulledPork a so called Oinkcode is needed. It can be re-
trieved by simply registering (for free) to Snort (at www.snort.org) under the
user account settings page once successfully logged in. Oinkcodes are unique keys
associated to the user account acting as an API key for downloading rule packages
with specifically crafted urls.

PulledPork is a helper script that will automatically download the latest rules
by determining the user’s version of snort.

PP3 curently supports downloading three rulesets from Snort/Talos: the com-
munity ruleset, the registered ruleset, and the LightSPD ruleset. You can specify
which rulesets to download, as well as your Snort oinkcode (for the registered and
LightSPD rulesets).

It is worth highlighting that the registered and LightSPD rulesets require the
free Oinkcode from Snort while the Community rulesets do not.

Figure 2.2: PulledPork v3.0.0-BETA Display Banner.

2.1.3 Snort Modes of Operation
Snort can be configured to work in four different operation modes:

• Sniffer, which simply reads the packets off of the network and displays them
for you in a continuous stream on the console (screen).

• Packet Logger, which logs the packets to disk.

• Network Intrusion Detection System (NIDS), which performs detection
and analysis on network traffic.

• Active Response, Snort can send active responses to shutdown offending
sessions.

9

Snort 3 and Related Work

Snort Sniffing

Snort is either able to listen on an interface or read a packet capture file. In the
latter case, Snort 3 will read and analyze the packets as if they came off the wire.
This can be useful for testing and debugging Snort.

In the following we can see the two alternatives:

snort -i <iface>

snort -r <file>

Snort Logging

Snort can produce two kinds of log file format depending on snort output plugin
option for that files: pcap capture file and snort’s unified2.

Depending on the type of file the user is dealing with (tcpdump capture file or
data) there are the following options:

• pcap capture file: Can be read with usual tools wireshark, tshark -r, tcpdump
-r, or even re-injected in snort with snort -r2.

• Unified2: It is the "Native" snort format. Can be read with u2spewfoo <file>
(included in snort), or converted to a pcap with u2boat.

If there is the need to transform it to another alert system (syslog, for example),
barnyard2 can be used. Barnyard2[3] is an open source interpreter for Snort unified2
binary output files.

The unified2 format is used because snort old unique thread design. The time
snort spend waiting syslog, screen, etc. to ACK alert is time that snort is not using
to analyze packets. So, the way was to dump them in a efficient binary format,
and let another program (maybe with low CPU priority) to process them. This
will likely be replaced with a FlatBuffer[4] implementation.

Snort NIDS mode

In this mode Snort will notify the user with specific alerts if any threat was detected.
The default logging and alerting mechanisms are to log in decoded ASCII format
and use full alerts. The full alert mechanism prints out the alert message in addition
to the full packet headers. In Snort 3 there is the possibility to have:

• Event Logging: the available options are alert_csv, alert_fast, alert_full,
alert_sfsocket, alert_syslog, unified2.

2All these tools rely on libpcap and thus have the -r option mapped to the ReadBack capability.

10

Snort 3 and Related Work

• Packet Logging: the available options are log_codecs, log_hext, log_pcap.

Snort Active Response

Last but not least, Snort can have a more active role in securing network by sending
active responses to shutdown offending sessions. When active response is enabled,
Snort 3 will send TCP RST or ICMP unreachable when dropping a session. The
active response plugin comes with three different flavours:

1. Reject performs active response to shutdown hostile network session by
injecting TCP resets (TCP connections) or ICMP unreachable packets.

2. React sends an HTML page to the client, a RST to the server and blocks the
flow.

3. Rewrite enables overwrite packet contents based on "replace" option in the
rules. Using "rewrite" action without "replace" option will raise the appropriate
rule alert but will not overwrite the packet payload. Rewrite/replace works
for raw packets only.

2.1.4 Snort Dependencies
Required Dependencies

• DAQ for packet IO

• DNET for network utility functions.

• FLEX for JavaScript syntax parser

• C++14 compiler

• HwLoc for CPU affinity management.

• LuaJIT for configuration and scripting.

• OpenSSL for SHA and MD5 file signatures, the protected_content rule
option, and SSL service detection.

• PCAP for tcpdump style logging.

• PCRE for regular expression pattern matching.

• pkgconfig to locate build dependencies.

• zlib for decompression.

11

Snort 3 and Related Work

Optional Dependencies

• Asciidoc to build the HTML manual.

• CppUTest to run additional unit tests with make check.

• DBLATEX to build the pdf manual (in addition to asciidoc).

• Flatbuffers for enabling the flatbuffers serialization format.

• HS(Hyperscan) for the regex and sd_pattern rule options and the hyperscan
search engine.

• ICONV for converting UTF16-LE filenames to UTF8 (usually included in
glibc).

• Libunwind for printing a backtrace when a fatal signal is received.

• lzma for decompression of SWF and PDF files.

• SafeC for additional runtime bounds checks on certain legacy C-library calls.

• source-highlight to generate the dev guide.

• w3m to build the plain text manual.

• UUID for unique identifiers.

2.2 Related Work
Among the open source technologies used in intrusion detection and prevention
systems (IDS/IPS) we can identify Snort, Suricata and Zeek (formerly known as
Bro)[5].

The main difference is that Snort and Suricata are rule-based engines and as
such are designed to detect an exception. On the other hand Zeek is an intrusion
detection system that works differently because of its focus on network analysis.
Thus, while rules-based engines are designed to detect an exception, Zeek looks for
specific threats and triggers alerts.

Other related works include Microsoft Defender for Identity and ClamAV, an-
alyzed in Section 2.2.2 and 2.2.3 respectively.

12

Snort 3 and Related Work

2.2.1 Suricata
It is of paramount importance to highlight that a Windows port was barely
supported in Snort 2 (mainly because the Open Source community did the initial
port) and no support as of today was expected for Snort 3.

Zeek is still at an early stage of this porting procedure (mainly driven by Brim
Security) as it emerges from an issue on their official Github repository[6].

Differently Suricata provides a Windows implementation and this is why has been
analyzed (Section 2.2.1) being a good reference for a native Windows port of Snort 3.

From the Suricata homepage[7]:

Suricata is the leading independent open source threat detection engine.
By combining intrusion detection (IDS), intrusion prevention (IPS), net-
work security monitoring (NSM) and PCAP processing, Suricata can
quickly identify, stop, and assess the most sophisticated attacks.

Despite the availability of a Windows port for Suricata the advantages of having
an internal product like Snort 3 in the Cisco Secure endpoint are worth porting
Snort 3 to Windows. These advantages include a direct communication channel
with the developers which can be used for bug fixing and in order to receive rule
updates before everyone else.

Figure 2.3: Suricata logo

2.2.2 Microsoft Defender for Identity
Microsoft Defender for Identity[8] cloud service helps protect the enterprise hybrid
environments from multiple types of advanced targeted cyber attacks and insider

13

Snort 3 and Related Work

threats. This is strictly related to what the Snort Integration into Cisco Secure
Endpoint will cover.

From the "What is Microsoft Defender for Identity?"[9] section in the MSDN:

Microsoft Defender for Identity (formerly Azure Advanced Threat Protec-
tion, also known as Azure ATP) is a cloud-based security solution that
leverages your on-premises Active Directory signals to identify, detect,
and investigate advanced threats, compromised identities, and malicious
insider actions directed at your organization.

Defender for Identity enables SecOp analysts and security professionals
struggling to detect advanced attacks in hybrid environments to:

• Monitor users, entity behavior, and activities with learning-based
analytics

• Protect user identities and credentials stored in Active Directory
• Identify and investigate suspicious user activities and advanced at-

tacks throughout the kill chain
• Provide clear incident information on a simple timeline for fast triage

It is important to highlight that in Microsoft Defender for Identity release 2.156,
released on July 25th, 2021, the NPCAP driver executable is included in its sensor
installation package. This will ensure that Npcap driver will be used instead of the
WinPcap driver, as WinPcap is no longer supported[10]:

The Microsoft Defender for Identity team is currently recommending
that all customers deploy the Npcap driver before deploying the sensor
on a domain controller. This will ensure that Npcap driver will be used
instead of the WinPcap driver. [. . .]

WinPcap is no longer supported and since it’s no longer being developed,
the driver cannot be optimized any longer for the Defender for Identity
sensor. Additionally, if there is an issue in the future with the WinPcap
driver, there are no options for a fix.

2.2.3 ClamAV
ClamAV is an open source antivirus engine for detecting trojans, viruses, malware
other malicious threats.

From the ClamAV homepage[11]:

14

Snort 3 and Related Work

ClamAV is an open source (GPLv2) anti-virus toolkit, designed especially
for e-mail scanning on mail gateways. It provides a number of utilities
including a flexible and scalable multi-threaded daemon, a command line
scanner and advanced tool for automatic database updates. The core of
the package is an anti-virus engine available in a form of shared library.

Clam AntiVirus is highly cross-platform, thus it has been analyzed because it
shares some similarities with Snort being in the C/C++ world and using CMake,
so it definitely is a good resource and reference for CMake and Win32.

Figure 2.4: ClamAV logo

15

Chapter 3

Packet Capture

Packet Capture or PCAP (also known as libpcap[12]) is an application programming
interface (API) that captures live network packet data from OSI model Layers 2-7.

While PCAP is an abbreviation of packet capture, that is not the API’s proper name.

While Unix-like systems implement pcap in the libpcap library, Windows sys-
tems relied for several years on a port of libpcap named WinPcap[13] that is no
longer supported nor developed. This is why nowadays it has been replaced by a
port named Npcap[14] (for Windows 7 and later) that is continuously supported.

The main focus of this section is to analyse the Windows Network Driver,
Libpcap and the different ports of libpcap available in Windows:

1. Libpcap

• MSYS2 Libpcap and MinGW Libpcap.

2. WinPCAP: Windows Packet Capture.

3. Win10PCAP: WinPcap for Windows 10 (NDIS 6.x driver model).

4. NPcap: Windows Packet Capture Library & Driver.

5. WinDivert: Windows Packet Divert.

3.1 Windows Network Driver
WinPcap first and Npcap later are architectures for packet capture and network
analysis for the Win32 platforms. They are defined as architectures because

17

Packet Capture

packet capture is a low level mechanism that requires a strict interaction with the
network adapter and with the operating system, in particular with its networking
implementation, so a simple library is not sufficient.

3.1.1 Windows Network Driver Architecture
The architecture (Figure 3.1) includes a kernel-level packet filter, a low-level
dynamic link library (Packet.dll), and a high-level and system-independent
library (wpcap.dll).

Figure 3.1: Main components of the Windows Network Driver Architecture.

The Windows network driver uses a capture system to bypass the operating systems’
protocol stack to access the raw data transiting on the network.

Thus, it uses a device driver, called Netgroup Packet Filter (NPF), to directly
interact with the network interface drivers. This driver offers basic features like
packet capture and injection, as well as more advanced ones like:

• Filtering System: To restrict a capture session to a subset of the network
traffic.

• Monitoring Engine: To obtain statistics on the traffic (e.g. the network load
or the amount of data exchanged between two hosts).

The capture system exports an interface that user-level applications use to exploit
the features provided by the kernel driver. Two different libraries are provided:

• Packet.dll: a low-level API to directly access the functions of the driver,
with a programming interface independent from the Microsoft OS.

18

Packet Capture

• wpcap.dll: a more powerful set of high level capture primitives that are
compatible with libpcap. These functions enable packet capture in a manner
that is independent of the underlying network hardware and operating system.

3.1.2 NPF and NDIS
The NDIS (Network Driver Interface Specification) is a standard that defines the
communication between a network adapter (or, better, the driver that manages
it) and the protocol drivers (that implement for example TCP/IP). Main NDIS
purpose is to act as a wrapper that allows protocol drivers to send and receive
packets onto a network (LAN or WAN) without caring about either the particular
adapter or the particular Win32 operating system.

NDIS supports four types of network drivers:

• Miniport drivers. Miniport drivers directly manage NICs. The miniport
drivers interface directly to the hardware at their lower edge and at their
upper edge present an interface to allow upper layers to send packets on the
network, to handle interrupts, to reset the NIC, to halt the NIC and to query
and set the operational characteristics of the driver.
Miniport drivers implement only the hardware-specific operations necessary to
manage a NIC, including sending and receiving data on the NIC. Operations
common to all lowest level NIC drivers, such as synchronization, is provided by
NDIS. Miniports do not call operating system routines directly; their interface
to the operating system is NDIS.

• Intermediate drivers. Intermediate drivers interface between an upper-level
driver such as a protocol driver and a miniport. To the upper-level driver,
an intermediate driver looks like a miniport. To a miniport, the intermediate
driver looks like a protocol driver. An intermediate protocol driver can layer
on top of another intermediate driver although such layering could have a
negative effect on system performance. A typical reason for developing an
intermediate driver is to perform media translation between an existing legacy
protocol driver and a miniport that manages a NIC for a new media type
unknown to the protocol driver. An intermediate driver cannot communicate
with user-mode applications, but only with other NDIS drivers.

• Filter drivers. Filter drivers can monitor and modify traffic between protocol
drivers and miniport drivers like an intermediate driver, but are much simpler.
They have less processing overhead than intermediate drivers.

• Transport drivers or protocol drivers. A protocol driver implements a network
protocol stack such as IPX/SPX or TCP/IP, offering its services over one

19

Packet Capture

or more network interface cards. A protocol driver services application-
layer clients at its upper edge and connects to one or more NIC driver(s) or
intermediate NDIS driver(s) at its lower edge.

NPF is implemented as a filter driver. In order to provide complete access to the
raw traffic and allow injection of packets, it is registered as a modifying filter driver.
NPF is able to perform a number of different operations: capture, monitoring,
dump to disk, packet injection.

3.1.3 Relationship of WPCAP.DLL and PACKET.DLL

As previously mentioned when moving from UNIX/LINUX PCAP libraries to
Windows ones we are also switching from a single library libpcap.so to two DLLs,
wpcap.dll and Packet.dll. Some background on libpcap is needed to shed some
light on the relationship between these two DLLs.

Libpcap was originally the code in tcpdump that hid from the bulk of tcpdump the
differences between the mechanisms provided by various flavors of UNIX to allow
raw link-layer packets to be transmitted and received; tcpdump merely receives
link-layer packets, and doesn’t send them, so libpcap doesn’t have any routines to
transmit packets 1.

If on the one hand, wpcap.dll implements the libpcap API (plus some exten-
sions) for Win32 systems, on the other hand, Packet.dll and the drivers for
various Win32 operating systems, provide a Win32-specific raw link-layer packet
access mechanism.

• Wpcap.dll provides an API that should work on BSD, Linux, Solaris, Windows
etc., allowing applications to capture packets on a network without themselves
having to do that capture differently on different OSes.

• Packet.dll provides a Win32-specific API for capturing *and* sending pack-
ets, just as the BPF driver on BSD, PF_PACKET sockets on Linux, etc.
provide APIs that are somewhat OS-specific for capturing and sending packets
on those OSes.

We can therefore identify the Packet.dll routines (names beginning with Packet)
from the Packet.dll API and the wpcap.dll routines (names beginning with
pcap_) from the libpcap API.

1There’s no reason why it couldn’t have those routines; it just doesn’t happen to have them.

20

Packet Capture

The libpcap API is a somewhat "higher-level" API, hiding, as it does, various
low-level details of BPF or PF_PACKET sockets or DLPI or Packet.dll or any-
thing that might make it easier to use. however, this implies that it might also
mean that it wouldn’t allow you to do some things you could do by directly using
the Packet.dll API.

The packet capture driver is a device driver that adds to Windows the ability
to capture and send raw packets in a way similar to the Berkeley Packet Filter of
UNIX kernels.

If it’s just a packet capture program, the libpcap API, rather than the raw
Packet.dll API, may be easier.

3.2 LibPCAP
Libpcap is a portable, open source C/C++ library providing a high level interface
for network traffic capture.
Created in 1994 by the tcpdump developers in the Network Research Group at
Lawrence Berkeley Laboratory as a part of a research project to improve TCP and
Internet gateway performances.

The Packet Capture library provides a high level interface to packet capture
systems. All packets on the network, even those destined for other hosts, are
accessible through this mechanism. It also supports saving captured packets to a
“savefile”, and reading packets from a “savefile”.

3.2.1 MSYS2 and MinGW-w64 LibPcap
In this section it is analyzed the Libpcap package provided by MSYS2[15] and the
one from MinGW-w64[16]. These two Software Distribution and Building Platform
for Windows will be analyzed in section 5.1.1 and 5.1.2 for their characteristics and
the possibility to complete a successful port of Snort to Windows.

The Libpcap module has been anayzed because after successfully obtaining a
binary in MSYS2, it was successfully able to readback pcap files but it was not
able to passively sniff an interface. This issue was accompanied with the following
error message:

Couldn’t start DAQ instance: live packet capture not supported
on this system (-1)
Analyzer: Failed to start DAQ instance

This error message is a combination of three different error sources:

• Snort - Couldn’t start DAQ instance:

21

Packet Capture

• LibPCAP - live packet capture not supported on this system

• LibDAQ - (-1)
Unfortunately, the (-1) error message from LibDAQ is mapped to the DAQ_ERROR
macro which is the generic error one, thus it is not providing further information
about the issue (See Listing 3.1).

Listing 3.1: LibDAQ DAQ_ERROR error code.
1 #define DAQ_ERROR −1 /∗ Generic error ∗/

A deeper analysis of Snort reveals that the function returning the issue is the
daq_pcap_start one which has the following function hierarchy: Being the libp-

pcap_daq_start // From LibDAQ pcap/daq_pcap.c file
pcap_create // Create and init the pcap structure

pcap_create_interface // Diff OS env call diff functions

Figure 3.2: daq_pcap_start function hierarchy.

cap library installed using pacman package manager there is no access to the
source code and even debugging Snort there is no concrete possibility to step into
pcap_create() and see where the error generates from.
However, according to the man page of pcap_create()[17]:

pcap_create() returns a pcap_t * on success and NULL on failure. If
NULL is returned, errbuf is filled in with an appropriate error message.
errbuf is assumed to be able to hold at least PCAP_ERRBUF_SIZE chars.

Indeed, the pcap_create is failing and thus the string errbuf is filled in with the
error message "live packet capture not supported on this system".

Full understanding of the reason why live packet capture is not supported on
MSYS2 (and MinGW-w64) can be retrieved reversing the MSYS libpcap lib file
(msys-pcap-1.dll).

Reverse engineering this .dll file it is easy to understand that the analyzed function
is just a placeholder returning the error string because MSYS (and MinGW-w64)
are not supporting Live Packet Capture as it can be seen from Figure 3.3 and 3.4.

3.3 WinPCAP: Windows Packet Capture
For many years, WinPcap has been recognized as the industry-standard tool for
link-layer network access in Windows environments, allowing applications to cap-
ture and transmit network packets bypassing the protocol stack, and including

22

Packet Capture

Figure 3.3: MSYS2 disassembled pcap_create_interface function.

Figure 3.4: MinGW disassembled pcap_create_interface function.

kernel-level packet filtering, a network statistics engine and support for remote
packet capture.

WinPcap consists of a driver that extends the operating system to provide low-level
network access and a library that is used to easily access low-level network layers.

23

Packet Capture

This library also contains the Windows version of the well-known libpcap Unix API.

Inside the Windows kernel, WinPcap runs as a protocol driver. It’s at the same
level of tcpip.sys, and like the TCP/IP stack it receives the packets from the
underlying NIC driver, but only when at least one WinPcap-based tool is capturing.
This means that when WinPcap is installed but not capturing, the impact on the
system is nonexistent.
Note in particular that the WinPcap driver is loaded inside the kernel only when
the first capture application opens an adapter after a machine boot.

When WinPcap runs, it doesn’t directly interact with TCP/IP. However espe-
cially under high network loads, the WinPcap activity (in particular the one at
software interrupt level) will impact on TCP/IP responsiveness.

Unfortunately, WinPcap has been unmaintained since 2013, date of the last
official WinPcap release[18]:

8 March, 2013

As of today, WinPcap v4.1.3 is available in the download section of the
WinPcap website. This release adds support for Windows 8 and Server
2012, and fixes a couple of security issues in the WinPcap driver that
could cause an OS crash.

WinPcap itself has identified its successor and passed the torch to Npcap in 2018
with an official notice[19] on their "News and Release" website section:

15 September 2018

WinPcap, though still available for download (v4.1.3), has not seen
an upgrade in many years and there are no road map/future plans to
update the technology. While community support may persist, technical
oversight by Riverbed staff, responses to questions posed by Riverbed
resources, and bug reporting are no longer available.

Gordon Lyon, Nmap project founder, has created Npcap, a packet capture
library for Windows, that includes WinPcap compatibility and may be a
suitable replacement for WinPcap and WinPcap Pro. Information can
be found at https://nmap.org/npcap/.

When Microsoft will remove NDIS 5 or cease the grandfathering of older less secure
driver signatures, WinPcap will cease working.

24

https://nmap.org/npcap/

Packet Capture

3.4 Win10PCAP: WinPcap for Windows 10
Win10Pcap[20] is a new WinPcap-based Ethernet packet capture library developed
by Daiyuu Nobori at University of Tsukuba.

Differently from the original WinPcap - which is based on the NDIS 5.x driver
model - Win10PCAP integrated the WinPcap codes into the NDIS 6.x driver
model to work stably with Windows 10. Indeed, it is compatible with Windows 10
on both x86 and x64 platforms.
Win10PCAP also added the code to support the capability to capture IEEE802.1Q
VLAN tags in Ethernet frames which the original WinPcap was not supporting.

Despite the great potential of Win10PCAP, we are not going to explore this
alternative further because the source code has not seen an updated for years2.

The kernel-mode Win10Pcap device driver has obtained the "Windows 10
Compatible" logo from Microsoft on June 8, 2015 (Figure 3.5).

Figure 3.5: Win10Pcap device driver "Windows 10 Compatible" logo from Mi-
crosoft.

3.5 NPcap: Windows Packet Capture Library &
Driver

Npcap is an architecture for packet capture and network analysis for Windows
operating systems from the Nmap Project[21]. Npcap began in 2013 as improvement
to WinPcap, but has begun the Windows packet capture library "par excellence"
since then with hundreds of releases improving Npcap’s speed, portability, security,
and efficiency.

2The last commit is dated 8 October 2015.

25

Packet Capture

Npcap supports all Windows architectures (x86, x86-64, and ARM) and all versions
of Windows and Windows Server that Microsoft themselves still support. Npcap
works on Windows 7 and later by making use of the NDIS 6 Light-Weight Filter
(LWF) API which is faster than the deprecated NDIS 5 API used by WinPcap.

Npcap provides facilities to:

• capture raw packets, both the ones destined to the machine where it’s running
and the ones exchanged by other hosts (on shared media)

• filter the packets according to user-specified rules before dispatching them to
the application

• transmit raw packets to the network

• gather statistical information on the network traffic

• Loopback Packet Capture and Injection: Npcap is able to sniff loopback
packets through the Windows Filtering Platform (WFP). Packet injection
works as well with the pcap_inject() function.

This set of capabilities is obtained by means of a device driver, which is installed
inside the networking portion of the Windows kernel, plus a couple of DLLs (from
the SDK).

However, Npcap receives and sends the packets independently from the host
protocols, like TCP/IP. This means that it isn’t able to block, filter or manipulate
the traffic generated by other programs on the same machine: it simply “sniffs” the
packets that transit on the wire. Therefore, it does not provide the appropriate
support for applications like traffic shapers, QoS schedulers and personal firewalls.

3.5.1 NPcap License
The Npcap project is funded by selling NPCAP OEM. This special version of
Npcap includes enterprise features such as the silent installer and special license
rights allowing to redistribute Npcap with their products or to install it on more
systems within the organization with easy enterprise deployment. Unluckily, the
Npcap free license only allows five installs and does not allow for any redistribution.

3.6 WinDivert: Windows Packet Divert
WinDivert[22], developed by the ReQrypt[23] organization, is a user-mode packet
capture-and-divert package for Windows 2008, Windows 7, Windows 8, Windows
10 and Windows 2016.

26

Packet Capture

Figure 3.6: Npcap Silent Installation Error Banner.

WinDivert is dual-licensed under the GNU Lesser General Public License (LGPL)
Version 3 or the GNU General Public License (GPL) Version 2 and features a silent
installation, two characteristics that Npcap has not.

WinDivert allows user-mode applications, with a simple yet powerful API, to:

• capture (and modify) network packets

• filter/drop network packets

• sniff network packets

• (re)inject network packets

• fully support IPv6

• support loopback (localhost) traffic

For all of this reasons WinDivert can be used to implement user-mode packet filters,
packet sniffers, firewalls, NAT, VPNs, tunneling applications, etc.

Indeed, WinDivert is at the basis of well-known projects such as Suricata (Net-
work threat detection engine) and mitmproxy (Interactive SSL-capable intercepting
HTTP proxy).

3.6.1 WinDivert Architecture
The WinDivert.sys driver is installed below the Windows network stack. The
following sequence of actions occurs:

1. A new packet enters the network stack and is intercepted by the WinDivert.sys
driver.

2. (a) If the packet matches the PROGRAM-defined filter, it is diverted.

27

Packet Capture

(b) If the packet does not match the filter, the packet continues as normal.

3. PROGRAM either drops, modifies, or re-injects the packet.

Figure 3.7: The basic architecture of WinDivert.

Feature WinPCAP Win10PCAP NPcap WinDivert

Actively maintained and supported No No Yes Yes
License BSD-style GPL Free for personal use LGPLv3/GPLv2

Capture Loopback traffic No ? Yes Yes
Inject Loopback traffic No ? Yes Yes

Protocol Driver NDIS 5 NDIS 6 NDIS 6 ?
Block, Filter, Manipulate traffic Yes Yes No Yes

Silent Installer Yes Yes No Yes

Table 3.1: Summary of the PCAP Libraries and their key features.

3.7 Which PCAP Module for Snort 3?
As highlighted from the PCAP modules available for Windows we are able to draw
some conculsion for one of the cores of the Snort NIDS routine.

28

Packet Capture

Fistly, it is clear that if we want to avoid restricting Snort as a simple appli-
cation able to perform only Readback activities on pcap files the libpcap package
ported to MSYS2 and MinGW is not suitable for our needs (as analyzed in Section
3.2.1) since they only have Readback capabilities and a stub function replacing the
pcap_open_interface function which is not able to open up an interface for live
traffic capture.

Moreover, WinPcap and Win10Pcap are not suitable as well to be a good candidate
for Snort PCAP module since they are outdated.

Our alternatives boil down to Npcap and WinDivert. Both of them have pros
and cons that potentially make them, respectively, the "present" and the "future"
of a Windows port of Snort 3.

Npcap can be considered the PCAP library of the present (See Figure 3.8) because
it is the natural continuation of the WinPCAP work and the natural port of LibP-
CAP to Windows. Being Snort natively relying on libpcap the easiest alternative
is to chose Npcap. In addition Snort 3 heavily depends on LibDNET and the only
successful Windows port found is the one developed by the Nmap developers and
based on Npcap. However, as already outlined in the Npcap section, it has some
problematics that make us look to WinDivert as an alternative for the foreseeable
future.

The Npcap License allows end users to download, install, and use Npcap for free
on up to 5 systems (including commercial usage) and the Npcap silent installation
is supported only in Npcap OEM. Moreover the Npcap driver will not be the best
in terms of performances.

Figure 3.8: Snort 3 banner on Windows.

On the other hand, WinDivert is freely available (under the terms of the GNU
Lesser GPL) and features a silent installation that is of paramount importance to

29

Packet Capture

automate its installation.
As further evidence for the great fit of WinDivert there is the proof that Suricata

(analyzed in Section 2.2) in layer 4 inline mode uses WinDivert on Windows [24].

30

Chapter 4

LibDAQ: The Data
AcQuisition Library

Snort 2.9 introduced the Data AcQuisition library (LibDAQ)[25], for packet I/O.
Since then the Data AcQuisition library has become the most importantd depen-
dency of Snort, no matter the version.

4.1 LibDAQ Introduction

The DAQ replaces direct calls into packet capture libraries like libPCAP with an
abstraction layer to make it effortless to add additional software or hardware packet
capture implementations. DAQ supports AFPacket, BPF, Divert, FST, Netmap,
NFQ, PCAP, Savefile, Trace, and DUMP which is used for testing.

The DAQ is essentially an abstraction layer coming with a suite of pluggable
modules that can be selected at run-time to interact with a data source (tradition-
ally a network interface or network data plane). This makes switching from passive
to inline mode easy, and does not require a recompile of the snort core.

The advantage of having an abstraction layer is that it makes Snort agnostic
of how it gets its data. The Data AQuisition module will handle the data acquisi-
tion part so Snort itself can remain generic regardless of architecture (or reading
pcaps).

The main focus of this section is to analyse the LibDAQ library and how it
can be ported to Windows while preserving its core features, the DAQ Modules.

31

LibDAQ: The Data AcQuisition Library

4.2 LibDAQ Configuration
Users can select and configure the DAQ when Snort can operate in three different
DAQ modes namely passive (tap), inline, and read-file:

• Inline: When Snort is in Inline mode, it acts as an IPS allowing drop rules
to trigger. Snort can be configured to run in inline mode using the command
line argument -Q and snort config option daq-mode as follows:

snort -Q
config daq-mode inline

• Passive: When Snort is in Passive mode, it acts as a IDS. Snort can be
configured to passive mode using the snort config option daq-mode as follows:

config daq-mode passive

• Read-File: Read-File mode is used to read packet capture files. It is useful
to test and troubleshoot Snort. Snort can be configured to run in read-file
mode using the command line option (-enable-inline-test) or using the
snort config option daq-mode as follows:

snort -r
config daq-mode read-file

If the mode is not set explicitly, -Q will force it to inline, and if that hasn’t been
set, -r will force it to read-file, and if that hasn’t been set, the mode defaults to
passive. Also, -Q and -daq-mode inline are allowed, since there is no conflict,
but -Q and any other DAQ mode will cause a fatal error at start-up.

4.3 DAQ Modules Features
Applications using LibDAQ use the library API defined in daq.h to load, configure,
and interact with pluggable DAQ modules.

On top of the base DAQ library we can plug-in many, so called, Modules.

Each DAQ module implements some or all parts of the DAQ module API de-
pending on its type and capabilities. There are two main classes of DAQ modules:

• Base modules: provide a full-fledged and independently usable implementation
of the DAQ module API.

32

LibDAQ: The Data AcQuisition Library

• Wrapper modules: provide a subset of the API that is applied in a decorator
pattern when combined with a base module.

Different DAQ modules types 1 can be remarked:

• Readback : the module can read read from a PCAP file;

• Live : the module can open live interfaces;

• Inline : the module can form an inline bridge;

• Multi (Instance) : the module can be instantiated multiple times;

• Unpriv : the module can run unprivileged;

• Wrapper : the module must decorate another DAQ module;

4.4 DAQ Modules
The most influential DAQ modules will be now analyzed in more detail. The
FST module will not be analyzed because it is currently in an early and highly
experimental state. Table 4.1 summarizes the main features of every DAQ module.

4.4.1 BPF Module
The BPF mdoule is a wrapper DAQ module that implements filtering on packet
reception when given a Berkeley Packet Filter (BPF) to operate with.

It adds the BPF capability to the module stack that it is part of and will
update the filtered count in the DAQ statistics. Filtered packet messages will be
immediately finalized with a PASS verdict.

Since this module uses the BPF implementation from LibPCAP the only re-
quirement is a version of libpcap greater of equal than 1.0.0.

4.4.2 Dump Module
The Dump module is a wrapper DAQ module that presents the configuration stack
as inline-interface- and injection-capable. All packet messages that are finalized
with a passing verdict (PASS, REPLACE, WHITELIST, IGNORE) or injected will be
written to a PCAP savefile. By default, the packet capture file will be named
inline-out.pcap in the current directory.

1taken from libdaq/api/daq_common.h

33

LibDAQ: The Data AcQuisition Library

The Dump DAQ module also supports capturing received packets to a separate
PCAP savefile. This is disabled by default, but can be enabled with the dump-rx
variable. The dump-rx variable takes an optional argument for the filename to
dump received packets to; it defaults to inline-in.pcap if no argument is given.

When running with multiple instances, the both the TX and RX output file-
names will be mangled to start with the instance ID followed by an underscore.
For example, the default TX output filename would be 2_inline-out.pcap for
the second instance. Both the TX and RX output filenames must be bare (no
directory structure, relative nor absolute) in such a configuration.

The only requirement for this particular DAQ module is having a libpcap version
greater or equal than 1.0.0.

4.4.3 Netmap Module

The Netmap DAQ module is built on top of the netmap project[26], a framework
for very high speed packet I/O. It is available on both FreeBSD and Linux with
varying amounts of preparatory setup required.

Although on the Netmap Project Github repository it is reported that "Netmap
has been ported to Windows in summer 2015 [...]"[27], this is an old and unmain-
tained project. This is why it is better to look to some other windows packet
intercept toolkit for a Windows port of this module (perhaps some framework used
to build VPNs).

4.4.4 PCAP Module

This is the default DAQ Module used by Snort. The PCAP module is built around
the LibPCAP library to support both read-file and passive interface sniffing modes.
Since the input specifications are directly passed to LibPCAP the input is perfectly
mapped to the -i or -r options of TCPDUMP.

The PCAP DAQ module defaults to listening in promiscuous mode, meaning that
can intercept and read in its entirety each network packet that arrives. Moreover,
the PCAP DAQ module defaults to using immediate (less-buffered or unbuffered)
delivery mode.

The only requirement for this particular DAQ module is having a libpcap version
greater or equal than 1.5.0.

34

LibDAQ: The Data AcQuisition Library

4.4.5 Savefile Module
The PCAP DAQ module is not the only one able to perform Readback operations.
Indeed, the Savefile DAQ module is designed for performance-optimized readback
of traditional pcap savefiles2.

The savefile DAQ module will map an entire pcap savefile into memory and
then directly access the contents to acquire DAQ message data. Compared to the
PCAP DAQ module, this eliminates both the overhead of the libpcap API interface
itself as well as the copying of packet data into the DAQ message pool’s data buffers.

However, one drawback of this module, as mentioned above, is that the con-
tents of the entire pcap savefile will be mapped into memory and thus will not be
released until the DAQ module is stopped.

This is why it is of paramount importance to make sure to avoid loading a file
that is too large to fit in memory because this would run the system out of memory
once all of the packets in the file have been accessed and everything has been paged
into active memory.

Only pcap savefiles with Ethernet data link types (DLT_EN10MB) are supported.
Another key aspect to take into account is that the beginning of message data in
messages received by the application can easily be positioned at unaligned memory
addresses. This a major issue for architectures that cannot handle unaligned
memory accesses.

4.4.6 Trace Module
It is a wrapper DAQ module that records information about packet message ver-
dicts, injected packet messages, and IOCTL calls that it intercepts to a text file
(by default, inline-out.txt). The Trace module presents the configuration stack
as being capable of inline interface operation, blocking, and injection.

Injected packet messages and unrecognized IOCTLs will have their contents dumped
in hexadecimal format. On the other hand, recognized IOCTLs will get more of a
pretty-print style output. Verdicts on packet messages will be recorded on a single
line together with some indentifying information from the packet message header.

2Only pcap savefile format version 2.4 is supported.

35

LibDAQ: The Data AcQuisition Library

Module
Type Readback Live Inline Multi Unpriv Wrapper

AFPacket X X X X
BPF X X X
Divert X X X
Dump X X X X
FST X X

Netmap X X X
NFQ X X X
PCAP X X X X
Savefile X X X X
Trace X X X

Table 4.1: Summary of the DAQ modules and associated DAQ types.

36

Chapter 5

Porting Snort3 to Windows

The requirement is to have a binary distribution of Snort3 that is able to run on
Windows. In the following section are investigated the main alternatives that are
feasible to port a Linux program to Windows, how the Snort 3 dependencies can
be installed and the core changes that the codebase needs in order to have at least
readback and live interface sniffing capabilities.

5.1 Running Linux programs on Windows
To run a Linux program on Windows, the following options are available[28]:

• Run the program as-is on the Windows Subsystem for Linux (WSL)[29]. In
WSL your program executes directly on the machine hardware, not in a virtual
machine.

• Run the program as-is in a Linux virtual machine[30] or Docker container[31],
either on the local machine or on Azure.

• Compile the program using gcc or clang in the MinGW or MinGW-w64
environments, which provide a compile-time translation layer from Linux to
Windows system calls.

• Compile and run the program using gcc or clang in the Cygwin[32] environment,
which provides a more complete Linux environment on Windows compared to
MinGW or MinGW-w64.

• Manually port your code from Linux and compile for Windows using Microsoft
C++ (MSVC)[33]. This involves refactoring platform-independent code into
separate libraries, and then re-writing the Linux-specific code to use Windows-
specific code (for example, Win32 API).

37

Porting Snort3 to Windows

As a first consideration, using WSL or WSL2 is not suitable for our purpose since
WSL is just a Hyper-V[34] VM that has its own virtual Hyper-V network adapter.
The WSL architecture uses virtualized networking components[35]. This means
that in initial preview builds WSL 2 will behave more similarly to a virtual machine,
e.g: WSL 2 will have a different IP address than the host machine. It is not visible
the "network namespace" of the windows host, but more something like inside a
docker container on Linux. The same holds for a Linux VM or Docker container.

Therefore, as an initial starting point Snort has been compiled using gcc in
the MSYS2 and MinGW-w64 environment. After encountering the libpcap issue
referenced in Section 3.2.1 a Windows port of Snort in Windows using MSVC
(capable of reading pcap files and sniffing interactively an interface) has been
achieved.

5.1.1 MSYS2
MSYS2 is a collection of tools and libraries providing an easy-to-use environment
for building, installing and running native Windows software.

It consists of the mintty command line terminal, bash, git and subversion (for
version control systems), and even build systems like autotools, all based on a
modified version of Cygwin. Despite being heavily based on Cygwin, the main
focus of MSYS2 is to provide a build environment for native Windows software
and the Cygwin-using parts are kept at a minimum. MSYS2 provides up-to-date
native builds for GCC, mingw-w64, CMake, OpenSSL just to name a few.

To provide easy installation of packages and a way to keep them updated it
features a package management system called Pacman (the package manager of
Arch Linux).

5.1.2 MinGW-w64
Mingw-w64 is an advancement of the original mingw.org project, created to support
the GCC compiler on Windows systems. It has forked it in 2007 in order to provide
support for 64 bits and new APIs. It has since then gained widespread use and
distribution.

5.1.3 Microsoft Visual C++ (MSVC)
Microsoft Visual C++ (MSVC) is a compiler for the C and C++ programming
languages by Microsoft. Microsoft Visual C++ is the de facto standard for native
Windows applications.

For this reason and the fact that two of the main dependencies of Snort, LibDNET

38

Porting Snort3 to Windows

and Npcap, are available in Windows only as a MSVC compiled libraries using
Microsoft Visual C++ was an easy pick.

5.2 Installing Snort Dependencies for MSVC
Snort dependencies have been installed using a combination of packages installed
with:

• Chocolatey[36]: A software management automation tool for Windows that
wraps installers, executables, zips, and scripts into compiled packages.

• Vcpkg[37]: A free C/C++ package manager for acquiring and managing
libraries.

Those packages that could not be installed using one of these two package managers
have been installed from source and will be analyzed individually. In Table 5.1
summarizes the required packages for building Snort and LibDAQ in MSVC, and
their installation method.

Dependency Installation method

CMake choco install cmake

DAQ Source code (ported to Windows)
DNET Nmap Libdnet-stripped
FLEX choco install winflexbison3

HwLoc vcpkg install hwloc

LuaJIT vcpkg install luajit

OpenSSL choco install openssl

PCAP Npcap SDK + Npcap Driver
PCRE vcpkg install pcre

pkgconfig choco install pkgconfiglite

zlib vcpkg install zlib

Table 5.1: Snort dependencies and relative installation method on Windows.

5.2.1 Npcap Install
In order to install Npcap[38] it is needed to:

39

Porting Snort3 to Windows

• run the Npcap 1.60 executable installer for Windows 7/2008R2, 8/2012,
8.1/2012R2, 10/2016, 2019 (x86, x64, and ARM64),

• and build Snort 3 against the Npcap SDK.

5.2.2 Libdnet Install
Libdnet provides a simplified, portable interface to several low-level networking
routines, including network address manipulation, kernel arp cache and route
table lookup and manipulation, network firewalling, network interface lookup and
manipulation, IP tunnelling, and raw IP packet and Ethernet frame transmission.

Despite the fact that Libdnet comes with a developers package, it has the is-
sue of being only compatible with 32-bit applications. Starting from April 2005
Dug Song’s Libdnet networking library has been stripped down for inclusion within
Nmap and is now available as an MSBuild project[39] whose settings are stored in
the XML project file libdnet-stripped.vcxproj.

The Microsoft Build Engine[40] is a platform for building applications. This
engine, which is also known as MSBuild, provides an XML schema for a project
file that controls how the build platform processes and builds software. Visual
Studio uses MSBuild, but MSBuild doesn’t depend on Visual Studio. By invoking
msbuild.exe on a project or solution file, there is the possibility to orchestrate and
build products in environments where Visual Studio isn’t installed.

5.2.3 Vcpkg Install
Vcpkg is a free C/C++ package manager for acquiring and managing libraries.

It uses CMake internally as a build scripting language. This is because CMake
is very popular for C++ projects and for cross-platform open source libraries.

The best way to use installed libraries with cmake is via the toolchain file
scripts\buildsystems\vcpkg.cmake. To use this file, it is simply need to add it
onto the CMake command with -DCMAKE_TOOLCHAIN_FILE. Vcpkg has been used
to build both LibDAQ and Snort3. The preliminary dependencies installed using
vcpkg are:

• dirent: a C/C++ programming interface that allows programmers to retrieve
information about files and directories under Linux/UNIX.

• getopt: An implementation of the getopt() function to parse the command-
line arguments.

• pthreads: pthreads for windows.

40

Porting Snort3 to Windows

• dlfcn-win32 : A set of functions that allows runtime dynamic library loading.

The other mandatory dependencies required by Snort installed via vcpkg are
hwloc, luajit, zlib, and liblzma.

5.3 Porting LibDAQ to Windows
LibDAQ needs to be installed from source. From the README.md "Build and Install"
section on their GitHub page[41]:

LibDAQ is a standard autotools project and builds and installs as such:

./configure
make
make install

If building from git, you will need to do the following to generate the
configure script prior to running the steps above:

./bootstrap

This will build and install both the library and modules.

In order to install LibDAQ in Windows the build system has been switched from
Autotools[42] to CMake[43] because the existing one would not work in Windows.

As already highlighted LibDAQ requires the vcpkg referenced in TODO to build
successfully. In terms of code refactoring the main changes concern the use of the
WinSock API rather than BSD sockets which are analyzed in breadth and depth
in section 5.4.1.

The DAQ modules that have been ported to Windows are: BPF, Dump, PCAP,
Savefile, and Trace. Since as described in section 4.4.5 the Savefile module maps
a pcap savefile into memory it needs the <sys/mman.h> header and associated
functions (mmap, etc).

It is available in Windows through the mmap-win32 library[44], available with
vcpkg, which implements a wrapper for mmap functions around the memory
mapping Windows API. This required change reflects only in the imported header
(See Listing 5.1).

Listing 5.1: Cross-platform code for <sys/mman.h> header support.
1 #ifdef _WIN32
2 #include <mman/sys/mman.h>
3 #else

41

Porting Snort3 to Windows

4 #include <sys/mman.h> // memory management declarations
5 #endif // _WIN32

5.4 Re-writing Linux specific code into Windows
specific code

A huge portion of Snort 3 code base (e.g., socket networking and signal management)
differs substantially for POSIX and Windows. This is why placing the Windows
code along side the existing POSIX code, wrapping with preprocessor conditionals
as necessary is not a good alternative and was used only in few situations.

Oppositely, to handle these compatibility issues new abstractions have been
created to build separate implementations for each platform.

5.4.1 Porting BSD sockets with Winsock API
While Winsock is often somewhat compatible with Berkeley sockets, it is not
strictly compatible, and therefore must be treated differently. Moving from UNIX
sockets to Windows sockets is fairly simple. Windows programs require a different
set of include files, need initialization and deallocation of WinSock resources, use
closesocket() instead of close(), and use a different error reporting facility.
However, the meat of the application is identical to UNIX.

Different header and lib

To use the Winsock API it is needed to include the Winsock 2 header files. The
Winsock2.h header file contains most of the Winsock functions, structures, and
definitions. The Ws2tcpip.h header file contains definitions introduced in the
WinSock 2 Protocol-Specific Annex document for TCP/IP that includes newer
functions and structures used to retrieve IP addresses.[45]

Listing 5.2: UNIX socket headers.
1 #include <sys/types.h>
2 #include <sys/socket.h>
3 #include <netinet/in.h>
4 #include <arpa/inet.h>
5 #include <netdb.h>
6 #include <unistd.h>
7 #include <errno.h>
8 #include <sys/un.h>

Listing 5.3: WinSock headers.
9 #include <WinSock2.h>

10 #include <Windows.h>
11 #include <Ws2tcpip.h>
12 #include <afunix.h>
13

14 #pragma comment(lib, "Ws2_32.libs")

Moreover, the build environment must link to the Winsock Library file Ws2_32.lib.

42

Porting Snort3 to Windows

The pragma comment indicates to the linker that the Ws2_32.lib file is needed.
Despite the use of the 32 designator, the 64-bit library shares the same name.

Socket Representation

While under BSD sockets, socket descriptors are normal file descriptors (small
non-negative integers), under WinSock, socket descriptors are (usually) normal NT
kernel object handles.

This means, that instead of int, sockets need to be of type SOCKET and the
classic comparison with zero to detect error conditions does not hold anymore.
While sockets are supposed to be interchangeable with instances of HANDLE in
many APIs, Microsoft choose to use a different representation so casting is necessary
when sockets are used with normal Win32 function calls.

Socket Error Handling

UNIX socket calls report their error status by returning -1 and setting the value
of the variable errno. The set of errors they can report are fully enumerated as
constants in <errno.h> header.

However, under Windows, WinSock is forced to use a different reporting mechanism
since errno is part of the compiler runtime and not a system API.

As with BSD sockets, -1 is returned on error but because a WinSock handle
is not an integer, one cannot simply check the sign when examining the return
values from functions like socket or accept. Instead, the program is expected to
check for equality with INVALID_SOCKET or SOCKET_ERROR.

Once an error is detected, the application calls WSAGetLastError() to retrieve
the actual error code.

From the "Handling Winsock Errors" section in the Microsoft Documentation[46]:

Most Windows Sockets 2 functions do not return the specific cause of
an error when the function returns. Some Winsock functions return a
value of zero if successful. Otherwise, the value SOCKET_ERROR (-1) is
returned and a specific error number can be retrieved by calling the
WSAGetLastError function. For Winsock functions that return a handle,
a return value of INVALID_SOCKET (0xffff) indicates an error and a
specific error number can be retrieved by calling WSAGetLastError. For
Winsock functions that return a pointer, a return value of NULL indicates
an error and a specific error number can be retrieved by calling the
WSAGetLastError function.

43

Porting Snort3 to Windows

The runtime provided by Visual Studio has the full set of POSIX error numbers
provided in its copy of <errno.h> but these are disjoint from the codes actually
used by WinSock. Instead, the error codes used by WinSock are prefixed with WSA
(e.g. WSAEWOULDBLOCK).

In the following are provided two example to show how Windows Sockets 2 functions
that return an integer value (See Listing 5.4) and functions that return a handle
(See Listing 5.5). Moreover, it is possible to notice that in both cases the socket
descriptor is cast to a SOCKET handle.

Listing 5.4: Windows Sockets 2 function to wrap UNIX send function
1 #define send w32_send
2

3 ssize_t w32_send(int sockfd, const void ∗buf, size_t len , int flags)
4 {
5 int ret = send((SOCKET)sockfd, (const char ∗)buf, (int)len, flags);
6 if (ret == SOCKET_ERROR) {
7 wsock2errno();
8 return −1;
9 }

10 return (ssize_t)ret ;
11 }

Listing 5.5: Windows Sockets 2 function to wrap UNIX socket function
1 #define socket w32_socket
2

3 int w32_socket(int domain, int type, int protocol)
4 {
5 SOCKET s = socket(domain, type, protocol);
6 if (s == INVALID_SOCKET) {
7 wsock2errno();
8 return −1;
9 }

10 return (int)s ;
11 }

Unix Sockets

Unix sockets[47] allow inter-process communication (IPC) between processes on
the same machine.

Support for the unix socket has existed both in BSD and Linux for the longest
time, but, on Windows it is a quite recent feature the possibility to use the unix
socket (AF_UNIX) address family on Windows to communicate between Win32
processes.

44

Porting Snort3 to Windows

To use unix sockets in Windows it is firstly needed to replace the sys/un.h
header with the afunix.h one. Then it is possible to write a Windows unix socket
winsock application as one would write any other unix socket application, but,
using Winsock API’s.

This is mainly possible because the sockaddr_un structure, used for defining
the address of a unix socket, in the Windows implementation of the unix socket
has kept the same name, definition and semantics of the unix socket address in
Linux, to make cross-platform development easier.

Different in6_addr between Win and Linux

The IN6_ADDR structure specifies an IPv6 transport address. Unfortunately in
Linux and Windows there is a discrepancy between the two structures used to
describe the IPv6 address in Linux (in6.h) and in Windows (in6addr.h).

In Windows we have a union that contains two different representations of the
IPv6 transport address, an array (Byte) that contains 16 UCHAR-typed values and
an array that contains eight USHORT-typed values (See Listing 5.6).

On the other hand, in Linux there is an additional member (u6_addr32) that is
not mapped in Windows (See Listing 5.7).

Listing 5.6: Windows IPv6 address structure
1 typedef struct in6_addr {
2 union {
3 UCHAR Byte[16];
4 USHORT Word[8];
5 } u;
6 } IN6_ADDR, ∗PIN6_ADDR, ∗LPIN6_ADDR;

Listing 5.7: Linux IPv6 address structure
1 struct in6_addr
2 {
3 union
4 {
5 __u8 u6_addr8[16];
6 __be16 u6_addr16[8];
7 __be32 u6_addr32[4];
8 } in6_u;
9 #define s6_addr in6_u.u6_addr8

10 #define s6_addr16 in6_u.u6_addr16
11 #define s6_addr32 in6_u.u6_addr32
12 };

45

Porting Snort3 to Windows

In order to cope with this mismatch between the two data structures the change
proposed in Listing 5.8 needs to be performed. This is already taking into account
that both Linux and Windows use a Network Byte Order (big-endian) specification.
Linux:

Be aware the IN6ADDR_* constants and in6addr_* externals are defined
in network byte order, not in host byte order as are the IPv4 equivalents.

Windows:

All members of the IN6_ADDR structure must be specified in network-byte-
order (big-endian).

Listing 5.8: Solution to error: class "in6_addr" has no member "__u6_addr"
1 #ifdef _WIN32
2 if (src_ip && (!IN6_IS_ADDR_V4MAPPED(src_ip) || (src_ip−>u.Word[6] &&

src_ip−>u.Word[7])))
3 #else
4 if (src_ip && (!IN6_IS_ADDR_V4MAPPED(src_ip) || src_ip−>s6_addr32[3]))
5 #endif // _WIN32

5.4.2 Porting UNIX Signals in Windows
The UNIX operating system supports a wide range of signals (software interrupts
that catch or indicate different types of events). Windows on the other hand
supports only a small set of signals that is restricted to exception events only.
Consequently, converting Snort3 code to Win32 requires the replacement of some
UNIX signals.

The Windows signal implementation is limited to the following signals (Table
5.2):

Snort Signals

The Snort signal implementation exploits the following signals (Table 5.3):
To understand why Snort uses these signals and maps them in this way it is

important to dig deeper into the logic behind packet analysis.

Snort from a high level is using an Analyzer thread. This analyzer is nothing
more than a Finite State Machine (See Figure 5.1). It will start in the NEW state
and will transition to the INITIALIZED state once the object is called as part of
spinning off a packet thread. Further transitions will be prompted by commands
from the main thread.

46

Porting Snort3 to Windows

Signal Meaning

SIGABRT Abnormal termination
SIGFPE Floating-point error
SIGILL Illegal instruction
SIGINT CTRL+C signal
SIGSEGV Illegal storage access
SIGTERM Termination request

Table 5.2: Signals supported in Windows and their meanings.

Snort Signal Mapping Meaning

SIGINT SIGINT Shutdown normally
SIGQUIT SIGQUIT Shutdown normally
SIGTERM SIGTERM shutdown as if started with –dirty-pig

SIGNAL_SNORT_DUMP_STATS SIGUSR1 Dump stats to stdout
SIGNAL_SNORT_ROTATE_STATS SIGUSR2 Rotate stats files

SIGNAL_SNORT_RELOAD SIGHUP Reload config files
SIGNAL_SNORT_READ_ATTR_TBL SIGURG Reload hosts file
SSIGNAL_SNORT_CHILD_READY SIGCHLD Confirmation child was started ok

Table 5.3: Signals used by Snort and their meanings.

It will transition from INITIALIZED to STARTED via the START command. Later
it will go from STARTED to RUNNING through the RUN command.

Finally, it will end up in the STOPPED state when the Analyzer object has finished
its execution. This state can be either be prompted by the STOP command or if
the Analyzer finishes its operation for other reasons (such as encountering an error
condition).

The other state the Analyzer can be in is PAUSED, which is triggered when it
receives the PAUSE command while in the running state. To go back from PAUSED
to RUNNING the command RESUME is needed.

The other two commands currently available in the source code (but not yet
mapped in Windows) are SWAP and ROTATE. The ROTATE command will cause open
(per-thread) output files to be closed, rotated, and reopened anew. The SWAP
command will swap to a new configuration at the earliest convenience.

All in all, the most important signals for a Snort binary able to perform ReadBack
operations and Live traffic Capture are the first two. This is because while for the
Readback feature in which once we are done reading the pcap file the Analyzer

47

Porting Snort3 to Windows

NEWstart

INIT

STARTED

RUNNING PAUSED

STOPPED

START RUN PAUSE

RESUME

STOP

Figure 5.1: Snort Analyzer’s Finite State Machine.

will automatically find the EOF and switch from the RUNNING to STOPPED state in
the case of the Interactive mode live interface sniffing we must explicitly stop the
execution of Snort and consequently the Analyzer, hitting CTRL+C (which maps
to SIGINT).

5.4.3 Data structure alignment
Another important aspect to deal with when porting Snort3 to Windows is the
Data structure alignment, which is the way data is arranged and accessed in
memory. It consists of two different but related issues:

• data alignment: putting the data at a memory offset equal to a multiple of
the word size, which increases the system’s performance due to the way the
CPU handles memory.

• data structure padding: inserting some meaningless bytes between the end of
the last data structure and the start of the next to align the data.

Snort native code uses the __attribute__((packed, aligned(X))) mechanism
to insist particular (X) sized padding, where X should be powers of two. Even
though this mechanism is a feature of GCC (GNU C compiler), it was cleverly
designed in a way to make it easy to quietly eliminate it if used on platforms other
than GNU C (like MSVC).

It can be replaced with another mechanism, pragma pack, which is originally
a Visual C++ compiler specific extension, which has been implemented in GCC as
well for VC++ compatibility.

48

Porting Snort3 to Windows

It is important to highlight that pragma pack takes effect from the point of
definition and until another pragma pack, while __attribute__((packed)) is
effective only for the definition it’s attached to.

In order to make this available in Snort we need to:

1. Check the system Struct Packing.

2. If the system does not have the __attribute__ mechanism, elide it.

3. Push the alignment value to stack using pragma pack(1). This will be done
for all the structures until we stop it with pragma pack().

Listing 5.9: Cross-Platform Data Structure Alignment.
1 #ifndef HAVE_ATTRIB_PACKED
2 #define __attribute__(x)
3 #endif
4

5 #ifdef HAVE_PRAGMA_PACK
6 #pragma pack(1)
7 #endif
8

9 ...
10 // add each packed struct individually tagged with the attribute in between: __attribute__

((packed))
11 ...
12

13 #ifdef HAVE_PRAGMA_PACK
14 #pragma pack()
15 #endif
16 ...

5.4.4 Thread Local Storage (TLS)
All threads of a process share its virtual address space. The local variables of a
function are unique to each thread that runs the function. However, the static and
global variables are shared by all threads in the process.

Thread local storage (TLS)[48] is the method through which each thread in a
given multithreaded process can allocate locations in which it can store thread-
specific data which are accessible to the process using a global index.

It is important to notice that various compiler implementations provide specific
ways to declare thread-local variables:

49

Porting Snort3 to Windows

• C++11: The thread_local storage class specifier is the recommended way
to specify thread-local storage for objects and class members.

• GNU C: The __thread storage class marks a static variable as having thread-
local storage duration. This means that, in a multi-threaded application, a
unique instance of the variable is created for each thread that uses it, and
destroyed when the thread terminates.

• MSVC: Provides a Microsoft-specific attribute, thread, as extended storage
class modifier. A thread variable can be declared with __declspec(thread)
keyword.

While on the one hand it seems sufficient to declare the THREAD_LOCAL macro used
by Snort to __declspec(thread) instead of the __thread keyword, on the other
hand in MSVC we have an issue when a data is declared with the thread attribute
and with the DLL interface.

This issue is very frequent in Snort which makes heavy usage of the combination
SO_PUBLIC - THREAD_LOCAL. For instance, the following piece of code:

1 extern SO_PUBLIC THREAD_LOCAL PacketCount pc;
2 // extern __declspec(dllimport) __declspec(thread) PacketCount pc;

Will lead to the C2492 MSVC compiler error, from the Microsoft documentation[49]:

’pc’: data with thread storage duration may not have dll interface.

The variable is declared with the thread attribute and with the DLL
interface. The address of the thread variable is not known until run
time, so it cannot be linked to a DLL import or export.

This is the reason why for this particular issue in the Snort 3 port to Windows
an hybrid (and working) approach has been adopted. For cases in which data is
declared with the thread attribute and with the DLL interface, the thread locality
is dropped. For all other cases in which thread locality is not in conflict with the
DLL interface, it is kept.

5.4.5 SO_PUBLIC and SO_PRIVATE Snort Types
Snort 3 defines two symbols, SO_PUBLIC and SO_PRIVATE to hide the definition
of the dllexport and dllimport storage-class attributes[50] which are used to
export and import functions, data, and objects to or from a DLL. There were two
main issues with these Snort types:

1. the symbol SO_PRIVATE was not defined if the system was Windows.

50

Porting Snort3 to Windows

2. the symbol SO_PUBLIC must be associated with __declspec(dllexport)
rather than with __declspec(dllimport).

These enhancements are shown in Listing 5.10.

Listing 5.10: Declaration of Snort Types.
1 #ifndef SO_PUBLIC
2 #if defined _WIN32 || defined __CYGWIN__
3 # define SO_PRIVATE // elides SO_PRIVATE on Windows
4 # ifdef __GNUC__
5 //# define SO_PUBLIC __attribute__((dllimport))
6 # define SO_PUBLIC __attribute__((dllexport))
7 # else
8 //# define SO_PUBLIC __declspec(dllimport)
9 # define SO_PUBLIC __declspec(dllexport)

10 # endif
11 # define DLL_LOCAL
12 #else
13 ...
14 #endif
15 #endif

5.4.6 Miscellaneous MSVC Fixes
Find First Set vs Leading Zeros Count

In Linux the ffs() function[51] returns the position of the first (least significant)
bit set in a word. On the contrary Windows counts the number of leading zeros in
a 16-, 32-, or 64-bit integer through the __lzcnt16, __lzcnt, __lzcnt64 compiler
intrinsic functions (respectively)[52].

We simply need to associate these functions as shown in Listing 5.11.

Listing 5.11: Mapping Linux Find First Set to Windows.
1 #define ffs __lzcnt

MSVC does not support logical operator keywords

The Microsoft Visual C++ compiler does not support the keywords like and, not,
or, etc. They must be replaced by the more commonly used operators like &&
instead of and, || instead of or as reported in table 5.4.

The min/max macros clash between C++ and Windows

The Windows header file WinDef.h[53] - brought inside by Windows.h - defines two
macros min and max which result in conflicts and compiler errors.

51

Porting Snort3 to Windows

Keyword Logical Operator
and &&

and_eq &=
bitand &
bitor |
compl ∼
not !

not_eq !=
or ||

or_eq |=
xor ^

xor_eq ^=

Table 5.4: MSVC unsupported keywords and their logical operators counterparts.

Any C++ source code including this Windows header will likely head into prob-
lems if min or max are used together with the Standard C++ library functions
std::min()/std::max() as defined in the <algorithm> header.

The solutions to this can be multiple:

• Define the NOMINMAX macro to instruct WinDef.h to avoid the definition of
the min/max macros. For example updating the Visual C++ compiler options
with /D NOMINMAX or inserting define NOMINMAX.

• Redefine min/max in the abstaction layer. (See Listing 5.12).

Listing 5.12: Redefinition of the min/max macros.
1 #ifndef MIN
2 #define MIN(a, b) (((a) < (b)) ? (a) : (b))
3 #endif
4 #ifndef MAX
5 #define MAX(a,b) (((a) > (b)) ? (a) : (b))
6 #endif

Reversing the Order of Bytes

The Byteswap functions from both Linux[54] and Windows[55] allow to reverse
order of bytes in an integer (E.g.: 0x123456789abcdef -> 0xefcdab8967452301).

52

Porting Snort3 to Windows

These are essential routines to move from big endian processors (bytes are
numbered from most-significant to least-significant in a multi-byte word) to little
endian ones (bytes are numbered from least-significant to most-significant), and
viceversa.

Listing 5.13: Mapping Linux bswap_* to Windows.
1 #ifdef _WIN32
2 #include <stdlib.h>
3 #define bswap_16(x) _byteswap_ushort(x)
4 #define bswap_32(x) _byteswap_ulong(x)
5 #define bswap_64(x) _byteswap_uint64(x)
6 #endif // _WIN32

Compare two strings ignoring case

While on Linux this job is performed by the strcasecmp and the strncasecmp
(<strings.h>)[56] onWindows it is achieved through the lstrcmpi (<Winbase.h>)[57]
and the _strnicmp (<string.h>)[58] functions.

Listing 5.14: Mapping Linux string comparison functions to Windows.
1 #ifdef _WIN32
2 #define strcasecmp lstrcmpi
3 #define strncasecmp _strnicmp
4 #endif // _WIN32

53

Chapter 6

Automating Snort 3
Installation

After having achieved a successful Snort 3 binary distribution for Windows the
main aim of this section is to simplify and automate the installation of Snort 3 on
Windows systems through the portability feature provided by Docker.

The focus of this chapter revolves around 4 main points:

• The choice of the Windows container base image.

• The installation of Chocolatey and Vcpkg to install the necessary LibDAQ
and Snort 3 dependencies.

• The installation of Visual Studio Build Tools into a Windows container to
build LibDAQ and Snort 3.

• The installation of Npcap and the associated drivers to support network packet
capture.

6.1 Windows Container Base Images
Windows offers four container base images (see Figure 6.1) that users can build
from. Each base image is a different type of the Windows or Windows Server
operating system, has a different on-disk footprint, and has a different set of the
Windows API set [59].

After careful consideration the chosen base image is Windows Server Core[60]
with .NET Framework 4.8 (See Listing 6.1).

55

Automating Snort 3 Installation

Figure 6.1: Windows container base images.

Listing 6.1: Windows Base Image Identification.
1 # escape=‘
2

3 ARG FROM_IMAGE=mcr.microsoft.com/dotnet/framework/sdk:4.8−windowsservercore−
ltsc2019

4 FROM ${FROM_IMAGE}

6.2 Installing Snort Dependencies in a Windows
Container

As discussed in section 5.2 the dependencies of Snort 3 are mainly installed using
Chocolatey and Vcpkg package managers.

Listing 6.2: Installing Chocolatey and Vcpkg in a Windows Container.
1 SHELL ["powershell", "−Command", "$ErrorActionPreference = ’Stop’; $ProgressPreference =

’SilentlyContinue’;"]
2

3 # Install Chocolatey
4 RUN [Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12; ‘
5 iex(iwr −useb https://chocolatey.org/install .ps1);
6

7 # Download and install vcpkg
8 RUN mkdir C:\dev && cd C:\dev && ‘
9 git clone https://github.com/Microsoft/vcpkg.git && ‘

10 .\vcpkg\bootstrap−vcpkg.bat −disableMetrics

56

Automating Snort 3 Installation

6.3 Installing Visual Studio Build Tools in aWin-
dows Container

The installation of Visual Studio Build Tools into a Windows container to build
LibDAQ and Snort 3 is bound to the installation, through Chocolatey, of:

• The Visual Studio 2019 Build Tools 16.11.8.0 that allow to build native and
managed MSBuild-based applications without requiring the Visual Studio
IDE. [61]

• The Visual C++ build tools workload for VS2019 Build Tools 1.0.1. [62]

• The Desktop development with C++ workload for VS2019. [63]

Listing 6.3: Installing Visual Studio Build Tools in a Windows Container.
1 SHELL ["cmd", "/S", "/C"]
2

3 # Visual Studio 2019 Build Tools 16.11.8.0
4 RUN cinst −y −−no−progress visualstudio2019buildtools
5 # Visual C++ build tools workload for VS2019 Build Tools 1.0.1
6 RUN cinst −y visualstudio2019−workload−vctools
7 # Install Desktop development with C++ workload for VS2019
8 RUN cinst −y −−no−progress visualstudio2019−workload−nativedesktop || echo "ignore

reboot request"

6.4 Installing Npcap in a Windows Container
The installation steps for Npcap in a Windows container are slightly different from
the ones discussed in section 5.2.1 because currently there is no way to install
drivers in Windows containers. However containers on Windows can use drivers
that are present on host OS.

For this reason in the Windows container is sufficient to install the Npcap SDK
(against which Snort 3 will be built) and to copy the Npcap DLLs from the host to
the container (See Listing 6.4).

Listing 6.4: Copying Npcap DLLs to the Windows Container.
1 COPY wpcap.dll C:\\Windows\System32\wpcap.dll
2 COPY Packet.dll C:\\Windows\System32\Packet.dll

57

Chapter 7

Conclusion and Future
Work

The main purpose of this thesis work is to create a Proof-of-Concept Malware
Detection Engine for Cisco Secure Endpoint (SE), formerly known as Advanced
Malware Protection (AMP).

To achieve this objective an IDS/IPS as Snort 3 has been taken into considera-
tion and, together with its required dependencies, has been ported to Windows to
provide a future engine for the Windows Secure Endpoint.

Being Snort 3 heavily dependent on Linux’s Libpcap library, the available Win-
dows PCAP modules have extensively been analyzed. From this research has
emerged that even though WinPcap used to be recognized as the industry-standard
tool for link-layer network access in Windows environments nowadays it has been
supplanted by Npcap.

Although Npcap features many issues like the lack of a silent installer, the free
license only allows five installs (does not allow for any redistribution) and the poor
driver performances it is a great choice for a Proof-of-Concept given also the fact
that the Libdnet-Striped depends on Npcap.

Using Npcap which is the natural Windows port of Libpcap there has been the
possibility to work with LibDAQ (the Data AcQuisition library, for packet I/O).
The first change that was needed was to change the build system from Autotools
to CMake in order to build on Windows. Out of the currently 10 existing modules
a successful Windows port of 5 modules has been achieved.

Among the Five modules available in Windows there is the possibility to use
the PCAP one which allows both the Readback and Live DAQ Modes which where
the two main objectives of this project.

59

Conclusion and Future Work

This means that Snort 3 for Windows is not only capable of reading packet
capture files but also of opening a network traffic interface and sniff packets and
display them in a continuous stream on the console. It must be highlighted, though,
that the Live interface sniffing features are achieved only using a native Windows
port through Microsoft Visual C++ compiler and not using MSYS2 nor MinGW-
w64.

Among the different options available to port Snort 3 to Windows the most effective
was found to be Microsoft Visual C++ compiler (MSVC). Not only MSVC is the
State of the art compiler in terms of native Windows ports but also the lack of
live interface sniffing capabilities for MinGW-w64 and MSYS2 libpcap’s was an
incentive to build Snort 3 using MSVC.

This choice was supported by the fact that both the Npcap SDK and the
Libdnet-striped where compiled using MSVC and thus only compatible for a native
build using the same compiler (MinGW-w64/MSYS2 are incompatible with MSVC
libraries).

To cope with the main incompatibilities present when running a Linux executable in
Windows an abtraction layer has been implemented in order to avoid a huge amount
of changes in the original codebase and only the changes which were absolutely
specific where threated using some preprocessor definitions. Those features which
are completely extraneous to a Windows program (for example, syslog.h, pwd.h,
grp.h) were safely elided.

Given the difficulties in installing all the dependencies of Snort 3 in Windows
(but also in Linux), the installation of Snort 3 in Windows has been made even
easier with a containerized application that can be deployed to any other system
where Docker is running to be sure that Snort 3 will perform exactly as it should on
Windows. This work has lead to many discoveries in terms of Windows containers
that can be exploited in the future for similar situations.

7.1 Future Work
Since this thesis work was a Proof-of-Concept there are some aspects that will need
to be handled in future.

The main one is to investigate the possibility to implement a LibDAQ module
based on WinDivert to overcome the limitations shown by Npcap. In this regard, it
is good to notice once more the strength of Snort 3 which relying on this abtraction
layer for data acquisition will remain untouched by these changes.

60

Conclusion and Future Work

61

Bibliography

[1] What is Snort? https://www.snort.org. [Online]. 2021 (cit. on p. 5).
[2] Snort FAQ - What are the differences in the rule sets? https://www.snort.

org/faq/what-are-the-differences-in-the-rule-sets. [Online] (cit.
on p. 8).

[3] Ian Firns. Barnyard2. https://github.com/firnsy/barnyard2. [Online].
2016 (cit. on p. 10).

[4] Google. FlatBuffer. https://google.github.io/flatbuffers/. [Online].
2021 (cit. on p. 10).

[5] The Zeek Project. Zeek. https://zeek.org. [Online]. 2021 (cit. on p. 12).
[6] Zeek on Windows, Issue 951. https://github.com/zeek/zeek/issues/951.

[Online]. 2021 (cit. on p. 13).
[7] The Open Information Security Foundation. Suricata. Version 6.0.3. 2021.

url: https://suricata.io (cit. on p. 13).
[8] Microsoft. Microsoft Defender for Identity. https://www.microsoft.com/

en- us/security/business/threat- protection/identity- defender.
[Online]. Sept. 2021 (cit. on p. 13).

[9] David Curwin, Kent Sharkey, and M. Baldwin. What is Microsoft Defender
for Identity? https : / / docs . microsoft . com / en - us / defender - for -
identity/what-is. [Online]. 2021 (cit. on p. 14).

[10] David Curwin and Kent Sharkey. Microsoft Defender for Identity FAQ:
WinPcap and Npcap drivers. https://docs.microsoft.com/en-us/defend
er-for-identity/technical-faq#winpcap-and-npcap-drivers. [Online].
Oct. 2021 (cit. on p. 14).

[11] Cisco and/or its affiliates. ClamAV Introduction. https://docs.clamav.
net/Introduction.html#clamav. [Online]. 2021 (cit. on p. 14).

[12] The Tcpdump Group. LibPCAP. Version 1.10.1. 2021. url: https://www.
tcpdump.org (cit. on p. 17).

62

https://www.snort.org
https://www.snort.org/faq/what-are-the-differences-in-the-rule-sets
https://www.snort.org/faq/what-are-the-differences-in-the-rule-sets
https://github.com/firnsy/barnyard2
https://google.github.io/flatbuffers/
https://zeek.org
https://github.com/zeek/zeek/issues/951
https://suricata.io
https://www.microsoft.com/en-us/security/business/threat-protection/identity-defender
https://www.microsoft.com/en-us/security/business/threat-protection/identity-defender
https://docs.microsoft.com/en-us/defender-for-identity/what-is
https://docs.microsoft.com/en-us/defender-for-identity/what-is
https://docs.microsoft.com/en-us/defender-for-identity/technical-faq##winpcap-and-npcap-drivers
https://docs.microsoft.com/en-us/defender-for-identity/technical-faq##winpcap-and-npcap-drivers
https://docs.clamav.net/Introduction.html##clamav
https://docs.clamav.net/Introduction.html##clamav
https://www.tcpdump.org
https://www.tcpdump.org

BIBLIOGRAPHY

[13] Riverbed Technology. WinPcap. Version 4.1.3. 2013. url: https://www.
winpcap.org (cit. on p. 17).

[14] Nmap Software LLC. Npcap. Version 1.55. 2021. url: https://nmap.org/
npcap/ (cit. on p. 17).

[15] MSYS2. Libpcap. Version 1.10.0-1. 2021. url: https://packages.msys2.
org/package/libpcap?repo=msys&variant=x86_64 (cit. on p. 21).

[16] MSYS2. MinGW-w64-x86_64-libpcap. Version 1.10.0-2. 2021. url: https:
//packages.msys2.org/package/mingw-w64-x86_64-libpcap?repo=
mingw64 (cit. on p. 21).

[17] The Tcpdump Group. Man page of PCAP_CREATE - RETURN VALUE.
https://www.tcpdump.org/manpages/pcap_create.3pcap.html. [Online].
Nov. 2021 (cit. on p. 22).

[18] Riverbed Technology. WinPcap v4.1.3. https://www.winpcap.org/news.
htm. [Online]. Mar. 2013 (cit. on p. 24).

[19] Riverbed Technology. WinPcap End of Life. https://www.winpcap.org/
default.htm. [Online]. Sept. 2018 (cit. on p. 24).

[20] Daiyuu Nobori, University of Tsukuba, Japan. Win10Pcap. 2015. url: https:
//www.win10pcap.org (cit. on p. 25).

[21] Nmap Software LLC. Nmap. Version 7.92. 2021. url: https://nmap.org
(cit. on p. 25).

[22] ReQrypt.org. WinDivert. Version 2.20. 2019. url: https://reqrypt.org/
windivert.html (cit. on p. 26).

[23] Basil. ReQrypt.org. https://reqrypt.org/home.html. [Online]. 2017 (cit.
on p. 26).

[24] Setting up Suricata IPS/inline for Windows. https://suricata.readthed
ocs.io/en/latest/setting-up-ipsinline-for-windows.html#setting-
up-ips-inline-for-windows. [Online]. 2021 (cit. on p. 30).

[25] Cisco Systems, Inc. LibDAQ. Version 3.0.5. 2021. url: https://github.
com/snort3/libdaq (cit. on p. 31).

[26] Luigi Rizzo. Netmap - the fast packet I/O framework. Version 11.3. url:
http://info.iet.unipi.it/~luigi/netmap/ (cit. on p. 34).

[27] Netmap (Windows). https://github.com/luigirizzo/netmap#windows.
[Online]. 2015 (cit. on p. 34).

[28] Colin Robertson, Kent Sharkey, Nick Schonning, Jak Koke, Mike Jones, Mike
Blome, Gordon Hogenson, and Saisang Cai. Running Linux programs on
Windows. https://docs.microsoft.com/en-us/cpp/porting/porting-
from-unix-to-win32?view=msvc-170. [Online]. Mar. 2021 (cit. on p. 37).

63

https://www.winpcap.org
https://www.winpcap.org
https://nmap.org/npcap/
https://nmap.org/npcap/
https://packages.msys2.org/package/libpcap?repo=msys&variant=x86_64
https://packages.msys2.org/package/libpcap?repo=msys&variant=x86_64
https://packages.msys2.org/package/mingw-w64-x86_64-libpcap?repo=mingw64
https://packages.msys2.org/package/mingw-w64-x86_64-libpcap?repo=mingw64
https://packages.msys2.org/package/mingw-w64-x86_64-libpcap?repo=mingw64
https://www.tcpdump.org/manpages/pcap_create.3pcap.html
https://www.winpcap.org/news.htm
https://www.winpcap.org/news.htm
https://www.winpcap.org/default.htm
https://www.winpcap.org/default.htm
https://www.win10pcap.org
https://www.win10pcap.org
https://nmap.org
https://reqrypt.org/windivert.html
https://reqrypt.org/windivert.html
https://reqrypt.org/home.html
https://suricata.readthedocs.io/en/latest/setting-up-ipsinline-for-windows.html##setting-up-ips-inline-for-windows
https://suricata.readthedocs.io/en/latest/setting-up-ipsinline-for-windows.html##setting-up-ips-inline-for-windows
https://suricata.readthedocs.io/en/latest/setting-up-ipsinline-for-windows.html##setting-up-ips-inline-for-windows
https://github.com/snort3/libdaq
https://github.com/snort3/libdaq
http://info.iet.unipi.it/~luigi/netmap/
https://github.com/luigirizzo/netmap##windows
https://docs.microsoft.com/en-us/cpp/porting/porting-from-unix-to-win32?view=msvc-170
https://docs.microsoft.com/en-us/cpp/porting/porting-from-unix-to-win32?view=msvc-170

BIBLIOGRAPHY

[29] Craig Loewen et al. What is the Windows Subsystem for Linux? https:
//docs.microsoft.com/en-us/windows/wsl/about. [Online]. Sept. 2021
(cit. on p. 37).

[30] Virtual Machines. https://azure.microsoft.com/en- gb/services/
virtual-machines/. [Online]. 2021 (cit. on p. 37).

[31] Docker on Azure. https://docs.microsoft.com/en-us/azure/docker/.
[Online]. 2021 (cit. on p. 37).

[32] Cygwin. https://cygwin.com. [Online]. 2021 (cit. on p. 37).
[33] Microsoft C++ (MSVC). https://docs.microsoft.com/en- us/cpp/

build/reference/compiling-a-c-cpp-program?view=msvc-170. [Online].
Mar. 2021 (cit. on p. 37).

[34] Introduction to Hyper-V on Windows 10. https://docs.microsoft.com/en-
us/virtualization/hyper-v-on-windows/about/. [Online]. 2019 (cit. on
p. 38).

[35] Craig Loewen, v-chmccl, Matt Wojciakowski, and v-surgos. Will WSL 2 be
able to use networking applications? https://docs.microsoft.com/en-
gb / windows / wsl / faq # will - wsl - 2 - be - able - to - use - networking -
applications-. [Online]. Dec. 2021 (cit. on p. 38).

[36] Chocolatey Software, Inc. Chocolatey. Version 0.11.3. 2021. url: https:
//chocolatey.org (cit. on p. 39).

[37] Microsoft. Vcpkg. Version 0.11.3. May 12, 2021. url: https://vcpkg.io/
en/index.html (cit. on p. 39).

[38] Nmap Software LLC. Downloading and Installing Npcap Free Edition. https:
//nmap.org/npcap/. [Online]. 2021 (cit. on p. 39).

[39] Colin Robertson. .vcxproj and .props file structure. https://docs.mi
crosoft.com/en-us/cpp/build/reference/vcxproj-file-structure?
view=msvc-170. [Online]. Aug. 2021 (cit. on p. 40).

[40] Gordon Hogenson, Dave Thomas, Theano Petersen, Terry G. Lee, Genevieve
Warren, Mike Jacobs, Nick Schonning, Mike Jones, and Maira Wenzel. MS-
Build. https://docs.microsoft.com/en-us/visualstudio/msbuild/
msbuild?view=vs-2022. [Online]. Oct. 2021 (cit. on p. 40).

[41] Inc. Cisco Systems. LibDAQ README.md. https://github.com/snort3/
libdaq/blob/master/README.md. [Online]. 2021 (cit. on p. 41).

[42] GNU.org. Autotools. https://www.gnu.org/software/automake/manual/
html_node/Autotools-Introduction.html. [Online] (cit. on p. 41).

[43] Kitware. CMake. Version 3.22.0. 2021. url: https://cmake.org (cit. on
p. 41).

64

https://docs.microsoft.com/en-us/windows/wsl/about
https://docs.microsoft.com/en-us/windows/wsl/about
https://azure.microsoft.com/en-gb/services/virtual-machines/
https://azure.microsoft.com/en-gb/services/virtual-machines/
https://docs.microsoft.com/en-us/azure/docker/
https://cygwin.com
https://docs.microsoft.com/en-us/cpp/build/reference/compiling-a-c-cpp-program?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/reference/compiling-a-c-cpp-program?view=msvc-170
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/about/
https://docs.microsoft.com/en-gb/windows/wsl/faq##will-wsl-2-be-able-to-use-networking-applications-
https://docs.microsoft.com/en-gb/windows/wsl/faq##will-wsl-2-be-able-to-use-networking-applications-
https://docs.microsoft.com/en-gb/windows/wsl/faq##will-wsl-2-be-able-to-use-networking-applications-
https://chocolatey.org
https://chocolatey.org
https://vcpkg.io/en/index.html
https://vcpkg.io/en/index.html
https://nmap.org/npcap/
https://nmap.org/npcap/
https://docs.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure?view=msvc-170
https://docs.microsoft.com/en-us/cpp/build/reference/vcxproj-file-structure?view=msvc-170
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022
https://docs.microsoft.com/en-us/visualstudio/msbuild/msbuild?view=vs-2022
https://github.com/snort3/libdaq/blob/master/README.md
https://github.com/snort3/libdaq/blob/master/README.md
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://cmake.org

BIBLIOGRAPHY

[44] Steven Lee. mman-win32. https://github.com/alitrack/mman-win32.
[Online]. Oct. 2019 (cit. on p. 41).

[45] Steven White, Kent Sharkey, Adam Clouthier, and Michael Satran. Creating a
Basic Winsock Application. https://docs.microsoft.com/en-us/windows/
win32/winsock/creating-a-basic-winsock-application. [Online]. July
2021 (cit. on p. 42).

[46] Steven White, Kent Sharkey, and Michael Satran. Handling Winsock Errors.
https://docs.microsoft.com/en-us/windows/win32/winsock/handling
-winsock-errors. [Online]. July 2021 (cit. on p. 43).

[47] Unix - sockets for local interprocess communication. https://man7.org/
linux/man-pages/man7/unix.7.html. [Online]. Mar. 2021 (cit. on p. 44).

[48] Tyler Whitney, Kent Sharkey, Colin Robertson, Xinye Tao, Mike Jones, Mike
Blome, Gordon Hogenson, and Saisang Cai. Thread Local Storage (TLS).
https://docs.microsoft.com/en-us/cpp/parallel/thread-local-
storage-tls?view=msvc-170. [Online]. Aug. 2021 (cit. on p. 49).

[49] Colin Robertson, Kent Sharkey, Mike Jones, Mike Blome, Gordon Hogenson,
and Saisang Cai. Compiler Error C2492. https://docs.microsoft.com/en-
us/cpp/error-messages/compiler-errors-1/compiler-error-c2492?
view=msvc-160. [Online]. Mar. 2021 (cit. on p. 50).

[50] Colin Robertson, Kent Sharkey, Nick Schonning, Mike Jones, Mike Blome,
Gordon Hogenson, and Saisang Cai. dllexport, dllimport. https://docs.
microsoft.com/en-us/cpp/cpp/dllexport-dllimport?view=msvc-170.
[Online]. Mar. 2021 (cit. on p. 50).

[51] ffs(3) — Linux manual page. https://man7.org/linux/man-pages/man3/
ffs.3.html. [Online]. 2021 (cit. on p. 51).

[52] __lzcnt16, __lzcnt, __lzcnt64. https://docs.microsoft.com/en-us/
cpp/intrinsics/lzcnt16-lzcnt-lzcnt64?view=msvc-160. [Online]. 2021
(cit. on p. 51).

[53] Microsoft. windef.h header. https://docs.microsoft.com/en-us/windows/
win32/api/windef/. [Online]. May 2021 (cit. on p. 51).

[54] bswap(3) — Linux manual page. https://man7.org/linux/man-pages/
man3/bswap_16.3.html. [Online]. June 2021 (cit. on p. 52).

[55] Tyler Whitney, Kent Sharkey, Maira Wenzel, Mike Blome, Mike Jones,
Gordon Hogenson, Saisang Cai, and Colin Robertson. _byteswap_uint64,
_byteswap_ulong, _byteswap_ushort. https://docs.microsoft.com/en-
us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-
ulong- byteswap- ushort?view=msvc- 170. [Online]. Mar. 2021 (cit. on
p. 52).

65

https://github.com/alitrack/mman-win32
https://docs.microsoft.com/en-us/windows/win32/winsock/creating-a-basic-winsock-application
https://docs.microsoft.com/en-us/windows/win32/winsock/creating-a-basic-winsock-application
https://docs.microsoft.com/en-us/windows/win32/winsock/handling-winsock-errors
https://docs.microsoft.com/en-us/windows/win32/winsock/handling-winsock-errors
https://man7.org/linux/man-pages/man7/unix.7.html
https://man7.org/linux/man-pages/man7/unix.7.html
https://docs.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls?view=msvc-170
https://docs.microsoft.com/en-us/cpp/parallel/thread-local-storage-tls?view=msvc-170
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2492?view=msvc-160
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2492?view=msvc-160
https://docs.microsoft.com/en-us/cpp/error-messages/compiler-errors-1/compiler-error-c2492?view=msvc-160
https://docs.microsoft.com/en-us/cpp/cpp/dllexport-dllimport?view=msvc-170
https://docs.microsoft.com/en-us/cpp/cpp/dllexport-dllimport?view=msvc-170
https://man7.org/linux/man-pages/man3/ffs.3.html
https://man7.org/linux/man-pages/man3/ffs.3.html
https://docs.microsoft.com/en-us/cpp/intrinsics/lzcnt16-lzcnt-lzcnt64?view=msvc-160
https://docs.microsoft.com/en-us/cpp/intrinsics/lzcnt16-lzcnt-lzcnt64?view=msvc-160
https://docs.microsoft.com/en-us/windows/win32/api/windef/
https://docs.microsoft.com/en-us/windows/win32/api/windef/
https://man7.org/linux/man-pages/man3/bswap_16.3.html
https://man7.org/linux/man-pages/man3/bswap_16.3.html
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort?view=msvc-170
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort?view=msvc-170
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/byteswap-uint64-byteswap-ulong-byteswap-ushort?view=msvc-170

BIBLIOGRAPHY

[56] strcasecmp(3) — Linux manual page. https://man7.org/linux/man-
pages/man3/strcasecmp.3.html. [Online]. 2021 (cit. on p. 53).

[57] lstrcmpiA function (winbase.h). https://docs.microsoft.com/en-us/
windows/win32/api/winbase/nf-winbase-lstrcmpia. [Online]. 2021 (cit.
on p. 53).

[58] _strnicmp function (string.h). https://docs.microsoft.com/en- us/
cpp/c- runtime- library/reference/strnicmp- wcsnicmp- mbsnicmp-
strnicmp-l- wcsnicmp-l- mbsnicmp-l?view=msvc-170. [Online]. 2021
(cit. on p. 53).

[59] Susan Boher, Heidi Lohr, Elizabeth Ross, Vidush Vishwanath, Krzysztof
Krak, Craig Wilhite, Maira Wenzel, and Patrick Lang. Container Base Images.
https://docs.microsoft.com/en-us/virtualization/windowscontai
ners/manage-containers/container-base-images. [Online]. Nov. 2021
(cit. on p. 55).

[60] DockerHub. Windows Server Core by Microsoft. https://hub.docker.com/
_/microsoft-windows-servercore (cit. on p. 55).

[61] Chocolatey Software, Inc. Visual Studio 2019 Build Tools 16.11.8.0. 2021.
url: https://community.chocolatey.org/packages/visualstudio2019
buildtools (cit. on p. 57).

[62] Chocolatey Software, Inc. Visual C++ build tools workload for Visual Studio
2019 Build Tools. 2021. url: https://community.chocolatey.org/packag
es/visualstudio2019-workload-vctools (cit. on p. 57).

[63] Chocolatey Software, Inc. Desktop development with C++ workload for Visual
Studio 2019. 2021. url: https://community.chocolatey.org/packages/
visualstudio2019-workload-nativedesktop (cit. on p. 57).

66

https://man7.org/linux/man-pages/man3/strcasecmp.3.html
https://man7.org/linux/man-pages/man3/strcasecmp.3.html
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-lstrcmpia
https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-lstrcmpia
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strnicmp-wcsnicmp-mbsnicmp-strnicmp-l-wcsnicmp-l-mbsnicmp-l?view=msvc-170
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strnicmp-wcsnicmp-mbsnicmp-strnicmp-l-wcsnicmp-l-mbsnicmp-l?view=msvc-170
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/strnicmp-wcsnicmp-mbsnicmp-strnicmp-l-wcsnicmp-l-mbsnicmp-l?view=msvc-170
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-base-images
https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/container-base-images
https://hub.docker.com/_/microsoft-windows-servercore
https://hub.docker.com/_/microsoft-windows-servercore
https://community.chocolatey.org/packages/visualstudio2019buildtools
https://community.chocolatey.org/packages/visualstudio2019buildtools
https://community.chocolatey.org/packages/visualstudio2019-workload-vctools
https://community.chocolatey.org/packages/visualstudio2019-workload-vctools
https://community.chocolatey.org/packages/visualstudio2019-workload-nativedesktop
https://community.chocolatey.org/packages/visualstudio2019-workload-nativedesktop

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Outline
	Cisco Systems

	Snort 3 and Related Work
	Snort: Network Intrusion Detection & Prevention System
	Snort Layout on the FileSystem
	Snort Rules
	Snort Modes of Operation
	Snort Dependencies

	Related Work
	Suricata
	Microsoft Defender for Identity
	ClamAV

	Packet Capture
	Windows Network Driver
	Windows Network Driver Architecture
	NPF and NDIS
	Relationship of WPCAP.DLL and PACKET.DLL

	LibPCAP
	MSYS2 and MinGW LibPcap

	WinPCAP: Windows Packet Capture
	Win10PCAP: WinPcap for Windows 10
	NPcap: Windows Packet Capture Library & Driver
	NPcap License

	WinDivert: Windows Packet Divert
	WinDivert Architecture

	Which PCAP Module for Snort 3?

	LibDAQ: The Data AcQuisition Library
	LibDAQ Introduction
	LibDAQ Configuration
	DAQ Modules Features
	DAQ Modules
	BPF Module
	Dump Module
	Netmap Module
	PCAP Module
	Savefile Module
	Trace Module

	Porting Snort3 to Windows
	Running Linux programs on Windows
	MSYS2
	MinGW-w64
	Microsoft Visual C++ (MSVC)

	Installing Snort Dependencies for MSVC
	Npcap Install
	Libdnet Install
	Vcpkg Install

	Porting LibDAQ to Windows
	Re-writing Linux specific code into Windows specific code
	Porting BSD sockets with Winsock API
	Porting UNIX Signals in Windows
	Data structure alignment
	Thread Local Storage (TLS)
	SO_PUBLIC and SO_PRIVATE Snort Types
	Miscellaneous MSVC Fixes

	Automating Snort 3 Installation
	Windows Container Base Images
	Installing Snort Dependencies in a Windows Container
	Installing Visual Studio Build Tools in a Windows Container
	Installing Npcap in a Windows Container

	Conclusion and Future Work
	Future Work

	Bibliography

