
Master Thesis
Master in Research and Innovation in Informatics: FIB Facultat d’Informatica de Barcelona

Computer Engineering: Politecnico di Torino

Analysis and Implementation of Load
Balancers in Real-Time Bidding

Author: Pietro Oricco
Supervisor: Edráı Brosa Ciercoles

FIB Tutor: Francisco Javier Larrosa Bondia
Politecnico di Torino Tutor: Andrea Bottino

January 2022

Contents

1 ABSTRACT 3

2 INTRODUCTION AND MOTIVATION 5

3 PRELIMINARIES 7
3.1 Overview of a Real-Time-Bidding (RTB) system and OpenRTB 7
3.2 Auction and bids . 8
3.3 Demand Side Platform DSP internals . 11
3.4 Reverse proxies and a possible use case . 12

3.4.1 Benefits of a reverse proxy . 13
3.5 Load-balancing and RTB . 14

3.5.1 Load-balancing algorithms . 14
3.5.2 Load-balancing algorithms’ performances comparison 16

4 SOFTWARE SELECTION PROCESS 19
4.1 Requirements of a RTB load-balancer . 19
4.2 Available Candidates . 22
4.3 Comparison against the requirements . 24

4.3.1 Considerations . 25
4.4 Examination of candidates . 26

4.4.1 The set-up . 26
4.4.2 Performance Test: increasing requests per second 29
4.4.3 Performance test: increasing number of connections 31

4.5 Conclusions of the software selection process 34

5 CONFIGURING HAPROXY TO
PLATFORM ENVIRONMENT 35
5.1 HAProxy configuration overview . 37

5.1.1 The Front-end side . 38
5.1.2 The Back-end side . 40
5.1.3 Tuning HAProxy . 42

5.2 Configuring dynamically without experiencing
down-time: the Runtime API . 44
5.2.1 Initializing the balancer . 45
5.2.2 Dynamically updating the balancer 47

5.3 Metrics retrieval . 51
5.4 Setting up script execution periodicity . 56
5.5 Deploying HAProxy in the Platform logic . 58

1

6 METRICS VISUALIZATION AND
MONITORING 65
6.1 Implementation of the bidding dashboard . 66
6.2 Effects after deployment: metrics’ visual debug 69

6.2.1 Effects after deployment: best-case scenario 70
6.2.2 Effects after deployment: general-case scenario 73

7 CONCLUSIONS 77
7.1 Acknowledgments . 78

8 GLOSSARY 79

2

1 ABSTRACT
This document is meant to analyze the main features of a Real-Time-Bidding (RTB)
system with a view to improve the functionality of a Demand Side Platform DSP. It
reflects on the best way to implement a software component which defines the balancer
module, which is a specific module meant to spread the traffic a web-platform receives over
multiple back-end servers.
In particular, the discussion will be centered on which load-balancing strategy and tool is
the best by the point of view of a high-demand throughput system in order to avoid the
overload of some compute nodes, considering that many open-source load-balancers can be
found in the market in a great variety of forms, implementations and features; the focus will
be over the needs of a Demand Side Platform, where performances are put at first place and
the internals of the platform itself change constantly (such as the number of servers and the
addresses of the servers itself).
This research will be conducted following best-practices in Software Engineering and Research
field, with the purpose to aggregate the various learning contributions gathered during my
Double Degree experience among Barcelona and Torino.
First, a background over the topic is provided, with a glance to the RTB world and the main
concept that this kind of system deploys and an insight over the internals of the balancer
component by means of proxy models and load-balancing strategies.
Second, a preliminary research over the main software solutions will be conducted, with the
aim of filtering the ones that don’t match the requirements provided by a professional tech
company; the documentation supplied by each balancer will be analyzed with the objective
to fill a software evaluation matrix, provided to highlight the various feature supplied by
each balancer and to discard faulty solutions.
Then, a testing environment will be built for every solution still under evaluation in order
to effectively check that the component respects the declared features. Moreover, the testing
environment is exploited to discover which is the best software product by means of overall
performances, requirement considered crucial for a low-latency-high-throughput plat-
form; the final goal of this step is to provide a winner to the software selection process that
will be implemented in the final step by means of stressing the limit of the softwares under
evaluation both by means of incoming total connections and requests per second.
Finally, the ultimate candidate will be implemented inside the platform environment: it will
be installed and configured over the Infrastructure as a Service that hosts the Demand Side
Platform environment, mapping the agents described later in the discussion with the actual
final component’s configuration file. The configuration file must be meant as a template that
describes the current back-end members for each server farm, which will change aside the
internals of the platform itself, hence a way to configure dynamically the component will
be described, together with the adjustments meant to integrate the balancer module in the
platform and deploy it in real production environment.

3

In conclusion, the final goal is to observe the effects that this analysis and the consequent
implementation over the production environment metrics will cause, with the objective to
improve the quality of service of the back-end by reducing the average response times from
servers side and to show a possible decrease of the infrastructure costs related to the bidding
process of a DSP. A dashboard will be provided in order to highlight the possible improve-
ments this project might carry.
In addition, the aim of this thesis is to provide useful guide-lines for future works around
the topic and also to highlight best-procedures for the selection and the implementation of
the balancer software component, with a view to improve the overall performances based on
real-case scenario requirements.

4

2 INTRODUCTION AND MOTIVATION
This Master Thesis has been driven by the will of testing my skills over the expectation of the
labour market, with the aim of improving my abilities and sample the working requirements
of a real software engineering company. This comes aside the will of enhancing the job of
the so called DevOps, a collection of practices meant to develop and to operate over a soft-
ware product, with a glimpse to the world of AdTech and the management of a HTTP-level
platform involved in RTB, the new frontier of programmatic advertisement; in addition, this
paper has been written during my period as member of the infrastructure team in Smadex
SLU (also addressed by the Company in the next chapters), where I had the opportunity
to work on their platform and to investigate over the challenging topic of the selection and
implementation of a reverse-proxy, a fundamental component inside the system with the
duty of managing the HTTP traffic and load-balancing the various servers working as part of
Smadex SLU platform. I have always been fascinated by the concept of AdTech and working
directly in the field has been an extremely fulfilling and valuable experience, exploiting and
investigating in many aspects of the infrastructure of a so-called Demand Side Platform
or simply DSP.
In this paper, I am going to inspect the market offer for reverse-proxies with the aim
of selecting the best product to implement as the balancer component in a production
environment basing the decision on real-case requirements given by a professional engineer-
ing company that operates over the development and the management of such-a-kind of
platform. The analysis in this paper takes into consideration that many products that offer
reverse-proxy features in the market are designed and developed following several standards,
implementation logics and programming languages (affecting the overall load distribu-
tions among servers and the respective response time latencies), therefore they
provide different functionalities and guarantee different performances which are considered
a crucial indicator in such a platform like the one deployed by Smadex SLU, that is for all
intents and purposes a low-latency-high-throughput system that needs to operate at the best
performances possible over a Cloud infrastructure.
In addition, this paper is based on the analysis made by the engineer and expert of the field
John Hearn [1] around the load-balancing algorithms subject, that analyse the disparate
strategies around the topic, which outcome is considered extremely valuable by means of the
discussion held in the next pages, in particular during the selection of the component and
the successive evaluation.

5

6

3 PRELIMINARIES
In this chapter, we will analyse the founding concepts behind this Master Thesis. First, we will
overview OpenRTB [3], which is the standard that defines the way the platform operates,
highlighting its structure by means of agents involved and general concepts like auction and
bids related to the standard.
Then we will dig into the reverse-proxy topic, listing the types and the layers they operate,
analysing the several methodologies provided by means of load-balancing and their role
inside the Real-Time-Bidding context.

3.1 Overview of a Real-Time-Bidding (RTB) system
and OpenRTB

Have you ever wondered how the data we share while surfing the web are managed in order
to have always the most catchy advertisement on our devices? And how can the best-fitting
commercial be provided in a time window of few milliseconds? The answer is called RTB,
in other terms Real-Time Bidding, which is an ”emerging and promising business model
for online computational advertising” [2], formaly stated by OpenRTB [3], a networking
standard that takes place at the Application layer of OSI model [4] and defines a way to
serve ads to consumers directly based on their demographic, geographic, psychographic or
behavioral attributes.
The creation of this particular standard has been made fundamental since the requirements of
the market. Once upon a time, web-publishers had to negotiate directly the banner placement
over an application or a website with advertisement providers, this was typically an effort
and time consuming task that required many manual operations and maintenance. Alongside
the escalation of the digital world and the relative increase of web-pages, web-users and the
relative data stored in form of cookie, the birth of a new standard for advertisement delivery
was demanded.
With the rise of programmatic advertisement and Real-Time Bidding, the advertisement
placement have become automatized thanks to a set of algorithms and hardwares that pro-
vide the intermediary infrastructure for the web-publishers to expose their commercial spaces
and for the advertisers to set up advertisement campaigns. In particular, as expressed by [29]
this kind of system pattern, works thanks to separate and distinct but complementary sides:
the Demand Side Platform (DSP) and the Supply Side Platform (SSP) intercon-
nected by the intermediary figure of the AdExchange. Typically the SSP connects to the
web-publishers side, providing an interface for the publisher to handle the advertisement
inventory (a list of the banner available over a web-site) and monitor advertisement impres-
sions; in other terms, it is the way of RTB to gather many forms of advertising demand.
On the other hand, DSP interfaces the advertisers that wants to buy inventories, allowing

7

publicists to manage the content of their advertisements (also called Creatives) and to access
a wide range of statistics over the commercial campaign, placing at the disposal of advertisers
an impressive reach of web traffic acquisition making this system extremely efficient by means
of banner purchases; in addition, DSPs offer many features extremely valuable for target-
ing audiences at different levels, such as geography and nationality, device and OS, browser
and demographic data (such as age or gender)[29]. These information are sampled directly
from audiences exploiting cookies, small chunks of data describing web-page users’ routines
and features, deal by means of a third-party agent called Data Management Platform
(DMP).

Summarising, this business model defines a significant transformative innovation in on-
line advertising market, providing an efficient and big-data driven way to deliver adver-
tisements, significantly increasing the precision and effectiveness of advertisement shipment
technologies. Reporting what described before, RTB introduces:

• Standardized management of banners and improved advertisement placement.

• Improved targeting, advertisements extracted Ad-Hoc from user to user.

3.2 Auction and bids
It is self-evident from the naming of this particular business model that it is dealing with
bids, making it similar to an auction-style sell, where the bids are executed real-time, in
a time-span that usually do not exceed a few hundreds of milliseconds. This auction takes
place during the load of a web page or the boot of a mobile app, during which a massive

8

amount of micro-data are generated. Those micro-data are commonly called bids and they
can be described as the dialing of HTTP POST requests and responses that carries all the
information to elect the winner of the auction inside the HTTP packet body (usually in json
format), defining a way to exchange information among SSPs and DSPs in order to guarantee
banners placement. But how does this process work? As defined by [2], the following are the
usual steps that happen in an OpenRTB auction (addressed later also as bidding process):

1. A web-surfer visits a web-page or a mobile app owned by a publisher registered into a
SSP.

2. If the web-page hosts one or multiple ad spaces, the publisher’s page or mobile app
sends a bid request to the AdExchange, providing information about the user, the type
of commercial banner (video, image, game, ...) and the relative price for its acquisition,
asking for the start of an auction.

3. The AdExchange samples the available DSPs and forwards the bid-request.

4. Each DSP then retrieve the information calling a DMP which provides all the needed
details for targeting the user with the right advertisement. Machine Learning algorithms
are fed with the data coming from cookie history and the best-fit for the user is extracted
among the advertisers and used as participant at the auction. The bidding price is
calculated usually by a software module that is in charge of managing the budget of
the advertiser for the given campaign. This step is crucial, DSPs must provide a bid-
response for the best-fit in a certain amount of time to avoid being cut off from the
RTB process.

5. The AdExchange starts the auction and collects all the bid-responses coming from
various DSPs; then it evaluates the bids, determines the highest one and notifies all
the agents involved in the auction with the winner of the process.

As you can notice, point 4 is extremely crucial for a DSP, which revenues are related to the
number of auction in which is involved and, more in general, to the number of requests
per second it is able to process; therefore the revenue for such a platform highly depends
on the reliability and performances of the DSP’s infrastructure itself, which must be able
to optimize the amount of requests per second processed and the response latencies, coming
from AdExchanges.
Moreover, the amount of data generated aggregating all the auctions a DSP is involved into
is huge, on the order of magnitude of millions of HTTP requests per second, hence what
matters the most for such-a-kind of platform is to deliver a fast and reliable platform capable
of responding to bulks of HTTP POST requests coming from the outer world.
Following, the RTB Auction is represented in form of Business Process Modelling diagram.

9

Figure 3.1: RTB auction business process model 10

3.3 Demand Side Platform DSP internals
As already discussed, DSPs main functionality is to retrieve the best fit for an ad slot related
to a web-page user and to provide a response able to participate to the auction set up
by the AdExchange; but how is this platform designed and connected to the outer world
(i.e. AdExchanges)? Let’s analyse the structure of the Platform taking as reference the one
deployed by the Company:

Bidders are the instances in charge of receiving and forwarding bids, they cover the main role
of the platform, the bidding process, and their main functionality is to provide a correct
and in-time response to the given bid-request. They interact with the other modules of the
platform in order to always have the right data in order to take part in the auction. Therefore,
the bids are forwarded from the exchange to the platform following the above data-flow, with
the intermediary step of the balancer; each AdExchange provides a maximum response time,
hence the bidders are split in farms, grouped by the provided delay in order to match the
exchange expectation. Usually, AdExchanges are not connected directly to the platform but
they interface to the platform through balancers. This particular component is the center
of the discussion in the next chapters, since it will affect directly the performances and the
quality of service that the platform handles; it is implemented by means of a reverse-proxy
and this concept will be analyzed later in the discussion. DSPs are founding members of the
RTB process and with the rise of cloud computing, the new trend is to implement them over
a Cloud Infrastructure as a Service (IaaS), following a geographical distribution over
several regions in the world; they are placed in the most convenient areas of the globe, near

11

by the main AdExchanges locations, in order to decrease the overall round trip time of the
HTTP packets. DSPs also provide other functionality related to the RTB process, such as
tracking post-bid events (for instance, clicks and impressions grouped by campaign in order
to provide important metrics to the advertisers) and managing the budget defined by each
advertiser in each campaign. Those concepts won’t be addressed in this paper, where the
focus will be over the bidding process and the role of balancers inside it.

3.4 Reverse proxies and a possible use case
The term reverse proxy is usually given to a service that sits in front of one or more
servers (such as the bidders in our scenario), accepting requests from clients for resources or
processing power served by the servers’ back-end side; these resources are then delivered to
the client, appearing as if they have been originated from the reverse proxy server itself. But
is there a reason for the term reverse? Ordinary proxies, also called forward proxies, are
services exploited by a client or a group of clients in order to provide a common entry-point
to a public network, in such a way that all the traffic generated by clients is forwarded to a
single node in the network configuration: the proxy protects your inside network by hiding
the actual clients IP address and using its own instead. This solution was very popular to
provide Internet access before Network-Address-Translation NAT rise, that became the de-
facto standard for this kind of use-cases.
On the other hand, reverse proxies act differently: they are normally implemented on the
back-end side (i.e. interfacing with servers instead than clients) and, as expressed by [6], ”a
Reverse Proxy proxies on behalf of the backend HTTP server not on behalf the outside clients
request, hence the term reverse”. From the outside clients point of view, the Reverse Proxy
is the actual HTTP server”. Moreover, as expressed by the job of [5], it is possible to define
common patterns of usage for reverse proxies use-cases. In particular, the author states a
model considered peculiarly pertinent to the ”server-shading” scenario:

• Integration Reverse Proxy: the author here investigates over some doubts that rise
in a possible real use-case, such as how do you ensure everything is set under a consistent
web application space without exposing the server topology to clients? Or even, how do
you guarantee flexibility in network topology, by adding or removing servers without
surprising users? Furthermore how do you provide load balancing, if an application
server gets overloaded?
A web site or a platform consisting of several web servers or applications can frequently
change its network topology, therefore a solution needs to support changes in machine
configuration in order not to break clients bookmarks, links or DNS entries to the given
resource. Moreover, servers’ load can highly differ, hence the reverse proxy configuration
must provide a load balancing implementation able to distribute the traffic among the
several back-end agents. The usage of a reverse proxy for integrating all the web servers
as back-end servers with a common host address (that of the reverse proxy) is then
required, providing the ability to map URL paths under the common host address and
to access a single specific back-end host as routing rule, guaranteeing the possibility

12

to provide the Integration Reverse Proxy with a TLS/SSL certificate for encrypted
communications channels.

The Integration Reverse Proxy pattern provide many hints to light up the discussion
since it is a good mapping to the use-case of a reverse proxy for a Demand Side Platform like
the one deployed by the Company: bidders composing back-end farms might vary in number,
depending on the load of requests per second they need to process in the given geographical
region and defining an extremely volatile topology that it is really open to changes: for
instance, a region can highly vary its number of bidders from day time to night time and
vice-versa, but AdExchanges interfacing with them must always experience a stable quality
of service. Reverse proxy in this use-case must guarantee a complete shading of the back-end,
setting the internals of the platform as a black-box for the outer world while ensuring reach
of access to the respective back-end farm for each AdExchange. Moreover, load balancing
strategies offer a good topic for the optimization of the respective back-end, rising promising
discussion point analysed in the next section.
In conclusion, this particular pattern described by [5] provide the right theoretical basis for
the composition of requirements for the reverse proxies’ software selection and it will be dig
deeply later, in the section dedicated to software requirements.

3.4.1 Benefits of a reverse proxy
Reverse proxies help web applications to deploy a solid and stable entry-point for web services
and applications which can be summarized in three points which are redundancy, performance
and security:

• Redundancy: reverse proxies help back-ends to increase the availability of hosted
servers, splitting the network traffic among them with the objective to reduce the
overhead of multiple requests/connections managed by a single entity; this means that
a multiple replicas of a server must be there listening to incoming proxyed traffic,
grouped in a cluster of redundant instances of the same type. This feature is incredibly
helpful, since it shades the front-end side to server failures. Server failure occurrences
in a non-reverse-proxyed scenario would require the manual change of DNS value or
routing the incoming packets to a different server, the presence of a reverse proxy avoids
this tedious operation.
Redundancy improves server availability, increasing widely the possibility to have a
healthy server instance ready to process an incoming request.

• Performance: reverse proxies serving requests/connections act like the cashiers of a
shop. Imagine a crowded scenario with many people waiting to be served in front of a
single cash, if every person will take some time to be served, congestion will occur; let’s
say that after some minutes other three cashes open, setting the overall amount to 4, and
a fifth employee start sitting in front of the cashes equally distributing customers among
them, the performances will rapidly increase. Reverse proxies cover this case, sitting in
front of servers and splitting, according to a load balancing algorithm (described

13

later in this chapter), the network traffic among back-end agents; in a scenario where
servers implement a logic through algorithms and programming languages that drain
resources and add an overhead to the serving time (meant as round trip time of a
packet + processing time), having a reverse proxy able to distribute the load fairly
would make the overall quality of service better.

• Security: networking also means protecting from malicious attackers and intruders.
Web servers might suffer of various forms of attacks, that ranges from man-in-the-
middle attacks to denial-of-service ones, which aim to sniff reserved information or block
the Platform to serve incoming traffic, flooding the servers with a huge amount of re-
quests and connections. Reverse proxies work as barrier to the outside world, providing
some basic but efficient forms of protection against possible intrusions. Distributed-
Denial-of-Service (DDoS), SlowLoris and Padding Oracle On Downgraded
Legacy Encryption (POODLE) attacks can be avoided by some modern reverse
proxies, which furnish, in their configurations, methods to avoid these issues.

3.5 Load-balancing and RTB
A general definition of load-balancing is the process of traffic distribution among several
computing units, where the traffic can be generally described by means of a set of Tasks.
For our discussion purposes, it is important to address again that we are analysing the case
of a server-side load-balancer that operates at HTTP level, since the OpenRTB standard,
as already described previously, works over Application Layer of the OSI model; therefore
each task corresponds to a HTTP POST request that needs to be processed by one of the
available bidders in one of the back-end farms. In addition, the current implementation in the
Platform provides the balancer component deployed on a cloud infrastructure, using multiple
components with load balancing capabilities instead than a single centralized component,
this strategy widely increases reliability through redundancy of the component itself. The
current solution consists of virtual server instances inside an Auto Scaling Group over a
Cloud Infrastructure (Amazon Web Services AWS specifically). Each instance has installed
and configured Nginx, a specific software reverse proxy and load balancer solution that we will
describe later as well, that routes the requests to the proper bidder farm, depending on the
response time allowed by the exchange. Purpose of this paper is to understand if the current
solution is the optimal among the available ones, considering that the component needs to
respect the requirements provided by the Company but also be the one that exploits better
and faster its back-end side.

3.5.1 Load-balancing algorithms
In general, there are two main distinctions of methodologies for load-balancing:

• Static: load balancing do not exploit back-end performances and information to make
traffic partition decisions.

14

• Dynamic: algorithms that take into account the current state of each server and
distribute traffic accordingly. This approach is more suitable for widely distributed
systems such as cloud computing, since it is able to sample information from the back-
end side and take load-balancing decisions according to the on-demand sampled data.

Many algorithms are described in the literature, the following are the most relevant ones by
means of availability and recurrence among major implementations in the market:

• Round Robin: the most basic algorithm, it is a strategy that defines a FIFO ordering
of the server called from the back-end. It is a static algorithm, hence it does not check
the status of a server before forwarding a request. In case three server (called A, B and
C) are available, the ordering of balance will always be A-B-C-A-B-C and so on, even
if a server is extremely over-loaded. The Nginx based solution currently implemented
in the platform exploits Round Robin.

• Look-up table: a static method that uses table to store the flow of data for a requests
mapped with a given ID (such as IP address or URI). When the first packet of a stream
arrives, a server is selected and the information is inserted into the lookup table, which
allows to forward succeeding packets always to that same specific server. It suffers of
memory problems, due to the fact that the table can be filled and some records must be
deleted. The retrieval of a given entry can also become a problem for long look-up table,
since the search of the entry can’t be optimized more than a complexity of O(log n)
(considering best-case scenario of binary search; in case of a normal search algorithm
is applied, the complexity rise to linear).

• Hashing: another static algorithm featured by the exploit of an hashing function that
maps the given request to a server. It is an optimization for the look-up table method
that retrieve the relative server for a request with a constant complexity of O(1). The
major hashing function works digesting the IP, the URI or a given HTTP header and
provides the server to address in an efficient way.

• Random: the selection of the server is determined by a completely random generation
scheme.

• Least occupied: a dynamic algorithm that checks the state of the given back-end and
give access to the least occupied one. The most common schemes for determining the
occupation of a farm are the count of requests or the count of connections each node
is handling.

• Power of Two also called Random 2: it is the combination of two already described
strategies: it mixes the logic of random and least occupied ones. When a request arrives
to the balancer component, two distinct nodes are extracted randomly from a given
backend, then, following a lest-occupied strategy, the request is forwarded to the node
labeled as the less busy among the two.

15

3.5.2 Load-balancing algorithms’ performances comparison

This section is dedicated to the comparison of the several algorithms expressed in the
previous point, identifying those that might be relevant for optimizing the performances
of each back-end farm, with a view on the best ones based on the Company and RTB
point of view, where more specific requirements related to the given context are re-
quired.
Following the results obtained in the benchmark from HAProxy team [7], it is quite
evident how Round Robin and Random algorithm do not furnish any kind of improve-
ment, instead they are disastrous by means of performances; they are hence considered
the most basic algorithms, which are not supplying any kind of improvement.
Then, we consider the hashing algorithm (the look-up table is not evaluated since a
rudimental version of hash, hence less performant). Hashing is very efficient for static
scenarios, where servers’ state and number do not change along time, since it is able
to provide, exploiting constant time, the required back-end and allocating server uni-
formly. The situation changes when a volatile back-end happens (i.e. when the scenario
allows the removal and the add-on of servers; situation pretty common for a cloud-based
RTB use-case), following the context described by [22], dynamic back-end can add a
major problem which is the loss of table allocations that can get substantially changed,
thus losing the benefits of previous caches.
Least-occupied strategies are the ones that usually fit the best for highly dynamic con-
text like the Company’s platform one since it can efficiently label the least busy server
in a farm, but it adds an overhead related to the search of the best fit: looking for the
least occupied can be time demanding if the given farm is wide; in addition, Smadex’s
DSP is linked with AdExchanges working with the most disparate types of connections
and requests per second, there might be servers featured by a huge amount of requests
per seconds on really few TCP connections making least-connection strategy to address
servers already congested. In addition, when a server boots up, this kind of strategy
tends to favor the establishment of connections with new born server, with the con-
sequence to notice already congested servers few seconds after their instance creation.
This is a scenario that must be avoided in order not to expose servers to bottle-necks.
Power of Two instead, provides a nice workaround for load-balancing algorithms, pro-
viding a solution able to cut off the demanding search over the servers’ farm for the
least occupied one. Moreover, following the research set up by my colleague at Smadex
SLU John Hearn [1], it is evident how the Random 2 solution supplies a really efficient
way of load-balancing, mixing the constant speed of retrieval of servers of the Random
algorithm with the look-up to server status of the least-occupied one. As stated by
[1] ”while the least occupied is slightly better in terms of the spread of requests, the
random 2 has some other advantages. Firstly, its slightly simpler and therefore faster
in practice because only 2 servers are checked for each request rather than all of them”
but also ”it avoids servers which are (re)starting receiving all the load immediately”.
Moreover, John Hearn highlights how this strategy shows the best results for back-end
load management, stating that it is the one that behaves best under varying load and

16

number of servers, keeping the response times lower than other algorithms. In addition,
Random 2 helps to reduce the variances of the response times, guaranteeing better and
more uniform reply from servers.
In conclusion, the best fit for the Company is then a balancer component able to
provide Random 2 balancing feature, with the objective of providing a better
distribution of load and uniform response times.

17

18

4 SOFTWARE SELECTION PROCESS
As proof of concept, the aim of this chapter is to focus over the selection of the best-fitting
candidate for the balancer component of the system. In order to achieve this purpose, an
analysis among the main solutions available in the market is done, considering those services
which have reverse-proxy features and can efficiently load-balance many clusters of servers.
The load-balancing service needs to be compatible with the requirements provided by the
Company and with the concept explained in the preliminaries, especially for the Integration
Reverse Proxy pattern and load balancing techniques, with a view to the one characterized
by the best performances in terms of request-processing rate and management of back-end
latencies; those requirements will be pointed out later in section 4.1, considering also that
priority will be given to solutions based on free or open-source softwares available in the
market. Many premium versions of the softwares under evaluation provide the full catalogue
of expected requirements exploiting monthly or yearly billing. Since the selection of the
balancer component should not affect the price that the Company is willing to pay, the
evaluation must take into consideration freemium or open-source product with the aim of
excluding the billing related to the component itself and, on the contrary, focusing if possible
on the reduction of the price related to the Infrastructure as a Service (IaaS) hosted on the
Company’s cloud.
First, the candidates will be analyzed by the point of view of the proposed features; the
documentation of the various softwares must drive this preliminar analysis with the objective
of excluding such services that don’t provide the expected specifications.
Second, the winners from the first stage will be configured and deployed over a testing
environment exploiting Docker tools, aiming to prove that the product is effectively providing
the declared features. The set-up will guarantee a fast and reliable deployment of multiple
containers mocking the scenario of a RTB auction, with the aim of stressing the technology
of each software load-balancer. In fact, the last stage of the experiment will research on the
most efficient reverse-proxy in terms of overall performances, benchmarking the remaining
candidates and providing the final winner.

4.1 Requirements of a RTB load-balancer
Following the needs of SMADEX SLU, we need to deliver a load-balancing software compo-
nent capable of respecting the following requirements:

1. Support HTTP/1.0, HTTP/1.1, HTTP/2 and HTTPS: the new standards for
ISO-Layer 7 of networking, HTTP/2 provides new features such as multiplexing (able
to exploit a single TCP connection for multiple parallel requests), improved packets
compression (able to eliminate a few bytes from each HTTP packet) and prioritization,
that allows a better management of packets in HTTP connections. [18]

19

Moreover, HTTP/2 is defined both for HTTP URIs (i.e. without encryption) and for
HTTPS URIs (i.e. Secure HTTP). Even if the standard itself does not require us-
age of encryption, all major browsers implementations (such as Firefox, Chrome, Sa-
fari, Opera, Edge) have stated that they will only support HTTP/2 over TLS, which
makes encryption de facto mandatory [9], plus many AdExchanges exploit the encrypted
HTTP standard to communicate with DSPs.
In addition, the balancer component is connected to AdExchanges exploiting HTTP/2,
HTTPS, HTTP/1.1 and HTTP/1.0 standards, while the internal connections among
the reverse proxy and the bidders (both hosted on the same cloud infrastructure) are de-
fined by the HTTP/1.1 standard, making them mandatory compatibility requirements
for the product selection.

2. Support programmable routing: software products under consideration must be
able to provide configurable routing, allowing packets forwarding to predefined server
farms (i.e. server collections aggregated by a common feature, like the maximum trans-
mission time). Routing in networking is usually implemented by means of rules that
work based on URL paths, hosts or HTTP header, meant to redirect packets to a set of
endpoints. For instance, a component under evaluation must be able to address different
backends forwarding packets to entrypoint/specificFarm (i.e. exploiting paths naming)
or to specificFarm.entrypoint (i.e. exploiting hosts naming). Moreover, programmable
routing is needed to forward packets coming from an AdExchange to the respective
associated cluster of servers.

3. Support configurable response code: as already claimed, bidders are implemented
in such a way that their number can vary according to geographical area and time-zone;
moreover bidders might suffer problems and stop sending bid-responses or more simply,
the bidder instance might crash for some infrastructural issues. OpenRTB standard
[3] claims that a no-bidding response after a valid request must be labeled with HTTP
204 No Content by the bidder: the best-practice is to forward 204 code for each
time a bidder is not participating to an auction (i.e. errors in the bidding back-end
or, simply, the bidder is not interested to bid in that particular auction). This means
that error codes for back-end side (such as 502 Bad Gateway, 503 Service Unavailable
or 504 Gateway Timeout) must be mapped into a HTTP 204 No Content in order
to guarantee the correct behaviour of the overall system. Repeated reception of 5xx
type error code would make the AdExchanges to close the connection to the DSP. In
addition, following [3], every invalid call (e.g., a bid request containing a malformed or
corrupt payload) must be mapped to 400 error code with no content.

4. Support dynamic upstream farms with no-reload down-time: load-balancing
among servers can often be suffering of changes in the actors composing the server side.
Servers that compose the back-end farms can suffer problems that make the given in-
stance to enter a faulty state. A very common scenario in a DSP is to experience bidders
not responding to requests (the so-called No-Bid state). From my practical experience
on the field, the main reason for this issue to happen is a faulty execution of some

20

”warm up” processes, the software modules in charge of loading all the information for
the bidders in order to parse bid-requests and provide the given bid-response but in
general it is very common to have these kind of server issues due to multiple factors.
Therefore, the component under analysis must be able to understand if a bidder is in
a bad state and avoid forwarding requests to it. This process is usually controlled by
health checks, which are described as a ”request to each member of the load balancer
group to establish the availability of each member server to accept” client’s incoming
packets [10].
On the other hand, back-end farms can experience bidders to join and leave the load
balancing group due to more or less traffic to be served, hence the load balancer must
recognize the group change and allow the packet routing to the new formed bidder
group. The most challenging part is to provide a component able to dynamically up-
date its configuration without experiencing a reload of the balancing service, which is
considered a mandatory requirement in a low-latency-high-throughput platform where
the back-end can constantly change: the Company’ platform is able to handle an average
of 1.5 millions of requests per second as aggregated statistics over multiple instances of
balancers, with a server side framework that can change even multiple times per minute
as worst case scenario, a reload of the service would cause down-time making thousands
of connections and requests to be lost, not guaranteeing an optimal functioning of the
platform itself; in addition, AdExchanges keep track of platforms response efficiency
and a reloading behaviour with down-time would expose the platform to be cut-off
from the RTB process; therefore, providing a service able to dynamically update the
configuration without experiencing reload delay is mandatory for the functionality and
the revenues of the platform itself.

5. Support metrics retrieval: in a company that performs DevOps routines, metrics are
essential. They allows engineers to always have an overview about components status
and functionality; ”monitoring, at its heart, is about observing and determining the be-
havior of systems, often with an ulterior motive of determining correctness. Its purpose
is to answer the ever-present question. Are my systems doing what they are supposed
to?” [8]. The software product under evaluation must be able to expose metrics and
allow the generation of statistics and plots in order to have a constant retrieval of
information useful for the DevOps/Infrastructure team in charge of monitoring KPIs:
”understanding the service your business provides and the levels at which you aim to
deliver that service is the heart of monitoring” [8].

6. Performances: this requirement is the one considered most critical for the selection of
the final candidate. The final choice must cover not only all the requirements previously
stated but it must also be the best one in terms of overall performances. Specifically,
SMADEX SLU Demand Side Platform manages over 52 billions HTTP requests every
day with an average of 1.5 million HTTP requests per second aggregated over many
bidding geographical regions distributed on a cloud infrastructure. Consider that AdEx-
changes place a very strict time constraint on the RTB process that usually is on the
order of magnitude of hundreds of milliseconds, exceeding this time constraint means

21

that the bids the DSP is sending are not taken under evaluation in the auction process,
losing out on potential bids and being cut out of a sales channel because of consistently
slow bids. Being fast is mandatory in Ad-Tech world, hence maximizing the number of
requests is considered crucial for having a correct behaviour of the platform.
This requirement will be evaluated by means of

• maximum requests per second that the component can handle;
• 99 percentile (i.e. the value of time that comprehends the 99 percent of the for-

warded requests RTT round-trip-time) and maximum RTT.

7. Load-balancing algorithm selection: which load-balancing algorithms are offered
by the candidate, prioritizing those that provide the best management of the back-end
side load; specifically products explicitly offering Random 2 as load-balancing strategies
must be prioritized, since they might provide a significant improvement as analyzed
previously in the discussion.

8. Availability of documentation and material: in order to properly configure each
component, it is fundamental to work with a well documented software that presents
all his features in a clear way. In addition, documentation is also needed in order to
understand if a software is mature and enough supported to be considered valid for the
installation in a production environment.

9. Support configurable HTTP headers: a minor way to reduce the impact of the
HTTP requests on the network infrastructure. A service that provides this feature
allows the removal and the modification of unused HTTP headers by means of RTB,
which means less Bytes transmitted over the channels, hence an improved utilization
of resources and costs of the infrastructure.

4.2 Available Candidates
In this section, I am going to point out the candidates that are taken into consideration as
services for the implementation of the balancer component.
In particular, I am going to focus on the following software products:

• HAProxy: it is a ”free, very fast and reliable solution offering high availability, load
balancing, and proxying for TCP and HTTP-based applications. It is particularly suited
for very high traffic web sites and powers quite a number of the world’s most visited
ones. Over the years it has become the de-facto standard opensource load balancer, is
now shipped with most mainstream Linux distributions. Its mode of operation makes
its integration into existing architectures very easy and riskless, while still offering
the possibility not to expose fragile web servers to the net” [13]. It is written using C
language, hence HAProxy can exploits the advantages of it, well known to be simple and
efficient and to provide the best performances among the other programming languages,
since it is very close to assembly and a lot of instructions are directly mapped to

22

the machine level. Among the web site exploiting HAProxy, the majors are GitHub,
Bitbucket, Stack Overflow, Reddit and Slack.

• Traefik: another mainstream solution in the market, Traefik provides a service able to
dynamically change its configuration with ease, ”with Traefik, there is no need to main-
tain and synchronize a separate configuration file: everything happens automatically, in
real time (no restarts, no connection interruptions)”. [15] This fact makes it an interest-
ing solution in order to easily implement a balancer component not affected by reload
delays, as expressed in the requirements section. This concept has been made possible
thanks to the programming language used to implement the service, it is developed
and supported through Go language, designed to improve programming productivity,
especially for multi-threaded solutions. More than 180 company are currently reported
to use Traefik.

• Nginx: its primary role was meant to be a web-server, therefore a service able to
manage the access to multiple HTTP resources located in possibly multiple domains
with the feature of being able to handle a huge number of concurrent connections.
Since it can support a high volume of connections, ”Nginx is commonly used as a
reverse proxy and load-balancer to manage incoming traffic and distribute it to slower
upstream servers anything from legacy database servers to microservices”[14]. It is the
product that offers the widest set of features, furnishing many functionalities covering
load-balancing and reverse proxy ones but also providing Mail proxy, caching and other
characteristics typical of web-servers. It is coded through C language, exploiting all the
benefits this language supplies by means of execution speed and multi-programming. It
is the solution adopted by the Company, as expressed previously, at the current state
of art.

• Envoy: Envoy is an open-source proxy operating at network’s Application layer, that
provide an efficient solution to address the more dynamic nature of a micro-services
architecture, as opposed to the traditional applications that were mostly static. Envoy
was made specifically for cloud architectures, and supports hot restart (no reload down-
time) to keep a safe approach not to lose connections during a configuration change,
and focuses on using the ”xDS API” to manage this kind of runtime modifications. [16]
Moreover, it exploits C++, guaranteeing similar execution speed as C but furnishing
extra security checks providing a more improved solution by programming language
point of view.

• Apache Web Server: the de-facto web-servers’ standard for more than 25 years,
written exploiting C programming language, it has been the most used solution in
the market for HTTP services. It is featured by a complex architecture that exploits
multi-processes, which allows Apache to run in either a ”process-based mode, a hybrid
(process and thread) mode, or an event-hybrid mode, in order to better match the
demand of each specific infrastructure” [17]. Moreover, it is considered significantly
slower than other solutions in the market and even more recent patches and updates
have not solved its intrinsic performance problem [17].

23

4.3 Comparison against the requirements
Starting from the given base of candidates at 4.2, it is necessary to filter their features against
the requirements reported previously. This research is made comparing the documentation
of each product under analysis with the features provided by the component itself, with the
objective of filtering out the less promising ones and proceeding benchmarking the perfor-
mances, testing the remaining load-balancers.
The following table is meant to describe the meaning of each value in the matrix for the
evaluation of the softwares, each row describes a requirement and the possible levels of con-
tribution :

Requirement/Value 0 1 2
Support no reload
dynamic configuration
(PRIMARY)

Not supported Supported
(External Plugin)

Supported
(Built-in)

Support HTTP/xx and HTTPS
(PRIMARY) Not supported Supported

Load balancing
algorithm selection
(PRIMARY)

Not configurable Less performant
ones available

Random 2
available

Support configurable
response code
(PRIMARY)

Not supported Supported

Support programmable
routing
(PRIMARY)

Not supported Supported

Support configurable
HTTP headers
(SECONDARY)

Not supported Supported
(External Plugin)

Supported
(Built-in)

Support metrics retrieval
(SECONDARY)

Not supported /
Not exportable

Few available
but exportable

Good collection
available

Availability of
documentation and
material
(SECONDARY)

Lack of
documentation Scarcely documented Well documented

The evaluation has been driven following a weighted matrix model, where each necessary
feature has a weight and a different range of values that can be assigned to it. The contribution
of each candidate is calculated following a formula like∑N

i=0 wi ∗ vali

where wi is the weight and vali is the value coupled to requirementi; N is the overall number
of requirements.

24

Every requirement has a weight assigned, the weight has been thought in order to respect a
given range of values depending whether the specification is primary, i.e. addressed as crucial
for the optimization and the implementation of the component, or secondary, defined in order
to sharp the component selection and the experiment set-up.

• Primary requirements: spanning from a minimum of 0 to a maximum of 6 of contribu-
tion value. 0 ≤ wi ∗ vali ≤ 6

• Secondary requirements: spanning from a minimum of 0 to a maximum of 4 of contri-
bution value. 0 ≤ wi ∗ vali ≤ 4

Following, the software evaluation matrix is reported:

Requirement Weight Nginx Traefik HAProxy Envoy Apache
Support dynamic configuration [0-2] 3 1 2 2 2 0
Support HTTP/xx and HTTPS [0-1] 6 1 1 1 1 1
Load balancing algorithm availability [0-2] 3 2 0 2 1 1
Support configurable response code [0-1] 6 1 1 1 1 1
Support programmable routing [0-1] 6 1 1 1 1 1
Support configurable HTTP headers [0-2] 2 2 1 2 2 2
Support metrics retrieval [0-2] 2 1 1 2 2 0
Availability of documentation and material [0-2] 2 2 2 2 1 2

37 32 42 37 29

4.3.1 Considerations
HAProxy by now seems the most complete product, with a huge amount of built-in features
provided in the basic release and scores the maximum in all the specifications, fully covering
the Company’s expectation and providing a good-enough set of load-balancing algorithms,
including Power of Two algorithm. Moreover, through a feature called Runtime API [25],
it allows to change values for members of each routing farm without down-time, making it
the best viable products in the selection.
Nginx as well can be considered a good candidate at this step, providing almost every given
requirement as built-in function while only the dynamic configuration of its upstream servers
must be implemented by means of a plugin but, the metrics provided are quite scarse; on the
other hand, as well as HAProxy, it provides an implementation for the Random 2 method.
It is possible to notice the first exclusion based on the contribution calculation: from its
documentation, Apache Web Server does not support two of the basic requirements provided,
specifically the no-reload dynamic update and retrieval of metrics are not described in the
documentation, hence this software must be excluded in the first stage of the analysis.
Traefik instead is a software capable of supplying a minimal amount of extra features (only
Round Robin algorithm available and support configurable headers only by means of a plugin)
but provides a fast-to-learn and easy-to-configure solution, considering the ease of exploiting
its no-reloading nature and neglected down-time. Unfortunately, for the use-case covered in

25

this paper and as discussed in the section dedicated to Load Balancing methods, Traefik’s
Round Robin does not provide any advantage for the optimization of the back-end servers’
load distribution, therefore is value-less and not convenient to proceed with this solution.
A different kind of discussion involves Envoy proxy; it is evident how this product is complete
and covers all the specifications, ranking second only to HAProxy on a par with Nginx,
showing interesting features and a really rich set of load-balancing algorithm, including the
least-request algorithm (a version of the least-occupied one but that takes into consideration
the amount of requests) and a plentiful collection of metrics to expose. The real problem
with Envoy results in the documentation, especially for a feature like the dynamic upstream
configuration which is badly documented at the point that the effort spent in researching
how to build-up the feature is overcoming the actual benefit this software can bring. Ease of
use is an implicit requirement that must be taken into consideration for a software selection
process, badly documented products or features can lead to difficulties that might overwhelm
the actual work or the future updates of the component.
For all the reason explained above, it is better to discard it and focus the analysis only on
Nginx and HAProxy.

4.4 Examination of candidates
Candidates’ documentations provide a good starting point to screen out the components
lacking of features, but often they can describe outdated or even deprecated products, whose
features might be documented but not yet compatible or performant enough for the needs of
the business. The objective of this section is to stress the technology of each component, by
means of increasing the desired total requests per second (for the first Performance Test) and
concurrent connections (described in the second Performance Test), in order to see which are
the effective limits of the softwares under analysis. Each candidate will be verified on a local
environment to actively see by first hand if it actually provides the features described by its
documentation and reported at 6.1 and, more important, which is the most performing one
by means of maximum amount of requests per second and 99 percentile time that can be
handled by a single instance of each load-balancer. The outcome of this step will define the
winner of the experiment, hence the component that will be configured and tested on staging
and finally deployed to production environment.
This performance test is meant to analyse the internals of each product and their implemen-
tation under high contention of resources, to see how different architectures, programming
language or multi-threading model can influence the outcome and the behaviour of the can-
didates.

4.4.1 The set-up
This section describes the prerequisites needed in order to set the experiment up:

1. A containerized environment exploiting Docker, able to isolate component func-
tionality inside containers and deploy them in a single-shot.

26

2. A performance-test tool wrk2, exploited in order to stress the candidates internals
with the aim of finding the highest-performant one under equal conditions and same
set-up.

1. The following section will provide a mock of the real scenario in which the selected
load-balancer will operate, therefore the service will be linked to predefined farms con-
taining servers written exploiting Express, a highly used server framework of Nodejs,
whose only objective is to provide an API able to respond to HTTP POST requests in
order to mimic from a high-level perspective bidders backend behavior. The following
code snippet describe how a ”toy” endpoint is defined at this preliminar stage:

const expre s s = r e q u i r e (’ express ’)
const app = expre s s ()
const port = 5001

app . post (’ / farm X ’ , (req , r e s) => {
r e s . send (’ He l lo World from Bidder X ! ’)

})

app . l i s t e n (port , () => {
conso l e . l og (‘ Bidder X l i s t e n i n g at http :// l o c a l h o s t : ${ port } ‘)

})

This ”dummy” server called Bidder X only functionality will be to expose an API to
react to the requests forwarded by the reverse-proxy under analysis.
Moreover, a sandbox environment is exploited: Docker [11] orchestrator is used in order
to achieve a one-shot deployment of multiple services, through docker-compose [12] tool;
it allows with a single command in the operating system prompt to boot and execute
both our load-balancer under investigation and multiple instances of Node.js/Express,
the set-up required by the experiment. The backend’s mock servers are loaded in con-
tainers that exploits Node.js Docker official image.
A dockerfile is defined to properly load the container and to boot the servers.

FROM node : l a t e s t
COPY . / s r c /upstream
WORKDIR / s r c /upstream
RUN npm i n s t a l l expre s s −−save
CMD [”node ” , ” http−s e r v e r . j s ”]

27

Specifically, starting from the latest image available of Node.js, the required depen-
dencies are installed inside each express container exploiting RUN statement with the
given settings (a basic package.json in order to use Node.js is contained inside /sr-
c/upstream); then the server code is executed and the API is exposed. The following
picture provides an overall view about the Docker containers interfacing with the load-
balancing component:

Figure 4.1: Testing environment

28

Each component is encapsulated into a Docker container, while the links represent
the interconnections provided by Docker for the components to exchange HTTP POST
requests. In order to obtain a fair comparison of the performances of each candidate, the
experiment is performed over a farm made up of two servers, to test the load-balancing
ability of the candidate; moreover the load-balancing algorithm selected is round-robin,
the most basic one among others, with the aim to provide an equity scenario for the
two component left. Hence, the same configuration of each load-balancer is a way to
test exclusively the performances given by the various internals of the products, with
the objective of extracting the most performant one.

2. For each load-balancer, one of the two farms is going to be stressed using a performance-
test tool called wrk2 [21], which is able to model a bulk stream of HTTP POST
requests, providing configurable options such as number of connections, number of
requests per second across all the connections and duration of the experiment. The
tool will be set to forward requests to each load-balancer under evaluation, sampling
the round-trip-time and generating a probability distribution for each forwarded packet,
reporting also the average rate of requests per second sampled from the test. In this
way it is going to be clear the critical point that will rise when the load balancer will
start queuing the requests and suffering of internal delays.

4.4.2 Performance Test: increasing requests per second
The performance test will be driven on a machine with the following requirements:

• 8 cores 11th Generation Intel(R) Core(TM) i7-1165G7 @ 2.80GHz

• 8 GB LPDDR4 RAM memory

Each sample is processed during the 10 minutes duration with the previous settings. The
performance-test tool wrk2 instead will have the following settings:

• 8 threads (one thread per core)

• 8 connections

• 10 minutes of overall duration (enough to guarantee a realistic outcome and to overcome
wrk2 calibration time as defined by [21])

• a variable number of requests per second spanning from 1000 to 25000 with an increase
of 1000.

This step is considered crucial and it will define the winner of the market analysis for this
specific type of software. The evaluation will relies on two fundamental concepts:

29

• Requests per second: the maximum amount of requests per second that the component
can manage without incurring in errors, timeouts or excessive tail delays. The ideal
load-balancer is the one that can process the incoming HTTP requests keeping a stable
behaviour, showing a linear trend versus the bulk of requests sent by the performance-
test tool (i.e. wrk2 sending a bulk of X requests/second, the load-balancer is able to
handle and process the same amount X).

• 99 percentile time: this is a quality indicator mainly used in statistical analysis. In this
particular scenario reflects the maximum value taken by the the 99% of the requests
round-trip-time (RTT), therefore an high value of this parameter will mean that tail
delays have occurred. The ideal load-balancer keeps the variance of distribution of the
times low, guaranteeing a fair distribution of times. High values of this parameter mean
starvation or more in general that a problem occurred; generally this issue is mainly
due to high contention of resources but may be also caused by host failures and packet
loss.

As already underlined, the balancer are configured with the same features to guarantee
equality condition; moreover, Nginx and HAProxy are set to run as single-thread instances:
for sure, if a product offers the possibility to run its executable exploiting multiple processes
or threads, then the final configuration (in a production environment) must take into account
this feature since capable to provide better distribution of processing resources. On the other
hand, in the interests of discovering the processing limit of such components, a single-thread
solution will be tested in order to ease the discovery of the technology limit of the components
under evaluation. The results are the following:

The performance test is meant to extract the maximum average requests per second giving a
quantitative idea of the number of requests per second a component can forward maintaining

30

a stable behaviour; from the first plot it is possible to notice how the number of requests per
second of each component is linear up to an inflection point, each candidate then saturates
around a given value of requests per second. This trend is common and recognizable for
both load-balancers. Nginx shows the inflection point at the lowest value (which average
in the saturation region is 4921 req/sec), while HAProxy ranks with better performances,
respectively with 13231 req/sec.

A similar trend is observed from total round-trip-time expressed as 99 percentile. The times
are extremely low initially for both candidates and then they start increasing steeply from
the inflection point of each candidate recognized in the previous step. Once again, Nginx
shows worse performances compared to the other two competitors showing huge tail latency
delays that in some case almost reaches 8 seconds.

4.4.3 Performance test: increasing number of connections
On the contrary, Nginx and HAProxy might be addressed by many various connections for-
warding multiple requests to the back-end side; this scenario wants to show how an high
number of connections can be a criticality for the balancers under evaluation, since it can
expose requests to starvation and drastically change their performances due to higher level
of parallelism. This experiment wants to show the effect of high concurrency and resources
contention over the candidate 99 percentile and maximum Round Trip Time that might be
suffering to spikes due to the relevant level of parallelism; to achieve this, it is necessary to
enable the candidates to exploit their multi-programming ability. In particular, both Nginx
and HAProxy works exploiting an event-loop strategy meant to wait for incoming HTTP
requests and to assign each request to a ”worker”. The main difference is the definition of
the worker: Nginx follows a multi-processing strategy, assigning one or many requests to a

31

process forked from the main one; on the other hand, HAProxy supports also the multi-
processing method but it is set as deprecated in the latest versions, the new state of art for
the product is to distribute requests among threads, a light-way version of process instances.
The following results are obtained setting the number of Nginx ’s processes and HAProxy’s
threads to the number of physical CPU available in the machine, hence eight as defined in
the previous experiment.
Moreover, this section splits the experiment in two sub-cases, providing a scenario for high
contention (heavy load of requests per second over the connections) and one for low con-
tention (soft load over the connections):

wrk2 for low contention scenario will have the following settings:

• 8 threads (one thread per core)

• 1000 requests per second

• 10 minutes of overall duration

• a variable number of connections spanning from 100 to 2000 with an increase of 100.

The achieved results are the following:

32

wrk2 for high contention scenario will have the following settings:

• 8 threads (one thread per core)

• 15000 requests per second

• 10 minutes of overall duration

• a variable number of connections spanning from 100 to 2000 with an increase of 100.

The achieved results are the following:

33

From the previous plots, it is possible to observe how HAProxy behaves better exploiting
multi-programming in a high-demand environment cutting off the response times and pro-
viding an efficient balancing of the resources and of times probability distribution, with a
performance degradation that is noticeable only for high contention scenario. Nginx on the
other hand seems being much more affected by spikes: even with fewer number of requests it
is already possible to notice spikes and response time degradation, with results that become
even worse in the high contention case with observed maximum delays of almost 8 seconds
for the slowest request.

4.5 Conclusions of the software selection process
It is then evident how a product is definitely better than the other: HAProxy is the undis-
puted winner of the software selection, both considering the results provided by means of the
software evaluation matrix at point 4.3 and the outcome of the performance test. HAProxy
is the product that by itself is able to encapsulate all the feature needed to integrate the
balancer component inside the platform held by the Company with the add-on to provide
the best performances among the compatible products.
Moreover, the results underline how a load balancer can actually add an overhead to the
packets round trip time by setting a delay which changes depending on the load balancer
service and its implementations; a product that is characterized by low variances in responses
will improve the overall backends’ quality of service, guaranteeing a better management of
the servers’ load and reducing the possibility to have slowness and delayed packets.

34

5 CONFIGURING HAPROXY TO
PLATFORM ENVIRONMENT

As highlighted previously, HAProxy is the most promising product to be implemented as the
balancer component since it sums up the best features over requirements, considering the
outcome shown in the section relative to the performance test over a single reverse proxy
instance too.
This chapter is meant to show how to configure the selected component and integrate it
in the DSP software modules logic, deploying it in a production environment where to test
its functionality and to observe whether the back-end performances are affected by the im-
plementation of the new balancer module based on HAProxy; an overview of the balancer
configuration will be provided, with the objective to provide a realistic mapping of the fea-
tures that a balancer component must deploy in a RTB use-case. This purpose requires to
provide the right configuration for the component, but it is not enough to deploy a bal-
ancer able to respond to the various change in the infrastructure, where bidders might join
and leave back-end farms; therefore, a way to properly initialize and dynamically configure
HAProxy will be defined; in addition, a way to sample the stats of the component must be
defined in order to integrate the current metrics aggregators and plotters already available
inside the platform (i.e. Statsd, Grafana, CloudWatch). The initialization, the dynamic up-
date of the configuration and the metrics retrieval will be provided by means of Bash script
that interacts with the balancer component by means of HAProxy’s interfaces exposure. The
following component diagram provides an overall description of the various components and
actors involved in the process:

35

Figure 5.1: Balancer module component diagram

36

5.1 HAProxy configuration overview

HAProxy’s configuration file shows two relevant parts: the front-end and the back-end sections
which interfaces respectively with AdExchanges and Bidders. The following sections reports
the HAProxy configuration, here it is reported a use-case diagram in order to summarise and
overview the use-case that the HAProxy configuration will cover:

Figure 5.2: Use-case diagram for HAProxy

Front-End main role is to listen and re-dispatch bid requests towards back-ends. Two relevant
front-ends are defined, respectively for listening to incoming requests and for exposing the
internal metrics of the component. Each back-end is dedicated to at least one AdExchange,
multiple back-ends are defined.

37

5.1.1 The Front-end side
The front-end side exposed by HAProxy defines the entrypoint for bids in the platform, lis-
tening to HTTP requests coming from AdExchanges
The following code snippet shows a sample of a configuration file for the frontend:

f rontend http−in
bind 1 2 7 . 0 . 0 . 1 : 8 0
bind 1 2 7 . 0 . 0 . 1 : 4 4 3 s s l c r t / e t c /haproxy/ s s l / se rver −c e r t i f i c a t e . pem
mode http
opt ion fo rward fo r (1 .)

a c l i s exchange123 path − i −m s t r /ad/ rtb /123/ bid
a c l i s exchange456 path − i −m s t r /ad/ rtb /456/ bid
a c l i s exchange456 path − i −m s t r /ad/ rtb /789/ bid (2 .)

a c l val id method method POST
http−r eque s t re turn s t a tu s 444 i f ! val id method
a c l s ta tu s 5xx s t a tu s 500 502 503 504
http−re sponse set−s t a tu s 204 i f s t a tu s 5xx (3 .)

use backend exchange 123 100msA i f i s exchange123
use backend exchange 456 100msB i f i s exchange456
use backend exchange 789 100msC i f i s exchange789
de fau l t backend e r r o r s (4 .)

http−r eque s t del−header Api−Vers ion
http−re sponse del−header Server
http−re sponse del−header X−Powered−By (5 .)

1. The bind statement defines the IP codes our load-balancer is listening to; in particular
the balancer will receive traffic on any IP address 127.0.0.1 (localhost) assigned to
the server at port 80 and 443. The HAProxy’s frontend supports HTTP connections
for HTTP versions 1.1 and 2 at port 80 from clients; in addition, HTTPS encryption
protocol can be used through standard port 443 given that a PEM certificate is provided
to the HAProxy instance configuration. PEM file must contain the private key and
certificate references.
Furthermore, the option forwardfor is inserted; since HAProxy works as a reverse proxy,
sitting in front of a client and a server, the server will recognize it as a client. The option
forward for allows HAProxy to exploit the X-Forwarded-For header, bypassing in this
way the issue just cited and providing to back-ends the right sending address.

2. From a front-end, there is the possibility to define rules called Access Control Lists
(ACLs) that allows HAProxy to take forwarding decisions based on the request head-

38

ers, status or on any other environmental data. ACLs permit the frontend to retrieve
the right back-end in charge of managing the cluster of servers in that farm. The
use backend statement is used to redirect the packets coming from an AdExchange
(defined by an ID, in this example 123 and 456) to the proper back-end according to
the ACL rule. The path is hence configured to respect the standard of HTTP requests
path, which follows the schema ”/ad/rtb/ID/bid” to map the requests coming from a
given AdExchange to the right farm of servers.

3. Exploiting ACLs, it is also possible to define rules for incoming HTTP packets. Through
http-response and set-status statements, it is possible to rewrite the HTTP header
response code to 204 instead than an Error response. Each 5xx Server Error is mapped
into a Sucess 2xx type, avoiding misleading behaviours from client side.
In addition, it is also possible to define conditions to block undesired requests and
return a default response for them; in our case, OpenRTB works exclusively by sending
information among agents through POST requests, any other method should be avoided
in order to guarantee the correct functioning of the component. In case of a non-POST
request, it will be returned then a 444 Connection Closed Without Response directly,
avoiding the forward to any possible back-end as expressed by OpenRTB standard [3]:
invalid calls, such as a bid request containing a malformed or corrupt payload, should
return a HTTP 4xx type with no content.

4. As already expressed, use backend is exploited to redirect requests according to routing
schema; in addition, it is possible to define a default behaviour in case of non-matching
routes with the previously defined ACLs. This is done to filter out requests not coming
from the mapped AdExchanges to guarantee a better management of security, avoiding
possible intruders to reach the server side. The naming of the various back-ends is also
an important aspect to be considered. Each back-end is mapped to one or multiple
AdExchanges, which interacts with a specified bidders’ farm featured by the maxi-
mum response time accepted by the AdExchange itself. The available number of farms
changes in each region according to the demand of bids in that geographical area and
the number of AdExchanges to serve in it, but the most generic scenario implies three
general time limit for responses, which are 100ms, 200ms and 300ms, distributed over 4
different sub-farms for 100 and 200ms ones (addressed by the letters A, B, C and D) and
over a single one for 300ms. Since the Platform operates over a dynamic environment,
bidders in each sub-farm change in numbers and IPs, therefore in order to update the
configuration, it is required to provide to the right balancer back-end the respective
server in case of changes over the bidders side. The naming of the back-end will be used
to retrieve the respective back-end to update at bidders’ remotion/addition occurrency
in the associated farm. Example: ”bidder remotion in 100msA, update servers list of
exchange 123 100msA”.

5. The HTTP headers manipulation. HTTP requests and responses are filtered by the
proxy at headers granularity level and they can be removed or modified by the proxy
itself: many security experts warns that it is better to shade this kind of technical details

39

of the servers, avoiding to expose critical and fragile information about the servers
implementation that might furnish to intruders and attackers an assist to understand
the fragility of the back-end side. For instance, the two headers ”Server” and ”X-
Powered-By” provides data about the type of server and the technology stack used,
deleting it we ensure not to give away this details for free.

5.1.2 The Back-end side
Back-ends section instead define the endpoints that in our scenario are the bidders. Each
exchange is mapped to a set of bidders that define a farm. Each farm can be composed by a
multiple number of bidders that varies from back-end to back-end and, as expressed already,
can change during time. The following is my purpose of general back-end’s configuration for
the RTB process, it is meant to give a general overview about the logic behind every AdEx-
change’s mapping inside the balancer component where the actual load-balancing algorithm
is applied:

backend exchange 123 100msA
balance random (2) (1 .)

mode http
opt ion httpchk GET / heartbeat (2 .)

a c l is down nbsrv eq 0
http−r eque s t re turn s t a tu s 204 i f is down (3 .)

t imeout connect 70ms (4 .)

s e r v e r s e rv e r 1 1 2 7 . 0 . 0 . 1 : 8 1 2 4
s e r v e r s e rv e r 2 1 2 7 . 0 . 0 . 1 : 8 1 2 4
s e r v e r s e rv e r 3 1 2 7 . 0 . 0 . 1 : 8 1 2 4
(. . .)
s e r v e r s e rve r200 1 2 7 . 0 . 0 . 1 : 8 1 2 4 (5 .)

1. The load-balancing strategies to adopt. Power of Two algorithm can be selected in the
shown way.

2. The HTTP option section. The ”check” statement aside option httpchk trigger health
checks, useful for sampling back-end health status; it allows also to define the method
and the path to use to sample the state of the servers. Company’s implementation of
bidders expose an endpoint /heartbeat to provide an easy way to sample server status.
Therefore, the back-end healthiness is checked periodically sending HTTP request to
each server. Servers that provide a 200 Response Code are labeled as UP by the health-

40

checks, while those who respond with a different code are marked as DOWN and
disabled, in order to stop forwarding requests to a non-working server.

3. Each back-end might cause operational problems if every server in it is set to be down,
triggering HAProxy to directly respond with 5xx response. This issue is caused by the
health checks informing HAProxy that one of its endpoints is set to be DOWN; in order
to avoid this behaviour, an ACL is formed, using nbsrv keyword, exploited to sample
the number of servers in active state. If no server is found to be up and running, then
a 204 response code is returned to avoid AdExchanges to cut-off the estabilishment of
connections with the Company’s bidding platform.

4. The total amount of time before a connection under establishment is shut down. It is
fundamental to provide this kind of timeouts to avoid HAProxy to wait for unlimited
time for TCP connection hand-shake success, issue that would cause the instance to
rapidly saturate the CPU and causing malfunctions. It is required to be set to a value
lower than the expected response time for the given farm, here it is set to 70ms in order
to terminate slow connections establishment.

5. This section is dedicated to the addresses of the bidders in the farm. Every bidder is
responding to requests received at port 8124 and is featured by a private IPv4 address
generated by the cloud’s Infrastructure as a Service.
At start-up, the component is featured by 200 place-holder servers, featured by loop-
back address (i.e localhost). A place-holder is set in order to define an empty entry in
the given HAProxy back-end to define a possible spot where to write a real bidder IP
address. This solution is used to exploit fully the Runtime API, embedded directly
in HAProxy service, which allows the dynamic configuration of the service without
reloads (as explained in the next section) by means of commands to enable, disable
and change each server entry; server entries can not be explicitly removed or added
through the API but only be updated, therefore the place-holders numbers mock the
worst-case-scenario for the highest amount of bidders in a region, in order to always
have empty-slots in the server list to be filled with bidders’ IPs. This section will be
reviewed later on during the discussion to show the logic and the way to initialize and
update the server list of each back-end.

Moreover, two other back-ends are defined in order to sharp the functionality of the com-
ponent itself: it is mandatory to have a redirection point for non-matching paths (i.e. an
endpoint for the errors) but also to expose a way to check the status of the balancer com-
ponent without propagating the status check to the bidders. For these reasons errors and
ready endpoints are exhibited:

backend e r r o r s
mode http
http−r eque s t re turn s t a tu s 444

41

backend ready
mode http
http−r eque s t re turn s t a tu s 200

Requests featured by non-matching paths are directly returned to the client with a 444
error code with No content following OpenRTB specifications [3]; on the other hand, requests
carrying /ready will be sent back with a 200 status, meaning that the component is up and
ready to listen requests at the defined ports.

5.1.3 Tuning HAProxy
After having configured HAProxy’s entrypoints, endpoints and settings, it is required to pro-
vide the right tuning to the service, in such a way that it is possible to optimize the behaviour
of the back-end side and of the proxy itself. Timeouts and options have to be exploited in
order to design a component that perfectly fits the needs of a DSP but that also protect the
Platform as first barrier from malicious attacks.
Analysing deeply the bidding process requirements, it is evident how the use-case under con-
sideration is different from an ordinary scenario that involves balancers sitting in front of
servers, usually this kind of services interacts directly with customers/users HTTP requests
trying to address a particular server to process some kind of information: in a context of a
general web application open publicly, thousands if not millions of user wants to connect to
the balancer to access the back-end processing power.
From a Demand Side Platform point of view instead, the customers (i.e. the agents forward-
ing requests) are static and pre-defined and are addressed as the AdExchanges. Commonly,
DSPs interacts with a limited number of AdExchanges, usually on the order of magnitude
of hundreds, therefore adjustments over the settings can be done to address this scenario of
fixed clients. In such a scenario, where customers interacts with the Platform in a settled
number, the utilization of connection keep-aliveness can play a fundamental role, reduc-
ing the connections establishment overhead over the balancers’ CPU and fully exploiting
keep-alive performances increase. In addition, AdExchanges’ traffic vary a lot during the day
and connections can remain idle for some periods of time. In a non-RTB scenario, long idle
connections can badly affect the behaviors of servers, exposing them to malicious attacks
such as DDoS, where attackers may try to establish a huge number of connections from
multiple peers in a short amount of time; idle periods are expected in a RTB scenario as
well but timeouts must be tuned in order to avoid possible attackers to block the Platform
to provide service: AdExchanges interacts with the platform using the most disparate form
of protocols and throughput and may remain silent for periods; allowing idle periods would
definitely improve the CPU overhead of the Platform instances, avoiding the establishment
of a new connection in case of a bid request after long time of inactivity but on the other
hand, excessive timeouts value can expose the Platform to Down of Service kind of attack. As
reported by OWASP (Open Web Application Security Project), an online community that
provides free articles, documentation and tools for Web Application security, suggests to ”set
session timeout to the minimal value possible depending on the context of the application”
and to ”avoid infinite session timeout” [23].

42

In particular, my HAProxy configuration implementation provides a ”default” section where
the tuning options are reported:

d e f a u l t s
opt ion http−keep−a l i v e (1 .)
t imeout http−keep−a l i v e 120 s
timeout c l i e n t 120 s
timeout s e r v e r 120 s (2 .)
t imeout http−r eque s t 4 s (3 .)

de fau l t −s e r v e r maxconn 64 s l o w s t a r t 1m
check port 8124 alpn http /1 .1 (4 .)

1. The option http-keep-alive is defined in order to allow a single TCP connection to
remain open for multiple HTTP requests/responses, improving the overall connections
management from HAProxy threads point of view allowing connections persistency.
As suggested by OpenRTB standard as best practice, ”one of the simplest and most
effective ways of improving connection performance is to enable HTTP Persistent Con-
nections, also known as Keep-Alive. This has a profound impact on overall performance
by reducing connection management overhead as well as CPU utilization on both sides
of the interface” [3].

2. the amount of time for the connection from AdExchanges to HAProxy (timeout client)
and from HAProxy to servers (timeout server) to stay idle before it gets shut down.
timeout keep-alive defines the amount of time between a HTTP requests and the
successive on the same TCP connection before the connection is shut down. These
timeouts together generally reference connections idle time.
As reported by OWASP, ”common idle timeouts ranges are 2-5 minutes for high-value
applications and 15-30 minutes for low risk applications. Absolute timeouts depend
on how long a user usually uses the application. If the application is intended to be
used by an office worker for a full day, an appropriate absolute timeout range could
be between 4 and 8 hours” [24]. DSPs define a use-case where the connections are
highly exploited and excessive idle periods must be avoided, being a low-latency-high-
throughput system where massive amount of requests hit balancers continuously would
suggest to provide low idle timeout values following the OWASP guide-lines. Moreover,
timeout client helps the detection and the avoidance of DDoS attacks: DDoS aims
overloading servers opening huge amounts of idle connections; setting timeout client to
a value will force HAProxy to close the connection after the timeout value expiration.
Letting this parameter undefined can expose the whole Platform to this kind of cyber
risk.

3. timeout http-request defines the maximum time for receiving the full list of HTTP
headers from client side. It is particularly useful to avoid Slowloris attacks, a particular

43

and improved form of Down of Service issue, more difficult to detect, that aims to
send the HTTP headers very slowly, avoiding the connection to be cut off because of
inactivity but overloading anyways the server resources; including this peculiar timeout
would allow HAProxy to detect HTTP request slowness, cutting down the possible
Slowloris connection attempts.

4. As defined by HAProxy documentation [19], default-server statement defines the
default option for each server in the section scope. It is defined in the default section
in order to provide the declared options to every server in the configuration.
Specifically, the following options are defined:

• maxconn 64 defines the maximum concurrent connections over a server. It is
set to 64 in order to map the number of threads of the back-end servers. In such
a way, it is guaranteed that the number of connections to the server side won’t
affect badly its resources utilization, providing a one to one mapping for number
of threads and maximum connections to each server.

• slowstart 1m defines the behaviour for servers moving from DOWN to UP state;
since bidders are affected by a warm-up time at launch and a consequent higher
CPU utilization, it is better to provide a period of time where the connections
are gradually open, slowly reaching the maxconn value, reducing the stress for a
bidder and the relative CPU overhead due to connection establishment.

• check port 8124 forces HAProxy to send Health-Checks to the bidders at the
pre-defined port 8124.

• As expressed at the beginning of this chapter, the Platform receive HTTP traffic
featured by various HTTP protocols. Internally, the communication is established
with protocol HTTP/1.1 only, therefore alpn http/1.1 ensures the right protocol
choice for balancer-to-bidders communication.

5.2 Configuring dynamically without experiencing
down-time: the Runtime API

HAProxy provides a built-in software module available in its distributions, able to expose
an endpoint that provides various features such as updating ACLs, front-end and back-end
section, showing internal stats and changing load-balancing weights without reloading the
service and experiencing down-time. This feature is called Runtime API and it provides a
general way to update HAProxy’s configuration during run time.
As expressed by [20], the defining trait of the Runtime API is that all configuration changes
are applied in memory, but do not alter the HAProxy configuration file on disk; this solution
is designed in order to exploit better standards for performance and security: HAProxy never
reads its configuration from the filesystem after completing its initial startup. During startup,
it reads the configuration file, along with any other supporting files like TLS/SSL certificates,

44

and then keeps a representation of those files in memory. The Runtime API modifies those
in-memory representations only without propagating changes to the disk, ensuring a full
no-reload solution. So, after calling a Runtime API function, HAProxy is able to apply
changes in-memory without propagating the change to the disk; therefore, a change in the
configuration will be kept inside the memory, meaning that changes in the configuration will
not be persistent. A reload of the service will restore the initial configurations. This aspect
might be a limit for the overall functionality of the component itself, but for the use-case
of this master thesis it just fits perfect: the main feature that the Runtime API needs to
cover is the dynamic update of bidders inside the back-ends’ servers lists, whose IP addresses
change constantly; therefore, persistency is not necessary for the use-case under analysis
but instead, the API ensures HAProxy not to reload the configuration for the changes to
take effect. Avoiding a reload helps speed up operations and uses fewer computing resources
but also, it guarantees the component to be listening for incoming requests and connections
all the time, that, in case of a reload, may be lost. Rejecting incoming connections from
AdExchanges leads to a scenario where AdExchanges connections are refused, which might
bring AdExchanges to cut off connections with the platform. Therefore, this behaviour must
be avoided from the design of the component itself.
Runtime API must be defined from HAProxy configuration file:

g l oba l
s t a t s socke t ipv4@127 . 0 . 0 . 1 : 8 0 8 1 l e v e l admin expose−fd l i s t e n e r s

The standard way to interact with it is the following:

echo ”<command>” | socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1

It is a Unix shell command in the form of pipe which purpose is to forward a command
compatible with the API to the API itself at socket level.
The two following sub-sections show how to implement the Runtime API calls for initializing
the servers and to provide HAProxy bidders addresses information.

5.2.1 Initializing the balancer
As described before, each back-end is initialized with 200 place-holder addresses. But those
servers are considered ”active” as they are real bidders instances, therefore HAProxy must
boot having these servers disabled in order to avoid to forward real bids to 127.0.0.1:8124
that will head to a server error (contrary to bidders, balancer component do not expose
port 8124) and in general, to avoid HAProxy to forward useless health-check requests to the
place-holder endpoints.
The place-holder entry sums up the localhost address and the disabled state in order to pro-
vide a way to identify idle (free) entries in the back-end server list. Therefore, in initialization
stage, the Runtime API is exploited to scroll the possible back-ends and to disable all the
servers inside them; the real bidders addresses will be added with the script described in
the section dedicated to dynamic updates and at farms’ bidders change. Here it is a UML
activity diagram representation:

45

Figure 5.3: Init process UML Activity diagram

Following, the relative Bash script:

sudo s e r v i c e haproxy r e s t a r t

BACKENDS=$ (echo ”show backend”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1)

f o r BACKEND in ”${BACKENDS[@] } ” ; do
i=1
whi l e [” $ i ” − l e 200] ; do

echo ” d i s a b l e s e r v e r $BACKEND/ s e r v e r $ i ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1

((i=i +1))
done

done

At first, HAProxy service is restarted and the configuration file is read from disk. Then,
the list of available backends is retrieved directly from HAProxy configuration exploiting the
Runtime API.
Finally, the various back-ends are listed and each server is disabled through the API call.

46

5.2.2 Dynamically updating the balancer
The following UML Activity Diagram summarize the Dynamic Update process logic:

Figure 5.4: Dynamic update UML Activity Diagram

47

The logic behind the dynamic update of the configuration algorithm is the following: it
is triggered at component startup right after initialization phase and periodically to react
back-end changes. The main idea is to scroll every available farm of bidders inside the region
(a subset of the following: 100msA, 100msB, 100msC, 100msD, 200msA, 200msB, 200msC,
200msD, 300msA) and sample from the Cloud infrastructure the available bidders (called
in the example BIDDER LIST) and the respective IP address in order to compare with the
ones currently stored inside HAProxy instance (called in the example SERVER LIST). The
comparison is done through the isEqualUpstreamList function that compares the two lists
of addresses. If a change is detected, one of two possible scenario might happen: back-ends
identified as empty (i.e. no bidders available over the Cloud Infrastructure) are processed
to reset the defined bidders through the resetBackend function, setting them back to the
place-holder server in order to model a back-end actually free of bidders; on the other hand,
non-empty back-ends’ server list is scrolled in order to remove bidders that turned the state
into DOWN and following, new bidders are added to the list. Following, the functions de-
scribed in the previous Activity Diagram are written exploiting Bash command language and
they are reported here below:

func t i on isEqualUpstreamList () {
l o c a l BIDDER LIST=$1
l o c a l SERVER LIST=$2

d i f f −q <(echo ”$BIDDER LIST”) <(echo ”$SERVER LIST”)
Returns 0 when no d i f f == no changes .
1 otherw i s e == changes detec ted .
re turn $?

}
The comparison function simply performs the check through ”diff” commands to effec-

tively check that the two lists of IPs provided is the same (return code equal 0) or differ
(return code equal 1).

f unc t i on resetBackend () {
l o c a l FARM=$1

BACKEND=$ (echo ”show s e r v e r s s t a t e ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1 | grep $FARM
| cut −f 2 −d” ” | uniq)

SERVER NAMES=$ (echo ”show s e r v e r s s t a t e ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1 | grep $FARM
| cut −f 4 −d” ” | uniq)

48

SERVER NAMES ARRAY=(‘ echo ${SERVER NAMES} ‘)

IPS=$ (echo ”show s e r v e r s s t a t e ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1 | grep $FARM
| cut −f 5 −d” ” | uniq)

IPS ARRAY=($IPS)

echo ” Rese t t ing Backend f o r $FARM”

i=0
f o r SERVER NAME in ”${SERVER NAMES ARRAY[@] } ” ; do

Check i f p l a c eho ld e r i s a v a i l a b l e
i f [”${IPS ARRAY[$ i]}” != ” 1 2 7 . 0 . 0 . 1 ”] ; then

echo ” d i s a b l e s e r v e r $BACKEND/$SERVER NAME;
s e t s e r v e r $BACKEND/$SERVER NAME addr 1 2 7 . 0 . 0 . 1 ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1

break
f i
((i=i +1))

done
}

The function resetBackend highly exploits the Runtime API to retrieve HAProxy back-end
information; in particular, the API allows the retrieval of the relative BACKEND in the
form exchange backendId farmLatency (i.e. exchange 123 100msA), SERVER NAMES
list such as the HAProxy internal server naming (server1, server2, ... , server200) and IPS,
containing real bidders IPs and place-holder entries (localhost address plus disabled state).
The retrieval of this information is due to the show servers state command sent to the
Runtime API that simply shows the full server list of each back-end with the following
format separated by spaces: id back end server server name ip. Piping the API outcome
to grep and cut shell commands is done in order to extract the wanted field related to the
the given farm.
Once extracted the needed data, the server list is browsed and for every non-place-holders
entries (in other terms, real bidders IPs) the server state is set to ”disabled”.

f unc t i on updateBackend () {
l o c a l BIDDER LIST=$1
l o c a l FARM=$2
l o c a l SERVER LIST=$3

BACKEND=$ (echo ”show s e r v e r s s t a t e ”

49

| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1
| grep $FARM | cut −f 2 −d” ” | uniq)

SERVER NAMES=$ (echo ”show s e r v e r s s t a t e ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1
| grep $FARM | cut −f 4 −d” ” | uniq)

SERVER NAMES ARRAY=(‘ echo ${SERVER NAMES} ‘) ;
IPS=$ (echo ”show s e r v e r s s t a t e ”

| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1
| grep $FARM | cut −f 5 −d” ”)

IPS ARRAY=($IPS)

Two s t ep s are de f ined :
Step 1 : d e l e t e s e r v e r s not a v a i l a b l e anymore
whi l e IFS= read −r SERVER; do

echo ”$BIDDER LIST” | grep −q ”$SERVER” >> /dev/ n u l l
i f [”$?” −ne 0] ; then

Server NOT found in BIDDER LIST ,
so i t e x i s t s in SERVER LIST and needs to be removed .
i=0
f o r SERVER NAME in ”${SERVER NAMES ARRAY[@] } ” ; do

Search f o r SERVER
i f [”${IPS ARRAY[$ i]}” == ”$SERVER”] ; then

echo ” d i s a b l e s e r v e r $BACKEND/$SERVER NAME;
s e t s e r v e r $BACKEND/$SERVER NAME addr 1 2 7 . 0 . 0 . 1 ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1

break
f i
((i=i +1))

done
f i

done <<< ”$SERVER LIST”

The first section of the updateBackend function is thought in order to remove those addresses
which are not available anymore over the Platform back-end but still present in HAProxy
configurations. After the retrieval of information from the API, each server inside the back-
end related to the farm is verified to be present inside BIDDER LIST. This condition to fail
would mean that the bidder was available before in the platform but it has been removed,
therefore the server is set to the ”place-holder” value and disabled.

Update vars to r e t r i e v e new p l a c e ho l d e r s s e t f r e e a f t e r the
prev ious whi l e
SERVER LIST=$ (echo ”show s e r v e r s s t a t e ”

50

| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1
| grep −−regexp ” exchange ∗”
| grep $FARM | awk ’{ pr in t $2 , $5 , $6 } ’
| grep −v −w ” 1 2 7 . 0 . 0 . 1 ” | cut −f 2 −d” ” | s o r t)

IPS=$ (echo ”show s e r v e r s s t a t e ”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1
| grep $FARM | cut −f 5 −d” ”)

IPS ARRAY=($IPS)

Step 2 : add new s e r v e r s
whi l e IFS= read −r SERVER; do

echo ”$SERVER LIST” | grep −q ”$SERVER” >> /dev/ n u l l
i f [”$?” −ne 0] ; then

S c r o l l i n g farm to r e t r i e v e f i r s t entry where to s e t the s e r v e r
i=0
f o r SERVER NAME in ”${SERVER NAMES ARRAY[@] } ” ; do

Check i f p l a c eho ld e r i s a v a i l a b l e
i f [”${IPS ARRAY[$ i]}” == ” 1 2 7 . 0 . 0 . 1 ”] ; then

echo ” enable s e r v e r $BACKEND/$SERVER NAME;
s e t s e r v e r $BACKEND/$SERVER NAME addr $SERVER”
| socat s t d i o tcp4−connect : 1 2 7 . 0 . 0 . 1 : 8 0 8 1

break
f i
((i=i +1))

done
f i

done <<< ”$BIDDER LIST”
}

The API is called again in order to refresh HAProxy internals’ information step in order to
retrieve every new entry set to place-holder in the remotion step. Then, the reverse logic as
before is applied: if an IP address is available in BIDDER LIST and not in SERVER LIST
then it has to be added to the HAProxy backend server list, therefore the first entry containing
a place-holder value has to be updated to contain the new bidder IP address.

5.3 Metrics retrieval
One of the main purposes of the Company’s platform is to always have a fresh collections
of metrics to monitor various statistics and to detect possible malfunctions in the platform
components. This is achieved exploiting CloudWatch, a management and monitoring service
from Amazon Web Services that gathers metrics and display them, and Statsd, a service that
aggregates and summarizes application metrics, as observable in the previously defined system

51

component diagram and forwards them to another monitoring service, such as Grafana.
CloudWatch is internally used to display stats related to a specific process (such as the
bidding process) by means of dashboards, while Statsd+Grafana hosts all the metrics and
KPIs of the platform. Therefore, CloudWatch is meant to summarise the metrics related to
the primary indicators for the bidding process (visualized to sample the ”healthiness” and
quality of service of the Platform bidding dynamics itself), such as the number of concurrent
connections and the total requests per second forwarded by the balancer, while on the other
hand, Statsd metrics aggregate the whole system statistics, useful to sample errors occurred
with the Balancer instances, such as saturation of the hard-drive or wrong behaviours in
the set-up of the network connections with AdExchanges. They operate following several
standards and protocols and they might trigger unwanted or dangerous behaviour for the
balancer component: an AdExchange forwarding Bid Requests exploiting HTTP/1.0 might
not specify the Connection: Keep-Alive header, forcing the balancer to open a connection for
each incoming packet and exposing the component to the possibility of running out of sockets
and, therefore, starting rejecting and timing out incoming connections, causing errors and
failure that can be sampled taking a look to the TCP stats from the OS level.
This section’s aim is to provide a way to sample metrics from HAProxy and forward them
to the monitoring services, proposing a way to extract several heterogeneous statistical data
from the balancer instance.

Figure 5.5: Metrics retrieval component diagram

Which are specifically the exact metrics that a Demand Side Platform wants to monitor from
the balancer server instance?

• Active connections;

• Requests per second and total requests;

• General OSI Transport Layer info, such as TCP timeouts, delayed ACKs, received
ACKs and TCP hand-shake failures;

• Balancer instance Disk occupation.

Those indicators are essential in order to understand the health of an HTTP component
and the stability of connections with the AdExchanges; in addition, processed requests per

52

second and total requests are Key Performance Indicator for the Company, therefore a way
to extract it from the component must be defined.
HAProxy allows a way to provide metrics, ensuring a way to expose an endpoint by means
of the definition of a specific front-end.

f rontend s t a t s
bind 1 2 7 . 0 . 0 . 1 : 8 4 0 4
mode http
s t a t s enable
s t a t s r e f r e s h 2m
http−r eque s t use−s e r v i c e prometheus−expor te r i f { path / metr i c s }

Fresh stats are available at localhost port 8404 every minute; a work-around to push metrics
is defined in order to provide readable stats using the prometheus-exporter statement: this
is done in order to provide an easy way to retrieve a list of metrics separated by new line
values at localhost:8404/metrics, useful later in the discussion to easily retrieve metrics from
HAProxy exploiting a Bash script.
Therefore, here it is provided the way to get metrics from the balancer component and push
them to the monitoring services:

#Get d i f f e r e n t met r i c s from haproxy
READY=$ (c u r l −s ” http : / / 1 2 7 . 0 . 0 . 1 : 8 0 / ready ”)
EXIT CODE=$?
i f [$EXIT CODE −ne 0] ; then

echod ” e r r o r : Couldn ’ t get in fo rmat ion from
http : / / 1 2 7 . 0 . 0 . 1 : 8 0 / ready ”

e x i t $EXIT CODE
f i

HAPRoxy’ s met r i c s endpoint
RESPONSE=$ (c u r l −s ” http : / / 1 2 7 . 0 . 0 . 1 : 8 4 0 4 / metr i c s ”)

Then, the status of HAProxy is checked: if it is up and running, the endpoint for metrics
retrieval is defined, otherwise the script exits triggering error code.

#Active connec t i ons metr ic
FRONTEND CONNECTIONS=$ (echo ”$RESPONSE”

| grep hap roxy f r on t end conne c t i on s t o t a l
| grep −−regex http−in | cut −f 2 −d” ”)

STATS CONNECTIONS=$ (echo ”$RESPONSE”
| grep hap roxy f r on t end conne c t i on s t o t a l
| grep −−regex s t a t s | cut −f 2 −d” ”)

TOTAL CONNECTIONS=$ (echo ”$ ((FRONTEND CONNECTIONS
+ STATS CONNECTIONS)) ”)

53

i f [$ENVIRONMENT == ” product ion ”] ; then
send metr i c c loudwatch

” Balancer−ConnectionCount ” $TOTAL CONNECTIONS
f i
s e n d m e t r i c s t a t s d ” connect ion . t o t a l ” $TOTAL CONNECTIONS
se n d m e t r i c s t a t s d ” connect ion . wr i t i ng ” $FRONTEND CONNECTIONS

Connections’ metrics are directly available over the endpoint exposed by HAProxy, they are
extracted by means of command pipe with grep (to retrieve
haproxy frontend connections total for each front-end). Once again, the metrics are pushed
to CloudWatch only for production environment.

#Request counter metr ic
r e t r i e v e l a s t window va lues so we c a l c u l a t e cur r ent per iod value
TMP REQ FILE PATH=/tmp/ reqs−record . tmp
M KEY=”Balancer−RequestCount”
TOTAL REQUESTS=$ (echo ”$RESPONSE” |

grep h a p r o x y f r o n t e n d h t t p r e q u e s t s t o t a l
| grep −−regex http−in | cut −f 2 −d” ”)

i f [! −f $TMP REQ FILE PATH] ; then
echod ” i n f o : Previous metr ic [$M KEY] was empty and

i t i s not p o s s i b l e to c a l c u l a t e cur rent r eque s t s ” >&2
echo $TOTAL REQUESTS > $TMP REQ FILE PATH
e x i t 0

e l s e
PREVIOUS REQUESTS=‘ cat $TMP REQ FILE PATH‘
READING REQUESTS=‘echo $ (($TOTAL REQUESTS − $PREVIOUS REQUESTS)) ‘
echo $TOTAL REQUESTS > $TMP REQ FILE PATH

f i

i f [$ENVIRONMENT == ” product ion ”] ; then
send metr i c c loudwatch $M KEY $READING REQUESTS

f i
#Reqs per second : Total r eque s t s on the per iod d iv ided by the per iod .
s e n d m e t r i c s t a t s d ” r eque s t s . perSecond ”

$ (expr $READING REQUESTS / 300) ” gauge ”

Requests per second are instead slightly more tricky to extract. HAProxy provides the value
for the total number of received requests without providing effectively the requests per second
value; therefore a file is exploited to store the number of requests received over the previous
time window, sampled from the HAProxy metrics endpoint. The requests per second (QPS)
are then calculated as the difference between the two time frames divided by the time window
length, considering that the periodicity (dt) of retrieval of metrics from HAProxy is every 5

54

minutes (300 seconds):

QPS = tot reqcurrent−tot reqfile

dt

#Disk usage metr ic (%)
M KEY=Balancer−Disk
M VAL=$ (df | grep ’/ dev/ root ’ | awk ’{ pr in t $5 } ’)
i f [$ENVIRONMENT == ” product ion ”] ; then

send metr i c c loudwatch $M KEY $M VAL ” Percent ”
f i

Since the disk metrics are not reported by HAProxy component itself, the disk metrics
are directly extracted using df, a standard Unix command used to display the amount of
available disk space, piped with other generic Unix commands in order to retrieve the Disk
occupancy percentage for the root user fylesystem. If the instance is running in production
environment, then the metrics are pushed to CloudWatch.

#Metr ics about Tcp connec t i ons v ia ns ta t
METRICS=”Tcptimeouts TcpExtDelayedACKs

TcpExtTCPDSACKRecv TcpAttemptFails TcpEstabResets ”
f o r METRIC in $METRICS

do
LINE=‘ ns ta t −z | grep − i $METRIC‘
M KEY=‘echo $LINE | awk ’{ pr in t $1 } ’ ‘
M VALUE=‘echo $LINE | awk ’{ pr in t $2 } ’ ‘
s e n d me t r i c s t a t s d M KEY $M VALUE ”Count”

done

#Metr ics about network bandwidth
METRICS=‘ i f s t a t −T − i ens5 1 1 | t a i l −1f ‘
M KEY=”network . bandwidth . in ”
M VALUE=‘echo ”$METRICS” | awk ’{ pr in t $3 } ’ ‘
s e n d m e t r i c s t a t s d $M KEY $M VALUE ” gauge ”

M KEY=”network . bandwidth . out ”
M VALUE=‘echo ”$METRICS” | awk ’{ pr in t $4 } ’ ‘
s e n d m e t r i c s t a t s d $M KEY $M VALUE ” gauge ”

This code snippet exploits nstat and ifstat (two Unix commands used to pull network metrics
from the kernel and display them to the user); nstat is piped to grep to retrieve the wanted
metric, while ifstat has been provided with the main network interface of the balancer instance
and by two 1s, which force ifstat to sample once the network bandwidth statistics.

55

5.4 Setting up script execution periodicity
After having exposed the different scripts and the configuration involved in the logic of
the component, the balancer instances require that these scripts are executed following a
periodicity; in particular, it is required a solution to allow the balancer to automatically
detect changes in the upstream configuration (deltas in the bidders side) and to push the
necessary metrics to the respective services every ”dt” minutes. In order to achieve this logic,
Cron is exploited, which is a Unix utility that runs as long-running process or daemon,
meant to schedule tasks to be executed sometime in the future; this is normally used to
schedule a job that is executed periodically. Cron exploits the usage of crontabs, special
files that contain instructions for the Cron daemon; in other terms, Crontab provides to Cron
the configuration of the periodicity for each script to be run. It follows a syntax example for
Crontab row, comprehending the script and the time reference for the execution of the script
itself:

minute hour day month weekday command

For instance, if an example script called ”example.sh” contained inside /tmp folder that is
needed to be run every hour, the following line would be provided to the Crontab:

* */1 * * * run-this-one /tmp/example.sh

with the character ”*” meant as a wildcard (i.e. any value) and run-this-one as a wrapper
script that runs no more than one unique instance of the provided command with a unique
set of arguments.
The following lines report the HAProxy balancer instance’s crontab content:

LOGS=/var / log /haproxy
ENVIRONMENT=product ion

Sending HAProxy Balancer met r i c s
∗/5 ∗ ∗ ∗ ∗ run−th i s −one / usr / l o c a l / bin /haproxy−metr i c s . sh

>> $LOGS/cron−send−metr i c s . l og 2>&1 (1 .)

Automatic c o n f i g u r a t i o n o f HAProxy .
0 ∗/2 ∗ ∗ ∗ run−th i s −one / usr / l o c a l / bin /sync− f i l e

$ENVIRONMENT−upstream− l i s t . conf / e t c / farms /
>> $LOGS/cron−sync−haproxy−farms . l og 2>&1 (2 .)

∗/1 ∗ ∗ ∗ ∗ run−th i s −one / usr / l o c a l / bin /sync−haproxy−upstreams . sh
>> $LOGS/cron−sync−haproxy−upstreams . l og 2>&1 (3 .)

1. The script that contains the metrics logic, therefore every 5 minutes the script is called
to retrieve fresh stats from HAProxy and push them to the Metrics aggregator services
of the Platform.

56

2. $ENVIRONMENT-upstream-list.conf and /etc/farms/ are respectively the file and the
folder where the information about the farms available in the region is stored. The script
is triggered at the first minute of every two hours (i.e 00:00, 02:00, 04:00 and so on). It
is a fundamental dependency of the ynamic update script to always have the farms of
bidders available in the geographical region.

3. The dynamic configuration with no down-time script. It is called every minute,
to ensure that the configuration is up-to-date with the most recent bidders back-end
setting.

In addition, each Cron job redirects its output to a log file, useful to debug the component
in case of any faulty behaviour.
The following sequence diagram overviews the Cron’s triggering of the previously defined
script:

Figure 5.6: Cron overview

57

5.5 Deploying HAProxy in the Platform logic

Up to now, I have described the way to configure the balancer component and how to interact
with it, from the initialization to the metrics logic, passing from the dynamic update of the
configuration. But how do we build up and deploy the instance that will effectively run inside
the Platform environment with all the previously defined files?
The current trend in software engineering is to perform Continuous Integration and
Continuous Delivery, in other terms, DevOps and Software Engineering practises meant
to improve software development speed and quality. They aim at building, testing, and re-
leasing software with a view to rapidly put software into production and get it working as
expected.
Specifically, Continuous Integration CI aims to give developers the charge of incorporating
code updates into a single and shared repository, while textContinuous Delivery CD extends
the concept of CI; code updates are incorporated in a shared repository, then built and re-
viewed before being released in the production environment. Improvements and/or changes
to the code are built, checked, and packaged automatically before being released into pro-
duction [28]. It is usually meant by means of CICD pipeline, made up of several steps, that
is usually triggered once a code update happens, by the Version Control System VCS. Usual
steps are to test, package the code into an artifact (usually a compressed zip file), push the
artifact over a storage system and finally, disclosing the artifact by deploying it over a de-
velopment environment. Following it is reported the meant CICD pipeline by means of an
UML sequence diagram:

Figure 5.7: UML Sequence Diagram for deployment pipeline

58

The rise of Jenkins and other Continuous Integration and Continuous Delivery tools have
unleashed a new trend for software deployment strategies, addressed as pipeline-as-code,
that provides a way to define deployment pipelines through source code (for instance Groovy
or declarative YAML approach), available in the same repository as ordinary source code,
supplying a maintainable and improved way for modules deployment.
The following is my proposal for pipeline-as-code, implemented using Jenkinsfile, a file that
contains the definition of a Jenkins Pipeline in form of source code. It is peculiar the way it
is used over the repository, which do not contain properly code but configuration-as-code
and configuration scripts:

de f pushRegions (l i s t) {
f o r (i n t i = 0 ; i < l i s t . s i z e () ; ++i) {

sh ”aws s3 cp −−r eg i on ${ l i s t [i]}
t a r g e t / d i s t / balancer−haproxy . z ip
s3 : // reg ion −${ l i s t [i]}/ codedeploy / ba lancer /haproxy/

${VERSION}/ balancer−haproxy . z ip ”
}

}

de f not i fyOnFa i lu re (myStage) {
echo ” Not i f y ing f a i l u r e in $myStage s tage ”
de f msg = ” echo \”${myStage} s tage f a i l e d f o r ba lancer

v e r s i on ${VERSION} (${BRANCH NAME}) .
C l i ck on the f o l l o w i n g l i n k to check the bu i ld : ${BUILD URL}\””

i f (env .BRANCH NAME == ” master ”) {
s l a ck . f a i l u r e message : sh (s c r i p t : msg . t oS t r i ng () ,

returnStdout : t rue)
}
e l s e {

withEnv ([”SLACK CHANNEL=${SLACK USER ID} ”]) {
s l a c k . f a i l u r e message : sh (s c r i p t : msg . t oS t r i ng () ,

returnStdout : t rue)
}

}
}

p i p e l i n e {
parameters {

booleanParam (name : ’DEPLOY TO PRODUCTION’ , de fau l tVa lue : f a l s e ,
d e s c r i p t i o n : ’ Check i t to deploy t h i s bu i ld to production ’)

booleanParam (name : ’SKIP TESTS ’ , de fau l tVa lue : f a l s e ,

59

d e s c r i p t i o n : ’ Skip un i t and i n t e g r a t i o n t e s t s ’)
}

environment {
SERVICE = ” ba lancer ”
DEPLOY TO PRODUCTION = ”${params .DEPLOY TO PRODUCTION}”
DEPLOY JOB = ” balancer−prepare ”
SKIP TESTS = ”${params . SKIP TESTS}”
PACKAGE VERSION = sh (s c r i p t : ’ echo −n $ (cat package . j son

| jq − j r . v e r s i on) ’ , returnStdout : t rue)
}
s t ag e s {

s tage (’ Test ’) {
when {

environment name : ’SKIP TESTS ’ , va lue : ’ f a l s e ’
}
s t ep s {

echo ” Bui ld ing ve r s i on ${VERSION}”
sh ’ ’ ’

npm run docker : up
npm run docker : haproxy : check | | ERR=1
npm run docker : down
e x i t $ERR

’ ’ ’
}
post {

f a i l u r e {
not i fyOnFa i lu re (” Test ”)

}
}

}
s tage (’ Package ’) {

s t ep s {
sh ”””

npm i n s t a l l
grunt packageHAProxy

”””
}
post {

f a i l u r e {
not i fyOnFa i lu re (’ Package ’)

}
}

60

}
s tage (’ Push ’) {

s t ep s {
s c r i p t {

i f (env .BRANCH NAME == ’ master ’ | |
env .DEPLOY TO PRODUCTION == ’ true ’) {

pushRegions ([’ us−east −1 ’ , ’ us−east −2 ’ ,
’ eu−cent ra l −1 ’ , ’ ap−northeast −1 ’ , ’ ap−southeast −1 ’])

} e l s e {
pushRegions ([’ us−east −1 ’])

}

bu i ld job : ”${env .DEPLOY JOB}” , propagate : true , wait : f a l s e ,
parameters : [

s t r i n g (name : ’VERSION’ , va lue : env .VERSION)
]

}
}
post {

f a i l u r e {
not i fyOnFa i lu re (’ Push ’)

}
}

}
}

}

The deployment pipeline for the balancer module starts with the test step; here the balancer
module is tested, since it do not contain proper unit or integration tests, the stage just checks
the HAProxy’s configuration syntax correctness. Once again, docker is exploited in order to
mimic a sandbox where to fastly install and configure HAProxy with the previously provided
configuration.
npm run docker:up and npm run docker:down boot up and shut down an HAProxy based
docker container, while npm run docker:haproxy:check is the command in charge of checking
the configuration syntax correctness.
Then the package step comes: the repository is parsed exploiting Grunt, a tool used to
automatically perform frequent tasks such as compilation and compression of repositories,
that copies and compress all the needed files and dependencies into a .zip file. The push stage
instead loads the compressed repository over the geographical regions that host bidders and
balancers. The global function defined at the beginning of the pipeline has been coded in
order to provide a common method to load the zip file over AWS Simple Storage Service

61

S3. Finally, once loaded the zip file, the job ”balancer-prepare” is called in order to set-up
the proper deployment over AWS infrastructure-as-service EC2.
CodeDeploy (another service offered by AWS) is exploited for the effective deployment and
it is activated only by means of Jenkins’ server graphical user interface trigger.
CodeDeploy is the service in charge of setting up the EC2 instances, i.e. virtual servers,
therefore it needs to be aware of all the steps required to boot an instance, installing all the
required dependencies and scripts.
To summarise, here it is provided a resume of the deployment pipeline service components:

Figure 5.8: Deployment pipeline components

62

The following is the representation of the balancer repository, which contains all the re-
quired dependencies (such as the scripts described in the previous sections as well as HAProxy
configuration file, TLS certificate and error files) including a folder called ”deploy” that con-
tains the script defined by the module developer and exploited by CodeDeploy to properly
boot a virtual server.

balancer
bin

haproxy-metrics.sh
init-haproxy.sh
sync-haproxy-upstreams.sh

deploy
stop
clean
setup-root
configuration-reload
set-crontab
start-other-services
status-check

files
cron

crontab-production.txt
haproxy

haproxy.cfg
ssl

server-certificate.pem
Each script inside ”deploy” folder defines a step for the instance system set-up, considering

that a virtual server must be launched over EC2 a priori:

• stop: stops the service cron, in this way every periodical update is stopped until cron
is restarted. It allows to perform the deployment without affecting the metrics ser-
vices hosted on the platform’s cloud, which might be forwarded during the deployment
process.

s e r v i c e cron stop

• clean: delete the content of Unix system folders that contain component’s fundamental
scripts, binaries and files in order not to have noise from other previous deployments.

• setup-root: set-up system environment variables (such as the geographical region
the instance is running on and the environment (production or staging)) and installs
HAProxy and Statsd services.

• configuration-reload: the aim of this script is to mock at the initialization stage the
content of the previously described Crontab. it calls the same scripts as Crontab to load

63

the farms available in the region, initialize HAProxy by means of initializer script and
finally updates the configuration through updater.

run−th i s −one / usr / l o c a l / bin /sync− f i l e
$ENVIRONMENT−upstream− l i s t . conf / e t c / farms /

run−th i s −one / usr / l o c a l / bin / i n i t −haproxy . sh
run−th i s −one / usr / l o c a l / bin /sync−haproxy−upstreams . sh

• set-crontab: in this step, according to the ENVIRONMENT variable, the respective
cron instructions are loaded inside Crontab for user Root. This step guarantees that
the instance is loaded with script running following the defined periodicity.

touch /tmp/ crontab− f i l e
cat $CRONS PATH/ crontab−${ENVIRONMENT} . tx t

> /tmp/ crontab− f i l e
sudo crontab < /tmp/ crontab− f i l e

• start-other-services: the system is ready and loaded with all the required dependen-
cies, therefore it is time to restart the previously stopped cron service and Statsd.

s e r v i c e cron r e s t a r t
s e r v i c e s t a t sd r e s t a r t

• status-check: this is the final check to sample the healthiness of the component.
The configuration syntax is tested again in order to check if all the set-up stage ended
smoothly. As defined in HAProxy configuration, the balancer exposes through the main
frontend the resource /ready that is set to return 200 status code by default. If HAProxy
has been installed, initialized and configured properly and then started up correctly,
the /ready endpoint would be reachable by means of HTTP request, as described in
the following code snippet:

f unc t i on checkHttpEndpoint () {
l o c a l HEALTHCHECK=$1
echo ” Checking s t a tu s o f $HEALTHCHECK”
s l e e p 10
s t a tu s=$ (c u r l −X POST −−write−out \\n%{http code }

−−s i l e n t −−output /dev/ n u l l ”$HEALTHCHECK”)
[” $ s t a tu s ” −eq ”200”] | | e x i t 1 ;

}

haproxy −c
[”$?” == 0] | | e x i t 1
checkHttpEndpoint ’ http :// l o c a l h o s t / ready ’

If all the previous script don’t fail, the deployment is disclosed in every available HAProxy
instance over the Infrastructure service hosted on AWS.

64

6 METRICS VISUALIZATION AND
MONITORING

In order to effectively validate if the component is behaving in the expected manner or even
improving the current solution installed in the Platform, it is fundamental to provide some
way to graphically visualize and evaluate metrics; in other terms the creation of a dashboard
is therefore required. A dashboard is a display of data, where its primary intention is to
provide information immediately upon looking, such as Key Performance Indicators. In our
strict case, the set up of a dashboard would help to gather an immediate insight of a bidding
region, whether the balancer and the respective bidders in the geographical area are behaving
in the expected way, defining a way to collect several metrics under widgets: a dashboard is
an aggregation of widgets, or in other terms, visual representations of individual informative
statistics about healthiness and performance. As discussed previously, the purposed HAProxy
solution has been designed providing a way to export metrics, endpoint to endpoint from
HAProxy stats page and instance to AWS metrics pool, by means of the script presented in
section 5.3. In such a way, we ensure that the service CloudWatch is always provided with
the latest information related to the component, defining a data pipe from the component
itself to the cloud service.
The performances of the balancer affects the relative back-end and the respective bidder’s
performances, therefore the dashboard is meant to collect metrics coming from different
components (the balancer and the bidder) with a view to observe the effect of the HAProxy
configuration over the bidders’ efficiency. But which are explicitly the information we want
to display and monitor?

• Total requests: the number of total requests processed by the balancer. It is one of
the indicators of traffic flowing in the component and possibly suggests if HAProxy is
suffering processing requests. A drop down of total request would mean that something
wrong is happening with the HAProxy configuration or the instance itself.

• Total connections: current amount of parallel connections with the component. HAProxy
is configured to open Keep Alive connections with both client and server sides: noticing
big spikes in the connection count would mean that keep-aliveness is not respected or
not working properly, hence badly affecting the functionality of the component and
the Platform bidding process itself. Moreover, alongside total requests, it defines the
way to understand the type and the amount of traffic each bidding region is handling.
It will be useful later, to define the test scenarios for the deployment of the balancer
component.

• Bidders latencies: the overall timing information about bidders in one farm, grouped
by expected round-trip time latency, reporting information about percentile 95 and

65

average time for bids round trip (advertisement request time plus bid response time)
and bid response. This kind of metric is really useful to sample the quickness of the
back-end side to respond to incoming bids, with a view to the probability distribution.
A lower variance in response time would mean increasing the quality of the Platform
responses. Following the results obtained at section 4.4, the implementations of the ser-
vice provided by HAProxy should lower on average the response times of the Platform,
deploying a more robust solution meant to lower the distribution of times with respect
to the current solution based on Nginx.

• Shedding: it is an indicator to observe the delayed responses over a bid-request. A
region showing high Shedding’s values means that multiple bid requests are responded
out of time, forcing the bidders to forward a response featured by code 204 No Content,
therefore losing the possibility to actively participate to the auction related to the
incoming bid. It is an indicator that describes the quality of service of the platform.

Figure 6.1: Agents forwarding metrics to CloudWatch

6.1 Implementation of the bidding dashboard
Amazon Web Services AWS provides a way to define and create resources starting from a
template, i.e. a pattern host on a file usually of YAML or JSON format, meant to provide a
uniform way to configure services in a predictable and pre-defined way.
Templates are the basis for CloudFormation, another service provided by AWS, meant to
digest this kind of pattern files in order to define a ”stack”, a collection of AWS resources
manageable as a single unit; in other terms, stacks contain a set of resources to be provided

66

to a specific AWS service through CloudFormation’s updates. Therefore, coding in a declar-
ative way a template allows developers to define a resource, then trigger the CloudFormation
update with the aim to create the given resource over a given cloud service, which in our
specific case is CloudWatch.

Figure 6.2: CloudFormation update process

Moreover, the dashboard is meant to be deployed in every bidding region, therefore it must
parametrize the AWS region value in order to uniquely define a resource in a single template,
but for multiple geographical areas.
In detail, here it is provided the way to set up the Bidding Dashboard over a JSON template:

” BiddingDashboard ” : {
”Type ” : ”AWS: : CloudWatch : : Dashboard ” ,
” Prope r t i e s ” : {

”DashboardName ” : { ”Fn : : Sub ” : ” bidding−${AWS: : Region }” } ,
”DashboardBody ” : { . . . }

}
AWS::CloudWatch::Dashboard [26] furnishes the pattern to build up a Dashboard resource

that accepts some properties values:

• The dashboard name, i.e. a unique resource naming over the Cloud. Using the in-
trinsic function Fn::Sub, which substitutes variables in an input string with values
available during the update of a stack. In this case, the region value will be available
only during CloudFormation update of a defined region, therefore must be defined as
a ”update-time” parameter.

• The dashboard body, the actual content of the dashboard where widgets will be
hosted. Following AWS documentation, the DashboardBody [27] property must be of
type JSON String. Since the widget definition follow a JSON objects syntax, a way to
commute an object to a string must be defined.

Going deeper, here it is provided the widgets definition in JSON format for the total con-
nection and requests received by the load balancers in the given region and for the bidders
latency values (the code snippet reports only the latency for the 200msB farm, since the
others are exact replicas of the one reported below, but with different values for expected
latency and farm):

67

”DashboardBody ” : {
”Fn : : Join ” : [”\ n” , [

{” ,
”\” type \” : \” metr ic \” ,” ,
”\” p r o p e r t i e s \” : {” ,

”\” met r i c s \” : [” ,
” [\” kp i s \” , \”KPI−Balancer−ConnectionCount \”] , ” ,
” [\” kp i s \” , \”KPI−Balancer−RequestCount \”] ” ,

”] , ” ,
”\” view \” : \” t imeSe r i e s \” ,” ,
”\” stacked \” : f a l s e , ” ,
{ ”Fn : : Sub ” : ”\” r eg i on \” : \”${AWS: : Region }\” ,” } ,
”\” s t a t \” : \” Average \” ,” ,
”\” per iod \” : 300 ,” ,
”\” t i t l e \” : \” Al l Balancers 100ms , 200ms & 300ms\”” ,

”}” ,
”} , {” ,

”\” type \” : \” metr ic \” ,” ,
”\” p r o p e r t i e s \” : {” ,

”\” metr i c s \” : [” ,
” [\” kp i s \” , \”KPI−Bid−Count \” ,

\” Latency \” , \”200msB\”] , ” ,
” [\” kp i s \” , \”KPI−Bid−Response−Time−Mean\” ,

\” Latency \” , \”200msB\” }] , ” ,
” [\” kp i s \” , \”KPI−Bid−Response−Time−P95\” ,

\” Latency \” , \”200msB\”] , ” ,
” [\” kp i s \” , \”KPI−Response−Time−Mean\” ,

\” Latency \” , \”200msB\”] , ” ,
” [\” kp i s \” , \”KPI−Response−Time−P95\” ,

\” Latency \” , \”200msB\”] , ” ,
”] , ” ,
”\” view \” : \” t imeSe r i e s \” ,” ,
”\” stacked \” : f a l s e , ” ,
{ ”Fn : : Sub ” : ”\” r eg i on \” : \”${AWS: : Region }\” ,” } ,
”\” t i t l e \” : \” Latency 200msB Bidders \” ,” ,
”\” s t a t \” : \” Average \” ,” ,
”\” per iod \” : 300” ,

”}” ,
”} , {” ,

”\” type \” : \” metr ic \” ,” ,
”\” p r o p e r t i e s \” : {” ,

”\” met r i c s \” : [” ,

68

” [\” kp i s \” , \”Shed \” ,
\” Latency \” , \”100ms\ ”] , ” ,

” [\” kp i s \” , \”Shed \” ,
\” Latency \” , \”200ms\ ”] , ” ,

” [\” kp i s \” , \”Shed \” ,
\” Latency \” , \”300ms\ ”] ” ,

”] , ” ,
”\” view \” : \” t imeSe r i e s \” ,” ,
”\” stacked \” : f a l s e , ” ,
{ ”Fn : : Sub ” : ”\” r eg i on \” : \”${AWS: : Region }\” ,” } ,
”\” t i t l e \” : \” Shedding \” ,” ,
”\” per iod \” : 300 ,” ,
”\” s t a t \” : \”Sum\”” ,

”}” ,
”}” ,

]]

The function Fn::Join (another intrinsic function, similar to Fn::Sub) allows strings chaining,
providing the character \n (i.e. new line) as separator for all the following comma-separated
strings; in such a way, the JSON string type for DashboardBody is respected.
The ”metrics” property instead, define the collection of statistics the widget will show. Here it
is specifically reported the widget that will contain data coming from balancers and exported
with the script at 5.3; each metric is defined under a ”namespace” (a set of conceptually
similar metrics defining a metrics pool), in this case kpis, and by a unique name.
Each widget embeds the region value, therefore the region must be parametrized using
Fn::Sub; in this way, each time we reach a region with a CloudFormation update, the metrics
related only to the region particularly will be displayed.

6.2 Effects after deployment: metrics’ visual debug
In the previous chapters and sections, I explained how to configure and the requirements
needed to configure the balancing solution compatible with the Company needs and the
bidding process for RTB, as well the major benefits of HAProxy have been sort out, pointing it
as the best component in order to reduce back-end average latency both in terms of HAProxy
technical specification (tested in a benchmark at section 4.4) and algorithms specification,
with possibility to have Random 2 algorithm and all the benefits it carries for the load
balancing strategy (as pointed out in Preliminaries 3.5) but which are the real effects of the
HAProxy’s implementation?
Since the component interacts with HTTP traffic to be dispatched, it’s performances might
be affected by the features of the HTTP traffic itself, depending on the AdExchanges’ HTTP
policy, which might open towards a specific farm, multiple connections for few requests or few
connections highly exploited by various requests: the shape of the traffic might change the
expected outcome. More in general, the amount of traffic managed by a farm of server highly

69

differs too, therefore we might notice different behaviors for the reported metrics, according
to the density of traffic: some farms and geographical bidding regions are less stressed, while
others handle high HTTP loads, therefore for this reason, the results might change too.
Hence, the following section will report two cases:

1. a best-case scenario test will be conducted, over a scarcely loaded region, in order
to build up the expectations that this research aims to propagate over all the other
geographical regions and farms. From an operational point of view, it is required to
deploy the component first in a less-congested farm, where the balancer component will
be less stressed.

2. Then, the focus will shift over a highly stressed farm, with the hope to show significant
improvements even with non-optimal pre-conditions (bad shape of traffic and high
number of requests per second), in order to check if a general-case scenario follows
the best-case one.

6.2.1 Effects after deployment: best-case scenario
Let’s start deploying the new balancer component over a low-congestion region featured by
an optimal shape of traffic.

Figure 6.3: Region’s shape of traffic: received Connections in blue, Requests in orange

The previous picture describes the traffic over the bidding region. It shows that the connec-
tions are in the order of magnitude of thousands (few thousands of connections accepted by
balancers), while the incoming requests usually scale from approximately 1 to 4 milions. This
region reports the lowest amount of requests over the platform’s geographical areas and the
traffic shape is considered the optimal one, since few connections manage a high amount of
HTTP requests.
Once the component has been successfully deployed over a bidding region, the dashboard

70

and its metrics widgets come to the aid for this purpose, underlining the long and short term
effects over the statistics of a geographical bidding region.
First, let’s check the back-end latency to see if HAProxy’s deployment has changed the over-
all behavior of the component during time:

Figure 6.4: Farm’s latencies (response time and bid-response time: average, percentile95)

From the previous picture, the metrics regarding a farm of bidders are reported, in par-
ticular the bid response time (i.e. the total time for the bid request to reach the back-end
server from the balancer plus the bidder processing time plus the trip back to the client).
This farm specifically interacts with AdExchanges which expects the total round trip time
not to exceed 200ms.
The latency metrics shew in this particular farm, maximum values (expressed as percentile
95) of almost 200ms with peaks that exceed the threshold hitting in some cases almost a
second of packet round trip time. HAProxy’s deployment happens November 24th and it is
possible to observe how the metric related to the latency of the farm experienced a drop down,
with latency times almost halved with respect to the scenario pre-deployment. HAProxy and
Random 2 together can effectively reduce the variances of response times, both for
average and percentile cases, showing an overall better management of the farm’s back-end
that results in a more compact, uniform and fair distribution among servers. This behavior
is in-line with the expectation set by the performance test and the discussion over load bal-
ancing methodologies.
On the other hand, reducing the effect of the latency over servers brings another secondary
but equally important improvement. Bidders are implemented over the Cloud infrastructure
exploiting an Auto Scaling Group, a term often used in Infrastructure-as-Code templates
to point to cluster of entities able to scale up or down automatically depending a pre-defined
rule; bidders specifically exploit the latency metrics to scale up and down: an auto scaling
group showing high latency values will be scaled up to allow the back-end to better dis-
tribute the traffic and providing the expected quality of service, or in case of really low
response times, the Auto Scaling Group scales down in order to cut off extra costs related
to under-utilization of instances. Better back-end utilization through the proposed balancer
allows the servers to respond better, avoiding the need of booting other extra server instances
to improve the quality of service. In a cloud infrastructure, where billing is applied on a uti-
lization time basis, cutting off the number of virtual servers would mean decreasing their

71

relative cost: less server instances needed means decreasing on average the cost of
Cloud infrastructure, which is considered a crucial KPI for the Platform (less cost having
the same performances means increase of the revenue).

Figure 6.5: Farm’s number of servers

The number of servers metric for the farm shows a steep decrease in number, as well as the
variability of this metric after the deployment. If servers response time shows spikes and
peaks, then the number of server instances will be affected too, and the infrastructure will
start booting servers to compensate those latency issues. Adding and removing servers might
be a drawback as well for the Platform, since the establishment of new connections with the
new born servers adds an overhead in the CPU of the balancers and the bidders and therefore
might affect the global quality of service, and should be done only when it is strictly necessary
to add extra processing power. For this farm specifically, the number of server instances is
decreased from the pre-HAProxy worst-case utilization on 21/11 (from 2 to 7 instances) up
to a single stable entity, setting itself as a reference to replicate in other farms. Moreover,
the Shedding value as well show drastical improvements:

Figure 6.6: Observed shedding in the region

72

reducing the spread of response times distribution helped the Shedding value as well, which
value dropped down after the component’s deployment. This means that the possibility to
actively participate to an auction increased drastically, thanks to the reduced overall response
times; therefore, the platform quality of service increased.
In conclusion, getting uniform responses from the servers helps the infrastructure itself to
better scale back-ends, with an overall trend to decrease the total number of instances needed
to manage the same amount of bids; in addition, having less virtual servers instances over the
infrastructure reduces the total infrastructure cost, in this case only the cost of one instance
instead than the worst case scenario pre-HAProxy deployment of 7 instances. Moreover, fol-
lowing the Shedding decrease, the possibility for a bib response to take active part of the
auction increases drastically.
This experiment has defined the possible benefits observable from a less-congested region,
setting the outcomes that each region would be expected to follow.

6.2.2 Effects after deployment: general-case scenario
Following the outcomes of the previous section, this part of the analysis will focus on non-
optimal regions featured by an higher load of requests and various shapes of traffic, focusing
on a generic-case scenario, i.e. a replica of the experiment set in the previous section, to
validate if the migration to HAProxy has brought the wanted and already observed benefits.
Let’s take as reference a region featured by the following network traffic:

Figure 6.7: Region’s shape of traffic: received Connections in blue, Requests in orange

The region shows an increased load of HTTP traffic over the platform’s balancers, with
requests hitting peaks of requests exceeding 11 million value (more than the double with
respect as before) and values of connections varying from 10 thousands to 90 thousands
current active requests (approximately 10 or 90 times more than the previous best-case
scenario example). Moreover, the connections highly varies during time and this might cause
higher overhead over the system resources, since the plot suggests that connections are opened
and closed way more frequently with respect to the best-case scenario.
Let’s now repeat the steps estabilished previously, in order to check if the latencies, the
number of instances and the shedding have improved.

73

Figure 6.8: Latencies from the analyzed farms (response time and bid-response time: average,
percentile95)

Taking two farms from the same region, it is possible to notice that after the deployment
happened on 16th of December, the latencies haven’t decreased hugely as before for the first
analyzed farm; despite an imrpovement , the contribution provided by HAProxy has anyways
furnished a better distribution of the response times, reducing the possibility to encounter
spikes while responding to bids and decreasing the response time of a couple of tenth of
milliseconds.
On the contrary, the second farm widely reduced its response times, showing huge improve-
ments over the latency.

Figure 6.9: Number of servers from the analyzed farms

Continuing the discussion, the number of instances belonging to a farm is dependent on the
latency that affects the back-end. A slight reduction of times would mean a small reduction
of instances, on the contrary, a significant decrease of times would mean a drop down of the
bidder instances utilization. The number of instances from the two farms under discussion is

74

reported. It is possible to notice how the first farm servers start scaling after the deployment
in a range that goes from 15 to 49, respect to the scenario pre-deployment where the instances
number were scaling from a minimum of 15 to a maximum of 70. The second reported farm
instead, shows once more a steep decrease in the number of servers, with the overall amount
of servers that stabilize over two bidder instances. Once again, the expectation set in the
best-case scenario are met.

Figure 6.10: Observed shedding in the region

Finally, also the shedding value follows the one estabilished in the best-case scenario, showing
negligible values once the component reaches production environment.
This outcome underlines how the traffic sent by AdExchanges highly varies, at the point
that the magnitude of the benefits brought by HAProxy depends on the feature of the traffic
itself. On average, it has been possible to show that the configuration provided based on
the analysis of the best component available in the market with respect to the requirements
declared in section 4.1.

75

76

7 CONCLUSIONS
I have highlighted throughout this work that the RTB process and its metrics are affected
by the type of the selected reverse proxy, made possible through the software selection pro-
cess and the kind of load balancing algorithm specified. In particular, I demonstrated that
through software engineering’ best practices, such as performance software benchmarking
and analysis of requirements through an evaluation metrics, it is possible to establish which
reverse proxy fits the best with respect to the RTB demand of a DSP.
Following the guide-lines instituted by chapter 5, it has been provided how to configure the
best-fitting component, furnishing the way to define the configuration creation in order to
mask the bidder side from the AdExchanges one, supplying also some tuning tips and cyber
security warnings against threats that might affect or disrupt the performances of the plat-
form itself. Code reporting by means of Unified-Modeling-Language UML diagrams, such as
component, use-case, activity and sequence diagrams have been highly exploited to overview
the reported code snippets’ meaning from an high-level point of view, in order to underline
the logic and functionalities behind every script or configuration file.
Furthermore, a steering from the speech has been made, focusing on Continuous Integration
and Continuous Delivery CICD and my purpose of implementation for it through pipeline-
as-code.
Finally, after the development of a dashboard to resume the RTB process main statistics,
it has been possible to observe the various effects after the selected balancer’s deployment
over production metrics. The assumption established by the load balancing algorithm selec-
tion (section 3.5.2) and by the reverse proxy benchmark analysis found confirmation in the
empirical results obtained at section 6.2. To summarise, the following has been demonstrated:

• Power of Two algorithm combined with the selection of the most performant component
guaranteed a better management of the bidder side, consequently a reduction of the
response times latency, which have been observed in general to keep a more stable
behavior after the HAProxy deployment, featured by lower response time variance as
it can be noticed by the reduction of the average and percentile 95 response times.

• Aside the reduction of the average response times’ latency, it is noticeable a decrease
in the utilization of cloud infrastructure’s virtual server utilization, which varies from
farm to farm and from region to region according to the reasons cited previously in the
discussion, such as load factors (measured as number of incoming requests) and traffic
shape (number of connections vs number of requests sent over those connections). Less
virtual servers to maintain means improved costs related to the utilization of
the cloud infrastructure and AWS billing.

• Responding faster also means to improve the quality of service: after the deploy-
ment of HAProxy, the shedding value has widely decreased, meaning that the aggre-

77

gated amount of bid requests that are responded out of time (therefore not taking
part to the auction) has been significantly reduced, underlining how a more compact
and uniform distribution of requests provides an improved reaction to incoming bids,
guaranteeing much higher possibilities to take part in the auction estabilished by one
of the AdExchanges.

Moreover, many tools, softwares and programming languages have been exploited during the
development of this project: performance test exploiting wrk2 over a docker environment,
CICD with Jenkins server, configuration of various reverse proxies, learning how to work
with AWS Cloud and the insight on its services, BASH scripting and learning how to tune
and configure HAProxy have been studied during the flow of this master thesis.

7.1 Acknowledgments
I would like to thank the following people, without whom I would not have been able to
complete this research, and without whom I would not have made it through my masters
degree!
The Tech team at Smadex SLU, in particular my supervisor, Software Engineer Edráı Brosa,
whose insight and knowledge into the subject matter steered me through this research. Spe-
cial thanks to John Hearn, whose work and interest over the load balancing algorithm in
RTB topic paved the way for the concept explained in this project. Thanks to my professors
in FIB and Politecnico di Torino, Javier Larrosa and Andrea Bottino, that followed my work
and helped me to develop this written document.
I would love to spend a couple of words about the unfortunate conditions every student is
living during these hard days, with the pandemic and the smart-working condition everyone
has been facing: those hard times increased the difficulties to learn new concept and tech-
nologies by first hand and have left in many people the feeling of abandon and loneliness,
especially for those facing new challenges and new working experiences; on the other hand,
these months have widely increased my self-learning abilities, helping me to improve my
skills over new concepts, tools, programming languages and infrastructures that before this
experience I would never be able to tackle by myself. To conclude, my biggest thanks go to
my family for all the support you have shown me through this experience, the culmination
of a year and half of Double Degree experience abroad, in particular to my mother that has
always been there listening to my issues and worries.
Last but not least, thanks from the deepest of my heart to my wonderful girlfriend Sara, that
has been on my side for all the time, leaving her home place to move to another country,
supporting me over good and, especially, bad times: sorry for being even more bad-tempered
than normal during this thesis writing, I owe you a travel wherever and whenever you want!

78

8 GLOSSARY
• Amazon Web Services AWS: One of the leaders in the market in the field of cloud

computing, it furnishes more than 150 services related to computing, deployments,
storage, databases, machine learning and many others. Among the services mentioned
in this paper:

– Elastic Compute Cloud EC2: one of the main products of Amazon Web Ser-
vices, it allows the rental of virtual servers (also addressed as virtual machine),
where to execute software modules and application. Users can acquire cloud in-
stances from this service paying for the time of utilization of the given instance;
each instance costs more or less depending on the instance type. Elastic Compute
Cloud is generally identified as Amazon’s Infrastructure as a Service (IaaS).

– CloudFormation: the service dedicated to provide Infrastructure as Code ability.
It allows, through the coding of templates in JSON or YAML formats, to create
resources over the cloud infrastructure. Many kind of resources can be created
over the cloud, in this paper in particular, it has been described how to model a
Dashboard for the CloudWatch service.

– CloudWatch: the service dedicate to monitor and optimize resource utilization.
It gathers statistics from other services hosted in the cloud and allows developers
to troubleshoot and set alarms over the hosted metrics.

– Codedeploy: AWS CodeDeploy is a fully managed deployment service that auto-
mates software deployments to a variety of computing services like Amazon EC2.

– Simple Storage Service: product meant to provide storage features. It can be
exploited to store any type of object, which allows for uses like storage for Internet
applications, data lakes for analytics, data archives and backup and recovery.

• Docker: it is a container management service. The keywords of Docker are develop,
ship and run anywhere. The whole idea of Docker is for developers to easily develop
applications, ship them into containers which can then be deployed anywhere. It al-
lows to generate containers from Docker images. It provides virtualization and, since
containers are isolated, it guarantees security and it allows multiple containers to run
simultaneously on the given host.

• Docker image: a Docker image is a file used to define a template for booting up
containers, providing a set of instructions meant to build the container. In other terms,
it executes code in a Docker container. A single Docker image can be re-used multiple
times for containers generation.

79

• Docker Compose: it is a tool for defining and running multi-container Docker appli-
cations. With Compose, you use a YAML file to configure your applications services.
Then, with a single command, you create and start all the services from your configu-
ration. Therefore, in a single shot, it triggers the deployment of several containers that
can communicate over the same network.

• Grafana: Grafana is an open source solution for monitoring, running data analytics,
pulling up metrics that make sense of the massive amount of data and to monitor apps
with the help of customizable dashboards.

• Grunt: it is a tool also identified as task runner. It is usually meant to execute frequent
activities, such as repositories’ linting, compression, compiling and unit testing.

• Groovy: object oriented programming language. It is usually addressed as an alterna-
tive for Java. Through Groovy, it is possible to define pipeline-as-code files, useful in
this paper to define a way to deploy software modules exploiting Jenkins.

• Statsd: it is a network daemon written in Node.js to collect, aggregate, and send
developer-defined application metrics to a separate system for graphical analysis. It
creates a data pipe from the instances to be monitored to a monitoring service. In this
thesis flow, it is mentioned to be coupled with Grafana.

• Jenkins: written in Java, it is an open-source automation server meant to provide
Continuous Integration and Continuos Delivery. It automates building, testing and
deploying steps. Jenkinsfiles might be associated to software modules in order to
provide to Jenkins server the steps coded in Groovy in forms of instruction through
pipeline-as-code templates.

• Privacy Enhanced Mail PEM: file format typically used to store encryption in-
formation. It is container format that may include just the public certificate or may
include an entire certificate chain including public key, private key and root certificates.

80

Bibliography
[1] J. Hearn, (April 3rd, 2021), ”Load Balancing Strategies and their Distributions”. Re-

trieved from https://john-hearn.info/articles/load-balancing-strategies

[2] Y. Yuan, F. Wang, J. Li and R. Qin, (2014), ”A survey on real time bidding advertising”,
Proceedings of 2014 IEEE International Conference on Service Operations and Logistics,
and Informatics, pp. 418-423.

[3] IAB Technology Lab, (December 2016), ”OpenRTB API Specification Version 2.5”,
Real Time Bidding (RTB) Project. Retrieved from https://iabtechlab.com/wp-
content/uploads/2016/07/OpenRTB-API-Specification-Version-2-5-FINAL.pdf

[4] J. D. Day, H. Zimmermann, (January 1984), ”The (Un)Revised OSI Reference Model”,
Proceedings of the IEEE (P IEEE)

[5] Peter Sommerlad, (2003), ”Reverse Proxy Patterns”. Retrieved from
https://hillside.net/europlop/HillsideEurope/Papers/EuroPLoP2003/2003 Sommerlad ReverseProxyPatterns.pdf

[6] Art Stricek, (January 10, 2002), ”A Reverse Proxy
Is A Proxy By Any Other Name”. Retrieved from
https://www.miga.org/sites/default/files/archive/Documents/reverseproxy22.pdf

[7] Willy Tarreau, (February 2019), ”Test Driving Power of Two Random Choices Load Bal-
ancing”. Retrieved from https://www.haproxy.com/blog/power-of-two-load-balancing/

[8] T. Schlossnagle, (2017) ”Monitoring in a DevOps world”. Retrieved from
https://queue.acm.org/detail.cfm?id=3178371

[9] HTTP2 official Github page, ”HTTP/2 Frequently Asked Questions”. Retrieved from
https://http2.github.io/faq/#does-http2-require-encryption

[10] IBM Documentation, ”Health checks”. Retrieved from
https://www.ibm.com/docs/en/datapower-gateways/10.0.1?topic=groups-health-
checks

[11] Docker official web-site. Retrieved from https://www.docker.com/

[12] Overview of Docker Compose. Retrieved from https://docs.docker.com/compose/

[13] HAProxy official web-site. Retrieved from http://www.haproxy.org/

[14] Nginx official web-site. Retrieved from https://www.nginx.com/resources/glossary/nginx/

[15] Traefik official web-site. Retrieved from https://doc.traefik.io/traefik/

81

[16] Envoy official web-site, ”What is Envoy”. Retrieved from
https://www.envoyproxy.io/docs/envoy/latest/intro/what is envoy

[17] ”Apache HTTP Server”, Wikipedia. Retrieved from
https://en.wikipedia.org/wiki/Apache HTTP Server

[18] Cloudflare, ”HTTP/2 vs. HTTP/1.1: How do they affect web performance?”. Retrieved
from https://www.cloudflare.com/learning/performance/http2-vs-http1.1/

[19] Willy Tarreau, ”Configuration Manual version 2.4.0”, (2021/05/14). Retrieved from
https://cbonte.github.io/haproxy-dconv/2.4/configuration.html#4-http-reuse

[20] Nick Ramirez, (August 2021), ”The HAProxy APIs”, Retrieved from
https://www.haproxy.com/blog/haproxy-apis/

[21] wrk2 GitHub page. Retrieved from https://github.com/giltene/wrk2

[22] Nishanth G., (April 16, 2021), ”Hashing in context of Load Balancing”. Retrieved from
https://medium.com/nerd-for-tech/hashing-in-context-of-load-balancing-392b317fe40e

[23] OWASP, ”Session Timeout”. Retrieved from https://owasp.org/www-
community/Session Timeout

[24] OWASP, OWASP Cheat Sheets, ”Session Management Cheat Sheet”. Retrieved from
https://cheatsheetseries.owasp.org/cheatsheets/Session Management Cheat Sheet.html#idle-
timeout

[25] Moemen Mhedhbi, (November 28, 2017), ”Dynamic Configuration with the HAProxy
Runtime API”. Retrieved from https://www.haproxy.com/blog/dynamic-configuration-
haproxy-runtime-api/

[26] AWS Documentation, ”AWS::CloudWatch::Dashboard”. Retrieved from
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-
cloudwatch-dashboard.html

[27] AWS Documentation, ”Dashboard Body Structure and Syntax”. Retrieved from
https://docs.aws.amazon.com/AmazonCloudWatch/latest/APIReference/CloudWatch-
Dashboard-Body-Structure.html

[28] International Journal of Emerging Technologies and Innovative Research
(www.jetir.org), (February, 2018) ”Understanding DevOps & Bridging the Gap
from Continuous Integration to Continuous Delivery”, ISSN:2349-5162, Vol.5, Issue 2,
page no.1420-1424.

[29] Silvia Barros, (May 21, 2018), ”What is a DSP (Demand-Side Platform)? A Com-
plex New World”. Retrieved from https://www.mobidea.com/academy/demand-side-
platforms/

82

