
POLITECNICO DI TORINO
Master of Science in Computer Engineering

Master Degree Thesis

Explaining bias in modern Deep
Language Models

Supervisors

Prof. Elena BARALIS

Dr. Giuseppe ATTANASIO

Candidate

Christian Vincenzo TRAINA

April, 2022

Abstract

In recent years, episodes of hate speech on the Internet have increased. Hate
speech manifests with instances of misogyny, racism, and attacks on minorities.
To analyze large amounts of data and curb the spread of hurtful content, modern
language models such as BERT are currently employed in the task of automatic
hate speech detection.

Although these models have outperformed previous solutions, several recent
works have shown that they still suffer from unintended bias. Biased models tend
to be over-sensitive to a limited set of words, so they base the entire decision on
only those words and ignore the context.

Much recent work has focused on explaining the models, on the overall under-
standing of the output, and the way it is obtained. Explanation methods can be
based on either exploiting the inner workings of the neural network or analyzing
the output by perturbing the input.

In this thesis, several techniques are used to explain neural networks, including
attention maps, as extracted from BERT inference; their transformation, called
effective attention maps; Hidden Token Attribution, which is a gradient-based
explainer; a hierarchical explainer called Sampling-And-Occlusion (SOC); Minimal
Contrastive Editing (MICE), which is a modern algorithm that uses counterfactual
explanations; and two different SHAP versions: KernelSHAP and DeepSHAP.

The main contributions of this thesis concern the selection of the best explanation
methods for the detection of unintended biases in modern neural networks, evidence
that most explainers express different types of explanations, and evidence that
peaks in contribution scores are more common in false-positive samples.

The analysis was performed on two different hate speech detection datasets,
both in English. The datasets were collected from Twitter and manually annotated.
In particular, they concern misogyny and hatred against immigrants.

The explanations have been evaluated according to their quality, measured by
the deviation from human explanation results. The latter was determined by a
survey in which 25 volunteers were asked to indicate the most important words in
a sentence. Other parameters included lead time, ease of reading, and theoretical
background.

The results on these datasets show that the attention maps and the effective
attention maps express the same type of explanation in most of the cases consid-
ered. The quality is very high in both of them, even if the output is not easily
understandable by non-insiders, since it requires technical knowledge about the
network. In MiCE and SOC, thanks to their particular outputs which are respec-
tively hierarchical and contrastive, bias can be quickly individualized, so their use

is encouraged despite their high lead time. Moreover, HTA is fast to compute and
its quality remained consistent across experiments. Finally, both DeepSHAP and
KernelSHAP were able to detect the bias in most cases, but the quality of the
explanation was significantly lower compared to the other methods.

Two additional experiments were conducted to prove whether the presence of
peaks on the word contribution score - derived from the attention features - was
greater in false-positive samples and whether there was a correlation between the
explainers used. The results of these experiments show that there is a correlation
between false-positive samples and peaks in attention features and that none of
the explanation methods used is redundant, with the sole exception of attention
maps and effective attention maps.

ii

i

Acknowledgements

Prima di procedere con la trattazione di questa tesi ci tengo ad utilizzare questo
spazio per ringraziare tutti coloro che mi sono stati vicini in questi anni.

In particolare ringrazio Mikela, Cristina, Andrea e tutti gli amici che mi hanno
sopportato e supportato, tutti i colleghi che ho conosciuto e che hanno fatto la
differenza, sia aiutandomi materialmente che offrendomi qualche parola e che, nel
complesso, hanno reso questo percorso meno ripido. Un ringraziamento speciale a
Giuseppe Attanasio che con pazienza e competenza mi ha accompagnato lungo la
stesura di questa tesi.

Infine, ringrazio Fabio Fasano e l’azienda per cui lavoro, che da sempre mi ha
offerto la flessibilità e il supporto necessario per portare a termine questo obiettivo.

...a mia zia, che non è riuscita a vedermi laureare,
ma che immagino fiera di me.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1
1.1 Thesis objective . 1
1.2 Organization of the elaborate . 5

2 Background 6
2.1 Introduction to Natural Language Processing 6
2.2 Attention based networks . 7

3 BERT and the hate speech context 13
3.1 BERT: a Transformer based model 13
3.2 Hate speech and biased networks 17

4 Related works 19
4.1 Evaluation of intepretability approaches 19
4.2 Attention as explanation . 21
4.3 Recurrent patterns in attention maps 24

5 Overview of explanation techniques 27
5.1 Explanation in Machine Learning 27
5.2 Explanation taxonomy . 29
5.3 LIME . 30
5.4 Shapley values . 30
5.5 SHAP . 30
5.6 MiCE . 33
5.7 SOC . 33

iv

6 Methodology 36
6.1 Approach . 36

7 Experiments and Results 42
7.1 Dataset . 42
7.2 Training . 43
7.3 Selection of sentences . 44
7.4 Comparison of explainers . 46

7.4.1 Human explainer . 46
7.4.2 Attention . 50
7.4.3 Effective attention . 55
7.4.4 SOC . 58
7.4.5 HTA . 64
7.4.6 KernelSHAP . 66
7.4.7 DeepSHAP . 70
7.4.8 MiCE . 71
7.4.9 Comparison among explainers 74

7.5 Analysis of vertical patterns . 82
7.6 Correlation among explainers . 85

8 Conclusions and further steps 90

Bibliography 92

v

List of Tables

7.1 . 72
7.2 . 73
7.3 . 73
7.4 MiCE explanation . 80
7.5 Lead time to obtain execution. Time expressed in seconds 80

vi

List of Figures

2.1 Example of attention map from the paper "NEURAL MACHINE
TRANSLATION BY JOINTLY LEARNING TO ALIGN AND
TRANSLATE" that firstly introduced attention. In the picture
is visible where the neural networks focus to translate a sentence
from english to french . 9

2.2 The transformer architecture, taken from "The illustrated transformer" 10
2.3 The transformer encoder, taken from "The illustrated transformer" . 11

3.1 Example of a masked token. "Do" was marked as changed but it was
not, "The" is marked as changed and it actually was, and another
random word was masked out . 14

3.2 Architecture and example of working of BERT. Taken from the paper
"On the Role of Conceptualization in Commonsense Knowledge
Graph Construction" . 16

4.1 Example of the 5 recurrent patterns, taken from the original paper . 26

5.1 Example of hierarchical explanation 34

7.1 Example question of the survey . 47
7.2 Result for the question referring the sentence "Fuck yeah you pussy

boy" . 49
7.3 Result for the question referring the sentence "@benshapiro Fuck

you pussy" . 49
7.4 Answers to the question "@minimaslany What if she enjoys it? I

think the days where women are forced to stay in the kitchen, not
work, etc are over." . 50

7.5 Aggregated importance given to the words of the sentence "@mini-
maslany What if she enjoys it? I think the days where women are
forced to stay in the kitchen, not work, etc are over." 51

7.6 . 52
7.7 . 53

vii

7.8 . 54
7.9 . 55
7.10 Raw attention . 57
7.11 Effective attention . 58
7.12 . 59
7.13 . 60
7.14 a) Pearson correlation index between effective attention and raw

attention, over different token lengths. b) and c) respectively raw
and effective attention, where each point represents the average
attention of a given head to a token type. Figure taken from [30] . . 60

7.15 . 62
7.16 . 62
7.17 . 63
7.18 Note: the sentence was split into two different images for readability

reasons . 63
7.19 . 65
7.20 . 65
7.21 . 66
7.22 . 66
7.23 . 68
7.24 . 68
7.25 . 69
7.26 . 70
7.27 . 71
7.28 Attention map of the 11th layer, averaging across heads 75
7.29 Effective attention map of the 11th layer, averaging across heads . . 76
7.30 SOC explanation . 76
7.31 HTA explanation . 77
7.32 DeepSHAP explanation . 79
7.33 KernelSHAP explanation . 79
7.34 The same attention map before and after increasing the contrast . . 83
7.35 Plot of the normalized vertical pattern counts varying the parameter β 84
7.36 Plot of the normalized vertical pattern counts, focusing on false

positives and false negatives, varying the parameter β 85
7.37 Plot of the difference of normalized vertical pattern counts related

to false positive and false negative, varying the parameter β 86
7.38 . 88

viii

Acronyms

XAI
Explanation AI

NLP
Natural Language Processing

BERT
Bidirectional Encoder Representations from Transformers

NN
Neural Network

AI
artificial intelligence

RNN
Recurrent Neural Network

BiRNN
Bidirectional RNN

LSTM
Long Short Term Memory

MLM
Masked Language Model

NSP
Next Sentence Prediction

x

CLS
Classification token

SEP
Separator token

GDPR
General Data Protection Regulation

LOO
Leave One Out

xi

Chapter 1

Introduction

1.1 Thesis objective

Online platforms are a fertile field for hate speech and attacks on minorities.
According to a 2018 report from the University of Nottingham, 21.68% of women
surveyed reported being sexually assaulted online, while 54.30% received unwanted
sexually explicit texts. This resulted in, among other things, 1.7% of respondents
speaking less online.

Companies offering a similar service know the problem and try to moderate
their platform to remove toxicity, but since the explosion of social media in recent
years, this task can no longer be done manually. Because of this, companies have
been using artificial intelligence to automatically address the problem by either
automatically making a decision or flagging content as needing moderation. Many
different architectures have been proposed to achieve this goal. The oldest and
most shallow solutions involved the use of decision trees and rule-based classifiers,
which were able to detect the most offensive words, but were unable to generalize
sufficiently and perform well in unseen scenarios, and were also easily fooled.

A major performance improvement in toxicity detection systems was achieved
through Deep Learning. With Deep Learning, classifiers were able to tailor their
classification to context simply by using large datasets of examples extracted
from the platform. The first example of a neural network designed specifically
for sequence classification was the Recurrent Neural Network (RNN). They were
soon replaced by Long-Short Term Memory (LSTM), which solved many of the
problems of RNNs. Nowadays, most toxicity detection systems are instead based
on BERT or one of its variants. BERT is an architecture introduced by Google
that does not use recurrence to examine and classify the sentence. Instead, it uses
an attention-based mechanism that allows tokens to be related to each other at
any distance in a sequence and assign them a weight.

1

Introduction

Attention was proposed by Google in 2016 when it introduced a new architecture
called the Encoder-Decoder [1], which makes extensive use of attention mechanisms
to improve performance. Attention was proposed to solve a particular problem that
occurred when encoding the input sequence into a fixed-length vector and then
decoding the vector to obtain the desired output. It is believed that this problem
is more likely to occur when decoding long sequences. The attention mechanism
was then adopted by the transformer architecture, which made still heavier use of
attention so that the original paper was named "Attention is All You Need". In the
paper, the authors use attention to relate words to each other, defining a square
attention matrix that they call self-attention. Self-attention relates different tokens
of the same sequence to each other to compute an overall representation. In 2018,
Google introduced BERT, an evolution of Transformers that eliminates the decoder
and uses only 12 stacked encoders. BERT has dramatically increased accuracy and
is considered state of the art for many NLP tasks. Since the decoder is omitted, a
new token is prepended in each sequence to allow classification. This token is called
CLS and is the main output of the neural network. Another output of the neural
network is the attention matrix, which is used for computation. In fact, each token
is related to every other token to get the meaning of the sentence. A token that is
attended by all the other tokens could be considered more important than a token
that is not attended by any of the other tokens since the former has been weighted
more than the latter in the computation. For this reason, we can intuitively view
the attention maps as a metric for the importance of tokens in a sequence.

In 2019, the paper "Attention is not explanation" was published, stating that
attention is not a valid explanation metric and is not sufficient to explain an
attention-based neural network. In the same year, another paper titled "Attention
is not not explanation" was published, contradicting the previous work. In this
paper, however, attention is not used as an explanation metric but is explored
in the context of bias detection. In August 2019, the paper "Revealing the Dark
Secrets of BERT" was published, analysing the patterns that attention maps adopt.
One of the findings of this research was that the patterns of attention maps can be
described in 4 categories: heterogeneous, block, vertical, and diagonal. Therefore,
an investigation was conducted to see if any of these patterns were associated with
bias within a fine-tuned BERT model.

Indeed, for this purpose, a dataset of 3600 sentences was used to check the spot
the patterns and eventually relate with the hate speech context. The sentences
were manually labelled as misogynistic or not and were extracted from the Twitter
platform over a long period of time. In this thesis, attention was not only analysed
in its raw version, as it was extracted from the neural network, but also after two
different transformations, namely effective attention and entropy attention. The
first is a measure of the attention that effectively affects the decision, the second is
a measure of how much the attention weights are distributed around a limited set

2

Introduction

of tokens.
Altogether to the analysis performed over attention maps, different classical

explanation methods were used to interpret and detect bias within the neural
network. While the attention-based explanatory algorithms are model-specific and
task-specific, other algorithms used for the comparison, instead, are classified as
model-agnostic since they only act on the input and on the output to produce
an explanation. Among the galaxy of algorithms available, they were selected
MiCE, which provides an explanation by producing edits that are contrastive,
minimal, and fluent. In this way, it allows the user to focus on the words that
were determining the decision, and SOC which determines importance as the
difference between the expected prediction after masking part of the sentence, and
the expected prediction before the masking, for each replacement of contexts. For
the aforementioned algorithms, an implementation for BERT was already available
and was used for the scope. Instead, other model-agnostic algorithms have needed a
custom implementation, such as HTA, which stands for Hidden Token Attribution
and it is a variant of the gradient attribution algorithm for BERT tokens, or SHAP,
which uses a coalitional game theory approach to understand how a coalition of
features affects the output.

For the purpose of the experiments, BERT was fine-tuned using 4 epochs over
the train set, it reached an accuracy of 72.3% over the test set. Then 15 sentences
were selected from the two used datasets. Particularly, 10 sentences were extracted
from the misogyny test set, 7 false positive samples, 3 false negative samples, and
5 sentences have been extracted from the hate speech against immigrant datasets,
respectively 3 false positive samples and 2 false negatives samples. The sentences
were selected to see how they relate with the explanation methods, and they have
been selected using some parameters that aim to cover all the possible shades of
false positive and false negatives, such as rhetorical questions, sarcasm, neutral
words in a toxic context or stand-out toxic words used in a supportive context.

Then an evaluation of the different explainers on the 15 selected sentences was
proposed, in order to obtain insights on the way the classification is performed and
why some mistake was committed by the neural network, such as false positive
or false negative. Also, the parameters used for the evaluation of the explanation
algorithms were defined, and they include the quality of the output, the ease in its
reading, the lead time, and the theoretical background.

To remove as much subjectivity as possible from the research, a survey has been
proposed to 25 volunteers, and they were asked to provide an explanation to the
selected sentences in the form of the selection of a group of words that led the
decision. The selected words, for each sentence, were aggregated and used to assign
an importance score. Thus, the results from the human explanation survey have
been used as a benchmark for evaluating to which degree the neural network was
committing a mistake, and what was the optimal representation that it had to

3

Introduction

reach. Downstream of the analysis performed, all the explainers were able to detect
the bias, with different levels of quality.

Attention maps and effective attention maps were revealed to be very similar
and provide the same explanation, but the quality has been found to be very high,
even if not easily read from not insiders. Thanks to its fast output, it can be
effectively used for the early detection of biases during the development of the neural
network. MiCE and SOC used two innovative approaches for the production of the
explanation, the first generated contrastive sentences while the second represented
the input in a hierarchical structure to appreciate the impact of combinations of
tokens. Both of them reach high quality in the detection of the bias.

Furthermore, MiCE has been demonstrated to be able to detect a series of biases
in the trained neural networks also in the cases that were not strictly related to
the task that was being analysed. Indeed, since its generative nature, it was able
to generate sentences that contained elements of hate speech against minorities
also in the model trained to detect misogyny.

HTA is another fast algorithm that attributed an importance score to each input
token accordingly to the gradient information used for the inference. This algorithm
demonstrated to be able to provide insights that other explanation methods were
not able to show.

Finally, both DeepSHAP and KernelSHAP were able to detect the bias in most
of the cases, but the quality of the explanation resulted to be sensitively lower when
compared with other methods. Two further experiments have been executed for
this thesis, one aimed to prove whether the presence of vertical patterns in effective
attention maps was greater in false positive samples or not. Thus, an algorithm
that counts the number of vertical patterns for, respectively, false positive, false
negative, true positive and true negative samples has been developed, the count
has been then normalized and plotted on a graph varying some parameters of
the algorithm. The result of the experiment showed how there are, on average,
20% more vertical patterns in false positive samples than in false negative samples.
These results motivate the use of all the regularization techniques that aim to
smooth peaks in attention maps, since in the experiment has been reported that
the false positive rate and vertical patterns rate have a slight positive correlation.

The last experiment aimed to demonstrate whether there is a correlation between
the used explainers, with the objective of detecting redundant explainers that
provide the same explanation.The output of all the used explanation algorithms
has been manually annotated and reported in a file, thus a correlation index has
been calculated for each couple of algorithms, forming a correlation matrix. The
result showed that there is not a correlation among the used explainers, with the
only exception of attention maps and effective attention maps.

Disclaimer: This thesis, because of the datasets related to the context of
hate speech, contains words or concepts that many might find offensive or hurtful.

4

Introduction

However, their use in explicit form cannot be avoided without altering the meaning
of the work. For this reason, it was decided not to censor any of the words used.

1.2 Organization of the elaborate
This paper is structured in 6 different chapters, in addition to the current one. In
particular, they are organized as follows:

• Chapter 2: Background. This chapter introduces the concepts of NLP and
the recent deep learning approaches, briefly retracing the history. The chapter
offers an introduction to dive into the complex topic and covers all the most
important theoretical aspects.

• Chapter 3: BERT and the hate speech context. This chapter offers a broader
discussion of attention-based architectures and how they work internally.
Following, it discusses what is meant by bias in the context of hate speech.

• Chapter 4: related works. In this chapter will be inspected the related
works deemed important for the thesis. Particularly will be analysed the
papers "Attention is not explanation", "Attention is not not explanation" and
"Revealing BERT’s dark secrets".

• Chapter 5: overview of explanation techniques. There are different types
of explanation techniques and many more are invented every year. In this
chapter, what’s meant by "explanation" is defined more precisely, and all
explanation techniques are presented and explained.

• Chapter 6: Methodology. in this chapter the methodology used for the
research is explained. The structure of the experiments is broken down, and
the reasons that led to the choices for the analysis are explicated.

• Chapter 7: Experiments and results. In this chapter the datasets used and
the way the neural network has been trained is illustrated. Thus are reported
the experiments performed and explained how to reproduce them, altogether
with the results and their discussion.

• Chapter 8: Conclusions and further steps. In this chapter, the results
obtained from the experiments are summarised, and some further steps for
the improvements are proposed.

5

Chapter 2

Background

In this chapter a brief understanding of the Natural Language Processing task and
its evolution is offered, including the outbreak of attention that brought to even
more performant and complex architectures.

2.1 Introduction to Natural Language Processing
By natural language processing (NLP) we mean all applications of artificial in-
telligence that bridge the communication gap between computers and humans.
The need for an automated natural language processing tool is as old as the Cold
War, when the U.S. developed a Russian-to-English translation system in 1960,
defining one of the first examples of machine translation. NLP is divided into two
main branches: natural language generation, which involves generating text and
predicting the next word or phrase in a corpus, and natural language understanding,
which, as the name implies, involves understanding a language and is applied, for
example, to classification tasks. In the past, natural language processing required
the help of various experts to perform well, since phonology, morphology, and
syntax were all features of a language that had to be interpreted and inserted
manually. Thanks to the great advances in artificial intelligence in recent years,
modern neural networks are able to extract this information automatically, making
the process cheaper and easier, but in contrast, requiring a huge amount of data.
One of the first examples of Deep Learning applied to NLP was RNN. RNN stands
for Recurrent Neural Network and is a type of neural network that is particularly
suited for sequential data. The architecture of an RNN is similar to that of a
feed-forward neural network, but the RNN simulates a memory that is able to
remember previous states by using recursion. It works by passing information
from the previous hidden state to the current state, and in total to the new input
example of the sequence. In this way, the neural network uses for its prediction

6

Background

not only the information of the current input but also all the information coming
from the beginning of the state.

Even though they were state of the art when they were introduced in 1986, they
still have some problems, namely the exploding gradient and the vanishing gradient.
While the exploding gradient can be mitigated by truncating the gradient above
a certain threshold, the vanishing gradient posed a more serious problem and led
to the development of new concepts, such as the LSTM, in 1997. The vanishing
gradient problem was caused by the iterative application of the softmax function,
which caused the gradient to become thinner and thinner during backpropagation,
so that for long sequences it happened that the last element could no longer affect
the neurons in the older part. The LSTM solved this problem by introducing gates
that can open and close depending on certain values that are part of the learning
process, and that are able to capture the signal and keep it alive so that it does
not vanish. In other words, the gates decide which data is important and can be
useful in the future and which data must be deleted. The three gates are the input
gate, output gate, and forget gate.

The LSTM solved many of the problems that RNN had, but an additional
performance boost occurred when attention mechanisms were applied to the LSTM.
Attention is the idea of freeing the encoder-decoder architecture from the fixed-
length internal representation. This is accomplished by keeping the intermediate
outputs of the encoder-LSTM from each step of the input sequence and training
the model to learn to pay selective attention to these inputs and associate them
with elements in the output sequence. In other words, each element in the output
sequence is dependent on certain elements in the input sequence.

For a deeper introduction to attention and attention-based architecture, see the
next paragraph.

2.2 Attention based networks
Attention was firstly introduced by Google in 2016, in the context of sequence-to-
sequence algorithms. Deep learning models as sequence-to-sequence are capable of
carrying out a wide range of tasks, such as machine translation, text summarization,
and image captioning. The typical examples of sequence-to-sequence models are
those where the task is to translate from one language to another. For this reason,
at the end of 2016, Google updated its Google Translate service with a Neural
Translation Machine, which caused a major impact on performance.

These models are explained in the two pioneering papers, the first one was named
"Sequence to Sequence Learning with Neural Networks" where Sutskever et al.
introduce the first sequence-to-sequence algorithm using LSTM and distinguishing
an encoder part and a decoder part, and making minimal assumptions on the

7

Background

sequence structure. Firstly, an LSTM is used to map the input sequence to a
vector of fixed dimensionality, and then another deep LSTM is used to decode the
target sequence from the vector. The second paper was named "Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation"
where Cho et al. introduces the encoder-decoder architecture, an architecture that
is composed of two recurrent neural networks stacked one upon the other. One
RNN encodes a sentence into a fixed-length vector while the other one decodes
the vector into another sentence. The encoder and decoder of this model are thus
trained together to maximize the probability of a target sequence given a source
sequence.

The task of neural translation can be formally defined as the model that
maximise the probability that, given a certain sentence in a language, we find the
corresponding sentence in the other languages. Using a mathematical approach,
the same task can be defined using the following formula:

argmaxyP (y|x)

Where x ∈ X is a random sentence extracted from the source language, while
y ∈ Y is a sentence in the target language. Using the Bayes rule, the formula can
be rewritten as:

argmaxyP (x|y)P (y)

In this way, the problem has been split into two sub-problems. It is important
to notice that the values that maximize the probability of finding a x given y are
known, and the model and its values can be called "translation model". The latter
represents the probability that y is effectively a sentence, which we can name the
language model.

The Neural Translation problem can be solved using a sequence-to-sequence
model, which is a model that takes a sequence of items and outputs another
sequence of items. In this case, any item is a word belonging to a dictionary, either
from the source language or the target language. As stated before, the model is
composed of an encoder and a decoder: the encoder processes the input sequence
and compiles it into a vector, then the output item is produced by the decoder.
The context vector can be set to a size that is consistent with the number of hidden
units in the RNN, and some of the values that it can assume are 256, 512, or 1024.
An RNN takes two inputs at a time: one for the item that is being processed in that
given time step, and one for the hidden state, which is obtained from the previous
time step. Indeed, in the previous time step, the decoder had maintained a hidden
state that it passes from one-time step to the next. Since neural networks only
deal with numerical values, a word embedding algorithm is needed to transform
words into vectors. The encoder processes the input sequence and compiles it into a

8

Background

vector, which is also named the context. This context may have any size, thus the
size is a hyper-parameter of the model. After that, the encoder sends the context
over to the decoder, which begins producing the output sequence item by item.
The encoder and decoder may be both be either RNN or LSTM.

According to many pieces of research, among all Bahdanau et al. [2] and Luong
et al. [3], the context vector has been proved to be the bottleneck for these types
of models, thus when dealing with long sentences it was challenging to maintain
a reference (in other words "remember") what was the subject in the beginning.
To patch these problems, the mentioned papers introduced or refined a technique
called "Attention", which had a big impact on improving the quality of machine
translation systems. Thanks to its internal working, attention allows the model
to focus on the relevant parts of the input sequence as needed since the most
important words receive higher importance and do not get easily forgotten.

Figure 2.1: Example of attention map from the paper "NEURAL MACHINE
TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE"
that firstly introduced attention. In the picture is visible where the neural networks
focus to translate a sentence from english to french

The encoder-decoder architecture with attention is very similar to the original
one. The change in the architecture only concerns the decoder which is extended

9

Background

with an attention mechanism. The attention mechanism is implemented as weight
attributed to each part of the input. The weights are learnt through the gradient
descent algorithm, and a soft-max transformation is applied to provide some
properties as additivity and make them sum to one. This allows the decoder to
only focus on the words that are really relevant to the output.

The attention mechanism improved the performance and made the encoder-
decoder architecture the new state-of-the-art in these type of tasks. Furthermore,
it inspired new architectures that were entirely based on attention. An example
of this, is the paper published by Vaswani et al. and named "Attention is all you
need" [4]. In the paper, the authors introduce a new architecture that entirely relies
on attention, which got the name of Transformer.

The Transformer is a model that removes the concept of recurrence and only
relies on attention, leading to a boost in the speed in almost all the cases where
it was applied to existing neural networks. In many cases, the performance
obtained from attention-based networks outperformed the Google Neural Machine
Translation model, which was considered state-of-the-art before the introduction of
the Transformer architecture. The reason why such a good performance has been
reached lies in the ease with which the Transformer lends itself to parallelization.

Figure 2.2: The transformer architecture, taken from "The illustrated transformer"

As it is visible in the Transformer architecture figure visible in the figure 2.2,

10

Background

the whole architecture can be broken down into a stack of encoders and a stack
of decoders. The encoder sees the presence of a new layer, named self-attention
layer, which goal is about helping the encoder look at other words in the input
sentence and encoding to a specific word. The output is then fed to a feed-forward
neural network, which is trained altogether with other weights and performs a
transformation over the output vector, aligning it to the next encoder or to the
classification layer in case it is the last feed-forward layer. All the layers of the
encoder have the same role, that is accepting the output of the previous encoder
and performing the same computation. The only exception is the first encoder
which works on a word embedding, and not on the previous layer output.

Figure 2.3: The transformer encoder, taken from "The illustrated transformer"

Self attention is calculated through the creation of three vectors for each word
embedding, these vectors are namely the Query vector, the Key vector and the
Value vector. These vectors are created by multiplying the embedding by three
matrices that were learned by back-propagation.

These vectors are used to calculate a score, which is calculated by taking the
dot product of the query vector V with the key vector K of the respective tokens.
Therefore, in the processing the self-attention for the word in the i-th position, the
first score is calculated as the dot product between qi and ki. Thus, the second
score is calculated as the dot product of qi and ki+1, and so on. The original paper,
thus, advises dividing the score by 8, which is the square root of the dimension of
the key vector, which instead was 64. This division was performed to have a more
stable gradient, as explained in the appendix of the paper. After the division, the

11

Background

score is transformed using the soft-max function, in order to get a normalized set
of values, and make the scores sum to 1. Another desired property, derived from
the use of the soft-max function, is to have a vector that looks like a probability
distribution.

Finally, each value contained in the value vector is multiplied by the obtained
score. In this way, the result is similar as each value is assigned a weight, which
corresponds to the score calculated previously. Furthermore, as a consequence
of the use of the soft-max function, each of the calculated scores is in the range
between 0 and 1.

Thus, to obtain the desired attention map, the weighted value vectors are
summed up. In the equation 2.2 all the steps mentioned are formalized.

Attention(Q, K, V) = softmax(Q × KT

√
dk

) × V

The original paper also refines the self-attention mechanism, by introducing
a further concept which is called "multi-headed attention". The multi-headed
attention mechanism works similarly as what has been described above, but the
same process is repeated for a number of times that is proportional to number of
heads. This refinement leads to some advantages, firstly it expands the model’s
ability to focus on different positions. Although each layer contains a bit of every
other encoding also in the previous definition, it could be dominated by the actual
word itself. Secondly, it gives the attention layer multiple representation subspaces.
Indeed, repeating the process a number of times, thus using several heads, the neural
network will contain multiple sets of Query/Key/Value weight matrices. Since the
Transformer architecture uses eight attention heads, it will end up having eight sets
for each encoder/decoder. On the other hand, the BERT architecture uses 12 heads
for each layer, thus 144 heads are contained across the whole architecture. The only
variation between one head and another consists in its random initialization. Then,
after training, each set is used to project the input embeddings into a different
representation subspace.

12

Chapter 3

BERT and the hate speech
context

3.1 BERT: a Transformer based model
BERT came out from the Google research team in October 2018 [5], and it
immediately achieved impressive results on several difficult natural language tasks.
Indeed, other independent researchers claimed that the performance of a variant of
BERT surpassed human-level performance on some specific tasks [6].

BERT stands for Bidirectional Encoder Representations from Trans-
formers and, as the name says, it is a bidirectional model that makes large use of
Transformer encoders. Thus, the architecture of BERT is very similar to the one
already seen in the encoder-decoder model, the main difference is that the decoder
part has been dropped in this new setting, and the number of layers has been
increased from 6 to 12. Other main differences that disrupted the NLP community
are not related to the architecture, but to the ways it has been trained and to the
ways it can be utilized for custom tasks. BERT utilizes the concept of transfer
learning in order to let users customize the neural network for the specific case,
avoiding to re-train the weights. Indeed, the model is very large and this can be
seen as a drawback for many applications since a lot of data and a lot of expensive
hardware are needed and this could be prohibitive for many little to medium
realities. On the other hand, the BERT pre-trained model has been made available
by Google, and it is thus possible to take the model and apply little changes to it,
by changing the output layers and performing a fast fine-tuning training, in order
to have state-of-the-art performance in custom specific tasks. For this reason, we
can distinguish two different phases to create a trained custom model, and they
are pre-training and fine-tuning.

During the pre-training phase, the model is trained on unlabeled data over

13

BERT and the hate speech context

different pre-training tasks. On the other hand, in the fine-tuning phase, the BERT
model gets firstly initialized with the pre-trained weights, and all of the parameters
are fine-tuned using labeled data from the downstream tasks. A distinctive feature
of BERT is its unified architecture across different tasks. There is minimal difference
between the pre-trained architecture and the final downstream architecture.

The BERT, as the first word of the acronym says, makes from the fact of being
bidirectional one of its strengths, indeed the architecture does not only look for the
next word in a sentence to make a sense, but it also looks for the previous word.
BERT was not the first bidirectional architecture for NLP, ELMo (Embeddings
from Language Models) [7] was previous in time and has earned credit for its
language understanding skill and for the fact it was able to understand the context
in a sentence. However, ELMo reached bidirectionality by focusing on the forward
words and backward words in two different time steps, on the other hand, BERT is
able to look at all the context it needs whenever it needs, since it has access to all
the words in every time step and it can use attention to focus only on the relevant
ones.

To train the architecture in a way it can understand which words are valid
for the context, BERT is trained on a specific language in a totally unsupervised
manner. Since the large number of weights, a lot of train samples are needed to
reach a good fit of the network. However, we just need to provide a large corpus
in a specific language, like a set of books or the Wikipedia dump, and this will
be enough to learn the basic rules of a language. The Google researchers have
identified two different tasks to reach a good understanding of the language in a
bidirectional way.

The first task is named Masked Language Model and it is achieved by
masking part of the input. BERT was fed with the data coming from Wikipedia
and the BookCorpus, but 12% of the words were randomly chosen to be masked
out with a special token without any particular meaning, and BERT was trained
to reconstruct the original sentence by finding the missing words. In addition to
masking 12% of the words, the pretraining was performed by replacing 1.5% of the
words with another random word randomly selected from the corpus, and another
1.5% was marked as changed but was not actually changed. The total amount of
the abnormal words during the pretraining sums up to 15%.

Figure 3.1: Example of a masked token. "Do" was marked as changed but it was
not, "The" is marked as changed and it actually was, and another random word
was masked out

The reason why the Google researchers did not limit themselves to just masking

14

BERT and the hate speech context

out the words is that the mask token does not provide any meaning of the word
it replaced, BERT has to infer what word was there purely by looking at the
context. This might give BERT a tendency to ignore the input embedding and infer
everything from its context, which is often not the desired outcome. According to
the appendix of the original paper, the percentages 12%, 1.5% and 1.5% have been
obtained through repeated experiments.

The second task takes the name of Next Sequence Prediction. In this task,
BERT was fed with pairs of text passages. In 50% of times, the second passage
immediately followed the first one, while in the other 50% the second passage was
just randomly taken from elsewhere in the training text. According to the appendix
of the original paper, MLM and NSP are actually executed concurrently. One
training sample consists of a chunk of text, with all of these various substitutions
made, and this results in a number of different predictions that need to be made.
The training loss is the sum of the mean masked LM likelihood and the mean next
sentence prediction likelihood.

In this discussion, the locution "word" was used to indicate the piece of infor-
mation that BERT works on. Actually, BERT utilizes a subpart of a word, which
takes the name of token. BERT uses a limited dictionary of words or subwords,
each item in the dictionary corresponds to a token. If the word is common in the
used language, chances are it uniquely corresponds to a single token. On the other
hand, if the word is not common, it is a composed word or it is a declination of
an original word, chances are it gets split into a set of tokens. As an example, the
word "assistant" can be divided into the tokens "assist" and "ant". A token comes
out from the built-in BERT Tokenizer, which will take the raw text string and
break it into tokens that BERT can be feed with. The reason BERT provides its
own tokenizer is that it has its own fixed vocabulary of tokens, with an embedding
associated with each of these. Indeed, BERT model has a fixed vocabulary size of
about 30,000 tokens total. Somewhere between 60-80% of these are whole words,
and the rest are subwords.

If a word is not in BERT’s vocabulary, then it simply breaks it down into
subwords. The subword can be as little as a single character, in an extreme case.
The reason why BERT utilizes a so small vocabulary, in contrast with other previous
solutions, is that rarer form of the same semantic word can be induced from the
more common forms, and in this way BERT can make a sense of words even if it
has never seen them before.

As discussed before, BERT reaches bidirectionality by looking all the tokens at
the same time. However, in this way, there is the risk that a piece of information
is missing, that is the position of a token within the sentence. The position of a
token within the sentence is important to understand the overall meaning, for this
reason a progressive cyclical number, obtained from combination of trigonometric
functions, is included while creating the embedding of the token.

15

BERT and the hate speech context

Among all the tokens obtained from words or subparts of words, there are
three special tokens used by BERT for its inner working. They are [CLS], [PAD],
and [SEP]. The [CLS] token is useful to indicate BERT we are performing a
classification task. The CLS token will contain the output of our classification,
once going through all the 12 levels of BERT. Instead, the [PAD] token is used for
padding while the [SEP] token is used to separate two sentences.

To understand how the token [CLS] allows the classification, a step back is
needed. During the NSP task, Google researchers added a simple linear classifier
in the last layer of BERT, and only the final embedding for the [CLS] token was
fed into it. Using gradient descend to optimize the problem, BERT has learned
that to perform well on this task, it needed to enrich the [CLS] embedding with
all of the information it would need to make the classification decision. For this
reason, BERT always expects the [CLS] token as the first token, and it will then
enrich the [CLS] embedding with information about the whole input text.

As a final note, BERT only works with fixed length sentences. For this reason,
if a sentence contains less tokens, all the remaining spaces up to the maximum
need to be filled with the [PAD] token.

Figure 3.2: Architecture and example of working of BERT. Taken from the
paper "On the Role of Conceptualization in Commonsense Knowledge Graph
Construction"

16

BERT and the hate speech context

3.2 Hate speech and biased networks
The bias in machine learning is a phenomenon that occurs when an algorithm
[8], usually a neural network, produces outputs that contain a deviation from
the original meaning, thus they are systemically prejudiced due to erroneous
assumptions in the machine learning process. In almost all cases, this prejudice
is induced by an imbalance in the dataset or by a too shallow classifier. Indeed,
the quality of the training depends on the size and on the quality of the training
dataset used. Faulty, imbalanced, or approximate datasets will result in inaccurate
predictions, and the quality of the output cannot be much better if the quality of
the input is kept low. In other words, if a bias is contained in the dataset used for
the training, this bias will be transferred to the neural network. In the context of
hate speech detection, bias is important because it could afflict categories that are
already discriminated. Also, following recent discussions in the mainstream media
regarding allegations of racism and sexism assumed by neural networks, researchers
have identified the bias in machine learning models as one of the main concerns in
the field [9] [10].

The bias into machine learning models is not usually intentional, and it is not
introduced by the individuals developing the neural network. The main problem
is that the training is executed on human-generated data, and human biases can
easily result in a skewed distribution in the training data. Developers and other
employees involved in the machine learning field must be proactive in recognizing
the biases, to prevent the model to perpetuate the unfairness. However, also what
is meant by hate speech, firstly by humans and then for neural network, requires
to be defined. According to Warner et al. [11], there are numerous problems in
defining hate speech that must be resolved to annotate a corpus and develop a
consistent language model.

It is important to consider that the mention of an organization associated with
hate crimes cannot in any way be considered hate speech. As in the example, "Ku
Klux Klan" in and of itself is not hate speech, as it may appear in historical articles
or other legitimate communications. Always according to Warner at al., also an
endorsement of the organization does not constitute a verbal attack on another
group, thus cannot be considered hate speech. While it is reasonable to assume that
such endorsements are made by authors who would also be comfortable with hateful
language, in and of themselves these phrases are not classified as hate speech. For
the same reason, even excessive pride in his or her own race is not hate speech, since
it is not providing an attack in that specific context. Although such boasting may
seem offensive and is likely to be accompanied by hateful language, disparagement
of others is required to meet the definition. Some research [12] has shown how the
use of some words that are frequently used in toxic sentences leads the models
over-generalize and disproportionately associate those terms with the toxicity label.

17

BERT and the hate speech context

In this way, also a sentence as "I am a gay man" receives unreasonably high toxicity
scores.

In a research led by [13], the influence of data bias on the detection of abusive
speech is investigated. It is shown that the results reported in previous work for
popular datasets are much lower under realistic conditions where these biases are
reduced. Such biases are most apparent in datasets created by focused sampling
rather than random sampling. Datasets with a higher proportion of implicit abuse
are more affected than datasets with a lower proportion. Thus, the way a dataset
is composed and how the sentences are selected has a large impact on the biases
that will arise in the trained neural network. Hate speech detection gathered a
great amount of attention, in order to tame this drift, and new models trained
for hate speech detection came out. While many models have claimed to achieve
state-of-the-art performance on some datasets, they fail to generalize [14]. As
an example, the models may classify comments that refer to certain commonly-
attacked identities as toxic without the comment having any intention of being
toxic. In other words, the prediction can be based only on a single word, or a
handful of them, missing the overall meaning of the sentence. A large prior on
certain trigger vocabulary leads to biased predictions that may discriminate against
particular groups who are already the target of such abuse. Another issue with the
current methods is the lack of explanation about the decisions made. With hate
speech detection models becoming increasingly complex, it is getting difficult to
explain their decisions. In addition, in 2016 a new European law has been received
under the name of GDPR, which among other facts it also introduced the “right to
explanation”. This calls for a shift in perspective from performance-based models
to interpretable models. As an example, the word "gay" may be usually used in
an offensive context, to discriminate against a minority, or as an offensive term.
However, if we take the sentence "I am a proud gay", that could be labeled as
offensive even though it has not any shade of hate speech. The word is used every
day in online language by the LGBT community. Similarly, words like "hoe" and
"bitch" are instead used in rap/trap song lyrics. Such language is present on certain
social media and any hate speech detection system should include these for the
system to be usable. [15]

18

Chapter 4

Related works

4.1 Evaluation of intepretability approaches

Over the years, various methods have been developed to explain the output of
text classification models. With the vast array of explainers, both built-in and
post-hoc, it is often difficult to understand what are the main contributions of each
of them, in which task it is better to use one than the other, and for which models
a particular explainer is best suited.

In their paper, Vivian Lai et al. [16], introduce a methodology to understand
how similar the top features are by making a comparison among the models and a
comparison among the explainers to provide a systematic characterization of the
top features obtained in a way that is as independent of the different factors as
possible. The main contributions of their work also include how important features
are distributed among instances and into which linguistic cases the found important
features fall.

For this purpose, the authors focus on text classification and use a testbed with
three tasks. In addition, 4 models are used: Linear SVM, Gradient Boosting Tree,
LSTM with attention, and BERT. The first task aims to perform a comparison
between the LIME and SHAP explainers. In this case, after running the explainers
on both models, Jaccard similarity is applied to the top-k features with the highest
absolute feature importance. The use of the top-k features arises from the fact
that many models and explainers produce sparse feature importance vectors with
many zeros, which could be difficult to handle.

The use of Jaccard similarity has some implications. Different explainers may
identify the same set of important features, so Jaccard similarity is high and in
this case, the explainers overlap and express the same explanation. However, when
Jaccard similarity is low, it is difficult to decide which explainer is used to represent
important features. Therefore, the authors exploited these cases to understand

19

Related works

how similarity varies between explainers and models, instances, and features. In
other words, the goal is to systematically characterize the similarities between
vectors of feature importance generated by different explainers and executed on
different models. To make these comparisons, the authors fixed the explainer and
compared the similarity value of different models. Conversely, they fixed the model
and compared the similarity value of different explainers. The comparison between
the models showed that LSTM with attention and BERT obtained two slightly
different top 10 features. Regardless of the explainer used, the importance features
obtained by SVM and XGBoost were the most similar to each other, and the same
pattern has been observed for all the models based on Deep Learning. LSTM with
attention and other models that fall under the definition of Deep Learning is the
least similar to traditional models such as XGBoost. The same result is obtained
for BERT. Another result of this experiment is that post hoc explainers tend to
produce similar results that differ from the built-in ones. This is especially true for
the similarity between LIME and SHAP and can be explained by the authors by
the fact that they are both based on an additive principle.

When the authors fixed the models and tried different explainers, they found
that the similarity between important features obtained from different explainers
tended to be lower for LSTM with attention. The similarity between the importance
of features generated by different explainers is low when LIME is compared with
SHAP. However, LIME is not more similar to SHAP than how much it is to built-in
explainers, which contradicts an earlier hypothesis of the authors. In summary, post-
hoc methods generate more similar important features when comparing different
models, but this is not the case when the model is fixed.

In another experiment, the authors investigated how the similarity between
instances changes. The result of this experiment is that the similarity between
feature importance vectors is not particularly high when two models agree on the
predicted label. This can be explained by the fact that the decision, even if it
resulted in the same class assignment, was based on two different feature sets.
Another interesting finding of the authors is that the similarity between models
and explainers is negatively correlated with length, but positively correlated with
the type-token ratio.

In the final experiment, the authors examined the distribution of important
features obtained from the different approaches and used an entropy measure
to understand how chaotic the distribution is. The results show that important
features have higher entropy when using LSTM with attention and lower entropy
when using XGBoost. In conclusion, the authors note that different approaches can
sometimes lead to very different important features, nonetheless, they may bring
to the same classification output. There are some consistent patterns between
models and methods: deep learning models tend to produce similar important
features, independently by the used explainer, and these important features are

20

Related works

different from the ones generated by traditional models such as XGBoost and SVM.
Furthermore, the explanation provided by post-hoc explainers are intrinsically
similar to each other, and the same similarity can be found within the explainers
that are considered built-in.

Lertvittayakumjorn et al. [17] replicated the same approach in another paper,
where they used the help of humans in three different tasks to validate the explana-
tion generated by post-hoc explainers. For this purpose, human annotations have
been obtained from the Amazon Mechanical Turks, which is an internet service
for the automation of certain tasks that computers cannot perform. The first
task was the investigation of the model behavior. Humans have been asked which
explanation is more reasonable, after showing the highlighted texts extracted from
the explainer applied to two different models. The authors noted that humans
prefer explanations with more evidence texts and that are more grammatically
correct. The second task concerned the justification of certain model predictions,
and humans have been asked whether the highlighted texts can be considered
related to one class and to which degree they were distinguishable from the other
class. The results showed that words cannot be attributed to a certain class without
providing a large context. The third task concerned the investigation of uncertain
predictions, and humans have been asked to perform the classification in place
of the model for all the cases where the confidence was low. It has been shown
that humans can be as undecided as algorithms when an adequate context is not
provided.

The comparison among the explainers reflected the findings of other papers, and
the results do not contradict the ones obtained by Vivian Lai et al.

4.2 Attention as explanation
Attention mechanism offers a natural way to interpret the result, since each token
ongoing the classification process receives a weight coming from attention as
illustrated in the previous chapters, many people used the attention weights as a
rank of importance of tokens, and thus for an overall explanation of the classification.
Furthermore, the attention weights follow a statistical distribution, and this could
appear like a relative importance measure.

This supposition was undermined in 2019, in a paper published by Wallace et
al. and that could be summarised in its own name "Attention is not explanation".
In this paper, the authors attempts to demonstrate that there is not a correlation
between attention and explanation through experiments. The experiments are
performed across a variety of NLP tasks, and try to explain how other feature
importance measures correlate with attention weights and if there are adversarial
distributions of attention that could lead to the same result. In the first experiment

21

Related works

the authors assess if the learned attention weights agree or disagree with alternative
natural measures of feature importance, such as gradient attribution and Leave One
Out. Thus, two opposite tests are prepared to evaluate the statistical correlations.

A first result is that gradient attribution and LOO do correlate with each other
and, specifically, correlation has been measured between attention and gradient-
based measures. Instead, when tested if they correlate with attention weights,
the observed correlation is modest. Gradients for inputs in other models, like the
embedding based ones, show a higher correlation with attention weights. The
hypothesis proposed by the authors is that BiRNN induces attention on the basis
of hidden states, which are influenced by all the words and then the score is
presented in reference to the original input. In conclusion, the experiment results
demonstrated that attention weights do not strongly or consistently agree with
the considered feature importance measures, with the only exception given by the
models that are too simple and thus attention plays an essential role. If we consider
the explanation methods as valid, then attention weights could not be considered
as valid.

In the second experiment is assessed the existence of an adversarial attention
weights distribution that leads to the same prediction. This experiment is justified by
the assumption that, if attention weights are explanatory, a hypothetical adversarial
configuration may be considered as another potential explanation. If the new
distribution does not change the model output, it is then legit to claim that the
attention weights are not enough to be considered explanatory for the whole model.

Thus, the authors designed an algorithm able to construct a counterfactual
distribution of attention weights. The algorithm works thanks to the adversarial
principle, where there is a function to minimise taking in account a constraint
to maximise. In this case, the function to minimise is the difference between the
output base untouched model and the output of the training algorithm, while the
constraint is given by the fact that the attention weights distribution must be as
different as possible as the base model.

The conjecture is that, if attention weights are to be considered as explanatory,
then if we remove the weights from those few tokens that have the most of it, the
prediction should drop considerably and eventually flip. However, this was not
confirmed by experiments, in contrast to an intuitive property of explanations:
shifting model attention to very different input features should yield corresponding
changes in the output. In all the datasets considered by the authors, there existed
an alternative attention configuration over inputs that yield the same output,
independently by how high was that attention weight originally. The authors
provided different evidences that there is not a correlation between intuitive feature
importance measures and learned attention weights, and found out that a different
distribution of attention weights could lead to the same result. Thus, the ability of
attention weights to provide transparency or meaningful explanations for model

22

Related works

predictions could be questionable. In the same year that the paper "Attention is
not explanation" [18] was published, Wiegreffe et al. proposed a new paper that
contested the findings of Wallace at al. and was therefore named "Attention is not
not explanation."

Wieggreffe et al. [19] claimed that Wallace at al. conducted the experiments
in an environment that left a large degree of freedom, so there is no real way
for users to understand whether and to what extent attentional weights are used
by the model. The authors propose a more model-driven approach in which the
attention weights are first fixed to a uniform distribution in order to actually and
preemptively check whether or not they are being used for prediction. Indeed, the
researchers cannot assume that the attention weights are related to the explanation
if they are not used from the beginning.

The authors demonstrated that the experiments conducted by Wallace et al.
were not able to prove their thesis for anything concerning counterfactual attention
weights, since it is not found in any part of the definition that attention weights are
a primitive, so the alternative distributions found may lead to similar predictions,
but since they were not trained on the model, they lack the explanatory power that
researchers might expect. Therefore, they propose a new algorithm that takes this
consideration into account. In addition, the authors counter the assumption that
existence implies exclusivity; in other words, the authors contend that attention
weights might be useful in showing an explanation rather than the explanation.
For these reasons, Wallace et al. have not demonstrated that there is an adversarial
distribution that leads to the same output, and this model cannot be considered
plausible or a faithful explanation. Also, the experiments have not provided any
indication of the expected amount of variation in adversarial attention distribution
of attention and have not provided any indication of how much adversarial the
distribution is.

Accordingly, the authors proposed a careful methodological approach that
replicated the experiments but took into account all the weaknesses of the previous
approach to avoid them and kept the properties of the attentional distribution in
mind. The first step was to define the scope of the model’s performance and variance
and only then was an empirical diagnostic technique developed and implemented.
The diagnostic technique was developed to measure the usefulness of the attentional
weights in a model-agnostic fashion, by capturing the relationship between input
and output. In a first experiment, the authors fixed the attention weights to a
uniform distribution, thus de facto eliminating the attention mechanism. A first
surprising result was that predictions did not drop as expected, but remained
unchanged for three of the tasks considered. Indeed, in attention-based models,
other mechanisms are involved to achieve prediction. If attention is not used for
prediction, any attempt to use it for explanation makes no sense. In a second
experiment, the authors tested whether or not the variances observed by Wallace

23

Related works

et al. between the baseline model with attention weights found by fine-tuning
and the other model found by adversarial training were unusual. This was done
by trying different seeds in the adversarial configuration to introduce additional
variance. In another experiment, the authors proposed to evaluate the importance
of tokens by measuring the backward-pass gradient flow, and introduced a post
hoc training protocol of a context-free model driven by given weight distributions
for this purpose. This aims to replicate what the authors of the previous work did,
but in this case, the predictive power of attention distribution is evaluated in a
clean environment where the trained parts of the model do not have access to the
next or previous tokens of the considered sample.

This setting led to an important result for all datasets considered, namely that
using the pre-trained attention weights is better than the weights obtained by
training, which in turn is better than the setting without weights. Thus, since
this model performs better than the model trained with uniform attention weights,
it is reasonable to assume that attention mechanisms are more important than
the underlying word-level architecture, at least for the datasets considered. These
results can be seen as evidence against the claim that attention weights are arbitrary
and therefore provide no explanation. Indeed, independent token-level models that
do not have access to contextual information find the attention mechanism useful,
indicating that at least these models encode some measure of token importance.

4.3 Recurrent patterns in attention maps
In a famous paper named "Revealing the BERT dark secrets", Olga Kovaleva
at al. [20] perform an analysis of the patterns that attention maps adopt after
fine-tuning a BERT model. The work was completed by paying special attention
to the interpretation of self-attention, which is considered the most important
underlying component of BERT. An initial finding is that there are a limited
number of attention patterns that are repeated across the heads. As a result,
not all the attention weights in the attentional maps are equally important, so
the model is overparameterized. In addition, although the different heads adopt
the same pattern, they have different effects on performance in each taken task.
Nevertheless, BERT is the de facto model for all NLP tasks, the exact mechanism
that made its performance so good remains still unclear. The authors of the paper
attempt to address this problem by defining a methodology and conducting some
experiments that analyse the patterns that attention maps adopt in BERT after
they have been fine-tuned. The experiments aim to capture different types of
linguistic information by encoding them in self-attention weights. Furthermore, the
authors present evidence that BERT is over-parameterized. They show a gain of
up to 3.2% when the number of weights is reduced. This hypothesis is supported

24

Related works

by the fact that in 2019 Jawahar et al. showed that the intermediate layers of
BERT capture important linguistic information, and Liu et al. showed that the
middle layers of Transformed-based architectures are the most transferable to other
tasks. In the same year, Voita et al. demonstrated that only a few of the 144 heads
are useful for the translation task. The authors use this foundation to understand
an important issue, namely whether there are common patterns of attention, how
they change during fine-tuning, and how this affects performance.

To answer these questions, the authors have proposed 4 experiments, all of which
are relevant to this thesis but only the first is crucial to the overall understanding.
Across all the experiments, the authors extracted from a given input an L × L
matrix previously defined as attention map in the previous chapter of this thesis.
These experiments aim to analyse how BERT processes different types of linguistic
information, syntactic roles, semantic relations, and negation tokens. In the first
experiment, the author performed a manual inspection of the self-attention maps
and found that there are only a handful of patterns that are repeated. All patterns
can be exhaustively divided into these 5 categories:

• Vertical

• Diagonal

• Vertical + Diagonal

• Block

• Heterogeneous

The patterns are not all equally represented. In fact, the heterogeneous pattern
was the most frequent, while the vertical pattern accounted for 30% of all samples.
The vertical patterns can be explained as a focus on a single token of the sentence,
thus the results output of the self-attention mechanism only depends on the presence
of that token and not of the presence of all the others. Instead, the diagonal pattern
indicates that each token is paying its attention mainly to the previous token in
order to make a sense from the sentence. The Vertical + Diagonal patterns are a
mixture of both. Block patterns, instead, indicate that the attention is limited to
a certain amount of previous or following tokens. Last, the heterogeneous pattern
includes all the cases not considered in the classification, and it just indicates
the normal working of the self-attention mechanism. The upper bound for the
heterogeneous category has been estimated to be between 32% and 61%, depending
on the task.

In the second experiment performed by Olga Kovaleva at al., an attempt has
been made to understand which syntactic and semantic relations are captured by
self-attention patterns. The authors decided to investigate semantic role relations

25

Related works

Figure 4.1: Example of the 5 recurrent patterns, taken from the original paper

defined in frame semantics. In this experiment, the heat map of averaged attention
weights across all collected examples indicated that 2 out of 144 heads tended to
focus on the parts of the sentence that FrameNet annotators identified as core
elements of the same frame.

In the third experiment, the effect of fine-tuning on performance was analysed by
calculating the cosine similarity between the flattened arrays of attention weights
given the pretrained version of BERT and the corresponding fine-tuned version.
The authors found that the last two layers encode task-specific features responsible
for the gain in scores. The earlier layers are still useful, since the information
captured is used in the fine-tuned model. Finally, the fourth and last experiment
investigated whether certain linguistic features are emphasized by BERT. The
result was negative, as the vertical attention pattern was predominantly assigned
to the special tokens [CLS] and [SEP]. The overall results suggest that even the
base BERT model, which has fewer weights than the large model, is effectively
over-parameterized. Evidence for this claim is the repetition of self-attention
patterns in different heads, together with the fact that disabling most heads has
no significant effect on performance, and in some cases actually increases it.

26

Chapter 5

Overview of explanation
techniques

In this chapter different explanation techniques, used to various extents in this
thesis, will be illustrated. First of all, a definition of explanation is provided, in
order to understand what are the essential properties that explanation must have
and what are the reasons why some choices have been made.

Following, LIME and Shapley values will be introduced to have a more complete
vision of SHAP, which has been largely used in this thesis.

In the end, two ad-hoc explanations frameworks are defined, namely MiCE and
SOC.

5.1 Explanation in Machine Learning
Having a high-performing model is not considered enough if is not possible to
answer other questions, such as if the model is trustable if it will perform well also
after it has been deployed, and what else it can tell us about the world. For this
reason, the model has also to be interpretable.

Lipton gives a clear definition of interpretability since it was not previously well
defined in other works, nor it was explained why it was assumed important, despite
being used as a solution to many of the problems listed above.

Interpretability, as suggested by Lipton, is not a monolithic concept, but instead,
it reflects different distinct ideas, such as trust, and causality. In this work is only
considered the explanation of supervised learning models, and are not considered
other ML tasks, such as unsupervised learning and reinforcement learning.

Furthermore, even if many papers define interpretability as a mean to reach trust
[21]), this only redirects the problem since now the concept itself of trust is needing
of a definition. In addition to this, in recent years many legal institutes included

27

Overview of explanation techniques

the European one, introduced the legal requirement of the right to explanation and
thus requiring interpretability in sensible processes. The desire for an interpretation
suggests that predictions and metrics calculated on these predictions are not enough
to describe the model. A work has been performed by Lipton and resulted in 5
desiderata that a model must contain:

• Trust, that is the amount a model can be trusted, measured as the times a
model is right and for which examples it is right. A trustworthy model is a
model that tends to make the same mistakes that a human makes, and that
is accurate when a human is accurate. A sufficiently accurate model is not
automatically trustworthy.

• Causality, that is the ability of a model to show causation, the model should
be able to make associations, and properties should be inferred for generating
hypotheses about the natural world.

• Transferability, the model must be able to generalize in unseen scenarios,
and the distribution of the population seen during the training must be the
same that will see after the deployment. If the model is deployed in a setting
where the user might alter the environment, their future predictions are thus
invalidated.

• Informativeness, even if a model minimized a specific error, this does not
mean that it will provide real-world useful information. An informative model
is a model that can be used to make decisions. A model can be informative
even if its inner working remains obscure.

• Fairness the model should provide the information to assess if the decision
produced automatically conforms to ethical standards

In her paper, Cynhia Rudin defines explainability as correlated with the decision-
making process [22], and it argues that interpretability, while more desirable, is
more difficult to achieve than explainability because it must provide people with a
comprehensive understanding of the correlative relationship between inputs and
outputs.

In another paper, Lei et al. [23] explain how cannot exist a prediction without
the justification of the reasons why that prediction has been made, and if it exists
its applicability is then limited. As a remedy, they propose to train a neural network
to extract pieces of input text as justifications, in the paper named rationales,
that have the constraint of being short and coherent, yet sufficient for making
the same prediction. The proposed approach combines two modular components,
generator, and encoder, which are trained simultaneously to generate rationales

28

Overview of explanation techniques

and predictions from the input text, and gold-label rationales are used to evaluate
the model.

Thus, the evaluation has been accomplished by comparing the result against
manually annotated test cases. This approach is called extractive.

5.2 Explanation taxonomy
The existing explanation methods used for classifiers can be divided into homoge-
neous groups, according to their characteristics. [24]

First of all, an explanation can be intrinsic or post-hoc. An explanation is
considered intrinsic whether an interpretation is reached by applying changes to the
classifier that result in a simplified version of it. An example could be in a neural
network in which, in order to get an interpretation out of it, a linear regressor is
trained to behave as similarly as possible to it. On the other hand, an explanation
is considered post-hoc if the analysis is performed on the trained classifier, by
perturbing the input and observing the variation in the output. An example of
post-hoc interpretation is the permutation feature importance.

There are other two families which classifiers can be divided into, and they are
model-specific and model-agnostic.

The family of model-specific interpretation tools includes all the tools that are
designed on purpose to work exclusively on that specific model, as the interpretation
of regression weights in a linear model which assumes meaning only in the context
of regression. Also, tools that were designed to interpret only neural networks are
model-specific. Instead, model-agnostic tools can be used independently by the
classifier. Usually, these tools only are post-hoc and only rely on the output and
on the input features.

Lastly, an explanation may be local or global. An explanation is considered
local whether it only explains a specific prediction and not the whole classifier,
while it is considered global if it provides insights about the whole model.

Furthermore, the classification methods can be differentiated according to their
results:

• Feature summary statistic, if a statistic for each feature is provided

• Feature summary visualization, if dependencies are graphically visualized

• Model internals, if details about the internal working of the classifier are
included in the output

• Data point, if data points are generated to make the model interpretable

29

Overview of explanation techniques

• Intrinsically interpretable model, if the model is so simple that does not
need any interpretation but instead can be used as a means to interpret other
complex models.

5.3 LIME
LIME is an acronym that stands for "Local Interpretable Model-agnostic Explana-
tions" [25], and it is an explanation technique that aims to explain the output of a
classifier by learning an interpretable model around the prediction, using a local
approach.

The training of the interpretable model also called the surrogate model, is
reached by selecting an instance of interest from the dataset, which an explanation
needs to be provided. The the dataset is perturbed and the classifier gets fed
with the newly generated data to obtain a prediction. The new samples are thus
weighted accordingly to their proximity to the instance of interest. Thus, the
surrogate model is trained on the dataset with the variation, and the explanation
is reached by analysing the interpretable model.

5.4 Shapley values
The Shapley values were introduced in the cooperative game theory context, by
Nodel Prize Lloyd Shapley, which it takes the name from.

It aims to assign a unique distribution for each cooperative game, from a total
surplus generated by the coalition of all players. In other words, Shapley values
satisfy the property of fair distribution of gains among different players, considering
the case where they collaborate. Players will follow the external enforcement of
cooperative behavior.

Shapley values are used as a base for the implementation of SHAP.

5.5 SHAP
Explanation is a complex tasks, and many methods have been proposed across
the time to let users interpret the predictions of obscure models. However, under-
standing how these methods are related with the task and when the interpretation
is reliable raises new concerns. For this reason has been introduced SHAP [26],
which stands for SHapley Additive exPlanation, and aims to create a new unified
framework for interpreting predictions.

In practical terms, SHAP calculates the contribution of each feature to the
prediction of an instance x to achieve the explanation of a model. Thus, in a

30

Overview of explanation techniques

prediction is assigned an importance value for each feature, to rank them and
obtain an explanation of which features are playing a more important role.

The Shapley values are calculated using the SHAP explanation technique, which
is based on coalitional game theory. The Shapley value explanation is depicted
as an additive feature attribution approach, a linear model that is one of the
innovations of SHAP. SHAP specifies the explanation as:

g (z′) = ϕ0 +
MØ

j=1
ϕjz

′
j (5.1)

To compute the Shapley values, we simulate that only some feature values play
a role (named as present) and some do not (named as absent). For x, the instance
of interest, the coalition vector x′ is a vector with all ones, i.e., all feature values
are present. Thus, the formula simplifies to:

g (x′) = ϕ0 +
MØ

j=1
ϕj (5.2)

Another result is that the only solution that satisfies the properties of effi-
ciency, symmetry, dummy, and additively is Shapley values. SHAP claims to have
three additional desirable properties, and they are local accuracy, missingness and
consistency.

By local accuracy is meant that the learned model should be a good approxi-
mation of the machine learning model predictions locally, and this can be formally
described with the following equation:

f̂(x) = g (x′) = ϕ0 +
MØ

j=1
ϕjx

′
j (5.3)

Instead, the missingness is a property obtained when the missing features get
an attribution of zero, that is something that we intuitively expect but is not for
granted. The missingness property can be formalized in the following way:

x′
j = 0 ⇒ ϕj = 0 (5.4)

Finally, the consistency property is obtained when the explanation model reacts
to changes in a way that the marginal contribution of a feature value increases
or stays the same regardless of other features by keeping the Shapley values the
same or increasing as well. In other words, if the marginal contribution of a feature
increases the corresponding Shapley value will not decrease. Also this property can
be expressed with an equation:

Let f̂x (z′) = f̂ (hx (z′)) and z′
jj indicate that z′

j = 0. For any two models f and
f ’ that satisfy:

31

Overview of explanation techniques

f̂ ′
x (z′) − f̂ ′

x

1
z′

\j

2
≥ f̂x (z′) − f̂x

1
z′

\j

2
(5.5)

for all inputs z′ ∈ {0,1}M , then:

ϕj

1
f̂ ′, x

2
≥ ϕj(f̂ , x) (5.6)

The SHAP theorem states that there is only one solution that satisfies all the
properties previously mentioned, and it is the solution of the equation:

ϕi(f, x) =
Ø

z′⊆x′

|z′|! (M − |z′| − 1)!
M ! [fx (z′) − fx (z′\i)] (5.7)

where ϕi(f, x) are the Shapley values related to the classifier f and the feature x.
The SHAP theorem is a result of combined cooperative game theory, the

understanding and the demonstration are out of the scope of this thesis. In 1985,
Young et al. demonstrated that Shapley values are the only set of values that can
actually satisfy at the same time the local accuracy and consistency properties,
while the missingness property is required to transfer the obtained result to the
class of additive feature attribution methods. Since the implication is valid in both
the direction, another result is that all the methods that are not based on Shapley
values may violate local accuracy, consistency or both. However, SHAP values
could be a problem because of their high computational cost. A solution can be
found using some heuristic that become valid using the additive properties. The
authors propose a novel method to calculate Shapley values using kernel, that is
covered under the name of KernelSHAP.

KernelSHAP is an alternative kernel-based estimation approach for Shapley
values, that has been inspired by local surrogate models.

First of all, a kernel is needed, and this can be defined as:

πx (z′) = (M − 1)A
M
|z′|

B
|z′| (M − |z′|)

(5.8)

After the definition of the kernel, only five steps are required for the calculation
of SHAP values:

• Sample a set of features

• For each coalition, get a prediction only based on that

• Compute the weight for each coalition, using the SHAP kernel

• Fit weighted linear model

32

Overview of explanation techniques

• Extract the weights from the linear model, that now corresponds to Shapley
values

The Kernel works also when many features are involved.
Conversely, DeepSHAP is a different flavor of the SHAP algorithm specifically

designed for neural networks, to leverage the additional information that can be
extracted from the weights and the gradient, and thus have better performance and
results. The implementation of DeepSHAP is based on an adaptation of DeepLIFT.

5.6 MiCE
MiCE is another renowned solution for providing explanation, and stands fro
Minimal Contrastive Editing [27]. It aims to simulate the way humans have to
explain something to themselves, that is imagining a contrastive example and
wonder why the contrastive example did not happen while the real example did
happen.

A contrastive explanation can be conceptualized as the answer to all questions
of the form "Why p and not q?", where p is the even that actually happened while
q is the imagined conterfactual event, which is also called the contrast case. MiCE
proposes a new method for producing contrastive explanations of a NLP neural
network as edits to inputs, as addition, change or removal of tokens, as minimal as
possible as they change the model output to contrast case. The edits produced by
MiCE are not only contrastive, but also minimal and fluent. Thus they can be used
for debugging incorrect models and uncovering unwanted artifacts on a model.

To produce the contrastive explanation, MiCE adopts a two-stage approach.
In the first step the editor will be fine-tuned, which is a model implemented by
HuggingFace under the name of Text-To-Text-Transfer-Transformer (T5), and as
the name says it is an architecture based on attention that aims to learn a pattern
from a sequence of tokens to another sequence of tokens, and thus will be used to
learn the edits. In the second stage, the editor fine-tunded in the previous stage
will be used to actually obtain the edits.

To do this, Mice masks out a consecutive spans of a certain percentage of tokens
(where the percentage can change across the run) in the original input, then the
contrast prediction is prepended to the masked input, and thus the resulting masked
instance is used as an input for the EDITOR.

5.7 SOC
A different approach has been taken by SOC, which stands for Sampling and
OCclusion [28], and it aims to explain a neural network by providing a hierarchical
structure where set of consecutive tokens are gathered together and classified.

33

Overview of explanation techniques

Figure 5.1: Example of hierarchical explanation

The explanation offered by previous models has always been seen as limited
since, while they offered an explanation at the single token level, they lacked an
overall explanation when those tokens were combined with each other. Thus they
are not a valid solution for explaining the importance of a phrase rather than a
word, since a phrase importance is often a non-linear combination of the difference
importance of the tokens in the phrase. To obtain the phrase-level importance,
SOC splits a sentence into more subsets of contiguous tokens, then it identifies
the importance by combining two ore more of these subsets and studying how
the importance of the combined subsets differs from the importance of the single
subsets summed.

The SOC authors introduced a mathematically formulation to formalize and
approximate the context independent importance, and is called N-context inde-
pendent importance, and is defined as the difference of the output of the model
after that the subset tokens have been masked out, marginalized over all possible N
words surrounding those tokens in the sentence. SOC is simple and model-agnostic,
and has demonstrated to provide state of the art performance against previous
algorithms. It works in a simple way, it uses an input occlusion algorithm which
goal is to calculate the importance of a subset of tokens specific to an input sentence,
by observing the prediction difference caused by replacing the subset of tokens with
padding tokens.

Obviously any change in the subset of tokens will produce a different produc-
tion, and in order to remove the dependence SOC uses an approach where the
context around the tokens are sampled and randomly replaced. The replacement
of the sampled tokens is obtained through a trained language model where a set
of neighboring word replacement is extracted. For each replacement, thus the
algorithm calculates the model prediction differences after replacing the subset of
tokens with the padding tokens. The importance is then calculated as the average
prediction differences. The combination of sampling and occlusion are the two

34

Overview of explanation techniques

single ingredients of SOC, as the name states. The input occlusion algorithm can
also be substituted with other measure of phrase importance, such as Shapley
values.

35

Chapter 6

Methodology

This thesis proposes the objective of exploring the bias in the hate speech context,
using a neural network architecture specialised in sentence classification and trained
to recognize whether the sentences are toxic or not. A comparison among all the
explanation methods is offered, and a correlation between some pattern in the
attention weights and the false positive is investigated. In the end, a correlation
analysis between the different explanation methods has been performed.

6.1 Approach
Because of the heterogeneous types of tasks treated in this thesis, different ap-
proaches have been adopted in each phase.

In the first phase, an analysis among the different explanation methods has been
conducted to understand what are methods that offer a better explanation in the
context of toxicity detection.

Explanation may be a subjective fact, asking different people to explain a
sentence may lead to different and contrasting results. For this reason, even if
the analysis may appear subjective to the author of this thesis, I defined some
objective parameters to select the best explainer among different methods and
kept an objective and impartial approach, to offer a qualitative though objective
analysis.

To perform the comparison, the attention was focused only on 10 sentence. From
the test dataset 10 misclassified sentences have been extracted, 7 false positive and
3 false negative. The work has been conducted only on misclassified sentences since
the aim of this thesis is to analyze and explain the bias, thus in which cases and in
which circumstances the neural network takes a certain decision, by highlighting
the word or the group of words that have led to the mistake. Furthermore, the
misclassified sentences have been selected in such a way that to obtain a 70%

36

Methodology

of false-positive and a 30% of false negative. The majority of false-positive is
motivated by the fact that, in the hate speech context, a false positive is of greater
importance than a false negative.

In case of a false positive, indeed, a user may be flagged as toxic while his or her
post has no elements to be classified as that. This could make the experience in the
online community worse or impossible to tolerate. Furthermore, from a technical
point of view, the research of false-positive might be more interesting to analyze,
since few words may lead the whole classification and thus a focus on those few
words can be more easily analyzed and eventually adjusted.

The false-negative cases, however, are not to be belittled. These cases involve all
the sentences where a misogyny attack has been expressed, but the neural network
failed to notice it. Also, a high false-negative rate could conduct to a worse online
experience, even if posts containing misogyny are just a minority if compared to
the total amount of posts. For this reason, also a certain amount of false-negative
have been included in the analysis.

The 10 sentences have been manually selected from the test dataset. For this
purpose, some parameters have been defined for the selection, these parameters
aim to obtain an as vast as possible range of mistakes. Indeed, even if the sentences
are all different, some of them represent the same type of mistake, thus the analysis
would be redundant. So, the most important parameter that drove the selection
has been the expression of a range of mistakes and not the focus only on one type.
Secondly, some sentences have been selected because it was not clear what type
of mistake has been made from the neural network. And, finally, some sentences
have been selected to cover different syntactical parts of a sentence, e.g. in some
sentences, the mistaken part was contained in the direct object, in other sentences,
it was contained in the verb.

A more detailed analysis of the criterion used for the selection is proposed in
the next chapter, which treats experiments and results.

After that, a comparison among all the explainers has been conducted. The
comparison included the ten selected sentences and the different explainers. In the
following list, all the explainers are listed and a brief description of the shape of
the explanation is provided.

• Raw attention. The output is provided as a self-attention map, where the
attention of a couple of tokens is represented in a matrix. The explanation is
then obtained from the tokens that obtained more or less attention

• Effective attention. Similar to the raw attention, but the self-attention map
represents the effective attention, that is the attention that is effectively used
for the classification.

• MiCE. The output is composed of the list of contrastive edits performed on

37

Methodology

the sentences to obtain the flip of the classification. For each sentence, a list
of ten contrastive edits is provided and they are sorted from the most minimal
to the most verbose. From the edits can be obtained the table of which tokens
have been added, deleted, or modified.

• SOC. The output is graphically represented as a hierarchy. At every level of
the hierarchy, a different group of tokens is represented, and the number of
tokens that compose a group is different. In the top-most level, is represented
the classification of the sentence as a whole. In the bottom-most level, is
represented the classification of every token considered separately. The tokens
or the group of tokens are colored differently, if they are gray they didn’t
compete for the class label attribution, more the color tends to red and more
they competed for the positive class attribution, and finally, more the color
tends to be blue and more they competed for the negative class attribution.

• DeepSHAP. A vector of the size of the sentence tokens is obtained, where
also the padding tokens are considered. In each element of the vector is
represented the SHAP value corresponding to the token. Higher is the SHAP
value and higher is its importance for the class label attribution.

• KernelSHAP. Similar to DeepSHAP, the only difference is the algorithm
used.

• Hidden Token Attribution. The Hidden Token Attribution is calculated
for the [CLS] token in the last layer with respect to each token in the input
sentence. The obtained values are then organized in a vector.

After the training of the neural network, each explainer has been applied to
explain the test dataset sentences, and the output has been saved in a different
folder.

The research has proceeded by comparing the output. The comparison has been
conducted by assigning a score to different explainers, and during the analysis, the
explainers were considered either independently one from the others or as pairs, in
order to highlight strengths and weaknesses. Eventually, the output of the different
explainers has also been compared with the human explanation.

Also in this case the comparison among the explainers has followed the definition
of a set of parameters, in order to minimize any bias into the decision and keep an
impartial approach. The parameters used for the comparison are:

• Quality of the explanation. The output of the explainer must effectively
represent a measure of importance for each word in the sentence. Thus, quality
is intended as the way in which an explainer assigns more importance to the
most relevant words of a sentence, while lesser importance is assigned to other

38

Methodology

words. Generally speaking, an explainer that assigns high importance to the
stopwords, or to words that aren’t the focus of the sentence but just marginal,
is considered a bad explainer. On the other hand, an explainer that assigns a
high importance score to the most relevant words, and the importance score is
proportional to the effective relevance within the sentence, is then considered
a quality explainer. The inner meaning of what is relevant in a sentence and
what is not is left to intuition.

• Ease of reading the result. The output of the explainer must be easily
readable and interpretable, also for not insiders. In case the output is a vector
of scores, each score must have a precise meaning. In the case of graphical
output, it must be easy to read and interpret, also for people not belonging to
the specific field.

• Background and reputation. The explainer must have a good reputation.
Some explainers enjoy solid theoretical foundations and have been adapted
to several specific cases and they are renewed for good performance. On the
other hand, many of the methods used in this research to explain the decision
of neural networks were not even designed to provide an explanation. Such
are the cases of attention-based explainers.

• Difference with human explanation. The output must be at least compa-
rable to human explanation. The explanation must ultimately serve humans,
for this reason, is expected that a human explanation would perform similarly
or better than machine drive explanations, representing an upper-bound limit.

About the last parameter, related but independent research has been conducted
concerning the explanation provided by humans. The research has been conducted
by asking some volunteers to fill out a questionnaire containing ten questions, one
for each sentence selected. For each of the ten sentences, it was required to specify
whether it was considered misogyny or not, according to the personal opinion of
the interviewed person. Both if the volunteer flagged the sentence as misogyny
or not, it was then asked to explain why that decision was made. The volunteer
had to provide the explanation by selecting up to three words from the sentence
itself, that in their opinion drove most of the information about the decision. This
approach is similar, in most cases, to the one adopted by neural networks.

Another experiment has been set up to determine whether exists a correlation
between vertical patterns and misclassified sentences, expressed as, separately, false-
positive rate and false-negative rate. Since the misclassified sentences are extracted
from a dataset that concerns hate speech, thus the false positives represent the
sentences that did not contain hate speech but were classified as such, while the
false negatives represent the sentences that contain hate speech but the neural
network failed to notice it.

39

Methodology

Indeed, as already reported in the previous chapters, when analyzing attention
maps is possible to observe some recurrent patterns, that repeat with different
relative frequencies across different experiments, as stated in other publications.
Those patterns can be exhaustively classified into 5 different categories that comprise
vertical, block, diagonal, vertical+diagonal, heterogeneous.

Among all these patterns, there is only one that could be of any interest for
the research of bias in neural networks, and that is the vertical pattern. Indeed,
a vertical pattern represents a focus towards a single token of a sentence, this
may lead the classifier to base the whole classification exclusively upon the token
that received the self-attention with respect to all the other tokens. Under this
hypothesis, the classification may be misled and it could introduce a bias into the
neural network internal working.

To test the hypothesis, an algorithm has been created to detect the vertical
patterns and thus extract the tokens that were represented in those patterns.
The experiment has been repeated varying the minimum lengths that defined
whether a pattern was effectively vertical. The results of this algorithm were then
gathered into a graph to better visualize the result. For this part of the research,
a quantitative approach has been kept, and the results are offered as numbers or
graphical representations of those numbers. Since automation was introduced for
the detection and the reporting of the vertical patterns, it has been possible to use
the whole test dataset, and the results are thus representative of the whole used
dataset.

Following the research presented in the first part of this chapter, an additional
analysis has been conducted regarding the used explainers, to improve and better
understand why some results have been achieved. The analysis involves the research
of a correlation among all the used methods, and it has been conducted under a
quantitative point of view. The result is composed of the correlation score across all
the used explainers, if a correlation between two or more explainers does exist, then
is legit to consider the combined use of those explainers as redundant, since the use
of one can partially or completely replace the other one. The correlation analysis
involved the creation of a matrix that contained the tokens of the concatenated
sentences on the horizontal ax, and the different explainers on the vertical ax.

The matrix has been filled with a 1 whether the explainer considered that
token important for the determination of the positive class, with a 0 whether the
explainer considered that token not important for the determination of the positive
class, and with a -0.25 whether the explainer considered the token as competing
against the determination of the positive class, in the eventuality the explainer
supported this case. A problem occurred because the fact that many explainers
work at word-level while other explainers work at token-level. For this reason, a
different approach has been taken in the first case. Indeed, in the case the explainer
works at word-level, the assigned score has been repeated for each token composing

40

Methodology

that word.
After the filling of all the fields composing the matrix, the Pearson correlation

coefficient has been calculated between couples of explainers, composing thus a
correlation matrix. The experiments have been conducted on a single dataset, but
they may be extended to different datasets if needed.

41

Chapter 7

Experiments and Results

7.1 Dataset
The first used dataset for this research was taken from the Automatic Misogyny
Identification contest, a project founded by the Università degli Studi di Milano-
Bicocca, collaborating with the Universitat Politècnica de Valencia. The dataset is
composed of three different CSV files, namely the train set, the test set and the
dev set. The latter was not used for this research. The corpora that composed the
dataset had been manually labeled by several annotators to express the following
pieces of information:

• Misogyny or not misogyny

• Misogynistic category, in case it was labeled as misogyny

• Target, that may be passive or aggressive

Among all these components of the dataset, the only used part was the one
concerning the fact whether a sentence is misogyny or not. The dataset consists
of 3600 train sentences, 1000 test sentences, and 400 dev sentences, for a sum of
5000 total sentences. The second used dataset concerned the hate speech against
immigrants. Similarly to the misogyny dataset, this dataset is in the English
language and is composed by a collection of tweets, most of them involving the
USA society during the Trump election. Indeed, most of the tweets regard hate or
intolerance against Mexicans, black Americans, and other minorities present in the
USA society, and the figure of Donald Trump is recurring in the posts. Also this
dataset was already split into train, dev, and test dataset, and the dev test was
not used across the experiments. All the splits contain 40% of positive samples
and 60% of negative samples, resulting in slightly imbalanced. Some techniques of
rebalancing were applied for the training and the calculation of the test accuracy,

42

Experiments and Results

especially through undersampling of the majority class, since the nature of the
dataset did not allow any other technique.

7.2 Training
For this thesis, only one implementation of BERT has been used across all the
experiments, and a single training for each dataset has been performed and re-used
in all the phases. The implementation used was BertForSequenceClassification
from the HuggingFace library, which was previously trained on a large corpus of
English sentences as described in the BERT paper. Following the rules for BERT
fine-tuning, the neural network has been fine-tuned for 4 additional epochs using
the AMI dataset, exclusively basing the classification on the misogyny category.

The following parameters have been used for the training on the misogyny
dataset:

• Epochs: 4

• Batch size: 32

• Optimizer: AdamW

• Learning rate: 2 × 10−5

• Epsilon: 10−8

Some of the parameters, such as the learning rate and the number of epochs,
have been decided after some experiments, in order to maximize the accuracy of
the classifiers. The fine-tuning has been executed using exclusively the training
set, and it has reached an accuracy of 72.32% on the test set for the misogyny
dataset. Conversely, the training on hate speech against immigrants reserved more
problems and required more attempts. Indeed, this dataset contains a larger variety
of sentences, and often the distinction between an opinion and a hate speech post
is feeble and not immediately recognizable even by humans.

However, after a large number of attempts, the optimal configuration of the
hyperparameters is the following:

• Epochs: 3

• Batch size: 32

• Optimizer: AdamW

• Learning rate: 4 × 10−5

43

Experiments and Results

• Epsilon: 10−9

For this dataset, the accuracy attested to 59% for the whole dataset. However,
the dataset is slightly imbalanced, thus the accuracy drops to 54% when considered
a balanced undersample of the negative class.

The accuracy is not satisfactory for the use in production of the classifier, but
it’s anyway useful for the extraction of insights from the neural network inner
working. However, the lower number of false-positive samples in this dataset made
the misogyny dataset preferential for the analysis performed.

7.3 Selection of sentences
In this section, the list of selected sentences has been reported, altogether with the
criterion used for their selection.

The sentences not correctly classified were split into false positives and false
negatives in a file, and thus they were manually analyzed and the most interesting
was extracted. Between the two used datasets, 15 sentences were selected, trying
to keep the proportion of 70% of false-positive samples and 30% of false-negative
samples. Indeed, the two types of mistakes are not equally evaluated in their
importance, but the false-positive samples are considered to have a bigger impact
on a community and they are more strictly connected to the biases assumed by
neural networks.

Ten sentences were selected for the misogyny dataset, and they are:

• Fuck yeah you pussy boy False positive This sentence has been selected
because it contains both the word pussy, which is a common insult against a
woman and the word boy, which changes the meaning of the previous insult
redirecting it to a boy.

• @minimaslany What if she enjoys it? I think the days where women
are forced to stay in the kitchen, not work, etc are over. False
positive This sentence has been selected because it contains a rhetorical
question, which may mislead the neural networks, and uses the words "the
days are over" to express the contrariety to a concept.

• @benshapiro Fuck you pussy False positive This sentence has been
selected because, even if it is short and similar to the first sentence of the list, it
could appear as misogyny at the beginning, from the tag is possible observing
that the tweet is referring to a guy, thus cannot be considered misogyny.

• Why do y’all blame the woman for what she wears when it comes
to rape? That shit is WRONG. False positive This sentence has been

44

Experiments and Results

selected because it contains a question and it expresses contrariety about the
concept using the words "is wrong".

• Nah yall stay in the kitchen and make bariis and baasto False
negative This sentence has been selected because the neural network failed
to classify it as misogyny, despite the fact that the author is telling to the
girls to stay in the kitchen, which is considered an act of misogyny.

• If u don’t think rape culture exists in the US u should prob check
your feed right now ’cause literally every woman u know is posting
#MeToo False positive This sentence has been selected because it expresses
the contrariety to the concept by inviting people to check that rape culture
exists.

• You don’t have to explain why because a dishwasher the right to
speak. Stay in the kitchen False negative This sentence has been
selected because the neural network failed to consider misogyny sentences as
"stay in the kitchen" or appealing a woman "dishwasher".

• Back to the kitchen you stupid sandwich maker False negative This
sentence was selected because the author called a woman "stupid sandwich
maker" and the neural network failed to see it as aggressive.

• Dont call them hysterical women. False positive This sentence has
been selected because it’s short and simple, nevertheless, the neural network
considered it hate speech basing the decision only on the tokens "hysterical
women", ignoring the contradiction "Don’t call".

• To the bitch who said the United States is rape FREE. Ask the
millions of women who haven’t reported it due to how bad our
society is. False positive This sentence has been selected because it
contains sarcasm and because even if it contains words such as "bitch", it’s
overall not commonly misogyny.

Instead, for the second dataset, the selected sentences are:

• A must read article. #BuildThatWall #AmericaFirsty False positive
This sentence has been selected because it does not contain any controversial
word, with the two only exceptions of the hashtags.

• Chain Migration is not sustainable and needs to end NOW. It’s
time to break the chain! #EndChainMigration False positive This
sentence has been selected because it expresses an opinion, and it does not
contain elements of hate speech.

45

Experiments and Results

• @whaas3 @judithineuropa Just got on twitter because of this farce
today. Imagine this, I make a report on You. Calling you names
and telling people how big liar and asshole you are without reason.
Would you be angry? Of course You would be. Its a same with me.
You can fuck off to help some rapefugee False negative This sentence
has been selected because it implicitly accused immigrants of being rapists.

• @CraigRSawyer In ceuta Spain at the borderRefugees go home
False positive This sentence has been selected because it does not contain
any toxic element, but it was classified as hate speech.

• The Hillary server/unmasking of U.S. citizens/FBI-CIA-DOJ con-
spiracy, perjury & obstruction - A SILENT COUP - to take down a
U.S. President; by far the largest & deepest scandal to ever hit U.S.
government.#MAGA #KAG #Trump #POTUS #NEWS #USA
#WalkAway #DrainTheSwamp #NoDACA False negative This
sentence has been selected because it spreads fakes news against immigrants.

7.4 Comparison of explainers

7.4.1 Human explainer
A parallel research has been conducted to investigate how humans interpret the
selected sentences and eventually use the results as a benchmark for evaluating
the quality of the explainers. Indeed, the explanation provided by the different
methods should be of any meaning for a human. Thus, the differences between the
explanations provided by a human and the one provided by an explainer algorithm
should be as similar as possible to consider the latter a quality explainer.

Another reason that drove the decision of investigating the human explanation
has been the attempt of removing subjectivity from the analysis performed so far.

The analysis and the comparison among explainers must be as objective as
possible, and an impartial and fair approach has been kept across all the experiments.
However, all the people are affected by biases, including who is writing this thesis,
and this aspect cannot be ignored for a correct classification of the explainers.
As an example, one could be inclined to prefer an explainer rather than another,
because of some past prejudice that made appear one solution better than another
and could transfer this prejudice to the final decision.

On the other hand, asking a list of people external from the experiments what
are is the explanation that suits the most a particular sentence could lead to an
unbiased and fairer decision, free from the subjectivity that a single inside individual
internal to the experiments could bring. When the results are aggregated, the

46

Experiments and Results

Figure 7.1: Example question of the survey

overall explanation can be seen as shared by a group of individuals. The interviewed
individuals were explained how to provide an explanation, but not the finality of
the experiment. The interview involved 25 people, and an attempt was made to
various age and social backgrounds as much as possible.

The research has been conducted using Google Forms, and it is composed by 30
questions, 3 for each of the ten selected sentences.

For each sentence was asked if, in the opinion of the individual responding, the
given sentence was misogyny or not. This question was asked to correctly frame
the explanation, and to avoid mixing up an explanation of misogyny context with
explanations of the not misogyny context.

In some cases, the aggregated answers to this question offered some surprise. As

47

Experiments and Results

in the example visible in the figure7.2, where the answer to the question of whether
the sentence is misogyny or not misogyny is controversial since almost half of the
interviewed individuals did consider it misogyny regardless of the fact that the
sentence contained the word "boy". This is understandable considering that "pussy
boy" can be also appealed to a woman.

A similar and more controversial example is visible in the figure7.3, where the
sentence "@benshapiro Fuck you pussy" is considered not misogyny by 68% of
responders. This is probably due to the fact that many of the interviewed failed
to individuate the fore tag, which contains the name "Ben". The reason why so
many people failed to notice it can be individuated in a lack of focus and scarce
knowledge of Ben Shapiro, who belongs to the American culture. The second and
the third question are mutually exclusive and depend on the answer provided to
the first question.

Indeed, if the interviewed individual considered the provided sentence as misog-
yny, he or she was asked to select up to three words from the sentence that drove
his or her mind towards that decision. The reason why a limit of three words was
required was to prevent the responders to select a way too large set of words from
the sentence, that would thus invalidate the scope of explanation, and to force the
responder to focus on the words that really matter. Similarly, if the interviewed
individual considered the provided sentence as not misogyny, he or she was then
asked again to select up to three words from the sentence to explain why it was not
misogyny. The example results have been then transposed to a Google Spreadsheet
file, and the answers were manually cleaned and normalized. An example of raw
answers contained in the Google Spreadsheet file is contained in the figure7.4, where
the answers provided to the question "@minimaslany What if she enjoys it? I
think the days where women are forced to stay in the kitchen, not work,
etc are over." are shown.

Analyzing the different answers, the responders that answered "Yes" to the
question "is it misogyny" focused on the first part of the sentence, which reports
"What if she enjoys it?", ignoring that the question was rhetorical. Alternatively,
they focused only on the toxic words of the sentence. The responders that answered
"No", instead, mainly focused on the words "are over", which reverses the meaning
of the whole sentence.

In the figure 7.5 the data has been cleaned and aggregated. For each word of
the sentence, in the first row, 1 point has been assigned for each user that reported
that word as important to explain why it’s not misogyny, while in the second row
1 point has been assigned if the user reported that word as important to explain
why it’s not misogyny. The difference has been reported in the third row, and
the background of the scores has been colored consistently to highlight in a more
impacting way the important words for the positive or the negative class. The
results obtained from the human explainers have been used in the following sections

48

Experiments and Results

to express in a subjective way whether the explanation provided by the neural
network is plausible or is not of meaning at all. Thus, the human explainer has
been used as a benchmark for the evaluation of the other explanation algorithms.

Figure 7.2: Result for the question referring the sentence "Fuck yeah you pussy
boy"

Figure 7.3: Result for the question referring the sentence "@benshapiro Fuck you
pussy"

49

Experiments and Results

Figure 7.4: Answers to the question "@minimaslany What if she enjoys it? I
think the days where women are forced to stay in the kitchen, not work, etc are
over."

7.4.2 Attention
Attention is one of the most powerful and basic methods to investigate the internal
working of a neural network. By retracing the way a prediction was made, is
thus possible to extract information that supported that prediction, which can be
ultimately used for an explanation for the classification itself.

To extract the attention maps from the neural network, in the first instance, the
sentences are prepared to fit into the neural network. Every sentence undergoes

50

Experiments and Results

Figure 7.5: Aggregated importance given to the words of the sentence "@mini-
maslany What if she enjoys it? I think the days where women are forced to stay in
the kitchen, not work, etc are over."

a process of tokenization where, using a tokenizer provided by HuggingFace and
made on purpose for BERT, the sentence’s words are divided into smaller atomic
entities named tokens. After that, every list of tokens is filled with [PAD] tokens
up to the maximum sentences size, which was previously set to 64. Once obtained a
consistent list of 64 tokens for each sentence, they are divided into batches, similar
of what happened for the training. Each batch is fed into the neural network, with
the following optional flag:

output_attention = True

This asks the BERT implementation to do not discard the attention values after
their computation, but to preserve them and produce them as an output of the
prediction. As explained in the previous chapters, the self-attention mechanism
is a process that relates each token of a sentence against each token of the same
sentence, and ultimately assigns a weight accordingly to how much attention the
token is paying against the other token. This process is repeated for each head
of a layer, and for each layer, BERT is composed of. Since the number of heads
contained in each layer is 12 and the number of layers that compose BERT is 12,
there are therefore 12 ∗ 12 = 144 attention maps for each sentence. Given L the
number of tokens a sentence is composed of, ignoring the padding tokens, each of
the 144 attention maps will have a shape of L × L. The attention values assigned
to [PAD] tokens are ignored and removed from the graphical representation.

According to Pascual et al., most of the task-specific information of BERT is
contained in the last layers, while the first layers encode the information about the
language and the syntax [29]. For this reason, the manual analysis and comparison
of BERT attention maps focused on the information extracted from the last layers.

What makes attention so powerful is the fact that it is built-in in the neural
network, and it analysis and visualization do not need any further processing if not
stacking up the outputs into a graph. However, since the high number of attention
maps, that cannot be easily visualized in a single glance, and the complex concept
of self-attention, this method is considered hard to grasp and lacks many of the

51

Experiments and Results

properties a good explainer should have. To stem the high amount of matrices
obtained for each sentence, a partial solution was implemented by averaging across
the heads for each layer, in this way just 12 attention maps were obtained for each
sentence, one for each BERT’s layer.

In the figure 7.6 is represented the attention map of the sentence "Why do
y’all blame the woman for what she wears when it comes to rape? That
shit is WRONG.", extracted from the seventh layer and ninth head.

Figure 7.6

as it is visible from the above image, many tokens are paying their attention to
the token "rape", which is usually seen in misogyny contexts, while less importance
is given to the surrounding tokens, this could explain why the sentence was classified
as a false negative. An interesting result is obtained also analyzing the penultimate
layer, after averaging the different heads. In this case, multiple vertical patterns
come out. This probably is a result explained by the fact that different heads
express a vertical pattern over different tokens, and when an average across the
heads is calculated, they sum up. The result is reported in the figure 7.7

In this case, it is possible seeing that most of the tokens paid their attention

52

Experiments and Results

Figure 7.7

exclusively to the tokens "women" and "rape", while a slighter vertical pattern is
visible also for the tokens "she", "come" and "do". Most of these words are used in a
toxic context and, also in this case, can be used to demonstrate the bias. A similar
conclusion can be obtained analyzing a different sentence, that is "To the bitch
who said the United States is rape FREE. Ask the millions of women
who haven’t reported it due to how bad our society is.", specifically to the
eleventh layer and the average across the heads, as shown in figure 7.8

In the visualization of the above sentence, three clear vertical patterns are visible,
and they are related to the tokens "bitch", "rape", and "bad". This shows how the
neural networks is ignoring the word "free" that follows "rape", and it is thus missing
the overall meaning of the sentence. Furthermore, the neural network is ignoring
the presence of the indirect question "ask the millions...", which could have driven
the classifier towards a different decision. A different pattern appeared analyzing
the sentence "A must read article. #BuildThatWall #AmericaFirsty",
taken from the dataset that concerns the hate speech against immigrants and is
visible in the figure 7.9. Indeed, in the graphical output of the 11th layer and 6th

53

Experiments and Results

Figure 7.8

head, is clear that there is not a peak around a single token, but the focus regards
a set of tokens, particularly the ones composing the hashtags. Thus, the decision
was mostly based on the hashtags and not on the content of the sentence itself.

In conclusion, attention maps have proved to be a powerful ally for the detection
of bias and debugging of neural networks. Considering that the output of the
attention maps is built-in, and it only required the configuration of a flag, together
with the fact that its time cost is equivalent to the one required for the inference
only, makes attention maps suitable during development time when a rapid insight
into the network internal is required for debugging purposes, and a bias can be
detected in the early stages of a neural network life cycle. However, their scarce
user-friendliness and their bad reputation make them not suitable in most contexts,
where a strict explanation is required.

54

Experiments and Results

Figure 7.9

7.4.3 Effective attention

Even if attention maps have proved themselves to be a powerful instrument in
debugging and detecting bias, according to some recent publications there is some
room for improvements, in introducing the concept of effective attention maps.
Effective attention maps are the maps obtained from attention weights, after that,
a mathematical transformation has been applied, and they are considered an
evolution of raw attention maps.

Effective attention is defined as the amount of attention that is effectively used
by the following phases of the neural network or, mathematically speaking, as the
difference between attention maps and the attention matrix that projects into a
null space, e.g. the kernel of the matrix product between attention maps and the
embedding matrix, the value matrix and the heads matrix.

Letting E be the embedding matrix, V be the value matrix and H be the heads
matrix, we can define the variable T as the product of all these factors:

55

Experiments and Results

T = E × V × H (7.1)

Using this equation, the effective attention can be defined as:

EA = A − Projection LN(T)A (7.2)

Where LN indicates the null space of the matrix T , and what is obtained is
thus the matrix A itself minus its projection over the null space of T . During the
implementation, the null space projection has been obtained by multiplying the
matrix A for the associated singular vector of T, which corresponds to the left null
space basis.

For this reason, the implementation of a snippet able to visualize the effective
attention maps required the clone of the HuggingFace project and the edit of the
source of several files, since the matrices V and H are designed for internal use and
are not an output of the default implementation.

Effective attention maps share most of the advantages disadvantages of raw
attention maps. Indeed, in most the cases, the difference is not exist at all, since the
attention present in the attention maps was totally used for the computations. In
almost all experiments conducted, the resulting attention maps after the application
of the mathematical transformation showed the same patterns as before the appli-
cation of the transformation, but without the vertical line corresponding to special
tokens, such as [SEP] or [CLS]. In a few cases, the effective attention differed from
raw attention in a way that allowed to visualize new patterns, as showed in the
figures 7.10 and 7.11, that illustrate the difference for the sentence "To the bitch
who said the United States is rape FREE. Ask the millions of women
who haven’t reported it due to how bad our society is.", considering the
last layer and the eleventh head:

In this specific case, is more evident from the effective attention maps that
many tokens don’t play any role in the determination of the class label, and the
[SEP] token has less importance than what could have been emerged before the
transformation.

In many other cases, however, these differences are not appreciable. An example
can be found when considering the same sentence above, and the same head
illustrated in the figure7.8, but using effective attention in place of raw attention:

In this specific case, only a few practical differences are ascertainable when
compared with figure 7.8. The main difference is the drop of the vertical line over
the [SEP] token, and the difference in the gradient color of the image is just a
consequence of the change in the range of values that compose the image.

Another example is in the figure 7.13, where the focus on the word "migration",
which is probably driving the decision of the classifier, is more visible in the effective
attention map. In this case, the 10th layer and 5th head are shown.

56

Experiments and Results

Figure 7.10: Raw attention

In conclusion, raw attention maps and effective attention maps share most of the
advantages and of disadvantages. As raw attention maps, also effective attention
maps proved to be a powerful instrument for debugging and detecting bias, and
in some rare case, it provided a different point of view for an attention map, by
highlighting the portion that was effectively used and making clear the portion
that was not used for the determination of the class label.

Effective attention maps can be particularly useful when there is the need of
investigating bias in all the tasks that expect the handling of sentences with a large
number of tokens, such as next sentence prediction, question answering, and named
entity recognition.

Indeed, as demonstrated by Brunner et al., the probability that effective attention
diverges from raw attention is proportional to the number of tokens [30]. For this
reason, since the experiments conducted concerned the classification of tweets,
which were composed of a limited amount of tokens, the divergence between the
two maps has been minimal.

In all similar cases, the use of raw attention maps should be preferable because

57

Experiments and Results

Figure 7.11: Effective attention

in most cases they provide the same information as effective attention maps without
the need for further modification of the source code or the additional time required
to calculate the mathematical transformation. This is because the raw attention
maps can be computed in a period of time equal to the time required for inference.
The effective attention maps, on the other hand, require an additional step, and
given the computational cost of the SVD calculation, the time difference between
the creation of the two maps is not negligible.

For this reason, the use of effective attention maps may not be worthwhile,
except in a few exceptional cases.

7.4.4 SOC
SOC stands for Sampling and Occlusion and is a novel explanatory algorithm that
estimates the post-hoc importance of features. Unlike other built-in methods such
as attention maps, which rely on internal information to obtain an explanation
from a neural network, SOC is model agnostic and context-independent. Context

58

Experiments and Results

Figure 7.12

independence is a property of hierarchical explanation methods that classify each
subsentence independently of the previous context given by the placement of the
extracted tokens in the original sentence.

The philosophy behind the development of SOC is that an explanation can
sometimes be a composition of conflicting facts that combine and compete to
determine the classification of the input. For this reason, SOC proposes an
explanation achieved by a hierarchical representation of the sentence obtained
by sampling the original sentence to obtain different combinations of tokens, and
by occluding the tokens that are not used in a particular level of the hierarchy.
Hence the name "sampling and occlusion". On the other hand, all the explanation
techniques presented so far in this thesis are based on assigning a score to each
token in a sentence.

SOC, thanks to its hierarchical representation of the explanation, is able to
appreciate different interactions between features without requiring the user to
manually search through a large set of feature groups. Indeed, the SOC algorithm
automatically selects the most meaningful interactions from a large number of

59

Experiments and Results

Figure 7.13

Figure 7.14: a) Pearson correlation index between effective attention and raw
attention, over different token lengths. b) and c) respectively raw and effective
attention, where each point represents the average attention of a given head to a
token type. Figure taken from [30]

60

Experiments and Results

all possible combinations of feature groups and visualizes them graphically in a
clear and meaningful multi-level table. Finally, the selected features are clustered
to better appreciate a different score for the combination of feature groups than
for the same feature groups taken individually. Many researchers from different
fields agree that a hierarchical explanation is preferable for the end-user because it
satisfies the characteristics of informativeness and limited essential detail [31]. For
all these reasons, SOC is considered one of the best tools for the explanation when
the classification is given to the final user, and it makes user-friendliness one of its
main strengths. On the other hand, the production of classification for different
hierarchical levels, and the search for the optimal subset of features to show at
each level, comes at a cost: SOC may be excessively slow, also for producing the
explanation limited set of inputs. Besides the time required for the computation of
the output, also the time required for the adaptation and optimization of the SOC
algorithm for customized tasks has to be taken into account. Indeed, SOC requires
the fork and edit of an already implemented version of this algorithm, and for this
thesis, the choice fell on the one implemented by Kennedy at al. [32].

The implementation of custom SOC settings can be divided into 3 different
steps:

• Training of a language model, on the corpus, extracted from the sentences
used for the classification. The language model is used during the step of
occlusion to provide a background to substitute words

• Training of the model, which provides an inference for each input

• Actual SOC algorithm, which combines the two previous models in order
to obtain a hierarchical representation

A further step is required to transform the metadata obtained in the last step
into a graphical representation. As explained in chapter 5, SOC requires two
different hyperparameters, namely the size of the context region N and the number
of samples K, following the results obtained in similar experiments, both the
parameters have been set to 5. After the implementation, the lead time required
for all the steps amounted to 23 minutes, as executed on a NVIDIA Tesla K80
offered by Google Colab.

The visual output proposed by SOC can be described in the following way:
every feature group has a different background color, if the background color is
gray it means that the tokens do not contribute to the determination of the class
label. All the groups having a red background are pushing the classification of
the whole sentence towards the positive class, and more intense is the red more
relevant is the effect of the single group for the decision. Similarly, all the groups
having a blue background are pushing the classification towards the negative class,

61

Experiments and Results

and also in this case a different intensity of the color is equal to a different effect of
the sentence upon the decision of the class label. Sometimes, the explanation at
different levels can be contradictory, and it can present a sub-sentence classified
as positive in a level and, aggregating the sub-sentence with other tokens, the
resulting composition can get assigned the negative class.

This is the case of the sentence Nah yall stay in the kitchen and make
bariis and baasto, which is a false negative in our setting of the experiment, as
showin in figure 7.15.

Figure 7.15

As it is clearly possible seeing analyzing the different levels of the output, the sub-
sentence "yall stay in the kitchen" is classified as positive, and it then becomes
negative in the last level. Differently than previously thought, the sentence "stay in
the kitchen" is correctly classified as misogyny when taken alone, and the reason of
the false negative is not that the dataset did not present any other example where
women were invited to stay in the kitchen, but it is a result of the combination
of the misogyny sub-sentence with the last part of the sentence, that balance the
attribution towards the negative class, and makes the overall classification negative.

Another similar example can be found in the following false-positive sentence:
"@benshapiro Fuck you pussy", as shown in figure 7.16.

Figure 7.16

In this case, incredibly, SOC demonstrates how the neural network is able to
understand that the name "Ben" in the tag "@benshapiro" is a masculine name,

62

Experiments and Results

and thus the background color of the "Ben" token is slightly tending towards blue.
However, the impact of the features group "fuck you pussy" is too strong, and
completely balances the negative class tendency introduced by the "Ben" token,
ending up inverting the class label.

The analysis of the sentence "@minimaslany What if she enjoys it? I think
the days where women are forced to stay in the kitchen, not work, etc
are over." is proposed, which is another false positive, and the result has been
reported in the figures 7.17 and 7.18.

Figure 7.17

Figure 7.18: Note: the sentence was split into two different images for readability
reasons

The explainer output is showing how the sub-sentence "what if she enjoys
it" is classified as positive, as it is supposed to be, but the neural network is
failing at understanding that the tokens are contained in a rhetorical question, and
thus the significance has to be inverted. Similarly, "where women are forced" is
considered a misogyny sub-sentence, and this is almost totally led by the single
token "women". The same pattern has been found in other sentences containing the
token "women". The tokens "not" and "etc" are considered to have a negative effect
in the determination of the class level, but their impact is not of any significance
at all, neither in the neural network nor in the real meaning of the sentence. In
conclusion, given an importance score for each sub-sentence in a sentence, the
most relevant contribution of SOC is in resolving the problem of finding a small
meaningful set to show to users, through the many possible groups. In this analysis,
SOC has been demonstrated as a powerful instrument in detecting bias, and its
user-friendly output makes it ideal for the externalization of the checks of the
neural network to not insiders employees. On the other hand, its long execution
time does not make it ideal for the analysis during the development.

63

Experiments and Results

7.4.5 HTA
HTA is an acronym that stands for Hidden Token Attribution, and it is a quantifi-
cation method based on gradient attribution. In the original paper [30], HTA was
used for investigating how much each token does contribute to the following layer
of the BERT architecture, and in which measure the information of tokens mix up
in the last layers. However, in this thesis, HTA is used to obtain the explanation
from a neural network, by calculating the contribution of each token towards the
[CLS] token contained in the last layer of the architecture, which is ultimately
used for the classification. The HTA formulation has been used to calculate the
attribution over the last [CLS] with respect to each of the embeddings composing
the input.

This choice is justified by the fact that, since the HTA shows how much of the
input token is contained in a given hidden embedding, if the considered hidden
embedding is the last [CLS] token, then the value is also a measure of how much
the input is influencing the decision, thus an explanation of the algorithm. The
HTA contribute for the of the hidden embedding ej with respect to the input xi, is
given by the following formula:

cl
i,j =

...∇l
i,j

...
2qds

k=0

...∇l
k,j

...
2

with ∇l
i,j =

δel
j

δxi

(7.3)

Where l indicates the chosen layer.
Since the gradient is an output of the inference, the calculation is reduced to

the multiplication between the gradient and the input, implemented through the
retaining of the gradient during the inference, and the use of the torch utility
torch.autograd.grad.

After applying the norm, the softmax function is executed over the values, and
finally, the tokens [CLS] and [SEP] are removed to prevent these tokens to change
the scale, since they can assume out of scale values that could distract the focus
from the actual words of the sentence. The HTA values are addictive because of the
softmax function that normalizes the values and enforces the property. However,
in the proposed examples this property is not respected since the removal of the
special tokens. The output of the HTA algorithm is a vector of values, one value
for each token in the sentence. This vector has been organized in a table, and the
background has been colored using a gradient. The more intense is the color and
more the token is important with respect to the determination of the positive class.

The first example where the HTA algorithm has been applied is the sentence
"Back to the kitchen you stupid sandwich maker", which is a false negative,
and the result is shown in figure 7.19.

In this example, the tokens "stupid", "sandwich" and "maker" are of greater
importance with respect to the other tokens. However, HTA is not able to explain

64

Experiments and Results

Figure 7.19

why the sentence was wrongly classified as negative, since the importance of the
tokens has been correctly assigned, focusing on the relevant part of the sentence.
Probably, the deletion of the special tokens played a role in modifying the relative
importance of tokens. In any case, more consistent behavior is expected by an
explainer. There is a little change in the quality when considering false positives,
as the sentence "To the bitch who said the United States is rape FREE.
Ask the millions of women who haven’t reported it due to how bad our
society is.". The result is reported in the figure 7.20.

Figure 7.20

The tokens of greater importance are "bitch" and "rape", with the first having
relative importance more than two times the latter. As opposed to the previous
case, the explanation provided by HTA is reasonable. Indeed, "rape" is a word that
is rarely seen in a non-toxic context, while the word "bitch" in this context is used
to appeal to the person the user was speaking to, and the error committed by the
neural network is understandable, since also for a human explainer this would be
considered an edge case.

The explanation of the sentence "@CraigRSawyer In ceuta Spain at the
borderRefugees go home", extracted from the dataset concerning the hate
speech against immigrants, is shown in the figure 7.21. According to the hidden
token attribution algorithm, most of the information driving the decision is derived
from the "@" symbol, which is probably more represented in the posts where an
argument is ongoing. Other tokens that got the highest importance scores are
the "border" and "#gee", coming from the word "refugee". In the last example is
analyzed the sentence "Dont call them hysterical women.", and the output is
shown in the figure7.22.

Similar to the previous case, the HTA algorithm correctly individuated the token
that, in all likelihood, deceived the neural network and that made the decision fall

65

Experiments and Results

Figure 7.21

Figure 7.22

back to the positive class.
The focus is primarily upon the token "hysterical", which is a word that is rarely

seen out of a misogyny context. On the other hand, the tokens composing the word
"don’t" did not receive an adequate importance score, and this could explain why
the sentence was misclassified. In conclusion, since once obtained the gradient the
calculation is simple, and the overall implementation of the algorithm is trivial, the
ease and the speed in the use of HTA are two of its main strengths. In contrast, in
some cases, HTA has demonstrated not being able of detecting the bias, and this
reduces the utility of the tool. Particularly, as already seen in the first example, the
HTA algorithm tends to show peaks of importance scores even when these tokens
are not actually driving the decision, and this makes HTA a scarce tool when is
about analyzing the false negative. Because of its poor reliability, the quality of
the explainer is low.

7.4.6 KernelSHAP
The SHAP algorithm is an algorithm based on the game theory that sees the
features as competitors in the determination of the class label. KernelSHAP is the
base implementation of the SHAP algorithm, that makes large use of kernels, as
described in the previous chapters.

The KernelSHAP implementation used for this thesis is the one created by Scott
Lundberg and published on the PyPi repository under the name of shap. However,
this version of SHAP was thought for the explanation of small tabular datasets,
and the adaptation towards the NLP scenario has been challenging because of the
re-definition and optimization of the problem.

First of all, the KernelSHAP implementation requires a pandas DataFrame with
a fixed number of columns, that represent the features. This is incompatible with
the structure of sentences, that have different amounts of words. For this reason, a
maximum word length for the sentences has been decided and set to 64, then each
sentence has been split over the space character, and each word composing the

66

Experiments and Results

sentence has been put into a vector. To have all the sentences of the same length,
a definite amount of empty word characters have been appended to all the vectors
whose size was less than 64. In this way, each vector has exactly 64 words and the
set of all the vectors can be seen as a table. The custom implementation of SHAP
for BERT has been decided to work a word-level and not a token-level because the
definition of features did not require in any way that those features had to be the
same ones feed to the actual neural network. A further step has been introduced in
the SHAP pipeline in order to translate words to tokens in the actual forwarding,
as described later in this section.

The KernelSHAP implementation requires the definition of two hyperparameters,
namely the size of samples composing the background and the regularization. The
second hyperparameter has been to aic, while the first hyperparameter has been
set to 100. The reason why a so small amount of samples has been decided for
the background is explained by the high execution time and computational cost
that characterizes SHAP. Indeed, also with 100 samples, the total amount of time
required to explain ten sentences exceeded ten hours. The sentences list has been
divided into two groups, the first one, named train sentences has been randomly
selected from the test dataset, and they are then 100 sentences composing the
background. While the second group, named test sentences was composed by the
ten sentences, among false positives and false negatives, individuated previously
and used all across this thesis.

The second obstacle has been identified with the type of data required from
KernelSHAP. Indeed, KernelSHAP only requires float values into the DataFrame
cells, and not the strings composing the words of the sentence. For this reason, the
class OrdinalEncoder from sklearn has been used to encode each word into a float,
and preserve the encoding rules in order to perform the inverse transformation
when required. Both the groups have been joined before fitting the encoding,
and then transformed singularly, in order to have a unique vocabulary across the
experiment. The encoded words have been then inserted into a pandas DataFrame.
Furthermore, since the SHAP implementation has no way to understand how to
forward the input to the neural network since it’s not meant for a neural network, a
wrapper encapsulating the neural network has been created, which receives in input
the combination of features generated by SHAP and returns the logits representing
the classification.

The wrapper takes in input the model, the tokenizer and the encoder described
previously. The model is used for generating the logits, the tokenizer is used
for translating the words into tokens, and the encoder is used for applying the
inverse transform, and transforming the encoded real values into their original
string representation. For each combination of features generated by SHAP (in
this experiment the amount exceeded 10 million), a special callback of the wrapper
is called.

67

Experiments and Results

The first step is the application of the inverse_transform function of the Or-
dinalEncoder class, this reverts the vector of floats and obtains back the original
vector of strings. Then the vector of strings is joined into a single sentence, using
the space character. At this point, the sentence can be meaningful or meaningless,
according to how much SHAP mutated the original feature list. Following, the
tokenizer is used to obtain a BERT representation out from the sentence, and the
list of tokens is then fed to the neural network, which outputs the logits. The
logits are then returned to SHAP, and they are used for the internal calculation as
described in the original paper. In the end, two NumPy matrices are returned from
the shap_values function of shap, one containing the contribution to the negative
class and the other one containing the contribution to the positive class. Since this
is a binary problem with two mutually exclusive classes, the content of one matrix
is the opposite of the other. Each matrix has a shape 10, 64, where the number of
rows indicates the test sentence and the number of columns indicates the token for
that sentence. For this explanation, the interest is towards the words driving the
decision to the positive class, so only the matrix referring to the positive class has
been used.

In the first example, the sentence Fuck yeah you pussy boy is analyzed in
the figure 7.23.

Figure 7.23

In this example, is visible how the word "pussy" has the greatest SHAP value,
and it is driving the decision towards the positive class. Since all the other words
have a negative impact, including the word "fuck", thus "pussy" alone is determining
the whole assignment of the class label.

In another example, the sentence Why do y’all blame the woman for what
she wears when it comes to rape? That shit is WRONG. is analyzed, and
the result is reported in the figure 7.24.

Figure 7.24

In this example, the words "woman" and "rape?" are correctly individuated
to be the ones driving the most decision towards the positive class. Note that,

68

Experiments and Results

differently than other examples in this thesis, this time the evaluation of the feature
importance happens at word-level and not at token-level. For this reason, the
importance of the word "rape?", retaining the exclamation mark, is evaluated in
this case.

The last example is a false negative extracted from the dataset against the
hate speech, and it is the sentence "@whaas3 @judithineuropa Just got on
twitter because of this farce today. Imagine this, I make a report on
You. Calling you names and telling people how big liar and asshole you
are without reason. Would you be angry? Of course You would be. Its
a same with me. You can fuck off to help some rapefugee", and the related
output is illustrated in the figure 7.25. According to KernelSHAP, the focus is
mainly on the tags present at the beginning of the sentence, altogether with the
token "asshole", and not on the word "rapefugee". This could explain why the
neural network failed to classify the sentence as hate speech against immigrants
since "rapefugee" is slang composed of the words "rape" and "refugee" and not much
of common use. Furthermore, KernelSHAP works at word-level, thus it is not able
to recognize composing words, unlike other explainers that work at token-level.

Figure 7.25

KernelSHAP has been demonstrated to correctly individuate the most impacting
words within a sentence, but the calculation arrived after a disproportionate use of
time and resources. The result for the ten selected sentences only required more
than ten hours on a T90 offered by Google Colab, and the use of the resources is
not justified by a particularly enlightening explanation. Even if the correct words
have been individuated, in a not a too dissimilar way to what happened with
other explainers, the SHAP algorithm tends to assign a too high score to padding
tokens, for a reason not entirely clear. Furthermore, all the changes introduced
have no theoretical foundation and need to be proved to actually justify their use
in production. For all these reasons, the result obtained from this experiment is
considered unsatisfactory.

69

Experiments and Results

7.4.7 DeepSHAP
DeepSHAP is an extension of the SHAP algorithm which, basically, applies the
Shapley values to the DeepLift algorithm.

The used DeepSHAP implementation is the one included in the shap package,
which is internally based on the deeplift package. This SHAP extension makes use
of the gradient information to provide a faster and better result, it is thus only
indicated for neural networks, particularly for the ones based on torch that makes
use of backpropagation. The DeepSHAP function, similarly to the KernelSHAP
function, has required the implementation of a wrapper around the neural network,
to correctly translate the features generated and sent by DeepSHAP into something
to feed the neural network. Among the other things, the DeepSHAP needs two
elements to compute the gradient and thus the DeepLift values, and they are the
logits emitted from the neural network and the embedding fed as input. This
required two little changes from what was used so far. First of all, the neural
network source has been modified to output the embeddings, thus the embeddings
(and not the tokens) are fed to the neural network. Because of the nature of BERT,
and the fact that DeepSHAP was not designed for working with NLP architectures,
a little change has been applied to provide compatibility. The edit was applied to
the DeepSHAP source code and it concerns the skip of two types of layers in the
accounting of the contributions of the DeepLift values, and they are the layer types
linear_1d and nonlinear_1d.

DeepSHAP requires only one hyperparameter, it is the background samples size
and it plays the same role as in KernelSHAP. In the experiments performed, the
value has been set to 40 for performance reasons.

In the figure 7.26, the analyzed sentence is the false positive "@benshapiro
Fuck you pussy".

Figure 7.26

In this sentence, DeepSHAP correctly individuates the word "pussy" as of
greater importance for the explanation, and correctly assigns a negative score to
the masculine name "Ben". However, the word "fuck" is weirdly considered as
negatively impacting the negative class.

Another example is presented in the figure 7.27, where the sentence analyzed is
the false positive "Fuck yeah you pussy boy".

Similarly, the word "pussy" is considered an important token for the determina-
tion of the positive class. However, differently from the previous example, the word
"fuck" is playing an even more decisive role, being considered of greater importance

70

Experiments and Results

Figure 7.27

than "pussy".
To sum up, DeepSHAP shares most of the advantages and disadvantages of

KernelSHAP. The main difference is the execution time, which amounted to 8
minutes on a T80 GPU and at 32 minutes on an average laptop CPU. DeepSHAP
offers an explanation similar to KernelSHAP, but since it required less impacting
modification on the core of the algorithm to be adapted on BERT, the theoretical
foundation that bases the working are stronger in this context. Even if the quality is
low in both of the explainers, if a comparison between the two has to be performed,
DeepSHAP may be preferred over KernelSHAP.

7.4.8 MiCE
MiCE stands for Minimal Contrastive Editing and it is a novel algorithm for
producing contrastive explanations of model predictions. MiCE is meant for
providing an explanation of NLP neural networks, and its initial implementation
was based on BERT.

One of the biggest innovations brought by MiCE in the form of the provided
explanation. Indeed, MiCE does not provide an importance score for each token
of the sentence, as other explainers. Instead, MiCE provides an explanation by
producing a list of counterfactual sentences that flip the decision. If a sentence is
classified as positive by the neural network, thus, MiCE tries editing each word
of the sentence, then couples and triples, until the edited sentence is classified as
negative. There are some constraints that edits must respect: they have to be
minimal, thus not longer than required and as similar as possible to the original
sentence, and they have to be fluent and natural. If the produced sentence makes no
sense at all it is then discarded, differently than what happens with KernelSHAP.

The implementation of MiCE used for this thesis is based on a fork of the
allenai work, in the GitHub repository under the name of "mice". The changes
applied to the original code include the addition of the used dataset, and a couple
of optimizations required to reduce the computational cost of the explanation, such
as the decreasing of the batch size and the limit of the number of training samples.
These changes reduced the quality of the explainer but allowed the execution in
reasonable times. Indeed, among all the trained explainers, MiCE has by far the
highest computational cost and the highest lead time. The first stage of MiCE,
which trained the editor, required more than 10 hours, while the second stage
exceeded 12 hours. Thus, the total amount of time for the explanation of the whole

71

Experiments and Results

test dataset amounted to more than 22 hours.
After the second stage, a further step is required to transform the generated

metadata into a human-readable piece of output. And it can be either visualization
of the generated contrastive edits in a notebook, or the generation of a comma-
separated values file that contains a list of different contrastive explanations for
each sentence.

The CSV file was mainly used for this thesis, and it presents a list of all the
sentences included in the test dataset, and for each sentence, a variable number of
contrastive edits applied to flip the decision. Each contrastive edit is then sorted
from the most minimal to the least minimal.

The word or the set of words that caused the flip is not immediately indicated,
and they have to be deducted by observing the difference between the edited
sentence and the original sentence. In the example visible at the table 7.1, the list
of the first ten contrastive edits applied to the sentence "Fuck yeah you pussy
boy" are shown.

Fuck yeah you idiot boy
Fuck yeah you dude boy
Fuck yeah you drunk boy
Fuck yeah you stupid boy

Fuck yeah you a boy
Fuck yeah you fat boy

Fuck yeah you jady boy
Fuck yeah you bloody boy
Fuck yeah you creepy boy
Fuck yeah you cocky boy
Fuck yeah you sneaky boy

Table 7.1

The list of sentences proposed by MiCE, as visible from the reported table,
is contrastive since they present the opposite meaning of the original sentence.
Even if MiCE does not propose an importance score for each token, from the list
presented above is possible seeing that only the word "pussy" is changed across all
the sentences, thus one could conclude that it is the feature of greater importance
for the determination of the positive class.

All the proposed contrastive sentences are fluent and minimal, and they are
sentences that totally would make sense in a not misogyny context. Another
example is reported in the table 7.2, where the contrastive sentences related to the
false positive "Dont call them hysterical women." is presented.

Here again, ten contrastive sentences are reported, and they are sorted from

72

Experiments and Results

Dont call them idiotic women.
Dont call them stupid women.
Dont call them real women.
Dont call them fuck women.

Dont call them fucking women.
Dont call them ugly women.
Dont call them hot women.
Dont call them fat women.

Dont call them racist women.
Dont call them bad women.

Dont call them lyrical women.

Table 7.2

the most minimal to the least minimal. In this case, as in the one reported in the
table 7.1, the same word for each proposed sentence has changed, and it is the one
related to "hysterical". This demonstrates that, in order to obtain the classification
towards the negative class, the only word that needs to be changed is "hysterical",
and not "woman" as someone could suppose.

In the end, a false negative is analyzed. The contrastive sentences for the
example "Nah yall stay in the kitchen and make bariis and baasto" is
analysed in the table 7.3

Nah girlsall stay in the kitchen and make bariis and baasto
Nah women should stay in the Punjab and make bariis and baasto

Nah girls stay in the UAE and make bariis and baasto
Nah women stay in the mosques and make bariis and baasto

Nah women should get in the kitchen and make bariis and sabhaisasto
Nah women stay in the Muslim communities and make bariis and baasto

Nah womenall stay in the same room and make bariis and baasto
Nah women in the street and make bariis and wadeasto
Nah ladies in the streets and make bariis and bardisasto
Nah ladies in the desert and make bariis and baridasasto

Nah fuck them in the desert and make bariis and guptasasto

Table 7.3

With the only exception of the last contrastive sentence, all the first 9 proposed
examples replaced the token "y" of the couple "y, #all" with either "women" or

73

Experiments and Results

"ladies". This demonstrates how the absence of a reference to the female sex was
the main problem in the misclassification of the example. The sentence "stay in
the kitchen", if asked to a human, is obviously addressed to women and would be
without a doubt considered a misogyny statement. However, for a neural network,
this could not appear as obvious, since there is not a reference to women and the
invitation to stay in a neutral place like a kitchen may not seem as toxic as thought.
Considering this, the mistake committed by BERT is overall understandable. The
word "kitchen" has been sometimes changed across the proposed sentences and
replaced with "UAE", "desert", and "street".

Analyzing both the training dataset and the test dataset, indeed, one could
easily find that these are the place where a woman gets cursed to be raped the
most in a toxic context, for this reason when MiCE looked for a physical place
to substitute the word "kitchen" with, these ones get selected. This makes clear
how "kitchen" is not a strong enough word for driving the classification towards the
positive class. In addition to that, in most of the sentences proposed by MiCE, the
word kitchen is replaced with "Punjab", "UAE", or "Muslim communities". This
important fact demonstrated that the neural network assumed a bias towards the
people living in these lands or communities. The assumed bias can be explained
by the fact that these groups of people are the most mentioned when users use
misogyny as an offensive weapon. These findings shed light on the exploration
of bias in hate speech detection and demonstrate how a contrastive sentence can
detect a bias out of the context that one was analyzing at that moment.

Finally, MiCE demonstrates to be a powerful tool for bias detection and correctly
provided interesting insights in all the analyzed cases. Proposing the output as a
list of contrastive sentences could be a mighty aspect for the analysis conducted by
final users that are not insiders in the machine learning field. Its high time and
resource requirements could be a disincentive in its use, but the originality and the
quality of the result could justify the decision. The overall explanations provided
by MiCE are thus considered satisfactory.

7.4.9 Comparison among explainers
In this section is proposed a comparison among the explainers using the same
sentence to better highlight the differences among explainers and ascertain how
different explainers treat in a more or less similar way the same token of that
sentence.

The selected sentence for the comparison is "@minimaslany What if she
enjoys it? I think the days where women are forced to stay in the kitchen,
not work, etc are over.", since it offers different elements to investigate within
the same sentence, such as rhetorical questions and a meaning flipping present in
the last two tokens.

74

Experiments and Results

In the figures 7.28 and 7.29 are visible respectively the attention maps and the
effective attention maps related to the selected sentence. In both cases, the weights
composing the images are extracted from the 11th layer of the BERT architecture,
and the average across the heads has been executed.

Figure 7.28: Attention map of the 11th layer, averaging across heads

From the images, is easily visible how most of the attention is focused on the
token "women", while a smaller amount of attention is dedicated to the token "are
over", which would be important for the attribution of the negative class. The
same information is expressed by both the attention maps since any new pattern
emerges from the effective attention map, if not a higher contrast that makes more
evident the lines, caused by the a smaller amount of attention on the [SEP] token.
Similarly, also when obtaining the explanation from SOC is visible a focus on the
same tokens, as it’s visible from the figure 7.30. However, in this case, even if the
focus is evident on the single token "women", it is still greater if considering the
group of tokens "where women are forced", and a relevant focus is also present for
the group of tokens "what if she enjoys it".

A similar result was provided by HTA, visible in figure 7.31, where however

75

Experiments and Results

Figure 7.29: Effective attention map of the 11th layer, averaging across heads

Figure 7.30: SOC explanation

a high focus has been revealed also on the "@" token. This can be explained
because, sometimes the neural network relies substantially on the tag present at
the beginning of the sentence to determine whether the sex of the person with
whom someone is speaking is female or male.

In the HTA explanation, a relevant importance has been attributed to the tokens
"women", consistently with other explainers. Also the tokens "kitchen", "forced",
and "enjoy" are relevant for the explanation according to HTA, and the token "etc.",
for some not clear reason is playing a role.

In the DeepSHAP explanation, in figure 7.32 is clearly visible as the explainer
struggled to provide meaningful insight into the neural network. In this case,
according to DeepSHAP, the comma character is playing the most decisive role

76

Experiments and Results

Figure 7.31: HTA explanation

in the attribution of the positive class. Obviously, this token is not playing any
substantial role and thus the explainer cannot be considered reliable.

It’s important to notice how also the padding tokens got assigned a relatively
high Shapley value, while the expected amount for those tokens was 0. In this
graphical representation of the DeepSHAP output, as well as in the KernelSHAP
output, a yellow background has been assigned to tokens with a negative score
to make easier the observation of the general trending. On the other hand, in
KernelSHAP explanation (fig. 7.33), the clear pattern already seen in the other
explainers can be observed. Indeed, the token "women" played the most decisive
role according to this explainer, but a relevant role for the determination of the
positive class is also determined by the "she" and "kitchen" tokens. In this case,
the empty cells that filled the word count up to 64, got a Shapley value close to
zero. For this reason, in this case, KernelSHAP is considered more reliable than
DeepSHAP.

In table 7.4, the first ten contrastive sentences related to the selected sentence
and produced by MiCE are shown. According to MiCE, the word "kitchen" is
driving the decision to the positive class, and thus it must be replaced to obtain the
classification of the sentence as not misogyny. It’s important to notice how another
set of tokens that is consistently changed across the contrastive sentences is the one
related to the tag. Indeed, the original sentence reports the tag @minimaslany",
which is not kept in any of the counterfactual explanations.

Analyzing the lower rows of the table, which concerns the less minimal contrastive
explanations, is clear how also the token "enjoys" needs to be changed to reach the
negative classification, and it is replaced often with "made" and often with "had",
or other neutral verbs. In the end, the lead time to obtain an explanation, starting
from the neural network already fine-tuned, is reported in table 7.5.

In this table, one can observe how attention maps, effective attention maps,
and hidden token attribution scores have a lead time comparable with inference
from the neural networks, for this reason, they can be used on the fly during the
development, for testing the good nature of the dataset or of the pipeline. Instead,
DeepSHAP and SOC, even if not immediate, can produce interesting results in
a reasonable amount of time. Indeed just a few minutes are required for the
explanation, and if that one is reliable and useful, can predictably be worth the

77

Experiments and Results

time consumed. Last, MiCE and KernelSHAP required hours for the execution,
and this can be considered a problem whether the explanation needs to be repeated
often or obtained in short times, or when there are not the resources required for
the execution of the explanation.

With the only exceptions of DeepSHAP and MiCE, all the neural networks
agreed that Women is the most important token for the determination of the
positive class. However, the two exceptions are not in equal measure different.
While DeepSHAP was not able to provide a meaningful explanation how the
inner working of the neural network, MiCE aimed to produce a different type of
explanation, which is counterfactual and not importance-based, and this can justify
its different behavior. Even if MiCE provided a different explanation, does not
mean that it was useless or did not provide important insight. Instead, MiCE
can be considered complementary to importance-based explanations and used to
observe aspects of the neural network, besides unintended biases, that cannot
be observed in other explainers. For this reason, MiCE can be considered an
important tool and must be used whenever possible. Effective attention maps did
not provide any further useful piece of information besides the one already provided
by raw attention maps. Since there is not a library that easily implements this
transformation, the obtained explanation does not worth the used time for the
implementation. Raw attention maps provided some useful insights, even if a single
layer is not enough to express all the potential information contained in attention
maps, not even when an average is performed across the heads, thus only twelve
images need to be analyzed for an explanation. Raw attention maps are useful for
detecting the biases and for exploring the inner working of the neural network, but
their analysis should be left to developers and eventually proposed to not insiders
as a report. For this reason, it’s not clear if the attention maps can be defined
as an explanation, as reported in the bibliography, or it is just a useful tool for
investigation. In any way, their use is encouraged and justified, also considering
their short lead time.

KernelSHAP has been demonstrated reliable in the experiments performed, even
if the scarce theoretical foundations, caused by the changes applied to the algorithm,
do not guarantee a good result in other tasks or other datasets. However, its use
can be justified in case different explanations of different neural networks must
be compared, and thus Shapley values are used as a common measure among the
neural networks. On the other hand, HTA has been demonstrated to be reliable
in all the analyzed cases and did not cast a shadow over its reliability under any
circumstances. The HTA method is based on gradient attribution, which was not
considered in any other explainers with the only exception of DeepSHAP, which
however obtained lower performances.

Considering that HTA can be executed on the fly since the gradient information is
an output of the neural network, and its implementation is also easy and immediate,

78

Experiments and Results

its use is encouraged and advised in almost all cases. In the end, SOC provided
useful insight on the combination of tokens, which was missing in all the other
explainers. The importance attributed to a single token is not enough for the
detection of biases in many cases, because the importance of a part of the sentence
is not given by two single tokens considered separately, but if and only if those
tokens are combined. A useful investigation of neural network biases cannot be
exempted by the use of SOC or similar hierarchical explainers.

Figure 7.32: DeepSHAP explanation

Figure 7.33: KernelSHAP explanation

79

Experiments and Results

@sharlenecrowson What if she enjoys it? I think the days where
women are forced to stay in the streets, not work, etc are over.
@RenieSaunders What if she enjoys it? I think the days where
women are forced to stay in the home, not work, etc are over.
@jakealannolly What if she made it? I think the days where

women are forced to stay in the streets, not work, etc are over.
@BiraKaiser What if she made it? I think the days where

women are forced to stay in the homes, not work, etc are over.
@realDonaldTrump What if she had it? I think the days where

women are forced to stay in the cold, not work, etc are over.
@smaela_cannon What if she gets it? I think the days where

women are forced to stay in the country, not work, etc are over.
@AlfredHenry What if she did it? I think the days where

women are forced to stay in the house, not work, etc are over.
@ClaintyRomette What if she likes it? I think the days where
women are forced to stay in the home, not work, etc are over.
@senjawmoon What if she harmed it? I think the days where

women are expected to stay in the home, not work, etc are over.
@naeieditho: What if she said it? I think the days where

women are forced to stay in the country, not work, etc are over.
@themrsamyassangedd What if she reacted like it? I think the

days where women are forced to stay in the house, not work, etc are over.

Table 7.4: MiCE explanation

Att. maps Eff. Att. maps SOC HTA KernelSHAP DeepSHAP MiCE
0.046 0.048 1412.11 0.046 13 202.92 486.61 79 200.00

Table 7.5: Lead time to obtain execution. Time expressed in seconds

80

Experiments and Results

7.5 Analysis of vertical patterns
An analysis has been conducted to check if there’s a correlation between vertical
patterns and false-positive rates.

The analysis is justified by the fact that, often, a vertical pattern in an attention
map is caused by a bias of the social network, that after the training became too
sensitive to that specific token, and this can bring to a false positive. Thus, an
experiment has been set up to prove or discharge this hypothesis.

In order to prove that a correlation subsists, an algorithm has been developed
for the detection of the vertical patterns, thus for each attention map obtained
from the inference of all the sentences of the test dataset, the vertical patterns have
been counted. If that image belonged to a false positive, then the counter related
to the false positive has been increased. Similarly, if that image belonged to a false
negative, a true positive, or a true negative, the related counter has been increased.

The definition of vertical pattern was not previously expressed in a clear and
objective way, not even in the paper that proposed the concept, where the early
classification of whether a specific pattern was vertical or not was left to manual
annotation.

For the purpose of this thesis, the concept of vertical pattern has been defined in
the following way: a pattern is vertical with respect to a column if, for that column,
the ratio between the values of the column above a certain threshold and the length
of the column is above another threshold. The same concept, using α and β to
indicate the two thresholds, can be defined mathematically in the following way:

qN
i=0 1(vi > α)

N
> β (7.4)

In the above equation, N is the height of the column, 1(...) is a function that
evaluates the condition and its value is 1 if it is true and 0 otherwise, vi are the
values contained in a column, α and β are parameters of the definition. The value
of α has been obtained increasing the contrast of the attention map as much as
possible, using the torch preprocessing features. Instead, the value of β has been
voluntarily left unspecified and the change in the false positive count varying this
parameter has been observed and analysed, in order to find the value that maximize
the count for a given β.

If the count of the vertical pattern, as defined above, is greater among the false
positives rather than other indicators, it means that a vertical pattern is more
common when observing a false positive with respect to a false negative, a true
positive, or a true negative.

To make the measures comparable, the count of vertical pattern related to
false-positive has been divided for the false positive rate, and similarly, all the
other counts have been divided for their respective rate. In this way, the measure

82

Experiments and Results

Figure 7.34: The same attention map before and after increasing the contrast

has been normalized and does not depend on the number of instances classified
correctly or the error committed by the neural network.

The effective attention maps of each head, for each sentence of the whole dataset
has been utilized. The count ratio has then been plotted using matplotlib, varying
the parameter β. The result is visible in the figure 7.35. To make the values more
comparable, a log transform has been applied to all the values before plotting.

As it is visible in the figure, independently by the β value, thus by the definition
of vertical pattern, there is a difference in the count of false-positive and other
indicators. The false positives and the true negatives appear to be strictly related

83

Experiments and Results

Figure 7.35: Plot of the normalized vertical pattern counts varying the parameter
β

to vertical pattern, while the false negatives and the true negatives appear less
related. Since in this thesis the bias is investigated, a focus on the only error has
been performed, and in figure 7.36 only the count of the false negatives and the
false positives is reported.

The fact that also the true positive are correlated to vertical pattern should
not be surprising, since when the neural network assumes a bias towards a certain
token chances are that in most of the cases the bias will lead to a correct prediction.

In the end, in the figure 7.37, the difference between the two curves has been
plotted, and it is evident how, independently by the parameter β, there is a
difference of 20% between the count of vertical patterns in false positives and
false negatives. The difference is relevant and can lead to the conclusion that a
correlation exists and it has been proved, even if with the limits of this research
that has been executed on a single dataset. Even if vertical patterns are more
common in false-positive samples, hardly this finding can be used to detect the
bias, since the difference in the count ratio is not large enough to draw conclusions

84

Experiments and Results

Figure 7.36: Plot of the normalized vertical pattern counts, focusing on false
positives and false negatives, varying the parameter β

about bias beyond doubt.
A more extended research aimed to prove this hypothesis in other datasets or in

other tasks is encouraged. The conditions leading to this result can be the subject
of discussion and research.

7.6 Correlation among explainers
In this section, an exploratory analysis of the correlation among explainers is pro-
posed. During the experiments performed for this thesis, many different explainers
have been analyzed and used. Each explainer had a different internal working, and
few similarities were found between each other.

Often, the explainers were based on similar concepts, as HTA and DeepSHAP,
which both relied on the gradient attribution mechanism. In other cases, the
proposed explainers were based on completely new concepts with few relationships

85

Experiments and Results

Figure 7.37: Plot of the difference of normalized vertical pattern counts related
to false positive and false negative, varying the parameter β

with the other ones. For this reason, it’s not clear if the explainers are expressing
the same explanation, if two or more of the proposed algorithms just show two
aspects of the same result, or if in some circumstances they can be considered
equivalent.

If that would be the case, one of the algorithms could be considered redundant,
and the use of both of them may be avoided since they would bring in a too similar
result. On the other hand, if two explainers are loosely correlated, they can be
used together, in a complementary way, because they are expressing two different
types of correlation. This analysis has been conducted on the ten sentences selected
in chapter 7.1, and it made large use of spreadsheets for annotating explanations
and calculating the correlation. The annotation of the explanations has been
performed manually, by observing the output of the different algorithms. The
only two exceptions concern the attention maps and the effective attention maps.
Because of the high number of images to analyze, an algorithm has been developed
for printing, for each token in a sentence, what is the amount of vertical patterns

86

Experiments and Results

related. The correlation has been calculated filling a matrix, wherein the horizontal
ax appears all the tokens composing each of the ten sentences, while in the vertical
ax appear the 7 considered explainers. The matrix is filled with 0 if the explainer
does not consider the token important, with 1 if the explainer does consider the
token important, and with -0.25 if the explainer does consider the token as related
to the negative class, in the case the explainer includes this eventuality.

The reason that led to assign -0.25 and not -1 for the negative explanation is
due to the fact that, in that case, two explanations are very similar but provided by
two explainers, one of which includes negative scores and the other does not, would
result as completely different and uncorrelated. On the other, would be wrong to
assert that the two explainers are strictly correlated. Assigning -0.25 in place of -1,
instead, the two explainers would result in just slightly correlated, and this is the
desired behavior. For simplifying the filling of the matrix, since some explainers
as MiCE did not report a score, only the values 1, 0, and 0.25 were used, with no
intermediate values.

In the case of MiCE, the words that have changed in the contrastive explanation
got assigned 1, while the other ones got assigned 0. In the case of SOC, all the
words having a red background, even slight, got 1 while the ones having an azure
background got -0.25. All the other ones, instead, got 0.

In a few cases, the explainer did not use tokens but instead worked at word-level,
such as happened in KernelSHAP. For these cases, in order to calculate accurately
the correlation, the assigned score has been distributed to all the tokens composing
the word.

The scores for each explainers have been inserted in a matrix where the columns
were reporting the 7 explainers used in this chapter, and the rows were reporting
the concatenation of the token of the 10 sentences selected from the misogyny
dataset. This results in a big matrix of size 7 × 204. After collecting and inserting
all the scores for all the explainers, the Pearson correlation coefficients have been
calculated between couples of vectors, where for "vector" is meant the concatenation
of scores for all the tokens of all the sentences considering a single explainer.

corr(A, B) = cov(A, B)
σAσB

(7.5)

Where cov(A, B) is the covariance, which is calculated as:

cov(A, B) = E [(A − µA) (B − µB)] (7.6)

The calculation of the Pearson correlation coefficient has been repeated for each
couple of explainers, and the result is a symmetrical 7×7 correlation matrix, shown
in figure 7.38. Analyzing the correlation matrix is evident the correlation between
attention maps and effective attention maps is consistent. This finding had already

87

Experiments and Results

Figure 7.38

emerged in the qualitative analysis proposed in the previous section, where the
fact that in almost all the cases attention maps and effective attention maps were
leading to the same pattern in the plot of the weights. This result makes it still
more evident and out of doubts that effective attention maps can be productively
used only when handling longer sentences, which are more common in other types
of tasks that are not classification, thus not the task analysed in this research. For
this reason, it is hard to believe that using attention maps and effective attention
maps together can be in any way useful, and their combined use is not encouraged.

It is considerable to notice that there is not a correlation between the two SHAP
variants: DeepSHAP and KernelSHAP. Their Pearson coefficient is equal to 0.1198,
which corresponds to a slight correlation but it is not significant. Also, the HTA
and the DeepSHAP correlation index is lower than expected, and this is not for
granted since they are both methods based on gradient attribution. The result can
be interpreted as the fact that the use that they make of the gradient information
is too different to lead to the same result.

The only two negative scores have been reached by the couples "KernelSHAP
- Effective attention maps" and "KernelSHAP - SOC", which scored respectively
−0.100 and −0.174. Even if negative, the score is too close to zero to state that
there is a negative correlation between explainers.

In conclusion, this research showed that different explainers can be efficiently
used together and they will lead to different explanations, that are not better or
worse with respect to each other. This piece of research did not aim to ascertain
the quality of an explainer. Two explainers can result to be not correlated as a
result of the fact that one is high quality and the other one is bad quality, or as
the result of the fact that they are both high quality but they are representing two
different types of explanation. The only exception that reported a high correlation
is the couple "attention maps - effective attention maps". All the other explanation
algorithms are not correlated nor redundant, and they can be used altogether.

Also this research presented limitations, given by the fact that only one dataset
has been considered and a restricted amount of sentences has been used. All the
scores have been manually annotated and this prevented the scale of the research to
higher amounts of sentences. The exploration of novel methods for the annotation

88

Experiments and Results

of the explanations is encouraged.

89

Chapter 8

Conclusions and further
steps

The experimental part of this thesis is composed of three different parts. In the
first part, an overview of the different explainers was proposed. After selecting
ten sentences, seven false positives, and three false negatives, the output of the
different explainers was analyzed and compared to gain meaningful insights into
the bias and the reason for the neural network error.

Seven different explanation algorithms were analyzed: Attention Maps, Effective
Attention Maps, SOC, HTA, DeepSHAP, KernelSHAP, and MiCE. Most of the
explanatory algorithms used were able to capture the bias and show it to the user
in the form of a group of tokens that were relevant enough, in contrast to the overall
context, to drive the decision for the positive or negative class. Attention maps
have proven best for early detection during the development time, while SOC, HTA,
and MiCE have demonstrated their potential and ability to show how a decision
was made, altogether with a clear output on which decisions about bias mitigation
can be based. In the second part, the focus returned to the attention maps, and an
analysis was conducted to confirm the hypothesis that vertical patterns are more
prevalent in false-positive samples. The analysis results show that the hypothesis
is confirmed, but the correlation is loose and cannot be used for the early detection
of bias based on the number of vertical patterns alone. Finally, in the third part,
the correlation between the used explainers was investigated. The goal of this
experiment was to check whether two or more of the explainers are correlated,
i.e., express the same explanation and whether they are redundant. The only
two explainers that have been shown to be closely correlated are the attention
maps and the effective attention maps. The other explainers, on the other hand,
are only slightly correlated or not correlated at all and can therefore be used
complementarily to investigate different aspects of the neural network.

90

Conclusions and further steps

Analyzing the ten sentences and seeing how the output of the explainers was
analyzed along with the other sentences that were and were not correctly classified
during the experiments, altogether with the ones which are not reported in this
thesis, it becomes clear how the words referring to the female gender, as wom-
an/women, female, adjectives such as hysterical, slut, bitch, pussy, places such as
kitchen, desert and words, used in toxic contexts, such as rape, are most likely
to capitalize the decision and be considered an unintended bias for the neural
network in the misogyny context. Instead, the words immigrant, rapefugee, and
#buildthewall had the greatest impact in the hate speech against immigrants
context.

Although focusing on these words can lead to overall good accuracy in the
classification task, as shown by the case in the example that achieved over 72%
accuracy, the false positives emerging from the unintended bias cannot be considered
acceptable and could be a cause for serious concern, especially if the unintended
bias is caused by neutral words such as "woman" or "kitchen" that are used in a
positive context in most cases.

The reason why these neutral words are considered critical for determining the
positive class may be due to the dataset used, which does not contain enough
similar examples that refer to the male counterpart. Given the good performance
achieved by language models such as word2vec, it is suggested to investigate the
impact that the dataset augmentation may have on the unintended bias, which is
then reflected in the false positive rate and the false-negative rate.

Indeed, when the dataset is augmented, even artificially, it is hypothesized that
the neural network does not recognize any more specific words as belonging only
to a single context, which could have a positive effect on accuracy and recall. This
analysis is left as a further investigation and it is not addressed in this paper. It is
also important to consider that most of the unintended biases are expressed as a
focus on a single token or on a limited set of tokens. This is particularly evident
when analyzing the attention maps and ascertaining that often the attention is not
uniformly distributed among tokens, but tends to form vertical patterns, especially
for the false positives as demonstrated in the second part of this thesis.

For this reason, further potential for improvement can be found in the mitigation
of the attention peaks through regularization during the training. This regularisa-
tion can be expressed as a penalization for the peaks, which should lead to flatter
attention maps and fewer unintended biases. Exploration of this hypothesis is left
as a further improvement.

91

Bibliography

[1] Yonghui Wu et al. «Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation». In: arXiv preprint
arXiv:1609.08144 (2016) (cit. on p. 2).

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. «Neural machine
translation by jointly learning to align and translate». In: arXiv preprint
arXiv:1409.0473 (2014) (cit. on p. 9).

[3] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. «Effective
approaches to attention-based neural machine translation». In: arXiv preprint
arXiv:1508.04025 (2015) (cit. on p. 9).

[4] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. «Attention is all you
need». In: Advances in neural information processing systems 30 (2017) (cit.
on p. 10).

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. «Bert:
Pre-training of deep bidirectional transformers for language understanding».
In: arXiv preprint arXiv:1810.04805 (2018) (cit. on p. 13).

[6] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen. «Deberta:
Decoding-enhanced bert with disentangled attention». In: arXiv preprint
arXiv:2006.03654 (2020) (cit. on p. 13).

[7] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christo-
pher Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word
representations. 2018. url: http://arxiv.org/abs/1802.05365 (cit. on
p. 14).

[8] E Burns. «In-Depth Guide to Machine Learning in the Enterprise». In:
Techtarget. March (2021) (cit. on p. 17).

[9] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and
Adam T Kalai. «Man is to computer programmer as woman is to homemaker?
debiasing word embeddings». In: Advances in neural information processing
systems 29 (2016) (cit. on p. 17).

92

http://arxiv.org/abs/1802.05365

BIBLIOGRAPHY

[10] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias:
There’s software used across the country to predict future criminals. And it’s
biased against blacks. ProPublica, May 23. 2016 (cit. on p. 17).

[11] William Warner and Julia Hirschberg. «Detecting hate speech on the world
wide web». In: Proceedings of the second workshop on language in social media.
2012, pp. 19–26 (cit. on p. 17).

[12] Lucas Dixon, John Li, Jeffrey Sorensen, Nithum Thain, and Lucy Vasser-
man. «Measuring and mitigating unintended bias in text classification». In:
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society.
2018, pp. 67–73 (cit. on p. 17).

[13] Michael Wiegand, Josef Ruppenhofer, and Thomas Kleinbauer. «Detection
of abusive language: the problem of biased datasets». In: Proceedings of
the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). 2019, pp. 602–608 (cit. on p. 18).

[14] Aymé Arango, Jorge Pérez, and Barbara Poblete. «Hate speech detection
is not as easy as you may think: A closer look at model validation». In:
Proceedings of the 42nd international acm sigir conference on research and
development in information retrieval. 2019, pp. 45–54 (cit. on p. 18).

[15] Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan
Goyal, and Animesh Mukherjee. «Hatexplain: A benchmark dataset for ex-
plainable hate speech detection». In: arXiv preprint arXiv:2012.10289 (2020)
(cit. on p. 18).

[16] Vivian Lai, Jon Z Cai, and Chenhao Tan. «Many faces of feature importance:
Comparing built-in and post-hoc feature importance in text classification».
In: arXiv preprint arXiv:1910.08534 (2019) (cit. on p. 19).

[17] Piyawat Lertvittayakumjorn and Francesca Toni. «Human-grounded eval-
uations of explanation methods for text classification». In: arXiv preprint
arXiv:1908.11355 (2019) (cit. on p. 21).

[18] Sarthak Jain and Byron C Wallace. «Attention is not explanation». In: arXiv
preprint arXiv:1902.10186 (2019) (cit. on p. 23).

[19] Sarah Wiegreffe and Yuval Pinter. «Attention is not not explanation». In:
arXiv preprint arXiv:1908.04626 (2019) (cit. on p. 23).

[20] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. «Re-
vealing the dark secrets of BERT». In: arXiv preprint arXiv:1908.08593
(2019) (cit. on p. 24).

93

BIBLIOGRAPHY

[21] Greg Ridgeway, David Madigan, Thomas Richardson, and John O’Kane.
«Interpretable Boosted Naıve Bayes Classification.» In: KDD. 1998, pp. 101–
104 (cit. on p. 27).

[22] Cynthia Rudin. «Please stop explaining black box models for high stakes
decisions». In: Stat 1050 (2018), p. 26 (cit. on p. 28).

[23] Tao Lei, Regina Barzilay, and Tommi Jaakkola. «Rationalizing Neural Pre-
dictions». In: Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing. Austin, Texas: Association for Computational
Linguistics, Nov. 2016, pp. 107–117. doi: 10.18653/v1/D16-1011. url:
https://aclanthology.org/D16-1011 (cit. on p. 28).

[24] Christoph Molnar. Taxonomy of Interpretability Methods. christophm.github.io.
url: https://christophm.github.io/interpretable-ml-book/taxonom
y-of-interpretability-methods.html (cit. on p. 29).

[25] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. «" Why should i
trust you?" Explaining the predictions of any classifier». In: Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery and
data mining. 2016, pp. 1135–1144 (cit. on p. 30).

[26] Scott M Lundberg and Su-In Lee. «A unified approach to interpreting model
predictions». In: Advances in neural information processing systems 30 (2017)
(cit. on p. 30).

[27] Alexis Ross, Ana Marasović, and Matthew E Peters. «Explaining nlp models
via minimal contrastive editing (mice)». In: arXiv preprint arXiv:2012.13985
(2020) (cit. on p. 33).

[28] Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and Xiang Ren. «Towards
hierarchical importance attribution: Explaining compositional semantics for
neural sequence models». In: arXiv preprint arXiv:1911.06194 (2019) (cit. on
p. 33).

[29] Damian Pascual, Gino Brunner, and Roger Wattenhofer. «Telling BERT’s
full story: from Local Attention to Global Aggregation». In: arXiv preprint
arXiv:2004.05916 (2020) (cit. on p. 51).

[30] Gino Brunner, Yang Liu, Damian Pascual, Oliver Richter, Massimiliano
Ciaramita, and Roger Wattenhofer. «On identifiability in transformers». In:
arXiv preprint arXiv:1908.04211 (2019) (cit. on pp. 57, 60, 64).

[31] Chandan Singh, W James Murdoch, and Bin Yu. «Hierarchical interpretations
for neural network predictions». In: arXiv preprint arXiv:1806.05337 (2018)
(cit. on p. 61).

94

https://doi.org/10.18653/v1/D16-1011
https://aclanthology.org/D16-1011
https://christophm.github.io/interpretable-ml-book/taxonomy-of-interpretability-methods.html
https://christophm.github.io/interpretable-ml-book/taxonomy-of-interpretability-methods.html

BIBLIOGRAPHY

[32] Brendan Kennedy*, Xisen Jin*, Aida Mostafazadeh Davani, Morteza De-
hghani, and Xiang Ren. «Contextualizing Hate Speech Classifiers with Post-
hoc Explanation». In: Proceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics. to appear (cit. on p. 61).

95

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Thesis objective
	Organization of the elaborate

	Background
	Introduction to Natural Language Processing
	Attention based networks

	BERT and the hate speech context
	BERT: a Transformer based model
	Hate speech and biased networks

	Related works
	Evaluation of intepretability approaches
	Attention as explanation
	Recurrent patterns in attention maps

	Overview of explanation techniques
	Explanation in Machine Learning
	Explanation taxonomy
	LIME
	Shapley values
	SHAP
	MiCE
	SOC

	Methodology
	Approach

	Experiments and Results
	Dataset
	Training
	Selection of sentences
	Comparison of explainers
	Human explainer
	Attention
	Effective attention
	SOC
	HTA
	KernelSHAP
	DeepSHAP
	MiCE
	Comparison among explainers

	Analysis of vertical patterns
	Correlation among explainers

	Conclusions and further steps
	Bibliography

