
POLITECNICO DI TORINO

Master of Science
Computer Engineering

Master’s Thesis

Demand model generation for shared
mobility: a KDE approach

Supervisor Candidate
Prof. Luca Vassio Maurizio Pinna

Co-Supervisors
Prof. Marco Mellia
Prof. Danilo Giordano
MSc. Alessandro Ciociola



April 2022

2



Summary

In recent times important changes on how people move around the cities
have been happening. The expression “smart mobility” can well describe
it. This definition includes: technology, infrastructures (park slots, charging
stations, traffic signs, vehicles), mobility solutions and people. The aim is
to lower the traffic and pollution, to create smart traffic flows with no in-
terruption, and also boost the economies of scale in order to give everyone
greater access to mobility. As a matter of fact, energy consumption is by far
the greatest source of CO2 emissions, with 76% worldwide. This includes,
among others, road transportation with 12.5%. In this optic, European
Union has set the objective of reducing by 30% the emissions compared to
1990, by 2030. Furthermore, it has been proposed starting from 2035, an ef-
fective ban for new fossil-fuel cars, a clear signal to the car makers in order to
accelerate their innovation on electric vehicles. In this context several busi-
ness models inspired by sharing economy and Information Communication
Technology grew up.

Vehicle sharing is the rental of vehicles by the hour or by the minute
as opposed to traditional day or week-long rentals. Members of the sys-
tem have access to a fleet of vehicles that they can rent on an as-needed
basis. The fee charged is based on the length of the rental in hours or min-
utes. With the so called free floating vehicle sharing, where vehicles do not
have home parking spaces but are instead can be parked anywhere within
a city’s operating area. The ever-increasing installation of IoT object leads
to a consequent generation of BigData. IoT and Big Data are strictly in-
terconnected, originating a continuous cycle: data creation from IoT, data
collection and analysis, with big data analytics pipelines, new configura-
tion of the manufacturing and maintenance processes with the information
extracted from data.

In this thesis, we created a demand model that is capable to describe
properly the free floating services users habits. The aim is to use this to
extend an existing data-driven simulator named ODySSEUS, developed by
Smart Data research group from which this work is supervised. The model
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is based on Poisson Processes for time domain, and a four dimension Ker-
nel Density Estimate (KDE) for space. We use different datasets from the
most important car sharing company in Europe, cleaning and applying dif-
ferent pre-processing steps on them, in order to be able to extract useful
information. We concentrate only in space domain and in particular in the
optimization of the bandwidth parameter of KDE through machine learning
cross validation approaches. We first investigate on the difference between
discretized input and output and continuous one. We show the importance
of optimizing properly the Fixed Bandwidth KDE, moreover we introduced
Variable Bandwidth KDE approach. Results shows the difference between
discretized input and output and continuous one, with different advantages
with the continuous approach. Also, in terms of log-likelihood metric, the
importance of optimizing the hyper-parameters bandwidth with machine
learning cross validation approach. Yet, we illustrate how variable KDE can
lead to some advantages in some cases.
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Chapter 1

Introduction

1.1 Climate change, the biggest human chal-
lenge

Global climate change has become an absolute priority topic especially in
the last few years, and for sure it is going the be one of the biggest challenge
that society has ever faced. There is no doubt on climate emergency in the
scientific community, and about 90% - 100% of publishing papers scientist
agrees that human activity is the cause of the recent global warming. [27]
What is really impacting on overheating are greenhouse gases (GHG), car-
bon dioxide and methane for most. According to the last Intergovernmental
Panel on Climate Change, in 2019 atmospheric CO2 concentrations were
higher that at any time in at least 2 million years. While since 1750, CO2
concentration raised about 47%. Global surface has increased faster since
1970 than in any other 50-year period at least over the last 2000 years.[39]

Energy consumption is by far the greatest source of the emissions, with
76% worldwide. This includes, among others, road transportation with
12.5% [30]

For those reasons governments all over the world are cooperating to find a
solution. Paris Agreement was adopted by 196 countries at COP21 with the
aim to limit global warming below 2, preferably to 1.5 degrees Celsius, com-
pared to pre-industrial levels. To achieve this long-term temperature goal,
countries aim to reach global peaking of GHG emissions as soon as possible
to achieve a climate neutral world by mid century. European Union has set
the objective of reducing by 30% the emissions compared to 1990, by 2030.
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1 – Introduction

Furthermore, it has been proposed an effective ban for new fossil-fuel cars
from 2035, a clear signal to the car makers in order to accelerate their innova-
tion on electric vehicles. In this context, there is also an increasing pressure
from the civil society. The awareness of the problem is spread more then
ever, while international climate movement are more and more participated,
with people asking the governments to act in the shortest time possible in or-
der to preserve the world for the future generations. [33] With this in mind,
green economy was born. This term describes an economy in which eco-
nomic growth and environmental responsibility work together in a mutually
reinforcing fashion while supporting progress on social development.[17]

1.2 How transportation is changing
Transportation sector is responsible for a remarkable part of the CO2 emis-
sions. In the last years electric vehicles (EV) have earned a lot popularity.
Several reasons have contributed to this trend. Primarily, technology is
constantly advancing, so research are focused on developing vehicles signifi-
cantly more efficient then the Internal Combustion Engine (ICE) ones. Then
wider adoption of EV is a possible solution to lower the emission. Lastly,
from the consumer point of view, the price of electricity is much lower than
the price of fossil fuels. [43] [31]

1.2.1 Shared mobility and micro mobility
In addition to the revolution of the vehicles’ engines and the way they are
powered, a mutation how people decide to move is on going. The expression
“smart mobility” can well describe it. This definition includes: technology,
infrastructures (park slots, charging stations, traffic signs, vehicles), mobility
solutions (e.g. new models) and people. Smart mobility does not only mean
alternative transport options, but a wider and more complex phenomena
based on the following principles:

• Flexibility: different mode of transport allow people to choose which
one suites best in a given context

• Efficiency: The user can reach destination with the minimum effort
and in the shortest time period
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1.2 – How transportation is changing

• Integration: The complete route can be planned without being forced
to consider which transport options are used

• Clean technologies: Migration from internal combustion engine ve-
hicles to zero emissions ones

• Accessibility: Everyone must be able to have access to different forms
of smart mobility

• Social benefits: Smart mobility has to contribute to an increasing life
quality

The final goal of smart mobility in the cities is to lower the traffic and
pollution, to create smart traffic flows with no interruption, and also boost
the economies of scale in order to give everyone greater access to mobility.

In this context, several business model inspired by sharing economy and
Information and Communication Technologies (ICT) are playing a key role.
Car sharing is the rental of vehicles by the hour or by the minute as op-
posed to traditional day- or week-long rentals. Members of the system have
access to a fleet of vehicles that they can rent on an as-needed basis. The
fee charged is based on the length of the rental in hours or minutes. New
operators such as Car2go or Enjoy in Europe, created variation in the orig-
inal business model, with the so called Free Floating Car Sharing (FFCS),
where vehicles do not have home parking spaces but are instead can be
parked anywhere within a city’s operating area. Because the vehicles do
not need to be returned to their starting point to complete a rental, this
service is also known as one-way car sharing. Vehicles could be picked up
or dropped off anywhere within the operating area, and while is possible to
drive them outside it, the rental period can only be ended when the vehicle
returns to the operating area. [36] This is possible thanks to a mobile app,
where through GPS system, users can locate vehicles, book one of them, and
open it. Figure 1.1 shows a car sharing mobile application through which is
possible to use the services.

The majority of this services are still based on ICE vehicles, but some
players are starting to adopt EV vehicle in their fleet. Technological de-
velopment, especially in batteries manufacturing, has also increased the
emergence of shared micro-mobility services including dock-less e-scooters,
dock-less and docked bikes and e-bikes. The variety and availability of such
services in major cities worldwide have grown rapidly, allowing an increas-
ing number of users to choose between several modes and companies. The

15



1 – Introduction

Figure 1.1. Car sharing mobile application.

working principle is basically the same of the FFCS one. Every provider has
its own mobile application, by which the user can use the system. The main
difference from EV is that when e-scooters and e-bikes run out of charge,
have to be picked up in order to be charged. This is what the majority of
the companies choose to do, but other solutions - such as a contribution
from the user that brings the light vehicle at home - has been proposed as
in [24]

Nowadays, data is one the most important components in all fields of re-
search which is not surprising as the amount of data generated is constantly
growing. The services mentioned above have contributed in large part to the
creation of this data. The higher granularity of data the better information
systems can be developed for improving the allocation of resources. Funda-
mental questions that need to be answered are how travellers adopt and use
each mode, how usage varies between different modes, and how they impact
urban mobility and its sustainability overall.

1.3 The development of IoT sensor, big data
and data analysis

Talking about data analysis is impossible not to mention the constant grow-
ing presence of different sensors placed in several objects, that are able to
collect raw data and share them on the internet. Those objects can be found
different daily life scenarios, involving individuals and business companies:
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1.4 – Research question

household appliances that compose the so called Smart Home; manufactur-
ing machines in Industry 4.0; vehicles and smart roads, all together inte-
grated to shape the smart cities. The before mentioned can all be resumed
with the definition Internet of Things (IoT): the acronym is generally used
to indicate every group of physical device, able to receive and share data on
a wireless connection, with a limited human interaction on this process.

The ever-increasing installation of IoT object leads consequent generation
of BigData, this term refers to those collection of data that are so huge,
variegated, speedy transmitted that is very hard or almost impossible to
analyze with ordinary techniques. Said that with the proper paradigms is
possible to filter, order, analyze and extract value from them

So in this context IoT and Big Data are strictly interconnected, originat-
ing a continuous cycle:

• Data creation from IoT

• Data collection and analysis, with big data analytics pipelines

• New configuration of the manufacturing and maintenance processes
with the information extracted from data.

The particular scenario under our analysis perfectly fits the dissertation
because, beside the free floating application itself used by the customers,
every vehicle is connected to the Internet, and collects and share important
information such state of charge, position, average speed, and so on.

1.4 Research question
In this thesis we are going to implement a data-driven mobility demand
model to characterize over the time and space the users’ habits of differ-
ent sharing services. The model is based on Poisson processes for the time
domain and Kernel Density Estimate for the space. In a nutshell, Ker-
nel Density Estimation is a non-parametric way to estimate the probability
function of a random variable. The objective of density estimation is start-
ing from a limited sample of data, and build assumptions of the underlying
density function everywhere, also in the points of the domain where there
is no data observation. In one dimension the concept is strictly similar to
histograms. The difference is that with KDE, the contribution of every data
point is smoothed out from a single point, to the region nearby. Summing up
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1 – Introduction

all the components, gives the resulting estimation of the data and its prob-
ability density function. The explanatory figure 1.2 taken from Wikipedia,
can help to understand the logic behind it. However, more details are going
to be illustrated in the next chapters.

Figure 1.2. Histogram on the left and kernel Density Estimate with Gaus-
sian Kernels on the right Source:[1]

The main focus is on the bandwidth parameter of the KDE, in order to
understand:

• The difference between continue input and output KDE and discretized
input and output one.

• How the bandwidth varies over different time slots

• How can data-driven approaches be used for the selection of the optimal
bandwidth

• How a variable bandwidth KDE can overcome some limitations of the
traditional fixed bandwidth KDE.

The final goal of this work is also to integrate the model in ODySSEUS,
an Origin-Destination Simulator of Shared E-mobility in Urban Scenarios.
This software was firstly implemented in [23] [25] [20] [26], and it was already
extended in other works such as [53] [29].

1.5 Thesis organization
The thesis is organized as follows:
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1.5 – Thesis organization

In chapter 2 are illustrated the Mathematical background which contains
all the mathematical tools used and analyzed in this specific use domain;
the topological background useful to understand, how different preprocessing
step can help extract different information from the datasets; the techno-
logical background to know how this thesis has been developed and where
is going to operate inside ODySSEUS.

In chapter 3 we concentrate on finding the optimal KDE bandwidth
trough cross validation methods. We analyze also the difference between
different coordinate systems, and why UTM one is preferred among the oth-
ers. Finally we make an anlysys on how the bandwidth changes depending
on the cardinality of the dataset and how samples are distributed.

Chapter 4 is dedicated to the variable or adaptive bandwidth kernel esti-
mation. Here is discussed the model that we choose to investigate on it, how
a variable bandwidth affects the final pdf, and what can be the advantages
of this type of estimators.
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Chapter 2

Background and previous
work

2.1 Mathematical background
In these paragraph are contained definitions and discussion of the mathe-
matical tools used for the work. This includes the revision of huge amount
of literature, in particular in paragraph 2.1.2 where we mention different
previous work, that are strictly mathematical. This because in section 2.4
we concentrate principally on those works that use in practice these tools
both in the same research domain and others.

2.1.1 Multivariate Kernel Density Estimate
Kernel Density Estimate is a non parametric technique for the empirical
estimation of density functions. [2]The multivariate form is defined as:

âfH (x) = 1
n

nØ
i=1

KH (x − xi) (2.1)

where:

• x = (x1, x2, ..., xd)T
, xi = (xi1, xi2, ..., xid)T

, i = 1,2, ..., n are d-vectors;

• H is the bandwidth (or smoothing) d×d matrix which is symmetric and
positive definite;

• K is the Kernel function which is a symmetric multivariate density;
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2 – Background and previous work

The choice of the kernel function does not effect the final distribution so
much. As that, generally a Gaussian Kernel is preferred, because it is com-
putationally efficient, yet assumes a uniform relationship between the vari-
ables. In this case KH (x) in equation 2.1 is equal to:

KH (x) = (2π)− d
2 |H|−

1
2 e− 1

2 xTH−1x

as a consequence, the equation 2.1 can be rewritten as:

âfH (x) = 1
n

nØ
i=1

(2π)− d
2 |H|−

1
2 e− 1

2 (x−xi)TH−1(x−xi) (2.2)

The choice of the bandwidth instead is the key parameter for the Prob-
ability Density Function characterization. Three possibles modalities are
possible for doing this[22]:

• For a problem with d-variables, a full symmetrical bandwidth matrix

H =


h2

11 · · · h2
1d... · · · ...

h2
d1 · · · h2

dd


that is a positive-definite matrix with d(d+1)/2 parameters., in which
h2

ik = h2
ki

• A diagonal matrix with only d parameters,
H = diag(h2

1, h2
2, ..., h2

d) = h ⊗ h, where h = (h1, h2, ..., hd)T

• A diagonal matrix with one parameter, H = h2I, where I is the identity
matrix.

In figure 2.1 is possible to see the three alternatives in a bi-variate case
displayed. On the left the diagonal matrix with one parameter. At the
center the diagonal matrix with d parameters and on the right the fully
symmetrical bandwidth matrix with d(d+1)/2 parameters.

2.1.2 Variable Bandwidth KDE
In some cases a fixed bandwidth kernel density estimate cannot describe
properly a pdf, especially when it is characterized by multi-modality. With
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2.1 – Mathematical background

Figure 2.1. Comparison of the three bandwidths selection modalities in a
bi-variate case. Source: [2]

this in mind, adaptive or variable bandwidth KDE (i.e., VKDE) was in-
troduced, aiming to perform better than fixed bandwidth KDE [41] [46].
Basically a VKDE allows enlarging the bandwidth in zones of sparse data
and restrict it, in zones with a lot of samples. There are different ways
of define a VKDE, each one with some advantages and disadvantages both
between each others, yet with respect to the fixed bandwidth KDE.

It is possible to distinguish VKDE in two main groups. Those which falls
in the definition of Balloon Estimators, and Simple Point Estimators. The
difference among them is how the different bandwidths are assigned in the
space. [46]

Balloon Estimators

In models falling within this type a different but fixed bandwidth is selected
for each estimation point x. The estimate of f at x is then an average of
identically scaled kernel at each data point. The equation that can charac-
terize this behaviour is:

âf = 1
nh (x)d

nØ
i=1

K

A
x − xi
h (x)

B
(2.3)

and in the multivariate form will be H = h(x)Id.

This type of estimators have been introduced for the first time by Lofts-
gaarden and Quesenberry [38]in the form of k-th nearest neighbour estima-
tor: âf (x) = k

nVdhk (x)d
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where hk (x) is the Euclidian distance from x to the kth nearest sample
point and Vd is volume of unit sphere in ℜd.

One of the most important disadvantages of balloon estimators is that
when considered as global estimate, usually fail to integrate to one[45] [52]
[50]. Because of this and for other reasons such as lack of packages that
implements this estimators, we are not going deeper into this.

Sample Point Estimators

This class of estimation uses a different bandwidth for each data point and
it can be described by:

âf (x) = 1
n

nØ
i=1

1
h (xi)d K

A
x − xi

h (xi)

B
(2.4)

The estimate of f at every x is then an average of differently scaled kernels
centered at each data point.

With the bandwidth matrix in the multivariate in the form H(xi) =
h(xi)Id.

It was presented by Breiman, Meisel and Purcell in [21]. Asymptotically
is equally to choose

hi ∝ f (xi)− 1
d

Abramson in [19] and [18] proposed a square root law, so that

hi ∝ f (xi)− 1
2

for any dimension.
Silverman in [49] [51] [50] provided an implementation of a sample point

estimator that is composed by steps.
Primarily a fixed KDE åf (x) is calculated, ensuring åf (xi) > 0 for every

i. Next, the local bandwidth multiplicative factors λi are defined as:

λi =
 åf(xi)

g

−α

where log g defined as
1
n

Ø
i

log åf (xi)
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is the geometric mean of the åf (xi).
α is a modulation parameter so that 0 < α < 1. This determines how

much the local bandwidth is enlarged in low sample density areas and how
much is restricted in high sample density ones. α = 0 is equivalent to the
fixed KDE, while α = 1 corresponds to the nearest neighbour approach.

Then, the adaptive KDE is defined as

âf(xi) = 1
n

nØ
i=1

1
(hλi)d K

A
x − xi

hλi

B
(2.5)

This estimator has been further investigated for the scope of this work,
in order to understand if it can lead to considerable advantages.

Other solution has been proposed in literature such as [56] where the
local bandwidth bi can be viewed as the average merging distance required
in forming the nested sequence of clusters; or [34] where each bandwidth bi

is determined with the Integrate Squared Error criterion combined with an
L2 regularization term.

2.1.3 Maximum Likelihood Estimation (MLE)
From Wikipedia: “Maximum likelihood estimation (MLE) is a method of es-
timating the parameters of an assumed probability distribution, given some
observed data. This is achieved by maximizing a likelihood function so that,
under the assumed statistical model, the observed data is most probable.
The point in the parameter space that maximizes the likelihood function is
called the maximum likelihood estimate. The logic of maximum likelihood is
both intuitive and flexible, and as such the method has become a dominant
means of statistical inference.

From a statistical standpoint, a given set of observations is a random
sample from an unknown population. The goal of maximum likelihood es-
timation is to make inferences about the population that is most likely to
have generated the sample, specifically the joint probability distribution of
the random variables {y1, y2, ...}, not necessarily independent and identi-
cally distributed. Associated with each probability distribution is a unique
vector θ = [θ1, θ2, ..., θk]T of parameters that index the probability distribu-
tion. Evaluating the joint density at the observed data sample {y1, y2, ...}
gives a real-valued function, Ln (θ) = Ln (θ; y) = fn (y; θ) which is called the
likelihood function. The goal of maximum likelihood estimation is to find
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the values of the model parameters that maximize the likelihood function
over the parameter space, that is âθ = arg max âLn (θ; y)”[3]

2.2 Topographical background

2.2.1 Geographical coordinate system and WGS84
The geographic coordinate system (GCS) is a spherical or ellipsoidal coor-
dinate system for measuring and communicating positions directly on the
Earth as latitude and longitude. [4] The World Geodetic System (WGS)
is a standard for use in cartography, geodesy, and satellite navigation in-
cluding GPS. The latest revision is WGS 84 (also known as WGS 1984,
EPSG:4326), established and maintained by the United States National
Geospatial-Intelligence Agency since 1984, and last revised in 2014[5]. Dec-
imal degrees (DD) express latitude and longitude geographic coordinates as
decimal fractions of a degree. DD are used in many geographic information
systems (GIS), web mapping applications such as OpenStreetMap, and GPS
devices.

2.2.2 Haversine Distance
The Haversine formula determines the great-circle distance between two
points on a sphere given their longitudes and latitudes. Important in naviga-
tion, it is a special case of a more general formula in spherical trigonometry,
the law of Haversines, that relates the sides and angles of spherical triangles.

d = 2·r·arcsin
ñ

hav (φ2 − φ1) + (1 − hav (φ1 − φ2) − hav (φ1 + φ2)) · hav (λ2 − λ1)
(2.6)

where:
λ1, λ2 are the longitude of point 1 and longitude of point 2
φ1, φ2 are the latitude of point 1 and latitude of point 2.

2.2.3 Mercator Projection and Web Mercator Coor-
dinate System

The Mercator projection is a cylindrical map projection. It became the
standard map projection for navigation because it is unique in representing
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north as up and south as down everywhere while preserving local directions
and shapes. The map is thereby conformal. As a side effect, the Mercator
projection inflates the size of objects away from the equator. This inflation
is very small near the equator but accelerates with increasing latitude to
become infinite at the poles. As a result, landmasses such as Greenland
and Antarctica appear far larger than they actually are relative to land-
masses near the equator, such as Central Africa. [6] Many major online
street mapping services (Bing Maps, Google Maps, Mapbox, MapQuest,
OpenStreetMap, Yahoo! Maps, and others) use a variant of the Mercator
projection for their map images called Web Mercator or Google Web Mer-
cator. [7] As a projection, longitude and latitude are expressed in meters.

2.2.4 UTM coordinate system
The Universal Transverse Mercator (UTM) is a map projection system for
assigning coordinates to locations on the surface of the Earth. It differs from
global latitude/longitude in that it divides earth into 60 zones and projects
each to the plane as a basis for its coordinates. Specifying a location means
specifying the zone and the x, y coordinate in that plane. [8] The projection

Figure 2.2. UTM coordinates zones grid

from spheroid to a UTM zone is some parameterization of the transverse
Mercator projection. The parameters vary by nation or region or mapping
system. Most zones in UTM span 6 degrees of longitude, and each has a
designated central meridian. Web Mercator and UTM coordinate systems
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share some properties, yet have some important differncies:

• Web Mercator (EPSG:3857) is Direct Mercator, it does not deform
distances along the equator. UTM is a group of Transverse, they do
not deform distances along each central meridian (not exactly since they
are secant).

• Web Mercator is spherical (but based on ellipsoidal datum, so not ex-
actly conformal). UTM are ellipsoidal projections, and conformal.

• Web Mercator is tangential to the equator. UTM are secant in the
vicinity of each central meridian, as it is possible to understand in figure
2.3

Figure 2.3. Comparison of tangent and secant forms of normal, oblique and
transverse Mercator projections with standard parallels in red.

• Web Mercator is one for the globe, so distances deforms far away the
equator. UTM is divided in zones, so when the distance is being de-
formed far away each central meridian, you enter another zone, with
another central meridian.

• In Web Mercator parallels and meridians are horizontal and vertical
lines. In UTM zones, not necessarilly: central meridian is a vertical line
and the equator is an horizontal line, but all meridians and parallels are
families of orthogonal curves.
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2.3 ICT background

2.3.1 Python
Python is one of the most popular programming languages. It supports
various paradigms, such the object oriented programming one. It integrates
well with other software components making it a general purpose language
that can be used to build a full end to end pipeline.

The language can be used for different area such as Web Development,
Data Science and Machine Learning, Simulation, and everyone of this are
part of the research project which this thesis is part of. For this reason
Python has been preferred over other languages such as R. Another selling
point is there are several libraries that can be imported. Strictly related to
this work, the most important that have been used are:

• Numpy: adding support for large, multi-dimensional arrays and matri-
ces, along with a large collection of high-level mathematical functions
to operate on these arrays. The core functionality of NumPy is its
"ndarray", for n-dimensional array, data structure. These arrays are
homogeneously typed.[9]

• Pandas: a software library for data manipulation and analysis. In
particular, it offers data structures and operations for manipulating
numerical tables and time series. [40] [10]

• Geopandas: an open source project to make working with geospatial
data in python easier. GeoPandas extends the datatypes used by pandas
to allow spatial operations on geometric types. Geometric operations
are performed by shapely. [35] [11]

• Matplotlib: a comprehensive library for creating static, animated, and
interactive visualizations. [32] [12]

• Scikit-Learn: a free software machine learning library. It features vari-
ous classification, regression and clustering algorithms. It is designed to
interoperate with the Python numerical and scientific libraries NumPy
and SciPy. [42][13]
The two most important features used are:

– KernelDensity: Kernel Density Estimation algorithm which uses
the Ball Tree or KD Tree for efficient queries.
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– GridSearchCV: Grid Search generates a different combination of all
the specified hyperparameters and their values and calculates the
performance for each combination and selects the best value for the
hyperparameters. This makes the processing time-consuming and
expensive based on the number of hyperparameters involved. In
particular, we used this for the bandwidth, global bandwidth and
alpha parameter of the different Kernel Density Estmations.

• Contextily: a package to retrieve tile maps from the internet. It can
add those tiles as basemap to matplotlib figures or write tile maps to
disk into geospatial raster files.[14]

• AwKDE: small library that is able to generate multivariate Variable
Bandwidth Kernel Density Estimation. [15] It uses the pybind11 pack-
age which makes creating C++ bindings super convenient. Only the
evaluation is written in a small C++ snippet to speed it up, the rest
is a pure python implementation. It is based [54] [48] [50] on which we
are going to to take a closer look in the next chapter.

2.3.2 ODySSEUS
As mentioned in the introduction chapter ODySSEUS is an Origin-Destination
Simulator of Shared E-mobility in Urban Scenarios developed by Smart Data
Research group by which this work is supervised. Citing the official website
[16]: it is composed by four modules each one coming with its own API,
command line interface and GUI:

• City Data Manager (previously UMAP [23])

– Upload or collect raw input data from different sources.
– Provide utilities to normalise data into a common format (e.g. col-

umn naming).
– Provide a unified interface to access and analyse normalised data.

• Demand Modelling

– Create different demand models using among the others Poisson-
KDE that is the object of this thesis.

– Evaluate the goodness of a demand model under different view-
points and compare different demand models.
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– Create demand-side simulation scenarios

• Supply Modelling

– Create fleets choosing between different modes and vehicles.
– Create and configure refueling/charging infrastructures and energy

mix for electricity production.

• Simulator

– Create and run simulation scenarios based on supply and demand
configurations.

– Support for trip-level simulations and timeframe-level simulations .
– Collect several performance metrics (satisfied demand, fleet han-

dling cost, equivalent CO2 emissions, gross profit, . . . )
– Detailed interface to analyse simulation results

As introduced in section 1.4 this work is almost totally focused on City
Data Manager and Demand Modelling module. In particular regarding the
first one, different preprocessing steps are applied on raw data, while in De-
mand Modelling we operate redesigning the KDE model, introducing differ-
ent optimizations as generally illustrated in Thesis Organization 1.5. Being
the modules strictly interconnected, the innovation introduced in the first
two modules affects also the Simulator one, in particular when it operates
in Event Generation mode, in the way the trips are generated.

2.4 Related Works
While in section 2.1.2 are described several studies that analyze different
types of KDE from a strictly mathematical point of view; in this section in-
stead, we are going to examine some works where KDE is implemented in a
practical way. As mentioned in 1.4 this thesis started from [23] [25] [20] [26]
where a 4 dimensional KDE was implemented (in combination with Poisson
processes in time domain) with a discretization of the input data, so that
each city is divided in a grid composed by square bins (with sides equals to
500m for cars and 300m for scooters), each data point identified by longitude
and latitude is associated with a single bin, identified with a zone-id. Gaus-
sian Kernel was selected and a bandwidth equal to 1, which correspond to a
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bin. The dimensions that characterize the KDE are the origin and destina-
tion point, each one composed by two coordinates on the city grid: Origin-x,
Origin-y, Destination-x, Destination-y. As a consequence also the output of
the KDE is discretized, which means that, when a sample operation is per-
formed, four coordinates that indicates respectively the number of row and
columns for the origin and the destination cell are extracted.

Concerning about other works that involves KDE in diffent domains of
the urban mobility one, in [28] the authors, for the estimation of environmen-
tal contours of sea states, propose the use of bivariate KDE with adaptive
bandwidth fro generating the join probability distribution of significant wave
height and energy period. The estimator is of the type defined in 2.5

In [45] fixed univariate KDE and a Simple Point Estimator for Variable
KDE is used to model the tag distribution of High-Troughput Sequencing
data, a central technology in genome-wide studies of protein DNA interac-
tions.

In [44], the authors compare KDE and V-KDE to model the distributions
of the dispersion of pulsars and fast radio bursts to measure the Milky Way
halo using data-driven techniques.

In [37], the authors use KDE to monitor the spatial risk of disease (cancer)
in public health. The authors estimate a relative risk function comparing
fixed and adaptive KDE, showing that they could detect risk areas with case
data from a population-based cancer registry.

In [47], the authors estimate the soft bit error rate for an arbitrary com-
munication system by estimating the conditional pdf of soft receiver outputs.
To do this, they use a computational technique with Gaussian KDE and a
particular Maximum Likelihood criterion to select the optimal smoothing
parameter.

Other works use KDE in the context of mobility, but do not compare
it with V-KDE. For example, in [55] the authors combined mobility data
and geotagged social media data to explore the semantics behind people’s
movements. Again, the authors choose the bandwidth matrix H = hI with
a single parameter. Differently from our work, the smoothing parameter
selection is chosen based on previous studies rather than cross-validation.

Another example is [57], where the authors propose a fixed KDE to esti-
mate the dynamic geographical distribution of cell phone users. Then, they
combined it with neural networks to predict future spatial and temporal
distributions.
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2.5 Datasets
The dataset used in this thesis were collected from car2go with the platform
UMAP [23] in different cities worldwide, with the majority in Europe. Each
raw dataset is normalized, so that the columns described in table 2.1 are
coherent within different cities.

Among the preprocessing operation, different filters for the trips are ap-
plied: trips with origin or destination point that are located outside of the
given city area are removed, as well as trips with an average speed lower
then 120 km/h, a duration time smaller than one minute or greater then 60
minutes.

Figure 2.4. Heatmap of the dataset available collected with UMAP [23]

In figure 2.4 are represented the car sharing dataset of car2go. For limiting
the duplication, only two of them (Amsterdam, Torino) are reported in this
work, even if the results have been implemented in the software ODySSEUS
for every city.
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Attribute Description Example
Plate Unique vehicle number 6-ZFG-77

Start time
Time stamp at which
the trips started,in

the respective time zone

2017-01-01
00:03:56+01:00

End time Time stamp at which the trips
ended,in the respective time zone

2017-01-01
00:45:30+01:00

Start longitude Starting point longitude
expressed in decimal degrees 4.90196

Start latitude Starting point longitude
expressed in decimal degrees 52.34124

End longitude Ending point longitude
expressed in decimal degrees 4.85089

End latitude Ending point longitude
expressed in decimal degrees 52.37312

Euclidean Distance
Euclidean distance from
starting to ending point

expressed in meters
4959.308

Duration
Total time the vehicle has

been used for the given trip
expressed in seconds

2088.035

Driving distance
Driving distance multiplied

for a factor that considers the
topography of each city

5107.30

Average speed
Average speed calculated

dividing the driving distance
by the duration, expressed in m/s

2.44598

Average speed Average speed conversion
from m/s to km/h 8.8055

Table 2.1. Datasets description. Other attributes, obtained directly from
the time ones, has not been reported in the table for the sake of brevity. For
example: year, month, daytype(weekday or weekend) and hour.
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Chapter 3

Fixed KDE bandwidth
optimization

In this chapter we are going to analyze how different bandwidths can affect
the Kernel Density Function.

We maintained the approach used in [25] [20] [26] in which the temporal
slot is divided in weekdays (from Monday to Friday) and weekend (Saturday
and Sunday) and 24 slot for each daytype, one for every hour of the day. As
a result, 48 time slots are considered, which means 48 KDEs.

Among three different option available to define the bandwidth param-
eter shown in section 2.1.1, we operate with a diagonal bandwidth matrix,
composed by one parameter h, multiplied by the identity matrix. This for
different reasons: firstly the most supported libraries available in Python
(Scikit-Learn) in which is possible to implement KDE, operate in this way.
Using Python is better from an engineering and integration point of view,
since the entire ODySSEUS software is built in python too. Operating with
a Scikit-Learn module like KernelDenisty one, leads to some important ad-
vantages. Since the class inherits from Scikit-Learn BaseEstimator(), is
possible in combination with GridSearchCV, to customize or set the differ-
ent the hyper-parameters and parameters in the most suitable way, case by
case. We made a comparison between the cross-validation approach used by
Scikit-Learn Kernel Density in combination with GridSearhcCV, and the
one adopted by the library statsmodels. In the first one the bandwidth
matrix H is composed by only one parameter h, while in last one, H is
a diagonal matrix of d parameters. Still, in statsmodels it is not possi-
ble to select the number of folds used for the cross validation, neither the
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bandwidths values set from which the optimal one will be selected. We
compared the results and most importantly the execution time of the two
different methods. For doing this we take a subset of the entire dataset
(month of January, Weekday 09 time slot) with 1821 samples points and
two-features. Scikit-Learn and GridSearch took 7.5 seconds to find the op-
timal bandwidth, while statsmodels KDEMultivariate took 1.34 minutes. It
is then possible to understand that, when the dataset cardinality scale-up,
the computation time tends to explode, as claimed by authors in [22]. The
optimal banwidth values are comparable: 130.38m for Scikit-Learn KDE
and [99.163, 124.112] for statsmodels. We don’t certainly know if the fact
statsmodels takes so long, is due to the fact that it computes d parameters
for the bandwidths instead of one, or if it is caused by a less optimized im-
plementation with respect to Scikit-Learn. Also authors in [22] stated that
the computation time explodes when a bandwidth matrix composed of d
parameters is used. Anyway for the reason just explained, we prefer using
the Scikit-Learn approach, with the bandwidth matrix composed by one pa-
rameter. Furthermore we will see that when UTM coordinate system is used
the simplification in the geographic case is acceptable since each dimension
has the same unit of measurement (meters).

Set that we are going to operate with Scikit-Learn (at least for this en-
tire chapter) different Kernel Density Estimates are fitted with a range of
bandwidths. GridSearchCV from Scikit-Learn as mentioned in section 2.3.1
is used to find the optimal bandwidth, performing a n-fold cross validation.
The trips which compose the sample space are divided into n-subsets a KDE
is built using the samples from n-1 subsets, and the goodness is evaluated
on the remaining subset by calculating the log-likelihood q log âp (xi) . The
procedure is replicated n-times, using a different subset as test set at every
iteration. Then, an average score is calculated for each bandwidth, and the
one with the higher score is selected as best.

In our case a 10-fold cross validation is performed. This because it is
a good trade-off between the cardinality of the trips of each time slot, the
execution time and the variation of the log-likelihood.

3.1 Bi-dimensional KDE
The final goal is to implement a four dimensional KDE. This because the
origin and the destination points of the trips are not uncorrelated. For

36



3.1 – Bi-dimensional KDE

example if a user starts a trip from a neighbourhood in the city center, is
high improbable that the trip will end in the same neighbourhood. Said
that, several analysis ad the consequent results are proposed first in two-
dimensions, considering only the starting point of the trips. This is done
for readability and interpretability reasons, as it is possible to produce 2-D
representation of the density functions. Moreover, a bi-dimensional demand
model is perfectly suitable in those cases which the starting point and the
final destination are not correlated, yet when the aim is to make an estimate
from a fixed starting o destination point. With that being said, the same
methodologies used in two dimension are applied in four dimensions.

3.1.1 KDE with discretized input and output
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Figure 3.1. Amsterdam optimal bandwidth values for each time slot KDE.
BW values expressed as fraction of square bin.

In section 2.4 we explained that a KDE with discretized input has been
used in previous work. In this preliminary phase we explore the possibility
of cross validation, using a range of bandwidths that are a fraction or a
multiple of the single bin.

The results of this cross validation experiment with discretized input and
output, are shown in figures 3.1, 3.2. In next section can be noticed that
the general trend is comparable with the continuous versions. In general
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Figure 3.2. Turin optimal bandwidth values for each time slot KDE. BW
values expressed as fraction of square bin.

Figure 3.3. Amsterdam optimal band-
width (0.12) KDE with discretized input
and output. Time slot WD23. Figure 3.4. Turin optimal bandwidth

(0.04) KDE with discretized input and
output. Time slot WD23.
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we have larger bandwidth values in those time slots less populated of trips,
and smaller ones vice-versa. Even if the inputs and outputs are discretized,
it is well observable (fig. 3.1, 3.4) for both cities, even we considered on
purpose different time slots, that most of the trips are concentrated near
the city centre. We will compare next, how useful can be this discretization
combined with those type of qualitative plots.

3.1.2 Continuous input data, WGS84 coordinate sys-
tem

Applying a discretization on the input data, increments a lot the probability
that different sample points fall in the same bin. This can lead to a deterio-
ration of the precision, yet the selection of the bandwidth more difficult and
less precise, for the characteristics of the log-likelihood evaluation function.

Said that, another important advantage to operate on a continue domain
is that is possible to apply a discretization after the sample on KDE has
been made. With the precious possibility to change the bins side’s dimension
without having to tune the model again, therefore avoiding defining how the
discretization is computed a priori (i.e. before the model is tuned), as in the
case of discretized input and output.

For this reason, as first step it has been decided not to discretize the
input data and firstly to keep it with the WGS84 coordinate system, as it
has been collected.

Preliminary, we use all the trips for 2017. We divide the time space in 48
slot yet, so every slot is characterized by its own KDE.

Figures 3.5, 3.6 shows the bookings’ trend grouped for each of the 48 slot
in the entire year of 2017. Graphs of each single months are not reported, but
they shows for every city, basically the same trend. It is possible to notice
most of the trips are concentrated in weekdays in work commuting hours.
During weekends instead, early in the morning the car sharing services are
less used, while from mid day until late at night, more trips are completed.

Euclidean Distance

For computing the distance between two samples in GridSearchCV function,
it is possible to use different metrics. In this sub-section we illustrate the
cross validation with the Euclidean Distance metric.
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Figure 3.5. Booking counts for each of the 48 time slot for the city of
Amsterdam. Year 2017.
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Figure 3.6. Booking counts for each of the 48 time slot for the city
of Turin. Year 2017.

In figures 3.7, 3.16 respectively for Amsterdam and Turin are reported
the optimal bandwidth values calculated for each KDE of the relative time
slot, in the entire 2017 year. As is reasonable to expect, it’s possible to
see that there is a sort of inverse proportionality, between the size of the
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bandwidth and the number of trips in each slot. The more trips are present
in a time slot, the smaller will be the bandwidth and vice-versa.
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Figure 3.7. Amsterdam optimal bandwidth values for each time slot KDE.
Values expressed in decimal degrees.

In figures 3.10, 3.11 is possible to see. for the city of Amsterdam, the rep-
resentation of the KDE probability density function, fitted with the optimal
bandwidth, on the sample data of time slot Weekend 23, of 2017.

The log-likelihood plots 3.8 3.9, clearly shows their peaks, where are sit-
uated the optimal bandwidth values. For time slots with fewer trips, in
particular early in the morning at weekend, the shape of the curve is less ex-
planatory, simply because of graphic scale and boundaries settings. Anyway
it has been preferred to group all time slots together.

In the 3D representation is possible to notice how most of the high values
of the density is concentrated in the city center, while this characteristic, is
partially obfuscated in 2D-plot which involves a sample only in the centroid
of each bin. This clearly introduces an important imprecision on this type of
qualitative plots. This particular combination of continuous KDE sampled
only in centroids of each bin for making a 2-D plot, returns a qualitative
plot, that appears to be less useful even of those with discretized input and
output.

This behaviour can be observed even better in figures 3.12 3.13 where, it
has been used on purpose a bandwidth of 0.0001 DD that is much smaller
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Figure 3.8. Mean of the log-likelihood score for the different folds.
Cross validation with Euclidean distance metric, for the weekdays time
slots. City of Amsterdam.

than the optimal one (0.0012 DD). This leads to a distribution that is similar
to several deltas located in correspondence of some of the sample points.
While in 3-D representation is possible to understand completely this habit,
from figure 3.12 instead, it seems that the entire pdf is totally flat, which
is not correct. Apart from representation optimization, this is called under
smoothing in Kernel Density Estimation.

The opposite of under-smoothing is over-smoothing, which happens when
the bandwidth is too large, related to the distribution of the data samples.
This can be observed in figures 3.14, 3.15. This because we used for fitting
the WE23 KDE a bandwidth of 0.1 DD that is approximately 11 kilometers,
which is about more than the half of the side of the city area of Amsterdam
under examination.

The same remarks are valid also for the city of Turin, illustrated in fig-
ures 3.19, 3.20, for which we have not reported the figures regarding under-
smooth and over-smooth, that produce effects strictly comparable.
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3.1 – Bi-dimensional KDE

Figure 3.9. Mean of the log-likelihood score for the different folds.
Cross validation with Euclidean distance metric, for the weekend time
slots. City of Amsterdam.
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Figure 3.10. Amsterdam optimal bandwidth (0.00112 DD, WGS84) KDE
sample in centroid of each bin, Time slot WD23
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Figure 3.11. Amsterdam 3D surface plot optimal bandwidth (0.000491 DD)
KDE sample. Euclidean Distance cross validation. Time slot WD23

Figure 3.12. Amsterdam extra small bandwidth (0.0001 DD) KDE sample
in centroid of each bin. Time slot WE23

Haversine Distance

In two dimensions, another distance metric that can be used in GridSearchCV
is the Haversine distance, defined in section 2.6. This takes into account that
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3.1 – Bi-dimensional KDE

Figure 3.13. Amsterdam 3D surface plot extra small bandwidth (0.0001
DD) KDE sample. Time slot WD23

Figure 3.14. Amsterdam extra large bandwidth (0.1 DD) KDE sample in
centroid of each bin. Time slot WD23

distances in longitude and in latitude are not the same, which means that for
approximately in the city of Amsterdam 0.001 DD corresponds to 67 meters
in longitude and 111 meters in latitude. In other words a difference of two
longitudes expressed in decimal degrees, corresponds to a different length
expressed in meters, depending on the latitude at which the difference is
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Figure 3.15. Amsterdam 3D surface plot extra large bandwidth (0.1 DD)
KDE sample. Time slot WD23
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Figure 3.16. Turin optimal bandwidth values for each time slot KDE.
Values expressed in decimal degrees.

calculated.
In conclusion, a degree of longitude is widest at the equator with a dis-

tance of 111.321 kilometers. The distance gradually shrinks to zero as they
meet at the poles. At 40 degrees north or south, the distance between a
degree of longitude is 85 kilometers.

In general bandwidths obtained with Haversine distance metric in cross
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3.1 – Bi-dimensional KDE

Figure 3.17. Mean of the log-likelihood score for the different folds.
Cross validation with Euclidean distance metric, for the weekdays
time slots. City of Turin.

Figure 3.18. Mean of the log-likelihood score for the different folds.
Cross validation with Euclidean distance metric, for the weekend time
slots. City of Turin.

validation are slightly smaller (fig. 3.21, 3.22). This affects also the resulting
KDE distribution (fig. 3.23, 3.24), which compared to the ones obtained
with Euclidean distance metric, appears with the same general shape, but
with more spikes and a a bit more scattered.

The log-likelihood plots have not been reported, but shows the same
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Figure 3.19. Torino optimal bandwidth
(0.0005 DD) KDE sample in centroids.
Time slot WD23

Figure 3.20. Torino 3D surface plot op-
timal bandwidth (0.0005 DD) KDE sam-
ple. Euclidean Distance cross validation.
Time slot WD23
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Figure 3.21. Amsterdam optimal bandwidth values for each time
slot KDE. Cross Validation with Haversine distance. Values ex-
pressed in decimal degrees.

exactly trend, with the only difference on the maximum log-likelihood values,
and the corresponding bandwidth, on which those values falls.
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Figure 3.22. Turin optimal bandwidth values for each time slot KDE. Cross
Validation with Haversine distance. Values expressed in decimal degrees.

Figure 3.23. Amsterdam 3D surface plot optimal bandwidth (0.00053 DD)
KDE sample. Haversine Distance cross validation. Time slot WD23

3.1.3 Continuous input data, UTM coordinate system
As it has been said before, the WSG84 coordinate system in which data
have been collected, have some disadvantages for our purpose. The system
is without any doubt more precise with respect to other ones, but for a few
reason it has been decided to adopt the UTM coordinate system, which has
been analyzed and compared in section 2.2.3, to continue the work.

Thanks to the UTM system is possible to:
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3 – Fixed KDE bandwidth optimization

Figure 3.24. Torino 3D surface plot optimal bandwidth (0.00023 DD) KDE
sample. Haversine Distance cross validation. Time slot WD23

• Have better qualitative 2-D plot. In fact, while with WGS84 system,
if we desired to have a plot that displayed both the density and map,
to have intelligible information, only a sample in each bin centroid was
done, and as we have seen in the related figures, produced a poor repre-
sentation precision. With UTM system instead, we can produce a sort
of continue contour plot with the map above it. For being precise the
definition of continue is not totally true, because it is an interpolation
of a 500x500 point grid.

• The discrepancy described in section 3.1.2 about moving for a given
amount of Decimal Degrees in Longitude rather then in Latitude is
solved, because UTM use meters. So it is not necessary anymore to use
Haversine distance for cross validation, which still could not be used in
four dimensions KDE, and produces a non symmetrical bandwidth.

Cross validation algorithm, performed still with trips from all 2017, shows
the same trend emerged with discretized input and output and WGS84 co-
ordinate system (fig.3.25, 3.26). Looking at the city of Amsterdam, for time
slot WD23 the optimal bandwidth found is 67meters with UTM coordinate
system, 0.000796 DD with WGS84. Converting it to meters in one of the two
dimension we have that is more or less 75 meters, therefore results appear
to be coherent.

3D representation of the Kernel Density Estimate pdf are comparable to
the ones with WGS84 coordinates. As mentioned above, with UTM system
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Figure 3.25. Amsterdam optimal bandwidth values for each time slot KDE
fitted with UTM coordinates. Values expressed in meters.

Figure 3.26. Torino optimal bandwidth values for each time slot KDE fitted
with UTM coordinates. Values expressed in meters.

is possible to produce continue contour plot of the density, over the city map.
These are shown in figures 3.29 3.30. Its clear that most of the request from
both cities comes from the city centre. The Amsterdam case is particularly
interesting because canals obviously affect the way people use the service.

For better readability we propose the plots also in log-scale. It is possible
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3 – Fixed KDE bandwidth optimization

Figure 3.27. Mean of the log-likelihood score for the different folds. UTM
coordinate system. Weekdays time slots. City of Amsterdam.

Figure 3.28. Mean of the log-likelihood score for the different folds. UTM
coordinate system. Weekdays time slots. City of Turin.

to observe it in figures 3.31 3.32
Until now, we used for the optimal bandwidth research the entire dataset

of 2017 respectively to each city. Anyway with ODySSEUS software is pos-
sible to simulate different scenarios, that may include only a subset of the
dataset we considered so far. For example it can be useful to focus only on
winter months to study some specific users’ habits from the trips, or a given
subset can better satisfy some requirements compared to another. A similar
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3.2 – Four dimensional KDE

Figure 3.29. Amsterdam contour plot UTM coordinates. 12 Month dataset.
Optimal BW = 67 meters. WD23 time slot.

situation is described in this previous work of M.Cocca Et Al. [26] where
only two months from September to November 2017 were selected.

For this reason, some runs of the same optimal bandwidth research algo-
rithm were performed with different possible subsets of the entire dataset.
In particular, we started the iteration from only one month (January 2017)
and added each iteration a month, until the 12th (December 2017).

Results can be summarized in figures 3.33, 3.34, 3.35, 3.36 Once again,
is possible to notice that the smaller the cardinality of the subset for each
time slot, the the greater will be the bandwidth and vice-versa. This trend
is maintained in general trough all the different month subset, with some
exceptions. This can be due to the different trips’ starting point distribution
in space. In fact, the more the points are distant each others, the greater will
be the optimal bandwidth value that will be selected with the log likelihood
approach by the cross validation algorithm.

3.2 Four dimensional KDE
As previously introduced in section 3.1, a 2D-KDE is not sufficient to char-
acterize a mobility demand. This is because rental origins and destinations
are correlated. Therefore, it is important to implement a four-dimensional
KDE to correctly estimate an origin-destination (OD) matrix. We report
the same experiment as before, where we find the optimal h for each hourly
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3 – Fixed KDE bandwidth optimization

Figure 3.30. Torino contour plot UTM coordinates. 12 Month dataset.
Optimal BW = 63 meters. WD23 time slot.

time slot, but here modelling the 4D matrix.
In figures 3.37, 3.38 we show the log-likelihood score for 4 hourly time slots

in 4D, the x-axis is logarithmic to illustrate the difference in log-likelihood.
As it is possible to observe how the optimal bandwidth values are much
larger than in 2D, with optimal values between 200 m and 400 m. Values
below 100 m result in very poor performance. Moreover, if we can notice
that the likelihood scores are lower with respect to the 2D case. This reflects
the strong dependencies between the origin and destination of the rentals
that makes the data inherently sparser.

Focusing now on the optimal bandwidth trend of each subset in four di-
mensions. From figures 3.39, 3.40, 3.41, 3.41 we can observe that with a
dataset of 1 month, the optimal bandwidths between 2D and 4D are com-
parable. By increasing the amount of data, the bandwidth remains larger
for 4D in all cases. This is because the patterns in 2D are quite repetitive,
while in 4D there is more variability, and KDE should keep the bandwidth
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3.2 – Four dimensional KDE

Figure 3.31. Amsterdam contour plot UTM coordinates. 12 Month dataset.
Optimal BW = 67 meters. WD23 time slot. Logarithmic scale

larger to generalize the samples and avoid under-smoothing. Also, in 4D
there is a big difference in the optimal bandwidth between 6 and 12 months
because the model is still learning the 4D patterns.
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Figure 3.32. Torino contour plot UTM coordinates. 12 Month dataset.
Optimal BW = 63 meters. WD23 time slot.
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Figure 3.33. Amsterdam UTM Weekdays optimal bandwidth trends. Every
line corresponds to a subset.
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Figure 3.34. Amsterdam UTM Weekends optimal bandwidth trends. Every
line corresponds to a subset.
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Figure 3.35. Torino UTM Weekdays optimal bandwidth trends. Every
line corresponds to a subset.
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Figure 3.36. Torino UTM Weekends optimal bandwidth trends. Every
line corresponds to a subset.
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3.2 – Four dimensional KDE

Figure 3.37. Mean of the log-likelihood score for the 4D-KDE different
folds. UTM coordinate system. Weekdays time slots. City of Amsterdam.

Figure 3.38. Mean of the log-likelihood score for the 4D-KDE different
folds. UTM coordinate system. Weekdays time slots. City of Turin.
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Figure 3.39. Amsterdam UTM Weekdays 4D-KDE optimal bandwidth
trends. Every line corresponds to a subset.
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Figure 3.40. Amsterdam UTM Weekdays 4D-KDE optimal bandwidth
trends. Every line corresponds to a subset.
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Figure 3.41. Torino UTM Weekdays 4D-KDE optimal bandwidth trends.
Every line corresponds to a subset.
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Figure 3.42. Torino UTM Weekdays 4D-KDE optimal bandwidth trends.
Every line corresponds to a subset.
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Chapter 4

Variable Bandwidth KDE
optimization

In section 2.1.2 we introduced variable bandwidth KDE models, and we
made an important distinction between two main types of estimators: Ballon
and Simple Point estimators. As previously explained, the first one suffers of
an important deficiency: it usually fails to integrate to one. For this reason,
but also because in the open source community is available a python library
that implements a Simple Point estimator, we have chosen to adopt this last
one. The library just mentioned has been briefly introduced in paragraph
2.3.1, while the mathematical background on which is built, is described in
2.1.2.

Now we are going at first to explore how this library work with our data,
and how it models the probability density functions in different scenarios,
and then, how it is possible to optimize the two principal hyper-parameters
that characterize the pdf. For doing this we continue to use data in UTM
coordinates, therefore every contourplot in this chapter has been done with
this coordinate system. Moreover as already done in the previous chapter,
an important part of the dissertation is firstly presented in two dimensions,
to ensure a better readability and awareness of the problem.

Looking at AwKDE documentation, the core function is GaussianKDE().
Two essential hyper-parameters have to be provided to this: glob_bw de-
fines the global bandwidth used to compute the first estimation, that is then
cached to compute the adaptive KDE. alpha instead defines the modulation
parameter as already explained. Together they characterize the equation 2.5.

With alpha set to None, GaussianKDE behaves as a Fixed Bandwidth
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4 – Variable Bandwidth KDE optimization

KDE. For this reason, but also because there is almost no support nor
community that operates with this library, we first verify the reliability of
the library, ensuring that different pdf, obtained at first with Scikit-Learn
KernelDensity() function, and then with AwKDE GaussianKDE() one in
fixed bandwidth mode, actually matches or are comparable.

The comparison is not immediately straightaway because GaussianKDE(),
when the fit method is invoked to fit the data, it receives as input the matrix
of samples composed by n samples and m features (in 2 dimensions m=2
while in 4 dimensions m=4), and applies a transformation of the samples,
returning a sample matrix with zero mean and identity co-variance matrix.
This transformation is applied also when we want to evaluate KDE value
in a particular given point, or in a set of different given points. While in-
stead, for extract randomly a sample point from the KDE, which is in other
words sampling the fitted pdf, a back transformation to the original space
is performed.

According to this, the bandwidth too has to be scaled. So we proceed to
divide the optimal bandwidth obtained with cross validation approach with
Scikit-Learn (OpBwSL), for the average of the standard deviation of the
samples in each dimension. This approximately gives the optimal bandwidth
for each time slot, for standardized samples. Then, to select the optimal
AwKDE bandwidth, a cross validation process is executed, using a range
of 50 equally spaced points in the neighbourhood of the just mentioned
OpBwSL, with bounds

[OpBwSL/2·, OpBwSL · 1,5]

Another possible solution could be to use an array of logarithmically spaced
points from the equivalent of 0.5 meters to the equivalent of 10000 meters
(i.e. from 0.0002 to 4.151) and then refine the operation using 50 spaced
points around the neighbourhood of the first found optimal bandwidth. Any-
how, the result obtained fitting the KDE with the optimal bandwidth with
the two different libraries are almost the same, as it is possible to observe
comparing figure 4.1 and figure 3.29.

In [19] [18] Abramson highlighted that alpha equal to 0.5 can perform
well in simulation studies both in one and two dimensions, other like Terrell
and Scott [52] showed that the adaptive square-root law gives up to 50 % of
gain up in terms of Mean Integrated Squared Error compared to the fixed
bandwidth approach.
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4 – Variable Bandwidth KDE optimization

Figure 4.1. Amsterdam AwKDE contour plot. 12 Month dataset. WD23
time slot. Optimal glob_bw = 0.0333, alpha=None

MISE can be very handful to compare performances with synthetic data,
especially when there is a continuous probability density function available
as reference. The problem we are facing in this case study is quite different,
because we are trying to build a continue probability density function from
all the collected data point, there can exist an original pdf to use as a
comparison. For this reason we did not use this metric.

We then start with the choice of alpha=0.5 to observe the benefits if any,
of using a V-KDE. As before we have done for fixed-KDE, we optimize the
global bandwidth. In order to better understand how AwKDE works, we
take into consideration the same time slot used in the previous example:
weekday at 11 p.m. We also show the first result in 2 dimension, in order
to have also a qualitative comparison with the previous results. First we
understand how local bandwidth enlarges in low sample density areas and
restricts in high density ones.

In figures 4.2 4.3 we see in percentage how much the bandwidth is enlarged
or restricted. A red color means the local values of the bandwidth has
increased. A blue color instead reflects that the Variable-KDE has restricted
the local bandwidth. For what regards the city of Amsterdam, looking at
the results, the Variable-KDE automatically restricts the bandwidth up to
60% in those areas where there is a large number of samples, e.g., in the
city centre, a high-traffic area where the majority of the rentals occurs. In
suburban neighborhoods, where less rentals occur, the bandwidth increases
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Figure 4.2. Amsterdam AwKDE scatter plot local bandwidth percentage
incrementdecrement with respect to glob_bw. glob_bw=0.11574, alpha=0.5

Figure 4.3. Torino AwKDE scatter plot local bandwidth percentage in-
crementdecrement with respect to glob_bw. glob_bw=0.02385 (equal to
76.18496 meters), alpha=0.5

up to 80% to automatically adapt to the lack of samples in the data. Same
considerations can be made for Turin.

We can observe the impact in the estimated density of trips in the ob-
tained Variable KDE reported in Figures4.44.5. Qualitatively, observe the

66



4 – Variable Bandwidth KDE optimization

Figure 4.4. Amsterdam AwKDE contour plot. Alpha=0.5 Optimized
glob_bw = 0.02321 (equal to 55 meters)

Figure 4.5. Torino AwKDE contour plot. Alpha=0.5 Optimized glob_bw
= 0.0238 (equal to 5 meters)

more concentrated and higher presence of peaks (yellow dots) in city cen-
ter. Instead, in areas with low density, the Gaussian distributions are less
peaked (violet areas) and more smoothed to generalize the fewer samples
at disposal. If we compare the log-likelihood scores obtained with standard
KDE, we observe a slight improvement with V-KDE, with the log-likelihood
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score that improves from -1.73 to -1.71 in the 2D case at 11 pm for the city
of Amsterdam. It also possible to compare the figures mmentioned above
with the contour plots obtained with fixed Bandwidth KDE in 3.31 for Am-
sterdam and 3.32.

4.1 AwKDE hyper-parameters tuning with
Cross-Validation approach

Until now, we have seen how adaptive bandwidth behaves. For doing this,
we adopted Silverman’s law, adopting alpha=0.5 and finding the optimal
global bandwidth, with a cross validation approach, relying on log-likelihood
metric.

Going further, we want to investigate how GaussianKDE() behaves if we
try to optimize both hyper-parameters glob_bw and alpha simultaneously,
tuning them together with GridSearchCV, which generates a grid with ev-
ery possible combination of hyper-parameters values. This cross-validation
approach is made possible even in AwKDE, because GaussianKDE() im-
plements Scikit-Learn BaseEstimator class that is the one that is used by
different other well-known libraries such as scikit-learn itself for the cross-
validation.

For generating the the hyper-parameter grid we provided to GridSearchCV
function, the following list of hyper-parameters:

• as alphas an array of equally spaced values from 0.1 to 0.9, plus the value
"None", which means using KDE in non-adaptive mode . alpha=1 has
not been inserted in the possible values because, as discoloured in the
previous chapter, it is equivalent to a Balloon estimator approach type,
which suffers of the previously exposed defects.

• As glob_bw instead we used a logarithmically spaced array of points
from the equivalent of 0.5 meters to 10000 meters for showing as the
log-likelihood values drop if the global bandwidth is too small or too
large. As alternative is possible indeed to select the global bandwidth
in the neighborhood of the of the previously founded optimal one.

Results in shows that for different time slots, the glob_bw in general is
almost always halved and for which regards alpha values, in almost in ev-
ery time-slot and every subset the optimization process chooses values in
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the range [0.6, 0.9]. Again as an example of this, we show in figures 4.6
4.7 the variable KDE density obtained. Both again are in WD23 timeslot
and for both alpha=0.9 has been selected. For the city of Amsterdam the
log-likelihood improves again to -1.69. However, comparing with α = 0.5 in
Figures 4.4 4.5, it is now hard to observe any significant benefits. In fact,
we notice that, even though the fitting improved, we suffer from a possible
over-fitting problem: in the α = 0.9 case, peaks in the most central zones are
even more evident, almost reflecting the presence of the charging stations
that are present in for example in Amsterdam. Here, cars are returned with
very high frequency, since those parking slots are reserved for car sharing
customers. This causes a sizeable amount of the samples in the original
trace to be concentrated almost exactly in the same location. While this
is a property of the dataset, it does not reflect the actual mobility demand
of users, but rather the artificial opportunity to park a car in such reserved
parking positions. In these cases, one might not want to learn these patterns
that are very specific and artificially introduced. Notice that the same prob-
lem would occur if the data collection is affected by a discretization of the
origin/destination coordinates, which would cause several points in the data
to appear in the exact same position. Therefore, we warn about the limita-
tions of optimizing α in these practical cases, and we recommend following
Silverman’s law and choosing α = 0.5 for simplicity. Similar considerations
apply in 4D for OD matrices V-KDE.

4.2 Addition of random Gaussian noise to
the samples

In order to investigate better what we exposed in the previous section, in
particular the fact that tuning both glob_bw and alpha hyperparameters
leds to alpha almost ever close to the maximun (i.e. 0.9), we decided to
operate adding a random Gaussian noise to the samples. This to observe if
such high values of alpha are still selected and if peaks in the most central
zones are so evident as before, suggesting a possible overfitting.

In particular, for generating the noise we used a normal distribution with
mean µ = 0 and standard deviation equal to

σ = max − min

τ
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Figure 4.6. Amsterdam AwKDE contour plot. Optimized Alpha=0.9 and
glob_bw = 0.0186 (equal to 44 meters). Timeslot WD23

where max and min are in order the maximum longitude or latitude value,
and the minimum longitude or latitude value, while τ is a dividing factor.
We tried with different values, and even a τ = 200 is enough to avoid the
cross-validation over-fitting problem just described. This means that with
this given τ , assuming the case of Turin, the longitude range is about 10
kilometers, so about 95% of the samples are moved less then 100 meters,
and about 68% of this less then 50 meters. In longitude instead, because the
city airport (which is out of town) is served too, the range is approximately
20km, and therefore, about about 95% of the samples are moved less then
200 meters, and about 68% of this less then 100 meters. Therefore this does
not effect the representation of how users exploit the service and their habits
(100 meters corresponds barely to few buildings in a street) but allows to
overcome some log-likelihood metric limits. For visualization purposes we
can select a subset of 6 month in a time-slot that have enough samples to
understand how they are going to be moved, but not so many to make things
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Figure 4.7. Torino AwKDE contour plot. Optimized Alpha=0.9 and
glob_bw = 0.02006 (equal to 42 meters). Timeslot WD23

unreadable in a scatter plot. Therefore in figure 4.8 is possible to observe
how the noised samples are distributed with respect to the original ones.
Caselle Airport is not included because there no trips from there at 2 a.m.
in the weekdays.

What we observe in general is that, starting from the situation without
noise just described above, where the glob_bw is almost always halved and
alpha is selected to be always high, introducing the Gaussian noise, for
different values of tau, the smaller is τ , ie the bigger is the standard deviation
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Figure 4.8. Turin scatter plot comparing original samples and samples with
Gaussian noise τ = 200. 6 month dataset, WD02 time slot.

of the introduced noise, the bigger is the optimal glob_bw selected, and the
smaller is the alpha. With a τ=200, as mentioned above, values of alpha
around 0.5 are preferred, which is the value that we found in the Abramson
Law.

Regarding instead the glob_bw, the smaller is τ , the bigger is the global
bandwidth. With a τ=200 as in the example is selected a glob_bw near
equal to the optimal one obtained without alpha in the hyper-parameter
Grid-Search. But the most important thing we can observe from figures 4.8
?? is that regardless of the alpha value, for very large or very small values
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of the global bandwidth, there is a significant drop of the log-likelihood.
On the other hand, especially from figure ?? we see that is possible to
adopt a glob_bw value that is just bigger than the optimal one, without any
significant appearing worsening in performances. What is important is to
prevent to adopt values too low, that can cause an asymptotically drop of
the log-likelihood.

Figure 4.9. Log-likelihood plot related to the glob_bw for each value
of alpha. City of Torino, 6 month dataset, WD07 timeslot. Gaussian
noise τ = 200

4.2.1 Four dimensions Variable KDE
The same observations made in the previous section about two dimensional
Variable KDE, can be repeated for the four dimension case. Comparing the
same sub-sample of the dataset (6 months starting from January to June)
and the same time slot Weekday at 7 a.m., with a τ = 200 an alpha=0.5 is
selected. This is not ever the case, in fact changing time-slot for example
the alpha=0.5 selected as best in the entire grid, oscillates around 0.3, 0.4,
0.5. This encourage as selecting as alpha 0.5 in according to Abramson’s
law. Furthermore also the observation made comparing fixed bandwidth
2-D KDE and 4-D one are valid, in fact we can compare the glob_bw in
4-D VKDE (0.14294) and the one in 2-D VKDE (0.049336) and see that
increased, as figured out in the Fixed bandwidth scenario. This because in
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4 – Variable Bandwidth KDE optimization

Figure 4.10. Log-likelihood plot related to the glob_bw for each
value of alpha. City of Torino, 6 month dataset, WD07 timeslot.
Gaussian noise τ = 200

four dimension the model has less confidence in modeling some habits in the
same way.
Finally in figures 4.11 4.12 we can observe basically the same trend showed
in two dimensions, with a peak of the log likelihood that indicates the best
way to fit the data. Also here is important to prevent global bandwidth
values too small, in order to avoid a significant drop of the log-likelihood.
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Figure 4.11. Log-likelihood 4D-KDE plot related to the glob_bw for
each value of alpha. City of Torino, 6 month dataset, WD07 timeslot.
Gaussian noise τ = 200

Figure 4.12. Log-likelihood 4D-KDE plot related to the glob_bw for
each value of alpha. City of Torino, 6 month dataset, WD07 timeslot.
Gaussian noise τ = 200
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Chapter 5

Conclusions

In this thesis we built a demand model that is capable do describe properly
the internal combustion car sharing services’ user habits. The tool can be
integrated with any mobility simulators as ODySSEUS, an Origin Destina-
tion Simulator of Electric Shared Mobility in Urban Scenarios written in
Python. The importance of having a model that can well fit and generalize
the user habits, that interoperate with a data-driven simulator is given by
the fact that is possible to study different what if scenarios, and see how a
full electric car sharing system can work in different cases. Free floating elec-
tric sharing systems represent a valid sustainable alternative to help people
moving around the city. Thanks to them is possible to lower the number
of the cars around the city, the occupation of the parking slot. Another
great value is that since the fleets are composed by full electric vehicles,
they contribute to lower the CO2 emissions, and the city air pollution in
general.

For the demand model we concentrate in totally in space domain. In
particular we use the Kernel Density Estimate, that allows to start from
a limited sample of data, and make assumptions of the underlying density
function everywhere, also in the points of the domain where there is no data
observation. We underlined the importance of preprocessing steps in the
Knowledge Discovery Data-mining process, in particular filtering the trips
in order to keep only the valuable ones and applying the proper topological
transformation to them. We figured out the difference of using discretized
input and output data, with continuous Gaussian Kernels with respect to
continuous inputs and outputs. In particular the second approach leads
to some advantages as several increment of precision and the possibility to
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comfortably discretize the sample after they have been extracted from KDE,
hence avoiding to fitting a different model based on discretization.

We show how traditional KDE models fail to generalize the informa-
tion obtained from mobility datasets, if not properly tuned. This mostly
comes from the heterogeneity of the data, which changes over time (e.g.,
day and night) and space (e.g., dense or suburban areas). These issues call
for fine grained parameter tuning, that we solve by automatically finding
the optimal parameters for classical and variable KDE approaches. About
VKDE we exploited the possibility of tuning with Cross Validation approach
both alpha and glob_bw parameter together, and see how the log-likelihood
changes according to different combination of them. In conclusion we ver-
ified that selecting an alpha = 0.5 according to Silverman’s Law is overall
a good choice. Finally comparing the same time slots in 2-D and 4-D KDE
we illustrated that the general trend are similar for both, but as it is more
difficult to find similar patterns in 4-D, bandwidths values are higher. This
approach can be applied to many different problems involving geo-spatial
estimation of density, such as telecommunication cell data. A beneficial
property is the invariance of the model to scale: indeed, the optimization
is agnostic on the road network, and on whether traces come are related to
urban, regional, or inter-continental densities. This work paves the way for
better integration between now available big datasets of mobility traces and
modelling and simulation tools for mobility and transportation.
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