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Abstract

This work concerns the design of a machine learning pipeline to perform acoustic
scene classification (ASC) on a pair of headphones by means of a convolutional
neural network (CNN). ASC is the task of recognizing which scenery surrounds the
device (e.g. bus, park, home) using the audio captured by its microphone; the goal
is to make the headphones context-aware to enhance user experience.

A challenging aspect of the task is the lack of recordings coming from the
microphone of the headphones, which forces us to resort to external data sources:
training on audio acquired from a different microphone may cause a data distribution
shift and impact the classification performance (a phenomenon known as device
mismatch). Moreover, because of the embedded environment, it is only possible to
use a CNN of low complexity, which may be limiting in terms of modeling accuracy.

We define the set of acoustic scenes to classify by seeking balance among the
neural network’s capabilities, the possible use cases of the product, and what
labeled data is publicly available. We assess the impact of device mismatch by
re-recording a part of our training set and testing our model on it; we establish
that no sensible performance degradation occurs. We then devise a technique to
simulate the availability of further data from the target microphone.

We test the generalization capabilities of the neural network to various kinds
of input perturbations such as wind, unseen acoustic scenes and reverberations.
We propose a number of approaches to make the model more robust to said
perturbations, including different data augmentation techniques and the integration
of a hidden Markov model in the system. We show that there is a fundamental
trade-off between perturbation robustness and classification performance.

We attempt to bypass that trade-off by increasing the complexity of the model.
Our experiments suggest that merely deepening the network does not lead to sensible
improvements; instead, the preprocessing is the real performance bottleneck of
the system. With a more fine-grained input audio representation, we are able to
enhance classification performance and robustness simultaneously, albeit at the
cost of higher memory usage.
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Chapter 1

Introduction and
fundamentals

The union of linear algebra, data analysis and numerical optimization known as
machine learning has tiptoed into several areas of engineering and technology. From
a technical perspective, this is due to the apparently ever-increasing availability of
two main elements: the computing power of machines, and data about countless
aspects of our lives. From a scientific perspective, being able to model complex
phenomena simply by showing a certain number of examples to a (mostly) general-
purpose algorithm is intriguing, tempting, and potentially time-saving: one can
spare the effort of manually assembling a model by means of domain-specific
knowledge and just let a machine infer it automatically.

Indeed, machine learning methods are applicable to a wide variety of data
types, both structured (tabular data) and unstructured (highly dimensional inputs
such as images, audio, time series). For this reason, these algorithms have made
their way into an equally wide range of applications: language translation, speech
recognition, predictive maintenance would be popular examples. Less common
ones may include database query optimization, satellite image analysis, lecture
summarization, animal healthcare monitoring, and just about any imaginable niche.
This shows how pervasive machine learning has become, and how flexible and
powerful those problem-agnostic models can be when combined with the right data.

In this work, we describe how to combine machine learning with one further
specific area: context-awareness of wearable audio devices. We present a case study
in which we design an algorithm to make a pair of headphones understand what
“acoustic scenario” their user is immersed in by analyzing the audio input captured
by their microphone: in the scientific literature, this task is known as acoustic
scene classification. We explore the challenges faced in formalizing the problem;
the constraints imposed by the production environment; the iterative process of
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Introduction and fundamentals

optimizing our system, discovering its shortcomings, and optimizing it again. The
outcome of our work is a thorough benchmark of the model’s capabilities in several
scenarios and the investigation of what techniques can be used to improve its
robustness. With that, we lay the foundation of what will be further developed
into a suitable system to be deployed in a commercial product.

In this Chapter, we give a general introduction to machine learning and the
task of acoustic scene classification.

In Chapter 2, we provide a more detailed description of the goal of our work,
its main challenges, and the starting point of the project.

In Chapter 3, we define a suitable set of scenes to classify, we provide a baseline
measurement of how well the model can distinguish them, and how much data is
needed to train it until its predictive power reaches saturation.

In Chapter 4, we describe the differences between the embedded production
environment and the prototyping Python-based environment, and what we can do
in attempt to unify them.

In Chapter 5, we explore the trade-offs in making the model robust against
various kinds of perturbations without modifying the basic steps of the pipeline
where the audio input is preprocessed and classified.

In Chapter 6, we relax the requirement of keeping the preprocessing and
classifier fixed and assess the consequent impact on the overall model’s performance.

In Chapter 7, we draw the conclusions of our work, and systematically suggest
what research directions and sub-fields may be worth investigating for future
developments of the acoustic scene classification system.

1.1 Machine learning, deep learning,
neural networks

1.1.1 The machine learning mathematical framework

Machine learning (ML) broadly describes the task of extracting relevant knowledge
from sets of data by means of machine-automated algorithms. The data represents
“experience” for the machine, which has to generate a parametrized algorithm that
matches the patterns “learned” from the data [83].

Formally, a ML problem can be framed as the union of four main elements:
a dataset, a model, a risk function, and an optimization technique. To better
contextualize their role, we report a practical example for each of them in the
context of designing a system that must recognize the identity of a certain person
from a picture of their face. Under this premise, a machine learning problem is
composed of the following:

2



Introduction and fundamentals

• A set of data (or dataset) D related to the task at hand (e.g. pictures of
human faces and the identity associated to each of them);

• A model (or hypothesis) h that depends on a set of parameters θ and
describes the phenomenon of interest (e.g. the set of operations that map the
picture of a face to a certain identity);

• A risk function R that numerically quantifies the divergence between h(θ)
and the reality described by D (e.g. how many faces in the dataset are wrongly
identified);

• An optimization algorithm A that tunes the parameters θ in order to
minimize the risk R and make the model more faithful to reality (e.g. perform
changes to the algorithm until the amount of misidentified faces is lower than
a certain threshold). This is what represents the process of learning; for this
reason, the set θ is said to contain the learnable parameters of the model.

This work operates in the realm of supervised learning. Supervised learning is a
branch of ML where the dataset D is of the form

D = {(xi, yi)}N
i=1 (1.1)

with (x, y) ∈ X × Y . The couple (x, y) represents the pair of a model input x and
a desired model output y. This is often referred to as a data point. Input-output
pairs are assumed to be related by an unknown function f(x) = y. In supervised
learning, the model h(θ) aims to approximate the unknown function f : thus, it
takes on the form of a parametric function h : X → Y such that h(θ; x) ≈ f(x).
The “supervision” comes from the fact that the model is instructed to reproduce
a known desired output y; this is not the case in other branches of ML such as
unsupervised learning.

Both input and output domain X and Y may either be numerical or categorical.
If Y is categorical, the task is called classification and a value y is called label; if
Y is numerical, the task is called regression [105]. The model h is selected from a
class of functions H called hypothesis class. The risk R is defined as the expected
value of a loss function L : Y ×Y → R that quantifies how much the output of the
model (prediction) differs from the true expected output (ground truth):

R ≜ EX ×Y [L (h(θ; x), y)] (1.2)

A theoretically relevant quantity in the presented framework is the Bayes risk R∗,
defined as the infimum of the achievable risk over all possible hypotheses:

R∗ ≜ inf
h
R (h) (1.3)

Since the true risk as defined in (1.2) cannot usually be analytically computed, it
is often approximated with the empirical risk, i.e. the average loss computed over

3



Introduction and fundamentals

all dataset points. It is then possible to formally state a supervised classification
task as an empirical risk minimization (ERM) problem:

θ∗ = argmin
θ

1
|D|

Ø
(xi,yi)∈D

L (h(θ; xi), yi) (1.4)

whose solution θ∗ is usually employed to parametrize the final model h(θ∗,x). In
many cases, such a solution cannot be computed in closed form, and it is necessary
to resort to numerical optimization techniques to estimate it; however, according
to the choice of h(·, ·) and L (·, ·), the objective function of (1.4) can be highly
non-convex, and therefore have several local minima. This makes the optimization
procedure more challenging: for this reason, the goal of a machine learning task
is often not to find the minimizer θ∗, but rather one good minimizer among the
many existing ones.

1.1.2 Deep learning and neural networks
Among the numerous branches of machine learning, deep learning (DL) has seen
great success in many different areas of application, including acoustic scene
classification. Deep learning is a sub-field of machine learning where the hypothesis
class H is the set of functions represented by neural networks. A neural network
model with N layers can be described as a chain of N parametric transformations
applied to an input vector x ∈ RD to produce an output u ∈ RC :1

f
(N)
θN
◦ f (N−1)

θN−1
◦ · · · ◦ f (1)

θ1

2
(x) = u (1.5)

Each function f represents a layer. In fully-connected neural networks (also known
as feedforward neural networks, dense networks or multi-layer perceptrons), each
layer is usually of the form

fW,b(x) : RD −→ RD′

x −→ g (Wx + b)
(1.6)

Where:

• the weight matrix W ∈ RD′×D and the bias vector b ∈ RD′ are within the set
of the learnable parameters θ;

• g(·) is a nonlinear function, oftentimes the rectified linear unit (ReLU), defined
as g(x) = max {0,x} and applied pointwise to each vector element.1

1Other possible activation functions used in practice include tanh(x) or σ(x) = 1
1+e−x . However,

ReLU and its variants are currently the most popular choice [89].
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A fully-connected neural network architecture can quickly become cumbersome in
terms of memory usage, as a layer fW,b(x) : RD → RD′ has D×D′ +D′ parameters
that need to be stored. This number can rapidly grow if the model must process
large amounts unstructured data, such as images or digital audio. Partly because
of that, fully-connected neural nets have been outclassed by convolutional neural
networks (CNNs), a neural network topology that replaces the linear projection in
a layer with a convolution operation:

fW,B(X) = g (W ∗X + B) (1.7)

where the input X, the W operator and the output typically take the form of
3-dimensional tensors. W is usually of much smaller dimension than X, which
allows the network to be more lightweight than a normal fully-connected topology.
This approach has been a well-established trend in computer vision tasks for quite
a long time [65], and has later been experimented with in the audio domain [1]
as well. The operation in (1.7) is sometimes followed by a pooling operator that
reduces the resolution of the output tensor in the first two dimensions by replacing
certain regions of the input with a scalar summary of their values. The goal is
twofold: first, the network learns to compress the information contained in the
input signal into a lower dimensional space; second, this makes the model invariant
to small translations in the input signal that happen within the boundaries of the
summarized regions. A popular pooling operation is max pooling, in which the
summarization consists in applying the max operation to K ×K 2-dimensional,
non-overlapping patches of the input tensor. This is typically done independently
along the third dimension, whose resolution is left untouched. A max pooling
operation across K ×K patches may be expressed as:

MaxPool(X)ijc = max
i′∈{Ki−K+1,Ki−K+2...Ki}
j′∈{Kj−K+1,Kj−K+2...Kj}

Xi′j′c (1.8)

The max operation in the equation above is sometimes replaced with the arithmetic
mean operation, obtaining what is known as average pooling.

In the case of neural networks, the empirical risk minimization problem stated
in (1.4) is usually solved by means of stochastic gradient descent (SGD), which
optimizes the parameters of the neural network iteratively by means of mini-batches
of the available training data. Let B ∈ D be a randomly drawn subset (i.e. a
mini-batch) of the training dataset D; let W̄ = [W1 . . .WK ] be a vector containing
the concatenation of the network’s convolution operations; let net(W̄; x) be the
prediction produced by the network for a given input x. Then each step of SGD
performs the following update:

W̄← W̄− λ

|B|
Ø

(xi,yi)∈B
∇W̄L(net(W̄; xi), yi) (1.9)

5
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The bias terms B̄ = [B1 . . .BK ] are optimized in a similar way. This procedure
is referred to as “training” and continues until the parameters of the model have
converged. The scalar λ is an arbitrary scalar called learning rate that controls
how much of a numerical impact each iteration has on the optimized parameters.

Occasionally, the loss term L may be combined with an additional term that
applies numerical constraints to the network’s weights in order to purposefully limit
its complexity. One possible approach is to penalize the optimization algorithm if
it leads to the network having high-magnitude weights: this can be done by adding
the L2-norm of the concatenated weights to the normal loss function:

L′ = L+ α ∥W∥2 (1.10)

where α is a scalar hyperparameter that controls how much the penalty impacts
the optimization procedure. SGD can then be applied by substituting L with L′ in
(1.9). This operation is known as L2 regularization or weight decay and has been
shown to improve the generalization capabilities of deep neural networks [66].

In classification tasks, the output of the neural network is usually a number of
scalars N equal to the number of classes to classify. This output size is obtained
by progressively scaling down the resolution of the input tensor by means of
convolutional layers, fully-connected layers and pooling operations. Those N
coefficients are often referred to as logits. The logits vector g ∈ RN is often
converted to a probability vector p of the same dimension by applying a softmax
operation to it:

pi = egiqN
j=1 e

gj
(1.11)

The class prediction ŷ is then usually performed by choosing the predicted class
with highest probability:2

ŷ = argmax
i=1...N

pi (1.12)

In this setting, a typical loss function for classification tasks is the negative log-
likelihood loss or cross-entropy loss, where one encourages the network to maximize
the probability of the true class of a sample by minimizing its negative logarithm:

L (x, y) = − log pi|i=y (1.13)

Assuming that y is a numerical encoding of the true class.3

2Because of the properties of the softmax operation, it would technically be equivalent to
perform the prediction by taking ŷ = argmaxi=1...N gi. However, normalizing the logits as
probabilities makes them more easily interpretable and is necessary for certain loss functions to
be computed.

3The term cross-entropy derives from the fact that the loss can be interpreted as a cross-entropy
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1.2 Acoustic scene classification
Acoustic scene classification (ASC) is the task of automatically establishing which
environment produced a given acoustic signal. An environment may correspond to
a physical location, such as “office” or “train”, or a high-level acoustic description
such as “quiet” or “noisy”. These environments are denoted acoustic scenes [15].

ASC is often compared to the similar task of sound event detection. While the
former refers to the identification of a scene that could include multiple sound
sources (such as footsteps and chatter in a “public square” scene), the latter usually
aims to identify sound coming from a single source (such as a doorbell or the
passing of a car), often attempting to obtain specific timestamps that describe
when the acoustic event takes place [52].

One of the most promising applications of ASC is the possibility of endowing
portable devices with acoustic context awareness and sound-based monitoring of
specific environments. This idea dates back to at least two decades ago [108], but
has since gained popularity thanks to the rise of IoT [73, 26]. Other potential
use cases of ASC include urban noise monitoring [2] and enhancement of scene
recognition capabilities of robotic systems [20].

While it surely does not lack potential use cases, acoustic scene classification was
shown to be challenging even for humans: the study described in [93] reports that,
when given the task of distinguishing between a set of 25 acoustic scenes, human
annotators achieved approximately 70% accuracy. By contrast, human accuracy on
vast image datasets such as ImageNet was estimated to be around 95% [104]. Thus,
in general, it is also reasonable to expect the task of acoustic scene classification to
be more challenging than others within a machine learning framework.

1.2.1 Machine learning approaches to acoustic scene classi-
fication

Ever since one of its earliest known appearances in scientific literature, ASC was
tackled by means of ML-based methods [108, 15]. This is likely due to the difficulty
in hand-crafting a set of rules that can accurately describe something as complex
as an acoustic scene: as previously mentioned, one of the perks of machine learning
is to automatically infer classification criteria by relying on little to no human
knowledge. A typical acoustic scene classification pipeline follows the same pattern
as many audio-based machine learning systems: it is usually composed of a front-end
preprocessing phase and a back-end classification algorithm.

operation applied between the probability vector pi produced by the network and a ground-truth
vector y that has value 1 in the component whose index matches the true class’ index and 0
elsewhere: L(x, y) = −

qN
i=1 yi log pi.
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Introduction and fundamentals

Most typical preprocessing techniques involve time-frequency representations
of the input signal such as the magnitude or the power of its short-time Fourier
transform [27]. A commonly adopted approach is then to extract informative
coefficients from the spectral representation by using filter banks: among those,
Mel filter banks seem to be a popular choice [108, 21]. Some systems perform
the further step of computing cepstral features from the filtered input, usually
Mel-frequency cepstral coefficients [96, 52]. Other kinds of front-end preprocessing,
unexplored in this work, are based on autoregressive approaches such as linear
predictive coding [15].

Once features are computed, a back-end statistcal model is usually applied to
perform the classification task. Support vector machines [22] are popular discrimi-
native classifiers that have also been applied to acoustic scene classification [75, 36].
Gaussian mixture models for class density estimation have been widely employed in
audio tasks in general [33, 55], including acoustic scene classification [11, 20]. When
the temporal evolution of input features is deemed of relevance for the modeling
task, hidden Markov models are often used [27, 21].

While fully-connected neural networks have sometimes been experimented with
as back-end classifiers [120], most of the recent research efforts in the field of
acoustic scene classification have been devoted to the use of convolutional networks,
which have been shown to outperform previous classification approaches [106, 19,
118]. Occasionally, the use of recurrent networks has also been investigated [12],
albeit not with equal success.

It should be pointed out that the rise in popularity of end-to-end neural network
based classification pipelines has impacted the world of audio processing and started
to blur the line between back-end and front-end steps. Recent research has stepped
into the direction of directly processing “raw” waveform data, usually by means
of neural networks employing 1-dimensional convolutions in the first layer. With
this approach, the feature representation of the audio signal is directly learned
from the input in its original form. This has been common practice for a long
time in areas such as computer vision [65, 113]. The learned features are directly
processed by the subsequent layers of the network, eventually producing the desired
output in an end-to-end fashion. The weights of the 1-dimensional convolutional
filters can either be completely learnable [90, 13, 48] or biased in ways that make
sense in audio applications: for example, a popular choice is to use parametrized
time-domain band pass filters [99, 100]. The end-to-end approach has achieved
state of the art in a number of applications, including keyword spotting [5], speech
anti-spoofing [35], and voice activity detection [68]. Some research has been done in
applying end-to-end neural networks to acoustic scene classification tasks, obtaining
decent results [50, 114]; however, most of the top-performing ASC systems still
focus on time-frequency handcrafted representations [3].
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Chapter 2

Problem statement

2.1 Goals of the research activity
This thesis was carried out within a wider research activity concerning ASC
conducted at Bang & Olufsen. The general research direction of the work is to
design a low-complexity algorithm that can perform ASC while running on the
company’s headphones. At the beginning of the thesis work, B&O provided the
following:

• a CNN architecture chosen based on the memory and energy constraints of
the headphones’ hardware;

• a rough baseline of the CNN’s capabilities on a number of toy ASC tasks of
low complexity;

• a codebase to perform basic model training;
• a pipeline to deploy a set of trained model weights to a BeoMusic headphone1

flashed with an experimental, customized firmware.

When the candidate joined the project, the final use case for providing ASC
capabilities to a headphone was not defined; rather, B&O intended to explore the
possibilities of acoustic scene classification and establish an ad-hoc application
suitable to the degree of effectiveness of the model. While a functioning basic
pipeline for training and deployment was already present in the codebase of the
company, the model’s capabilities had only been experimented with on dummy
problems in a prototyping TensorFlow environment. The candidate was then
tasked to turn the dummy proof-of-concept into an effective system suitable for a
production environment. Specifically, the candidate’s contributions included:

1BeoMusic is an arbitrary working name and is not associated to any commercially available
Bang & Olufsen product.
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• establishing a set of acoustic scenes that are within the model’s capabilities
and also make sense from a use case perspective;

• refining the training pipeline to achieve satisfactory performance on the ASC
task using the selected scenes;

• designing a testing protocol to ensure that the model’s performance measure-
ments obtained in the TensorFlow environment are faithful to the performance
in the wild, when the model runs on the headphones;

• assessing the degree of robustness of the model to natural input perturbations
that may occur when using it on a product;

• proposing a set of techniques to increase this robustness.

2.2 Challenges of the proposed task
The proposed task inherently presents several challenges, further aggravated by
the constraints of the production environment.

Firstly, the deployment of the model on the BeoMusic was initially designed
ad-hoc for the headphone’s embedded platform: as a consequence, some of the
operations and data-structures that ensure the functionality of the network were
hard-coded. This made it cumbersome to modify components of the architecture
of the CNN. Partly due to this reason, B&O’s research interest shifted towards
data-driven approaches that did not involve model modifications. Therefore, the
company requested that the network topology should have been modified
as little as possible, and only if strictly necessary. This constraint was
relaxed in a late stage of the project, which allowed for a more free experimentation
with different network architectures.

Secondly, the CNN that the candidate was initially required to use was extremely
small, containing about 8000 parameters; moreover, the raw audio input signals
underwent a rather heavy compression during the preprocessing step. In other
words, the overall complexity of the initial model was very low. This
represented a potential obstacle in classifying with acceptable accuracy a set of
acoustic scenes that was rich enough to be of interest for usage in a product.

Thirdly, no labeled data was initially available from the microphone
mounted on the company’s headphones. As it is widely documented in the
ASC literature, training a neural network on recordings produced by a microphone
then testing it on recordings from a different microphone (a setting known as device
mismatch or microphone mismatch) can lead to a severe decrease in performance [61,
82]. During the research activity, such an issue needed to be addressed.

Lastly, the task of selecting a set of acoustic scenes which to perform ASC on is
notoriously problematic [16]: the idea of enclosing every possible situation
of reality in a limited set of scenes hides several potential pitfalls. For
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example, one may assume that the problem of classifying whether a scene is “indoor”
or “outdoor” is a well-posed binary classification problem, since one can either be
in an indoor or outdoor setting with no ambiguity; but what if the user stands close
to a balcony, or in a structure that is not covered on all sides? Is that “indoor” or
“outdoor”? Moreover, what if some scenes of interest are potentially overlapping,
such as “chatter” and “train”? In that regard, some argue that ASC is inherently
open-set, which makes the modeling task more difficult.

In conclusion, this work concerns an open-ended problem in a low-complexity
and low-data setting. The thesis seeks to find a balance between the high-level
requirements of a company (the generic intent of the device being scene-aware),
the constraints imposed by a production system (small and initially fixed model,
low data), and what can reasonably be achieved from a data-scientific perspective.
Note that all challenges presented thus far are to some extent intertwined: for
example, choosing a small number of simple acoustic scenes for the labels may
compensate for the low model complexity, but could also reduce the potential use
cases of the algorithm.

2.3 Initial pipeline setup
The project is set as a typical acoustic scene classification task where each acoustic
scene constitutes one class. The front-end processing is carried out by computing a
time-frequency representation of the raw audio signal; the back-end classification
is performed by a convolutional neural network. In this section, we describe the
details of the pipeline proposed by the company when the candidate joined the
project.

2.3.1 Front-end preprocessing
The initial front-end setup is as follows: the audio signal to be analyzed is split
into windows of 3.45 seconds, then preprocessed to produce an input x for the
CNN classifier. When the input clip is longer than 3.45 seconds, it is divided in
multiple windows that each become an individual data point associated to a label
representing its scene. At training time, we obtain the windows by extracting a
3.45 second portion of the audio, applying a 1 second shift along the time axis,
and repeating. Conversely, at test time, the shifts are as long as the input clip, i.e.
there is no time overlap between consecutive inputs. The audio signal is re-sampled
to 16 kHz and converted to 16-bit depth. At training time, if the clip is in stereo
format, the two channels are separated in two distinct mono files. This can be
considered a form of data augmentation (see Section 3.3.2), as we produce two
slightly different versions of the same input content that are both used at training
time. Ideally, at test time, all input signals should already be in mono format with
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a 16 kHz sampling rate, since we capture them from a single microphone of the
headphones with those characteristics. However, in our experiments, we often test
on external sources of data that are in stereo format: in this case, we split all files
to two mono tracks as in the training phase. In both cases, a Mel spectrogram is
subsequently produced from the raw audio input. We choose Mel spectrograms
since, while being a popular choice in audio preprocessing in general [7], studies have
shown their greater effectiveness with respect to other traditional front-end choices
such as MFCCs in deep learning based environmental sound classification [51]. The
spectrograms are computed with fast Fourier transform (FFT) windows of 1024
samples and a hop length of 768; they are then mapped to the Mel scale using
30 Mel filters (normalized according to their energy) in the range 0 to 8000 Hz.
The obtained spectrogram is then log-scaled. This specific preprocessing procedure
results in an input tensor x of shape 30 × 72 × 1 for the classifier; formally, we
say that x ∈ RF ×T ×C , with F = 30, T = 72, and C = 1. Following a widely used
nomenclature, we call F the frequency dimension, T the time dimension, and C
the channels of the input respectively.

2.3.2 Low-complexity back-end CNN classifier
The back-end classifier is a 5-layer convolutional neural network adapted from the
SB-CNN architecture introduced in [107], which was originally used for environmen-
tal sound classification instead of acoustic scene classification. The first 3 layers are
convolutional and the last 2 are fully-connected; between the convolution operations,
max pooling and batch normalization (BN) [53] layers are present. During training
time only, the fully-connected layers include dropout [116] as regularizer. This
network topology was modified in [86] to adapt it to a low-complexity environment.
The main modifications include:

• Replacing max pooling with strided convolutions. In a s-strided
convolution, the convolutional filters move by s steps instead of 1 when sliding
across the input tensor. This is useful to reduce the number of computations
the model needs to perform in order to downsample the input features: instead
of producing a wider output tensor and scaling it with pooling, a strided
convolution directly performs a sparser transformation, reducing the number
of needed operations.

• Replacing convolutions with depthwise-separable convolutions. In a
normal 2-dimensional convolution, an input tensor of shape (F, T, C) is usually
directly convolved with N 3D filters of shape (K1, K2, C). In a depthwise-
separable convolution, the input is first convolved with C flat (K1, K2, 1)
shaped filters; the resulting intermediate tensor is subsequently convolved with
N filters of shape (1, 1, C). The latter step is known as “pointwise” convolution,
since its filters only involve a single pixel per position. Given a fixed input
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shape, a depthwise-separable convolution performs fewer operations and needs
fewer parameters to produce the same output shape. Hence, it has been widely
used in deep learning for embedded applications [47, 115].

Starting from the orginal architecture in [107], all max pooling layers but the last
one are replaced with 3-strided convolutions, and all convolutions but the first
one are made into depthwise-separable convolutions of the same input and output
shape. The final neural network architecture has 8156 parameters and is reported
in Table 2.1.

Input shape Operator Details
F × T × 1 Conv2d 5× 5 + BN + ReLU Stride 3

F/3× T/3× 24 Conv2d 5× 5 + BN + ReLU Depthwise sep., stride 3
F/9× T/9× 48 Conv2d 5× 5 + BN Depthwise sep., stride 3
F/27× T/27× 48 MaxPool 2× 2 + ReLU -
F/54× T/54× 48 Flatten + dropout -

Previous shape flattened Dense + Dropout + ReLU -
32 Dropout + Dense + Softmax -
4 - -

Table 2.1: Initial SB-CNN architecture.

Throughout all the experiments involving the SB-CNN, the hyperparameters
and the settings regarding the optimization of the neural network were kept fixed in
order to make the effects of each proposed technique comparable. The parameters
of the network are optimized using Adam optimizer [60], a variation of the SGD
algorithm that has been shown to work well on a variety of deep learning tasks,
including acoustic scene classification [44, 17]. We use an initial learning rate of
5 · 10−4. The mini-batch size is set to 8, and we use L2 regularization only on the
parameters of the fully-connected layers of the network with coefficient 10−3. The
training procedure is carried out for 20 epochs and validation is performed at the
end of every epoch: the network state achieving the highest validation metric on
the validation set is selected as final version to evaluate on the test set. We choose
the macro-averaged F1-score as validation metric. Let us define the precision and
recall for a specific class i as follows:

Pri = true positives of class i
total predictions of class i (2.1)

Rci = true positives of class i
total samples of true class i (2.2)

The F1-score of a single class i is then the harmonic mean between the precision
and the recall of class i; the macro-averaged F1-score is the mean of the F1-scores
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of all N classes.

F1i = 2 · Pri · Rci

Pri + Rci

(2.3)

Macro F1 = 1
N

NØ
i=1

F1i (2.4)

This metric is particularly useful when the goal is to have a classifier that is equally
effective on all classes even though not all of them are equally represented within
the dataset. For this reason, it will be employed as evaluation score for several
experiments described in this dissertation.
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Chapter 3

Model benchmarking in a
low-data scenario

As previously mentioned, the CNN architecture used for the classification of acoustic
scenes was initially considered to be fixed. Thus, a number of diagnostic operations
were performed to obtain a baseline assessment of the model’s capabilities.

As remarked in Section 2.2, one of the most critical aspects of the project was to
establish whether training the network on a microphone and testing it on a different
one would negatively impact the model’s performance. However, such a verification
would require to have at least a minimal amount of data from the microphone of the
BeoMusic (hereafter referred to as “target microphone”). During the first part of
the project, it was not possible to acquire data directly from the target microphone,
due to the need of bypassing a set of internal components and deactivating some
functionality of the headphones to obtain the raw microphone output: this operation
required time and was not immediately executable. Therefore, the initial exploratory
investigation had to be carried out by means of external sources of data.

In this Chapter, we describe the diagnostic experiments performed on the initial
SB-CNN model to obtain a baseline reading of its capabilities. We start by defining
a set of scenes that seems suitable for the complexity level of the model. As
previously remarked, it is not yet possible to know whether a microphone mismatch
will be an issue: thus, we assume the worst case scenario that it will negatively
affect the system, and that the network will need to be trained on data manually
gathered by B&O using the target microphone. This means we are in a low-data
setting: we investigate the impact of this situation by training the CNN on different
amounts of data and inspecting the results. We then propose different approaches
to tackle this issue by using data augmentation and transfer learning to improve
the performance of the neural network when training it with few data points.
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3.1 Defining the acoustic scenes
To define a suitable set of scenes for the neural network to classify, we adopt the
following strategy: first, we train the model on a well-known, publicly available
ASC dataset; second, we evaluate the CNN on the test set; third, we perform error
analysis on the results and establish which configuration of scenes would minimize
the classification error of the model.

The employed dataset is the TAU Urban Acoustic Scenes 2019, the 2019 iteration
of a dataset used in the popular Detection and classification of acoustic scenes and
events (DCASE) challenge [82]. In the absence of data recorded from the actual
target microphone, we use this as a proxy dataset and assume that the microphone
used in it is the one that would be installed in the hypothetical final product.

The DCASE dataset is composed of audio recordings of urban scenery acquired
in 10 different European cities. The recordings are grouped in 10 classes according
to the specific environment they were taken in: those classes are what we refer to
as acoustic scenes. The recording time of each scene is balanced across each city.
The original recordings are about 5 minutes long; however, in the dataset, they are
split in shorter clips of the duration of 10 seconds each. The scenes contained in
TAU Urban Acoustic Scenes 2019 are the following:

• airport
• bus
• metro
• metro station
• park
• public square
• shopping mall
• street pedestrian (street with pedestrians)
• street traffic (mostly sound of cars and vehicles passing by)
• tram

The overall duration of the recordings is about 40 hours. All recordings were taken
in stereo format using a Soundman OKM II Klassik binaural microphone at a
sampling rate of 48 kHz and 24-bit resolution. The authors of [82] claim that,
since the microphone is designed to be worn in the ears as a pair of earplugs, the
recorded sounds should faithfully reproduce the stimuli that reach the auditory
system of the wearer. While the organizers of DCASE provide an official dataset
split for the challenge, throughout this work we produce several customized splits
that are better suited to our needs.

To find suitable scenes for the model to classify, we start by assessing the
capabilities of the network on a broad range of classes. We first preprocess the
raw audio from TAU Urban Acoustic Scenes 2019 by re-sampling and splitting the
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recordings as described in Section 2.3.1. This results in 26744 audio clips of 10
seconds each, which we partition as follows:

• 70% of the data (18719 clips, ≈ 52 hours of running time1) is used for training
• 15% of the data (4012 clips, ≈ 11 hours of running time) is used for validation
• 15% of the data (4012 clips, ≈ 11 hours of running time) is used for testing

We run a training procedure on the SB-CNN using the pipeline presented in
Section 2.3.2 and inspect the outcome. The results are shown in Fig. 3.1.

Figure 3.1: Initial model performance on TAU Urban Acoustic Scenes 2019
dataset using all 10 classes.

The current system achieves a macro-averaged F1-score of about 0.45; the score
in terms of accuracy is approximately the same. As a comparison, the top performer

1Note that this is more than the total running time of the original TAU Urban Acoustic Scenes
2019 dataset as the number of available clips are doubled after splitting the stereo channels.
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from the ASC task in the DCASE 2019 challenge scored around 0.85 [19]. Because
the model version deployed in the BeoMusic on the time of this test supported
4 classes, a merging strategy was designed to group the 10 classes into 4 macro-
categories. The categories were chosen to maximize the network’s performance
a-posteriori by merging together the classes that were most often confused. A
semantically meaningful name representing the common aspects of the subclasses
was given to the new 4 macro-classes. Specifically:

1. bus, metro and tram were grouped under the class travel, since they all represent
means of transportation (≈ 11 hrs running time in stereo format);

2. airport, metro station, public square, shopping mall, street pedestrian were
grouped under the class chatter, since they all represent scenes where a lot of
people are present around the user and chatter noises can generally be heard
(≈ 18 hrs running time in stereo format);

3. park was renamed quiet, with the intent of representing situations of silence.
This class was easily recognizable from the very beginning and did not need
any merging (≈ 4 hrs running time in stereo format);

4. street traffic was renamed vehicle, and was not merged with any other class
out of exclusion (≈ 4 hrs running time in stereo format).

Figure 3.2: Model perfomance on TAU
Urban Acoustic Scenes 2019 after group-
ing up the most often confused classes.

The choice of classes is in line with the
recent trends in the usage of wearable au-
dio devices: this was investigated by the
company Audio Analytic in their 2019 sur-
vey [6] about consumers’ habits regarding
“hearables”, i.e. computerized wearable elec-
tronics whose main purpose is audio repro-
duction such as earplugs, headphones, etc.
The survey was conducted among 3000 peo-
ple in the UK and 3000 in the US and fo-
cuses on what functionalities potential users
would desire from combining hearables with
artificial intelligence. The survey reports
that the four most popular locations where
people employ their audio devices are: at
home, when traveling, at the gym, and “out
and about”. It is straightforward to see how
such locations could match the 4 macro-classes established for our system: “home”
would most likely be quiet, “traveling” would generally correspond to travel, “gym”
might be represented by chatter, and “out and about” may include either chatter or
vehicle (in the case of urban areas). We argue that the results from the survey seem
to validate our model-driven class choice. We decide to continue our experiments
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with those 4 new classes, as they seem to reflect a plausible use case scenario of
the developed technology.

The same model’s performance was evaluated a-posteriori on the new 4 classes
after performing the merging operation (i.e. by re-labeling the already performed
prediction outputs). The results are illustrated in Fig. 3.2. The model’s accuracy
now improves to around 0.85, while its macro-averaged F1-score is 0.79. As
previously mentioned in Section 2.3.2, we deem the macro-averaged F1-score to
be more suitable for our problem because of the class imbalance: the chatter and
travel scenes have a higher number of samples than the quiet and vehicle scenes.
This choice of metric is motivated by the fact that, on the final product, we would
like the network to perform equally well on all classes; thus, hereafter we employ
the macro-averaged F1-score as evaluation metric.

3.2 Impact of the low-data scenario
As previously mentioned, no labeled data from the target microphone was available
at the start of the project. After an initial set of acoustic scenes was defined, we
performed an assessment of the model’s learning capability as a function of the
amount of available training data. This would have been valuable information in
the case that new training data would have had to be recorded.

We therefore define a fixed test set and simulate the availability of fewer data
points by progressively increasing the size of the training set. For consistency, we
also tune the size of the validation set according to that of the training set. More
specifically, the setup is the following:

• we reserve at most 15% of the data (4012 clips, ≈ 11 hours of running time)
for training;

• we reserve at most 15% of the data (4012 clips, ≈ 11 hours of running time)
for validation;

• the remaining 70% of the data (18719 clips, ≈ 52 hours of running time) is
fixed and used for testing.

We choose these proportions since, in the case of having to manually gather audio
from our target microphone, simulating 24 hours of available training+validation
data seems a plausible upper bound to set. Therefore, we keep the proportions of
the training and validation partitions to 15% of the total dataset at most: this
is equivalent to having slightly more than 11 hours of stereo audio in each set,
which in turn are almost 23 hours in mono format. The rest of the data is used for
testing.

To simulate the availability of different quantities of training data, we create
several possible train and validation subsets of the size of 100, 200, 500, 1000, 2000,
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and 4012 samples. We train a different version of the model on each of the given
subsets maintaining the same training procedure illustrated in Section 2.3.2: for
each split, we report the macro-averaged F1-score across all classes. The results
are illustrated in Table 3.1.

Train. and Val. set size Running time Macro-averaged F1
100 samples 33m 16.6%
200 samples 1h 6m 37.4%
500 samples 2h 46m 62.0%
1000 samples 5h 33m 79.2%
2000 samples 11h 6m 79.0%
4000 samples 22h 16m 79.6%

Table 3.1: F1-score on TAU Urban Acoustic Scenes 2019 with increasing
amounts of training data.

Our experiments indicate that the network’s performance seems to saturate when
being trained with about 1000-2000 samples, with an upper bound around 79%
F1-score. Naturally, the general goal of the project will be to increase such upper
bound as much as possible, i.e. to increase the overall generalization capabilities
of the model. However, should the need of gathering training audio from the
target microphone arise, we now have a rough indication of how much data may be
required to reach a state of the CNN that is reasonably close to the upper bound
of its capacity.

At this point of the project, access to the BeoMusic microphone was still
not possible; thus, we moved forward assuming the worst-case scenario, i.e. a
microphone mismatch does take place, it negatively impacts the functioning of the
system, and it is necessary to gather new data using the target microphone. In
such a case, the most useful effort would be to attempt to optimize the network so
that it reaches its saturated state faster; in other words, we would like to improve
performance in the low data scenario. The next section investigates this problem.

3.3 Tackling the low-data scenario
In the previous Section, we obtained a benchmark of the performance of the model
when it is trained with a few minutes of audio, then gradually increased the amount
of training data up to about 22 hours. Of course, there is an evident performance
gap between the two settings. In this Section, we examine possible ways to increase
the generalization capability of the neural network in the low-data regime and
make it as close as possible to the that obtained with 22 hours of training data.
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Historically, deep models have been shown to have greater generalization capa-
bilities than shallower ones [113]; however, because the network topology cannot
be changed for the reasons illustrated in Section 2.2, it is not possible to tweak
the CNN’s architecture in attempt to improve performance. Therefore, we adopt
training-time strategies.

3.3.1 Transfer learning from a different microphone
Studies have shown how initialization of the weights of a deep neural network
can considerably impact the outcome of the optimization procedure [119]; in that
regard, a number of initialization techniques have been devised to ease the learning
process of neural networks, some of which became standard in modern deep learning
libraries [37, 42]. While such techniques have their perks, if training data is scarcely
available, it is sometimes the case that not even a theoretically grounded stochastic
initialization is sufficient for a successful learning procedure. In those scenarios,
one commonly applied technique is transfer learning. In general, transfer learning
consists in a process of two-steps [125]:

1. knowledge is acquired by training a model on a source dataset Ds to perform
a source task Ts;

2. the knowledge from the previous step is used to ease the learning of a target
task Tt by means of a dataset Dt.

More specifically, network-based transfer learning involves reusing some or all the
weights of a network trained on Ts as initialization values for the training on Tt.
This serves as an alternative means of initializing the network’s parameters and
is one of the most effective and widely employed techniques to speed up training
convergence (or allow convergence at all, if the data is scarce) in deep learning
models. This approach is also known as fine-tuning.

In this instance, we hypothesize that, in the event of a low-data scenario, it
would be possible to train the SB-CNN model on a ASC task that uses a different
microphone for which a lot of data is available, then fine-tune the network using
fewer data points from the target microphone. We perform such an experiment with
the aid of a further dataset internally owned by the company that we refer to as
Support scenes dataset. This dataset is the result of the composition of two different
data sources. The first source is EigenScape [39], a dataset containing recordings
of 8 acoustic scenes in fourth-order Ambisonics format [9]. The scenes are: Beach,
Busy Street, Park, Pedestrian Zone, Quiet Street, Shopping Centre, Train Station,
Woodland. The scenes were recorded with the Ambisonics microphone MH Acoustics
EigenMike at 24-bit resolution and 48 kHz and a gain of +25 dB was subsequently
applied to them (except for the Train Station class, which had a gain of +5 dB).
Outdoors recordings were taken with a windshield, so no wind background noise is
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present in them. For each scene, 8 recordings of exactly 10 minutes were taken, i.e.
each scene has a total of 1h 20m running time.2 In the Support scenes dataset, only
the scenes Busy Street, Park, Pedestrian Zone, Shopping Centre and Train Station
were included. The selected Ambisonics recordings were played-back in an anechoic
chamber (see Section 4.2.1) and re-recorded with a pair of Behringer ECM8000
microphones and a Focusrite Scarlet 2i4 soundcard to obtain a down-mixed stereo
version of them. The resulting files were stored in WAV format with a 32-bit
precision and a sampling rate of 44.1 kHz. The second data source is a set of
airplane and train recordings taken by a B&O employee in first-order Ambisonics
format and re-recorded as stereo files the same way as the previous data source.
The train recordings are 10 minutes long in total, while the airplane recordings
amount to 1 hour and 11 minutes. We re-label the data according to the four
classes established in Section 3.1. We obtain the following running times: 3h 50m
of chatter, 1h 20m of quiet, 1h 20m of vehicle, 1h 21m of travel. The final label
mapping and runtime for each class is shown in Table 3.2.

Original scene Running time Re-mapped label
Airplane 1h 11m travel

Busy Street 1h 20m vehicle
Park 1h 20m quiet

Pedestrian Zone 1h 20m chatter
Shopping Centre 1h 20m chatter

Train 10m travel
Train Station 1h 10m chatter

Table 3.2: Original labels and and label re-mapping of the Support scenes
dataset.

Armed with two available datasets, we setup the transfer learning process as
follows:

• Ts is learning the four illustrated scenes from the audio representation obtained
by the source microphone Behringer ECM8000, using the Support scenes
dataset as Ds;

• Tt is learning the same four scenes as represented by the Soundman OKM II
Klassik, using the TAU Urban Acoustic Scenes 2019 dataset as Dt.

Note that our final goal is to make Tt the learning of the selected four classes
according to the characteristics of the microphone of the BeoMusic; however,

2We remove 10 minutes of audio from Train Station as they did not properly represent the
label chatter indicated in Table 3.2.
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when this experiment was being carried out, it was not yet possible to access that
microphone. Hence, we use the Soundman OKM II Klassik as a “proxy” target
microphone.

We train the model on Ds as in Section 3.2; then, we apply transfer learning
and fine-tune the obtained model for 10 further epochs on Dt (the remaining
hyperparameters are kept the same). The final state of the model is the one that
achieves the best macro-averaged F1-score obtained on the validation set. Validation
is performed after every epoch. We repeat the experiment while progressively
increasing the size of Dt as described in Section 3.2. We report the macro-averaged
F1-score obtained on the test set by each version of the CNN in Section 3.3.3.

3.3.2 Data augmentation: SpecAugment
Data augmentation consists in applying random noise and transformations to the
data at training time in order to simulate the availability of more data points. It is
an extremely popular technique in several fields of machine learning [111, 71, 126],
including acoustic modeling [23]. Recently, a straightforward data augmentation
technique for time-frequency signal representations called SpecAugment [91] was
proposed in the context of speech recognition; because of its simplicity and effec-
tiveness, it has been since investigated on a wide variety of different audio-related
tasks [28, 123, 92, 14]. Given its success, we decide this general-purpose augmenta-
tion technique is a good starting point to attempt to improve the generalization
capabilities of the model in the low-data scenario.

SpecAugment essentially consists in applying random 0-masking and time warp-
ing to an input spectrogram; for ease of implementation, we focus on the former
transformation. The masking is applied independently over time and frequency
dimensions. More specifically:

• Frequency masking consists in zeroing out the same f consecutive frequency
channels in all feature frames of the spectrogram. Let ν be the total number
of Mel bins of the input, and let F be a hyperparameter representing the
maximum width of a masking band. We sample the actual width f of the
masking band from a uniform distribution in [0, F ); subsequently, we sample
the starting point of the masking band f0 from a uniform distribution in
[0, ν−f). All the values in the frequency bands in the range [f0, f0+f) are then
zeroed out. We repeat this process Nf times, where Nf is a hyperparameter.

• Time masking works the same way as frequency masking, but in the time
dimension. Let τ be the number of frames in the spectrogram. We first set
hyperparameters T (maximum mask width) and Nt (number of masks). For
Nt times, we set to zero the coefficients of all frames in the range [t0, t0 + t),
where t is uniformly sampled from [0, T ) and t0 is uniformly sampled from
[0, τ − t).
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We repeat the same experiments described in Section 3.3.1, but using SpecAugment
as online augmentation technique during the training phase. Considering that
our input spectrogram is of size (30× 72), we use the following hyperparameters:
Nf = Nt = 2, F = 4, T = 10. Moreover, we trigger the overall SpecAugment
transformation with a probability p = 0.5. Results are reported in Section 3.3.3.

3.3.3 Experimental results
Transfer learning greatly improves the CNN’s performance in the low-data regime,
providing an average increase of 30 percentage points in F1-score when training on
500 data points or below. SpecAugment also seems to be effective in increasing
the generalization capabilities of the network in the low-data setting. To a lesser
extent, this is also true when the model is saturated (i.e. when training it with 4000
samples): in that scenario, augmentation consistently provides a small performance
increase (1-2%) both with and without transfer learning. The results illustrated in
this section are reported in Fig. 3.3 and in Table 3.3.

Figure 3.3: Macro-averaged F1
score of the SB-CNN on the TAU
Urban Acoustic Scenes 2019 test set
with increasing amount of training
data and different training configura-
tions.

Training mode
F1-score with
4000 training

samples
Random init 79.6%

Random init +
SpecAugment 81.6%

Pretrain 82.1%
Pretrain +

SpecAugment 83.2%

Table 3.3: Test set re-
sults by SB-CNN with
training at high-data
regime.

We conclude that data augmentation is useful in increasing the neural network’s
generalization capabilities regardless of the training setting: thus, we permanently
incorporate it in the the pipeline. However, for such a small model, the effects
of transfer learning seem to quickly diminish when the available data increases.
The technique will therefore be employed if a microphone mismatch takes place
and the available data is scarce; however, in the presence of abundant data points
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Model benchmarking in a low-data scenario

(i.e.≫ 4000), its application may not be necessary. Regardless, it is now possible to
establish a baseline training routine. Henceforth, we refer to the SB-CNN trained
with SpecAugment (with the hyperparameters listed in Section 3.3.2) as “baseline
model”. Whether or not transfer learning will be included in the baseline model is
yet to be established, as it depends on the effect that the mismatch between source
and target microphone will have on the neural network. In Chapter 4, we shall
investigate this issue and establish the precise impact of microphone mismatch on
the system.
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Chapter 4

Closing the gap between
research and production

The divergence between research and production systems in the field of machine
learning has been remarked a number of times in the literature [10]. This phe-
nomenon is especially true in embedded applications, where models must be
deployed on specialized hardware and cannot run in their native environment (often
a Python-based engine such as TensorFlow [76] or PyTorch [94]). While frame-
works that partially automate the deployment operation to embedded environments
did recently emerge [24, 87], a company may sometimes need to design its own
proprietary deployment pipeline because of hardware compatibility reasons, as is
the case with this project. Because of that, the system needs to be attentively
sanity-checked before being installed into a product.

The pervasive spread of ML has fostered the surfacing of a set of best practices
to systematically train, test, and maintain ML models in production environments;
this broad range of practices has been given the name MLOps [80]. More specifically,
some attention has been given to how to properly test a model in a production
environment [101, 128, 31].

In this section, we describe the work made to unify the results obtained in a
proxy system such as TensorFlow with the actual model running in the company’s
product. The main steps of our pipeline include:

• Input capture: capturing an audio stimulus with a microphone and convert-
ing it to a 1-dimensional PCM signal.

• Front-end preprocessing: computing Mel spectrograms of the input signal.
• Back-end CNN classification: the neural network produces scene probabil-

ities from the Mel spectrogram.
Within the scope of this project, two distinct versions of this pipeline exist: one for
prototyping (running in a TensorFlow/Keras environment) and one deployed in
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Closing the gap between research and production

the company’s headphones (running on the target embedded platform). While the
two serve the same purpose, they effectively are independent systems that employ
different technologies: one could say between them is a “gap” that must be “filled”
to successfully deploy the DL-based product. Fig. 4.1 illustrates this concept. In
order to unify the two pipelines into one, we tackle each step individually.

Figure 4.1: The two parallel pipelines of the research and the production
environments.

4.1 The model gap: front-end processing and
back-end neural network

We begin by addressing the last two steps of the pipeline, since the assessment
of their behavior is purely technical and does not involve the study of the data
distribution at hand (i.e. the specific audio stimuli input into the system).

In fact, the front-end preprocessing steps of the research and the production
pipeline hardly need any assessment operation to be unified, since the generation of
Mel spectrograms is handled by a proprietary B&O library. The same C code can be
deployed on the headphone platform and also used in a Python environment thanks
to a custom wrapper. Thus, this processing step performs the same operations in
both platforms, and is guaranteed to yield the same results.

However, the neural network implementation is different for the two pipelines:
TensorFlow is used for prototyping in the research environment, and the corre-
sponding C implementation is used on the hardware platform. Therefore, it is
necessary to testify the numerical identity of the two CNNs. We establish that
the two back-end classifiers are equivalent by forwarding the same set of data in
the two versions of the CNN. We sample 30 minutes of audio from the test set
described in Section 3.2, making sure that the four established classes are equally
represented. The obtained data points are preprocessed and passed through the
two versions of the same network. We then assess how many samples obtain the
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same prediction from the two classifiers, regardless of the fact that the predicted
class matches the ground truth or not. For this reason, the exact version of the
CNN weights used for this experiment is not strictly relevant, so long as it is the
same for both the TensorFlow and C pipelines. We employ the model version
reported in the last row of Table 3.3. The C model is compiled as an executable
binary and run on a Linux operating system. The binary is the same that would
run on the headphone’s hardware.

Our experiment shows that about 99% of the clips extracted from the test set
are classified the same way by both versions of the neural network. In all clips that
are classified differently between the two pipelines, at least one of the networks
has a difference in probability of 5% or less between the most likely and second
most likely class: in other words, the classification mismatch between the two
implementations only takes place in situations of high uncertainty, when a slight
oscillation in the CNN’s final activation values can be just enough to cause the
maximum argument of the softmax to change. We hypothesize this might be due
to slight differences in the numerical representation used by the two platforms. In
spite of that, we deem the behavior of the two CNN versions sufficiently similar: it
is possible to state that the research-production gap between the last two stages of
the pipeline is effectively closed.

4.2 The data gap: microphone mismatch
The last step to unify the research and production pipelines is related to the input
data. Because the training and testing microphone are potentially different, it is
unreasonable to assume that the result of the input capturing step will be the same
for both development and production pipelines. Therefore, what one can do is to
ensure that such a difference does not considerably affect the downstream task,
and if so, what can be done to mitigate the issue.

As mentioned in Section 2.2, the act of training an ASC model on a set of
training data recorded from a specific microphone then testing it on audio coming
from a different microphone is known as device mismatch or microphone mismatch;
recent literature suggests that this setup can significantly diminish the classification
effectiveness of the model [61]. This issue has received a considerable amount of
attention from the ASC community, to the point that the DCASE 2019 challenge
has dedicated an entire sub-task to acoustic scene classification with mismatched
devices [82]. However, while several techniques have recently surfaced to tackle the
issue of device mismatch, they all have been applied in the context of relatively
large models and fine-grained feature extraction (usually spectrograms with either
128 or 256 frequency bins [49, 78, 57]); in our scenario, the model is extremely
simple, and our feature extraction setup implicitly applies a remarkable level
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of compression to the data (using 30 Mel bins means extracting very high-level
coefficients). For this reason, it is necessary to practically assess whether or not
microphone mismatch actually affects our network. In this section, we propose
different approaches to tackle the problem: first, we re-record a restricted set of
test data points from the target microphone, and verify if the performance of the
CNN drops after re-recording data; second, we propose a way to simulate the fact
that an existing audio clip was acquired using the target microphone by means of
impulse response convolution.

4.2.1 Re-recording part of the test set
Ideally, in order to verify whether a device mismatch impacts the classification
capabilities of the network, we would need to assess the model’s predictions on the
same audio stimuli recorded from two different microphones:

• The microphone that recorded the data used for training (source microphone)
• The microphone that will be used in the final device (target microphone)

Figure 4.2: Recording setup with
the headphones worn by the HATS
in B&O’s anechoic chamber.

The above can be achieved by extracting part
of the test dataset, re-recording it through the
target microphone, and evaluating the obtained
samples with the trained neural network. Bang
& Olufsen’s labs have a specific environment
suitable for such a task: an anechoic chamber
with a spherical array of 40 speakers that can
emit sound without introducing reverberations
from the room. More details about the loud-
speaker array setup can be found in [4].

The recording setup is the following: we use
the same 30 minutes of audio from the origi-
nal test set (uniformly sampled across the four
classes) as in Section 4.1. We set the head-
phones at the center of the spherical speaker
array, worn by a B&K 4128 head and torso sim-
ulator (HATS). We then play the samples from
only one speaker placed in front of the HATS,
directing the sound in the direction of the lis-
tener from a distance of about 1 meter. The
recording setup is shown in Fig. 4.2. To minimize the spurious differences between
the original and the replayed clips, we choose to play back the sound as mono
even though the clips from TAU Urban Acoustic Scenes 2019 are originally stereo.
To reduce the clips to mono from stereo, we extract only their first channel. The
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files are then routed through the speaker array by means of a program produced
with the software MAX.1 The signal is processed by a RME MADIface XT audio
interface, which does not support reproduction of sound at 16 kHz. Hence, we play
the files at the original sampling rate of 48 kHz, then later down-sample them to
16 kHz to make them compatible with the model. The recording of sound from
the BeoMusic is performed by using a special set of headphones whose internal
microphone has been connected to a wire that runs externally to the device: this
way, it is possible to directly stream the signal recorded by the microphone to a
sound card and save it into a computer. In our setup, we use a Focusrite Scarlet
Solo sound card to capture the output signal of the microphone at a sampling rate
of 16 kHz, then save it into a laptop computer placed to the side of the headphones
by means of the software Audacity.2 It is relevant to point out that, while this setup
is suitable to perform a comparative test between two microphones, it may not be
completely faithful to all possible use-case scenarios where the headphones would
be used. Indeed, here we are reproducing audio coming from a single source with
no refraction coming from the surrounding environment: in settings like a normal
room, sound reflections would be present. One might argue that this configuration
is more representative of situations where the microphone is subject to highly
directional audio stimuli in environments with low amounts of sound reflections,
such as open spaces with few obstacles around the listener. While this limitation is
reasonable for the purpose of this experiment, as a sanity-check, we also re-record
the audio clips in a normal quiet room, played back from a B&O A9 speaker. This
serves as a verification of the obtained results: ideally, the classification quality
obtained form a normal room with reverb should neither exceed that of the anechoic
chamber nor be noticeably worse. This time, the headphones are placed on a stand
facing directly the A9 and about 1.5 meters away from it. The sounds on the A9
are played back directly from a laptop computer. As regards the headphones, the
recording setup is the same as before.

At the end of the procedure, we obtain a number of what we call comparison
sets:

• The source comparison set, containing 30 minutes from the source microphone
Soundman OKM II;

• The target comparison set A, containing the same 30 minutes of audio content
recorded through the target microphone in the anechoic chamber;

• The target comparison set B, containing the same 30 minutes of audio content
recorded again through the target microphone, but in a normal room.

We then test the same trained model used in Section 4.1 on all datasets. Because

1https://cycling74.com/products/max
2https://www.audacityteam.org
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the audio content is the same, any possible difference in performance between the
source and target sets should be caused purely by the microphone’s mismatch. The
process described thus far is illustrated in Fig. 4.3.

Figure 4.3: Diagram of the generation and evaluation of the comparison
sets.

While the content of corresponding clips in the source and target comparison sets
should be the same, we expect the re-recording process of the audio to introduce
several spurious gains, denoted as SG in Fig. 4.3. Such gains originate from the
routing of the input sound to a sound card, the reproduction of the sounds through
the loudspeakers, etc. Therefore, with no specific post-processing, the final volumes
of corresponding clips in the source and target sets are not guaranteed to be the
same. While the model should indeed be robust to slight volume variations, our
main goal here is to only measure the impact of the microphone mismatch with
the influence of no other factor. Thus, we re-align the volume of the re-recorded
clips by means of root mean square (RMS) normalization. We generally define the
RMS of a signal x as:

RMS (x) =

öõõô 1
N

NØ
i=1
|xi − µx|2 (4.1)

where N is the number of samples of x and and µx = 1
N

qN
i=1 xi. The vol-

ume-normalized clip åx(t) is then computed from the source clip x(s) and the
re-recorded clip x(t) as:

åx(t)
i = x

(t)
i

RMS (x(t)) · RMS
1
x(s)

2
∀i ∈ [1, N ] (4.2)

After normalization, the obtained comparison datasets are evaluated by the neural
network with a regular inference procedure. Surprisingly enough, classification
performance seems to drop dramatically with target set A, while it is only slightly
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diminished on target set B; more specifically, it seems that the classes travel and
vehicle are mostly ignored by the model while in the anechoic chamber, and the
majority of samples are either classified as chatter or quiet. Conversely, the A9
introduces fewer disturbances, mostly in the vehicle class (Fig. 4.4b). This results
in a performance drop of about 37% in terms of macro F1-score in the anechoic
chamber, and of only 10% when using the A9 in a normal room (Fig. 4.4a). Such
a result would seem to suggest that the reflections in a normal room actually
improve classification performance; however, this does not seem plausible, as the
original dataset was not recorded by playing back sounds inside a room, and it
is unlikely that a model could exploit the phenomenon of reverberation without
having experienced it during training.3 Indeed, as previously remarked, one would
have expected the performance on target set B to match that of dataset A at best,
but not to surpass it.

(a) Macro F1-scores of different microphone
conditions. (b) Confusion matrices showing the network’s

classification performance in different microphone
conditions.

Figure 4.4: Results of the microphone impact assessment. Re-recording the
audio clips in an anechoic environment using the target microphone does not
seem to critically worsen the classification performance of the model.

3Note that, when we say “reverberations”, here we mean those that are introduced by re-
recording an audio clip a second time with the target microphone after it was first captured
by the source microphone in its original environment. As previously illustrated, this kind of
“re-recording”-induced reverberations are present in the normal room, but not in the anechoic
chamber. However, in the broader sense of the word, reverberations coming from objects in the
original environment (such as cars and buildings) are always present in the recordings. We are
not concerned about that kind of reverberations, as they are naturally present in all original
audio clips.
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In order to investigate the issue, we compare the Mel spectrograms produced by
the preprocessing of the same clip in the source set, in target set A and target set B.
We produce the spectrograms with the B&O library common to both pipelines, to
make sure that they replicate exactly what data is given as input to the model at
inference time. When compared, the spectrograms obtained from the source set
and the target set B appear to be visually similar. Their corresponding audio clips
also roughly sound the same, except for a slight (and expected) additional reverb
in the target set B. However, in target set A, we notice a lack of intensity in the
low frequencies of the re-recorded clips: specifically, the very first frequency bin of
the spectrogram appears to be much weaker. For many samples, the phenomenon
is visually noticeable by inspecting their time-frequency representation, but may
also be confirmed by plotting the average value of the first energy bin across time
(Fig. 4.5), which collects energy from 0 to roughly 120 Hz. We hypothesize that
the performance drop in the anechoic chamber is due to the following:

1. The model is very sensitive to low frequencies;
2. The anechoic chamber’s loudspeaker array is not playing that frequency range.

The first hypothesis can be verified with the saliency map technique [112]. In DL, a
pixel-wise saliency map roughly indicates how much each individual pixel contributes
to the classification output of a certain class. Let gc (x) be the logit activation
of the neural network associated to class c when the input is the spectrogram x.
The saliency map Sc (x) of the sample x0 can be obtained by executing a normal
forward pass through the network, then computing the gradient of the activation
of class c with respect to the input spectrogram.

Sc (x0) = ∇x gc (x)|x=x0
(4.3)

This can be easily achieved by extending the normal back-propagation operation
to the input tensor.

Because in the anechoic chamber a lot of travel and vehicle samples are classified
as chatter, we inspect an instance of the travel class (extracted from the file
bus-milan-1180-45241-a.wav of TAU Urban Acoustic Scenes 2019) and compute
the saliency map associated to the class predicted by the model. In the case of the
correctly predicted travel class, the model does not appear to overly pay attention
to the first bin (Fig. 4.5, top row); however, when the clip is re-recorded in the
anechoic chamber, the network seems to mostly focus on the lack of low frequencies
and uses that hint to erroneously conclude that the sample belongs to the chatter
class (Fig. 4.5, third row). This issue does not occur when the clip is played through
the A9, which instead reproduces the low frequencies correctly (Fig. 4.5, second
row).

The definitive confirmation of the fact that the model highly depends on the
first Mel bin can be achieved by manually masking it and verifying that the net-
work’s predictions change drastically. As an example, let us take again the file
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bus-milan-1180-45241-a.wav (from the source set), compute the Mel spectro-
gram of 3.45 seconds extracted from it, and feed the result into the CNN: the
model’s prediction is travel with 88% probability (top of Fig. 4.5). Subsequently,
we substitute all coefficients of the last row of the input matrix (i.e. the lowest-
frequency Mel bin) with a low constant value,4 and repeat the forward pass: the
most likely class becomes chatter with 91% probability. Such phenomenon is
graphically illustrated in Fig. A.1 of Appendix A.1.

While this investigation uncovered an interesting weak spot of the model, one
may argue that the problem here is not the network itself: the issue mostly lies in
the speaker array of the anechoic chamber not reproducing the low frequencies that
are sometimes necessary to correctly recognize certain acoustic scenes. Moreover,
it is worth noticing that some of the inspected travel-labelled clips also contain
some chatter information; however, thanks to the low-frequency information, the
model is able to ignore them and focus on the fact that the user is on a bus or
train, which may actually be a desirable behavior.

Further investigation revealed that the cutoff frequency of the loudspeakers that
compose the spherical array is ∼ 55 Hz, hence the first bin of the Mel spectro-
gram containing a relatively low energy. In order to reproduce low frequencies, a
subfwoofer present in the room had to be activated by means of a specific setup.
The subwoofer is an omnidirectional speaker that is meant to reproduce low fre-
quencies only: indeed, in professional audio systems, subwoofers sometimes play
independently from the rest of the speakers because of their omnidirectionality [32].
In contrast, the B&O A9 is a commercial product that is meant to operate in a
standalone fashion and independently reproduces all frequencies in the audible
range with no special setting required. This explains the improved results despite
the non-optimal environment for audio reproduction.

We activate the subwoofer in the anechoic chamber, repeat the recording proce-
dure and evaluate the model on the new clips. As shown in Fig. 4.4, the results
in the anechoic chamber now mostly align with the results of the original audio,
with a difference of about 3% F1-score. As expected, low frequencies are also back
to normal energy levels and the model does not overly focus on the first Mel bin
(Fig. 4.5, fourth row). These results suggest that, on a 30 minute test set, a device
mismatch does not dramatically impact the model’s performance; nevertheless,
some slight degradation (3% F1-score) can be seen. The two following questions
then naturally arise:

• Does this degradation remain the same when scaling up to a larger, more

4Because we take the logarithm of the Mel spectrogram, its numerical values are negative. We
find −4 to be a reasonable “low constant”, as frequency ranges of low energy seem to oscillate
around that value.
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statistically significant test set?
• Is there a way to verify the above without having to re-record hours of test

data?
• In case of future model development, is it possible to generalize such procedure

to any source microphone instead of just the Soundman OKM?

We attempt to tackle some of those issues in the next section, where we try
to manually distort the input audio according to the characteristics of the target
microphone to simulate the fact that the clip was captured with it.

4.2.2 Simulating new microphone data by means of impulse
response convolution

Instead of having to re-record several hours of audio, one can aim to directly
simulate the target microphone’s behavior on existing audio clips. In general,
microphones are designed to behave as linear time invariant (LTI) systems when
operating in a desired frequency range [43]. A LTI system is a system whose
output linearly depends on its input according to a time-invariant mapping. The
relationship between input x (t) and output y (t) of the system can be fully described
by means of its impulse response function h (t):

y (t) = h (t) ∗ x (t) (4.4)

where ∗ denotes the convolution operation. In a discrete time setting, the impulse
response describes how the system reacts to a unitary impulse δ(t) = ✶t=0. Assuming
the target microphone T can be modeled as an LTI system, it should be possible to
convolve an input audio signal x (t) with its impulse response hT (t) to introduce
the same artifacts and distortions that the microphone would introduce when
recording the audio track.

The problem then becomes how to capture hT (t). A popular approach is
to design an ad-hoc “inverse filter” function f(t) that performs the so-called
“deconvolution” operation [30, 103]:

h(t) = y(t) ∗ f(t) (4.5)

The inverse filter function depends on the input signal x(t). Indeed, by express-
ing (4.4) in frequency domain and using (4.5), it is possible to show the following:

H(f) = Y (f) · 1
X(f)

h(t) = y(t) ∗ f(t)

←→ f(t) = F−1
I

1
X(f)

J
(4.6)

Where F−1 is the inverse Fourier transform. One possible approach to finding the
inverse filter is then to choose an appropriate form of x(t) so that F−1 {1/X(f)}

35



Closing the gap between research and production

Figure 4.5: Left: Mel spectrograms of the same sample from the travel class
under different conditions. Right: saliency maps for the class predicted by the
neural network. Notice how the samples re-recorded in the anechoic chamber
present lower energies at lower frequencies on average (bottom left). This
seems to cause the model to overly concentrate on the lack of low frequencies
and overlook the rest of the information: this can be observed by averaging
the saliency value of the first Mel bin in different settings (bottom right).
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is mathematically tractable. A popular choice of x(t) is represented by a sinusoidal
signal of duration T whose instantaneous frequency exponentially increases from f1
to f2, often referred to as “sine sweep” [117, 29, 88]:

x(t) = sin
3

2πf1L
5
exp

3
t

L

4
− 1

64
(4.7)

Where L is a parameter that depends on T and f2 according to:

L = T

log
1

f2
f1

2 (4.8)

If x(t) is chosen as previously described, then [88] shows how the inverse filter can
be computed in closed form as an exponentially decaying, time-reversed version of
the original input:

f(t) = F−1
I

1
X(f)

J
= f1

L
exp

3
− t
L

4
x(−t) (4.9)

In our experiments, we use f1 = 0 Hz, f2 = 22050 Hz and T = 3 seconds. In
the anechoic chamber, we reproduce x(t) at 44.1 kHz through a loudspeaker and
record the microphone output y(t) with the same setup described in Section 4.2.1.
It is crucial to perform this operation within an anechoic environment: if not, the
obtained impulse response hT (t) would not only include the effects introduced by
the microphone, but also the sound reflections produced by the room itself.

A further issue to consider is that the microphone of the target device is not
omnidirectional, i.e. it does not have the same sensitivity to air pressure from
every angle: thus, in principle, the microphone has several impulse responses hT,θ

depending on which angle θ the impulse comes from. As mentioned in Section 4.2.1,
the re-recording was performed by reproducing audio from the speaker facing the
listener, i.e. from a 0° angle. Thus, this is the main direction we are interested in
when assessing if the impulse response method and the re-recording method yield
the same results.

Nevertheless, because the experimental setup is the same, we proceed to record
impulse responses from all angles around the HATS: this will allow to simulate
the fact that the input audio comes from very specific directions. As remarked in
Section 4.2.1, this “high-directionality” setting may not be realistic in every use
case: regardless, we choose to perform the experiment as it may be of interest to
further understand the model’s behavior under those specific conditions. Thus,
we record 12 different impulse responses coming from equally spaced intervals of
30° on the horizontal plane where the microphone lies. In other words, we play
x(t) 12 times, each time from a different loudspeaker placed at a different angle
with respect to the headphone placed on the HATS: this results in 12 different
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recordings yθ(t) for θ = 0°, 30°, 60° . . . . We then compute hθ(t) by convolving each
recording with the reverse filter as in (4.5). This way, with a single experimental
setup, it is possible to verify two phenomena: first, if the performance of the model
on the data captured with the target microphone is comparable to that simulated
with the impulse response; second, if the previous hypothesis is confirmed, then it
is also possible to verify how the model would react to highly directional stimuli.
A directional stimulus can be simulated by convolving an audio input with the
impulse response of the desired angle.

In practice, in our experiments, the same source comparison dataset from
Section 4.2.1 is convolved with each response hθ(t), forming a set of 12 new test
sets, each corresponding to a different angle. After convolution, each obtained
clip is RMS-normalized as in Section 4.2.1. The trained CNN is then evaluated
on each new dataset by means of macro-averaged F1-score. For the purpose of
tracking the various results, we establish that the loudspeaker directly in front of
the wearer is at a 0° angle, and the rest of the speakers follow the standard polar
coordinates convention. The recording microphone is installed in the left ear pad
of the headphones: thus, its position corresponds to the 90° angle. As previously
remarked, the purpose of this experiment is twofold:

1. The results on the 0° angle will reveal whether re-recording and using impulse
response-based convolution yield approximately the same results on the model.
If so, it should mean that impulse response convolution will be a viable way
to assess the effect of microphone mismatch on a larger scale in the future.

2. The results on all other angles will reveal whether the model can distinguish
highly directional stimuli with the same content and if its performance changes
based on the direction of the input.

Evaluating the model on the data convolved with the impulse response at 0° results
in a macro-averaged F1-score of 85%, which is in line with the results on the
original, non-convolved test set and reasonably close to the results obtained when
re-recording the data (see Fig. 4.4a). This would seem to suggest that the simulation
via impulse response convolution can reproduce the same results obtained when
re-recording the audio clips.

For further visual confirmation, we compare the spectrograms of the re-recorded
signal and the one convolved with the impulse response of θ = 0° (Fig. 4.6): we
render the complete spectrogram (not mapped onto the Mel scale) to have a
clearer picture of the artifacts introduced by both methods. While of course not
completely identical, the re-recording and convolution approaches seem to introduce
similar distortions in the input signal. Some differences seem to be present from
18 kHz onwards; however, since the input signal is resampled to 16 kHz before
preprocessing, this is not really relevant to our investigation. We can conclude
the following: microphone mismatch is not a major concern for our system in its
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current state, but if needed, data recorded from the target microphone can be
simulated by means of convolution with the impulse response of the microphone
itself.

Figure 4.6: Comparison of the spectrograms of different versions of the same
input test clip: the original from TAU Urban Acoustic Scenes 2019 (left), the
one re-recorded in the anechoic chamber (middle), and the one convolved
with the target microphone’s impulse response (right). The spectrograms are
computed with 1024 FFT samples and hop length of 768, but the Mel filters
are not applied to them this time to ease visual comparison.

Nevertheless, and interestingly enough, reverberation effects produced by angles
other than 0° seem to impact the model’s performance to various degrees. The best
results are achieved when the reverb comes from 0°, and the F1-score noticeably
degrades at 90°, reaching a value as low as 0.46. In other words, reverberations
coming directly from the direction of the microphone seem to greatly confuse the
neural network. The performance at other different directions fluctuates, but is
still acceptable. In order to verify that the degradation is not due to spurious
reflections generated by the room’s equipment during the recording, we repeat
the acquisition of the impulse responses by rotating the entire HATS by angles of
90° and performing the whole experiment every time. This results in a set of 4
independent experiments, numbered from 1 to 4. In order to factor out possible
reflections coming from the own torso of the HATS, in experiments 2 and 4 we
only turn the head of the mannequin and leave the torso in its previous position.
Moreover, to verify that the x(t) input sweep is not so loud that it causes distortion
in the microphone itself, we repeat each experiment at two different volume levels:
a “loud” one and a “quiet” one, with a playback gain of −12 dB and −24 dB
respectively. In other words, we produce 12 impulse angles × 4 head positions × 2
volume levels, for a total of 96 different impulse responses. We then convolve the
source comparison set with each of the responses and test the CNN on it.

The new results are in line with the previous experiment. The model seems to
consistently fail at 90°, regardless of the position of the HATS in the room. This
happens when the sweep is played both at high and low volume. Fig. 4.7 illustrates
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the results of the experiment in the loud setting (for the results in the quiet setting,
see Fig. A.2 in Appendix A.1). We try to get an insight of why the network
constantly fails at a certain direction by inspecting the frequency representation
of the impulse responses coming from +90° (where the problem is most evident),
−90° (the complete opposite side) and 0° (a middle point between the two). For
completeness, we examine the spectra acquired from all four head positions. As
expected, the behavior of a frequency response appears similar when coming from
different head positions with the same angle θ. It is possible to see how the spectra
of the impulse responses acquired at +90° present a number of “bumps” that are
not found in the other two angles: as Fig. 4.8 illustrates, the bands around 500-600
Hz, 2000-3000 Hz and 5000-6000 Hz seem to have greater energy in the case of the
θ = +90°. In order to verify which of these is causing the misclassifications, we
again take some of the original audio files and manually modify their frequency
bands. More specifically, we inspect samples from the quiet and travel class, and
check whether by tweaking the energy of one of the above-mentioned frequency
ranges it is possible to force the network to misclassify the input clips as chatter
(similarly to what was done in Section 4.2.1). While the boosted bands around
3000 and 5000 Hz do not seem to critically impact the model’s decisions, it appears
that the band around 500 Hz is quite relevant for the classification task: indeed,
by lightly boosting the energy values of all Mel bins between 300 Hz and 700 Hz,
it is possible to make some quiet and vehicle samples appear as chatter to the
CNN.5 Some examples of this phenomenon are graphically illustrated in Fig. A.5
of Appendix A.1.

Because of the multiple head positions and the asymmetric nature of the issue,
it is unlikely that the frequency bumps found around +90° are caused by the
reflections generated by the exposed metallic parts of the HATS. However, in order
to have a tangible confirmation, we repeat a set of measurements after clothing
the mannequin with a sweatshirt and a hat. Clothes on the torso simulator tend
to absorb sound vibrations and can avoid reflections phenomena: in a sense, this
makes the experiment more realistic, as it simulates the presence of clothes on a
real user. Since no considerable differences were observed among different volume
levels and head settings, the experiment was reproduced only for the loud setting
at position 1 (top right of Fig. 4.7). Repeating the inference operation with the
same model on all angles resulted in no significant differences compared to the
unclothed HATS scenario. Moreover, the boost from 300 to 700 Hz frequencies is
still present. For further insight about how the experiment with the clothed HATS
was conducted and a graphical illustration of the results, see Appendix A.2.

5Again, because of the fact that the coefficients of the spectrograms are negative, we “boost”
their values by multiplying them by a coefficient c ∈ (0,1), thus making them “less negative”. In
our case, we choose c = 0.7.
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At this point, it is reasonable to believe that the different behavior of the
CNN for different values of θ is due to the microphone itself, either because of its
intrinsic directivity or because of tolerances in the specific microphone unit we used.
Whatever the root cause, this results in a difference in impulse responses coming
from different angles, and the neural network at its current state does not seem to
have sufficient generalization capabilities to tell that the two signals should actually
be classified the same way. We acknowledge this problem and try to address it in
Chapter 5, where we propose a number of techniques to increase the robustness of
the model, and Chapter 6, where we analyze the impact of using a different CNN
architecture in the pipeline.

Figure 4.7: CNN performance when convolving the input with impulse
responses acquired from different angles. Regardless of the position of the
HATS in the anechoic chamber, the model seems to consistently fail at a 90°
angle.
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Figure 4.8: Spectra of impulse responses of the BeoMusic microphone
coming from different angles. The data is reported for all four head positions
illustrated in Fig. 4.7. The impulse responses were all re-sampled to 16
kHz prior to FFT computation, hence the cutoff at 8 kHz. No remarkable
difference can be seen between different head positions: this suggests that
the difference in frequency responses at different angles is not due to spurious
reflections produced by the equipment, but rather to the functioning of the
microphone itself.

For the moment, it is possible to conclude that the “gap” between the research
pipeline and the production pipeline has been bridged to a reasonable extent. For
the current modeling setup, we know that training and testing on the TAU Urban
Acoustic Scenes 2019 dataset in the TensorFlow environment will be an acceptable
approximation of the performance of the model in real use cases. We therefore move
on to further investigations pertaining to the optimization of the neural network
itself.
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Chapter 5

Trade-offs in model
robustness

In Chapter 4, we concentrated our efforts on closing the gap between the research
prototyping environment and the production pipeline. We were able to show how
it is reasonable to train and evaluate the TensorFlow model on data coming from
the publicly available TAU Urban Acoustic Scenes 2019 dataset and expect that
the same performance will be roughly maintained when deploying the model on the
target embedded platform. In the process, we also uncovered some details about
how the model takes decisions, making it more easily interpretable.

Still, even when having this knowledge, it is useful to evaluate the model in a real
scenario while running it on a physical wearable device. Therefore, a BeoMusic was
programmed to run the trained model on its hardware and perform the classification
at the press of an external button while capturing input from its own microphone.
A dedicated software patch also made it possible to record data from the target
microphone to a smartphone via Bluetooth pairing, in order to be able to store
audio input for subsequent evaluation and analysis.

In general, we follow the high-level strategy of establishing a protocol of contin-
uous model development that includes the following steps:

1. Test in the wild. The model is tested on different situations to identify edge
cases.

2. Construct a test set. Gather data that contains the discovered edge cases
and keep it as an independent set of testing data.

3. Adapt the model. Find new training or inference strategies to solve the
identified problem, and evaluate the effectiveness of such strategies on the
gathered test data.

4. Repeat. Once the performance on the edge case is satisfactory, go back to
step 1.
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The goal of this process is to obtain a number of test sets representing different
situations in which the model can fail. It will then be possible to use those as a
benchmarking tool to develop a more and more reliable acoustic scene classifier.

Our approach is loosely based on the “data-centric AI” paradigm, which has
recently gained momentum within the machine learning community, especially in
the context of deployment of models in production systems [85]. According to
the idea of data-centric AI, the data used in a ML pipeline should be iteratively
refined after each deployment according to the issues found with the model. We
adapt this approach to our scenario, where we want to perform an assessment of
the robustness of the system to perturbations that could potentially make it fail.

One of the corner cases where the CNN’s capabilities are known to decrease was
already presented in Section 4.2.2: the susceptibility to reverberations coming from
different angles. In this Chapter, we mainly focus on that and two other potential
threats to the effectiveness of the model: the presence of wind in the input and the
possible shifts in the data distribution underlying the four macro-classes established
in Section 3.1.

5.1 New dataset split and baseline
When the training procedures carried out in Chapter 3 were performed, it was still
unclear whether the phenomenon of device mismatch would make it necessary to
collect a new dataset recorded from the target microphone. If that had been the case,
we would have been in a “low-data scenario”: recording new and diverse enough
acoustic scenes from a specific microphone is an expensive and time-consuming
operation that would not have allowed the construction of a large training set.
Because of the uncertainty about the impact of microphone mismatch, the worst case
scenario was assumed: that we would indeed be in a low-data scenario. Therefore,
the training and validation sets used for the experiments in Chapter 3 were reduced
to a very small size; as a natural consequence, the rest of the data from TAU Urban
Acoustic Scenes 2019 was used to form a large, very comprehensive test set.

However, throughout Chapter 4, it was shown that device mismatch does not
negatively impact the model to a considerable extent: this effectively disproved
the low-data assumption. Hence, we are now free to use the TAU Urban Acoustic
Scenes 2019 dataset for training purposes to a wider extent.

First, we decide to remove all samples from the original metro_station scene
from the data. In Section 3.1, we established that this class belonged to the
macro-label chatter ; however, as Fig. 3.1 shows, clips from this scene are very often
(and understandably) confused with metro scenes, which were instead assigned
to the travel macro-class. Because the samples from metro_station reasonably
include sounds that can also be found in metro, we conclude that the expected
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macro-labeling of this class could equivalently be chatter or travel. In other words,
this scene is essentially ambiguous: we find it could be of little benefit if used during
training, and may even make proper evaluation of the network more difficult if used
in testing. Therefore, we remove it from the available data; after this modification,
we are left with 36 hours of stereo audio, which we split as follows:

• 26 hours (7800 stereo clips) are used for training;
• 4 hours (3000 stereo clips) are used for validation;
• 6 hours (3600 stereo clips) are used for the test set.

As previously done, we sample the data so that all 10 original scenes are equally
represented in each split. The same setup as Chapter 3 is kept for training. The
merging strategy of the original scenes into four macro-labels is also kept identical
to that described in Section 3.1.

However, at test time, we now attempt to simulate a more realistic use case
of the model. While the TAU Urban Acoustic Scenes 2019 dataset is composed
of data points corresponding to 10 second clips, each clip originally belongs to a
longer recording of a single scene, usually of the duration of approximately 3-5
minutes. For example, the clip street_pedestrian-barcelona-141-4285-a.wav
belongs to the scene barcelona-141 and is distinguished by its numerical ID 4285.
There are 21 other clips in the dataset that belong to the same scene: consequently,
there are 210 seconds (3m 30s) total of the scene barcelona-141. It is possible to
retrieve all the clips from the scene barcelona-141 from the dataset, sort them
by their numerical ID, then join them in a single WAV file to reconstruct the full
scene recording. Our new test set is composed of 3-5 minute long WAV recordings
of individual scenes reassembled as described above. We select a number of scenes
that amount to approximately 6 hours of running time.

The goal of designing the new test set this way is twofold: first, we ensure that
all test scenes are truly unseen at training time;1 second, we try to retain contextual
information during testing instead of evaluating the model on isolated 3.45 second
clips. The latter aspect will especially be useful in Section 5.2.2, where we attempt
to exploit the history of past predictions to make the model more robust.

Once the new dataset split has been established, it is possible to train the
model again to obtain a new baseline evaluation. When doing so, we obtain a
macro-averaged test F1 score of 78.1%. It is worth mentioning that such a score is
not to be compared with the previous baseline, as the test set is different, smaller

1We point this out because simply performing a standard train-validation-test split as in
Chapter 3 made it so that (different) data points belonging to a same scene would be seen both
during training and testing. While this is not a mistake from a merely data-scientific perspective
(no individual data point is seen both during training and testing), reserving a whole scene
recording to either training or testing represents a more realistic, yet more challenging approach.
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and less representative; plus, classification of its scenes has become more difficult
for the previously explained reasons.

5.2 The issue of passive wind generated by the
user’s movement

When testing the network on the physical wearable device, a problem soon surfaced:
while the model is somewhat robust in situations when the user is still, the
classification performance seems to greatly deteriorate when the user is moving too
fast while wearing the device. More specifically, if the classification is performed
while walking at a sufficiently, yet not unnaturally quick pace, the model sometimes
predicts travel even in environments that would normally be classified as either
chatter or quiet, such as an office. A preliminary investigation on the matter
consisted in recording some audio from the microphone while walking, then listening
to it in order to look for possible artifacts or auditory clues that may be the cause
of the misclassification. What appeared immediately noticeable from the recordings
is that the microphone is very sensitive to the excitation caused by the air reaching
it: when the user moves, this phenomenon is more evident, and an impulsive form
of background noise can be heard. This was appointed as one of the possible
reasons for the model’s failures. Hereinafter, we refer to this event as passive wind.
Passive wind can visually be observed in frequency domain from the model’s input
spectrogram, where bursts of energy at low frequencies are visible (Fig. 5.1).

Figure 5.1: Spectrogram illustrating
the issue of passive wind reaching the mi-
crophone. The original audio is a record-
ing of office background noise while walk-
ing. Note the bursts of energy in the
low-frequency regions corresponding to
gusts of air.

We observe multiple spectrograms from
a long 30 seconds clip and compare the the
prediction probabilities produced by the net-
work with the time-frequency representation
of the input: we notice that, when more
low-frequency energy bursts are present, the
model is more likely to classify the scene as
travel (Fig. 5.2). Moreover, in Section 4.2.1,
it was established that the CNN is highly
dependent on low frequencies for the clas-
sification of the travel scene. When put
together, these two pieces of information
lead us to believe that the reason behind
passive wind being misleading for the model
is those low-frequency bursts.
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Figure 5.2: Model predictions for a 30-seconds clip recorded under the
condition of passive wind with ground truth chatter. The top chart shows
the probabilities produced by the network. The background of each frame
shows the final prediction (green: chatter ; purple: travel). In the presence
of passive wind, the predicted label oscillates between the ground truth and
travel.

5.2.1 Reproducing the passive
wind issue by additive augmentation
Whatever technique we propose to tackle the issue presented in Section 5.2, it is
essential to first make sure we have a functioning method to reproduce it on a
large scale, so that any attempted mitigation of the problem can be effectively
evaluated. One simple, yet effective approach is to superimpose wind noise to the
final recordings. We first go to a completely quiet room that is large enough to walk
across at a certain pace: we do that to reproduce the passive wind phenomenon.
We obtain a number of recordings from the microphone of the device where the
only audible stimulus is the sound of passive wind. Notice that we do not have to
worry about the device mismatch issue here, as the noise recording is coming from
the target microphone itself.

Starting from a clean audio sample x, it is then possible to obtain a version of
it corrupted with a wind recording n of the the same duration by means of simple
addition. The noise signal is rescaled first so that the resulting clip has a certain
desired signal-to-noise ratio value (SNR), specified in dB:

RMStarget = RMS (x) · 10− SNRdB /20

n′(t) = n(t)
RMS (n) · RMStarget

xnoisy(t) = x(t) + n′(t)

(5.1)

If x and n are not of the same duration (as it is often the case) it is possible to
either cut the noise clip to the desired length (when x is shorter than n) or join
multiple noise recordings in a random fashion (when x is longer than a single n clip).
With this method, we are able to simulate the effect of wind into the microphone
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and bias the baseline model’s prediction with varying degrees of severity: a visual
demonstration is given in Fig. 5.3. This is proof that the approach described in
(5.1) can effectively reproduce the issue of passive wind in a controlled manner.

(a) Predictions of the baseline model over a chatter clip.

(b) Predictions of the baseline model over the same clip as Fig. 5.3a with superimposed noise at
−5 dB SNR.

(c) Predictions of the baseline model over the same clip as Fig. 5.3a with superimposed noise at
−10 dB SNR.

Figure 5.3: The effect of additive wind noise at different SNR values over
the same clip. When no noise is added (Fig. 5.3a), the model predicts the
correct class (chatter) with high accuracy. Adding passive wind noise at
−5 dB SNR (Fig. 5.3b) increases the outcome probability of the travel class
to the point where some misclassifications occur. As the SNR decreases, the
model becomes more and more biased towards the travel class (Fig. 5.3c).

Armed with this benchmarking tool, we now propose a number of techniques
to try and tackle the issue of passive wind and evaluate them against the test set
corrupted with different degrees of distortion. More specifically, we generate 5 new
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versions of the test set that are corrupted with noise levels of 0 dB, −5 dB, −10
dB, −15 dB, and −20 dB SNR respectively. It is worth pointing out that −20 dB
is indeed a very low quality signal, and we do not expect the model’s performance
to be closely comparable to the clean input scenario in such a situation: at that
distortion level, even a human would find the acoustic scene classification task to
be somewhat challenging. Nevertheless, we choose to test the model in such a
scenario anyway in order to explore to which extent we can push the robustness to
passive wind.

5.2.2 Post-processing approach: smoothing the predictions
with a hidden Markov model

As previously observed, the effect that passive wind has on the system is to trigger
spurious misclassifications due to impulsive low-frequency stimuli. Therefore, one
straightforward and lightweight option to mitigate the problem would be to apply
a smoothing filter to the class prediction to mask sporadic inaccuracies in the
classification task: we implement such a filter as a hidden Markov model (HMM).
HMMs have a long history of usage in speech-related tasks [97] and have occasionally
been applied to ASC in the past [15, 27, 21]. In general, a HMM represents a time-
dependent phenomenon with a fixed number of N possible states S = {s1 . . . sN};
the transition sequence {q1 . . . qT} between such states is determined by a set of
T time-ordered observations O = {x1 . . . xT}. A HMM is determined by three
fundamental elements:

• a state transition matrix A where each cell Aij represents the probability
P (qt = sj | qt−1 = si) of transitioning from state si to state sj;

• a conditional probability function bj (xk) representing the probability
P (xk | qt = sj) of observing xk while in state sj;

• a set of initial state probabilities πj = P (q1 = sj).

The set λ = {A, b,π} completely defines a HMM and can either be manually
established or learned from the data. Then, by means of techniques such as the
forward propagation algorithm [97], it is possible to compute the likelihood of a
certain sequence of observations O given a model λ. In symbols, this would mean
computing P (O|λ). A typical application of a HMM consists in learning one model
λc for each class c of the task at hand, then for a given set of observations O′

performing class inference as:

ĉ = argmax
c

P (O′|λc) (5.2)

In the case of ASC, the set of observations O is typically a set of feature vectors that
compose a spectrogram [27]. In other words, for a task with C possible scenes, a set
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of C HMMs provides a mapping from a single spectrogram to an estimated acoustic
scene. In that case, the N states of the model represent abstract configurations of
features vectors and N is a hyperparameter of the system.

As of today, this kind of usage of hidden Markov models in the context of ASC has
been mostly replaced with neural networks [3]. Indeed, essentially all participants
of recent editions of the DCASE challenge rely on CNNs applied to spectrograms
without explicitly modeling the concept of a sequence over the input [19, 44, 17,
64, 130, 58].2 We argue that this is because acoustic scene classification is less
of sequential nature than other audio tasks (e.g. speech recognition), since an
acoustic scene can be seen as a somewhat “stationary” input, where the exact order
of occurrence of certain acoustic events is not exceedingly relevant: for example,
hearing a car honk and a bicycle ring implies we are near a street regardless of
their order.

Nevertheless, motivated by the phenomenon of the passive wind illustrated in
Section 5.2, we argue that it is relevant to model sequentiality of the class prediction
itself more than that of the feature vectors. More specifically, it is unlikely that
the user will change the scenery they are immersed in more than once in a short
amount of time: for example, when the wearer of the headphones is in a quiet park,
they will likely remain there for a few minutes. Similarly, the value of the predicted
class should not oscillate: if a car drives by and engine noises can be heard for just
a few seconds, the predicted scene should not change.

In light of this assumption, we formulate the hidden Markov model in a different,
more simplistic way than that described above: we employ only one HMM, where
each of the N states corresponds to a possible predicted class (i.e. an acoustic
scene). The A matrix then contains the probabilities of transitioning from scene i
to scene j. The observation x is an entire spectrogram, and at each time unit t the
backbone CNN performs a prediction on a different input x. Using our HMM λ,
we would like to estimate the quantity

αt (i) ≜ P (x1 . . .xt, qt = si |λ) (5.3)

to then perform the prediction of the next acoustic scene ŝt as

q̂t = argmax
1≤i≤N

αt (i) (5.4)

To compute αt (i) for every time instance t, we use the forward algorithm as

2One might advocate that a wide enough (kf × kt)-sized convolutional filter applied on the
input spectrogram will implicitly model some form of “sequentiality” since it can simultaneously
process data coming from kt consecutive time steps. However, as mentioned in Section 1.2.1,
there exist specific ways to model time by means of pure convolutions [90, 40], none of which
seem to be popular among the entries of the DCASE competitions.
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described in [97]. The value of α for each time step is iteratively computed as:

αt+1 (j) =
C

NØ
i=1

αt (i) Aij

D
bj (xt) (5.5)

We approximate the conditional bj (xt) with the prediction P (qt = sj |x) produced
by the network itself, assuming uniform sample density P(x) and class probability
prior P(qt = sj):

bj (x) = P (x | qt = sj) = P (qt = sj |x)P (x)
P (qt = sj)

∝ P (qt = sj |x)
(5.6)

In our implementation, we compute (5.5) in logarithmic domain for numerical
stability.

In order to apply a smoothing effect, we set the probability transition matrix A
such that, for each scene, the probability of remaining in the same scene is p and
the probability of transitioning to another scene is 1−p

N−1 . At the time step t = 0, we
use the normal network prediction to initialize α, i.e. P (qt = sj |x). The HMM
state is reset with every test clip.

In our experiments, we also investigate the usage of the Viterbi algorithm instead
of the forward algorithm to smooth the predictions. The difference between the two
is that alpha forward describes the probability of being in a specific state considering
all previous possible state histories of the model (see (5.3)), while Viterbi estimates
that probability by only taking into account the most likely sequence of states.
The value modeled by Viterbi can be mathematically described as:

δt (i) ≜ max
q1, q2, ... qt−1

P (x1 . . .xt, q1, q2 . . . qt = si |λ) (5.7)

However, the computation of δt (i) requires processing a part or the whole sequence
of inputs first, then applying a “backtracking” process to infer the most likely
sequence of states. This would mean causing some latency in the prediction of the
scene, which is not desirable. For this reason, we mainly focus on the analysis of
the alpha forward algorithm. For a more in-depth discussion about Viterbi, see
Appendix B.1.

5.2.3 Augmentation approaches: making the model more
robust to noise through training

The approach presented in Section 5.2.2 only involves post-processing of the
predictions produced by the neural network and is independent of the underlying
model. In this section, we present possible methods to tackle the wind issue by
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applying different augmentation techniques at training time. This way, we attempt
to embed robustness directly into the CNN’s learned weights instead of relying on a
further post-processing step. Nevertheless, the augmentation and HMM approaches
are not mutually exclusive and may be subsequently combined.

Popular general purpose augmentation techniques in ASC include mixup [79,
49, 129, 70] and channel swapping [79, 49]. However, they are not tailored to the
specific issue of passive wind we are attempting to tackle. Moreover, in the image
domain, techniques like CutMix [132] have been shown to produce models that
are more robust to input corruption and to overconfidence on out-of-distribution
samples with respect to mixup.3

The problem of passive wind can be roughly described as the network focusing
too much on certain parts of the input spectrogram and neglecting the rest of the
signal. Therefore, we choose to apply SpecMix [59], a technique that focuses on
swapping frequency sub-bands and time frames of different input spectrograms,
even those that belong to different classes. As the name implies, SpecMix can
be considered as an adaptation of CutMix to the audio domain that is strongly
inspired by SpecAugment. The original SpecMix technique described in [59] takes
as input two spectrogram-label training couples (xa, ya) and (xb, yb) and produces
a new couple (x̃, ỹ) from them. The newly produced sample is used for training
in place of the original input couples. The function that combines the two input
samples is defined as

x̃ = M⊙ xA + (1−M)⊙ xB (5.8)
ỹ = λyA + (1− λ)yB (5.9)

where M is a binary mask produced using the same randomized rules of SpecAug-
ment (see Section 3.3.2), and the coefficient λ is computed as

λ = Number of pixels from xA in x̃
Number of pixels in x̃

(5.10)

In other words, two spectrograms xA and xB are merged into one by extracting
random time frames and frequency bands from xB and overlapping them over xA.
The label for the newly generated sample is obtained by proportionally mixing the
two original ground truths. This version of the algorithm halves the amount of
training data during training, as two samples are used to generate a single new one:
we modify the procedure so that the amount of training data is kept the same by
generating an additional new training sample (x̃′, ỹ′): to do so, we simply swap the
pedices A and B in (5.8) and (5.9). A graphical representation of the technique

3For further insights about the mentioned augmentation techniques and why they were not
suitable to tackle the passive wind issue, see Appendix B.2.
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is shown in Fig. 5.4. When using SpecMix, we do not employ SpecAugment, as
the two would clash with one another: while the former swaps regions of the input
spectrograms, the latter simply zero-masks them. Zero-masking after applying the
label smoothing described in (5.9) could make the ground-truth labels inconsistent,
and therefore make it more difficult for the training procedure to converge. For
example, SpecMix might produce a sample that is 20% chatter and 80% travel;
however, if the zero-masking from SpecAugment is wide enough, the chatter part
could undesirably be removed from the spectrogram, making the label essentially
incorrect.

Figure 5.4: Example of SpecMix on two data points. On the right, time
and frequency slices have been swapped between the two spectrograms, and
their labels have been smoothed accordingly.

Again, the rationale behind the choice of SpecMix is that by swapping several
different frequency bands of different inputs (potentially with different labels)
the model will learn not to focus too much on the low-frequency region of the
spectrogram. While this choice makes sense in this context, SpecMix is still just a
general purpose technique that happens to fit our specific issue. Thus, we choose
to also experiment with one further approach that is specifically tailored to the
passive wind scenario: instead of using SpecMix, we directly superimpose passive
wind noise over the input audio during training. This way, we encourage the model
to learn representations that are independent of wind noise. The additive noise
is produced in the way described in Section 5.2.1, with the exception that we
randomly sample the SNR level to be between 0 and −20 dB. The noise clips used
for augmentation are also recorded the same way as in Section 5.2.1.

Because our goal is to create a model that can correctly classify situations where
passive wind can either be present or not, we refine this simple data corruption
scheme by using an adversarial logit pairing technique. Adversarial logit pairing

53



Trade-offs in model robustness

(ALP) was introduced in [54] and originally consisted in achieving robustness against
adversarial examples by encouraging the network to generate the same logits for a
clean and an adversarial example during training. Adversarial examples [38] are
neural network inputs to which an artificially crafted noise is added in order to
maximize the probability of the network being wrong in its prediction. We modify
the approach and adapt it to our needs by using wind-augmented clips instead
of adversarial examples. This choice is loosely inspired by other techniques that
propose to achieve domain shift robustness using adversarial training based on the
natural variation of the data distribution rather than adversarial noise [102]. Let x
be an input spectrogram, let xn be the same sample with superimposed wind as in
(5.1) and let g(x) be the logit vector produced by the neural network for a given
input. ALP defines the following additional term for the loss:

Lalp(x,xn) = ∥g(x)− g(xn)∥2 (5.11)

Let L (x, y) be a training loss of choice (cross-entropy loss plus some weight decay
in our case). Then the new objective function to minimize becomes:

L′(x, y) = L (x, y) + L (xn, y) + λLalp(x,xn) (5.12)

Where λ is a manually tuned hyperparameter. In our experiments, we always use
λ = 0.5 (in line with the value suggested by the authors of [54]). The rationale
behind this formulation is that the network should learn to ignore disturbances
coming from noise and classify noisy and non-noisy samples the same way.

We consider SpecMix and ALP to be mutually exclusive: because the additive
noise augmentation takes place in time domain, it would have to be applied before
SpecMix. Therefore, it would not make sense to apply additive noise to a sample,
then swap some portions of its frequency representation with that of a different
data point, and subsequently ask the network to produce the same logit for the
augmented and the original signal. Therefore, we evaluate the two techniques
separately.

5.2.4 Experimental results
We apply the techniques described in Section 5.2.2 and Section 5.2.3 keeping the
same training hyperparameters. When using SpecMix during training, we apply it
with a probability of 0.5.

Our experiments show that HMM-based methods improve the network’s effec-
tiveness in noisy scenarios up to −5 dB SNR. We find that the value of p that
defines the A matrix does not make a significant difference as long as it is ≈ 0.7
or above; for lower values of p, the HMM does not noticeably change the baseline
network’s behavior. We report the results for p = 0.9. Because of its smoothing
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effect, HMM post-processing seems to be beneficial for the model’s accuracy in
general. This is understandable: an acoustic scene generally does not change
rapidly in a real context, and smoothing the output of the network is a reasonable
way of making the model’s predictions more reliable. More specifically, in the cases
of the clean test set, 0 dB SNR and −5 dB SNR we get an F1-score increase of 7 to
10 percentage points in the case of alpha forward and 3 to 5 percentage points in
the case of Viterbi. On the other hand, in high noise scenarios, the HMM seems to
be detrimental to the overall performance. This is likely because if the network fails
several times the hidden Markov model tends to encourage it to keep predicting
the wrong scene. In other words, the smoothing is effective in correcting spurious
misclassifications due to occasional bursts of passive wind, but will understandably
start failing when the CNN’s predictions are consistently wrong. Because of that,
results with HMM are even worse than the baseline (sometimes dramatically) for
wind noise levels of −10 dB SNR or lower.

Augmentation-based techniques have varying results. The use of SpecMix does
not seem to critically impact model performance, at least in terms of raw F1-score.
On the other hand, adversarial logit pairing has a sensible effect on how the neural
network reacts to passive wind: a great boost in robustness is achieved in extremely
noisy situations (+18 F1-score percentage points at −20 dB SNR with respect to
the baseline), but the model is now less effective in clean or low-noise settings (-10
to -14 F1-score percentage points). In other words, ALP achieves good robustness
at the expense of regular accuracy. See the left side of Fig. 5.5 for a graphical
illustration of the results presented so far.

The phenomenon of trading regular model accuracy for increased robustness
to certain kinds of perturbations has been studied in the literature especially in
the context of adversarial examples [122, 134], which adversarial logit pairing is
indeed related to. While passive wind perturbation cannot strictly be considered
“adversarial” (being classified as such would require at least the involvement of
some variation of a minimax objective [74, 122]), it is clear that a form of trade-off
is still taking place: as the right side of Fig. 5.5 shows, using different training or
post-processing techniques seems to allow the achievement of good performance on
either clean scenarios or noisy scenarios, but not both. This phenomenon can be
more easily visualized on the right side of Fig. 5.5, where we show that there is a
negative correlation between the F1-score obtained on the clean test set and the
test set at the maximum degree of noise.

We argue that the trade-off we are experiencing is not necessarily linked to the
realm of adversarial examples: indeed, one of the most well-known problems in the
machine learning field in general is the bias-complexity trade-off [109], sometimes
referred to as fitting-generalization trade-off [25]. A simplistic way of illustrating the
phenomenon is that small models are often easier to optimize but lack generalization
capabilities (underfitting), while large models are capable of solving more complex
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Figure 5.5: Evaluation of robustness techniques against passive noise. Left:
performance comparison of different techniques at varying levels of noise.
Right: comparison between performance on noiseless test set and performance
at maximum noise level (−20 dB SNR).

problems but they are more likely to be poorly trained (overfitting).4 More formally,
it is possible to express the bias-complexity trade-off as the decomposition of the
risk difference between an hypothesis h′ chosen by means of some optimization
algorithm and the Bayes risk [84]:

R(h′)−R∗ =
3
R(h′)− inf

h∈H
R(h)

4
ü ûú ý

ϵest

+
3

inf
h∈H
R(h)−R∗

4
ü ûú ý

ϵapp

(5.13)

The first term ϵest is named estimation error and depends both on the optimized
h′ and the hypothesis class; the second term ϵest is called approximation error and
only depends on the hypothesis class H. When a model is simple, it is usually easier
to optimize it to the best of its capability, i.e. to obtain a small difference between
R(h′) and infh∈HR(h), thus reducing the estimation error; however, the model
may not be expressive enough to effectively describe the analyzed phenomenon,
resulting in high approximation error (possibility of underfitting). On the other
hand, more complex models have a “wider” hypothesis class and thus a potentially
lower approximation error; however, reducing their ϵest is harder because of the
more complex optimization search space H (possibility of overfitting).

4It is worth mentioning that some studies argue that the trade-off between robustness to
adversarial examples and generalization capability is simply a manifestation of the bias-complexity
trade-off: allegedly, neural networks can either be adversarially robust or generalize well, but not
both [25, 95].
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As previously remarked, the model we are working on is somewhat simple: one
might then argue that it is easy to optimize the neural network to perform well on
the clean test scenario (diminish ϵest) but hard to make it generalize to the noisy
scenario (because of ϵapp) or vice-versa. One obvious, yet reasonable approach to
the problem might be to increase the dimension of the hypothesis class, i.e. to
choose a larger CNN; however, as remarked in Section 2.2, the project was limited
in that regard for most of its duration. Further insights about possible changes of
the hypothesis class will be explored in Chapter 6.

Because the neural network cannot be changed, one naive option to try and
further increase effectiveness on noisy scenarios without diminishing it too much
on the clean test set is to manually adjust the transition probability matrix of the
HMM to make it tailored to our specific passive wind problem. Because we know
that the effect of passive wind is to make the network output the travel class, we
can use that knowledge to our advantage to discourage the model from predicting it.
More specifically, we bias the matrix A such that the value P (qt = travel | qt−1 = si)
is smaller than the probability of transitioning to any other scene for every si.
This also holds for si = travel; in other words, we empirically find it effective to
make it less likely to remain in the travel scene once we are in it than to transition
to another scene. We establish that the following values for a wind-specific Ã
transition matrix give good results:

Ã =


10 5 1 5
5 10 1 5
5 5 3 5
5 5 1 10

 (5.14)

The matrix is subsequently normalized so that each row sums to 1 to make each
probability distribution valid. From 1 to 4, the row/column indices represent the
classes chatter, quiet, travel and vehicle respectively. In addition to this, we try
to combine the hidden Markov model with each augmentation technique, since
post-processing and training-time augmentations are not mutually exclusive. We
find that the use of SpecMix along with the HMM with custom Ã matrix results
in a good increase in robustness to noise without trading too much effectiveness on
the clean data.

In general, the interesting aspect of biasing the values of A is that such an
approach seems to partially bypass the bias-complexity trade-off by completely
raising the F1-score curve presented on the left side of Fig. 5.5 without compromising
on either extreme. In other words, using Ã appears to improve the results in the
noisy setting without making things worse in the clean setting (see Fig. 5.6).
However, we argue that this is not due to an “absolute” enhancement of the model
or an increase in generalization capabilities: rather, we have found a way to bias
the model even more precisely to elude the specific problem of passive wind by
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injecting human-crafted knowledge into it. If we were to change the acoustic
scenes to classify or to try to counteract a different class-specific issue, this method
would probably not be effective: it would be necessary to re-tune the values of Ã
according to the new configuration of the system. Nevertheless, the combination
of SpecMix and the custom-tuned HMM currently seems to be the best trade-off
between passive wind robustness and acceptable accuracy on clean input, and we
therefore decide to keep this version of the model for subsequent experiments.

Figure 5.6: Evaluation of robustness against passive wind noise by combining
SpecMix with the hidden Markov model and manually tuning the values of
A for the specific problem of wind.

As a side-note, one might argue that the ability to choose which model to use
according to the amount of noise in the input would considerably improve the overall
performance, as we could then tune the values of A according to our needs: as our
experiments have shown, using p = 0.9 works very well on clean settings, while
the custom Ã is effective in noisy environments. A few techniques to estimate the
amount of passive wind noise in a recording were considered as potential methods
to put into practice the idea described above. We do not illustrate them in detail
for patent-related reasons; nevertheless, we lacked the time to fully explore their
potential, and they do not constitute a fundamental part of this work.

5.3 Evaluating out-of-distribution robustness
The empirical risk minimization objective expressed in (1.4) is designed to train
a model h(θ,x) = y that is optimal to explain the patterns found in a dataset
D ⊂ X × Y . This makes an implicit assumption that the training set D follows a
certain probability distribution P (X ,Y). However, it is not guaranteed that the set
of data Dtest the model will be tested on after deployment will behave according to
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the same probability distribution: test data may be corrupted in unforeseen ways,
the training set may not have been entirely representative of the stimuli the model
will be exposed to, or usage trends will simply change. This phenomenon is known
as concept drift or data drift [124], and has recently received attention within the
context of maintenance of ML models applied in production systems [136, 133, 69].
In general, is it possible to divide concept drift in two sub-categories according to
what differentiates the training from the testing data distribution [72, 34]:

• A change in the relationship between input features and labels (i.e. P (X ,Y) /=
Ptest (X ,Y));

• A change only in the input feature distribution (i.e. P (X ) /= Ptest (X )), while
the mapping between input and label remains the same.

The latter event is sometimes referred to as covariate shift or out-of-distribution
(OOD) shift [110], and it is the one of most interest in our investigation: as
remarked in Section 2.2, the complexity of the world makes it impossible to
think one can capture every possible acoustic scene that may be mapped to a
certain set of labels. In other words, our training data will likely never include all
possible acoustic descriptions of the high-level labels chatter, quiet, travel, vehicle.
We therefore seek a way to evaluate how robust the trained model is to out-of-
distribution shifts by evaluating it on a test set that contains different underlying
acoustic scenes (P (X ) /= Ptest (X )) that are mapped to the same four macro-classes
(P (X ,Y) ≈ Ptest (X ,Y)).

We design the new test set by using data from a further past edition of the
DCASE challenge. More specifically, we employ the TUT Acoustic Scenes 2017
development dataset [81], which was also originally used for an acoustic scene
classification task. The difference between TUT Acoustic Scenes 2017 and the
previously described TAU Urban Acoustic Scenes 2019 is that the former has a
different set of acoustic scenes than the ones used thus far to train and evaluate
models. The new scenes are listed in the first column of Table 5.1.

Of course, as remarked in Section 4.2, the device mismatch analysis was carried
out with a Soundman OKM II as source microphone: thus, further benchmarks
make sense only if the test data was recorded with the same device.5 The data in
TUT Acoustic Scenes 2017 was recorded with two devices: a Soundman OKM II
and a Roland Edirol R-09: keeping only the audio files produced with the former,
we are left with only a subset of the scenes listed in Table 5.1. We re-map the
remaining scenes into the four macro labels according to their audio content and a
guess of the expected prediction of the model based on the original acoustic scene’s

5Or from the target microphone of the BeoMusic. But, as mentioned several times throughout
this work, no sizeable amount of recording is available from it.
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Original scene Re-mapped label
Bus Removed (overlap with TAU 2019)

Cafe / Restaurant chatter
Car travel

City center vehicle
Forest path quiet

Grocery store chatter
Home Removed (too ambiguous to label)

Lakeside beach Removed (too ambiguous to label)
Library Removed (wrong device)

Metro station Removed (overlaps with TAU 2019)
Office quiet

Residential area Removed (too ambiguous to label)
Train Removed (wrong device)
Tram Removed (overlaps with TAU 2019)

Urban park Removed (overlaps with TAU 2019)

Table 5.1: Classes from TUT Acoustic Scenes 2017 and their re-mapping
into the new test dataset. Green indicates that the class was used in the new
test set.

name. The new mapping is illustrated in the second column of Table 5.1. Because
we wish to assess the model’s ability to adapt to unseen acoustic scenes, we remove
the scenes that TAU Urban Acoustic Scenes 2019 and TUT Acoustic Scenes 2017
have in common. As with the previous test set, we join clips coming from the same
recording instance forming longer test audio clips of 2 to 4 minutes; we then split
right and left channels in separate mono files and downsample them from their
original 44.1 kHz sampling rate to 16 kHz. The result is a new test set with a total
of 124 audio clips, among which:

• 40 are labeled as chatter (≈ 2h 9m)
• 48 are labeled as quiet (≈ 2h 30m)
• 22 are labeled as travel (≈ 1h)
• 14 are labeled as vehicle (≈ 53m)

We name the new dataset “out-of-distribution” (OOD) test set. Note that the
OOD test set is smaller than the the previous test set, it is less balanced, and
it also contains some arguably harder scenes to classify: for example, city center
contains vehicles but also occasional chatter, and grocery store often has sounds
of supermarket fridges that emit loud low-frequency noise and make it hard to
recognize the scene even for a human (without the prior knowledge of what the
scene is).
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We evaluate the models trained thus far on the new test set. Fig. 5.7 shows the
macro averaged F1-score achieved by each model plotted against the same metric
obtained in the original test set. We find this visualization useful since we wish to
find a model that can accurately describe both datasets and does not just happen
to fit well only one or the other.

Figure 5.7: Macro F1 score of the different versions of the ASC model
on the new OOD test set plotted against the scores on the normal test set.
Where just “HMM” is indicated, we use a the A matrix with p = 0.9 as
described in Section 5.2.2.

Some studies argue that the performance of a set of models on a OOD test set
can often be predicted by a linear fit of their performance on the in-distribution
test set [121]. The fitted line usually lies below the identity y = x, as most models
perform worse on the OOD test set. The models that lie noticeably above the
fitted line may be considered the most “robust”. According to this criterion, the
use of SpecMix combined with the HMM seems to yield the best results, as all the
scores produced with it lie above the linear fit. A custom Ã matrix seems to be the
most effective trade-off between performance and robustness, while A with p = 0.9
provides the greatest clean test set accuracy without losing too much performance
on the OOD set.

In general, the effect of the HMM seems similar both in the case of the baseline
model and the usage of SpecMix: A with p = 0.9 especially improves performance
in the normal test set, while Ã increases robustness. This effect can be explained
by the fact that the use of custom Ã is specifically targeted towards avoiding
false positives of the travel class, which also happens to be the main kind of
misclassification that takes place in the OOD test set. As previously mentioned,
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this is due to the fact that a lot of samples from the chatter class include low-
pitched background noise, such as refrigerators in the grocery store class or even air
conditioning in the case of the cafe/restaurant class. However, this is not helpful
in counteracting other kinds of frequent misclassifications, such as quiet samples
being mistaken for chatter samples (especially frequent in the forest path class,
likely because of bird sounds and occasional water courses). We conclude that the
improvements introduced by the hidden Markov model are probably not critical in
terms of robustness, and what little benefit is brought in that regard is somewhat
situational to this particular OOD test set. Fig. 5.8 shows how the presence of the
HMM impacts OOD robustness for each class both in the baseline scenario and
with SpecMix.

Figure 5.8: Confusion matrices of the baseline model and the model trained
with SpecMix, evaluated on the out-of-distribution test set and postprocessed
with two different HMM configurations.

On the other hand, as shown in Fig. 5.7, SpecMix seems to be generally beneficial
for the overall OOD robustness of the model, resulting in about 10 percentage
points increase in F1-score regardless of the kind of applied post-processing.
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5.4 Evaluating robustness to impulse response
angle

It was highlighted in Section 4.2.2 that the baseline CNN was sensitive to impulse
responses of the target microphone coming from different angles; in this section,
we verify how the newly trained neural network behaves in the same scenario. We
focus on the SpecMix version of the model, as it seems to yield the best results
overall so far. We convolve the audio signals of the new (in-distribution) test set
with the 12 impulse responses presented in Section 4.2.2 and evaluate the baseline
CNN and the SpecMix CNN on the newly generated datasets. Note that these are
not produced from the 30-minute comparison sets from Section 4.2.2, but rather
from the new test set described in Section 5.1. This allows comparison with the
other results presented in this Section. Because our previous experiments showed
that the position of the head during the recording of the sweep and the playback
volume of the sweep itself have no significant impact, we only experiment with
one impulse response configuration (position 1, loud setting as in the top left of
Fig. 4.7).

Interestingly enough, SpecMix appears to have a beneficial effect in terms of
robustness to impulse response angles: this is further confirmation of the general
effectiveness of this augmentation technique. As observed in Section 5.2.4, a hidden
Markov model on top of the neural network with p = 0.9 will improve the score
where performance is already somewhat good (> 0.7, in this case) and will worsen
it elsewhere. Conversely, using the previously defined Ã does not seem to have any
noticeable effect on the classification performance (Fig. 5.9). This is again because
Ã was designed to counteract the effect of passive wind and therefore to avoid the
abuse of the travel class; however, the effect of the impulse responses is to bias the
CNN mostly towards the chatter class, both in the case of the baseline network
(Fig. A.3) and the network trained with SpecMix (Fig. A.4). One might then argue
that it would be sufficient to design a further transition probability matrix that
prevents the model from abusing both the travel and the chatter class; however,
we feel this is not the right approach to the problem, as it would simply be an
even more specific workaround that would likely be ineffective or even harmful
with other kinds of test data. HMM-based post-processing might be acceptable
to stabilize the network’s outputs and avoid fluctuating predictions, or to tackle
very general issues such as passive wind (which would take place in a practical
scenario regardless of the underlying scenes to classify); conversely, we find the issue
of angular impulse responses to be too specific and situational to be solved with
post-processing. Attempting to embed robustness to the reverberations directly
into the neural network’s weights would be a sounder approach.

One straightforward option to try to achieve that would be to let the network
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Figure 5.9: Comparison of the model’s behavior under different impulse
response directions.

know about the possible distortions caused by the impulse responses at training
time. To do so, we retrain the CNN with the same SpecMix configuration, but this
time we convolve each input clip with random impulse responses. More specifically:

• Each training audio clip has a probability of 0.7 to be selected for convolution
with an impulse response;

• If that happens, one out of the 12 impulse responses (from position 1, loud
setting) is randomly selected with uniform probability to be convolved with
the input signal as in (4.4). Afterwards, the RMS of the result is normalized
to that original audio clip as in (4.2).

This can be considered a form of augmentation in and of itself: indeed, the approach
of augmenting the data with random reverberations by means of convolution has
been used in the literature to increase the generalization capabilities of neural
networks [100]. As the bottom right chart of Fig. 5.9 illustrates, this training
approach can improve performance on the convolved test sets. This new model
also scores around 77% macro-averaged F1-score on the normal test set, which is
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in line with the previous SpecMix version of the model; however, performance on
the OOD test set drops to around 53%, a lower value than the 62% achieved by
the plain SpecMix-trained CNN.

Again, we seem to face the same dilemma illustrated in Section 5.2.4: when using
a model with this level of complexity, it is possible to achieve decent robustness
to one stimulus, but this often comes at the cost of decreased performance on
a different kind of disturbance. The following was then concluded: with the
current front-end preprocessing and back-end SB-CNN classifier, the SpecMix + Ã
HMM setup provides a good tradeoff between regular ASC capability, robustness
to passive wind and to out-of-distribution data shifts. Further efforts were put
into understanding the limitations of the current network topology H and data
representation: we would like to find out if modifying them can help in surpassing
the trade-offs faced so far. We investigate the matter in the next Chapter.
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Chapter 6

Impact of different back-end
and front-end approaches

As the experiments described in Chapter 5 were being carried out, a technical
change in the hardware configuration of the platform made it possible to experiment
with new neural network architectures. This seemed to represent a valid research
direction after having analyzed the various trade-offs encountered while training the
SB-CNN. Naturally, to pursue this path, an inspection of the possibilities offered by
the current state of the art in acoustic scene classification was necessary: the natural
starting point was the 2021 edition of the DCASE challenge, whose subtask A
specifically focuses on low-complexity models [77]. According to the rules of the
challenge, the level of complexity of a neural network is purely based on the disk
size of its non-zero parameters; neither the number of computations the network
executes when processing the input features nor the complexity of the front-end
preprocessing are taken into account. Thus, this concept of “low-complexity” does
not necessarily align with the needs of an embedded application.

In spite of that, we inspect several top-performing systems of the DCASE
competition and list the most popular complexity-reduction approaches employed
by the participants of the challenge. We give a brief description of each technique
along with some considerations on their potential usage within the scope of our
project.

• Pruning: zeroing out unimportant parameters of the network [17, 58, 64,
130]. In the context of the DCASE 2021 challenge, this technique is used to
make the network sparser and more easily compressible, with the ultimate
goal of reducing its final disk usage. However, even with specific sparse
matrix multiplication implementations, sparser models do not necessarily
perform a lower amount of computations, unless the pruning follows specific
hardware-dependent rules [131]. Because we are interested in a low amount of
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computation other than storage size, we focus on different techniques.
• Distillation: transferring knowledge from a large, powerful neural network to

a smaller, less complex one [44, 58, 130]. This can be achieved in several ways,
e.g. by forcing the smaller model to imitate the output probabilities of its
larger counterpart for a given training sample [46]. This technique does not
involve compression of the final network architecture, but rather relies on the
availability of a bigger pre-trained model specialized on the same final task
of its slimmer version. Unfortunately, such a model was not readily available
in our case, as our label set is different from that of the original DCASE
challenge. Therefore, fine-tuning of some pre-existing large model would have
been necessary: this would have required additional time. Moreover, at this
point of the project, the interest had shifted to changing the actual network
topology itself. For those two reasons, we looked for alternative approaches.

• Quantization: reducing the complexity of the numerical representation of
the network’s weights [17, 44, 58, 130]. This is a viable option, but it is
independent from the neural network topology. It may be considered for
future work.

Aside from those three popular techniques, one of the top-performing systems
of the challenge employs a neural network architecture that includes depthwise-
separable convolutions: the authors name it BC-ResNet-Mod [58]. As remarked in
Section 2.3.2, our SB-CNN already makes use of depthwise-separable convolutions,
which have a long history of being employed in low-complexity models [47]. We
decide to keep exploring this direction and select BC-ResNet-Mod as new CNN
topology H. In the next section, we describe the architecture of the network.

6.1 BC-ResNet-Mod architecture

BC-ResNet-Mod is based on the BC-ResNet neural network, which was originally
designed for efficient keyword spotting [56]. Its authors argue that the main
feature of BC-ResNet is the broadcasted residual operation, which achieves low
computational complexity by separately operating on the frequency and time
dimensions.

In this section, we describe the building blocks of the BC-ResNet-Mod neural
network. We start from a special kind of normalization layer used in the archi-
tecture called subspectral normalization; subsequently, we discuss the original
BC-ResNet model; finally, we illustrate the differences between BC-ResNet and
BC-ResNet-Mod.
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6.1.1 Subspectral normalization
Before describing the broadcasted residual operation, it is necessary to illustrate
the functioning of one of the inner components of BC-ResNet-Mod: subspectral
normalization (SSN) [18]. SSN is a form of batch normalization (BN) [53] that
divides the input feature mapping in S sub-bands along the frequency dimen-
sion, then individually normalizes each sub-band: the goal is to independently
normalize the distribution of different portions of intermediate features in the
frequency dimension, as different frequency bands usually convey different kinds of
information.

More specifically, let x ∈ RF ×T be an input feature channel,1 and let xi ∈ RFi×T

be the ith subspectral band, i.e. a subset of the input extracted along the frequency
dimension. Usually, all S subbands are chosen to be equally sized by setting Fi =
F/S for all i. SSN separately normalizes each subspectral band by independently
applying batch normalization to it:

x̃i = γi ·
xi − µi

σi

+ βi (6.1)

where γi and βi are learnable parameters, and µi and σi are established the same
way as batch normalization (see [53]). All vector-scalar operations are broadcasted.
If S = 1, then subspectral normalization becomes equivalent to regular batch
normalization.

6.1.2 BC-ResNet
We now describe the fundamental building block of the BC-ResNet model: the
broadcasted residual operation. Given an input feature mapping x ∈ RF ×T ×C , a
depthwise-separable convolution is applied only to the frequency dimension using
kF × 1 shaped kernels, extracting features related to the spectrum in a single
time-frame. We denote this operation as ffrq(x) : RF ×T ×C → RF ×T ×C (padding
is applied to preserve the original tensor shape). Afterwards, a single temporal
feature is obtained for each time-frame by average-pooling the result over the
frequency dimension, obtaining a tensor z ∈ R1×T ×C . This is intended to be
a high-level representation of all frequency information in a single time-frame.
Temporal variation of the features is then taken into account by applying a further
depthwise-separable 1D convolution on the obtained coefficients, which we denote
as ftmp(z) : R1×T ×C → R1×T ×C (padding is used again to preserve input shape).
This mechanism is paired with the popular residual learning approach [41], where

1We provide a channel-wise description since both BN and SSN operate independently over
each channel.
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skip connections are inserted between convolutional blocks. In [56], skip connections
are used to sum both the input x and the intermediate mapping ffrq(x) to the
output of the temporal convolution ftmp(z). However, this would normally result
in a shape mismatch, since x, ffrq(x) ∈ RF ×T ×C but ftmp(z) ∈ R1×T ×C . Thus, the
latter tensor is expanded back to RF ×T ×C by applying the broadcasting operation
to the frequency dimension (hence the name broadcasted residual). Overall, it is
possible to formally express the broadcasted residual operation as:

y = x + ffrq(x) + BC (ftmp (AvgPool (ffrq(x)))) (6.2)

Where BC denotes the broadcast expansion. A graphical illustration of the operation
is given on the left side of Fig. 6.1.

Overall, the idea of this building block is to reduce the amount of network
parameters and computations by splitting the convolution operation in two: one for
the frequency dimension, and one for the time dimension. This allows to reduce the
size of convolutional filters and therefore the number of multiplications performed
per convolutional layer. This approach makes sense when used with time-frequency
data representations, as the two axes of the input have different interpretations; the
same consideration would not apply to other kinds of data type, e.g. images. One
might argue that the average pooling layer between ffrq and ftmp could result in a
loss of information; however, the presence of the residual connection guarantees
that more granular input stimuli are preserved, while also providing the well-known
advantage of strengthening the gradient flow during backpropagation and thus
counteracting the issue of vanishing gradients.

The BC-ResNet architecture is primarily composed of two building blocks based
on the broadcasted residual operation: a normal block and a transition block. The
former is a transformation that preserves the shape of the input tensor, while the
latter changes the number of channels of the input and optionally downsamples
it over the frequency dimension. In both the normal and transition blocks, ffrq

and ftmp are enriched with a number of supplementary operations in order to
make them more suitable to be used in a neural network. In a normal block, the
frequency convolution in ffrq is followed by a subspectral normalization, while
the temporal convolution in ftmp is followed by a batch normalization, a swish
activation [98], a 1× 1 convolution, and a dropout layer [116]. In a transition block,
the frequency convolution in ffrq is preceded by a 1× 1 convolution that performs
the change in the number of channels, and followed by batch normalization and
a ReLU activation; the frequency convolution itself is strided by a factor s to
perform downsampling in the frequency domain; the temporal convolution in ftmp

is followed by a batch normalization, a swish activation [98], a 1× 1 convolution,
and a dropout layer [116]; the skip connection between input and output is removed.
In both normal and transition blocks, a ReLU is applied as final operation. The
two blocks are illustrated on the right side of Fig. 6.1. We refer to a set of n
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consecutive normal or transition blocks as BC-ResNet block.

Figure 6.1: On the left: the broadcasted residual operation. On the right:
the two main building blocks of the Bc-ResNet architecture. Diagram taken
from [56] with permission from the authors. In our notation, ffrq is f2 and
ftmp is f1.

6.1.3 BC-ResNet-Mod
We now illustrate the difference between the BC-ResNet model described in Sec-
tion 6.1.2 and BC-ResNet-Mod, which is the model we use in our experiments.

As previously mentioned, BC-ResNet was originally designed for the task of
keyword spotting. In order to adapt the architecture to acoustic scene classification,
the authors of [58] propose a modification to the original BC-ResNet: instead of
using strided convolutions to perform downsampling, they use max pooling. This
choice is motivated by a number of studies that have shown that the size of the
receptive field of a neural network back-end seems to be a relevant regularizing
parameter when tackling the ASC task [62, 63]. The authors of [62] argue that
pooling is a straightforward non-parametric way of performing downsampling and
therefore tuning the receptive field of a neural network. To get an initial 3D tensor
feature mapping from the input spectrogram, a normal 2D convolution is performed
as first operation. The overall model has two hyperparameters: the number S of
frequency subbands used in SSN and the number of initial channels c produced
by the first convolutional layer (i.e. the number of filters in the first layer). The
final architecture of the model is reported in Table 6.1: that is what we refer to as
BC-ResNet-Mod from now on.

Overall, the goal of both BC-ResNet variants is to construct a very deep network
while using a reduced number of parameters and few computations. Aside from
depthwise-separable convolutions and frequency-aware pooling, the authors also
avoid using a final fully-connected layer, as those usually hold a high number of
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Input shape Operator n Output channels
F × T × 1 conv2d 5× 5, stride 2 - 2c

F/2× T/2× 2c stage1: BC-ResBlock 2 c
F/2× T/2× c max-pool 2x2 - -
F/4× T/4× c stage2: BC-ResBlock 2 1.5c
F/4× T/4× 1.5c max-pool 2x2 - -
F/8× T/8× 1.5c stage3: BC-ResBlock 2 2c
F/8× T/8× 2c stage4: BC-ResBlock 3 2.5c
F/8× T/8× 2.5c conv2d 1x1 - N. classes

F/8× T/8× N. classes global avg pool - -
1× 1× N. classes - - -

Table 6.1: Basic BC-ResNet-Mod architecture for a generic input shape
F × T × 1 and initial filters c (adapted from [58]). n indicates the number
of blocks within each BC-ResNet block; when the number of input channels
and output channels differ, the first sub-block is a transition block, all other
sub-blocks are normal blocks.

parameters. Instead, the final class logits are obtained by properly tuning the
number of channels in the final feature mapping and using global average pooling
to shrink down the time and frequency dimensions to 1: the final 1× 1×Nclasses
tensor represents the logits.

6.2 Experimental setup
In order to isolate the effect of the new network topology over the experiments,
we benchmark BC-ResNet-Mod against the baseline training setup presented in
Section 3.3.3. After training, we test the CNN on the normal test set, its various
noisy versions and the OOD test set introduced in Chapter 5. We set c = 10 to
match the hyperparameters of the smallest architecture presented in [58]. Since our
preprocessing includes only 30 Mel bins, the frequency resolution values across the
layers of the network are 15, 7, and 3 (odd dimensions are rounded down). Because
of the small amount of frequency coefficients, we initially decide not to divide the
normalization into subbands and set S = 1. The dropout probability is always 0.1.
This yields a final network of 7685 parameters, a size comparable to that of the
baseline SB-CNN; however, BC-ResNet-Mod is much deeper, having more than
double the layers. This allows us to keep the same memory requirements of the
previous CNN, while also establishing if the depth of the network has a beneficial
effect on the classification performance.

Because of the obtained results from the previous experiment and in order to
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explore the effect of changing the front-end processing as well as the back-end,
we subsequently investigate the use of an input spectrogram of higher time and
frequency resolution. We choose to match the front-end parameters of the original
paper [58]: we employ 256 Mel bins computed from an FFT window of 2048
coefficients (128 ms)2 and a hop length of 480 samples (30 ms); we include more
contextual information in a single sample by processing 10 seconds of audio per
spectrogram. This results in a Mel spectrogram of size of 256 × 330. In order
to separate the effect of the input resolution from that of the network topology,
we also experiment with the new front-end parameters on the previous SB-CNN
model; however, in order to do that, we need to make a modification to the old
SB-CNN architecture. If we left it unchanged, the final feature mapping before the
flatten layer would be in R6×5×48, which would in turn result in a 1440-dimensional
flattened feature space. Because the size of the two final fully-connected layers
would then be too large, we introduce a further 1× 1 convolution before the flatten
operation that compresses the feature mapping size from R6×5×48 to R6×5×3. The
network then proceeds as originally described. The parameter count of the new
SB-CNN version is 9845: we find this to be a good compromise between increase
in memory usage (the original SB-CNN had 8354 parameters) and similarity to
the original SB-CNN achitecture. We refer to this modified version as SBCNN-HR
(as in “High Resolution”). Moreover, because of the higher number of frequency
bands, it is now possible to experiment with more subbands in the subspectral
normalization layers. We test two versions of the BC-ResNet-Mod: one that keeps
S = 1 as in the previous case, and one that uses S = 4 as in [58].

6.3 Results
When using BC-ResNet-Mod with the original input resolution of 30× 72, results
did not improve in any noticeable way with respect to the baseline SB-CNN. On
the clean test set, we obtain a macro-averaged F1-score of 79%: only a slight
improvement over the 78% achieved by the baseline. Moreover, the model does
not seem to exhibit a greater robustness to moving wind (Fig. 6.2a), and its OOD
performance actually shows a noticeable degradation (Fig. 6.2b).

We try to hypothesize what may be the reason of this lack of improvement,
considering that the BC-ResNet-Mod model has achieved state of the art in the
ASC task in the DCASE challenge 2021. While it is true that the new network
is deeper and can theoretically learn more complex acoustic representations, our
input signal is still highly compressed, using only 30 Mel bands and 72 time frames.

2To be exact, the authors report a window of 130 ms, which would actually correspond to
2080 samples. For computational speed of the FFT, we reduce that to 2048.
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Because the initial time-frequency representation is fairly simple, a deeper model
might fail to properly generalize on it. We therefore decide to expand the input
resolution as reported in Section 6.2. In doing so, we also introduce the new
SBCNN-HR variation to the test setup.

Using 256 Mel bins noticeably improves performance over the clean test set. All
models achieve between between 83% and 86% macro-averaged F1-score, including
the SBCNN-HR: that is an increase of about 5-6 percentage points with respect to
the previous setup. This result seems to suggest that a change of preprocessing is
more impactful than a change of CNN topology: this is presumably due to the fact
that we preserve more information from the original audio input, which no neural
network would ever be able to exploit regardless of its size. Of course, this also
implies a greater memory usage: with the new front-end configuration, the input
tensor has a higher memory footprint than the neural network itself (a 256× 330
spectrogram requires the storage of 84480 numerical values). The search for an
optimal trade-off between time-frequency resolution and classification performance
will be left for future work.

What a greater network depth does seem to have a beneficial effect on is
out-of-distribution robustness: both BC-ResNet-Mod setups outperform SBCNN-
HR in the OOD test set by almost 25 percentage points (Fig. 6.2b). This may
indicate that the higher level of abstraction given by a deeper network provides
greater generalization capabilities, despite BC-ResNet-Mod having a slightly lower
parameter count than SBCNN-HR. The use of subspectral normalization over
normal batch normalization seems to be vaguely useful in terms of performance
on the clean test set (+2 percentage points with S = 4); however, SSN appears to
make the CNN significantly less robust to wind noise (Fig. 6.2a).

Because of its superior passive wind resistance, we decide to experiment further
with the version of BC-ResNet-Mod that uses 256 Mel bins and S = 1. We apply
SpecMix and HMM post-processing to it in various combinations as previously
done in Section 5.2.4. More specifically:

• we apply the hidden Markov model with both A (p = 0.9) and custom Ã on
top of BC-ResNet-Mod using 256 Mel bins and S = 1;

• we apply the hidden Markov model with both A (p = 0.9) and custom Ã
on top of BC-ResNet-Mod using 256 Mel bins, S = 1, and SpecMix during
training.

It is possible to confirm the trend previously observed in Fig. 5.7: the use of
the HMM with p = 0.9 is generally beneficial in terms of performance on the
clean test set, while the custom Ã matrix from (5.14) provides a slight increase in
robustness (Fig. 6.3b).

SpecMix appears to bring improvements in terms of overall performance in the
noiseless scenario: it allows the CNN to maintain the same OOD robustness while
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(a) Performance on noisy test set of
BC-ResNet-Mod and SBCNN-HR. Dashed
lines and solid lines indicate the usage of 30
Mel bands and 256 Mel bands in the prepro-
cessing, respectively.

(b) Performance on out-of-distribution
test set of BC-ResNet-Mod and
SBCNN-HR. The performance from
the old versions of the model is still
visible in the background. The trend
line was not re-fit to the new points to
ease comparison with previous results.

Figure 6.2: Performance comparison of the new models (BC-ResNet-Mod
and SBCNN-HR) over various test sets and with different parameter configu-
rations.

providing a performance increase in the normal test set (Fig. 6.3b). On the other
hand, while generally being less effective on the out-of-distribution test set, the
network version trained without SpecMix still seems more robust to wind noise
(Fig. 6.3a).

Generally speaking, the modification in front-end preprocessing and network
topology has increased the overall performance of the model; however, it seems that
we are reaching the same trade-off situation described in Section 5.2.4. Different
training setups and post-processing approaches will push the model to perform
better in certain contexts while compromising on others: ultimately, the system in its
current state is somewhat effective on several scenarios, and the best configuration
depends on which aspect is more relevant to the final use case.

Lastly, we evaluate the SpecMix and non-SpecMix networks on the same impulse-
response convolved test sets presented in Section 5.4. Interestingly enough, and
conversely to the results obtained in Chapter 5, the neural network’s performance
seems to considerably drop when the acquisition from a different microphone is
simulated: in both versions of the model, we detect an average F1-score drop of 30
percentage points across the different angles (first and second plots of Fig. 6.4).
This is likely due to the fact that the artifacts introduced by the different impulse
responses are more visible to the neural network in a higher frequency resolution
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(a) Performance on noisy test sets of various
versions of BC-ResNet-Mod. Dashed lines
and solid lines indicate the usage of 30 Mel
bands and 256 Mel bands in the preprocess-
ing, respectively.

(b) Performance on out-of-distribution
test set of BC-ResNet-Mod with varia-
tions of HMM and SpecMix. The per-
formance from the old versions of the
model is still visible in the background.
The trend line was not re-fit to the new
points to ease comparison with previous
results.

Figure 6.3: Performance comparison of BC-ResNet-Mod with different com-
binations of HMM post-processing and training-time SpecMix augmentation.

representation; conversely, only using 30 Mels bins averages out the microphone-
specific artifacts from the produced spectrogram. However, as our experiments
have shown, it also has the side effect of concealing useful information for the
classification task.

It now makes sense to try to fine-tune the network with audio convolved with
the available impulse responses, to see if the CNN can quickly adapt to the new
data distribution. This scenario can be compared to the transfer learning setup
presented in Section 3.3.1, where we adapt an already trained model to a new
device distribution. Here, we fine-tune using the full TAU Urban Acoustic Scenes
2019 training set convolved with impulse responses; however, because of the results
obtained in Section 3.3.1, it is reasonable to believe that fine-tuning may be
performed with a smaller amount of data (perhaps actually gathered from the
target microphone) and still be effective.3 We initialize BC-ResNet-Mod with the
weights of the SpecMix-trained network and fine-tune it for 3 epochs keeping the
same training hyperparameters as the previous experiments. We investigate two

3Note that this assumption would need more thorough experimental verification, as the
front-end setup changed from that used in the experiments of Section 3.3.1. We leave this
exploration to possible future work.
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configurations: one in which only 60% of the training data is convolved with an
impulse response, and one where all data is convolved. The reverberations are
randomly applied in an online fashion as described in Section 5.4 by setting the
probability p of performing the convolution with the input clip to 0.6 and 1.0
respectively. The results are shown in the third and fourth plots of Fig. 6.4. Using
only a partial amount of convolved data will remarkably improve the results on
all impulse response angles with no considerable performance loss on the original
test set; however, we detect a slight degradation on the OOD test set. When using
only convolved audio during fine-tuning, the network is able to fully recover its
classification capabilities on all angles; however, it exhibits a noticeable performance
drop in the original test set, and an even more evident one on the OOD test set.

Figure 6.4: Evaluation of the new BC-ResNet-Mod setup over the test sets
convolved with the impulse responses of the target microphone.

It seems that we again face a trade-off between accuracy on the original and
the convolved test sets; however, this is surely not as problematic as having to
balance between wind robustness and clean test set performance, as was the
case in Section 5.2.4. Indeed, what we ultimately value is performance on the
target microphone, which appears achievable with the proper training choices;
moreover, by configuring the right proportion of convolved input audio at training
time, it seems possible to achieve reasonable classification performance for both
microphones.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this work, we designed the grounding of a lightweight, production oriented,
ML-based acoustic scene classification system. The development initially had to
respect a number of constraints, notably the fixed front-end and back-end pipeline
steps with a small neural network classifier and the lack of data coming from the
target device. Moreover, the final classification task was not clearly outlined, and
a set of suitable acoustic scenes had to be defined.

We therefore began by defining a set of scenes that was both well suited for the
CNN at hand and plausible from a use-case perspective. We then assessed how
much data would be needed to learn those scenes to the maximum extent of the
baseline network’s capabilities, and how to approach the eventuality that such an
amount of data would not be available. We showed that the use of transfer learning
and some straightforward augmentation strategy can be of great help in a low-data
setting.

We then formalized the existence of two different pipelines: one for prototyping
and training in TensorFlow, and one for the production environment running on
the embedded platform. We initially established that all but one steps of the two
pipelines behave the same way, and could therefore be unified. Once access to
the target device’s internals was possible, we investigated the issue of whether
training the neural network on audio recorded from a source microphone would
impact its classification performance when testing the model on data captured
from a different target microphone. We concluded that, for the current front-end
configuration, such a mismatch would not be problematic. This consistuted the
final step in closing the gap between research and production, confirming that the
prototyping environment can be representative of the performance of the model
in the wild. In the process, we also uncovered some details about how the CNN
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takes decisions, making a step in the direction of its interpretability. Moreover,
we designed a technique to apply specific reverberations to an arbitrary audio clip
in order to make it sound like it was acquired from the target microphone under
certain directionality conditions.

We proceeded by testing the model on real scenarios from a physical pair
of headphones; in doing so, we uncovered some of its weaknesses, such as the
sensitivity to passive wind. This discovery was the starting point to the pursuit of
making the model more robust to a number of external perturbations: passive wind,
distribution shifts, input reverberations. We concluded that the generalization
capability of the CNN can be enhanced by means of HMM-based post-processing
and suitably chosen augmentation techniques; however, for a fixed front-end and
back-end combination, there seems to be a fundamental limit to the generalization
capability of the model, which eventually results in having to compromise between
general robustness and performance on a specific task.

Thanks to a change in the hardware platform, we were subsequently able to
investigate how modifications in front-end or back-end processing would impact
the previously encountered trade-off situations. Specifically, we experimented
with a more fine-grained input, a deeper and more complex CNN architecture,
or both. According to our results, the greatest performance bottleneck of the
pipeline is actually the front-end processing, and even a deeper, more refined neural
network cannot improve the classification results if the feature representation of the
input data is too coarse-grained. We showed that providing an input with higher
frequency resolution and larger time coverage leads to a performance improvement
regardless of the back-end classifier; moreover, in that situation, a deeper and
more tailored neural topology can shine in terms of robustness with the proper
post-processing and training time augmentations.

In conclusion: we started from a set of high-level requirements and a baseline
neural network architecture. We formalized the task at hand, defining a set of
acoustic scenes and obtaining proper testing and training data for them. We
experimented with several pipeline modifications, including different pre-processing
configurations, augmentation techniques, HMM-based post-processing, and different
neural network architectures. We benchmarked those different setups against a
variety of scenarios, and verified that the behavior of the pipeline was comparable
in the prototyping environment and in the production platform. The outcome of
this work is the foundation of a system that will hopefully be further developed
and refined until it is suitable to be deployed in a real Bang & Olufsen product.
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7.2 Future work
As previously mentioned, we believe the main contribution of this work was taking
a set of high level requirements pertaining to the acoustic scene classification task
and formalizing them within the context of a wearable audio product. We explored
what problems may arise when trying to finalize a ML-based system for a consumer
ready application and proposed a set of initial solutions. Ultimately, we hope that
our work will serve as a framework to rigorously study and tackle each issue that
emerged during our investigations. What follows is a list of suggestions, ordered
by chapter, about what we believe would be meaningful research directions to
concentrate future efforts on.

Chapter 2. We stated that ASC is an inherently open set problem: yet, during
our analysis, we started off with a closed set of classes. This is because we chose to
simplify our initial assumptions in order to get a first working version of the model.
Nevertheless, a product-ready system should most likely include a mechanism that
allows the recognition of unknown stimuli. This might be an alternative approach
to solving the passive wind issue. Aside from the already mentioned [16], other
research that deals with the open-set problem in ASC includes [67] and entries
from the Open set acoustic scene classification sub-task from the DCASE challenge
2019, such as [127].

Chapter 3. We attempted to quantify how much data from a target microphone
is needed when fine-tuning a model that was pre-trained on a dataset recorded by a
different source microphone. However, this was carried out in a preliminary “proxy”
setting, using the Support scenes dataset as source, TAU Urban Acoustic Scenes
2019 as target, and the SB-CNN as neural network. In order for the experiment
to be more in line with the final configuration of the system, one wuold have to
repeat the experiment with TAU Urban Acoustic Scenes 2019 as source, recordings
from the BeoMusic as target, and BC-ResNet-Mod as neural network.

Chapter 4. We proposed the convolution with the impulse responses captured
from the BeoMusic’s microphone as a means to “simulate” the availability of data
recorded from the target device. While this was acceptable for a rough assessment
of the impact of the device mismatch phenomenon, more realistic approaches
to emulate the behavior of the model in real use cases should be sought: the
problem with the impulse response stimuli is that they are highly directional. One
straightforward, yet time-consuming option would be to replay the clips from
EigenScape in the anechoic chamber in Ambisonics format and re-record them with
the BeoMusic. Assuming that Ambisonics format is an acceptable approximation
of real 3D audio experiences, a one-time recording of the full dataset would result
in a valuable source of data to either train or test on.

Chapter 5. We mentioned that being able to tune the values of the A matrix in
the HMM according to the amount of passive wind in the input signal would likely
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be beneficial: methods of obtaining that estimate might be a valid exploration idea.
There is also no guarantee that a HMM is the best post-processing option: one
could experiment with completely end-to-end solutions such as using a recurrent
neural network on top of the main CNN in order to perform post-processing
that incorporates temporal information in a wider sense (an example of CNN
+ RNN setup can be found in [100]). A further, alternative approach to the
problem of passive wind would be to separate the “wind detection” task from the
ASC task altogether, and perform scene classification only when no wind noise is
detected.1 Concerning out-of-distribution robustness: we addressed the issue by
simply training models with different generic approaches and evaluated them on
a specific OOD test set to see which one would achieve the greatest robustness.
However, out-of-distribution generalization is a widely studied problem in the
literature, and several ad-hoc methods exist to approach it. The survey in [110]
provides an overview of recent research and would be a good first step to investigate
the topic.

Chapter 6. We listed a set of popular techniques in low-complexity ASC and
argued why some of them were not suitable for our investigation. However, for the
wider scope of the project, some of them would be reasonable techniques to adopt.
Quantization would definitely be the most relevant, since it would represent an
immediate reduction in memory usage. There is a possibility that teacher-student
distillation methods might help in finding more general feature representations
when using large general-purpose audio encoders as teacher networks: popular
choices in the DCASE challenge seem to be VGG-ish [45] and L3 [8] embeddings.
However, we believe that a more relevant investigation would be which front-end
parameters represent the best trade-off between performance and memory usage
for the current state of the pipeline; once that has been established, a proper
tuning of the c parameter of BC-ResNet-Mod would also be a useful. As previously
mentioned, when changing the pre-processing parameters from those of Chapter 4,
one would also need to repeat the microphone mismatch assessment to make sure
that it is still valid with the new front-end configuration.

Further developments. So far, we have listed ways one could branch out from
topics we laid some foundation of. However, a completely unexplored direction
would be to tackle the open-set problem by learning an acoustic embedding space
in an unsupervised or self-supervised way. Several experiments were carried out
in that regard with promising results, likely enough to constitute a whole further
chapter of this dissertation. However, for reasons related to intellectual property,
we are not allowed to share the details.

1This would also simultaneously tackle the problem of active wind, i.e. the actual windy
weather generating noise, and might have other uses outside the goal of acoustic scene classification.
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Appendix A

Additional results on
microphone mismatch
assessment

A.1 Unclothed HATS
This section contains additional experiment results pertaining to the microphone
mismatch assessment.

Fig. A.1 illustrates the sensitivity of the model to low frequencies: by artifically
setting the lowest energy bin to a very low value, the prediction of the network can
be changed from travel to chatter.

Figure A.1: Masking the first frequency bin of the Mel spectrogram to
show the model’s sensitivity to low frequencies.

Fig. A.2 shows the results obtained by performing the impulse response angle
experiment described in Section 4.2.2 by playing the sweeps at -24 dB (“quiet”
setting). The results are very similar to those obtained in the “loud” setting (-12
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dB playback) and illustrated in Fig. 4.7.

Figure A.2: Degradation in classification quality when the impulse reponse
is captured at -24 dB (i.e. the “quiet” setting).

Fig. A.3 illustrates the confusion matrices of the classification obtained by
evaluating the model on data convolved with impulse responses coming from
several different angles. The figure highlights how +90° angles cause the CNN
to fail because the classes quiet and vehicle are misclassified as chatter. Fig. A.5
reproduces and graphically illustrates such an issue: a boost in the frequencies
between 300 and 700 Hz is sufficient to trick the model into a misclassification.

The problem can be mitigated with the use of augmentation techniques, but it
is still quite noticeable at +90°: Fig. A.4 shows the confusion matrices obtained
with the same test setup and a neural network trained with SpecMix as described
in Section 5.2.3.
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A.2 Clothed HATS

Figure A.6: The recording setup
with a (rather fashionable) clothed
HATS.

As mentioned in Section 4.2.2, a new set of
impulse response recordings was taken after
putting clothing on the HATS to make sure
no spurious reflections would come from the
mannequin’s torso. Fig. A.6 shows how the
mannequin was dressed. A hat was also put on
to avoid reflections from the head itself. The
rest of the recording setup remained unchanged
from that described in Section 4.2.2.

Fig. A.7 shows that the issue occurs even
when the HATS is clothed, so the energy boosts
do not come from torso reflections. Indeed, this
can also be verified by inspecting the spectra of
impulse responses coming from the same angle
when clothes are removed from the mannequin
(Fig. A.8). Note that the gain difference between
the two setups likely comes from a different gain
setting somewhere in the recording pipeline, and
its effect on the convolved signal is eliminated
by the subsequent RMS-normalization. However, it is remarkable that there still
seems to be some slight behavioral difference in high frequencies, which we know
the model is not much affected by anyway. What is also evident is the energy boost
in frequencies around 500 Hz for the +90° angle that causes the misclassifications.
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Additional results on microphone mismatch assessment

Figure A.3: Confusion matrices produced by the classification results of
the SB-CNN evaluated on impulse responses from different angles.
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Additional results on microphone mismatch assessment

Figure A.4: Confusion matrices produced by the classification results of the
SB-CNN evaluated on the same test set convolved with impulse responses
from different angles as in Fig. A.3. This time, the network was trained with
SpecMix augmentation.
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Additional results on microphone mismatch assessment

(a) Disguising a quiet sample as a chatter sample.

(b) Disguising a vehicle sample as a chatter sample.

(c) The technique is not as effective in travel instances.

Figure A.5: Demonstration of how the SB-CNN can be tricked into mis-
taking the classes quiet and travel for chatter by boosting the values of the
frequency bins between 300 and 700 Hz. As suggested by the confusion
matrices in Fig. A.3, this problem is less evident in the travel class.
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Additional results on microphone mismatch assessment

Figure A.7: Classification results comparison with unclothed and clothed
HATS. No evident difference seems to emerge between the two scenarios.

Figure A.8: Comparison of frequency responses of the BeoMusic microphone
with unclothed and clothed HATS. The boost around 500 Hz for the +90°
angle is present in both.
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Appendix B

Further theoretical concepts

B.1 Viterbi algorithm
As mentioned in Section 5.2.2, the Viterbi algorithm represents an alternative to the
forward approach in the usage of a hidden Markov model. Both algorithms allow
to estimate the probability of the HMM being in state si at time t. However, while
the forward algorithm estimates such a probability considering all possible past
state transitions (see (5.3)), Viterbi only considers the most likely state sequence
(as defined in (5.7)). The quantity δt (i) defined in (5.7) can be computed in a
dynamic programming fashion by modifying (5.5):

δt+1 (j) =
5

max
1 ≤ i ≤ N

δt (i) Aij

6
bj (xt) (B.1)

However, for each state j at time t, Viterbi also requires the storage of the most
likely state at the previous time step:

ψt+1 (j) = argmax
1 ≤ i ≤ N

δt (i) Aij (B.2)

At the end of the sequence (i.e. when t = T ), it is possible to determine the most
likely final state:

q∗
T = argmax

1 ≤ i ≤ N
δT (i) (B.3)

Thanks to the storage carried out in (B.2), one can infer the penultimate state of
the sequence from the final state, and from that the previous one, and so on. This
process is known as backtracking.

q∗
t = ψt+1

1
q∗

t+1

2
t = T − 1, T − 2 . . . 1 (B.4)

This formulation implies that, in order to reconstruct the most likely state sequence,
one has to first process the entire sequence of observations. In some settings, this
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is not feasible: for example, in the ASC scenario, there is no concept of “end of
sequence”. To tackle this issue, one might delay the state prediction of a certain
time step, process M further observations, then backtrack to find the optimal state
sequence up to that point. For example, for M = 2, one would produce the state
prediction of time t at time t+ 2. The higher M , the more information the system
can base its decision upon, the more accurate we expect the state prediction to
be. However, higher values of M also correspond to higher delay. It is technically
possible to set M = 0, in which case the state prediction rule collapses to (B.3) for
all time steps.

In our problem setting, using Viterbi in the HMM postprocessing would mean
introducing a delay of M ·L seconds, where L is the duration of an audio clip used
to produce a single spectrogram. For ease of implementation, the results presented
in Section 5.2.4 are obtained by running Viterbi with M = 0.

B.2 Other augmentation techniques
In Section 5.2.3, we mentioned two augmentation techniques that, despite being
popular in the ASC literature, were not deemed suitable to tackle the issue of
passive wind: namely, channel swapping [79, 49] and mixup [135]. We now briefly
describe both and illustrate why they were discarded.

Channel mix is a straightforward way of augmenting the data by swapping the
channels of a stereo track at training time with a probability p. In our case, the
technique is not applicable because we operate on mono files.

Mixup consists in creating a new training data point by linearly interpolating
two input spectrograms xi and xj, then computing a smoothed label accordingly
from the one-hot encoded ground truths yi and yj:

x̃ = λxi + (1− λ)xj (B.5)
ỹ = λyi + (1− λ)yj (B.6)

Where λ is randomly chosen from a uniform distribution in [0,1]. While this
technique was widely employed in recent DCASE competitions, it does not really
match our needs since it creates new samples by mixing the spectrograms in
the entirety of their frequency range. Instead, as highlighted in Section 5.2, the
disturbances generated by passive wind are mostly found in the low-frequency
regions of the spectrum: therefore, a more localized augmentation would be more
fitting.

According to this criterion, CutMix [132] would be a good candidate. CutMix
was proposed as alternative to mixup and was originally employed with image data.
It consists in swapping random patches of an image and tuning the one-hot encoded
labels accordingly. It can be described by (5.8) and (5.9), the same equations as
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SpecMix, the only difference being that M masks rectangles instead of stripes. This
provides a localized perturbation of the input, which is desirable for the previously
explained reasons.

SpecMix is nothing but an adaptation of CutMix from the image to the audio
domain. Because it is more suitable to be applied to time-frequency representations
than CutMix, we choose SpecMix as first augmentation technique.
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