

Politecnico di Torino
Master of Science in Engineering and Management

Master of Science Thesis

Design of an Information System for Instrumentation Management:

the DIGEP Metrological Laboratory Case

Supervisor:

 Candidate:

Prof. Gianfranco Genta

Co-Supervisor:

Prof. Luca Mastrogiacomo
Dr. Giacomo Maculotti

Michele Magni

ACADEMIC YEAR 2021/2022

“La pazienza e la perseveranza hanno un effetto magico davanti al quale le difficoltà

scompaiono e gli ostacoli svaniscono”

John Quincy Adams (1735-1826)

1

ABSTRACT

This thesis, developed in collaboration with the “Department of Management and
Production Engineering” (DIGEP) within Politecnico di Torino, is a feasibility study of
an Information System for the DIGEP Metrological Laboratory in the context of its
recognition as “Dipartimento di Eccellenza” by the MUR and potential development.
The new Lab lacks any structured system to store technical documentation and to book
and manage utilization sessions (measurements, calibrations, surface characterizations)
for its facilities, thus resulting in liability of overlaps and inefficiencies.
The present work is divided into two main sections: a detailed analysis of the problem,
framed in managerial perspective, in the first, and a proposal and description of a
technical solution in the second. Specifically, the solution consists of a web based
application written in Python and rendered with HTML and CSS.

The first chapter briefly presents the context, the analytical tools and frameworks used
in this project.
The second chapter analyzes the problem from a managerial perspective, considering its
business implications, the stakeholders involved and their actual and potential
requirements, and sketching an idea of solution. Such idea is then refined into a
conceptual solution in the third chapter, which translates the high level requirements
into concepts, and into functional elements in the fourth chapter.
The fifth chapter shows the website implementation, its relevant classes and pages while
also describing the most relevant sections of code.
The sixth chapter deals with conclusions and potential future developments.
In addition, the complete code produced is included in the Appendix.

1

Table of Contents
ABSTRACT .. 1

Chapter 1 ... 1

Introduction .. 1

1.1 Background of the Project ... 1

1.2 Purpose of the research .. 2

1.3 Main Contents and Framework Used ... 3

Chapter 2 ... 4

Feasibility Study .. 4

2.1 Business Model Canvas ... 4

2.1.1 Problems and Customers Segments .. 5

2.1.2 Solution .. 5

2.1.3 Unique Value Proposition .. 6

2.1.4 Key Metrics ... 6

2.1.5 Channels ... 6

2.1.6 Revenue Streams and Costs ... 6

2.1.7 Unfair Advantage ... 6

2.2 Stakeholder Analysis ... 7

2.2.1 Stakeholder Matrix ... 7

2.2.2 SWOT Analysis .. 10

2.2.3 Spider Diagrams ... 11

2.2.4 Venn Diagrams ... 13

2.3 Problem Analysis ... 14

2.3.1 Problem Tree .. 14

2.4 Solution Tree ... 16

2.5 Strategy Selection.. 17

2.6 Objective Analysis ... 18

Chapter 3 ... 19

System Analysis ... 19

3.2 IDEFØ ... 20

3.2.1 System Description .. 21

3.2.2 Main Functions ... 22

3.2.3 Sign UP & Log IN .. 23

1

3.2.4 Uploads .. 24

3.2.5 Sessions .. 25

3.2.6 Lab Facilities .. 26

Chapter 4 ... 27

System Design ... 27

4.1 Use Case .. 27

4.2 ACTIVITY Diagrams .. 30

4.2.1 Registration & Login .. 30

4.2.2 WEB Structure ... 32

4.2.3 Booking a New Session ... 33

4.2.4 Lab Facilities .. 34

4.2.5 Editing or deleting a session ... 35

4.2.6 Uploading/Deleting Documentation .. 36

4.3 Entity Relationship Model ... 37

4.3.1 Cardinalities ... 39

Chapter 5 ... 40

Implementation ... 40

5.1 Tools Used for Implementation .. 40

5.1.2 IDE -Virtual Environment: PyCharm ... 40

5.1.3 Programming Language: Python .. 40

5.1.4 Web Framework: Flask ... 41

5.1.5 Front-end .. 41

5.1.6 Programming Language: HTML and CSS .. 41

5.1.7 Library: Bootstrap ... 41

5.1.8 Templates ... 42

5.2 Database .. 43

5.3 Forms ... 46

5.3.1 Registration Form ... 46

5.3.2 Reservation Form ... 47

5.3.3 Upload Form .. 48

5.4 Routes.. 49

5.5 Pages ... 53

5.5.1 Registration & Home Page ... 53

1

5.5.2 Lab Facilities/Nanoindenter ... 56

5.5.3 Booking a new Session .. 57

5.5.4 Uploading new Documentation ... 59

5.5.5 Account Page .. 60

5.5.6 Editing an existing Session... 60

Chapter 6 ... 62

Conclusion and Future Developments .. 62

Appendix ... 63

Acknowledgements ... 81

Bibliography .. 82

Sitography ... 82

1

Chapter 1
Introduction
1.1 Background of the Project
The Department of Management and Production Engineering (DIGEP) inside
Politecnico di Torino, is the University reference department for the study of the
technological, economical and organizational characteristics of systems of production
for goods and services. To that aim, it mixes “traditional” engineering competences

with skills in business management, economics and law.
DIGEP promotes relations with national and international universities and research
centers as well as with companies, and operates technology transfer. Its approach is
interdisciplinary and transcultural, thus allowing the Department to act as a promoter,
investigator and developer of research activities in the fields of:

• Managerial economics and business law, markets and new technologies
• Management of innovation and operations
• Engineering system and logistics
• Advanced manufacturing processes
• Design, management and quality of manufacturing processes and products

Most notably, in force of its know-how on manufacturing, production systems and
processes, DIGEP constitutes a sort of “cross-joint” unit dealing with the “vertical”

departments of the University specialized in technological aspects, and in 2017 has been
recognized by MUR as “Dipartimento di Eccellenza“. By virtue of this recognition,

DIGEP has been awarded funds to develop studies on the theme of Machine – Human
interactions from different perspectives, such as Technological and
Managerial/Economical.
Specifically, within the Technological Perspective, a worth mention goes to the Quality
and Measurements Research Group. In this context, the group activity focuses on
technologies aimed at measuring processes and products quality by working with
innovative Sensors Fusions techniques, to improve and conceive innovative statistical
quality control apt for zero defect manufacturing within a human-machine interaction
framework. Within this context, a relevant research subject is the implementation of
new technologies for dimensional measurement of mechanical components and
surfaces. To that end, the department plans to enlarge and upgrade its Metrological
Laboratory with state of the art instrumentation. This will bring about the need to
implement, in parallel, an efficient information system to effectively manage the Lab in
its everyday activities.

https://www.digep.polito.it/en/research/research_areas/economic_and_legal_studies_on_enterprises_markets_and_new_technologies
https://www.digep.polito.it/en/research/research_areas/management_of_innovation_and_operations
https://www.digep.polito.it/en/research/research_areas/engineering_system_and_logistics
https://www.digep.polito.it/en/research/research_areas/advanced_manufacturing_technologies
https://www.digep.polito.it/en/la_ricerca/ambiti_di_ricerca/sviluppo_gestione_e_qualita_nei_processi_produttivi_e_nei_prodotti

2

1.2 Purpose of the research
Based on the aforementioned framework, this thesis aims to study and design an
Information System to be implemented in the Metrological Laboratory.
Activities carried out in the lab are:

- Calibration of instrumentation
- Precision dimensional measurements
- Precision mechanical measurements

All these take place in an environment with controlled temperature and humidity in
order to avoid dimensional variations for the samples measured. The Lab is equipped
with state of the art machines, they are :

- Nanoindenter Anton Paar NHT3
- CSI Microscope Zygo 9000
- FV Microscope
- Contact Stylus
- CMM (“Coordinate Measurement Machine”) GLOBAL
- CMM IOTA
- ATOS Scan Box

The present work focuses on the first two pieces of instrumentation, as they are those
mostly involved in Mechanical and Dimensional measurements activities; specifically,
it deals with how to manage their technical and safety documentation and how to book
their utilization sessions1.
The results of this work are a feasibility study that can be easily extended to other
facilities in the lab and potentially to other labs, and a working prototype (Mock Up) of
the Lab information system.

1Utilization Sessions = Time Slots (Days of the week and hours) in which a specific
machine is used for experiments, measurements and other activities.

3

1.3 Main Contents and Framework Used
The design process is structured following a “Top Down” approach, starting from

empirical analysis enlightening all issues relevant to the problem and, in accordance to
them, defining the most suitable strategy to follow.
In so far, the primary contents and frameworks of the thesis are the following:

1) Feasibility Study and System Analysis: in this initial stages, all the stakeholders
are identified, and each one is analyzed to understand how he can be affected by
the platform and its development. Besides, all known issues are grouped and
presented hierarchically in a Problem Tree. This allows to understand which are
the requirements, i.e. which functions the System needs to provide, as well as its
feasibility.

2) System Design: where the functional frameworks of the system are designed,
both functionally and technologically. Starting from functionals requirements
enlightened in the previous chapters, the system is framed in terms of concepts,
i.e. Logical Functions; these functions are then “translated” into functional

specifications, adopting UML diagrams.
3) Implementation: in this final stage the functional specifications are developed

into a working website via actual programming; the programming language
chosen for this purpose is Python for its easiness of use, in conjunction with the
micro framework Flask for web design.
Further specifications about these tools are detailed at the beginning of Chapter
5.

4

Chapter 2
Feasibility Study

In the first step of the development of a new project, few but essentials questions need
to be answered. It is of utmost importance to understand what is the current situation, in
order to properly frame the problem, to be able to propose an effective solution.
Furthermore, it is necessary to have a comprehensive view of the “actors” involved.
This chapter aims to provide a complete answer to these questions, first by looking at
the whole scenario in term of Business Model, then evaluating how the identified
stakeholders are affected by the problems found and what are the relationships amongst
them. This is done to select the appropriate strategy on which the system analysis in the
next chapter is based on. The frameworks used are Business Model Canvas, Stakeholder
Analysis, Problem and Solution Analysis, Venn Diagrams and Spider Diagrams.

2.1 Business Model Canvas
A Business Canvas is a simple and intuitive framework, and can be adopted in first
instance to draft a business roadmap. It offers a visual chart with elements describing a
firm or product, infrastructure, customers, and finances, assisting businesses aligning
their activities by illustrating potential trade-offs. It has been proposed by Ash Maurya,
an American entrepreneur and leader of the Lean Entrepreneurship movement which he
described in his book “Scaling Management1”. The canvas is the description and
refinement of the business model, a concise business plan which drives the decision-
makers in the direction of product or process development strategic planning.
As shown in Figure 1, it is composed of 9 main segments or “Business Grids”: (1)
Problems; (2) Solutions; (3) Unique value proposition; (4) Key Metrics; (5) Channels;
(6) Customer Segments; (7) Cost Structure; (8) Revenues Stream; (9) Unfair advantage.

1ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑖𝑛𝑓𝑜𝑞. 𝑐𝑜𝑚/𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠/𝑠𝑐𝑎𝑙𝑖𝑛𝑔 − 𝑙𝑒𝑎𝑛 − 𝑎𝑠ℎ − 𝑚𝑎𝑢𝑟𝑦𝑎/

5

Figure 1- Business Model Canvas

2.1.1 Problems and Customers Segments
The Canvas core is matching the problems with the customers segment affected.
Currently the Lab lacks a structured repository to store its documentation and, although
some documents about the Nanoindenter and the Microscope have been digitalized, a
significant amount is still stored on paper or DVDs scattered around the Lab.
Additionally, there are no formal procedures to book sessions, except for phone calls or
voice requests, thus resulting in possible overlaps or misunderstandings. It’s clear how

these issues affect firstly Students and Researchers, but also technicians and can, in turn
“propagate “ to external entities as well. For instance, difficulties in finding results may

lead to delays in fulfilling expectations from an external research center, damaging
University reputation.

2.1.2 Solution
Providing a simple and efficient web platform, able to manage Sessions and scientific
documentation of the Lab, to which users can easily access, in order to find documents
or reserve sessions avoiding time wasting. This is also an advantage, as the Lab is
expected to be used not only by internal personnel, but also from external entities who
may not be aware of Politecnico internal procedures at first.

BUSINESS MODEL CANVAS

PROBLEMS

• Absence of a
platform to
properly manage
documentation
and sessions

• Inefficiencies due
to time schedule
overlaps

• Lack of a
structured
repository to store
documentation

SOLUTIONS

• Web platform to
enable booking
and Sessions
coordination

• Creating a
structured
database to store
scientific
documentation

VALUE PROPOSITION

• Equipment
Sessions Booking
and Online
Scientific Library

• Chance of
horizontal
extension to other
labs

UNFAIR ADVANTAGE

• User Friendly
Interface

• Updated
Structured Library

• Online Booking
with editing
options

CUSTOMER SEGMENTS

• University
Personnel

• Students and PHD
Students

• External
Customers
(Research Centers,
Private
Companies, Other
Universities) KEY METRICS

• Number of
overlaps solved

• Number of
documents
uploaded and
downloaded

CHANNELS

• “Word of mouth”
among University
personnel

• Advertisements
and link on Polito
Official Website.

COST STRUCTURE

• Platform Development and Maintenance

• Hosting Service Costs

• Data Administration Costs

REVENUE STREAMS

• Financing coming from Politecnico

• Research Award and Grants

• Fees paid by external users/customers

6

2.1.3 Unique Value Proposition
The unique value goal, is to attract the attention of the user, providing something unique
and valuable, that constitute a great benefit for them in comparison to the current
situation. In this case, an efficient and user-friendly platform with online database can
really make the difference.

2.1.4 Key Metrics
The performance of a product after it is launched needs to be measured by indicators
that helps identifying key points in the customer's life cycle. The simplest indicator is
the numbers of overlaps solved, it also gives hints about website maturity; a very low
score may signify the need for the website to be upgraded with new features, or signal
possible errors in its code algorithm. Another indicator can be the number of documents
uploaded and downloaded.

2.1.5 Channels
The channels used to promote a product or service can be grouped in inbound channels
or outbound channels
The first employ "pull strategies" to let customers naturally find the product and include
network media, SEO and social networking platforms.
On the other hand, outbound channels use "push strategies" to reach customers and
include traditional media or television advertising, as well as direct telephone calls.
In the present case, an effective channel of promotion, aside from information
exchanging between personnel (the so called “word of mouth”), can be the insertion of

links on the web pages of Politecnico, or directly in the web page of the Quality
Engineering and Management Group.

2.1.6 Revenue Streams and Costs
Cost Structure identified for the web platform is mainly related to its initial
development within IT services and must also take into account the costs related to
rented space in web databases. An efficient cybersecurity system is also needed to
prevent infiltration from malignant hackers or dangerous visitors who can try to
penetrate Lab Website to stole private data such as documents or patents; this entails
additional expenditures.
Being the website intended for a public university, funds are expected to come from
university itself, plus fees eventually paid by external users in order to work in the lab.

2.1.7 Unfair Advantage
Also called “Competitive Advantage” is, according to definition “the set of product’s

features by which the company enjoys higher profitability with respect to its
competitors”. In other words, which are the distinctive and inimitable qualities of the

product. In the present case, the key features are the user friendly interface and the
possibility for the user to edit each session.

7

2.2 Stakeholder Analysis
Stakeholder analysis is a well-established procedure used to analyze individuals,
organizations and institutions that are likely to affect or be affected by a proposed
action, and to identify the impact of significant stakeholders on the action when
developing its strategy.
Stakeholders can influence the project, and their opinions must be taken into account by
the decision-makers, most notably because it is impossible for all stakeholders to agree
on all issues. Therefore some of them are more influential than others; how to balance
the interests of all parties is the key issue in the strategic development.
A Stakeholder Analysis is typically a set of different tools; they are detailed in the
following subsections and are:

- Stakeholder Matrix or Description Matrix
- Swot Analysis
- Spider Diagrams
- Venn Diagrams

2.2.1 Stakeholder Matrix
The Stakeholder Matrix is an efficient technique for stakeholder identification. Through
this method it is possible to address the most relevant actors directly involved or that
could be somehow be affected by the project, understand their interests, motivations and
possible actions to address their needs.
The identified stakeholders are :

- Web Developers: software houses or IT department within Politecnico in charge
of developing the website features, writing the code; they can bring professional
development skills and need to be paid for their work.

- Administrators: Personnel in charge of managing the website, both in its
technical features and its documentation; they have additional privileges which a
normal user does not have. They are also responsible for user safety.

- Politecnico di Torino: the University itself, which can fund the development of
the website

- Customers: are hereby named customers all the actors who can interact with the
Lab and the platform. As such, everyone who is authorized to access the Lab is a
customer. Since scientific activities carried inside the Lab are not limited to
Politecnico personnel, two categories of customers have been identified;
“Internal Customers” are Professors or Students/Researchers within DIGEP

department (but not limited to), while “External Customers” are in general all
others actors external to Politecnico who might be interested in conducting
research in the Lab, paying appropriate fees.

8

Table 1- Stakeholder Description Matrix

STAKEHOLDERS

Interest and how
affected by the

problem(s)

Capacity and

motivation to bring
about the change

Possible Actions to

address stakeholder
interest

Developers : IT
department or software
house who developed
the website

- Designing a
reliable
platform

- Professional
web
development
skills

- Income
- Potential

future
contracts

Administrators:
Internal personnel, in
charge of managing
Documentation and
access authorizations

- Having User
Friendly
Website

- Having a
clear view of
how
authorizations
need to be
addressed

- Having well
defined and
clear
Documentatio
n to manage

- Avoiding
damages to
either the
equipment or
the people

- An efficient
booking system
and a structured
scientific
library means a
better usage of
the Lab and
less risks of
time wasting or
hazards
resulting in
physical
dagames and
money to spend

- Fixed Income

Politecnico di Torino:
university to which the
Metrological Lab and
its internal users
belongs

- Having a
better and
more
functional
laboratory

- More trained
researcher
who will in
turn deliver
better
scientific
results and
publications

- Integrating the
website on the
DIGEP official
website

- Funding
development
process

- Possibility to
extend
horizontally
the model if
successful

- Gaining
higher
reputation for
the DIGEP
department
and the
university as a
whole

9

Internal Customers:
- Professors:

Belonging to
DIGEP or other
Departments

- Students
- PHD Students
- Research

Fellows
- Technicians

- “Making

Order” in the

session
bookings

- Structured
Scientific
Library
promptly
available

- Speeding up
learning
inside the Lab

- Improving
quality of
scientific
research

- Providing
Complete
Documentation
and Results

- Using the Lab
up to its full
capacity

- Developing
Thesis or
experiments
with highly
technological
equipment
which is also
more easy to
understand

External Customers:
- Other

Universities
- Research

Centers
- Private

Companies

- User friendly
website and
easy access to
Lab facilities

- Exchanging
recommendatio
ns and advices

- Advertisement
on Politecnico
Official
Website

- Through
“Dipartimento
di Eccellenza”

recognition

10

2.2.2 SWOT Analysis
A SWOT analysis is one of the most common analytical theories used when carrying
out market or product research. It is a method that summarizes all external and internal
conditions of a company or a single product, focusing on four parameters, Strengths,
Weaknesses, Opportunities and Threats. The first two factors can be seen as “Internals”

because they depend from the organization behavior. On the other end, Opportunities
and Threats describe the impact of changes in the external environment on the
organization or the project.

The following table is the SWOT analysis of the website.

Table 2 - SWOT Analysis

 Metrological LAB SWOT ANALYSIS
INTERNAL FACTORS

STRENGTHS (+) WEAKNESSES (-)

- User Friendly Interface

- Mockup developed without expenses

- Able to manage bookings, avoiding overlaps

- Provides an online structured database to
store documentation

- Documentation classified in categories (
Manuals, Calibrations ecc) for each facility

- The website needs to be professionally

developed

- Administrators are not yet defined with a
rigorous procedure

- No function to ensure and record if a user has
read and understood the general safety
procedures in the Lab

EXTERNAL FACTORS
OPPORTUNITIES (+) THREATS (-)

- Chance of horizontal expansion to other
Laboratories across Politecnico

- Website modularity; it can be improved by
adding multiple functions

- Cross link with DIGEP or Quality Engineering
Group websites

- Professional development may require more
time and additional expenses than expected

- University can reallocate funds which are

intended for the Lab development, thus
blocking or delaying the project

11

2.2.3 Spider Diagrams

Spider Diagrams are used to show how much each requirement is important for each
stakeholder, on a 1-5 scale as seen from the stakeholder’s point of view. Stakeholders
have been divided in two main categories, Users and Administrators, grouping Internal
Customers and External Customers.
Requirements have been identified and classified as follows:

• User Friendly Interface: how the usage of the platform is intuitive.
• Technical Support: both Users and Administrators expect qualified and quick

support to solve possible web related issues.
• Website Efficiency: the platform must perform according to specifications and

required functions, without delays or bugs.
• Training/Safety Procedures and Documents: it’s important that whoever

works on Lab Facilities, have been properly trained to use such facilities and
have read General Precautions and Safety Rules. Such documents must be
present and easily accessible in the website.

• Structured Documentation: it’s important to have organized repositories where

each documents is stored and can be easily found, i.e. Manuals for the
Nanoindenter and for the Microscope.

• Documentation Constantly Updated: to guarantee efficiency, old
documentation such as expired versions of documents, i.e. Technical Sheets or
out-of-date Lab software must be updated to most recent versions.

• Easiness in Adding Features/Functions: This last requirement is important for
Administrators, but less for Users, who might eventually appreciate a more
complex website “ex Post”.

12

Figure 2 - Users Spider Diagram

Figure 3 - Administrators Spider Diagram

0

1

2

3

4

5
User Friendly Interface

Documentation
Constantly Updated

Training/Safety
Procedures and

Document

Structured
Documentation

Website Efficiency

Easiness in adding
features/functions

Technical Support

USERS

0

1

2

3

4

5
User Friendly Interface

Documentation
Constantly Updated

Training/Safety
Procedures and

Document

Structured
Documentation

Website Efficiency

Easiness in adding
features/functions

Technical Support

ADMINISTRATORS

13

2.2.4 Venn Diagrams
A Venn diagram is an effective way to graphically show the relationships amongst the
stakeholders, providing with a clear visual display. Each stakeholder is identified by one
circle, whose size indicates the relative importance of the stakeholder, while the
overlaps represent their intersections. As can be seen below, Developers can be internal
to Politecnico di Torino, being the IT department, or an external software house. In
addition, as detailed in the Stakeholder Matrix section, Administrators and Internal
Customers are employees or students of Politecnico and therefore are subsets of it. They
also have an intersection since Administrators are chosen amongst internal personnel.
On the other hand, External Customers, not belonging to Politecnico di Torino have no
intersections with it.

Politecnico Di Torino

Internal Customers

Administrators

DevelopersExternal Customers
(Other Universities,

Companies, Research
Centers)

Figure 4 - Venn Diagrams

14

2.3 Problem Analysis
Problem Analysis is a very important step to successfully execute a project. Its goal is to
frame and identify all the negative aspects of the current situation affecting the
stakeholders, developing a cause and effect relationship between the various issues
faced by them.

2.3.1 Problem Tree
The most efficient way to carry out this analysis is to represent the hierarchy of
problems by using a Problem Tree. The “roots” of the tree represent the causes leading

to the main problem, which is located in the ”trunk”, while the “branches”, in the upper

side, show the negative effects. The main problem that the thesis aims to solve, as
shown in the center of the graph, is the difficulty to manage the Lab without a proper
system to classify scientific documentation and book work sessions; this is due to
various causes linked to the recent renovation of the Lab, with equipment frequently
sent to producers for upgrades or maintenance. As a result, documentation needs to be
changed very often and stored in appropriate repositories, while currently most of it is
written on scattered paper and DVDs.
As shown in Figure 5, the consequences can be quite dire, not only in terms of
reputation damage for the department (and by extension for the University), but also for
the personnel or who need to use the lab, since the absence of a clear documentation on
safety can potentially lead to physical damage for the user and for the instrumentation,
which is very expensive to fix and requires a long time.

15

Difficulty to manage
Scientific

Documentation and
Machine Working

Sessions

Lack of Structured
Documentation for

each Facility

Need to record,
track and display
Maintenance Time

Slots

Old Material not
properly classified

Antiquate Storage
Media: CDs, Floppy

Disc, Papers

Absence of
Structured
Procedures

No Administrator in
charge of managing

the Lab

Lack of a system to
book, edit or delete

Sessions

Overlapping and
confusion in Time

Schedules

Duplication of
Effort

And Increased
Chance of
mistakes

Need of frequent
updates for Safety

Instructions

Missed Scientific
Opportunities

i.e Events,
Conferences

Waste of time
while looking for
documentation

Longer Time to
deliver Scientific

Results and
Papers

University
Reputation
Damaged

Risk of harm for
the User

Risk of damage
for the

Instrumentation

Expenses and
Legal Issues

Need to provide proper
training for each

Machine,
i.e Each User must read

the Manual before
booking

Figure 5 - Problem Tree

16

2.4 Solution Tree
The Solution Analysis is the logical step after the Problem Analysis. It is symmetrical to
the problem tree and it follows the same hierarchical structure, but here the weaknesses
and issues become positive and they are considered as strengths and opportunities.
Results are in the lower side: the main purpose for which the Platform will be designed,
which is managing bookings and documentation efficiently, lies in the middle part,
while the overall objectives are in the upper side.

Efficient
Management of

Material and
Bookings

Organized
Repository for

all types of
Documentation

Privilege for
managing new

materials
belongs to

Administrators

Different access
to lab users and
administrators
according to

their roles

Files Stored in
Online

Databases

Presence of
Administrators

Less time to
deliver

Academic
Results and

Papers

Distinct and
Ordinated

Schedules – No
more overlaps

Constant Stream
of Updates from

other
Universities and

Institutions

Less time to
find material

Fast learning of
Laboratory
Procedures
and use of
equipment

Possibility to
extend results to
other laboratories
within Politecnico

di Torino

Less risk of
additional
expenses
and legal

issues

Better
Academic
Research

Strong
University
Reputation

Maintenance
Slots properly

set and
displayed

Safety
Instructions
Constantly

Updated

 Figure 6 - Solution Tree

17

2.5 Strategy Selection
Once the problems and the solutions are identified, the next step is to decide which
results are attainable through the project, by deleting all factors whose implementation
is not feasible in early phases. In particular, the Mock-Up will not deal with
maintenance schedules for Lab Facilities and different degrees of authorizations for the
users, since neither are available nor have been defined yet.

Efficient
Management of

Material and
Bookings

Organized
Repository for

all types of
Documentation

Privilege for
managing new

materials
belongs to

Administrators

Different access
to lab users and
administrators

according to their
roles

Files Stored in
Online

Databases
Presence of

Administrators

Less time to
deliver

Academic
Results and

Papers

Distinct and
Ordinated

Schedules –

No more
overlaps

Constant Stream
of Updates from

other
Universities and

Institutions

Less time to
find material

Fast learning of
Laboratory

Procedures and
use of equipment

Possibility to
extend results to
other laboratories
within Politecnico

di Torino

Less risk of
additional
expenses
and legal

issues

Better
Academic
Research

Strong
University
Reputation

Maintenance
Slots properly

set and
displayed

Safety
Instructions
Constantly

Updated

 Figure 7 - Strategy Selection Tree

18

2.6 Objective Analysis
After figuring out the right approach to face problems, useful tools are chosen in order
to achieve the selected results in the strategy analysis. As illustrated by the Objective
Tree (Figure 8), the four main working areas recognized are Feasibility Study, System
Analysis, Design and Implementation. Furthermore, several tools are identified and
allocated to each working area with the aim of developing an effective work plan and
laying down an activity schedule.

WEB PLATFORM
DEVELOPMENT

FEASIBILITY
STUDY

SYSTEM
ANALYSIS

DESIGN IMPLEMENTATION

BUSINESS
MODEL CANVAS

STAKEHOLDER
ANALYSIS

SWOT
ANALYSIS

IDEF 0 UML PYTHON

CSS

HTML

SQL

EFFICIENT
MANAGEMENT OF

SESSIONS AND
DOCUMENTATION

7 WHY S

Figure 8 - Objective Tree

19

Chapter 3
System Analysis

This chapter focuses on the generation of concepts. Having studied the problem and
defined a strategy, it is now time to identify the functions that the website needs to
provide to satisfy customers’ needs. This is done first at empirical level using 7WHY’s

and IDEFØ tools, and then going further representing actual website structure using
UML diagrams in the next chapter.

3.1 7 WHY’S

Table 3 - 7 Why's

WHY?
The goal that the website will achieve

Scientific Research is the main activity
carried out in a University Department; it
must be efficient.

WHAT?
The functions of the website and its

services

A web platform to manage Scientific
Documentation, Sessions and Personnel
who is involved with the Lab

WHO?
The actors involved in the project

Students, PHD Students, Fellow
Researchers
Other Universities, Research Centers and
Companies

WHERE?
The place in which the website can be

found

On the Internet

WHEN?
The time by which the website is

expected to be fully developed and being
available

The Website is expected to be operational
around April/May 2022

HOW?
The activities performed to realize the

website

- Feasibility Study: Stakeholder
Analysis, Problem and Solution
Trees, Strategy Selection

- System Analysis: IDEF0
- System Design: UML
- Implementation
- Testing

HOW MUCH?

The effort required to develop the
project

Around three months for studying the
problem and categorizing Documentation
inside the Lab, while developing the
mockup in parallel. This, plus the effort to
write and change software sections, for a
total of 6 months

20

3.2 IDEFØ
IDEFØ is a method designed to model the decisions, actions, and activities of an
organization or system. It is derived from a well-established graphical language, the
Structured Analysis and Design Technique (SADT), the latter having been
commissioned by the US Air Force. IDEFØ is a useful tool for establishing the scope of
an analysis, especially for a functional analysis. As such, IDEFØ assists the modeler in
identifying which functions are performed, what is needed to perform those functions,
what the current system does right, and what does wrong.
In December 1993, the Computer Systems Laboratory of the National Institute of
Standards and Technology (NIST) released IDEFØ as a standard for Function Modeling
in FIPS Publication 183; more information is available at the following link2.

That mentioned, an IDEFØ Analysis has been conducted to summarize and better
explain the functions of the website, as well as the main Input/Output and Databases
involved. Figure 9 depicts the whole process and is then “exploded” and detailed further

in each single component.

Each analysis is represented by a “box”, or a collection of boxes connected and pointed

by arrows on each side. Their meanings are respectively:
- Boxes: are the functions requested to the platform.
- Left Arrows : Input Functions, either Users or output from previous functions.
- Top Down Arrows: are all validations performed on the parameters inside

functions, each time that one of them is called.
- Bottom Up Arrows: represent all databases involved in functions executions, the

one named IS (“Information System”) is the website itself.

2ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑖𝑑𝑒𝑓. 𝑐𝑜𝑚/𝑖𝑑𝑒𝑓𝑜 − 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛_𝑚𝑜𝑑𝑒𝑙𝑖𝑛𝑔_𝑚𝑒𝑡ℎ𝑜𝑑/

21

3.2.1 System Description

METROLOGICAL_LAB_

Professors

Students

PHD Students

Users Check

Data
Requirements

Checks

Autorizations
Check

Information
System

Users
Database

Documentation
(Machine
Manuals,

Certificates,
Calibrations ecc)

Follow Safety Course

View Technical Specifications

Administrators and Tecnicians

Research Fellows

External Personnel/Users

Upload Documentation

Download/Delete Documentation

Follow Specific Course

View active sessions
Reserve a new session

To Home Page

Informations updated

Registration Failed

Session Booked/Booking Failed

Session Edited/Deleted

Login Failed

Upload Failed

Sessions
Database

Figure 9 - IDEF0 System

In the picture above, the system is depicted as a “Black Box”, only focusing on General
Inputs and Outputs; usually in this phase the system is intended AS IS, but for the
purpose of the present work, given the need to implement a website from scratch, the
Platform is depicted as TO BE. As shown, System inputs are the Users, both Internals
and Externals, while four major databases are needed: one for Users, Facilities (here
named “Machine”), Sessions and lastly one for all Documentation needed, in file
formats.

22

3.2.2 Main Functions
The picture below depicts all the accessible functions of the web platform; as shown,
they can be accessed by All Users after registration and log in, but Lab Facilities are
also accessible without previous authentication. This because Lab Facilities are intended
only to show documentation, which can be seen and downloaded in first instance by
anyone.

A0

SIGN UP & LOGIN
ADMINISTRATORS

STRUCTURED PERSONNEL

UNSTRUCTURED PERSONNEL

A2

VIEW LAB
FACILITIES

REGISTRATION FAILED

TO HOME PAGE

INFORMATIONS
CHECKS

USER DATABASE IS

A1

SESSIONS

A4

LOG OUT

VIEW ACTIVE SESSIONS

RESERVE A NEW SESSION

A5

CHANGE PERSONAL
INFORMATIONS

A3

UPLOAD
DOCUMENTATION

MATERIAL
AND

DOCUMENTA
TION

DOCUMENTATION DOWLOADED/DELETED

DOCUMENTATION UPLOADED

SESSION EDITED/DELETED

FOLLOW SAFETY COURSE
FOLLOW SPECIFIC COURSE

TO HOME PAGE

SESSIONS
DATABASE

Figure 10 - IDEF0 General Functions

23

3.2.3 Sign UP & Log IN
Registration and Log In processes works sequentially, collecting both Structured and
Unstructured users data. During both processes the system checks the inserted data to
verify if they are in the appropriate type and format. After a successful Registration, all
Users are asked to Log In and if no errors are displayed, they can proceed to the Home
Page.

A0

SIGN UP

A1

LOG-IN

STRUCTURED & UNSTRUCTURED PERSONNEL

A2

USER DATA COLLECTION AND
CHECK

A3

INFORMATIONS
UPDATES

USER DATABASE IS

REGISTERED USER

INFORMATIONS
CHECK

 TO HOME PAGE

 TO HOME PAGE

TO HOME PAGE

LOGIN FAILED

REGISTRATION FAILED

Figure 11 - IDEF0 Registration Process

24

3.2.4 Uploads

The interface and the functions are very simple and intuitive: Administrators must first
log in in the system, and after that, they can see all documentation currently stored on
the website and, being in charge of its management, they can either upload new
documents or delete existing ones.
In any case after each action the system will update the Material Database.

A0

LOGIN
LAB ADMINISTRATOR

A1

UPLOAD
DOCUMENTATION

A2

INFORMATIONS
UPDATES

USER DATABASE IS

INFORMATIONS UPDATED

AUTHORIZATIONS
CHECK

MATERIAL DATABASE

DELETE DOCUMENTATION

Figure 12 - IDEF0 Uploads

25

3.2.5 Sessions

Only Registered Users have the possibility to book a new session and see which
sessions are currently active. In addition, they may also need editing an existing session,
i.e. selecting a different time slot or machine. Obviously an authorization control is
effected in case of editing or deleting, since each user is allowed to change his sessions
only, and not sessions booked by other users.

A0

SESSIONS
REGISTERED USER

AUTHORIZATION
CHECK

MACHINE DATABASE

A1

SELECTION INFORMATIONS
FOR SESSIONS

A2

EDIT/DELETE SESSION

TO HOME PAGE

IS USER DATABASESESSIONS DATABASE

VIEW ACTIVE SESSIONS

SESSION BOOKED

AUTHORIZATI
ON CHECK

BOOKING EDITED/DELETED

AUTHORIZATI
ON CHECK

Figure 13 - IDEF0 Sessions

26

3.2.6 Lab Facilities

Each visitor must be able to retrieve lab documentation (in principle, while some types
of documents can be restricted to selected users only) and therefore can access the list of
Lab facilities, selecting the one of his interest.
As far as this thesis is concerned, as previous detailed, only Nanoindenter and CSI
Microscope are available, each one giving access to its own documentation and training
courses.

A0

VIEW LAB FACILITIES
USER

AUTHORIZATION
CHECK

MACHINE
DATABASE

A1

NANOINDENTER

A2

CSI MICROSCOPE

SPECIFIC COURSE

SAFETY COURSE

DOWNLOAD DOCUMENTATION

IS

DOWNLOAD DOCUMENTATION

SPECIFIC COURSE

MATERIAL
DATABASE

MATERIAL
DATABASE

IS

IS

Figure 14 - Lab Facilities

27

Chapter 4
System Design

4.1 Use Case
In order to understand how the Platform needs to be developed, it is imperative first to
have a clear understanding of HOW the main Actors involved will interact with the
system; this has already been dealt with previously in raw terms, but for a precise and
comprehensive view, another tool is needed.
The USE CASE is the most basic yet powerful diagram available under the UML
paradigm and can be used to represent a variety of systems, not necessarily web
platform or programs. In general terms it works by defining two distinct Categories:

• ACTORS: are all the users that can interact with the systems
• The System Boundaries, represented as a green bordered rectangle; all the blue

boxes within are the functions characterizing the system, each of them in
relationship with a user who can access it and for whom it is intended.

28

USERS

PROFESSORS

STUDENTS

PHD STUDENTS

SIGN UP

LOG IN

NEW USER

CURRENT USER

INFO CHECK

ALL SESSIONS

VIEW LAB FACILITIES

ACTIVE SESSIONSBOOK A NEW SESSION

MICROSCOPE NANOINDENTER

UPDATE/DELETE DOCUMENTATION

FOLLOW SAFETY COURSE

UPDATE
INFORMATIONS

VIEW HOME PAGE

RESEARCH FELLOWS

STRUCTURED PERSONNEL

UNSTRUCTURED PERSONNEL

ADMINISTRATORS

<<Extend>>

<<Include>>

<<Include>>

<<Include>>

<<Extend>>

<<Extend>>

<<Extend>>

<<Extend>> <<Extend>>

<<Extend>>

<<Include>>

<<Extend>>

DOWNLOAD
DOCUMENTATION

<<Extend>>

<<Extend>>

EDIT/DELETE SESSION

<<Extend>>

<<Extend>>

RETRIEVE INFO ON INDUSTRIAL
METROLOGY

<<Extend>>

Figure 15 - Metrological Lab Use Case

As shown in Figure 15, several Actors have been identified; in fact the Laboratory could
be used by Students, i.e. for thesis experiments, or by PHD students for research
purposes, but also by users not belonging to Politecnico such as External Research
Centers or Other University Groups.
All Users are classified as “Structured Personnel” if internal to Politecnico, or
“Unstructured Personnel“ if not.
Moreover, a User can be Current or New, depending on whether such user is already
registered to the website or not. System Administrators, shown in red, are Users with
additional functions, since they are the only users allowed to upload Scientific
Documentation and remove documents from the system, and are chosen amongst
Structured Personnel.
Hence both Current and New Users are specialized actors who inherit from the general
actor User. Figure 16 below shows the functions of the System, whereas the dotted lines
connecting boxes are the relationship between functions, identified as “Inclusion”, with
red arrows or “Extension” with blue ones.

29

Inclusion is used when any previous step is necessarily performed: for example, if
Check is executed, it means that Registration has been executed before. Extension,
conversely, describes optional behaviors which are subject to conditions of activation.
For instance, a user could choose to access Facilities Page or Sessions Section or none.

Figure 16 - Use Case Internal Functions

New Users, must register to the platform, which operates a check of the data inserted
and then redirects the user to the Login Page which, in turn, can be accessed directly
from Current Users. It is also possible for all Users, to access directly the Home Page,
although they must be registered and logged to book utilization sessions.
After having logged in, Users can book new sessions or edit existing ones, and if they
are Administrators, upload and manage documentation.
There is also a fundamental function called “Follow Safety Course”; no User must get
access to the Lab without having read General Safety Procedure, but at the same time
someone who has read such Procedure must not be obliged to read it again. Therefore
the relation between Home Page and “Follow Safety Course” is an Extension.

30

4.2 ACTIVITY Diagrams
Activity Diagrams are important tools for the comprehension of the system behavior.
They are flowcharts representing the stream from one activity to another, where each
activity can be described as an operation of the System. While the Use Case is static,
Activity Diagrams are Dynamic.
In this diagram, each symbol has a meaning:

 Rectangles represent activities

Diamonds represent alternative paths which can converge/diverge or they can
be applied as branching/merging tool;

 Forks are used for parallel or synchronized activities and options.

The following subsections depict the different diagrams describing every single page of
the Metrological Laboratory System.

4.2.1 Registration & Login
In the Home Page, the user can register if he is new or log in if he has already signed
up. In case of registration, the new user is asked to fill in a form with his data (such as
email, first name, last name, password, ecc…). The form is submitted and, if it passes
the check exam, the new data are saved in the database and the user can proceed directly
to the login page, otherwise the user has to fill the form again until the data are correct.
In the log in case, the current user fills the form with his email and password and
submits it. If the input data are present in the database and are correct, the Home Page
opens and he can start his personal navigation; on the contrary, he has to insert his
credentials again.
After a successful registration, an email is automatically sent to both new user and
administrator. The former receive his credentials, the latter is warned that a new
registration occurred; this is implemented to effectively know how many users are
registered in the System.
Registration and log in are mandatory for booking sessions with machines. However, a
generic user is allowed to access the Website without having to register or log in; this
could be the case of a guest researcher or a student who doesn’t have permission or
interest in using instrumentation, but is just looking for scientific documentation or links
to events or articles.

31

STARTING NODE

HOME PAGE

SIGN UP LOGIN

SIGN UP FORM

DATA REQUIRED

LOGIN FORM

DATA REQUIRED

SUBMIT

DATA CHECK

SUBMIT

DATA CHECK

HOME PAGE

FINAL NODE

INVALID DATA
INVALID DATA

ALREADY REGISTERED ?

FINAL NODE

EMAIL TO USER EMAIL TO ADMIN

TO LOGIN PAGE

Figure 17 - Activity Diagram Sign-up/Login

32

4.2.2 WEB Structure
The HOME PAGE is the actual core of the website and has connections to all possible
activities. From the home page it is possible, for any user, to access the other functional
pages such as Lab Facilities in order to find information about instrumentations, or
Contact Page, or simply searching information about recent events in the Industrial
Metrology Field (conferences, publications ..) as well as review the available
documentation.
An ever present navigation bar eases navigation between pages, and allows system
administrators to access both the upload page from which they can upload new
documentation, and the comprehensive documentation page; finally, a personal account
page is available for each user in order to see and eventually update personal
information like emails or usernames.

STARTING NODE

HOME PAGE

SESSIONS PAGELAB FACILITIES

ACCOUNT PAGE LOGOUT

FINAL NODE

EVENTS/LINKS

UPLOADS
DOCUMENTATION

CONTACTS

FINAL NODE FINAL NODE

NAVIGATION BAR

FINAL NODE

SYSTEM ADMINISTRATOR

FINAL NODE

DOCUMENTATION PAGE

Figure 18 - Activity Diagram Web Structure

33

4.2.3 Booking a New Session
The second most important aim of the Website is, as previously stated, to allow
Structured Personnel, like Students or Researcher, to reserve time slots (here called
“Sessions”) to be able to work with Lab Instrumentation. To do so, the Session Page

must be opened, and the User trying to reserve a session must be logged in first, since,
for safety and technical precautions, no “uninformed“ personnel must be allowed to use

the Lab equipment.
After having entered the Sessions Page, the logged user can see which sessions are
currently active and reserve a new one. To do so, he must compile a form stating the
desired day and hours as well as for which machine he is reserving; the system will then
check if the selected timeslot is already booked, thus determining a collision. In such
case an error will be displayed, and the user will be redirected back to the booking page;
on the other hand, in case the timeslot is free, the session database will be uploaded
with the new reservation, while the user is notified that the session has been correctly
booked, and redirected back to the Session Page.

STARTING NODE

SESSIONS PAGE
OPENS

RESERVE NEW
SESSION

FINAL NODE

RESERVATION FORM

INSERT DATA

SUBMIT

SESSIONS DATABASE
UPDATES

FINAL NODE

INCORRECT DATA/TIME SLOT ALREADY FULL

DATA VALIDATION

VIEW ACTIVE SESSIONS

USER LOGGED

TO LOGIN PAGE

FINAL NODE

TO SESSIONS PAGE

Figure 19 - Activity Diagram Session Booking

34

4.2.4 Lab Facilities
Figure 19 shows how a user can interact and navigate between the various facilities of
the Lab, whether he is registered or not.
From the Home Page it is possible to access to the Lab Facilities Page, which redirects
the user to a middle page, where he or she can select the personal page of the machine
object of his/her interest. After that, the selected page will open, allowing to retrieve
information about the machine, or giving the opportunity for documentation
downloading.

STARTING NODE

FINAL NODEFINAL NODE

HOME PAGE

FACILITIES PAGE OPENS

SELECT

MICROSCOPE PAGE NANOINDENTER PAGE

DOCUMENTATION PAGE
OPENS

DOCUMENTATION PAGE
OPENS

DOWNLOAD DOCUMENT DOWNLOAD DOCUMENT

VIEW INFORMATIONS VIEW INFORMATIONS

FINAL NODE

Figure 20 - Activity Diagram Lab Facilities

35

4.2.5 Editing or deleting a session
Editing or deleting a booked session is a very intuitive process; in fact this option is
displayed from the same Session Page used before. After having selected his session, a
user is presented with a form to change its parameters (machine, day, hour) or an option
for deleting it. The latter requires a further confirmation to prevent unwanted deletions.
After a successful deletion, both User and Session databases are updated, while only the
latter is updated after a successful update.

STARTING NODE

HOME PAGE

SESSIONS PAGE OPENS

FINAL NODE

FINAL NODE

VIEW ACTIVE SESSIONS

DELETE SESSION

NOT CONFIRMED

SESSION DELETED

DELETING CONFIRMED

UPDATE SESSION

UPDATE FORM
DISPAYED

TIME SLOT ALREADY FULL/ERROR

INSERT DATA

SUBMIT

DATA VALIDATION

SESSION DATABASE
UPDATES

USER DATABASE
UPDATES

User Logged
FINAL NODE

TO LOGIN PAGE

Figure 21 - Activity Diagram Session Editing

36

4.2.6 Uploading/Deleting Documentation
Only Administrators are allowed to manage documentation, therefore after having
logged in and being recognized, they can access the Upload Page. From there a form is
displayed, requesting to upload the actual file, and to specify filename and category, i.e.
to which machine it belongs, being a Calibration Certificate.
After having uploaded a new document, an Administrator can also download it or delete
it from the Documentation Page, which acts as general repository.

STARTING NODE

HOME PAGE

UPLOAD PAGE

UPLOAD FORM
DISPLAYED

FINAL NODE

INSERT DATA

DOCUMENTATION
DATABASE UPDATE

DOWNLOAD
MATERIAL

DOWNLOAD
REQUEST

FINAL NODE

DOCUMENTATION
PAGE

NOT ADMINISTRATOR

DATA VALIDATIONINVALID DATA/ERROR

DELETE
DOCUMENTATION

DELETE OPTION
DISPLAYED

DOCUMENTATION
DATABASE UPDATES

FINAL NODE

VIEW EXISTING DOCUMENTATION/EXIT

DELETING CONFIRMED

NOT CONFIRMED

DOWNLOAD SUCCESSFUL

ERROR

Figure 22 -Activity Diagram Documentation Management

37

4.3 Entity Relationship Model
After having defined HOW the System interacts with users, as shown before in the USE
CASE, it’s now important to define how such interactions are translated into
relationships. This step is crucial since it shows how “entities” (as defined below) are
stored in the website database. In order to do so, the following UML diagram is used,
the Entity- Relationship Model.
Such model is composed of a series of symbols that are hereby listed:

•
Entity

 and
ADMINISTRATORS

: entities in this context are abstract
representations of existing objects; they simply exist and have no defined
functions. In the database context, an entity is considered only an object for
which data can be captured or stored. A weak entity is a sub category of an
Entity and as such has no proper attributes.

•

Attributes

: are characteristic of an entity, and each entity can be described by one
or more attributes.

• Connection: the modality of connection between entities and weak entities is
called connection or relation. Connection can be classified into the following 3
types: one-to-one connection, one-to-many connection and many-to-many
connection.

38

USERs

namefamily name

email

passwordid

username

image_file

safety

sessions

ROLES

id

email

role_name

SESSIONS

id

StartDate

machine

EndDate

StartHour

EndHour

user_idmachine_id

LabFacilities

id Name

FileContent

id

machine

namef

path

data

category

DIVIDED BY

BOOKS AND
EDIT

Date

USE

DOWNLOAD
UPLOAD AND

DELETE

ADMINISTRATORS

Figure 23 - Entity Relationship Model

All Entities (including weak entities) in the website represent the actors involved and as
such, they are:

- USERS: all the users who access the Website, both internal and external to
Politecnico. They are “Divided By their Role” as a user can be an Administrator,
or a simple Student or Professor. They can also interact with the entities
Sessions (if registered) and book or edit Sessions, and with FileContent to
download documentation.

- SESSIONS: the entity represents each session that can be booked or edited by a
generic (logged) user. Each session is booked for a single Facility and in a
defined date/time.

- ROLES: each user, being external or internal to the University, is characterized
by a role, which defines in principle what he is allowed to do in the Lab.
Therefore, a connection exists with the entity Users.

- ADMINISTRATORS: is a weak entity of the entity ROLES, as it constitutes
just one of many other possible roles. Being Administrators the only Users who

39

can upload/delete documentation, they have a relationship named “Upload and

Delete” with FileContent.

- LAB FACILITIES: are the different machines and equipment currently present
in the Lab and in the System; they are related to Sessions since each Session is
effected by using one Lab Facility.

- FILE CONTENT: all Documentation which is possible to upload and
download from the Website is described by this entity. It is related to Users for
downloads and to Administrators for upload, editing and deleting.

4.3.1 Cardinalities

Table 4 - Cardinalities

Entity 1 Entity 2 Description Type of
relationship

USERS

ROLES

• A User can
have multiple
Roles

• Multiple Roles
can be assigned
to one User

1 to many

USERS

FILE CONTENT

• Each User can
download
multiple Files

1 to many

ADMINISTRATORS

FILE CONTENT

• Each
Administrator
can upload or
delete multiple
files

1 to many

USERS

SESSIONS

• Each User can
book multiple
Sessions

1 to many

SESSIONS

LAB FACILITIES

• Each Session is
booked for one
Machine

1 to 1

40

Chapter 5
Implementation

This chapter presents the Website implementation. After having designed the System in
terms of functional requirements and concepts, now the Website is actually built in
Mock-up form.
The following sections describe the relevant pieces of code that constitute the Website
and better represent the analysis carried out so far. Finally, in the end pictures of the
website at work are shown and described.

5.1 Tools Used for Implementation
This web application is are composed employing the following frameworks: PyCharm
as development environment, Python and HTML as programming languages, Flask
(including SQLAlchemy as database module) as network service and Bootstrap and
CSS as front end styling.
Furthermore, all frameworks and libraries are divided in two macro categories, Back-
End and Front-End, depending by their role in the Website.

5.1.1 Back-End
The back-end refers to parts of a computer application or a program code that allows it
to operate and that cannot be accessed by a user. Most data and operating syntax are
stored and accessed in the back end of a computer system, which is also called the data
access layer of the software.

5.1.2 IDE -Virtual Environment: PyCharm
PyCharm is an Integrated Development Environment (IDE) used in computer
programming, specifically for Python programming language. It has been developed by
the Czech company JetBrains (formerly known as IntelliJ).
It provides code analysis, a graphical debugger, an integrated unit tester, integration
with Version Control Systems (VCSes), and supports web development with Django,
Flask, React, as well as data science with Anaconda.
The Community Edition is released under the Apache License for free, but for the sake
of the project, the Professional Edition has been used, the license granted for
educational purposes.

5.1.3 Programming Language: Python
Python is a programming language often used to build websites and software, and often
used for Data analysis. It is a general purpose language; as such can be used for a
variety of different programs but is not specialized for any specific problems. This
versatility, along with its beginner-friendliness, has made it one of the most used
programming languages today. In fact, a survey conducted by industry analyst firm Red

41

Monk found that it was the most popular programming language among developers in
2020.

5.1.4 Web Framework: Flask
A Web Application Framework or simply a Web Framework is a collection of libraries
and modules that enables web application developers to write applications without
worrying about low-level details such as protocol, thread management, and so on.
Flask is a web application framework written in Python and developed by Armin
Ronacher, who led a team of international Python enthusiasts called Pocco.
Flask is based on the Werkzeug WSGI toolkit and the Jinja 2 template engine, which
are also both projects of Pocco.

5.1.5 Front-end
The front-end of a software program or website is everything that the user interacts
with. From a user point of view, the front-end is synonymous with the user interface.
From a developer standpoint, instead, it is the interface design and the programming
that makes the interface actually work.
The primary goals of front-end development is to create a smooth or "frictionless" user
experience. In other words the interface must be clear, intuitive and as simple as
possible.

5.1.6 Programming Language: HTML and CSS
HTML is the language for composing the structure of Web pages.
It gives web designers the instruments to:

- Publish online documents with headings, text, tables, lists, photos, etc.
- Retrieve online information via hypertext links, at the click of a button.
- Include spread-sheets, video clips, sound clips, and other applications directly in

their documents.

CSS is the language used to describe the presentation of Web pages, including colors,
layout, and fonts. It allows developer to adapt the presentation to different types of
devices, such as large screens, small screens, or printers. CSS is independent from
HTML and can be used with any XML-based markup language.

Specifically, for this project the CSS extension Font Awesome has been used to render
more stylish icons, further information in the link below3.

5.1.7 Library: Bootstrap
Bootstrap4 is a free and Open Sources CSS framework at responsive, mobile-first front-
end web development.
It contains CSS and JavaScript based design templates for typography, layers, forms,
buttons, navigation, and other interface components.
As of August 2021, Bootstrap has been recognized as the tenth most starred project on
GitHub, with over 152,000 stars.

42

5.1.8 Templates
Each webpage in the website is based on a template, which is a separate file written in
HTML and CSS. Such Files are rendered into pages following Routes instructions
detailed in the following sections, as well as the graphic engine Jinja 2 for Flask. In
particular Jinja 2 has been used to render the dynamic part of each page, represented
inside curly brackets, as shown in the example below.

{% for newFile in new %} {% endfor %}

Jinja 2 also allows each web page to “inherit” from each other; this feature has been

used to simplify the web design, defining a common Navigation Bar and a Layout. This
has been achieved by creating a block structure as shown below. Each “block” is

automatically included in a “child page”, instead what lies outside can be rewritten with

new instructions. It is also possible to overwrite existing instructions in the child
template, with the instruction “super()”, which in the following code, is used to
implement the block “styles”.

{% block styles %}

 {{ super() }}

 <link rel="stylesheet"

 href="{{ url_for('static', filename='font-awesome/css/font-

awesome.min.css') }}">

 <link rel="stylesheet"

 href="{{ url_for('static', filename='style.css') }}">

{% endblock %}

Other web pages can then inherit from the base webpage as follows:

{% extends "layout.html" %}

{% extends "bootstrap/base.html" %}

{% import "bootstrap/wtf.html" as wtf %}

{% extends 'NAVBAR.html' %}

3ℎ𝑡𝑡𝑝𝑠://𝑓𝑜𝑛𝑡𝑎𝑤𝑒𝑠𝑜𝑚𝑒. 𝑐𝑜𝑚/

 4ℎ𝑡𝑡𝑝𝑠://𝑔𝑒𝑡𝑏𝑜𝑜𝑡𝑠𝑡𝑟𝑎𝑝. 𝑐𝑜𝑚

43

5.2 Database
The database is implemented with a library in Flask called SQLAlchemy5. This library
helped defining tables inside the database, using the same object-oriented approach used
to define classes, being also able to create a database from scratch, all in the same
environment. For the mockup a simple SQLITE3 database named “Test” has been used.
For instance, the class User which represents a generic user in the website is the
following:

class User(db.Model, UserMixin):

 __tablename__ = 'Users'

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(100), nullable=False)

 family_name = db.Column(db.String(100), nullable=False)

 username = db.Column(db.String(100), unique=True, index=True)

 image_file = db.Column(db.String(20), nullable=False,

default='default.jpg')

 email = db.Column(db.String(100), unique=True, index=True)

 password = db.Column(db.String(200), nullable=False)

 safety = db.Column(db.Integer(), nullable=True, default=0)

 role_id = db.Column(db.Integer, db.ForeignKey('Roles.id'))

 sessions = db.relationship('Sessions', backref='author',

lazy=True)

 def __repr__(self):

 return 'User ({},{}!)'.format(self.username, self.email,

self.image_file, self.safety)

A generic user is characterized by a series of attributes, which are his personal data
(family name, name, username, email and password), by an image which is inserted by
default, and by a specific attribute called “safety”. The latter is intended to be used for
further implementations, his role is assessing if a specific user has downloaded the
General Safety Instructions provided in the Home Page. Such information needs to be
recorded and stored to prevent possible claims linked to harm or damage to Facilities
and people. As shown in the Entity Relationship Diagram, the table User is linked to
Roles and Sessions tables respectively. To this aim the attribute “role_id” behaves as a
Foreign Key, referencing the table Roles. On the other hand the table Sessions is also

44

referenced by the attribute Sessions, this one linked using the method “Backref”. Both
solutions lead to the same outcome.

The class has some supplementary methods in order to define the properties of the
current user. They belong to the Flask-Login6 extension that helps manage user sign in
sessions. With this extension is possible to limit the access to various pages of the site to
only to the already signed in users.
Going forward, the class Roles represents all the possible roles that users can take inside
the lab. Its attributes are a specific id for each role, a role name and a relationship
established with the class Users.

class Roles(db.Model):

 __tablename__ = "Roles"

 id = db.Column(db.Integer, primary_key=True)

 role_name = db.Column(db.String(100), nullable=False)

 users = db.relationship('User', backref='role_name')

Another important class is called Sessions. This class represents the actual time slots
available for the users to work on Lab Facilities, and as such is characterized by Times
attributes requested to the user during the booking process, and by a unique id. The
class has also two foreign keys, “user_id” and “machine_id” which are linked,
respectively, to the User Table and the Lab Facilities Table.
In particular the last connection is implemented foreseeing future development and an
increased number of facilities available in the Lab.

class Sessions(db.Model):

 __tablename__ = "Session"

 id = db.Column(db.Integer, primary_key=True)

 machine = db.Column(db.String(100), nullable=False)

 StartDate = db.Column(db.DateTime, nullable=False)

 EndDate = db.Column(db.DateTime, nullable=False)

 StartHour = db.Column(db.Integer, nullable=False)

 EndHour = db.Column(db.Integer, nullable=False)

user_id = db.Column(db.Integer, db.ForeignKey('Users.id'),

nullable=False)

machine_id =db.Column(db.Integer,db.ForeignKey('machines.id'))

 def __repr__(self):

45

 return 'Session ({}, {}!)'.format(self.machine,

self.StartDate, self.EndDate, self.StartHour, self.EndHour)

The class Lab Facilities is used to represent the actual equipment in use in the Lab, each
one with a proper id and Name; currently only the Nanoindenter and the Microscope are
listed in the application.

class LabFacilities(db.Model):

 __tablename__='machines'

 id = db.Column(db.Integer, primary_key=True)

 Name = db.Column(db.String, db.ForeignKey('documents.machine'))

 def __repr__(self):

 return 'Machines ({})'.format(self.Name)

The last class is FileContent, and constitutes the actual repository for scientific
documentation. In order to be used as an actual repository, the field “data” is set to be

“Large Binary”, able to store the actual bytes constituting documents. The field “path”

is used instead to store the reference to the position (pathway) of a specific document. In
such way it is possible to query the database and find the right document requested by
pressing the Download Button.

class FileContent(db.Model):

 __tablename__ = 'documents'

 id = db.Column(db.Integer, primary_key=True)

 machine = db.Column(db.String(100))

 namef = db.Column(db.String(200))

 path = db.Column(db.String)

 data = db.Column(db.LargeBinary)

 category = db.Column(db.String(300))

 def __repr__(self):

 return 'FileContent ({},{}!)'.format(self.name, self.namef,

self.category

5ℎ𝑡𝑡𝑝𝑠://𝑤𝑤𝑤. 𝑠𝑞𝑙𝑎𝑙𝑐ℎ𝑒𝑚𝑦. 𝑜𝑟𝑔/
6ℎ𝑡𝑡𝑝𝑠://𝑓𝑙𝑎𝑠𝑘 − 𝑙𝑜𝑔𝑖𝑛. 𝑟𝑒𝑎𝑑𝑡ℎ𝑒𝑑𝑜𝑐𝑠. 𝑖𝑜/

46

5.3 Forms
A web form, also called an HTML form, can be defined as an online page that allows
input by a user. It is an interactive page that mimics a paper document, where users fill
out particular fields. In the following lines are presented the most important forms used
in the platform, all of which are managed through WTForms7. This choice is used to
ease implementation, since it allows defining web forms as Python Classes.

As shown, each form possess a series of Attributes, each one constrained by one or
more Validators. This returns an error each time a user tries to insert parameters which
does not respect basic requirements such as Minimal Length for names, or allowed
dominions for Emails. A button called “Submit” is present at the end of each form, its

function is sending inserted data to the server to be processed. However, simply
submitting data is not enough, since this does not produce any visible action in the web
page; therefore “Return” functions are used in the view to redirect users to specific

pages after form submissions.

5.3.1 Registration Form
In the Registration Form, used each time a new user requests registration to be able to
use the system, a set of validating function called “def validate” are also present. They
works querying the database (Class “Users”) to check if the username, email, and
password inserted are equal to others already stored, and if any of them it is, display an
error.

class RegistrationForm(FlaskForm):

 name = StringField('Name', validators=[DataRequired(Length),

Length(max=50)])

 family_name = StringField('Family Name',

validators=[DataRequired(Length), Length(min=1, max=100)])

 username = StringField('Username',

validators=[DataRequired(Length), Length(min=4, max=20)])

 email = StringField('Email', validators=[DataRequired(Length),

Email(),])

 password = PasswordField('Password', validators=[DataRequired(),

Length(min=6)])

 confirm_password = PasswordField('Confirm Password',

validators=[DataRequired(), EqualTo('password')])

 submit = SubmitField('Sign Up')

 def validate_username(self, username):

 user = User.query.filter_by(username=username.data).first()

47

 if user:

 raise ValidationError('That username is already taken.

Please choose another one')

 def validate_email(self, email):

 user = User.query.filter_by(email=email.data).first()

 if user:

 raise ValidationError('That email is already taken. Please

choose another one')

 def validate_password(self, password):

 user = User.query.filter_by(password=password.data).first()

 if user:

 raise ValidationError('That password is already taken.

Please choose another one')

5.3.2 Reservation Form
With the Reservation Form a user can book a session for a specific machine; to do so he
is required to insert the desired timeslot and the specific machine. Each timeslot is
defined by a Start Date and an End Date respectively. These two fields are implemented
as integers, ranging from 7 a.m. to 20 p.m.

class ReservationsMForm(FlaskForm):

 machine=StringField('Machine', validators=[DataRequired()])

 StartDate = DateField('First Day', validators=[DataRequired()])

 EndDate = DateField('End Day',validators=[DataRequired()])

 StartHour = SelectField('Choose starting hour', coerce=int,

choices=([i for i in range(8, 20)]))

 EndHour = SelectField('Choose ending hour', coerce=int,

choices=([i for i in range(8, 20)]))

 submit = SubmitField('Submit')

48

5.3.3 Upload Form
This form is presented only to Administrators, since they are the only users allowed to
upload new files. It includes a File Field, which groups all allowed extensions, text,
images and working tables respectively. In addition, to ensure information
completeness, each single field must be mandatorily filled, and is subject to check by
the Validator “Data Required”.

class UploadForm(FlaskForm):

 namedocument = StringField('Filename',

validators=[DataRequired()])

 category = StringField('Category',

validators=[DataRequired()])

 machine = StringField('Machine',

validators=[DataRequired()])

 file = FileField('File', validators=[FileAllowed(['jpg',

'png', 'pdf', 'txt', 'xms'])])

 submit = SubmitField('Submit')

7ℎ𝑡𝑡𝑝𝑠://𝑓𝑙𝑎𝑠𝑘. 𝑝𝑎𝑙𝑙𝑒𝑡𝑠𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠. 𝑐𝑜𝑚/𝑒𝑛/2.0. 𝑥/𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠/𝑤𝑡𝑓𝑜𝑟𝑚𝑠/

49

5.4 Routes
The principal working logic of backend is routing between the html pages and the
server. In Flask it is possible to route an URL to a specific function by using a specific
“decorator”, as shown below.

@app.route('/register', methods=['GET', 'POST'])

The Get or Get/Post methods define whether the information is only being retrieved or
also sent to the server. Every time the user requests the URL example.html the
following part of code will be executed. The Platform must return a page to the browser,
and to do that, it will use a command called “render template”, sending also the

dynamic variables in the HTML code, like, the legend “New Book”.

render_template('New Session.html', form=form, legend='New Book')

Sometimes, data must be inserted automatically into a database when the web is
launched, before any actual interaction with the user; this is shown in the section below.
The instruction “db.drop_all()” is used at the beginning to clear the existing tables,
which are immediately recreated anew by “db.create_all()”. After that, the database is

populated with Administrator credential, as well as with the names of the Facilities
which are currently being studied. This is done to let the platform administrator be
already present in the database whenever the website is launched with no need for
Registration. His password is also encrypted using “Generate.Password.hash” method,

to prevent intrusions.

@app.before_first_request

def create_db():

 db.drop_all()

 db.create_all()

 password_ad = bcrypt.generate_password_hash('279856')

 user_admin = User(name='Michele', family_name='Magni',

username='admin',

 email='ad@admin.com', password=password_ad)

 equipment1 = Machines(Name='Nanoindenter')

 equipment2 = Machines(Name='Microscope')

 db.session.add(equipment1)

 db.session.add(equipment2)

 db.session.add(user_admin)

 db.session.commit()

 user_query = User.query.filter_by(username="admin").first()

50

print(user_query.name)

Different pages can be rendered depending on predefined conditions. To illustrate this,
it is possible to render the Log In page to a user who is not logged in and is trying to
access the profile.html page.
In the route below, two completely different paths are followed depending on whether
the request method is a GET or a POST. In the first case it means that the user is just
asking for the registration page, and hasn’t submitted the form yet. Once the user has
submitted the form, the request will be a POST request and the user will be redirected to
the login page following a successful registration or to the same page again in case of an
unsuccessful one.
In addition, two functions called “send_email_us” and “send_email_ad” are defined.

They are used after a successful registration to send two emails, one to the new User
and one to the Lab Administrator. The former shows the user his credentials, the latter
warns the administrator about the new registration by showing him the new username.
For the sake of testing and debugging, both functions use “mailtrap.it” as email sender,

while the email text is defined in two separate templates; this means that now the emails
are sent to a “sandbox” (protected environment), instead that to real email addresses.

email for User

def send_mail_us(to, subject, template, **kwargs):

 msg = Message(subject, recipients=[to],

sender=app.config['MAIL_USERNAME'])

 msg.html = render_template(template + '.html', **kwargs)

 mail.send(msg)

email for Admin

def send_mail_ad(to, subject, template, **kwargs):

 msg = Message(subject, recipients=[to],

sender=app.config['MAIL_USERNAME'])

 msg.html = render_template(template + '.html', **kwargs)

 mail.send(msg)

@app.route('/register', methods=['GET', 'POST'])

def register():

 form = RegistrationForm()

 if form.validate_on_submit():

 hashed_password =

bcrypt.generate_password_hash(form.password.data)

51

 user = User(name=form.name.data,

family_name=form.family_name.data, username=form.username.data,

 email=form.email.data, password=hashed_password)

 db.session.add(user)

 db.session.commit()

 send_mail_us(form.email.data, 'Your Registration has been

successful', 'Mail to user', name=form.name.data,

 username=form.username.data,

password=form.password.data)

 send_mail_ad('michele.magni95@gmail.com', 'New User

Registered', 'Mail to admin', name=form.name.data,

 username=form.username.data)

 flash("Your Account has been created", 'success')

 return redirect(url_for('login'))

 return render_template('REGISTER.html', form=form)

In the section below, one of the most important routes of the website is reported, the one
which allows a User to book Sessions. To do so, he must previously log in, and
therefore must be registered. Being each booking intended for only one machine, the
system must first check for possible times collisions. To do so it creates a variable
called “ collisions”, by querying the Table “Sessions”, using the instruction “Datetime”

to combine each present recorded Start Date into minutes, and then using the resulting
parameter to filter the records according with the Machine selected by the user. A
following “for” cycle then starts, checking the two “if“ conditions that identify an
overlap and, in case of overlap, returns a message that redirects the user to the booking
page.

@app.route('/Reservations/New', methods=['GET', 'POST'])

@login_required

def new_Session():

 form = ReservationsMForm()

 if form.validate_on_submit():

 collisions = Sessions.query.filter_by(

 StartDate=datetime.combine(form.StartDate.data,

datetime.min.time())).filter_by(

 machine=form.machine.data).all()

 print(len(collisions))

52

 for collision in collisions:

 if form.StartHour.data <= collision.EndHour and

(form.StartHour.data +

 (form.EndHour.data -

form.StartHour.data)) > collision.StartHour:

 flash('Session already booked', 'danger')

 return redirect(url_for('book'))

 booked = Sessions(machine=form.machine.data,

StartDate=form.StartDate.data, EndDate=form.EndDate.data,

 StartHour=form.StartHour.data,

EndHour=form.EndHour.data, author=current_user)

 db.session.add(booked)

 db.session.commi

 flash('Your Session has been booked!', 'success')

 return redirect(url_for('book'))

 return render_template('New Session.html', form=form, legend='New

Book'

53

5.5 Pages

5.5.1 Registration & Home Page
First of all, while accessing the platform, the User is shown the following page; this
page constitutes the Front of the platform. By clicking on the button “To Main Page”

the User can access the Home Page of the website, shown in Figure 25, where he can
Register or Log In, compiling different forms, shown in Figure 26 and 27. The Login
form requires email and password, and can be reached also by the Register Form Page,
by clicking on the button “Sign In” bordered in red.

Figure 24 - Website Front

The Home Page, as well as any other page, includes a Navigation Bar to ease
navigation. Furthermore the page has two links, bordered red, to DIGEP and Quality
Engineering and Management Group websites respectively. A warning is also included;
it reminds the Users to download and read General Safety Rules before entering the
Sessions Page, by clicking on the nearby button.
The Home Page presents a section on the bottom which groups links (now empties);
their purpose is pointing to Scientific Events such as Conferences in the field of
Industrial Metrology, to better connect Politecnico di Torino with other research
centers, as well as a section related to scientific literature in the same field.
A group of three buttons in the middle allows accessing Session Page, Lab Facilities
and Contacts respectively.

54

Figure 25 - Website Home Page

Figure 26 - Website Register Form

55

Figure 27 - Login Form

In Figure 28 is shown the email platform Mailtrap.com which works as a sandbox for
emails sent after Registration. In this example a generic “User1” receive his credentials.

Figure 28 - Emails Sandbox

56

5.5.2 Lab Facilities/Nanoindenter
From the home page, by clicking on Lab Facilities Button, a user have access to the
page shown below; in this page he can find a table in which each row describe a
different facilities. As far as this thesis is concerned, only Nanoindenter and Microscope
are present. By clicking on the link, the user can then access to the machine specific
page; he can hereby find descriptions and eventually, a button will redirect him to the
download page.

Figure 29 - Website Lab Facilities

Figure 30 - Website Nanoindenter

57

Figure 31 - Website Nanoindenter Material

5.5.3 Booking a new Session
To book a Session, a user must first registered and log in, then in the page Sessions,
must click on the green button enlightened below. By clicking he is shown a form to
compile, in which he must specify the desired Time Slot (Starting and Ending Date and
Hours) and for which machine he is making his bookings.

Figure 32 - Website New Session

Figure 33 - Website Booking Form

58

The following popup is displayed at every new booking. If a user wants to proceed and
actually reserve a session, he or she is declaring to have read the General Safety
Instructions in the Lab (can be found in the home page); this feature is implemented to
exempt Administrators and Politecnico from possible issues deriving from facilities
misuses. Otherwise a user can simply delete his booking by clicking on the red button.

Figure 34 - Website Booking Popup

If no other sessions have already been booked for the same machine, in the same time
slot, thus determining a time collision, a new session is recorded and displayed in the
general Session Page, along with the bookers username and profile image. On the other
hand, an error message is displayed, following redirection to the general Sessions page.

Figure 35 - Website All Sessions

59

Figure 36 - Website Session Already Booked

5.5.4 Uploading new Documentation
To upload new files in the website, an Administrators must first be logged in; his
credentials are added in the database when it is launched so he does not need to formally
register.
The shortcut “Uploads” shown below is implemented to appear only to a registered
admin. In the following page a simple form is displayed, requesting Machine name,
Category to which the document belongs and finally the actual file, which is uploaded
by clicking on the Submit button.

Figure 37 - Website Upload Form

Figure 38 - Website Upload Successful

60

5.5.5 Account Page
In this page, each user can change his personal info, such as username and email of
reference, and can also upload a profile picture to substitute the default one, and see his
bookings, clicking on “My Active Sessions”.

Figure 39 - Website Account Page

5.5.6 Editing an existing Session
To edit a session, a user can simply click oh his name on a session he booked
previously; each user is authorized to edit only session booked by himself.
User will be redirected to the following page, in which he can see all the bookings he
made; clicking on Options will result in the second page below. This page present each
user with two options; he can update his booking by compiling another form as in
Figure 33, or can delete his booking by clicking on the delete button below.

Figure 40 - Website Editing Reservation

61

Figure 41 - Website Editing Page

Figure 42 - Website Deleting Popup

62

Chapter 6
Conclusion and Future Developments

Thanks to the development of the proposed platform, is possible to significantly
improve the DIGEP Metrological Lab functioning. Currently the lab is at a turning
point. The Lab has worked without any structured management tool until now, but now
it has been fully furnished and is fully operational, and an expansion and investment
plan has started. Such event will bring about growing organizational complexity, which
needs to be addressed in advance. Therefore, this work can constitute a simple and
effective baseline in that direction. This model needs to be professionally developed
into a full-scale system but the solution could be integrated into the DIGEP or in the
Quality Engineering and Management Group website, could be enriched by adding
other functions and eventually could constitute a model for labs and departments with
similar organizational needs.
Such additional functions could be, but are not limited to:

• scheduling and managing the maintenance of the relevant equipment.
• proper definition of administrators.
• restricting registration to emails with a specific dominions.
• introducing a deadline after which sessions booked are “frozen” and cannot be

edited or cancelled.
• possibility to delete a user account.
• organizing the database as a system of different folders, with the possibility of

moving documentation between them.
• introducing different rights of access for different users, controlled by

Administrators.

63

Appendix

1- Flask Modules
Beaker 1.11.0
Flask 2.0.2
Flask-Bcrypt 0.7.1
Flask-Bootstrap 3.3.7.1
Flask-Bootstrap4 4.0.2
Flask-Helper 1.2.7
Flask-Login 0.5.0
Flask-Mail 0.9.1
Flask-Reuploaded 1.2.0
Flask-SQLAlchemy 2.5.1
Flask-Uploads 0.2.1
Flask-WTF 1.0.0
Flask-Webhelpers 0.1
FormEncode 2.0.1
Genshi 0.7.5
Jinja2 3.0.3
MarkupSafe 2.0.1
Paste 3.5.0
PasteDeploy 2.1.1
PasteScript 3.2.1
Pillow 9.0.0
Pygments 2.10.0
SQLAlchemy 1.4.27
SQLAlchemy-Utils 0.37.9
Tempita 0.5.2
WTFormValidation 1.0.0
WTForms 3.0.0
WTForms-Alchemy 0.17.0
WTForms-Components 0.10.5
WTForms-Ext 0.5
WebError 0.13.1
WebHelpers 1.3
WebOb 1.8.7

64

Werkzeug 2.0.1
Werkzeug-Raw 0.0.2
bcrypt 3.2.0
blinker 1.4
certifi 2021.10.8
cffi 1.15.0
charset-normalizer 2.0.8
click 8.0.3
colorama 0.4.4
decorator 5.1.0
dnspython 2.1.0
dominate 2.6.0
email-validator 1.1.3
greenlet 1.1.2
idna 3.3
infinity 1.5
intervals 0.9.2
itertoolz 0.5
itsdangerous 2.0.1
numpy 1.22.1
pandas 1.4.0
pip 21.2.3
pycparser 2.21
python-dateutil 2.8.2
pytz 2021.3
requests 2.26.0
setuptools 57.4.0
simplejson 3.17.6
six 1.16.0
transaction 3.0.1
urllib3 1.26.7
validators 0.18.2
visitor 0.1.3
werkzeug-auth-middleware 0.1.2
zope.interface 5.4.0

65

2- Imported Functions
from flask import Flask, render_template, redirect, url_for, flash, request, send_file, abort

from flask_bootstrap import Bootstrap

from flask_sqlalchemy import SQLAlchemy

from flask_bcrypt import Bcrypt

from flask_login import login_user, current_user, logout_user, login_required, LoginManager

from PIL import Image

from io import BytesIO

from datetime import datetime

import os

import secrets

from flask_mail import Mail, Message

3 – Settings
app instantiation

app = Flask(__name__)

app.config['SECRET_KEY'] = 'b407c1bbf047582ddasdcbb97344e'

app SQLAlchemy Database Settings

app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///Test.db'

app.config['SQLALCHEMY_COMMIT_TEARDOWN'] = True

app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False

Emails

app.config['MAIL_SERVER']='smtp.mailtrap.io'

app.config['MAIL_PORT'] = 2525

app.config['MAIL_USERNAME'] = 'b413076ea85a32'

app.config['MAIL_PASSWORD'] = 'f2b94cccf5bd19'

66

app.config['MAIL_USE_TLS'] = True

app.config['MAIL_USE_SSL'] = False

Uploads

UPLOAD_FOLDER = 'static/Files'

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}

Settings

mail = Mail(app)

db = SQLAlchemy(app)

bcrypt = Bcrypt(app)

Bootstrap(app)

login_manager = LoginManager(app)

login_manager.login_view = 'login'

4 – Database
from flask_login import UserMixin

from app import db

class User(db.Model, UserMixin):

 __tablename__ = 'Users'

 id = db.Column(db.Integer, primary_key=True)

 name = db.Column(db.String(100), nullable=False)

 family_name = db.Column(db.String(100), nullable=False)

 username = db.Column(db.String(100), unique=True, index=True)

 image_file = db.Column(db.String(20), nullable=False, default='default.jpg')

 email = db.Column(db.String(100), unique=True, index=True)

67

 password = db.Column(db.String(200), nullable=False)

 safety = db.Column(db.Integer(), nullable=True, default=0)

 role_id = db.Column(db.Integer, db.ForeignKey('Roles.id'))

 sessions = db.relationship('Sessions', backref='author', lazy=True)

 def __repr__(self):

 return 'User ({},{}!)'.format(self.username, self.email, self.image_file, self.safety)

class Roles(db.Model):

 __tablename__ = "Roles"

 id = db.Column(db.Integer, primary_key=True)

 role_name = db.Column(db.String(100), nullable=False)

 users = db.relationship('User', backref='role_name')

class Sessions(db.Model):

 __tablename__ = "Session"

 id = db.Column(db.Integer, primary_key=True)

 machine = db.Column(db.String(100), nullable=False)

 StartDate = db.Column(db.DateTime, nullable=False)

 EndDate = db.Column(db.DateTime, nullable=False)

 StartHour = db.Column(db.Integer, nullable=False)

 EndHour = db.Column(db.Integer, nullable=False)

 user_id = db.Column(db.Integer, db.ForeignKey('Users.id'), nullable=False)

 machine_id = db.Column(db.Integer, db.ForeignKey('machines.id'))

 def __repr__(self):

 return 'Session ({}, {}!)'.format(self.machine, self.StartDate, self.EndDate, self.StartHour,

self.EndHour)

68

class LabFacilities(db.Model):

 __tablename__='machines'

 id = db.Column(db.Integer, primary_key=True)

 Name = db.Column(db.String, db.ForeignKey('documents.machine'))

 def __repr__(self):

 return 'Machines ({})'.format(self.Name)

class FileContent(db.Model):

 __tablename__ = 'documents'

 id = db.Column(db.Integer, primary_key=True)

 machine = db.Column(db.String(100))

 namef = db.Column(db.String(200))

 path = db.Column(db.String)

 data = db.Column(db.LargeBinary)

 category = db.Column(db.String(300))

 def __repr__(self):

 return 'FileContent ({},{}!)'.format(self.name, self.namef, self.category)

5 – Forms
from flask_wtf import FlaskForm

from wtforms import SubmitField, StringField, PasswordField, BooleanField, DateField,

SelectField

from wtforms.validators import DataRequired, ValidationError, Length, Email, EqualTo

from flask_wtf.file import FileField, FileAllowed

from app import User

class RegistrationForm(FlaskForm):

69

 name = StringField('Name', validators=[DataRequired(Length), Length(max=50)])

 family_name = StringField('Family Name', validators=[DataRequired(Length), Length(min=1,

max=100)])

 username = StringField('Username', validators=[DataRequired(Length), Length(min=4,

max=20)])

 email = StringField('Email', validators=[DataRequired(Length), Email(),])

 password = PasswordField('Password', validators=[DataRequired(), Length(min=6)])

 confirm_password = PasswordField('Confirm Password', validators=[DataRequired(),

EqualTo('password')])

 submit = SubmitField('Sign Up')

 def validate_username(self, username):

 user = User.query.filter_by(username=username.data).first()

 if user:

 raise ValidationError('That username is already taken. Please choose another one')

 def validate_password(self, password):

 user = User.query.filter_by(password=password.data).first()

 if user:

 raise ValidationError('That password is already taken. Please choose another one')

 def validate_email(self, password):

 user = User.query.filter_by(email=email.data).first()

 if user:

 raise ValidationError('That email is alreadyregistered. Please choose another one')

class LoginForm(FlaskForm):

 email = StringField('Email', validators=[DataRequired(Length), Length(min=4, max=50)])

 password = PasswordField('Password', validators=[DataRequired(), Length(min=6)])

70

 remember = BooleanField('Remember Me')

 submit = SubmitField('Login')

class UpdateAccountForm(FlaskForm):

 username = StringField('Username', validators=[DataRequired(Length), Length(min=4,

max=20)])

 email = StringField('Email', validators=[DataRequired(Length), Length(min=6)])

 picture = FileField('Image', validators=[FileAllowed(['jpg', 'png'])])

 submit = SubmitField('Update')

class UploadForm(FlaskForm):

 namedocument = StringField('Filename', validators=[DataRequired()])

 category = StringField('Category', validators=[DataRequired()])

 machine = StringField('Machine', validators=[DataRequired()])

 file = FileField('File', validators=[FileAllowed(['jpg', 'png', 'pdf', 'txt', 'xms'])])

 submit = SubmitField('Submit')

class ReservationsMForm(FlaskForm):

 machine = StringField('Machine', validators=[DataRequired()])

 StartDate = DateField('First Day', validators=[DataRequired()])

 EndDate = DateField('End Day',validators=[DataRequired()])

 StartHour = SelectField('Choose starting hour', coerce=int, choices=([i for i in range(8, 20)]))

 EndHour = SelectField('Choose ending hour', coerce=int, choices=([i for i in range(8, 20)]))

 submit = SubmitField('Submit')

6 – Routes
Routes

@login_manager.user_loader

def load_user(user_id):

71

 return User.query.get(int(user_id))

@app.before_first_request

def create_db():

 db.drop_all()

 db.create_all()

 password_ad = bcrypt.generate_password_hash('279856')

 user_admin = User(name='Michele', family_name='Magni', username='admin',

 email='ad@admin.com', password=password_ad)

 equipment1 = LabFacilities(Name='Nanoindenter')

 equipment2 = LabFacilities(Name='Microscope')

 db.session.add(equipment1)

 db.session.add(equipment2)

 db.session.add(user_admin)

 db.session.commit()

 user_query = User.query.filter_by(username="admin").first()

 print(user_query.name)

@app.route('/')

def home():

 return render_template('Front.html')

@app.route('/Contacts')

def contacts():

 return render_template('Contacts.html')

@app.route('/main')

def main():

 return render_template('HomePage.html')

72

@app.route('/facilities')

def facilities():

 return render_template('Machines.html')

@app. route('/Nanoindenter')

def nano ():

 return render_template('Nanoindenter.html')

@app.route('/Microscope')

def micro ():

 return render_template('Microscope.html')

email for User

def send_mail_us(to, subject, template, **kwargs):

 msg = Message(subject, recipients=[to], sender=app.config['MAIL_USERNAME'])

 msg.html = render_template(template + '.html', **kwargs)

 mail.send(msg)

email for Admin

def send_mail_ad(to, subject, template, **kwargs):

 msg = Message(subject, recipients=[to], sender=app.config['MAIL_USERNAME'])

 msg.html = render_template(template + '.html', **kwargs)

 mail.send(msg)

@app.route('/register', methods=['GET', 'POST'])

def register():

 form = RegistrationForm()

 if form.validate_on_submit():

 hashed_password = bcrypt.generate_password_hash(form.password.data)

73

 user = User(name=form.name.data, family_name=form.family_name.data,

username=form.username.data,

 email=form.email.data, password=hashed_password)

 db.session.add(user)

 db.session.commit()

 send_mail_us(form.email.data, 'Your Registration has been successful', 'Mail to user',

name=form.name.data,

 username=form.username.data, password=form.password.data)

 send_mail_ad('michele.magni95@gmail.com', 'New User Registered', 'Mail to admin',

name=form.name.data,

 username=form.username.data)

 flash("Your Account has been created", 'success')

 return redirect(url_for('login'))

 return render_template('REGISTER.html', form=form)

@app.route('/login', methods=['GET', 'POST'])

def login():

 if current_user.is_authenticated:

 return redirect(url_for('main'))

 form = LoginForm()

 if form.validate_on_submit():

 user = User.query.filter_by(email=form.email.data).first()

 if user and bcrypt.check_password_hash(user.password, form.password.data):

 login_user(user)

 return redirect(url_for('main'))

 else:

 flash('Login Failed! Please check your Username and Password', 'danger')

 return render_template('LOGIN.html', form=form)

def save_picture(form_picture):

74

 random_hex = secrets.token_hex(8)

 _, f_ext = os.path.splitext(form_picture.filename)

 picture_fn = random_hex + f_ext

 picture_path = os.path.join(app.root_path, 'static/profilePic', picture_fn)

 output_size = (80, 80)

 i = Image.open(form_picture)

 i.thumbnail(output_size)

 i.save(picture_path)

 return picture_fn

@app.route('/account', methods=['GET', 'POST'])

@login_required

def account():

 form = UpdateAccountForm()

 if form.validate_on_submit():

 picture_file = save_picture(form.picture.data)

 current_user.image_file = picture_file

 current_user.username = form.username.data

 current_user.email = form.email.data

 db.session.commit()

 flash('Your account has been updated', 'success')

 return redirect(url_for('account'))

 elif request.method == 'GET':

 form.username.data = current_user.username

 form.email.data = current_user.email

 image_file = url_for('static', filename='profilePic/' + current_user.image_file)

 return render_template('Account.html', title='Account', image_file=image_file, form=form)

75

def allowed_file(filename):

 return '.' in filename and \

 filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/material')

def material():

 new = FileContent.query.all()

 return render_template('AllDocumentation.html', new=new)

@app.route('/upload', methods=['GET', 'POST'])

def upload():

 form = UploadForm()

 if form.validate_on_submit():

 newFile = FileContent(category=form.category.data, machine=form.machine.data)

 db.session.add(newFile)

 db.session.commit()

 if request.method == 'POST':

 if 'file' not in request.files:

 flash('No file part', 'danger')

 return redirect(request.url)

 file = request.files.get('file')

 if file and allowed_file(file.filename):

 newFile = FileContent(category=form.category.data, machine=form.machine.data,

namef=file.filename,

 data=file.read())

 db.session.add(newFile)

 db.session.commit()

 flash('Upload successful', 'success')

 return redirect(url_for('material'))

76

 return render_template('materials.html', form=form)

@app.route('/material/<int:doc_id>')

def document(doc_id):

 filew = FileContent.query.get_or_404(doc_id)

 return render_template('Document.html', filew=filew, doc_id=doc_id)

@app.route('/Nanoindenter1')

def nanod():

 fnano = FileContent.query.filter_by(machine='Nanoindenter')

 return render_template('NanoDoc.html', fnano=fnano)

@app. route('/Microscope1')

def microd():

 fmicro = FileContent.query.filter_by(machine='Microscope').all()

 return render_template('MicroDoc.html', fmicro=fmicro)

@app.route('/download/<int:id>', methods=['GET'])

def download(id):

 down = FileContent().query.filter_by(id=id).first()

 return send_file(BytesIO(down.data), as_attachment=True,

attachment_filename=down.namef)

@app.route('/downloadSafety')

def downloadsaf():

 path = 'Safety Instructions.pdf'

 return send_file(path, as_attachment=True)

@app.route('/Reservations')

77

def book():

 if current_user.is_authenticated:

 sessions = Sessions.query.all()

 return render_template('AllSessions.html', sessions=sessions)

 else:

 flash('You must be logged it', 'danger')

 return redirect('/login')

@app.route('/Reservations/New', methods=['GET', 'POST'])

@login_required

def new_Session():

 form = ReservationsMForm()

 if form.validate_on_submit():

 collisions = Sessions.query.filter_by(

 StartDate=datetime.combine(form.StartDate.data, datetime.min.time())).filter_by(

 machine=form.machine.data).all()

 print(len(collisions))

 for collision in collisions:

 if form.StartHour.data <= collision.EndHour and (form.StartHour.data +

 (form.EndHour.data - form.StartHour.data)) > collision.StartHour:

 flash('Session already booked', 'danger')

 return redirect(url_for('book'))

 booked = Sessions(machine=form.machine.data, StartDate=form.StartDate.data,

EndDate=form.EndDate.data,

 StartHour=form.StartHour.data, EndHour=form.EndHour.data,

author=current_user)

 db.session.add(booked)

 db.session.commit()

78

 flash('Your Session has been booked!', 'success')

 return redirect(url_for('book'))

 return render_template('New Session.html', form=form, legend='New Book')

@app.route('/Reservation/<session_id>')

def session(session_id):

 session = Sessions.query.get_or_404(session_id)

 return render_template('Session.html', session=session)

@app.route('/Reservations/<int:session_id>/update', methods=['GET', 'POST'])

@login_required

def update_session(session_id):

 session = Sessions.query.get_or_404(session_id)

 if session.author == current_user or current_user.email == "ad@admin.com":

 form = ReservationsMForm()

 if form.validate_on_submit():

 collisions = Sessions.query.filter_by(

 StartDate=datetime.combine(form.StartDate.data, datetime.min.time())).filter_by(

 machine=form.machine.data).all()

 print(len(collisions))

 for collision in collisions:

 if form.StartHour.data <= collision.EndHour and (form.StartHour.data +

 (form.EndHour.data - form.StartHour.data)) >

collision.StartHour:

 flash('Session already booked', 'danger')

 return redirect(url_for('book'))

 session.machine = form.machine.data

 session.StartDate = form.StartDate.data

79

 session.EndDate = form.EndDate.data

 session.StartHour = form.StartHour.data

 session.EndHour = form.EndHour.data

 db.session.commit()

 flash('Reservation changed', 'success')

 return redirect(url_for('session', session_id=session_id))

 elif request.method == 'GET':

 form.machine.data = session.machine

 session.StartDate = form.StartDate.data

 session.EndDate = form.EndDate.data

 session.StartHour = form.StartHour.data

 session.EndHour = form.EndHour.data

 return render_template('New Session.html', form=form, legend='Update Book')

else:

 abort(403)

@app.route('/Reservations/<int:session_id>/delete', methods=['GET'])

@login_required

def delete_sessions(session_id):

 session = Sessions.query.get_or_404(session_id)

 if session.author == current_user or current_user.email == "ad@admin.com":

 db.session.delete(session)

 db.session.commit()

 flash('Your Booking has been deleted!', 'success')

 return redirect(url_for('book'))

 else:

 abort(403)

@app.route('/material/<int:delete_id>/delete', methods=['GET'])

80

@login_required

def delete_material(delete_id):

 deletef = FileContent.query.get_or_404(delete_id)

 if current_user.email == "ad@admin.com":

 db.session.delete(deletef)

 db.session.commit()

 flash('Document Delete!', 'success')

 return redirect(url_for('material'))

 else:

 abort(403)

@app.route('/user/<string:username>')

def user_sessions(username):

 user = User.query.filter_by(username=username).first_or_404()

 sessions = Sessions.query.filter_by(author=user)

 return render_template('User_Sessions.html', sessions=sessions, user=user)

@app.route('/machine/<string:machine>')

def machine_users(machine):

 sessions = Sessions.query.filter_by(machine=machine).all()

 return render_template('Machine_User.html', sessions=sessions, machine=machine)

@app.route('/logout')

def logout():

 logout_user()

 return redirect('/')

if __name__ == '__main__':

 app.run (debug=True)

81

Acknowledgements

Sono stati 6 anni impegnativi, stressanti ma ricchi di soddisfazioni, e ora passiamo alle
cattive notizie… sono finiti! E questa tesi è stata il coronamento. Per svolgere questo
importante lavoro è stata necessaria costanza e dedizione, ma non sono mai stato solo
grazie a coloro che mi hanno sempre supportato.
Voglio ringraziare sentitamente il professor Gianfranco Genta ed il professor Luca
Mastrogiacomo per le indicazioni e l’aiuto fornitomi durante lo svolgimento della tesi,
così come il dr. Giacomo Maculotti per i continui ed utili feedback.
Sono orgoglioso di aver potuto contribuire, attraverso lo sviluppo di questa tesi, al
miglioramento dell’Università che è stata una parte importante della mia vita in questi
anni.
Un grazie speciale va alla mia famiglia per il continuo supporto ed incoraggiamento e
per aver sempre creduto in me anche nei momenti più difficili che ho dovuto affrontare.
Ho avuto la fortuna di condividere il mio percorso universitario con persone speciali,
soprattutto duranti gli ultimi due anni: voglio ringraziare i miei compagni di gruppo e
studio, Chiara, Arianna, Mirna, Mohan, Faezeh e Natallia con i quali ho condiviso
innumerevoli ore di studio in videocall, e caffè, nonché William, Giovanna, Henrique e
Catalin per le serate trascorse insieme.
Un grazie a Luca, Emanuele e Matteo, amici fin dalle superiori, per le serate bovine
trascorse ad assaggiare hamburgers: a stomaco pieno si ragiona meglio!
Un grazie ad Andrea e Filippo che conosco ormai fin dalle elementari.
Infine, ringrazio la mia ragazza, Giulia, anche lei studentessa al Politecnico, per il suo
incrollabile e contagioso entusiasmo, e per avermi spronato a dare il meglio!

82

Bibliography

Alexander Aronowitz, “Flask Framework Cookbook: Building Web Applications with
Flask “ 2nd Edition, 2021.

Allen Downey, “Think Python”, Green Tea Press, Needham, Massachusetts,2017.

Jon Duckett, “HTML e CSS. Progettare e costruire siti web”, APOGEO,2021.

Miguel Grinberg, “ Flask Web Development”, O’Reilly Media Inc, 2014.

Marakas, O’Brian “Introduction to Information Systems”, 16th Ed, 2021.

Sitography

https://www.codecademy.com/article/back-end-architecture

https://flask-sqlalchemy.palletsprojects.com/en/2.x/

https://flask.palletsprojects.com/en/2.0.x/#user-s-guide

https://getbootstrap.com/

https://www.ictshore.com/software-design/web-application-
structure/attachment/sfw0001-01-web_application_structure/

https://www.idef.com/

https://www.jetbrains.com/help/pycharm/quick-start-guide.html

https://www.uml-diagrams.org/

https://www.codecademy.com/article/back-end-architecture
https://flask-sqlalchemy.palletsprojects.com/en/2.x/
https://flask.palletsprojects.com/en/2.0.x/#user-s-guide
https://getbootstrap.com/
https://www.idef.com/
https://www.jetbrains.com/help/pycharm/quick-start-guide.html

