
 1 / 168 

POLITECNICO DI TORINO 
 

Faculty of Engineering LM in Ingegneria Meccanica  
(Mechanical Design Engineering) 

 
Master Thesis 

 
Numerical-experimental modal analysis 

of a steering wheel system 

 
Tutors: 
 
Prof. Elvio Bonisoli 
Dott. Simone Venturini 
Dott. Domenico Lisitano 
Ing. Stefano Averame 

 

Candidate: 
Ali Hijazi 

 
Politecnico di Torino, Department of Mechanical and Aerospace Engineering 

Corso Duca degli Abruzzi, 24 – 10129 Torino, Italy 
 

2021-2022 



 2 / 168 

Ringraziamenti 
 
Thanks God for everything he is giving to me. 
 
Thanks for the Vehicle Mechanics research group for their work and 
efforts to fulfil this thesis. 
 
I would like to thank my family for supporting my efforts and for their 
unlimited back up and extreme trust during all these years, thanks for their 
transmitted positive energy that is obviously not less important. 
 



 3 / 168 

 

Index 
 
Ringraziamenti ..................................................................................................................................... 2 
Index..................................................................................................................................................... 3 
Abstract ................................................................................................................................................ 5 
Introduction .......................................................................................................................................... 6 

1. Modal analysis ................................................................................................................................. 7 
2. Finite element method software ....................................................................................................... 8 

2.1 Hypermesh ................................................................................................................................. 8 
2.1.1 Hypermesh model architecture ........................................................................................... 9 
2.1.2 Solver settings ................................................................................................................... 11 

2.1.3 Post processing of results .................................................................................................. 12 

2.2 LUPOS ..................................................................................................................................... 14 

2.2.1 Post processing .................................................................................................................. 14 
2.3 LUPOS vs Hypermesh ............................................................................................................. 15 
2.4. Modal assurance criterion (MAC) .......................................................................................... 16 

3. Steering wheel ................................................................................................................................ 17 

3.1 Model without rubber ............................................................................................................... 17 
3.1.1 Optistruct results ............................................................................................................... 18 
3.1.2 Lupos results ..................................................................................................................... 21 

3.1.3 Lupos vs Optistruct ........................................................................................................... 24 
3.2 Model with concentrated rubber mass ..................................................................................... 25 

3.2.1 Optistruct results ............................................................................................................... 27 
3.2.2 Lupos results ..................................................................................................................... 30 
3.2.3 Optistruct vs Lupos ........................................................................................................... 33 

3.3 Model with rubber .................................................................................................................... 33 

3.3.1 Optistruct results ............................................................................................................... 35 
3.3.2 LUPOS results................................................................................................................... 38 
3.3.3 Results comparison Optistruct vs Lupos ........................................................................... 42 

3.3.4 Model with rubber vs without rubber ............................................................................... 42 
4. Experimental modal analysis ......................................................................................................... 44 

4.1 Clamped steering wheel ........................................................................................................... 44 
4.1.1 Experimental – numerical post processing ....................................................................... 45 
4.1.2 Experiment Setup and sensor positioning ......................................................................... 50 

4.1.3 Geometrical aspects and acquisition parameters .............................................................. 55 
4.1.4 Experimental data analysis ................................................................................................ 58 

4.1.5 Post-processing ................................................................................................................. 64 
4.2 Free-free steering wheel ........................................................................................................... 69 

4.2.1 Experimental – numerical post processing ....................................................................... 81 
4.2.2 Setup and sensor positioning............................................................................................. 83 
4.2.3 Experimental data analysis ................................................................................................ 89 
4.2.4 Post-processing ................................................................................................................. 96 

4.3 Clamped Steering Wheel Second experiment ........................................................................ 103 

4.3.1 Experimental – numerical post processing ..................................................................... 107 
4.3.2 Experiment Setup and sensor positioning ....................................................................... 108 
4.3.3 Geometrical aspects and acquisition parameters ............................................................ 112 
4.3.4 Experimental data analysis .............................................................................................. 114 
4.3.5 Post-processing ............................................................................................................... 118 

4.4 Steering Wheel models comparison ....................................................................................... 123 
4.5 Steering Plate free-free condition .......................................................................................... 125 



 4 / 168 

4.5.1 Experimental – numerical post processing ..................................................................... 126 

4.5.2 Experiment Setup and sensor positioning ....................................................................... 129 
4.5.3 Geometrical aspects and acquisition parameters ............................................................ 133 

4.5.4 Experimental data analysis .............................................................................................. 136 
4.5.5 Post-processing ............................................................................................................... 143 

4.6 Clamped plate ........................................................................................................................ 148 
4.6.1 Experimental – numerical post processing ..................................................................... 148 
4.6.2 Experiment Setup and sensor positioning ....................................................................... 148 

4.6.3 Experimental data analysis .............................................................................................. 153 
4.6.4 Post-processing ............................................................................................................... 158 

5. Whole steering assembly ............................................................................................................. 162 
5.1 Model configuration ............................................................................................................... 163 

5.1.1 Bench .............................................................................................................................. 165 

5.1.2 Connectors ...................................................................................................................... 165 

5.1.3 Steering wheelbase .......................................................................................................... 166 

5.1.4 Beams .............................................................................................................................. 166 
Conclusions ...................................................................................................................................... 167 
Reference ......................................................................................................................................... 168 
 
 



 5 / 168 

 
Abstract 
 
The creation of a suitable and accurate finite element model of a steering system in NVH and its 
experimental validation was understudy in this work. The steering in a car is critical. Steering 
influences handling and safety of car in operating and dynamic conditions that promotes it to be an 
important system. Hence in this thesis, further evaluations and applications of the experimental tests 
of steering-wheel and steering-column with car firewall were achieved pointing out a deep and 
comprehensive description of each phase, including the results of numerical modal analysis ran by 
different software of various steering-wheel models and other related components which they were 
under experiment in an experimental modal analysis (EMA). The final steps regarding the 
experimental tests correlating the FE models with the real component were performed, including the 
bench building in order to verify the performed analysis and to characterize the components 
behaviour. 
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Introduction 
 
The behaviour of steering wheel in automobile application is still a fair unframed issue in vehicle 
applications. One of the ways of detecting and clarifying the dynamic behaviour of a steering 
system is a modal analysis. Moreover, identifying a certain behaviour of any mechanical system 
using Finite Element Method (FEM) is an efficient way that has been performed and developed by 
means of numerical models and commercial software that are capable, if used wisely, of predicting 
the structure’s future response for a certain input excitation. However, to validate and verify the 
obtained results experiment is always needed. The degree of compatibility can be evaluated by 
certain methods like MAC, that confirms the convergence of the theoretical solution towards the 
real one. As requested from IVECO, a NVH and modal analysis studies were carried out using the 
mentioned tools for a new top steering column, definitely to fulfil a certain level of comfort and 
control to avoid critical scenarios and vibrations of structure. Hence, finite element models were 
constructed performing a modal analysis that yields to a convenient solution and a summary of 
preliminary steps of experimental analysis were reported [1]. On the other hand, modifying a 
previous configuration in order to meet the new requirements is not an easy mission specially when 
the starting point is experimental. This research highlights the modal experimental analysis of the 
real behaviour of the entire system of a steering wheel, and firewall bench that verifies the 
numerical modal analysis and interprets the results to conclude future improvement and solutions 
for its structural design. 
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1. Modal analysis 
 
The steering system FEM model that was provided by the constructor was then analysed, 
manipulated, and developed by previous research done at PoliTO, nevertheless it is convenient to 
highlight certain software aspects that can be considered as a preliminary guide for a modal 
analysis. Modal analysis is an accurate prediction of a system behaviour identifying its response 
where a new modal coordinate system can be built and found leading to decoupling the ordinary 
differential equations that describe the system. 
 
The following dynamic linear equation of the problem is considered in the study: 
 
 ( )t+ + =Mx Cx Kx f  (1.1) 
 
where M is the mass matrix and K is the stiffness matrix, the damping however was neglected since 
the damping ratio of steel is relatively low approaching by that the real case, but damping is heavily 
taken into account when dealing with the complete model where rubber layer is influencing. ( )tf  is 
the vector of external forces that can be applied on the structure, and x is the displacement vector. 
When ( )tf  is 0 we obtain a homogenous equation, without damping, that fairly describes the free 
behaviour of the system. Differently, by considering the rubber this equation is no more accurate 
because this non-structural mass has an evident impact on the behaviour of the structure due to its 
mass and the damping characteristics that it intensifies. The Automotive steering wheel system that 
has been studied in both configurations performing experimental modal analysis EMA showed the 
effect of the important rubber layer on damping the vibrations of the wheel. In the following 
research the experiment details are highlighted and analysed.  
 
 BCs BCs= = =x T x T Φ η Φ η  (1.2) 
 
x  represents the physical coordinates and dofs, Φ  is the modal transformation matrix that contains 
the modal vectors η  however describes the principal modal coordinates with the modal dofs. This 
system shows the transformation matrix that is able to decouple the equations of motion giving 
opportunity to solve single dof systems. exploiting the mass and stiffness orthogonality property, 
then by solving the eigen value problem the natural frequencies are easily obtained 
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2. Finite element method software 
 
Finite Element Method (FEM) is one of the most powerful tools that engineers adopt in order to 
simulate the physical phenomena in a numerical technique. It is used to analyse a prototype 
numerically reducing by that the usage of physical or real prototypes, consequently reducing the 
number of performed experiments. It helps in optimizing the studied component and developing its 
design efficiently, that reduces a lot of costs as well. 
The system understudy is described by set of partial differential equations (PDE) that the computer 
is going to solve. Knowing that the real system has an infinite number of dof, the numerical model 
solved by FEM is stiffer than reality and the solution obtained is approximate and not exact since in 
numerical model there is a finite number of dof. In order to increase the level of accuracy certain 
skills of the user play a main role other than the mathematical knowledge the user must be able to 
apply a good mesh, since models’ discretization has a main influence on the final results. Many 
FEM software are available today in market, but we decided to work on Hypermesh for meshing 
and on Optistruct and Lupos for solving. 
 
 
2.1 Hypermesh 
 
Hypermesh is one of the tools exploited in order to perform a well discretized mesh. In particular 
Optistruct solver integrated in Hypermesh was adopted to solve and get the solution and the main 
steps are here reported. 
 

 
 

Figure 2.1.1 – Hypermesh interface. 
 
Once the geometry is imported, many aspects can be assigned to the model as seen from the 
interface in Figure 2.1.1 like material properties, element type, applied constraints, the wanted 
output and the type of analysis to be run after completely defining the model. 
Modal analysis will give us a clear knowledge about the natural frequencies of the system and the 
modes of vibration, hence an efficient clue that helps in improving the design of the structure. But 
solvers require a deep knowledge by users especially about the engineering approach used by the 
computers in order to reach the desired results, hence it is important to shed light on the fact that 
FEM is an approximate method and not an exact one. Therefore, studying the elements available in 
the software and the way of selecting them is not less important since elements have also their 
influence on results. 
Furthermore, an essential and important aspect is defining coherently the unit of measurement 
utilized in the analysis. For example, here the SI units can be implemented according to the specific 
application of the project. In this research length was considered in [m] mass in [kg] time in [s] and 
force in [N]. This is applicable by selecting the tools option then control cards DTI_UNITS, these 



 9 / 168 

units can be naturally modified according to a compatible unit system, and it is possible to 
manipulate these units by scaling them up or down according to the application in a coherent way. 
 

 
 

Figure 2.1.2 – Unit Measurement selection in Hypermesh. 
 
This can be done by going to the analysis option where you can select control cards where the 
image in Figure 2.1.2 shows the content. 
 
 
2.1.1 Hypermesh model architecture 
 
In any model, rods and beams can be modelled as follows ROD element section type with a BEAM 
property type where “ROD doesn’t say anything about 1D element type” [2], beams unlike rods that 
sustain only axial behaviour, allow for bending since they are characterized by more dofs although 
they can be assumed as mono-dimensional, and the connectors that grant a kinematic connection 
between nodes were modelled as tubular beam elements and this can be easily performed by the 
Hypermesh selecting the type and defining the corresponding parameters (such as thickness, 
density….). In our case we had steel and aluminium materials. To create any of the mentioned data 
it is sufficient to press a right click on the model browser as in Figure 2.1.1.1 and select the data of 
interest. Since in our model that, we are going to discuss about in details in chapter 4, we have a 
suitable geometry such as steering wheel frame, to use mostly beam elements that can be identified 
as PBEAML in Hypermesh or the PSOLID for the central part. 
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Figure 2.1.1.1 – Selecting card image and element section type from model browser. 
 
Then a mesh must be created assigning the mesh type and size of elements. In critical zones where 
we can have stress concentration or an abrupt change of geometry near holes the mesh can be 
refined in order to get more correct and accurate results. From to the lower control panel selecting 
the 2D option where control mesh is possible. 
 

 
 

Figure 2.1.1.2 – Meshing in 2D option from control panel. 
 
The mesh type and mesh elements can be defined after entering to automesh section the quad or tria 
elements as desired the selection is done by selecting the surfaces or elements to be meshed as 
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indicated in Figure 2.1.1.3. Furthermore, a mesh refinement can be performed also by mesh edit 
where the refinement is needed. 
 

 
 

Figure 2.1.1.3 – Meshing in 2D option from control panel. 
 
 
2.1.2 Solver settings 
 
Other than applying constraints and forces, In order to allow Optistruct to perform the analysis and 
obtain the results an EIGRL Real Eigenvalue Extraction Data can be applied, it is Lanczos method 
[3] that defines the data required to perform real eigenvalue analysis (vibration or buckling). 
This can be done by defining a new load collector selected from card images selecting EIGRL. V1 
is the first value of frequency range, V2 is the last value of frequency range and ND is the number 
of modes that user wants to be visualized. 
 

 
 

Figure 2.1.2.1 – Load collector setup and EIGRL selection (25 imposed modes). 
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In case of a constrained analysis, it is possible to create another load collector as single point 
constraint SPC that represents a boundary condition as a bolt or adhesive joint where a kinematic 
equation is imposed in particular the SPC fixes a node without allowing for a displacement. These 
single point constraints have a distributed effect by using the rigid body elements (RBEs) created in 
components sector, and they practically represent the rigid motion of the structure or of two 
considered nodes with possible addition of the stiffness. 
Then in Analysis create a load step to combine the load collectors’ effects and create its name, after 
that in model browser at the left part of the screen the analysis type is defined as normal modes and 
the single point constraint are combined by the single point constraint load collector. Scrolling 
down, the output files can be selected and any other wanted output (displacement, ESE Element 
Strain Energy, …). 
 

 
 

Figure 2.1.2.2 – Load step setup. 
 
 
2.1.3 Post processing of results 
 
After implementing all the needed entities correctly, it is possible to obtain the results by ordering 
the solver to do so, this is possible by selecting the analysis tab in the control panel and clicking on 
the solver name, in this case Optistruct, and if there are no errors results and output file can be 
visualized smoothly from the new window that appears after the software finish computation. 
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Figure 2.1.3.1 – Optistruct in bottom browser. 
 

 
 

Figure 2.1.3.2 – Optistruct interface after completing analysis. 
 
From the interface clicking on view button, it will be possible to view the input files that contain the 
nodes’ number and coordinates and the type of elements and more details that were inserted 
previously, mode shapes and the output files that shows the details about each mode and about the 
elements as shown in Figure 2.1.3.3. 
 

 
 

Figure 2.1.3.3 – Optistruct ouput file. 
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2.2 LUPOS 
 
LUPOS is a FEM code developed by DIMEAS department in POLITO and integrated in Matlab 
that follows the lumped parameter approach as it is the acronym of Lumped Parameter Open 
Source. It is able to integrate parametric analyses and non-linear process introducing reduction 
techniques and assembly approaches and many additional aspects. 
“This software aims to emphasise these concepts from trivial examples to industrial cases starting 
from main concepts of dynamic modelling and simulations” [4]. Alternatively, the possibility of 
performing the FEM calculation of the same model requires the availability of the same input, to do 
so, it is possible to convert the input data from Hypermesh to LUPOS by a certain conversion from 
(.bdf) extension and this is achieved by a certain code as well. 
 

 
 

Figure 2.2.1 – Test rig control panel interface. 
 
The test rig control panel is a section in Lupos that permits the user to visualize and manipulate the 
component elements easily by selecting and unselecting as noticed in the figure. Once the model is 
selected and loaded this can be applied and the desired elements in different configurations can be 
visualized. 
 
 
2.2.1 Post processing 
 
Hence to visualize the model and see the elements type only, it’s sufficient to use the test rig control 
panel that is a pre-processing of the model however, to apply the modal analysis graphical user 
interface of Lupos is used. 
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Figure 2.2.1.1 – GUI interface of LUPOS. 
 
The model then is selected then loaded on the setup section as noticed in figure 1.1.2.2.1 then 
solved by pressing on the Run simulation button. In order to solve the problem and be able to see 
the modes the Modal Control Panel (MCP) is run and open. 
Once the MCP is open a control interface for visualizing and editing the modes and model elements 
appears. 
 

 
 

Figure 2.2.1.2 – MCP interface of LUPOS. 
 
In the bottom part of the panel there are the control actions by which the model visualization can be 
modified and the wanted mode can be selected. The following modes are visualized by MCP 
imposing the nodal displacement option with a deformed transparency. 
 
 
2.3 LUPOS vs Hypermesh 
 
The most important aspect in LUPOS is that it’s able to represent the same model with the name 
nodes and same elements, giving the possibility to have a well approximated calculation and 
reasonable results where elements can be visualized and modified easily and efficiently with respect 
to Hypermesh. In the figure below it is evident how much are they compatible where same entities, 
nodes and elements are demonstrated. 
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Figure 2.3.1 – Model nodes without rubber in Hypermesh and in Lupos respectively 
 
In the previous figure it is noticed how much are comparable the two models in different software 
having identical geometry and very similar discretization. Later on, it is possible to perform a 
Modal Assurance Criterion (MAC) to check the compatibility of both software and the reliability of 
the model. 
 
 
2.4. Modal assurance criterion (MAC) 
 
This numerical and experimental coupling is very fruitful combination where a clearer 
understanding about the behaviour can be fished. This was also done through the implemented tools 
presented in Lupos 
 
The modal assurance criterion (MAC) is an index that indicates the compatibility consistency 
between two series of n eigen vectors [3]. It useful to perform a comparison between experimental 
modes and numerical modes or between numerical and numerical. 
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The square based vector helps to evidence the higher differences without being sensitive to small 
ones. The output of MAC is a nxn matrix having a value between 0 that indicates no consistency 
and 1 that means a complete consistency and compatibility, moreover ,j k  is the angle between the 
inner product of the considered eigenvectors. 
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Equation (2.4.2) takes into consideration the eigenvalue contribution in order to avoid an illusion of 
having the same eigenvectors with different eigenvalues. 
 
 
3. Steering wheel 
 
One of the cases that will be understudy in this thesis is the Steering Wheel, the study is going to 
analyse experimentally a steering wheel system. A Steering Wheel is an essential component in 
vehicles that affects the entire dynamic behaviour of a car, so it is important to guarantee a good 
level of comfort, stability, and safety of it. The Seering Wheel was provided by Iveco group and 
was exposed to numerical and experimental modal analysis. 
 

  
 

Figure 3.1 – Steering Wheel. 
 
The Steering Wheel design was improved by a chain of manipulations in the numerical phase. 
Firstly, the system was analysed without the rubber layer that is a non-structural mass (NSM) and 
some unnecessary components were removed as the central plate because it has no structural 
influence leaving the internal part of the Steering Wheel that is made up of steel and aluminium.  
 
 
3.1 Model without rubber 
 
Initially the model was analysed without considering any contribution of the rubber that surrounds 
the wheel frame. Hence it is important to emphasize the fact that no inertial characteristics of the 
rubber were considered at all, and this leads to expect higher frequencies of this model with respect 
to the other model that has rubber. 
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Figure 3.1.1 – Wheel model in Hypermesh. 
 
The central part in red shown in Figure 3.1.1 is the aluminium component in the wheel, and the grey 
elements compose the steel frame. where the total mass of the correspondent structure is 2.343 kg to 
be verified with the real object when the rubber layer is released out from the wheel. 
 
 
3.1.1 Optistruct results 
 
In this subchapter the results obtained by Optistruct of the model with no considered rubber or its 
inertial contribution. 
 

Table 3.1.1.1 – Model without rubber, natural frequencies in Optistruct. 
 

Mode # Frequency [Hz] 
1 56.32 
2 56.88 
3 84.42 
4 87.07 
5 135.05 
6 144.66 
7 187.44 
8 344.35 
9 351.58 
10 371.20 
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Figure 3.1.1.1 – Optistruct 1st (56.32 Hz) and 2nd (56.88 Hz) modes respectively. 
 

  
 

Figure 3.1.1.2 – Optistruct 3rd (84.42 Hz) and 4th (87.07 Hz) modes respectively. 



 20 / 168 

  
 

Figure 3.1.1.2 – Optistruct 5th (135.05 Hz) and 6th (144.6 Hz) modes respectively. 
 

  
 

Figure 3.1.1.2 – Optistruct 7th (187.44 Hz) and 8th (344.3 Hz) modes respectively. 
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Figure 3.1.1.2 – Optistruct 9th (351.1 Hz) and 10th (371.2 Hz) modes respectively. 
 
 
3.1.2 Lupos results 
 
Lupos frequencies are very similar to those in Optistruct according to an analogous model without 
rubber that was analysed. 
 

Table 3.1.2.1 – Model without rubber, natural frequencies in Lupos. 
 

Mode # Frequency [Hz] 
1 54.23 
2 63.31 
3 85.61 
4 90.53 
5 139.3 
6 146.2 
7 187.7 
8 348.6 
9 356.1 
10 374.6 
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Figure 3.1.2.1 – LUPOS 1st and 2nd modes respectively. 
 

 
 

Figure 3.1.2.2 – LUPOS 3rd and 4th modes respectively. 
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Figure 3.1.2.3 – LUPOS 5th and 6th modes respectively. 
 

 
 

Figure 3.1.2.4 – LUPOS 7th and 8th modes respectively. 
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Figure 3.1.2.5– LUPOS 9th and 10th modes respectively. 
 
It can be noticed that the most displaced nodes are those that are more distant from the bars 
connected to the central part. Moreover, modes are identical in both numerical software this 
indicates the reliability and accuracy of them.  
 
 
3.1.3 Lupos vs Optistruct 
 

Table 3.1.3.1 – Model without rubber, Optistruct and Lupos natural Frequencies. 
 

Mode # Optistruct [Hz] Lupos [Hz] 
1 56.32 54.23 
2 56.88 63.31 
3 84.42 85.61 
4 87.07 90.53 
5 135.05 139.26 
6 144.66 146.15 
7 187.44 187.65 
8 344.35 348.59 
9 351.58 356.13 

10 371.20 374.21 
 
Despite the slight difference in the frequencies but again, same modes are noticed with different 
number according to each software. For example, the 9th mode (344.35 Hz) in Optistruct, as in 
Figure 3.1.1.5, is coincident with the 8th mode (348.6 Hz) in Lupos as Figure 3.1.2.4 shows. This 
slight difference is devoted to the different approaches adopted by both software. 
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3.2 Model with concentrated rubber mass 
 
The steering wheel was modelled benefiting from different elements provided by the software. 
Mainly the elements used were beam and rod, for the external and internal part of wheel. On the 
other hand, the central part was particularly modelled by solid elements as noticed the difference in  
The rubber layer in the first model was not considered in order to get a light model, only its inertial 
contribution have been taken into account, as the low stiffness properties of the rubber should not 
be so relevant. Hypermesh allows to add non-structural masses, expressed as mass for unit of length 
Figure 3.1.1. Hence the rubber was lumped and distributed on among structure to reserve the 
inertial properties where lower frequencies are expected. 
 

  
 

Figure 3.2.1 – Wheel Model without rubber in Hypermesh and in Lupos respectively. 
 
In particular in the left photo the blue elements represent the external wheel frame, the yellow 
represents the internal wheel frame, the orange represents the connectors, and the red shows the 
central solid meshed part, and small red elements represent the T-connectors. In order to get a more 
precise result, the meshing of particular components requires more or different elements or both so 
that the shape functions that will be interpolated by the software will be of higher order, hence a 
more convergent solution toward the exact one. Table 3.2.1 resumes the details of element 
properties. 
 
 

Table 3.2.1 – Properties of model elements. 
 

Component Property Material 

- Type Type Density 
[kg/m3] 

Young 
module [GPa] 

Poisson 
coefficient [-] 

Wheel external 
frame PBEAML MAT1 7800 210 0.3 

Wheel internal 
frame PBEAML MAT1 7800 210 0.3 

T-connectors PBEAML MAT1 2790 75 0.3 
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external side 
T-connectors 
internal side PBEAML MAT1 2790 75 0.3 

Supports PBEAML MAT1 2790 75 0.3 
Central part PSOLID MAT1 2790 75 0.3 
Shaft seating PBEAML MAT1 7800 210 0.3 

 
Table 3.2.2 – Geometrical properties of model elements. 

 
Component Section 

- Type External diameter [m] 
(1st BAR Dimension) 

Internal diameter [m] 
(2nd BAR dimension) 

Wheel external frame ROD 0.011 - 
Wheel internal frame ROD 0.008 - 

 ROD 0.010 - 
T-connectors external side TUBE 0.017 0.011 
T-connectors internal side TUBE 0.017 0.010 

 TUBE 0.014 0.008 
Supports TUBE 0.010 0.004 

 TUBE 0.014 0.008 
 TUBE 0.017 0.004 
 ROD 0.017 - 
 TUBE 0.016 0.010 
 TUBE 0.012 0.004 
 TUBE 0.010 0.006 
 BAR 0.012 0.005 
 BAR 0.005 0.005 

Shaft seating TUBE 0.031 0.026 
 TUBE 0.031 0.024 
 TUBE 0.031 0.022 
 TUBE 0.034 0.022 
 TUBE 0.029 0.022 

 
The model boundary condition at the beginning was imposed considering a sealing connection at 
the center of the wheel and this is shown in the following figure  
 

  
 

Figure 3.2.1 – Wheel constraint in front and top views respectively (Hypermesh). 
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It can be noticed that the sealing (black component) was imposed as the constraint with the ground. 
In particular, the sealing was modelled as tube beam section with different diameters where the 
minimum radius was 11 mm, and the maximum radius was 17 mm leading to a high stiffness this 
tube element is connected to the central part of the wheel by rigid body elements (RBEs). 
Moreover, the considered dimensions are not geometrically convenient with the wheel. The analysis 
was run any way and the results are explained below. This constraint was initially adopted in both 
models with and without rubber including that with NSM. 
 
 
3.2.1 Optistruct results 
 
With the material properties mentioned previously and following the same procedure explained in 
chapter 3.1.1 the analysis was run and the following results for the first 10 modes were obtained. 
 

Table 3.2.1.1 – Model with NSM, natural frequencies in Optistruct. 
 

Mode # Frequency [Hz] 
1 45.80 
2 46.22 
3 68.30 
4 69.98 
5 109.4 
6 116.4 
7 150.3 
8 278.2 
9 280.0 
10 296.7 

 

  
 

Figure 3.2.1.1 – 1st (45.804 Hz) and 2nd (46.219 Hz) modes respectively. 
 



 28 / 168 

  
 

Figure 3.2.1.2 – 3rd (68.3 Hz) and 4th (69.98 Hz) modes respectively. 
 

  
 

Figure 3.2.1.3 – 5th (109.38 Hz) and 6th (116.42 Hz) modes respectively. 
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Figure 3.2.1.4 – 7th (150.3 Hz) and 8th (278.2 Hz) modes respectively. 
 

  
 

Figure 3.2.1.5 – 9th (280.04 Hz) and 10th (296.73 Hz) modes respectively. 
 
 



 30 / 168 

 
3.2.2 Lupos results 
 

Table 3.2.2.1 – Model with NSM, natural frequencies in Lupos. 
 

Mode # Frequency [Hz] 
1 43.57 
2 50.25 
3 67.32 
4 70.1 
5 109.4 
6 114.8 
7 148.9 
8 266.2 
9 278.4 
10 296.8 

 

  
 

Figure 3.2.2.1 – 1st and 2nd modes respectively. 
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Figure 3.2.2.2 – 3rd and 4th modes respectively. 
 

  
 

Figure 3.2.2.3 – 5th and 6th modes respectively. 
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Figure 3.2.2.4 – 7th and 8th modes respectively. 
 

  
 

Figure 3.2.2.4 – 9th and 10th modes respectively. 
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3.2.3 Optistruct vs Lupos 
 

Table 3.2.3.1 – Model with NSM, Optistruct and Lupos natural frequencies. 
 

Mode # Optistruct Lupos 
1 45.80 43.56 
2 46.22 50.24 
3 68.30 67.31 
4 69.98 70.08 
5 109.4 109.4 
6 116.4 114.7 
7 150.3 148.9 
8 278.2 266.1 
9 280.0 278.3 

10 296.7 296.8 
11 403.71 397.37 
12 407.07 402.52 

 
The compatibility of both software is relatively high even if some modes number in one software 
may correspond to different mode number in the other software. For example, in Table 3.1.3.1 the 
9th mode of Optistruct corresponds to the 8th mode of Lupos. and vice versa. 
 

 
 

Figure 3.2.3.1 – Model with NSM, MAC between Optistruct and Lupos. 
 
 
3.3 Model with rubber 
 
Adding non-structural mass can cause considerably a relevant increase in the inertia of the system 
and a damping influence on vibrations. Moreover, as noticed in the following sections, a certain 
increase in the natural frequency amplitude is noticed.  
 

Table 3.3.1 – Rubber physical properties. 
 

, Density [kg/m3] 434 
E, Young module [MPa] 5 
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, Poisson coefficient [-] 0.49 
 
The estimated values for the real system in the table will be verified in the experimental analysis. 
 

  
 

Figure 3.3.1 – Wheel model with rubber layer. 
 
The figure above shows the construction of the model with rubber layer modelled by hexahedron 
elements adopting the Minecraft project that aims to simplify the solid mesh by the simpler solid 
element, which is the cube, and the influence of this idea is to reduce the nodes number and 
elements number as well and to facilitate the calculation process and its time. However, adopting 
this procedure causes an important increase in the numerical calculated mass of structure so a 
change of density was necessary to compensate. 
 

Table 3.3.2 – Comparison between new and old wheel configuration. 
 

- Old central 
part 

New central 
part 

Old rubber 
layer 

New rubber 
layer 

Number of nodes [-] 12064 3168 17538 13727 
Number of elements [-] 53271 1988 76568 8915 
r, Real density [kg/m3] 2790 2790 434 434 

Mr, Real mass [kg] 0.460 0.693 1.614 1.981 
n, Adjusted density [kg/m3] - 1853 - 353.5 

Mn, New mass [kg] - 0.460 - 1.614 
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Figure 3.3.2 – Modelled and real steering wheel mass comparison. 
 
In the previous figure an approximate equal mass was obtained, and this again proves the reliability 
of the model and the calculations done with the explained comprised simplification and procedure 
that were followed. 
 
 
3.3.1 Optistruct results 
 
In the following section results obtained by Optistruct solver, where the first 10 structural modes are 
reported in a way similar to the same procedure explained before in performing a modal analysis. 
View the modes is possible by selecting the .h3d file after resolving the model by Optistruct then by 
choosing the wanted mode from the browser panel at the left part of the screen with the addition of 
other control methods available in the control panel at the bottom. 
 

Table 3.3.1.1 – Model with rubber, natural frequencies in Optistruct. 
 

Mode # Frequency [Hz] 
1 45.45 
2 47.11 
3 69.96 
4 73.30 
5 110.0 
6 115.3 
- 142.9 
7 149.7 
- 214.1 



 36 / 168 

- 226.7 
- 231.2 
- 249.0 
- 252.4 
8 272.9 
9 280.4 
- 281.0 
- 285.5 

10 289.3 
 300.54 
 310.61 

 

  
 

Figure 3.3.1.1 – 1st (45.45 Hz) and 2nd (47.11 Hz) modes respectively. 
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Figure 3.3.1.2 – 3rd (69.96 Hz) and 4th (73.3 Hz) modes respectively. 
 

  
 

Figure 3.3.1.3 – 5th (110.0 Hz) and 6th (115.3 Hz) modes respectively. 
 

  
 

Figure 3.3.1.4 – 7th (149.7 Hz) and 8th (272.9 Hz) modes respectively. 
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Figure 3.3.1.5 – 9th (280.4 Hz) and 10th (289.3 Hz) modes respectively. 
 
 
3.3.2 LUPOS results 
 
The rubber layer as Figure 3.3.2.1 shows that the layer is attached to the wheel by means of RBEs 
that can physically be the adhesive material. It is more important to emphasize the fact that this 
layer is affecting fairly the behaviour of system since this non-structural mass can add an important 
inertial contribution but also a damping one. 
 

  
 

Figure 3.3.2.1 – Wheel with and without the RBEs respectively. 
 
 



 39 / 168 

 
Table 3.3.2.1 – Model with rubber, natural frequencies in Lupos. 

 
Lupos 

Mode # Frequency [Hz] 
1 49.60 
2 56.59 
3 72.65 
4 80.99 
5 117.6 
6 122.1 
- 142.3 
7 151.8 
- 219.6 
- 229.3 
- 233.0 
- 256.5 
- 259.7 
- 277.0 
8 277.5 
- 285.3 
- 290.3 
9 292.4 

 
The modes presented by the model in Lupos are presented as follows: 
 

  
 

Figure 3.3.2.2 – 1st and 2nd modes respectively. 
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Figure 3.3.2.3 – 3rd and 4th modes respectively. 
 

  
 

Figure 3.3.2.4 – 5th and 6th modes respectively. 
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Figure 3.3.2.5 – 7th and 8th modes respectively. 
 

 
 

Figure 3.3.2.6 – 9th mode. 
 
Despite the difference between the two evolved software the between some mode shapes it is 
noticed also the compatibility between them. In particular, the 10th (298.3 Hz) structural mode 
represented by Optistruct Figure 3.3.1.5 corresponds to the 9th (292.4 Hz) structural mode evaluated 
by Lupos Figure 3.3.2.6 similarly the 9th (280.4 Hz) mode corresponds to the 8th (177.5 Hz) 
respectively this implies that there is an accepted convergence between the two results and shows 
an excellent reliability of Lupos with the addition the same mode shapes and wheel parts are 
involved in each relevant mode. Where some small differences may be devoted to the different 
computational methods adopted by the two software. 
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3.3.3 Results comparison Optistruct vs Lupos 
 

Table 3.3.3.1 – Model with rubber, Optistruct and Lupos natural frequencies. 
 

Optistruct Lupos 
Mode # Frequency [Hz] Mode # Frequency [Hz] 

1 45.45 1 49.60 
2 47.11 2 56.59 
3 69.96 3 72.65 
4 73.30 4 80.99 
5 110.0 5 117.6 
6 115.3 6 122.1 
- 142.9 - 142.3 
7 149.7 7 151.8 
- 214.1 - 219.6 
- 226.7 - 229.3 
- 231.2 - 233.0 
- 249.0 - 256.5 
- 252.4 - 259.7 
8 272.9 - 277.0 
9 280.4 8 277.5 
- 281.0 - 285.3 
- 285.5 - 290.3 

10 289.3 9 292.4 
- 300.54 - 303.3 
- 310.61 - 322.3 
- 312.70 - 323 

 
 
3.3.4 Model with rubber vs without rubber 
 

Table 3.3.4.1 – Models with and without rubber respectively, natural frequencies in Optistruct. 
 

With rubber Without rubber 
Mode # Frequency [Hz] Mode # Frequency [Hz] 

1 45.45 1 56.32 
2 47.11 2 56.88 
3 69.96 3 84.42 
4 73.30 4 87.07 
5 110.0 5 135.05 
6 115.3 6 144.66 
- 142.9 - - 
7 149.7 7 187.44 
- 214.1 - - 
- 226.7 - - 
- 231.2 - - 
- 249.0 - - 
- 252.4 - - 
8 272.9 8 344.35 
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9 280.4 9 351.58 
- 281.0 - - 
- 285.5 - - 

10 289.3 - 371.20 
 

 
 

Figuree 3.3.4.1 – Models with and without rubber MAC and MAC_distW respectively. 
 
It is clear that the models have the mode shapes but the frequencies are not, this is due to the non-
structural mass of rubber, the has an inertial contribution but not a structural one, thus frequencies 
will decrease. 
 

Table 3.4.3.2 – Various models, natural frequencies in Optistruct. 
 

Mode 
# 

Frequency [Hz] 

Tetra4 no 
rubber 

Hexa8 no 
rubber 

Tetra4 
with 

rubber* 

Hexa8 
with 

rubber* 

Hexa8 
rubber 
NSM* 

Tetra4 
rubber 
NSM 

1 55.39 56.32 44.55 45.45 45.80 44.87 
2 58.06 56.88 46.89 47.11 46.22 46.22 
3 85.35 84.42 68.67 69.96 68.30 67.57 
4 87.17 87.07 70.72 73.30 69.98 68.02 
5 138.24 135.05 109.72 110.0 109.4 109.0 
6 144.24 144.66 113.13 115.3 116.4 114.9 
7 188.87 187.44 149.43 149.7 150.3 150.4 
8 349.46 344.3 272.33 272.9 278.2 277.0 
9 361.07 351.1 279.78 280.4 280.0 281.2 
10 372.83 371.2 291.08 289.3 296.7 296.8 

 
In Lupos however, the following results were obtained: 
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Table 3.4.3.3 – Various models, natural frequencies in Lupos. 

 

Mode 
# 

Frequency [Hz] 
Tet no 
rubber 

Hex no 
rubber 

Tet with 
rubber 

Hex with 
rubber* 

Hex rubber 
CONM* 

1 53.61 54.23 56.18 49.60 43.57 
2 62.84 63.31 61.78 56.59 50.25 
3 84.72 85.61 74.81 72.65 67.32 
4 89.23 90.53 84.69 80.99 70.1 
5 138.3 139.26 126.4 117.6 109.4 
6 144.3 146.15 128 122.1 114.8 
7 186.9 187.65 156.3 151.8 148.9 
8 347.6 348.59 281.7 277.5 266.2 
9 350.4 356.13 304 292.4 278.4 
10 - 374.21 - - 296.8 

 
 
4. Experimental modal analysis 
 
In order to validate the results of natural frequencies and mode shapes carried out by the FE model 
and Experimental Modal Analysis (EMA) is performed. EMA is a very efficient tool to check the 
accuracy of the studied model and to comprehend the dynamic behaviour of the structure. 
 
Figure 4.1.1 shows the machine on which the steering wheel will be mounted for the first 
experimental analysis. This machine is characterized by high inertia where its mass is about 2 tons 
equipped by soft springs that guarantee a low frequency vibration that are far away from the 
frequencies of steering wheel and unreadable by the accelerometer in this way the correct and pure 
acquisition is assured avoiding any external influence and uncoupling of the test rig machine from 
the internal dynamic of the structure. 
 
 
4.1 Clamped steering wheel 
 
Moreover, this massive machine having this high inertia is used for fatigue experiments, where it 
guarantees a good clamping boundary condition that near to ideal one as in the case below. 
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Figure 4.1.1 – Test rig machine and experiment environment. 
 

 
 

Figure 4.1.2 – Clamped SW on test rig machine. 
 
4.1.1 Experimental – numerical post processing 
 

 
 

Figure 4.1.1.1 – Experimental FRF Sum diagram. 
 
The real frequencies, eigenvectors and eigen values of the experimental test were extracted from the 
testlab acquired data and by navigating the cursor into the peaks of the sum of the frequency 
response functions (FRFs) that were obtained. The selection was done also taking into consideration 
the mode shapes since this model has, due to the rubber layer, presents plenty of local modes that 
are not considered to be structural, then the following results reported below. 
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Table 4.1.1.2 – Comparison between experimental and numerical Frequency results 

 
Testlab Lupos 

Mode # Experimental 
frequency [Hz] 

Mode # Numerical 
frequency [Hz] 

1 43.411 1 49.60 
2 45.283 2 56.6 
3 68.757 3 72.66 
- - - 81.01 
4 104.730 4 117.6 
5 110.508 5 122.1 
- - - 142.3 
6 157.448 6 151.8 
- - - 219.6 
- - - 229.3 
- - - 233.0 
- - - 256.5 
- - - 259.7 
- - - 277.0 
- - - 277.5 
- - - 285.3 
- - - 290.3 
7 291.566 7 292.4 
- - - 303.3 
- - - 322.3 
- - - 323 
- - - 354.5 
- - - 357 
- - - 360.3 
- - - 365 
- - - 369.9 
- - - 374.2 
- - - 376.1 
- - - 381.2 
- - - 384.5 
- - - 394.4 
8 410 8 411 
-  - 415.3 
- - - 423.2 
- - - 430.9 
- - - 438.4 
- - - 442 
- - - 443.9 
- - - 456.6 
9 425.1 9 466.1 
- - - 468.5 
- - - 473.7 
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Although, the obtained MAC graph has some discrepancy that leads to think about optimizing the 
numerical model. In particular the numerical model will be modified by modifying the stiffness 
since the inertial contribution is already at a very good point. 
 

 
 

Figure 4.1.1.2 – MAC representation between experimental and numerical data. 
 
It is clear that 1st and 5th modes are compatible, the 7th experimental mode is coherent with the 8th 
numerical mode. The discrepancy in modes 3, 4 and 5 may be due to the rubber local modes or 
because the boundary condition that was imposed in the numerical model was extremely high or 
due to an error in the identification of the experimental results while extracting it from Testlab. To 
get rid of these doubts several steps were done. 
 

 
 

Figure 4.1.1.3 – MAC_dist representation between experimental and numerical data. 
 
The MAC_dist representation shows the correlation between the experimental and the numerical 
sets of eigenvectors with proportional distance of the related natural frequencies as shown in the 
previous figure. It seems from the neighbourhood between isoline and the MAC indication that the 
5th numerical mode refers to the 5th experimental mode since it is nearest to the isoline. 
Unfortunately, the doubts regarding the 2nd, 3rd and 4th mode are still storming in mind. 
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Figure 4.1.1.4 – Auto MAC representation of experimental data. 
 
In Figure 4.2.3.3 clears out the doubt that there was double selected mode during the identification 
since in the FRF figure only one peak is noticed, hence, the same mode was chosen two times. To 
clear up any doubts a re-identification process was performed, and the results were re-analysed. 
 

 
 

Figure 4.1.1.5 – MAC between FEA and EMA after re-identification. 
 
Firstly, it can be noticed that the dispersion in modes 2, 3 and 4 is demolished but it is still needed 
to detect the real relation between 4th EMA mode and the 7th FEA mode, looking again to 7th 
numerical mode shape, it is important to emphasize the fact that this mode is local and it is related 
exclusively to the rubber. This kind of dispersion that may be called also spatial aliasing, may be 
due to the low number of nodes taken during the experiment, so the isoline is again needed to verify 
this. It is also important to note that the 4th numerical mode does not have any correspondence, and 
this is because this mode is torsional acting around the wheels axis as obtained numerically, while 
the experiment was done by hammering only radially the structure this justifies the fact this mode is 
not detected experimentally. 
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Figure 4.1.1.6 – MAC_dist of the second identification. 
 
Furthermore, it is convenient to confirm this check by plotting the MACW2 that distinguishes not 
only the eigenvectors but also compares eigenvalues, and this is great advantage in case there are 
similar eigenvectors while eigenvalues are not. 
 

 
 

Figure 4.1.1.7 – MACW2 after re-identification. 
 
And this confirms that what was concluded before that 4th EMA mode corresponds exclusively to 
the 5th FEA mode. 
 
Finally, to avoid any ambiguities the auto-MAC is replotted 
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Figure 4.1.1.8 – Auto MAC after re-identification. 
 
Here again, the 2x2 sub matrix noticed up right the figure, is probably a spatial aliasing in these 
high frequency modes since there were not enough experimental nodes, to measure and uniquely 
identify the concerned mode, hence nodes number was lower than what was needed but this is not a 
big issue since it was detected and highlighted here in figure indicating also that a good 
identification was performed. 
 
 
4.1.2 Experiment Setup and sensor positioning 
 
The analysis is performed to exercise the experimental methodologies i.e. definition of experimental 
setup, construction of the same, setting of the LMS.Testlab environment for impact testing. In the 
second part, the identification of mode shapes is performed focussing on stabilisation diagram, 
stable point recognition and extraction of data from LMS.Testlab environment for data 
manipulation in common programming languages such as Matlab®. 
In conclusion, post-processing was performed: CompleX Modal Assurance Criterion (MACX) for 
checking goodness of experimental activity and comparison with a preliminary Finite Element (FE) 
model was understudy as well. 
 
Interestingly the experimental and numerical models show a good compatibility, confirming though 
the model validation. This steering wheel is used for Iveco truck vehicles was modelled with 
different elements in different software and there was a great convergence to the exact solution, and 
this was assured by the EMA. 
 
The experimental modal analysis is performed adopting free-free conditions, exciting the structure 
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The steering wheel is fixed on a huge test rig machine supplied by soft springs that do not 
affect the component natural frequencies the excitations were done on 19 nodes along all the 
possible directions allowed by its geometry, obtaining as an overall 33 excitations to the system. 
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a 
set of 5 responses acquired to give more repeatability and stability to each measurement. 
For each response: 

• the spatial coordinates are continuous for each instant of time. 
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• the time/frequency data and the modal content are acquired and identified with Siemens 
Test.Lab v.17. 

• it evinces those modal coordinates enable approximate solutions, according to the number of 
modal coordinates used, thus in nonlinear problems this property can improve computational 
efforts in the best way. 

 

 

 
 

Figure 4.1.2.1 – Experimental setup scenario. 
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In order to have a clear idea about sensor positioning, the suitable place where to allocate sensors 
can be performed also by Modal and Geometrical Selection Criterion, MoGeSeC [6], that is an 
efficient tool based on both geometry and modal properties of the system, obtained by a numerical 
modal analysis, for choosing the best representative nodes. The concept behind this technique is that 
the modal behaviour of a model can be represented by a list of nodes, whose eigenvectors resume 
the modal properties of the whole system. The progressive optimal location is based on both modal 
independence information and geometrical location to distribute accelerometers on the whole 
structure. 
The Selection Criterion is based on the evaluation of the maximum value of the vector w: 
 
 ( )w diag w w T

g m=  (4.1.2.1) 
 
that represents the combination of the geometrical vector and the modal vector weights, calculated 
for each node, as follows: 
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Coefficients k1 and k2 allow to weigh the influence of each component; start value are respectively 2 
and 1.  
The result of this selection is a list of nodes positioned as far as possible on the structure, with a 
homogeneous distribution, in order to have the best possible representation of the vibrational 
behaviour. 
 

 
 

Figure 4.1.2.2 – Model with rubber, MoGeSec results in Lupos. 
 
Both pictures of the entire system, with different points of view and details of the hardware 
implemented and of their location are requested information. 
Importance has the reference system ( )zyx ,,  used, according also to suitable models. In case of 
already developed models, consider the same reference system. 
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Figure 4.1.2.3 – Overview of the experimental setup. 
 

 

 
 

Figure 4.1.2.4 – Details of the implemented hardware, from left to right in reading order: 
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11. 

 
The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is 
performed using an impact hammer PCB 086C03 using hard steel tip (Figure 1.1.3 and 
Figure 1.1.4) to reach a good frequency identification range of the structure. A series of 3 hammer 
repetitions is linearly averaged. The characteristics are listed in Table 1.1.1. 
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Figure 4.1.2.5 – Impact Hammer PCB Model 086C03. 
 

 
 

Figure 4.1.2.6 – Hammer stiff steel tip. 
 

Table 4.1.2.1 – Impact hammer characteristics. 
 

Component Characteristics Value 

Impact Hammer PCB  
Model 086C03 

Sensitivity [mV/N] 2.199 
Measurement range pk [N] ±2224 

Hammer mass [kg] 0.16-0.235 
Resonant frequency [Hz] >22000 

Tips number [-] 1 
 

Table 4.1.2.2 – Accelerometer technical characteristics. 
 

Component Channel 
ID 

Accelerometer 
ID 

Node 
ID 

Weight 
[kg] 

Sensitivity 
[mV/g] 

Acc. 
Direction 

[-] 
LW139287 1 Tri_1_x 1 14.210-3 96.1 -X  
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(Peroni) 2 Tri_1_y 97.3 -Y  
3 Tri_1_z 99.3 +Z  

LW226918 
4 Tri_3_x 

11 14.210-3 
102 -X  

5 Tri_3_y 102.1 +Z  

6 Tri_3_z 102.3 -Y  

LW226919 
8 Tri_2_x 

8 14.210-3 
102.5 +X  

9 Tri_2_y 97.5 +Y  

11 Tri_2_z 98.6 +Z  

 

 
 

Figure 4.1.2.7 – Steering wheel weight. 
 
 
4.1.3 Geometrical aspects and acquisition parameters 
 
To run the experimental modal analysis on the component it is necessary to create a model by 
identifying the most relevant nodes that allow to build a reference geometry as much close as the 
real one and at the same time could allow to give important information with regards to the 
response of the system. 
The definition of the nodes map is carried out by obtaining the CAD geometry information of the 
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the 
coordinates of each node are measured according to the reference system set on the component, as 
shown in Figure 4.1.3.1. 
As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS 
Test.Lab, as shown in Figure 4.1.3.3 
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 Figure 4.1.3.1 – Wheel reference frame. Figure 4.1.3.2 – Wheel CAD geometry. 
 
According to reference system and to numerical model, definition of points and corresponding 
model nodes are listed in Table 1.3.1. 19 nodes are identified for roving hammer EMA. 3 of them 
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance. 
Node nomenclature is based on the following considerations: 

• Wheel external frame starting from node 1 (12 o’clock; +Y) in clockwise direction until 
node 14. 

• Wheel upper central part from left to right (15 to 16). 
• Wheel lower central part from left to right (17 to 19). 
• 20th node is the point of clamping. 

 

 
 

Figure 4.1.3.3 – Experimental geometry: excited (left) and sensor nodes (right). 
 



 57 / 168 

 
 

Figure 4.1.3.4 – Node nomenclature. 
 
Details of the experimental geometry are supplied in Table 1.3.1 in which directions of actuation 
and reference system for hammer direction are listed. As a reference approach, the hammered 
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a 
defined orientation with respect to the global reference frame hence Euler angles were also imposed 
precisely in order to be available to hammer the Steering Wheel in sufficient directions that can help 
in characterizing well the modes. 
 

Table 4.1.3.1 – Geometry of I/O points. 
 
Identifier Exp. point Model node x [m] y [m] z [m] Notes 

Acc. 1, x, y, z 1 28181 0 0.224 0.144 LW139287 
- 2 28112 0.096 0.2 0144 -22° XY 
- 3 27995 0.16 0.152 0.144 -33° XY 
- 4 27945 0.184 0.12 0.144 -45° XY 
- 5 27782 0.216 0.016 0.144 -85° XY 
- 6 27613 0.208 -0.088 0.144 -117° XY 
- 7 27432 0.104 -0.192 0.144 -160° XY 

Acc. 2, x, y, z 8 27383 0 -0.2 0.144 LW226918; -180° XY 
- 9 27443 -0.12 -0.184 0.144 -220° XY 
- 10 27541 -0.176 -0.136 0.144 -240° XY 

Acc. 3, x, y, z 11 27691 0.415 0.075 0.393 LW226919; -265° XY 
- 12 27839 -0.216 0.064 0.144 -290° XY 
- 13 27986 -0.176 0.152 0.144 -310° XY 
- 14 28066 -0.128 0.192 0.144 -330° XY 
- 15 18037 -0.072 0.04 0.04 - 
- 16 18050 0.072 0.04 0.04 - 
- 17 17667 -0.096 -0.08 0.04 - 
- 18 17679 0 -0.08 0.04 - 
- 19 17691 0.096 -0.08 0.04 - 
- 20 705 0 0 0 - 

 
During impact testing measurements, the parameters in Table 4.1.3.2 are selected: 
 

Table 4.1.3.2 – Independent and dependent parameters of acquisition. 
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Quantity Symbol Relationship Value Units 

Total acquisition time T  - 4 s 
Sample frequency sf  - 8192 Hz 

Total samples N  TfN s=  32768 - 

Bandwidth (max frequency) bf  
2

s
b

ff =  4096 Hz 

FRF frequency resolution f  1sff
N T

 = =  0.25  Hz 

Number of spectral lines fN  
2f
NN =  16384  - 

 
The natural frequencies and damping ratios are extracted in the frequency range 0÷600 Hz and 
reported in the Table 4.1.3.3. 
 
 
4.1.4 Experimental data analysis 
 

  
 

Figure 4.1.4.1 – Experimental model mesh in Testlab and Lupos respectively. 
 
It can be noticed that the mesh is approximately identical which implies a good reliability. 
However, the experimental frequencies and the numerical frequencies are not exactly similar. The 
data was reorganized in order to get a coherent visualization that permits a smooth comparison and 
interpretation of results. 
 
The natural frequencies and damping ratios are extracted in the frequency range 0÷600 Hz from 
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in Figure 2.1 
and values were reported relatively in Table 4.1.4.1. selecting the poles was limited on 520 Hz 
because after that frequency there were no identified poles. 
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Figure 4.1.4.2 – Stabilization FRF Sum diagram. 
 

Table 4.1.4.1 – Experimental natural frequencies and damping ratios of Steering wheel. 
 

Mode Freq. [Hz] ζ, damping ratio [%] Description 
1 43.44 0.39 local bending YZ 
2 45.28 0.69 1st global bending 
3 68.73 2.19 bending XZ 
4 104.9 0.85 2nd global bending 
5 110.6 0.61 2nd global bending 
6 157.5 0.65 local bending XZ 
7 291.7 1.11 local bending XZ 
8 410 2.93 local bending XZ-YZ 
9 425.1 3.97 bending YZ 
10 434.4 2.55 3rd global bending YZ-XZ 
11 484.8 5.29 bending YZ 
12 506.8 4.35 4th global bending YZ-XZ 
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Figure 4.1.4.3 – Steering wheel first 12 experimental mode shapes. 
 
In order to carry out a comparison of the independency of the mode shapes. the MACX (compleX 
Modal Assurance Criterion) is adopted allowing to measure the correlation level between two 
complex mode shapes jΨ  and kΨ  respectively. 
The MACX is defined as follow: 
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where: 

• the superscript H is the Hermitian, complex transposed; 
• its value ranges from 0 to 1, always real, independently if the eigenvectors are real or 

complex; 
• it is independent on the norm and the phase of vectors jΨ  and kΨ , so the normalisation of 

eigenvectors is neglected; 
• it is insensitive to conjugate operations on its arguments; 
• MACX ( jΨ , kΨ ) = 0 is equivalent to jΨ  kΨ  = 0 and μ > 1 kΨ  = 0; 
• if kΨ  = z jΨ  or jΨ  = z jΨ  for some complex number z then MACX ( jΨ , kΨ ) = 1. But it 

is worth noting that this is only a sufficient condition; 
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• if one of the vectors jΨ  and kΨ  is monophase, then the MACX and MAC criterions are 
identical; 

• conversely, vectors jΨ  and kΨ  can be found such that MAC ( jΨ , kΨ ) = 0 and 
MACX ( jΨ , kΨ ) = 1. But, in this case, both vectors are “full” complex since MPC ( jΨ ) = 0 
and MPC ( kΨ ) = 0. 

 

 
 

Figure 4.1.4.4 – Experimental mode shapes Auto-MACX. 
 
The definition of the Modal Phase Collinearity (MPC) index is defined as follows 
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Which is a modal indicator that gives the idea whether a mode shape used in its computation is a 
real or complex-valued vector. Its estimate inherits the statistical properties of the corresponding 
mode shape estimate giving as a result an estimation of the phase of the dofs. 
 

Table 4.1.4.2 – Modal Phase Collinearity values. 
 

Mode MPC 
1 0,8712 
2 0,956 
3 0,8929 
4 0,9393 
5 0,8907 
6 0,8971 
7 0,7988 
8 0,619 
9 0,1666 
10 0,2384 
11 0,6128 
12 0,2179 
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Figure 4.1.4.5 – MCP values for each mode. 
 
Based on the obtained results, a real re-identification was performed for modes having relatively 
high MPC, in particular, it was performed for the first 7 modes. 
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Figure 4.1.4.6 – Steering Wheel first 7 re-identified real mode shapes. 
 

 
 

Figure 4.1.4.7 – Experimental mode shapes Auto-MAC between real and complex modes. 
 
 
4.1.5 Post-processing 
 
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the 
ratio between the acceleration and the external forces. To check the quality of the results and the 
linearity of the component several ways can be performed to do so as auto-inertance 
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Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach 
Equation (4.1.5.3). 
 
In the complex case of a m-dofs system the inertance formula can be defined as: 
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where: 

• rS  is the complex pole of r-mode shape; 
•   is the excitation frequency; 
• ,j r  and ,k r  are the mode shapes related to the j and k nodes respectively. 

 
However, in the real case of a m-dofs system the inertance formula can be defined as: 
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where: 

• r  is the real pole of r-mode shape; 
•   is the excitation frequency; 
• ,j r  and ,k r  are the mode shapes related to the j and k nodes respectively. 

 
After performing the roving hammer test on the clamped wheel structure, the obtained modes and 
shapes with their relative vectors and frequencies were analysed by organizing them where each 
numerical node data is assigned to the relative experimental node by exploiting Matlab codes and 
the powerful functions that exist in Lupos. 
 
The auto-inertance can be defined as the FRF evaluated in the node k due to the excitation on the 
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the 
node were the FRF is evaluated. 
In the following figures the auto-inertances experimental (solid blue line), synthetised with lower 
and upper residuals (LR and UR) (dash-dot red line) and synthetised that is represented as well. 
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 Figure 4.1.5.1 – Auto-inertance: E1y-R1y. Figure 4.1.5.2 – Auto-inertance: E1z-R1z. 
 

 
 
 Figure 4.1.5.3 – Auto-inertance: E8y-R8y. Figure 4.1.5.4 – Auto-inertance: E8z-R8z. 
 

 
 
 Figure 4.1.5.5 – Auto-inertance: E11y-R11y. Figure 4.1.5.6 – Auto-inertance: E11z-R11z. 
 
With real modal superposition of m modes or with complex modal superposition of m2  modes, a 
generic cross-receptance kj ,  (similarly to mobility kjY ,  and inertance kjA , ), the Maxwell 
reciprocity imposes that input and output can be switched: 
 

 ( )
( )

( )
( )

( )

( ) 
= −+

====
m

r rrr

rkrj

j

j
jk

k

j
kj

ΦΦ

F
x

F
x

1
22

,,
,, i2 







  (4.1.5.3) 

 ( )
( )

( ) ( )
= −

==
m

r rr

rkrj

k

j
kj Sa

ΨΨ

F
x 2

1

,,
, i


  (4.1.5.4) 

 
An index of non-linearity regarding different dofs of the system is assumed as a consequence of the 
complex MAC index (scalar values between 0 and 1) applied to the modulus and phase of 
Equations. (4.1.5.5) or (4.1.5.6): 
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as a consequence, values far from 1 detect nonlinear behaviour, due to incoherence of similar 
receptances, according to Maxwell reciprocity. This index can be used for both numerical and 
experimental receptance transfer functions. Since it is not guaranteed the 0÷1 range, also a variation 
of MAX is defined similar to MACX definition. 
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Figure 4.1.5.7 – MAX index in 30÷520 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.1.5.8 – MAX index in 30÷320 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 
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Figure 4.1.5.9 – MAX index in 30÷120 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.1.5.10 – Reciprocity test: E8z-R8y: experimental inertance. 
 

 
 

Figure 4.1.5.11 – Reciprocity test: E11y-R1y: experimental inertance. 
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Figure 4.1.5.12 – Reciprocity test: E11y-R8z: experimental inertance. 
 

 
 

Figure 4.1.5.13 – Reciprocity test: E11y-R11z: experimental inertance. 
 
The experimental modal analysis carried out on the chassis gives as a final result the identification 
of 12 mode shapes in the frequency range 0÷600 Hz, where the global mode shapes identified are 
reported. 
The identification of the mode shapes can be considered complete and satisfactory, as it can be 
noted in the previous figures looking at the good correspondence among the auto-inertances and the 
Maxwell reciprocity comparing the respective experimental and synthetized FRFs. 
 
 
4.2 Free-free steering wheel 
 
The Free-free EMA has a similar scenario as indication Figure 4.2.2.2 where screw were mounted 
on the wheel in order to detect the torsional behaviour of the wheel and to be able to have more 
excited direction due to its particular geometry. 
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Figure 4.2.1 – Steering Wheel with added screws and accelerometers. 
 
Since there are no ideal conditions for performing an ideal Free-Free experiment elastic bands were 
used to guarantee a fairly low natural frequency of the supposed rigid body motions, since 
theoretically they must be equal to 0 Hz. Also, in order to simulate the effect of these elastic bands 
certain type of elements were exploited in Lupos to do so. In particular the named elastic elements 
(els) were put in simulation with a stiffness value approximately equal to the real stiffness of the 
elastic bands. The procedure followed in order to calculate the required stiffness was as will be 
explained. 
 
Firstly, the initial length of the elastic band was measured, then by trying different 3 masses the 
final different lengths were registered. 
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Figure 4.2.2 – Elastic band initial length measurement. 



 72 / 168 

 
 

Figure 4.2.3 – Elastic band fixed end. 
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Figure 4.2.4 – Three different used components. 
 

Table 4.2.1 – Used components mass properties. 
 

Component Weight [kg] 
Mass 1 1.068 
Mass 2 1.8999 
Mass 3 3.0259 
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Figure 4.2.5 – Elastic band initial length measurement. 
 

Table 4.2.2 – Final elastic band length for each mass. 
 

Component Elastic band 
length [m] 

Mass 1 0.36 
Mass 2 0.385 
Mass 3 0.45 

 
 1 1( ), ( ), ( )r r rF F x x F F x F F x x− += − = = +   (4.2.1) 
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clearvars 

clear all 

clc 
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m = [1.068 1.8899 3.0259]; %[kg] 

x_i = [0.36 0.385 0.45]; %[m] 

x_0 = 0.335; %[m] 

F = 9.81.*m; %[N] 

delta_F_3_1 = (F(1,3)-F(1,1)); 

delta_x = [x_i(2)-x_i(1) x_i(3)-x_i(2)]; 

  

K = 0.5*delta_F_3_1/max(delta_x); %[N/m] 

 

 
So the final calculated values based on the adopted measurements were obtained but the minimum 
stiffness was considered in order to have the minimum effect of the bands and to preserve the 
physical properties of the model. 
 

Table 4.2.3 – Elastic bands stiffness. 
 

Component Stiffness K 
[N/m] 

Elastic Band 147.7 
 

 
 

Figure 4.2.6 – Added elastic bands. 
 
The goal of adding the effect of the bands is to improve the numerical model and to have more 
consistency with the experimental mode. 
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Figure 4.2.7 – First experimental global bending mode in extreme deformed frames. 
 

 
 

Figure 4.2.8 – First numerical global bending mode. 
 
By noticing the mode shape of this mode, it can be noticed that the numerical mode has a structural 
node at coordinate (0,0.13) where in the experimental mode it is not. Despite of adding these bands 
numerically the behaviour of the numerical model does not change importantly. Hence, the 
Optistruct model was considered mainly for this analysis. 
 
The elastic bands (light green) are added in such a way that the symmetry of the effect on the 
Steering Wheel is guaranteed where they were added into two central symmetrical nodes as well. 
Moreover, the added masses can be simply neglected because they have a slight inertial affect, so 
the natural frequencies are approximately equal since the difference is between 0.5 and 0.7 Hz, thus 
they were not heavily considered. 
 

Table 4.2.4 – Free-free model with rubber, Optistruct natural frequencies. 
 

Mode # Frequency [Hz] 
CHEXA8 

1 8.55x10-4 
2 8.89x10-4 
3 9.96x10-4 
4 1.57x10-3 



 78 / 168 

5 1.60x10-3 
6 1.65x10-3 
7 86.70 
8 107.22 
9 107.48 
10 148.97 
11 201.66 
12 250.7 

 

 
 

 

 
 

Figure 4.2.9 – First 3 rotational rigid modes, tetra and hexa models respectively. 
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Figure 4.2.10 – First 3 translational rigid modes, tetra and hexa models respectively. 
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Figure 4.2.11 – 7th mode (86.70 Hz) and 8th mode (107.22 Hz) respectively. 
 

 
 

Figure 4.2.12 – 9th mode (107.48 Hz) and 10th mode (148.9 Hz) respectively. 
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Figure 4.2.13 – 11th mode (201.66 Hz) and 12th mode (250.7 Hz) respectively. 
 
 
4.2.1 Experimental – numerical post processing 
 

Table 4.2.1 – Experimental and numerical natural frequencies. 
 

Testlab Optistruct 
Mode # Experimental 

frequency [Hz] 
Mode # Numerical 

frequency [Hz] 
1 87.77 1 86.71 
2 104.9 2 107.2 
3 105.9 3 107.5 
- - - 143.2 
- 134.5 4 149 
4 153.6 - 200.3 
5 215 5 201.7 
6 227.1 6 220.8 
- - - 234.1 
- 243.1 - 250.8 
- 259.6 - 253.9 
- 273.3 - 267.7 
- 275.5 - 275.3 
- 290.4 - 280.2 

 



 82 / 168 

 
 

Figure 4.2.1.1 – Free-free Steering Wheel AutoMAC. 
 

 
 

Figure 4.2.1.2 – Free-free Steering Wheel MAC and MACW2 respectively. 
 

 

 
 

Figure 4.2.1.3 – Free-free Steering Wheel MAC_distW. 
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4.2.2 Setup and sensor positioning 
 
The free-free experiment was performed by adding the necessary inertial contribution of some 
additional components that were inserted in order to meet the real case condition. 
 

 
 

Figure 4.2.2.1 – Additional screws mass. 
 
Hence, the additional inertial contribution of the screws and masses was as follows: 
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Figure 4.2.2.2 – A followed similar scenario of experiment:  
Screws (red) excitation direction (green) 

 
The screws are going to be inserted in all the nodes of the handlebar, as example in such an order: 

- Clockwise direction in particular 3, 5, 6, 7, 9 and 12 o’clock as shown in Figure 4.2.2.2 
 
It was noticed that the screw on the upper position (12 o’clock) is practically a node in the 4th mode, 
however it is possible to clamp the screw there and excite it, since the energy will be transmitted 
consequently from the concerned node to the whole system. Moreover, this point is a node in mode 
4 but it is not in other modes. 
An important aspect that must be taken into consideration is the inertial contribution of these 
additional screws. Their inertia may decrease the natural frequency. 
 

Table 4.2.2.2 – Added inertial contribution of nodes. 
 

Additional inertial contribution Exp. point Model node 
Acc. 1, x, y, z, & screw masses 1 28181 

Screw mass 2 28112 
Screw mass 3 27995 
Screw mass 4 27945 
Screw mass 5 27782 
Screw mass 6 27613 
Screw mass 7 27432 

Acc. 2, x, y, z, & screw masses 8 27383 
Screw mass 9 27443 
Screw mass 10 27541 

Acc. 3, x, y, z, & screw masses 11 27691 
Screw mass 12 27839 
Screw mass 13 27986 
Screw mass 14 28066 

- 15 18037 
- 16 18050 
- 17 17667 
- 18 17679 
- 19 17691 
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Figure 4.2.2.3 – Additional screws and sensors position. 
 
The same data sheets of sensors and hammer in chapter 4.1 were exploited, same setup with same 
geometry same positions of sensors and same acquisition data. However, in this experiment since 
the screws were inserted in the first 14 nodes the Euler angles were not assumed, or they were 
considered null. 
 
The experimental modal analysis is performed adopting free-free conditions, exciting the structure 
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The steering wheel is fixed on a huge test rig machine supplied by soft springs that do not 
affect the component natural frequencies the excitations were done on 19 nodes along all the 
possible directions allowed by its geometry, obtaining as an overall 47 excitations to the system. 
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a 
set of 5 responses acquired to give more repeatability and stability to each measurement. 
For each response: 

• the spatial coordinates are continuous for each instant of time. 
• the time/frequency data and the modal content are acquired and identified with Siemens 

Test.Lab v.17. 
• it evinces those modal coordinates enable approximate solutions, according to the number of 

modal coordinates used, thus in nonlinear problems this property can improve computational 
efforts in the best way. 
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Figure 4.2.2.4 – Experimental setup scenario. 
 
Both pictures of the entire system, with different points of view and details of the hardware 
implemented and of their location are requested information. 
Importance has the reference system ( )zyx ,,  used, according also to suitable models. In case of 
already developed models, consider the same reference system. 
 

 
 



 87 / 168 

Figure 4.2.2.5 – Overview of the experimental setup. 
 

 

 
 

Figure 4.2.2.6 – Details of the implemented hardware, from left to right in reading order: 
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11. 

 
The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is 
performed using an impact hammer PCB 086C03 using hard steel tip (Figure 4.1.2.4 and 
Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer 
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1. 
 
The definition of the nodes map is carried out by obtaining the CAD geometry information of the 
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the 
coordinates of each node are measured according to the reference system set on the component, as 
shown in Figure 4.2.2.9. 
As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS 
Test.Lab, as shown in Figure 4.2.2.5 
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 Figure 4.2.2.7 – Wheel reference frame. Figure 4.2.2.8 – Wheel CAD geometry. 
 
According to reference system and to numerical model, definition of points and corresponding 
model nodes are listed in Table 1.3.1. 19 nodes are identified for roving hammer EMA. 3 of them 
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance. 
Node nomenclature is based on the following considerations: 

• Wheel external frame starting from node 1 (12 o’clock; +Y) in clockwise direction until 
node 14. 

• Wheel upper central part from left to right (15 to 16). 
• Wheel lower central part from left to right (17 to 19). 

 
 

• Figure 4.2.2.9 – Experimental geometry: excited (left) and sensor nodes (right). 
 
Details of the experimental geometry are supplied in Table 1.3.1 in which directions of actuation 
and reference system for hammer direction are listed. As a reference approach, the hammered 
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a 
defined orientation with respect to the global reference frame hence Euler angles were also imposed 
precisely. 
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Table 4.2.2.3 – Geometry of I/O points. 
 
Identifier Exp. point Model node x [m] y [m] z [m] Notes 

Acc. 1, x, y, z 1 28181 0 0.224 0.144 LW139287 
- 2 28112 0.096 0.2 0144 - 
- 3 27995 0.16 0.152 0.144 - 
- 4 27945 0.184 0.12 0.144 - 
- 5 27782 0.216 0.016 0.144 - 
- 6 27613 0.208 -0.088 0.144 - 
- 7 27432 0.104 -0.192 0.144 - 

Acc. 2, x, y, z 8 27383 0 -0.2 0.144 LW226918, screw fixed 
radially 

- 9 27443 -0.12 -0.184 0.144 - 
- 10 27541 -0.176 -0.136 0.144 - 

Acc. 3, x, y, z 11 27691 0.415 0.075 0.393 LW226919 
- 12 27839 -0.216 0.064 0.144 - 
- 13 27986 -0.176 0.152 0.144 - 
- 14 28066 -0.128 0.192 0.144 - 
- 15 18037 -0.072 0.04 0.04 - 
- 16 18050 0.072 0.04 0.04 - 
- 17 17667 -0.096 -0.08 0.04 - 
- 18 17679 0 -0.08 0.04 - 
- 19 17691 0.096 -0.08 0.04 - 
- 20 705 0 0 0 - 

 
 
4.2.3 Experimental data analysis 
 
During impact testing measurements, the parameters in Table 4.2.3.1 are selected: 
 

Table 4.2.3.1 – Independent and dependent parameters of acquisition. 
 

Quantity Symbol Relationship Value Units 
Total acquisition time T  - 4 s 

Sample frequency sf  - 8192 Hz 
Total samples N  TfN s=  32768 - 

Bandwidth (max frequency) bf  
2

s
b

ff =  4096 Hz 

FRF frequency resolution f  1sff
N T

 = =  0.25  Hz 

Number of spectral lines fN  
2f
NN =  16384  - 
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Figure 4.2.3.1 – Experimental model mesh in Testlab and Lupos respectively. 
 
The natural frequencies and damping ratios are extracted in the frequency range 0÷300 Hz from 
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in 
Figure 4.2.3.2 the model size was 350 and values were reported relatively in Table 4.2.3.2. 
 

 
 

Figure 4.2.3.2 – Stabilization FRF diagram. 
 

Table 4.2.3.2 – Experimental natural frequencies and damping ratios of the Steering Wheel. 
 

Mode Freq. [Hz] ζ, damping ratio [%] Description 
1 43.94 1.18 Bending XZ 
2 87.77 0.35 1st local bending YZ 
3 104.9 0.458 2nd global bending YZ 
4 105.9 0.392 3rd bending XZ-YZ 
5 134.5 0.951 local bending XZ 
6 153.6 0.585 4th global bending XZ-YZ 
7 215.1 2.25 5th global bending XZ-YZ 
8 227.1 2.97 6th global bending XZ-YZ 
9 243.1 5.01 local bending XZ 
10 259.6 0.0044 - 
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11 273.3 0.029 - 
12 275.5 1.042 7th global bending XZ-YZ 

13 290.4 0.216 - 
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Figure 4.2.3.3 – Steering wheel first 13 experimental mode shapes. 
 
In order to carry out a comparison of the independency of the mode shapes. the MACX (compleX 
Modal Assurance Criterion) is adopted allowing to measure the correlation level between two 
complex mode shapes jΨ  and kΨ  respectively. 
The MACX defined in Equation (4.1.4.1) was considered. 
 

 
 

Figure 4.2.3.4 – Experimental mode shapes Auto-MACX. 
 
The definition of the Modal Phase Collinearity (MPC) index is defined as in Equation (4.1.4.2) 
 

Table 4.2.3.2 – Modal Phase Collinearity values. 
 

Mode MPC 
1 0,9656 
2 0,8747 
3 0,9296 
4 0,5945 
5 0,5392 
6 0,4647 
7 0,4382 
8 0,0745 
9 0,6311 
10 0,9918 
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11 0,9128 
12 0,0356 
13 0,9694 

 

 
 

Figure 4.2.3.5 – MCP values for each mode. 
 
Based on the obtained results, a real re-identification was performed for the modes having relatively 
high MPC, in particular, it was performed specially for modes 1, 2, 3, 10, 11, 13. 
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Figure 4.2.3.6 – Steering Wheel re-identified real mode shapes. 
 

 
 

Figure 4.2.3.7 – Experimental mode shapes Auto-MAC between complex and real modes. 
 
 
4.2.4 Post-processing 
 
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the 
ratio between the acceleration and the external forces. To check the quality of the results and the 
linearity of the component several ways can be performed to do so as auto-inertance 
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Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach 
Equation (4.1.5.3). 
 
In the complex case of a m-dofs system the inertance formula can be defined as in 
Equation (4.1.5.1) 
 
After performing the roving hammer test on the clamped wheel structure, the obtained modes and 
shapes with their relative vectors and frequencies were analysed by organizing them where each 
numerical node data is assigned to the relative experimental node by exploiting matlab codes and 
the powerful functions that exist in Lupos. 
 
The auto-inertance can be defined as the FRF evaluated in the node k due to the excitation on the 
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the 
node were the FRF is evaluated. 
In the following figures the auto-inertances experimental (solid blue line), synthetised with lower 
and upper residuals (LR and UR) (dash-dot red line) and synthetised with modal superposition that 
are presented as well. 
 

 
 
 Figure 4.2.4.1 – Auto-inertance: E1x-R1x. Figure 4.2.4.2 – Auto-inertance: E1y-R1y. 
 

 
Figure 4.2.4.3 – Auto-inertance: E1z-R1z. 
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 Figure 4.2.4.4 – Auto-inertance: E8x-R8x. Figure 4.3.4.5 – Auto-inertance: E8y-R8y. 
 

 
Figure 4.2.4.6 – Auto-inertance: E8z-R8z. 

 

 
 
 Figure 4.2.4.7 – Auto-inertance: E11x-R11x. Figure 4.2.4.8 – Auto-inertance: E11y-R11y. 
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Figure 4.2.4.8 – Auto-inertance: E11z-R11z. 
 
However, in the real case of a m-dofs system the inertance formula can be defined as in 
Equation (4.1.5.2): 
 

 
 
 Figure 4.2.4.9 – Auto-inertance: E1x-R1x. Figure 4.2.4.10 – Auto-inertance: E1y-R1y. 
 

 
 

Figure 4.2.4.11 – Auto-inertance: E1z-R1z. 
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 Figure 4.2.4.12 – Auto-inertance: E8y-R8y. Figure 4.2.4.13 – Auto-inertance: E8z-R8z. 

 
 

Figure 4.2.4.14 – Auto-inertance: E8z-R8z. 
 

 
 
 Figure 4.2.4.15 – Auto-inertance: E11x-R11x. Figure 4.2.4.16 – Auto-inertance: E11y-R11y. 
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Figure 4.2.4.17 – Auto-inertance: E11z-R11z. 
 
With real modal superposition of m modes or with complex modal superposition of m2  modes, a 
generic cross-receptance kj ,  (similarly to mobility kjY ,  and inertance kjA , ), the Maxwell 
reciprocity imposes that input and output can be switched as in Equation (4.1.5.3) or (4.1.5.4). 
 
An index of non-linearity regarding different dofs of the system is assumed as a consequence of the 
complex MAC index (scalar values between 0 and 1) applied to the modulus and phase of 
Equations. (4.1.5.5) or (4.1.5.6). 
 

 
 

Figure 4.2.4.18– MAX index in 30÷300 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 
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Figure 4.2.4.19 – MAX index in 30÷200 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.2.4.20 – MAX index in 0÷120 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.2.4.21 – Reciprocity test experimental inertance:  
E1x-R1y (left) E1x-R11z (right). 
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Figure 4.2.4.22 – Reciprocity test experimental inertance:  
E8y-R1x (left) E8x-R11x (right). 

 

 
 

Figure 4.2.4.23 – Reciprocity test experimental inertance:  
E11z-R8z (left) E11x-R11y (right). 

 
The experimental modal analysis carried out on the chassis gives as a final result the identification 
of 13 mode shapes in the frequency range 0÷300 Hz, where the global mode shapes identified are 
reported. 
The identification of the mode shapes can be considered complete and satisfactory, as it can be 
noted in the previous figures looking at the good correspondence among the auto-inertances and the 
Maxwell reciprocity comparing the respective experimental and synthetized FRFs. 
 
 
4.3 Clamped Steering Wheel Second experiment 
 
During the process of identification, it was noticed that the 4th numerical mode is not existing 
experimentally. After checking what was behind, a mismatch was discovered where the 4th 
numerical mode is a torsional mode while from the experiment no torsional mode was excited, 
hence was not even discovered. So, it was decided to repeat that experiment to identify the torsional 
mode or other torsional modes if they exist. Simultaneously, a numerical optimization procedure 
was performed in order to reach the most optimal numerical solution that maybe very suitable to the 
real exact solution. To bring it clear, the new experiment will be performed exciting the radial and 
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tangential directions as well so torsional behaviour can be detected the problem was that the 
structure has a circular geometry that makes difficult the excitation in the tangential direction. But 
there is a way to bypass the problem, to do so, 2 screws will be mounted to the structure in such a 
way that the tangential direction is excited through these screws, and this must provoke the torsional 
mode leading to their detection. 
 
A new constraint was suggested to the Steering Wheel, the change is desired in order to get a more 
accurate modelling for the real object where the experimental test will be performed by mounting 
the wheel on the test rig machine by a screw. Hence an optimization process was needed. 

 
 

Figure 4.3.1 – Front section and Top view of new constraint (Hypermesh). 
 
However, to have a broad and better optimization affect, more parameters were iterated as shown in 
the tables below. 
 

 
 

Figure 4.3.2 – 4th numerical, experimentally unidentified mode  
 in Optistruct (73.3 Hz) and Lupos (81.01 Hz) respectively. 

 
The objective function in the first optimization was to reach the maximum compatibility of both the 
MAC and MACW2 iterating on inertial parameters. The optimization attempt was performed 
iterating 3 main parameters that aimed to improve the numerical mode to approach the 1st 
experimental test, which will not be very different from the second experiment test results. The 
values indicated in Table 4.2.6.1 were obtained after 81 iterations. 
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Table 4.3.1 – First evaluated optimization results. 

 
Iterated parameters Optimization final results 

t [-], Clamping rod diameter multiplier 5.0016 
z [m], Clamping rod height -0.0099783 

E R [Pa], Rubber young Modulus 5261354.099 
 

 
 

Figure 4.3.3 – Iterated parameters values of 1st attempt, unidimensional and dimensional 
respectively. 

 

 
 

Figure 4.3.4 – Objective functions of 1st attempt. 
 
From the obtained results, it can be noticed that the model is improving slightly but insufficiently, 
this indicates that the selected parameters were not influencing importantly, hence a very low 
improvement would occur. This low margin of variability that was set to the algorithm did not 
allow for obtaining better results. For this reason, higher margin of variability was given in the 
second optimization, in particular the inertial and structural parameters are going to be iterated in 
200 iterations. 
 

Table 4.3.2 – Second evaluated optimization results. 
 

Iterated parameters Optimization final results 
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t [-], Clamping rod diameter multiplier 5.5023 
E R [Pa], Rubber young Modulus 4235478.77 
E steel [Pa], Steel young Modulus 168118215781.53 

E Al [Pa], Aluminuium young Modulus 67000145634.87 
z [m], Clamping rod height -7.3509e-05 
R, Rubber density [kg/m3] 357.43 
steel, Steel density [kg/m3] 7927.84 

Al, Aluminium density [kg/m3] 2742.36 
R, Rubber poisson ratio [-] 0.43513 
Steel, Steel poisson ratio [-] 0.29514 

Al, Aluminium poisson ratio [-] 0.26725 
 

 
 

Figure 4.3.5 – Iterated parameters values of 2nd attempt, unidimensional and dimensional 
respectively. 

 

 
 

Figure 4.3.6 – Objective functions of 2nd attempt. 
 
Similarly in the second attempt the objective function is not approaching an optimal value and it is 
noticed that the function remained constant even after a high number of iterations hence another 
approach must be adopted by varying the previously iterated parameters. 
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4.3.1 Experimental – numerical post processing 
 

Table 4.3.1 – Comparison between experimental and numerical Frequency results. 
 

Testlab Lupos 
Mode # Experimental 

frequency [Hz] 
Mode # Numerical 

frequency [Hz] 
1 43.642 1 48.46 
2 46.0557 2 55.72 
3 69.556 3 71.45 
4 70.234 4 80.001 
5 105.46 5 114.55 
6 111.54 6 120.43 
- - - 142.3 
7 158.05 7 150.17 
- - - 219.6 
- - - 229.3 
- - - 233.0 
- - - 256.5 
- - - 259.7 
- - - 277.0 
- - - 277.5 
- - - 285.3 
- - - 290.3 
8 292.2 8 297.25 
- - - 303.3 
- - - 322.3 
- - - 323 
- - - 354.5 
- - - 357 

 
In order to confirm the compatibility between the numerical and the real models the MAC as 
indicated in Equation (4.1.1.1) was again performed. 
 

 
 

Figure 4.3.1.1 – AutoMAC of experimental modes. 
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To assure that there are no double selected poles and that the spatial aliasing is negligible the 
AutoMAC results, despite of a low spatial aliasing signs, are sufficiently convenient. 
 

 
 

Figure 4.3.1.2 – MAC of numerical and experimental modes. 
 
The compatibility of the first 7 modes is pretty high, the 7th modes is around 160 Hz. This justifies 
as seen before in the 1st experiment that the Steering Wheel is linear until this frequency, where it 
tends to be strongly non-linear after. It is important to emphasize again the fact that the 7th 
numerical mode is local, and it is related exclusively to the rubber. The correlation that is noticed in 
between modes 11 and 12 with the 11th numerical mode, is probably due to spatial aliasing because 
the 11th numerical frequency is equal to 209.2 Hz while the 11th and 12th experimental modes are 
425.8 and 507.8 Hz respectively. 
 

  
 

Figure 4.3.1.3 – MAC_distW and MACW2 of numerical and experimental modes. 
 
To resolve all doubts the Figure 4.3.1.3 is assuring the hypothesis of spatial aliasing by 
demonstrating that there is no correlation between the concerned nodes. 
 
 
4.3.2 Experiment Setup and sensor positioning 
 
Following the same setup of the first experiment of Steering Wheel, the second experiment was 
performed with slight changes pf accelerometers orientation as will be shown in the following 
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chapters.The experimental test was performed in 2022-02-28 and postprocessed in 2022-03-01 on 
which the main activity was concluded. 
 
The experimental modal analysis is performed adopting free-free conditions, exciting the structure 
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Steering Wheel is fixed on a huge test rig machine supplied by soft springs that do not 
affect the component natural frequencies the excitations were done on 19 nodes along all the 
possible directions allowed by its geometry, obtaining as an overall 47 excitations to the system. 
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a 
set of 5 responses acquired to give more repeatability and stability to each measurement. 
For each response: 

• the spatial coordinates are continuous for each instant of time; 
• the time/frequency data and the modal content are acquired and identified with Siemens 

Test.Lab v.17; 
• it evinces those modal coordinates enable approximate solutions, according to the number of 

modal coordinates used, thus in nonlinear problems this property can improve computational 
efforts in the best way. 

 

 

 
 

Figure 4.3.2.1 – Experimental setup scenario. 
 
Both pictures of the entire system, with different points of view and details of the hardware 
implemented and of their location are requested information. 
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Importance has the reference system ( )zyx ,,  used, according also to suitable models. In case of 
already developed models, consider the same reference system. 
 

 
 

Figure 4.3.2.2 – Overview of the experimental setup. 
 

 

 
 

Figure 4.3.2.3 – Details of the implemented hardware, from left to right in reading order: 
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11. 

 
The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is 
performed using an impact hammer PCB 086C03 using hard steel tip (Figure 4.1.2.4 and 
Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer 
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1. 
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Table 4.3.2.1 – Accelerometer technical characteristics. 

 

Component Channel 
ID 

Accelerometer 
ID 

Node 
ID 

Weight 
[kg] 

Sensitivity 
[mV/g] 

Acc. 
Direction 

[-] 

LW226918 
1 Tri_1_x 

1 14.210-3 
102 -X  

2 Tri_1_y 102.1 +Z  
3 Tri_1_z 102.3 +Y  

LW139287 
(Peroni) 

4 Tri_3_x 
11 14.210-3 

96.1 +Y  

5 Tri_3_y 97.3 -Z  

6 Tri_3_z 99.3 -X  

LW226919 
8 Tri_2_x 

8 14.210-3 
102.5 -X  

9 Tri_2_y 97.5 -Z  

11 Tri_2_z 98.6 -Y  

 

 
 

Figure 4.3.2.4 – Steering Wheel weight with added screws and accelerometers. 
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Figure 4.3.2.5 – Steering Wheel weight with added screws and accelerometers. 
 

Table 4.3.2.2 – Steering Wheel and screws mass properties. 
 

Component Weight [kg] 
Steering Wheel 3.9811 

Screw 1.39 10-3 
 
 
4.3.3 Geometrical aspects and acquisition parameters 
 
To run the experimental modal analysis on the component it is necessary to create a model by 
identifying the most relevant nodes that allow to build a reference geometry as much close as the 
real one and at the same time could allow to give important information with regards to the 
response of the system. 
The definition of the nodes map is carried out by obtaining the CAD geometry information of the 
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the 
coordinates of each node are measured according to the reference system set on the component, as 
shown in Figure 4.3.3.1. 
As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS 
Test.Lab, as shown in Figure 4.3.3.2. 
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 Figure 4.3.3.1 – Wheel reference frame. Figure 4.3.3.2 – Wheel CAD geometry. 
 
According to reference system and to numerical model, definition of points and corresponding 
model nodes are listed in Table 4.3.3.1. 19 nodes are identified for roving hammer EMA. 3 of them 
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance. 
 
Details of the experimental geometry are supplied in Table 4.3.3.1 in which directions of actuation 
and reference system for hammer direction are listed. As a reference approach, the hammered 
directions are always orthogonal to nearest surface to defined nodes, some nodes differently from 
the 1st experiment had no defined orientation with respect to the global reference frame hence Euler 
angles were not imposed or considered. 
 

Table 4.3.3.1 – Geometry of I/O points. 
 
Identifier Exp. point Model node x [m] y [m] z [m] Notes 

Acc. 1, x, y, z 1 28181 0 0.224 0.144 LW139287 
- 2 28112 0.096 0.2 0144 - 
- 3 27995 0.16 0.152 0.144 - 
- 4 27945 0.184 0.12 0.144 - 
- 5 27782 0.216 0.016 0.144 - 
- 6 27613 0.208 -0.088 0.144 - 
- 7 27432 0.104 -0.192 0.144 - 

Acc. 2, x, y, z 8 27383 0 -0.2 0.144 LW226918, screw fixed 
radially 

- 9 27443 -0.12 -0.184 0.144 - 
- 10 27541 -0.176 -0.136 0.144 - 

Acc. 3, x, y, z 11 27691 0.415 0.075 0.393 LW226919 
- 12 27839 -0.216 0.064 0.144 - 
- 13 27986 -0.176 0.152 0.144 - 
- 14 28066 -0.128 0.192 0.144 - 
- 15 18037 -0.072 0.04 0.04 - 
- 16 18050 0.072 0.04 0.04 - 
- 17 17667 -0.096 -0.08 0.04 - 
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- 18 17679 0 -0.08 0.04 - 
- 19 17691 0.096 -0.08 0.04 - 
- 20 705 0 0 0 - 

 
During impact testing measurements, the parameters in Table 4.3.3.2 are selected: 
 

Table 4.3.3.2 – Independent and dependent parameters of acquisition. 
 

Quantity Symbol Relationship Value Units 
Total acquisition time T  - 4 s 

Sample frequency sf  - 8192 Hz 
Total samples N  TfN s=  32768 - 

Bandwidth (max frequency) bf  
2

s
b

ff =  4096 Hz 

FRF frequency resolution f  1sff
N T

 = =  0.25  Hz 

Number of spectral lines fN  
2f
NN =  16384  - 

 
 
4.3.4 Experimental data analysis 
 
The natural frequencies and damping ratios are extracted in the frequency range 0÷550 Hz from 
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in 
Figure 4.3.4.1 for a model size of 500 and values were reported relatively in Table 4.3.4.1. 
 

 
 

Figure 4.3.4.1 – Stabilization FRF-sum diagram. 
 

Table 4.3.4.1 – Experimental natural frequencies and damping ratios of the Steering Wheel. 
 

Mode Freq. [Hz] ζ, damping ratio [%] Description 
1 43.64 0.674 local bending YZ 
2 46.05 0.565 local bending XZ 
3 69.55 0.799 - 
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4 70.23 1.259 1st torsional XY 
5 105.46 0.329 1st global bending XZ-YZ 
6 111.55 0.326 2nd global bending XZ-YZ 
7 158.05 0.425 local bending XZ-YZ 
8 274.89 0.727 3rd global bending XZ-YZ 
9 287.81 1.27 local bending YZ 
10 292.2 0.923 local bending XZ-YZ 
11 425.77 1.77 local bending XZ 

12 507.83 2.025 4th global bending XZ-YZ 
13 521.8 3.694 5th global bending XZ-YZ 
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 117 / 168 

 
 

Figure 4.3.4.2 – Steering Wheel first 13 complex mode shapes. 
 
According to equation (4.1.4.1) the following diagram is obtained for the second Steering Wheel 
experiment. 
 

 
 

Figure 4.3.4.3 – Experimental mode shapes Auto-MACX. 
 
The definition of the Modal Phase Collinearity (MPC) index as defined in equation (4.1.4.2) 
 

Table 4.3.4.2 – Modal Phase Collinearity values. 
 

Mode MPC 
1 0.0742 
2 0.697 
3 0.21 
4 0.61 
5 0.79 
6 0.54 
7 0.48 
8 0.76 
9 0.58 
10 0.65 
11 0.61 
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12 0.023 
13 0.135 

 

 
 

Figure 4.3.4.4 – MCP values for each mode. 
 
Based on the obtained results, no real re-identification was performed since the modes are heavily 
complex. 
 
 
4.3.5 Post-processing 
 
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the 
ratio between the acceleration and the external forces. To check the quality of the results and the 
linearity of the component several ways can be performed to do so as auto-inertance 
Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach 
Equation (4.1.5.3). 
In the complex case of a m-dofs system the inertance formula as defined in equation (4.1.5.1) 
 
The auto-inertance can be defined as the FRF evaluated in the node k due to the excitation on the 
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the 
node were the FRF is evaluated. 
In the following figures the auto-inertances experimental (solid blue line), synthetised with lower 
and upper residuals (LR and UR) (dash-dot red line) and synthetised that is represented as well. At 
low frequencies, the clamped structure is characterized by inertances that tends to 0 is noticed from 
the blue curve. 
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 Figure 4.3.5.1 – Auto-inertance: E1x-R1x. Figure 4.3.5.2 – Auto-inertance: E1y-R1y. 
 

 
 

Figure 4.3.5.3 – Auto-inertance: E1z-R1z. 
 

 
 
 Figure 4.3.5.4 – Auto-inertance: E8x-R8x. Figure 4.3.5.5 – Auto-inertance: E8y-R8y. 
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Figure 4.3.5.6 – Auto-inertance: E8z-R8z. 
 

 
 
 Figure 4.3.5.7 – Auto-inertance: E11x-R11x. Figure 4.3.5.8 – Auto-inertance: E11y-R11y. 
 

 
 

Figure 4.3.5.9 – Auto-inertance: E11z-R11z. 
 
With real modal superposition of m modes or with complex modal superposition of m2  modes, a 
generic cross-receptance kj ,  (similarly to mobility kjY ,  and inertance kjA , ), the Maxwell 
reciprocity imposes that input and output can be switched as in Equation (4.1.5.3) and (4.1.5.4). 
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Furthermore, an index of non-linearity regarding different dofs of the system is assumed as a 
consequence of the complex MAC index (scalar values between 0 and 1) applied to the modulus 
and phase of Equations. (4.1.5.5) or (4.1.5.6). Consequently, values far from 1 detect nonlinear 
behaviour, due to incoherence of similar receptances, according to Maxwell reciprocity. This index 
can be used for both numerical and experimental receptance transfer functions. Since it is not 
guaranteed the 0÷1 range, also a variation of MAX is defined similar to MACX definition. 
 

 
 

Figure 4.3.5.10 – MAX index in 30÷550 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.3.5.11 – MAX index in 30÷300 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 
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Figure 4.3.5.12 – MAX index in 30÷150 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.3.5.13 – MAX index in 30÷120 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.3.5.14 – Reciprocity test experimental inertance:  
E1x-R1y (left) E1x-R11z (right). 

 



 123 / 168 

 
 

Figure 4.3.5.15 – Reciprocity test experimental inertance:  
E8y-R1x (left) E8x-R11x (right). 

 

 
 

Figure 4.3.5.16 – Reciprocity test experimental inertance:  
E11z-R8z (left) E11x-R11y (right). 

 
The experimental modal analysis carried out on the Steering Wheel gives as a final result the 
identification of 13 mode shapes in the frequency range 0÷550 Hz, where the global mode shapes 
identified are reported. 
The identification of the mode shapes can be considered complete and satisfactory, as it can be 
noted in the previous figures looking at the good correspondence among the auto-inertances and the 
Maxwell reciprocity comparing the respective experimental and synthetized FRFs. 
 
 
4.4 Steering Wheel models comparison 
 
To check how would the behaviour of the wheel change in different boundary conditions. The free-
free steering wheel has same similar structural mode shapes but at higher frequencies as can be 
noticed mainly from the first frequencies. 
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Figure 4.4.1 – Lupos clamped-free numerical models’ comparison. 
 
The difference between the two identification is that in the second EMA the torsional mode at 
around 70 Hz (4th mode) that was not found in the 1st EMA. 
 

 
 

Figure 4.4.2 – 1st and 2nd experimental steering wheel models’ comparison. 
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4.5 Steering Plate free-free condition 
 

 
 

Figure 4.5.1 – Steering Plate. 
 
The Steering Plate was then tested variously in both free-free and clamped condition, the plate is 
made up of aluminium with a particular geometry. The numerical model that was constructed 
before is related to the Minecraft project [6]. However, an incompatible mass of the numerical 
model was detected, moreover the numerical natural frequencies were way higher than the 
experimental ones. To resolve this, several modifications were applied to the model to make it more 
consistent to real one. Firstly, the numerical frequencies were about the double of the real one, 
despite the correct young modulus imposed to the model. So, to not decrease drastically the young 
modulus the real mass was doubled, and the young modulus was reduced to half. These are not 
totally physical number it is the choice of a compromise to reach a good approximated numerical 
model. 
 

Table 4.5.1 – Steering Plate, old and new numerical models’ parameters. 
 

Model density [kg/m3] Youg Modulus, E 
[GPa] 

Old Plate 1365.5 70 
New Plate 2731 36 
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Figure 4.5.2 – Steering Plate numerical model, various views. 
 
 
4.5.1 Experimental – numerical post processing 
 

Table 4.5.1.1 – Steering Plate free-free, experimental and numerical natural frequencies. 
 

Testlab Optistruct 
Mode # Experimental 

frequency [Hz] 
Mode # Numerical 

frequency [Hz] 
1 305.1 1 308.8 
2 339.4 2 351 
3 493 3 569.05 
4 778.6 4 810 
5 862.3 5 886.4 
6 990.2 6 1026 
7 1175 7 1180 
- 1297 8 1322 
8 1366 - 1343 
9 1432 - 1431 
- 1556 - 1521 
- 1615 9 1582 
- 1701 - 1588.4 
- 1762 - 1688.3 
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These modes were calculated in Optistruct then imported and visualized in Lupos. 
 

 
 

Figure 4.5.1.1 – Steering Plate free-free, 1st and 2nd structural frequencies. 
 

 

 
 

Figure 4.5.1.2 – Steering Plate free-free, 3rd and 4th structural frequencies. 
 

 
 

Figure 4.5.1.3 – Steering Plate free-free, 5th and 6th structural frequencies. 
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Figure 4.5.1.4 – Steering Plate free-free, 7th and 8th structural frequencies. 
 

 
 

Figure 4.5.1.5 – Steering Plate free-free, 9th and 10th structural frequencies. 
 

 
 

Table 4.5.1.6– Steering Plate free-free model AutoMAC. 
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Table 4.5.1.7 – Steering Plate free-free model MAC and MACW2 respectively. 
 

 
 

Table 4.5.1.8 – Steering Plate free-free model MAC_distW. 
 
 
4.5.2 Experiment Setup and sensor positioning 
 
The experimental modal analysis is performed adopting free-free conditions, exciting the structure 
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Plate is fixed on a huge test rig machine supplied by soft springs that do not affect the 
component natural frequencies the excitations were done on 27 nodes along all the possible 
directions allowed by its geometry, obtaining as an overall 61 excitations to the system. The 
responses of 3 nodes are measured: 1, 13, and 20. The response for each node is averaged on a set 
of 3 responses acquired to give more repeatability and stability to each measurement. The 
experimental test was performed in 2021-09-21 and postprocessed at the same day on which the 
main activity was concluded. 
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Figure 4.5.2.1 – Experimental setup scenario. 
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Both pictures of the entire system, with different points of view and details of the hardware 
implemented and of their location are requested information. 
Importance has the reference system ( )zyx ,,  used, according also to suitable models. In case of 
already developed models, consider the same reference system. 
 

 
 

Figure 4.5.2.2 – Overview of the experimental setup. 
 
In order to have a good sensor positioning MoGeSec was again exploited to define the sensors 
nodes as in Equation (4.1.2.1), (4.1.2.2), and (4.1.2.3). 
 

 
 

Figure 4.5.2.3 – Steering Plate MoGeSec configuration. 
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As can be noticed various nodes were identified by MoGeSec, where these accelerometer we fixed 
by adhesive material in their exact positions, alternatively the positions and orientations will be 
selected according to the engineers experiment and knowledge, hence the following nodes were 
chosen accordingly with MoGeSec suggestions. 
 

 

 
 

Figure 4.5.2.4 – Details of the implemented hardware, from left to right in reading order: 
Tri-axial-node 1, Tri-axial-node 13, Tri-axial-node 20. 

 
The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is 
performed using an impact hammer PCB 086C03 using hard steel tip (Figure 4.1.2.4 and 
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Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer 
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1. 
 

Table 4.5.2.1 – Accelerometer technical characteristics. 
 

Component Channel 
ID 

Accelerometer 
ID 

Node 
ID 

Weight 
[kg] 

Sensitivity 
[mV/g] 

Acc. 
Direction [-

] 

LW226918 
8 Tri_3_x 

1 14.210-3 
102 -X 

9 Tri_3_y 102.1 -Z 
11 Tri_3_z 102.3 -Y 

LW226919 
1 Tri_1_x 

13 14.210-3 
102.5 -X 

2 Tri_1_y 97.5 -Y 
3 Tri_1_z 98.6 +Z 

LW139287 
4 Tri_2_x 

20 14.210-3 
96.1 -X 

5 Tri_2_y 97.3 -Y 
6 Tri_2_z 99.3 +Z 

 

 
 

Figure 4.5.2.5 – Plate weight. 
 

Table 4.5.2.2 – Plate mass properties. 
 

Component Weight [kg] 
Plate 4.923 

 
 
4.5.3 Geometrical aspects and acquisition parameters 
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To run the experimental modal analysis on the component it is necessary to create a model by 
identifying the most relevant nodes that allow to build a reference geometry as much close as the 
real one and at the same time could allow to give important information with regards to the 
response of the system. 
The definition of the nodes map is carried out by obtaining the CAD geometry information of the 
chassis model developed in Solidworks then imported in Solidworks and Lupos, where the 
coordinates of each node are measured according to the reference system set on the component, as 
shown in Figure 4.5.3.1. 
As an overall, 27 nodes are identified and used to develop the model geometry in Siemens LMS 
Test.Lab, as shown in Figure 4.5.3.2. 
 

 
 
 Figure 4.5.3.1 – Plate reference frame. Figure 4.5.3.2 – Plate CAD geometry. 
 
According to reference system and to numerical model, definition of points and corresponding 
model nodes are listed in Table 4.5.3.1. There were 27 nodes identified for roving hammer EMA. 3 
of them are used for accelerometer positioning and hammered in the neighbourhood for auto-
inertance. Node nomenclature is based on the following pattern: 

• Plate external frame starting from node 1 in anti-clockwise direction until node 10; 
• Plate large external wings from left to right (11 to 16); 
• Plate small internal wings from left to right (17 to 27). 
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Figure 4.5.3.3 – Experimental geometry: excited (left) and sensor nodes (right). 
 

  
 

Figure 4.5.3.4 – Node nomenclature. 
 
Details of the experimental geometry are supplied in Table 4.5.3.1 in which directions of actuation 
and reference system for hammer direction are listed. As a reference approach, the hammered 
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a 
defined orientation with respect to the global reference frame however, Euler angles were not 
imposed or consiedered. 
 

Table 4.5.3.1 – Geometry of I/O points. 
 

Identifier Exp. point Model node x [m] y [m] z [m] Notes 
Acc. 3, x, y, z 1 113118 0 0.224 0.144 LW226918 

- 2 366196 0.096 0.2 0144 - 
- 3 636483 0.16 0.152 0.144 - 
- 4 661488 0.184 0.12 0.144 - 
- 5 678408 0.216 0.016 0.144 - 
- 6 619376 0.208 -0.088 0.144 - 
- 7 366296 0.104 -0.192 0.144 - 
- 8 96344 0 -0.2 0.144 - 
- 9 28942 -0.12 -0.184 0.144 - 
- 10 28801 -0.176 -0.136 0.144 - 
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 11 617081 0.415 0.075 0.393 - 
- 12 659293 -0.216 0.064 0.144 LW226919 

Acc. 1, x, y, z 13 659328 -0.176 0.152 0.144 - 
- 14 68758 -0.128 0.192 0.144 - 
- 15 68786 -0.072 0.04 0.04 - 
- 16 68806 0.072 0.04 0.04 - 
- 17 114018 -0.096 -0.08 0.04 - 
- 18 139793 0 -0.08 0.04 - 
- 19 160109 0.096 -0.08 0.04 - 

Acc. 2, x, y, z 20 160091 -0.03 0.16 -0.10 LW139287 
- 21 510291 -0.01 0.01 0.07 - 
- 22 569583 -0.08 0.02 0.09 - 
- 23 569282 -0.21 0.01 0.09 - 
- 24 581911 -0.11 0.16 0.10 - 
- 25 581891 -0.03 0.16 0.10 - 
- 26 511638 -0.07 0.06 0.07 - 
- 27 368225 -0.06 0.06 0 - 

 
During impact testing measurements, the parameters in Table 4.5.3.2 are selected: 
 

Table 4.5.3.2 – Independent and dependent parameters of acquisition. 
 

Quantity Symbol Relationship Value Units 
Total acquisition time T  - 1 s 

Sample frequency sf  - 8192 Hz 
Total samples N  TfN s=  8192 - 

Bandwidth (max frequency) bf  
2

s
b

ff =  4096 Hz 

FRF frequency resolution f  1sff
N T

 = =  1 Hz 

Number of spectral lines fN  
2f
NN =  4096 - 

 
 
4.5.4 Experimental data analysis 
 
The natural frequencies and damping ratios are extracted in the frequency range 0÷1800 Hz from 
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in 
Figure 4.5.4.1 the model size was equal to 500 and values were reported relatively in Table 4.5.4.1. 
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Figure 4.5.4.1 – Stabilization FRF diagram. 
 

Table 4.5.4.1 – Experimental natural frequencies and damping ratios of the Steering Plate. 
 

Mode Freq. [Hz] ζ, damping ratio [%] Description 
1 305.1 0.123 1st global bending YZ 
2 339.4 0.415 2nd global bending YZ 
3 493 0.185 3rd bending XZ-YZ 
4 778.6 0.292 local bending YZ 
5 862.3 0.418 4th global bending XY-YZ 
6 990.2 0.285 5th global bending XY-YZ 
7 1175 0.187 6th global bending XY-YZ 
8 1297 0.388 7th global bending 
9 1366 0.292 8th global bending XZ-YZ 
10 1432 0.36 9th global bending 
11 1556 1.88 10th global bending 
12 1615 0.599 local bending 

13 1701 0.832 11th global bending XZ-YZ 
14 1762 1.02 local bending XZ-YZ 
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Figure 4.5.4.2 – Plate first 14 complex mode shapes. 
 
Following the same MACX procedure as in Equation (4.1.4.1) the correlation between the complex 
modes was evaluated. 
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Figure 4.5.4.3 – Experimental mode shapes Auto-MACX. 
 
Similarly, as in Equation (4.1.4.2) the MPC is considered again to check the modes complexity. 
 

Table 4.5.4.2 – Modal Phase Collinearity values. 
 

Mode MPC 
1 0.926 
2 0.867 
3 0.937 
4 0.868 
5 0.956 
6 0.972 
7 0.882 
8 0.884 
9 0.928 
10 0.952 
11 0.821 
12 0.821 
13 0.755 
14 0.848 
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Figure 4.5.4.4 – MCP values for each mode. 
 
Based on the obtained results, it is possible to indicate that the real identification may be sufficient 
in this case. 
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Figure 4.5.4.5 – Plate re-identified real mode shapes. 
 

 
 

Figure 4.5.4.6 – Experimental Auto-MAC, between complex and real modes. 
 
 
4.5.5 Post-processing 
 
To check the quality of the results and the linearity of the component several ways can be 
performed to do so as auto-inertance Equation (4.1.5.1) or (4.1.5.2) and cross receptance following 
Maxwell approach Equation (4.1.5.3). In the following figures the auto-inertances experimental 
(solid blue line), synthetised with lower and upper residuals (LR and UR) (dash-dot red line) and 
synthetised with modal superposition that are presented as well. At low frequencies, the clamped 
structure is characterized by inertances that tends to 0 is noticed from the blue curve. At 0 Hz it was 
not available the suitable way to identify have an MS tending to the correct value. Initially, the 
auto-inertances were evaluated to check to the quality of done identification. 
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 Figure 4.5.5.1 – Auto-inertance: E1x-R1x. Figure 4.5.5.2 – Auto-inertance: E1y-R1y. 
 

 
 

Figure 4.5.5.3 – Auto-inertance: E1z-R1z. 
 

 
 
 Figure 4.5.5.4 – Auto-inertance: E13x-R13x. Figure 4.5.5.5 – Auto-inertance: E13y-R13y. 
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Figure 4.5.5.6 – Auto-inertance: E13z-R13z. 
 

 
 
 Figure 4.5.5.7 – Auto-inertance: E20x-R20x. Figure 4.5.5.8 – Auto-inertance: E20y-R20y. 
 

 
 

Figure 4.5.5.9 – Auto-inertance: E20z-R20z. 
 
To control the linearity of the structure it is convenient to check the receptances of the structure as 
in Equation (4.1.5.3) and the following results were obtained. 
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Figure 4.5.5.10 – MAX index in 300÷1800 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.5.5.11 – MAX index in 300÷1200 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.5.5.12 – MAX index in 300÷800 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 
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Figure 4.5.5.13 – Reciprocity test experimental inertance:  
E1x-R20y (left) E1y-R20y (right). 

 

 
 

Figure 4.5.5.14 – Reciprocity test experimental inertance:  
E1x-R13y (left) E20x-R13y (right). 

 

 
 

Figure 4.5.5.15 – Reciprocity test experimental inertance:  
E20x-R1y (left) E20z-R13z (right). 
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The experimental modal analysis carried out on the Plate gives as a final result the identification of 
14 mode shapes in the frequency range 0÷1800 Hz, where the global mode shapes identified are 
reported. 
The identification of the mode shapes can be considered complete and satisfactory, as it can be 
noted in the previous figures looking at the good correspondence among the auto-inertances and the 
Maxwell reciprocity comparing the respective experimental and synthetized FRFs. 
 
 
4.6 Clamped plate 
 
This Plate is used for Iveco truck vehicles was modelled with different elements in different 
software and there was a great convergence to the exact solution, and this was assured by the EMA. 
The experimental test was performed in 2022-03-04 and postprocessed at the same day on which 
the main activity was concluded. 
 

 
 

Figure 4.6.1 – Numerical model of clamped plate. 
 
 
4.6.1 Experimental – numerical post processing 
 
The numerical and experimental post processing was not fulfilled for this numerical model since no 
consistency was found between the 2 models, this maybe be because of the conditions in which the 
experiment was performed. Since the numerical model has no errors or unusual aspects, where the 
numerical modes are clear and well understandable. However, the experimental modes were 
extremely mixed and complex. For example, some numerical modes are related only to the beams, 
differently the experimental modes always involve a deformation shape of the plate, while the plate 
in certain modes, as checked numerically, must not have any mode shape contribution.  
This inconsistency may be caused by the experimental boundary conditions that was constructed, 
since the nodes were hammered and the data was acquired correctly, but probably some screws 
were not clamped sufficiently. This caused a chaos in the experimental mode shapes. 
 
4.6.2 Experiment Setup and sensor positioning 
 
The experimental modal analysis is performed adopting free-free conditions, exciting the structure 
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Plate is fixed on a huge test rig machine supplied by soft springs that do not affect the 
component natural frequencies the excitations were done on 55 nodes along all the possible 
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directions allowed by its geometry, obtaining as an overall 104 excitations to the system. The 
responses of 3 nodes are measured: 1, 13, and 20. The response for each node is averaged on a set 
of 5 responses acquired to give more repeatability and stability to each measurement. 
For each response: 

• the spatial coordinates are continuous for each instant of time; 
• the time/frequency data and the modal content are acquired and identified with Siemens 

Test.Lab v.17; 
• it evinces those modal coordinates enable approximate solutions, according to the number of 

modal coordinates used, thus in nonlinear problems this property can improve computational 
efforts in the best way. 

 
 

 

 
 

Figure 4.6.2.1 – Experimental setup scenario. 
 
Both pictures of the entire system, with different points of view and details of the hardware 
implemented and of their location are requested information. 
Importance has the reference system ( )zyx ,,  used, according also to suitable models. In case of 
already developed models, consider the same reference system. 
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Figure 4.6.2.2 – Overview of the experimental setup. 
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Figure 4.6.2.3 – Details of the implemented hardware, from left to right in reading order: 
Tri-axial-node 1, Tri-axial-node 13, Tri-axial-node 20. 

 
The same procedure of free-free plate for sensor positioning was followed hence same nodes and 
similar accelerometers were used. 
 

Table 4.6.2.1 – Accelerometer technical characteristics. 
 

Component Channel 
ID 

Accelerometer 
ID 

Node 
ID 

Weight 
[kg] 

Sensitivity 
[mV/g] 

Acc. 
Direction 

[-] 

LW226918 
9 Tri_3_x 

1 14.210-3 
102 -X 

10 Tri_3_y 102.1 -Z 
11 Tri_3_z 102.3 -Y 

LW226919 
1 Tri_1_x 

13 14.210-3 
102.5 -X 

2 Tri_1_y 97.5 -Y 
3 Tri_1_z 98.6 +Z 

LW139287 
4 Tri_2_x 

20 14.210-3 
96.1 -X 

5 Tri_2_y 97.3 -Y 
6 Tri_2_z 99.3 +Z 

 
Details of the experimental geometry are supplied in Table 4.6.2.2 in which directions of actuation 
and reference system for hammer direction are listed. As a reference approach, the hammered 
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a 
defined orientation with respect to the global reference frame hence Euler angles were also imposed 
precisely. 
 

Table 4.6.2.2 – Geometry of I/O points. 
 
Identifier Exp. point Model node x [m] y [m] z [m] Notes 

Acc. 3, x, y, z 1 113118 0 0.224 0.144 LW226918 
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- 2 366196 0.096 0.2 0144 - 
- 3 636483 0.16 0.152 0.144 - 
- 4 661488 0.184 0.12 0.144 - 
- 5 678408 0.216 0.016 0.144 - 
- 6 619376 0.208 -0.088 0.144 - 
- 7 366296 0.104 -0.192 0.144 - 
- 8 96344 0 -0.2 0.144 - 
- 9 28942 -0.12 -0.184 0.144 - 
- 10 28801 -0.176 -0.136 0.144 - 
 11 617081 0.415 0.075 0.393 - 
- 12 659293 -0.216 0.064 0.144 LW226919 

Acc. 1, x, y, z 13 659328 -0.176 0.152 0.144 - 
- 14 68758 -0.128 0.192 0.144 - 
- 15 68786 -0.072 0.04 0.04 - 
- 16 68806 0.072 0.04 0.04 - 
- 17 114018 -0.096 -0.08 0.04 - 
- 18 139793 0 -0.08 0.04 - 
- 19 160109 0.096 -0.08 0.04 - 

Acc. 2, x, y, z 20 160091 -0.03 0.16 -0.10 LW139287 
- 21 510291 -0.01 0.01 0.07 - 
- 22 569583 -0.08 0.02 0.09 - 
- 23 569282 -0.21 0.01 0.09 - 
- 24 581911 -0.11 0.16 0.10 - 
- 25 581891 -0.03 0.16 0.10 - 
- 26 511638 -0.07 0.06 0.07 - 
- 27 368225 -0.06 0.06 0 - 
- 118 118 -0.418 0.0067 0.222 - 
- 119 119 -0.4185 0.0067 -0.222 - 
- 205 205 -0.1015 0.0067 0.222 - 
- 214 214 -0.1015 0.0067 -0.222 - 
- 408 408 0.1125 0.0067 0 - 
- 416 416 0.1125 0.0067 -0.222 - 
- 417 417 0.1125 0.0067 0.222 - 
- 1020 1020 0.1815 0.0617 0.197 - 
- 1022 1022 0.0815 0.7217 0.375 - 
- 1023 1023 0.0815 0.7217 -0.375 - 
- 1024 1024 -0.2985 0.7217 -0.375 - 
- 1025 1025 -0.2985 0.7217 0.375 - 
- 1026 1026 0.3315 0.7817 -0.237 - 
- 1029 1029 0.3315 0.7817 0.237 - 
- 1031 1031 0.1815 0.0617 -0.197 - 
- 1033 1033 0.0015 0.8617 0.197 - 
- 1038 1038 0.0015 0.8617 -0.197 - 
- 2004 2004 -0.1258 0.7817 0.237 - 
- 2015 2015 -0.2985 0.7217 0.0895 - 
- 2020 2020 -0.2985 0.7217 -0.0895 - 
- 2054 2054 0.0815 0.7217 0.0179 - 
- 2074 2074 -0.1258 0.7817 -0.2370 - 
- 2129 2129 0.0015 0.5423 -0.1970 - 
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- 2133 2133 0.0015 0.3988 -0.1970 - 
- 2137 2137 0.0015 0.2552 -0.1970 - 
- 2145 2145 0.0015 0.5423 0.1970 - 
- 2149 2149 0.0015 0.3988 0.1970 - 
- 2153 2153 0.0015 0.2552 0.1970 - 

 
During impact testing measurements, the parameters in Table 4.6.2.3 are selected: 
 

Table 4.6.2.3 – Independent and dependent parameters of acquisition. 
 

Quantity Symbol Relationship Value Units 
Total acquisition time T  - 1 s 

Sample frequency sf  - 8192 Hz 
Total samples N  TfN s=  8192 - 

Bandwidth (max frequency) bf  
2

s
b

ff =  4096 Hz 

FRF frequency resolution f  1sff
N T

 = =  1 Hz 

Number of spectral lines fN  
2f
NN =  4096 - 

 
4.6.3 Experimental data analysis 
 
The natural frequencies and damping ratios are extracted in the frequency range 100÷4096 Hz from 
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in 
Figure 4.6.3.1 the model size was equal to 1300 and values were reported relatively in 
Table 4.6.3.1. 
 

 
 

Figure 4.6.3.1 – Stabilization FRF Sum diagram. 
 

Table 4.6.3.1 – Independent and dependent parameters of acquisition. 
 

Mode Freq. [Hz] ζ, damping ratio [%] Description 
1 141.72 0.63 - 
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2 154.25 0.501 - 
3 183.38 0.571 - 
4 205.29 1.67 - 
5 257.163 0.647 - 
6 266.28 0.751 - 
7 286.43 0.745 - 
8 345.46 0.645 - 
9 369.85 0.652 - 
10 425.47 0.399 - 
11 437.09 0.576 - 
12 473.638 1.17 - 

13 552.359 1.12 - 
14 561.85 0.62 - 
15 673.56 0.866 - 
16 687.97 0.748 - 
17 976.39 0.732 - 
18 1005.43 0.893 - 
19 1084.77 0.405 - 
20 1098.95 0.455 - 
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Figure 4.6.3.2 – Plate first 14 complex mode shapes. 
 
Following the same MACX procedure as in Equation (4.1.4.1) the correlation between the complex 
modes was evaluated. 
 

 
 

Figure 4.6.3.3 – Experimental mode shapes Auto-MACX. 
 
Similarly, as in Equation (4.1.4.2) the MPC is considered again to check the modes complexity. 
 

Table 4.6.3.2 – Modal Phase Collinearity values. 
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Mode MPC 
1 0.436 
2 0.655 
3 0.171 
4 0.086 
5 0.648 
6 0.599 
7 0.139 
8 0.083 
9 0.715 
10 0.058 
11 0.219 
12 0.054 
13 0.159 
14 0.673 
15 0.772 
16 0.658 
17 0.068 
18 0.005 
19 0.739 
20 0.374 

 

 
 

Figure 4.6.3.4 – MCP values for each mode. 
 
Based on the obtained results, it is possible to indicate that the real identification may not be 
sufficient in this case. 
 
 
4.6.4 Post-processing 
 
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the 
ratio between the acceleration and the external forces. To check the quality of the results and the 
linearity of the component several ways can be performed to do so as auto-inertance 
Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach 
Equation (4.1.5.3). 
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 Figure 4.6.4.1 – Auto-inertance: E1x-R1x. Figure 4.6.4.2 – Auto-inertance: E1y-R1y. 
 

 
 
 Figure 4.6.4.3 – Auto-inertance: E13x-R13x. Figure 4.6.4.4 – Auto-inertance: E13y-R13y. 
 

 
 

Figure 4.6.4.5 – Auto-inertance: E13z-R13z. 
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 Figure 4.6.4.6 – Auto-inertance: E20x-R20x. Figure 4.6.4.7 – Auto-inertance: E20y-R20y. 
 

 
 

Figure 4.6.4.8 – Auto-inertance: E20z-R20z. 
 
 
To control the linearity of the structure it is convenient to check the receptances of the structure as 
in Equation (4.1.5.3) and the following results were obtained. 
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Figure 4.6.4.9 – MAX index in 100÷4096 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.6.4.10 – MAX index in 100÷2500 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 

 

 
 

Figure 4.6.4.11 – MAX index in 100÷800 Hz: 
on experimental receptances (left) and on synthetised receptances (right). 
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Figure 4.6.4.12 – Reciprocity test experimental inertance:  
E1x-R13x (left) E20y-R1y (right). 

 

 
 

Figure 4.6.4.13 – Reciprocity test experimental inertance:  
E13y-R20y (left) E13z-R20z (right). 

 
The experimental modal analysis carried out on the Plate gives as a final result the identification of 
49 mode shapes in the frequency range 100÷4096 Hz, of which 20 modes were shown. 
The identification of the mode shapes cannot be considered complete and satisfactory, despite the 
good correspondence among the auto-inertances and the Maxwell reciprocity comparing the 
respective experimental and synthetized FRFs. This structure was particular and hard to identify or 
to get good compatibility with numerical modes, experimental modes were complex and not related 
only to plate but also to the beams of which the structure is made, consequently the experiment 
must be performed again paying attention to the clamping between each beam and the plate in order 
to get better results. 
 
5. Whole steering assembly 
 
In order to have a more complete understanding of the behaviour of the complex system in 
particular, the system composed of the steering wheel and its base support connected to the whole 
car system that was furnished by IVECO a new model configuration has to be designed where it is 
going to be under study by a new EMA. To explain, the new model brings out a configuration 
similar to the car base system that holds the steering system, so it shows how the wheel is mounted 
to its base and how was it recognized to achieve the suitable and convenient stiffness through the 
joints and beams. 
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Figure 5.1 – General view of whole system numerical model. 
 
 
5.1 Model configuration 
 
This configuration was designed before in order to perform the last experimental modal analysis 
tests. However, due to certain issues related to other activities in the laboratory certain parts that 
were available are no more available hence a different configuration was adopted as noticed in 
chapter 4.6.4. 

 
 

Figure 5.1.1 – General view of whole system. 
 
The system simulates a bench on which the whole system is mounted with Bosch beams found in 
the Polito laboratory and they were be exploited for the desired purpose. 
 

Table 5.1.1 – Assembly components details. 
 

Part name l, Length 
[mm] 

b, Width 
[mm] 

h, Height 
[mm] Material Q 
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Bench 850 620 14 Steel 1 

Beam 1 344 100 50 Aluminium 2 

Beam 2 631 80 40 Aluminium 4 

Beam 3 533 100 50 Aluminium 2 

Side_plate 353 100 10 Steel 2 

I00041035636 -  - Steel 1 

Top plate 444 89 10 Steel 1 

Bottom plate 444 89 10 Steel 1 

Beam 4 500 80 40 Aluminium 1 

Connector -  - - 2 

Beam 5 493 80 40 Aluminium 2 

Beam 6 340 40 40 Aluminium 1 
 
In the previous table structure components with some details are reported. The undefined numbers 
or material is due to the complex part geometry or because a component is made up of two or more 
different materials. 
 

Table 5.1.2 – Used material properties. 
 

Material , Density [kg/m3] E, Young module [GPa] , Poisson coefficient [-] 
Steel 7800 210 0.33 

Aluminium 2790 75 0.3 
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5.1.1 Bench 
 

  
 

Figure 5.1.1.1 – Modelled and real bench respectively. 
 
The bench adopted for the structure is symmetric with four small holes in the upper part with a 
diameter of 14 mm and the rest are M20 threaded holes. These holes will be exploited for mounting 
the whole structure  basically to connect the beams with bench that will form the base of the system. 
The beams, however, are connected to each other by T-screws M8x60 family 
 
 
5.1.2 Connectors 
 
The connectors provided by “Item” company are suggested to be adopted for stiffening the structure 
and connecting the parts with each other since the given bench has a relative low number of holes of 
which low number are used, hence a low number of joints that results in a decreased stiffness. 
These connectors have holes of 8mm that sustains the desired connection. 
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Figure 5.1.2.1 – Isometric and internal views of connectors. 
 
These connectors are used for clamping between beams, and base bench plate.  
 
 
5.1.3 Steering wheelbase 
 
The Wheelbase is going to be connected to the vertical beams by connecting the side bottom and 
top plates on it then clamping it on the beams through the passive holes present in the structure by 
means of M8x60 hex cap screws. The rest of holes however are present to guarantee a good 
connection between the base and plate. In chapter 4.3.5 details are reported 
 
 
5.1.4 Beams 
 
The beams used in the assembly are those present in the laboratory provided by Bosch. Different 
beam sections are present hence different mechanical properties can be identified. 
 

 
 

Figure 5.1.4.1 – Beam different sections. 
 
The left section beams, being the stiffest, have been used to withstand the column and its base with 
the plates, while the right section beams have been used for the anterior part of structure. Hence the 
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the stiffest beam was fixed in the front part of structure to achieve the suitable stiffness that 
withstand the wheelbase structure. 
 
 
Conclusions 
 
To bring it too short, the numerical models that were available, were rechecked to confirm their 
results then further deep analysis for similar models were also discussed and compared with the 
previous models analysing the behaviour of each component with different configurations and the 
effect of the non-structural mass as rubber and boundary condition was studied deeply. About 11 
different Steering Wheel numerical models, and various numerical models for the Steering Plate 
finally the clamped steering plate assembly and the whole assembly was modelled. So finite 
element method FEM was exploited strongly in both Optistruct and Lupos solvers, furthermore the 
validation of these models was studied deeply through a series of experimental modal analysis. 
These tests were performed on the real components of each numerical model, certain models were 
mounted on certain machines or other structures as the modelled structure using CAD/CAE 
software, as Solidworks. Then these numerical models were adjusted accordingly in order to 
increase their consistency, then Modal Assurance Criterion was used for consistency verification. 
Adding to that, by post processing the extracted experimental data using Matlab, further analysis 
was achieved to check the structure behaviour and its dynamic characteristics using efficient tools 
such as inertance and receptance. Not less important the tools furnished by Lupos, such as 
MoGeSec tool in order to have a high experiment quality by identifying the main nodes where 
accelerometers must be mounted. 
Last but not least the clamped steering plate experimental test must be rechecked and the final 
experiment for the whole assembly that is composed of Steering Plate Steering bar, and Steering 
Wheel is now ready to be tested. 
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