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Abstract

The creation of a suitable and accurate finite element model of a steering system in NVH and its
experimental validation was understudy in this work. The steering in a car is critical. Steering
influences handling and safety of car in operating and dynamic conditions that promotes it to be an
important system. Hence in this thesis, further evaluations and applications of the experimental tests
of steering-wheel and steering-column with car firewall were achieved pointing out a deep and
comprehensive description of each phase, including the results of numerical modal analysis ran by
different software of various steering-wheel models and other related components which they were
under experiment in an experimental modal analysis (EMA). The final steps regarding the
experimental tests correlating the FE models with the real component were performed, including the
bench building in order to verify the performed analysis and to characterize the components
behaviour.
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Introduction

The behaviour of steering wheel in automobile application is still a fair unframed issue in vehicle
applications. One of the ways of detecting and clarifying the dynamic behaviour of a steering
system is a modal analysis. Moreover, identifying a certain behaviour of any mechanical system
using Finite Element Method (FEM) is an efficient way that has been performed and developed by
means of numerical models and commercial software that are capable, if used wisely, of predicting
the structure’s future response for a certain input excitation. However, to validate and verify the
obtained results experiment is always needed. The degree of compatibility can be evaluated by
certain methods like MAC, that confirms the convergence of the theoretical solution towards the
real one. As requested from IVECO, a NVH and modal analysis studies were carried out using the
mentioned tools for a new top steering column, definitely to fulfil a certain level of comfort and
control to avoid critical scenarios and vibrations of structure. Hence, finite element models were
constructed performing a modal analysis that yields to a convenient solution and a summary of
preliminary steps of experimental analysis were reported [1]. On the other hand, modifying a
previous configuration in order to meet the new requirements is not an easy mission specially when
the starting point is experimental. This research highlights the modal experimental analysis of the
real behaviour of the entire system of a steering wheel, and firewall bench that verifies the
numerical modal analysis and interprets the results to conclude future improvement and solutions
for its structural design.
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1. Modal analysis

The steering system FEM model that was provided by the constructor was then analysed,
manipulated, and developed by previous research done at PoliTO, nevertheless it is convenient to
highlight certain software aspects that can be considered as a preliminary guide for a modal
analysis. Modal analysis is an accurate prediction of a system behaviour identifying its response
where a new modal coordinate system can be built and found leading to decoupling the ordinary
differential equations that describe the system.

The following dynamic linear equation of the problem is considered in the study:

M5 + Cx + Kx = f(£) (1.1)

where M is the mass matrix and K is the stiffness matrix, the damping however was neglected since
the damping ratio of steel is relatively low approaching by that the real case, but damping is heavily
taken into account when dealing with the complete model where rubber layer is influencing. f(¢) is

the vector of external forces that can be applied on the structure, and x is the displacement vector.
When f(¢) is 0 we obtain a homogenous equation, without damping, that fairly describes the free

behaviour of the system. Differently, by considering the rubber this equation is no more accurate
because this non-structural mass has an evident impact on the behaviour of the structure due to its
mass and the damping characteristics that it intensifies. The Automotive steering wheel system that
has been studied in both configurations performing experimental modal analysis EMA showed the
effect of the important rubber layer on damping the vibrations of the wheel. In the following
research the experiment details are highlighted and analysed.

x=Tx,, =T ®, . n=P 1 (1.2)

BCs
x represents the physical coordinates and dofs, ® is the modal transformation matrix that contains
the modal vectors n however describes the principal modal coordinates with the modal dofs. This
system shows the transformation matrix that is able to decouple the equations of motion giving
opportunity to solve single dof systems. exploiting the mass and stiffness orthogonality property,
then by solving the eigen value problem the natural frequencies are easily obtained
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2. Finite element method software

Finite Element Method (FEM) is one of the most powerful tools that engineers adopt in order to
simulate the physical phenomena in a numerical technique. It is used to analyse a prototype
numerically reducing by that the usage of physical or real prototypes, consequently reducing the
number of performed experiments. It helps in optimizing the studied component and developing its
design efficiently, that reduces a lot of costs as well.

The system understudy is described by set of partial differential equations (PDE) that the computer
is going to solve. Knowing that the real system has an infinite number of dof, the numerical model
solved by FEM is stiffer than reality and the solution obtained is approximate and not exact since in
numerical model there is a finite number of dof. In order to increase the level of accuracy certain
skills of the user play a main role other than the mathematical knowledge the user must be able to
apply a good mesh, since models’ discretization has a main influence on the final results. Many
FEM software are available today in market, but we decided to work on Hypermesh for meshing
and on Optistruct and Lupos for solving.

2.1 Hypermesh
Hypermesh is one of the tools exploited in order to perform a well discretized mesh. In particular

Optistruct solver integrated in Hypermesh was adopted to solve and get the solution and the main
steps are here reported.

Figure 2.1.1 — Hypermesh interface.

Once the geometry is imported, many aspects can be assigned to the model as seen from the
interface in Figure 2.1.1 like material properties, element type, applied constraints, the wanted
output and the type of analysis to be run after completely defining the model.

Modal analysis will give us a clear knowledge about the natural frequencies of the system and the
modes of vibration, hence an efficient clue that helps in improving the design of the structure. But
solvers require a deep knowledge by users especially about the engineering approach used by the
computers in order to reach the desired results, hence it is important to shed light on the fact that
FEM is an approximate method and not an exact one. Therefore, studying the elements available in
the software and the way of selecting them is not less important since elements have also their
influence on results.

Furthermore, an essential and important aspect is defining coherently the unit of measurement
utilized in the analysis. For example, here the SI units can be implemented according to the specific
application of the project. In this research length was considered in [m] mass in [kg] time in [s] and
force in [N]. This is applicable by selecting the tools option then control cards DTI UNITS, these
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units can be naturally modified according to a compatible unit system, and it is possible to
manipulate these units by scaling them up or down according to the application in a coherent way.

nnnnnn

Figure 2.1.2 — Unit Measurement selection in Hypermesh.

This can be done by going to the analysis option where you can select control cards where the
image in Figure 2.1.2 shows the content.

2.1.1 Hypermesh model architecture

In any model, rods and beams can be modelled as follows ROD element section type with a BEAM
property type where “ROD doesn’t say anything about 1D element type” [2], beams unlike rods that
sustain only axial behaviour, allow for bending since they are characterized by more dofs although
they can be assumed as mono-dimensional, and the connectors that grant a kinematic connection
between nodes were modelled as tubular beam elements and this can be easily performed by the
Hypermesh selecting the type and defining the corresponding parameters (such as thickness,
density....). In our case we had steel and aluminium materials. To create any of the mentioned data
it is sufficient to press a right click on the model browser as in Figure 2.1.1.1 and select the data of
interest. Since in our model that, we are going to discuss about in details in chapter 4, we have a
suitable geometry such as steering wheel frame, to use mostly beam elements that can be identified
as PBEAML in Hypermesh or the PSOLID for the central part.
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SECTION_FOR_...
TYPE:
DIM1A-
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[
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Figure 2.1.1.1 — Selecting card image and element section type from model browser.

Then a mesh must be created assigning the mesh type and size of elements. In critical zones where
we can have stress concentration or an abrupt change of geometry near holes the mesh can be
refined in order to get more correct and accurate results. From to the lower control panel selecting

the 2D option where control mesh is possible.

planes ruled connectors automesh edit element
cones spline HyperLaminate shrink wrap split
spheres skin composites smooth replace
torus drag qualityindex detach
spin elem cleanup order change
line drag mesh edit config edit
elem offset midmesh ‘ rebuild mesh elem types

Figure 2.1.1.2 — Meshing in 2D option from control panel.

Geom
1D

2D

3D
Analysis
Tool
Post

The mesh type and mesh elements can be defined after entering to automesh section the quad or tria
elements as desired the selection is done by selecting the surfaces or elements to be meshed as
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indicated in Figure 2.1.1.3. Furthermore, a mesh refinement can be performed also by mesh edit

where the refinement is needed.

S ignerioli-| @K © i2aw

- G- @R | 8By comp

P e RN E-L|EPr| -+,

elementsize =
mesh type:

surfs &

size and bias

batchmesh/QI optimize

edge deviation

surface deviation

rigid body mesh
interactive

L e T T B BN |

10.000 i elems to surf comp
- ‘D mixed | 5 first order
- keep connectivity
flow: [ align
map: [« size [« skew

[ link opposite edges with AR <

| [model

i auto
I

Figure 2.1.1.3 — Meshing in 2D option from control panel.

2.1.2 Solver settings

| M Constraint

Other than applying constraints and forces, In order to allow Optistruct to perform the analysis and
obtain the results an EIGRL Real Eigenvalue Extraction Data can be applied, it is Lanczos method
[3] that defines the data required to perform real eigenvalue analysis (vibration or buckling).

This can be done by defining a new load collector selected from card images selecting EIGRL. V1
is the first value of frequency range, V2 is the last value of frequency range and ND is the number
of modes that user wants to be visualized.

Name ID/@ Include
-5 Beam Section Collectors (5)
‘@ Cards (2)
-l Components (14)
-4 Load Collectors (1)
[ H# constraint 10 0
-[gh Load Steps (1)
(g Materials (3)
~[E Steel i | 0
[ Aluminium 2l 0
[T Aluminium_central kY | 0
- Parts (6)
~figa Properties (22)
A Titles (1)
Name Value
Solver Keyword: EIGRL
Name: Constraint
1D: 1
Color: 1]
Include [Master Model]
Card Image: EIGRL
Load Types: SPC(1)
User Comments Hide In Menu/Export
V1: 1.0
V2
ND: 25
MSEI VI -

Figure 2.1.2.1 — Load collector setup and EIGRL selection (25 imposed modes).
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In case of a constrained analysis, it is possible to create another load collector as single point
constraint SPC that represents a boundary condition as a bolt or adhesive joint where a kinematic
equation is imposed in particular the SPC fixes a node without allowing for a displacement. These
single point constraints have a distributed effect by using the rigid body elements (RBEs) created in
components sector, and they practically represent the rigid motion of the structure or of two
considered nodes with possible addition of the stiffness.

Then in Analysis create a load step to combine the load collectors’ effects and create its name, after
that in model browser at the left part of the screen the analysis type is defined as normal modes and
the single point constraint are combined by the single point constraint load collector. Scrolling
down, the output files can be selected and any other wanted output (displacement, ESE Element
Strain Energy, ...).

Name ID/® Include
I Beam Section Collectors (5}

-l Cards (2)

g Components (14)
1= Load Collectors (1)

--Igh Load Steps (1)
- Constraint 1 0
& Materials (3)
~|E Steel TH 0
= [E Aluminium 2l 0
~IE  Aluminium_central kY | 0
B Parts (6)

i Properties (22)

-3 Titles (1)

Name Value
[=] Subcase Definition -
=l Analysis type: Narmal modes
SPC: (1) Constraint
MPC <Unspecified>
METHOCD (ST.. (1) Constraint
METHOD (FL..  <Unspecified>
STATSUB (PR.. <Unspecified>

SUBCASE OPTIONS
LABEL: [l
SUBTITLE: [l
= ANALYSIS:
TYPE MODES v

Figure 2.1.2.2 — Load step setup.

2.1.3 Post processing of results

After implementing all the needed entities correctly, it is possible to obtain the results by ordering
the solver to do so, this is possible by selecting the analysis tab in the control panel and clicking on
the solver name, in this case Optistruct, and if there are no errors results and output file can be
visualized smoothly from the new window that appears after the software finish computation.
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veclors boad types | interfaces | control cards | » Geomn
corslrainls | accels | ut Black | 1D
r.quel.luru| LerleraLurd.5| B [ T
lorees | fliax | blocks | ¢ 3D
marments | load an gearm | sel segments | optimization | 7 Analysis
Eressures | bedies | ™ Toeal
M5 | Optistruct | ™ Post

Figure 2.1.3.1 — Optistruct in bottom browser.

7\ Wheel.fem - Altair Compute Console Solver View - a X

Solver: |optistruct_2021.2_win4.exe

Input file: Wheel.fem Job completed

Run command:|.../hwsolver.tcl -solver OS -screen ../Wheel. fem

Message log: Optimization summary: Graph
Messages for the job: able Grid/Elem ID Value

ANALYSIS COMPLETED.

Run summary:
ANALYSIS COMPLETED. Find: ; A

==== End of solver screen output ====

==== OptiStruct Job completed ====

Results View Close

Figure 2.1.3.2 — Optistruct interface after completing analysis.

From the interface clicking on view button, it will be possible to view the input files that contain the
nodes’ number and coordinates and the type of elements and more details that were inserted
previously, mode shapes and the output files that shows the details about each mode and about the
elements as shown in Figure 2.1.3.3.

ok ok ko ok ok ok ok ko ok ko ok ke ok

FINITE ELEMENT MODEL DATA INFORMATION :

Total # of Grids (Structural) : 3504
Total # of Elements : 2309
Total # of Rigid Elements : 264
Total # of Rigid Element Constraints : 1062
Total # of Degrees of Freedom : 12036
(Structural)

Total # of Non-zero Stiffness Terms 348027

Element Type Information

CBEAM Elements : 321
CHEXA Elements : 1988

Load and Boundary Information

SPC sets : 1

Material and Property Information

PBEERM Cards H 21
PSOLID Cards 1
MAT1 Cards : 3

Figure 2.1.3.3 — Optistruct ouput file.
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2.2 LUPOS

LUPOS is a FEM code developed by DIMEAS department in POLITO and integrated in Matlab
that follows the lumped parameter approach as it is the acronym of Lumped Parameter Open
Source. It is able to integrate parametric analyses and non-linear process introducing reduction
techniques and assembly approaches and many additional aspects.

“This software aims to emphasise these concepts from trivial examples to industrial cases starting
from main concepts of dynamic modelling and simulations” [4]. Alternatively, the possibility of
performing the FEM calculation of the same model requires the availability of the same input, to do
s0, it is possible to convert the input data from Hypermesh to LUPOS by a certain conversion from
(.bdf) extension and this is achieved by a certain code as well.

"4 Test Rig Control Panel — O X

Test Rig Control Panel ver. 2021-10-16

Data Singl... ~ J Structure.m Nodes none

(ils} __| Structure gea J Structure. mss J Struct J Struct (ils} none
1D J Struct] J Struct, J Struct J Struct) J Struct. J Struct] 1D none

2D J Struct: J Struct J Struct: J Struct 20 none
3D J Struct| J Struct J Struct; J Struct J Struct J Struct; 3D none

Input Check Repair O New Load
Graph W2 Y ISh normal o] Fig 100 Alpha 08

Pt Contour | 075 | Markersize | 1
[Pt contour

Hex
Hex contour s
Design ~ Object  Nodeld x y z Newid Undo Redo
Gea Delete

Figure 2.2.1 — Test rig control panel interface.

The test rig control panel is a section in Lupos that permits the user to visualize and manipulate the
component elements easily by selecting and unselecting as noticed in the figure. Once the model is
selected and loaded this can be applied and the desired elements in different configurations can be
visualized.

2.2.1 Post processing

Hence to visualize the model and see the elements type only, it’s sufficient to use the test rig control
panel that is a pre-processing of the model however, to apply the modal analysis graphical user
interface of Lupos is used.

14/168



4] LUPOS Control Panel - O X

LUPOS ver. 2021-06-16
Setup J Gui_SteeringWheel_hexa.m Load
Solution Static Dynamic Dyn damped ‘ Time |
Prestressed ‘ Buckling ‘ Rotordyn ‘ Time + MultiPhi |
Model Model file J SteeringWheel_hexa. Parametric No parametric .~
Param file J Parameter list 0
Pre-proc Load Model | TRCP
Options Paramater Model repaired ~ Value
Value no use
Solving Graphics On 7 Off ‘ Close all ‘ Run Simul |
Post-pro Clear all ‘ Save |
XLSdata PLOTdata T |

Figure 2.2.1.1 — GUI interface of LUPOS.

The model then is selected then loaded on the setup section as noticed in figure 1.1.2.2.1 then
solved by pressing on the Run simulation button. In order to solve the problem and be able to see
the modes the Modal Control Panel (MCP) is run and open.

Once the MCP is open a control interface for visualizing and editing the modes and model elements
appears.

4 Modal Control Panel - O X

Modal Control Panel ver. 2021-06-16

Data sng..[9] || stmetrem Nodes 3504

0D J Structure geo J Structure mss J Struct J Struct] 0D 6
1D J Struct J Struct J Struct] J Struct J Struct J Struct] 1D 1905

2D J Struct J Struct J Struct] J Struct 2D none
3D J Struct J Struct] J Struct] J Struct J Struct J Struct] 30 1988
Solution Eigenvectors J Phi.dat DoF 21024
Real Tab. DoF J NodesPhi.dat Modes 20
Close all Eigenvalues J W2.dat Load
Graph [*¥¥Z ~ Fig 1000 0.75/ /04 0.3 Mode Model ~

eactmnﬁ 5 v rame , ’7 | ’| ’ oF ﬂ ﬂ ﬂﬂ

Figure 2.2.1.2 — MCP interface of LUPOS.

In the bottom part of the panel there are the control actions by which the model visualization can be
modified and the wanted mode can be selected. The following modes are visualized by MCP
imposing the nodal displacement option with a deformed transparency.

2.3 LUPOS vs Hypermesh

The most important aspect in LUPOS is that it’s able to represent the same model with the name
nodes and same elements, giving the possibility to have a well approximated calculation and
reasonable results where elements can be visualized and modified easily and efficiently with respect
to Hypermesh. In the figure below it is evident how much are they compatible where same entities,
nodes and elements are demonstrated.
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Figure 2.3.1 — Model nodes without rubber in Hypermesh and in Lupos respectively

In the previous figure it is noticed how much are comparable the two models in different software
having identical geometry and very similar discretization. Later on, it is possible to perform a
Modal Assurance Criterion (MAC) to check the compatibility of both software and the reliability of
the model.

2.4. Modal assurance criterion (MAC)

This numerical and experimental coupling is very fruitful combination where a clearer
understanding about the behaviour can be fished. This was also done through the implemented tools
presented in Lupos

The modal assurance criterion (MAC) is an index that indicates the compatibility consistency
between two series of n eigen vectors [3]. It useful to perform a comparison between experimental
modes and numerical modes or between numerical and numerical.

MAC,, = [q)iq)ka =cos’ & (2.4.1)
e, JTow,] *

The square based vector helps to evidence the higher differences without being sensitive to small
ones. The output of MAC is a nxn matrix having a value between 0 that indicates no consistency

and 1 that means a complete consistency and compatibility, moreover «;, is the angle between the

inner product of the considered eigenvectors.

2 o’ -0}
o'D k2
J k o5+

[(I)f(l)j][(l),fq)k] e (2.4.2)

MACW?2 ., =
Jjk

16 /168



Equation (2.4.2) takes into consideration the eigenvalue contribution in order to avoid an illusion of
having the same eigenvectors with different eigenvalues.

3. Steering wheel

One of the cases that will be understudy in this thesis is the Steering Wheel, the study is going to
analyse experimentally a steering wheel system. A Steering Wheel is an essential component in
vehicles that affects the entire dynamic behaviour of a car, so it is important to guarantee a good
level of comfort, stability, and safety of it. The Seering Wheel was provided by Iveco group and
was exposed to numerical and experimental modal analysis.

vy

N

%
' I+ R Bary .-

Figure 3.1 — Steering Wheel.

The Steering Wheel design was improved by a chain of manipulations in the numerical phase.
Firstly, the system was analysed without the rubber layer that is a non-structural mass (NSM) and
some unnecessary components were removed as the central plate because it has no structural
influence leaving the internal part of the Steering Wheel that is made up of steel and aluminium.

3.1 Model without rubber

Initially the model was analysed without considering any contribution of the rubber that surrounds
the wheel frame. Hence it is important to emphasize the fact that no inertial characteristics of the
rubber were considered at all, and this leads to expect higher frequencies of this model with respect
to the other model that has rubber.
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Figure 3.1.1 — Wheel model in Hypermesh.

The central part in red shown in Figure 3.1.1 is the aluminium component in the wheel, and the grey
elements compose the steel frame. where the total mass of the correspondent structure is 2.343 kg to

be verified with the real object when the rubber layer is released out from the wheel.

3.1.1 Optistruct results

In this subchapter the results obtained by Optistruct of the model with no considered rubber or its

inertial contribution.

Table 3.1.1.1 — Model without rubber, natural frequencies in Optistruct.

Mode # Frequency [Hz]|
1 56.32
2 56.88
3 84.42
4 87.07
5 135.05
6 144.66
7 187.44
8 344.35
9 351.58
10 371.20
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Figure 3.1.1.1 — Optistruct 1% (56.32 Hz) and 2™ (56.88 Hz) modes respectively.

z X Z X

Figure 3.1.1.2 — Optistruct 3™ (84.42 Hz) and 4 (87.07 Hz) modes respectively.
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Figure 3.1.1.2 — Optistruct 5% (135.05 Hz) and 6™ (144.6 Hz) modes respectively.
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Figure 3.1.1.2 — Optistruct 71 (187.44 Hz) and 8™ (344.3 Hz) modes respectively.
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Figure 3.1.1.2 — Optistruct 9™ (351.1 Hz) and 10™ (371.2 Hz) modes respectively.

3.1.2 Lupos results

z X

Lupos frequencies are very similar to those in Optistruct according to an analogous model without

rubber that was analysed.

Table 3.1.2.1 — Model without rubber, natural frequencies in Lupos.

Mode # Frequency [Hz]|
1 54.23
2 63.31
3 85.61
4 90.53
5 139.3
6 146.2
7 187.7
8 348.6
9 356.1
10 374.6
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Mode 1 - 54.23 Hz
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Axis y [m]

Mode 2 - 63.31 Hz
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Figure 3.1.2.1 — LUPOS 1* and 2" modes respectively.
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Figure 3.1.2.2 — LUPOS 3™ and 4™ modes respectively.
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Figure 3.1.2.3 — LUPOS 5™ and 6™ modes respectively.
Mode 7 - 187.7 Hz Mode 8 - 348.6 Hz
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Figure 3.1.2.4 — LUPOS 7" and 8™ modes respectively.
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Mode 10 - 374.2 Hz
Mode 9 - 356.1 Hz
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Figure 3.1.2.5— LUPOS 9" and 10" modes respectively.
It can be noticed that the most displaced nodes are those that are more distant from the bars
connected to the central part. Moreover, modes are identical in both numerical software this
indicates the reliability and accuracy of them.

3.1.3 Lupos vs Optistruct

Table 3.1.3.1 — Model without rubber, Optistruct and Lupos natural Frequencies.

Mode # Optistruct [Hz] Lupos [Hz]
1 56.32 54.23
2 56.88 63.31
3 84.42 85.61
4 87.07 90.53
5 135.05 139.26
6 144.66 146.15
7 187.44 187.65
8 344.35 348.59
9 351.58 356.13
10 371.20 374.21

Despite the slight difference in the frequencies but again, same modes are noticed with different
number according to each software. For example, the 9" mode (344.35 Hz) in Optistruct, as in
Figure 3.1.1.5, is coincident with the 8" mode (348.6 Hz) in Lupos as Figure 3.1.2.4 shows. This
slight difference is devoted to the different approaches adopted by both software.
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3.2 Model with concentrated rubber mass

The steering wheel was modelled benefiting from different elements provided by the software.
Mainly the elements used were beam and rod, for the external and internal part of wheel. On the
other hand, the central part was particularly modelled by solid elements as noticed the difference in
The rubber layer in the first model was not considered in order to get a light model, only its inertial
contribution have been taken into account, as the low stiffness properties of the rubber should not
be so relevant. Hypermesh allows to add non-structural masses, expressed as mass for unit of length
Figure 3.1.1. Hence the rubber was lumped and distributed on among structure to reserve the
inertial properties where lower frequencies are expected.

Axis y [m]

A\ )

<
)
[N

L I L I L I
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

;’_' TZTe X Axis x [m]
Figure 3.2.1 — Wheel Model without rubber in Hypermesh and in Lupos respectively.

In particular in the left photo the blue elements represent the external wheel frame, the yellow
represents the internal wheel frame, the orange represents the connectors, and the red shows the
central solid meshed part, and small red elements represent the T-connectors. In order to get a more
precise result, the meshing of particular components requires more or different elements or both so
that the shape functions that will be interpolated by the software will be of higher order, hence a
more convergent solution toward the exact one. Table 3.2.1 resumes the details of element
properties.

Table 3.2.1 — Properties of model elements.

Component Property Material
i Tvpe Tvpe Density Young Poisson
yp yP [kg/m?] module [GPa] | coefficient [-]

Wheel external | ppp 1 MATI 7800 210 0.3
frame

Wheel internal PBEAML MATI 7800 210 0.3
frame

T-connectors PBEAML MATI1 2790 75 0.3
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external side
T-comnectors | ppp v | MATI 2790 75 0.3

internal side
Supports PBEAML MATI1 2790 75 0.3
Central part PSOLID MATI 2790 75 0.3
Shaft seating PBEAML MATI1 7800 210 0.3

Table 3.2.2 — Geometrical properties of model elements.

Component Section
i T External diameter [m] Internal diameter [m]
ype (1*' BAR Dimension) (2" BAR dimension)
Wheel external frame ROD 0.011 -
Wheel internal frame ROD 0.008 -
ROD 0.010 -
T-connectors external side TUBE 0.017 0.011
T-connectors internal side TUBE 0.017 0.010
TUBE 0.014 0.008
Supports TUBE 0.010 0.004
TUBE 0.014 0.008
TUBE 0.017 0.004
ROD 0.017 -
TUBE 0.016 0.010
TUBE 0.012 0.004
TUBE 0.010 0.006
BAR 0.012 0.005
BAR 0.005 0.005
Shaft seating TUBE 0.031 0.026
TUBE 0.031 0.024
TUBE 0.031 0.022
TUBE 0.034 0.022
TUBE 0.029 0.022

The model boundary condition at the beginning was imposed considering a sealing connection at
the center of the wheel and this is shown in the following figure

Figure 3.2.1 — Wheel constraint in front and top views respectively (Hypermesh).
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It can be noticed that the sealing (black component) was imposed as the constraint with the ground.
In particular, the sealing was modelled as tube beam section with different diameters where the
minimum radius was 11 mm, and the maximum radius was 17 mm leading to a high stiffness this
tube element is connected to the central part of the wheel by rigid body elements (RBEs).
Moreover, the considered dimensions are not geometrically convenient with the wheel. The analysis
was run any way and the results are explained below. This constraint was initially adopted in both
models with and without rubber including that with NSM.

3.2.1 Optistruct results

With the material properties mentioned previously and following the same procedure explained in
chapter 3.1.1 the analysis was run and the following results for the first 10 modes were obtained.

Table 3.2.1.1 — Model with NSM, natural frequencies in Optistruct.

Mode # Frequency [Hz]
1 45.80
2 46.22
3 68.30
4 69.98
5 109.4
6 116.4
7 150.3
8 278.2
9 280.0
10 296.7
Y Y
£ X Z X

Figure 3.2.1.1 — 1% (45.804 Hz) and 2" (46.219 Hz) modes respectively.
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Figure 3.2.1.2 — 37 (68.3 Hz) and 4" (69.98 Hz) modes respectively.

Figure 3.2.1.3 — 5% (109.38 Hz) and 6™ (116.42 Hz) modes respectively.
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Figure 3.2.1.4 — 7% (150.3 Hz) and 8™ (278.2 Hz) modes respectively.
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Figure 3.2.1.5 — 9" (280.04 Hz) and 10" (296.73 Hz) modes respectively.
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3.2.2 Lupos results

Table 3.2.2.1 — Model with NSM, natural frequencies in Lupos.

Mode # Frequency [Hz]|
1 43.57
2 50.25
3 67.32
4 70.1
5 109.4
6 114.8
7 148.9
8 266.2
9 278.4
10 296.8

Mode 1 - 43.57 Hz Mode 2 - 50.25 Hz

02r 0.2+
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-0.3 -0.2 -0.1 0 0.1 0.2 -0.3 -0.2 -0.1 0 0.1 0.2
Axis x [m] Axis x [m]

Figure 3.2.2.1 — 1% and 2" modes respectively.
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Mode 3 - 67.32 Hz

Mode 4 - 70.1 Hz
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Figure 3.2.2.2 — 3" and 4™ modes respectively.
Mode 5 - 109.4 Hz
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Figure 3.2.2.3 — 5" and 6™ modes respectively.
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Figure 3.2.2.4 — 7% and 8" modes respectively.
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Figure 3.2.2.4 — 9™ and 10™ modes respectively.
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3.2.3 Optistruct vs Lupos

Table 3.2.3.1 — Model with NSM, Optistruct and Lupos natural frequencies.

Mode # Optistruct Lupos
1 45.80 43.56
2 46.22 50.24
3 68.30 67.31
4 69.98 70.08
5 109.4 109.4
6 116.4 114.7
7 150.3 148.9
8 278.2 266.1
9 280.0 278.3
10 296.7 296.8
11 403.71 397.37
12 407.07 402.52

The compatibility of both software is relatively high even if some modes number in one software
may correspond to different mode number in the other software. For example, in Table 3.1.3.1 the
9" mode of Optistruct corresponds to the 8" mode of Lupos. and vice versa.

Model with concetrated masses Model with concetrated masses

e ennnn N * i el P
N O I} | o yd o
o JOICICI IO v
N [ " Gt O .D‘ °
N (e 0 = 7 Vi &
S I I O | 60 & 2 v 5 3
N EEEE EEEEE S 5 e 0 2
Y| O ® i ! i/ . L
« JODROOCDOO00] % ' )
(] I 2 i i T 17
AR | O | o niloll < 4 ol | 0
BUO000000000 oolla e - .
Figure 3.2.3.1 — Model with NSM, MAC between Optistruct and Lupos.
3.3 Model with rubber

Adding non-structural mass can cause considerably a relevant increase in the inertia of the system
and a damping influence on vibrations. Moreover, as noticed in the following sections, a certain
increase in the natural frequency amplitude is noticed.

Table 3.3.1 — Rubber physical properties.

p, Density [kg/m3] 434
E, Young module [MPa] 5
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‘ v, Poisson coefficient [-] ‘ 0.49 ‘

The estimated values for the real system in the table will be verified in the experimental analysis.

|||||||

i

11
-
[T

£ X
Figure 3.3.1 — Wheel model with rubber layer.

The figure above shows the construction of the model with rubber layer modelled by hexahedron
elements adopting the Minecraft project that aims to simplify the solid mesh by the simpler solid
element, which is the cube, and the influence of this idea is to reduce the nodes number and
elements number as well and to facilitate the calculation process and its time. However, adopting
this procedure causes an important increase in the numerical calculated mass of structure so a
change of density was necessary to compensate.

Table 3.3.2 — Comparison between new and old wheel configuration.

Old central | New central Old rubber | New rubber

) part part layer layer

Number of nodes [-] 12064 3168 17538 13727
Number of elements [-] 53271 1988 76568 8915
Pr, Real density [kg/m’] 2790 2790 434 434
M;, Real mass [kg] 0.460 0.693 1.614 1.981

Pn, Adjusted density [kg/m’] - 1853 - 353.5

M, New mass [kg] - 0.460 - 1.614
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Figure 3.3.2 — Modelled and real steering wheel mass comparison.

In the previous figure an approximate equal mass was obtained, and this again proves the reliability
of the model and the calculations done with the explained comprised simplification and procedure
that were followed.

3.3.1 Optistruct results

In the following section results obtained by Optistruct solver, where the first 10 structural modes are
reported in a way similar to the same procedure explained before in performing a modal analysis.
View the modes is possible by selecting the .h3d file after resolving the model by Optistruct then by
choosing the wanted mode from the browser panel at the left part of the screen with the addition of
other control methods available in the control panel at the bottom.

Table 3.3.1.1 — Model with rubber, natural frequencies in Optistruct.

Mode # Frequency [Hz]|
1 45.45

47.11

69.96

73.30

110.0

115.3

- 142.9

149.7

- 214.1

AN B (W(b

|

35/168



- 226.7
- 231.2
- 249.0
- 252.4
8 272.9
9 280.4
- 281.0
- 285.5
10 289.3
300.54
310.61

Y

Figure 3.3.1.1 — 11 (45.45 Hz) and 2" (47.11 Hz) modes respectively.
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Figure 3.3.1.2 — 37 (69.96 Hz) and 4" (73.3 Hz) modes respectively.

Figure 3.3.1.3 — 5% (110.0 Hz) and 6 (115.3 Hz) modes respectively.

Figure 3.3.1.4 — 7% (149.7 Hz) and 8™ (272.9 Hz) modes respectively.
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Figure 3.3.1.5 — 9™ (280.4 Hz) and 10™ (289.3 Hz) modes respectively.

3.3.2 LUPOS results

The rubber layer as Figure 3.3.2.1 shows that the layer is attached to the wheel by means of RBEs
that can physically be the adhesive material. It is more important to emphasize the fact that this
layer is affecting fairly the behaviour of system since this non-structural mass can add an important
inertial contribution but also a damping one.
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Figure 3.3.2.1 — Wheel with and without the RBEs respectively.
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Table 3.3.2.1 — Model with rubber, natural frequencies in Lupos.

Lupos

Mode # Frequency [Hz]

1 49.60
56.59
72.65
80.99
117.6
122.1
- 142.3
151.8
219.6
- 229.3
- 233.0
- 256.5
- 259.7
- 277.0
8 2717.5
- 285.3
- 290.3
9 292.4

Nk~

|

The modes presented by the model in Lupos are presented as follows:

Mode 1 - 49.6 Hz Mode 2 - 56.6 Hz
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E E
N
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03 | | | | I 03 | L . I .
-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.2 -0.1 0 0.1 0.2
Axis x [m] Axis x [m]

Figure 3.3.2.2 — 1t and 2" modes respectively.
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Mode 3 - 72.66 Hz Mode 4 - 81.01 Hz
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Figure 3.3.2.3 — 3™ and 4" modes respectively.
Mode 5 - 117.6 Hz Mode 6 - 122.1 Hz
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Figure 3.3.2.4 — 5™ and 6™ modes respectively.
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Mode 8 - 151.8 Hz Meode 15 -277.5 Hz
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Figure 3.3.2.5 — 7™ and 8" modes respectively.

Mode 18 - 292.4 Hz
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Figure 3.3.2.6 — 9™ mode.

Despite the difference between the two evolved software the between some mode shapes it is
noticed also the compatibility between them. In particular, the 10™ (298.3 Hz) structural mode
represented by Optistruct Figure 3.3.1.5 corresponds to the 9™ (292.4 Hz) structural mode evaluated
by Lupos Figure 3.3.2.6 similarly the 9" (280.4 Hz) mode corresponds to the 8% (177.5 Hz)
respectively this implies that there is an accepted convergence between the two results and shows
an excellent reliability of Lupos with the addition the same mode shapes and wheel parts are
involved in each relevant mode. Where some small differences may be devoted to the different
computational methods adopted by the two software.
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3.3.3 Results comparison Optistruct vs Lupos

Table 3.3.3.1 — Model with rubber, Optistruct and Lupos natural frequencies.

Optistruct Lupos
Mode # Frequency [Hz] Mode # Frequency [Hz]
1 45.45 1 49.60
2 47.11 2 56.59
3 69.96 3 72.65
4 73.30 4 80.99
5 110.0 5 117.6
6 115.3 6 122.1
- 142.9 - 142.3
149.7 7 151.8
214.1 219.6
- 226.7 - 229.3
- 231.2 - 233.0
- 249.0 - 256.5
- 252.4 - 259.7
8 272.9 - 277.0
9 280.4 8 2717.5
- 281.0 - 285.3
- 285.5 - 290.3
10 289.3 9 292.4
- 300.54 - 303.3
- 310.61 - 3223
- 312.70 - 323

3.3.4 Model with rubber vs without rubber

Table 3.3.4.1 — Models with and without rubber respectively, natural frequencies in Optistruct.

With rubber Without rubber
Mode # Frequency [Hz] Mode # Frequency [Hz]

1 45.45 1 56.32

2 47.11 2 56.88

3 69.96 3 84.42

4 73.30 4 87.07

5 110.0 5 135.05

6 115.3 6 144.66

- 142.9 - -

7 149.7 7 187.44
214.1 -

- 226.7 - -

- 231.2 - -

- 249.0 - -

- 252.4 - -

8 272.9 8 344.35
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Optristuct - Clamped without rubber

9 280.4 9 351.58

- 281.0 - -

- 285.5 - -

10 289.3 - 371.20

Model comparison 508 Model comparison
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Figuree 3.3.4.1 — Models with and without rubber MAC and MAC_distW respectively.

It is clear that the models have the mode shapes but the frequencies are not, this is due to the non-
structural mass of rubber, the has an inertial contribution but not a structural one, thus frequencies

will decrease.

Table 3.4.3.2 — Various models, natural frequencies in Optistruct.

Frequency [Hz]|
Mode Tetra4 Hexa8 Hexa8 Tetra4
Tetrad no | Hexa8 no . .

# rubber rubber with with rubber rubber
rubber* rubber* NSM* NSM
1 55.39 56.32 44.55 45.45 45.80 44 87
2 58.06 56.88 46.89 47.11 46.22 46.22
3 85.35 84.42 68.67 69.96 68.30 67.57
4 87.17 87.07 70.72 73.30 69.98 68.02
5 138.24 135.05 109.72 110.0 109.4 109.0
6 144.24 144.66 113.13 115.3 116.4 114.9
7 188.87 187.44 149.43 149.7 150.3 150.4
8 349.46 3443 272.33 272.9 278.2 277.0
9 361.07 351.1 279.78 280.4 280.0 281.2
10 372.83 371.2 291.08 289.3 296.7 296.8

In Lupos however, the following results were obtained:
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Table 3.4.3.3 — Various models, natural frequencies in Lupos.

Frequency [Hz]
Mode . .
4 Tet no Hex no Tet with | Hex with | Hex rubber
rubber rubber rubber rubber* CONM*

1 53.61 54.23 56.18 49.60 43.57
2 62.84 63.31 61.78 56.59 50.25

3 84.72 85.61 74.81 72.65 67.32
4 89.23 90.53 84.69 80.99 70.1

5 138.3 139.26 126.4 117.6 109.4
6 144 .3 146.15 128 122.1 114.8
7 186.9 187.65 156.3 151.8 148.9
8 347.6 348.59 281.7 277.5 266.2
9 3504 356.13 304 2924 278.4
10 - 374.21 - - 296.8

4. Experimental modal analysis

In order to validate the results of natural frequencies and mode shapes carried out by the FE model
and Experimental Modal Analysis (EMA) is performed. EMA is a very efficient tool to check the
accuracy of the studied model and to comprehend the dynamic behaviour of the structure.

Figure 4.1.1 shows the machine on which the steering wheel will be mounted for the first
experimental analysis. This machine is characterized by high inertia where its mass is about 2 tons
equipped by soft springs that guarantee a low frequency vibration that are far away from the
frequencies of steering wheel and unreadable by the accelerometer in this way the correct and pure
acquisition is assured avoiding any external influence and uncoupling of the test rig machine from
the internal dynamic of the structure.

4.1 Clamped steering wheel

Moreover, this massive machine having this high inertia is used for fatigue experiments, where it
guarantees a good clamping boundary condition that near to ideal one as in the case below.
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Figure 4.1.1 — Test rig machine and experiment environment.

—
— 'i*%""‘ 8+

Figure 4.1.2 — Clamped SW on test rig machine.

4.1.1 Experimental — numerical post processing

%108
Yie

ImisZym)

[Amplitude

Figure 4.1.1.1 — Experimental FRF Sum diagram.

The real frequencies, eigenvectors and eigen values of the experimental test were extracted from the
testlab acquired data and by navigating the cursor into the peaks of the sum of the frequency
response functions (FRFs) that were obtained. The selection was done also taking into consideration
the mode shapes since this model has, due to the rubber layer, presents plenty of local modes that
are not considered to be structural, then the following results reported below.
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Table 4.1.1.2 — Comparison between experimental and numerical Frequency results

Testlab

Lupos

Mode #

Experimental
frequency [Hz]

Mode #

Numerical
frequency [Hz]

43411

49.60

45.283

56.6

WM (=

68.757

W (=

72.66

81.01

104.730

117.6

(U, W S |

110.508

(S E

122.1

142.3

(o)}

157.448

(o)}

151.8

219.6

229.3

233.0

256.5

259.7

277.0

2717.5

285.3

290.3

292.4

303.3

322.3

323

354.5

357

360.3

365

369.9

374.2

376.1

381.2

384.5

394.4

411

415.3

423.2

430.9

438.4

442

443.9

456.6

466.1

468.5

473.7
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Although, the obtained MAC graph has some discrepancy that leads to think about optimizing the
numerical model. In particular the numerical model will be modified by modifying the stiffness
since the inertial contribution is already at a very good point.

MAC 1! identification
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Figure 4.1.1.2 — MAC representation between experimental and numerical data.

FEA

It is clear that 1% and 5™ modes are compatible, the 7" experimental mode is coherent with the 8*
numerical mode. The discrepancy in modes 3, 4 and 5 may be due to the rubber local modes or
because the boundary condition that was imposed in the numerical model was extremely high or
due to an error in the identification of the experimental results while extracting it from Testlab. To
get rid of these doubts several steps were done.
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Figure 4.1.1.3 — MAC_dist representation between experimental and numerical data.

The MAC _dist representation shows the correlation between the experimental and the numerical
sets of eigenvectors with proportional distance of the related natural frequencies as shown in the
previous figure. It seems from the neighbourhood between isoline and the MAC indication that the
5" numerical mode refers to the 5™ experimental mode since it is nearest to the isoline.

Unfortunately, the doubts regarding the 2™, 3™ and 4™ mode are still storming in mind.
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EMA

Figure 4.1.1.4 — Auto MAC representation of experimental data.
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In Figure 4.2.3.3 clears out the doubt that there was double selected mode during the identification
since in the FRF figure only one peak is noticed, hence, the same mode was chosen two times. To
clear up any doubts a re-identification process was performed, and the results were re-analysed.

EMA
(SRS

Figure 4.1.1.5 — MAC between FEA and EMA after re-identification.
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FEA

Firstly, it can be noticed that the dispersion in modes 2, 3 and 4 is demolished but it is still needed
to detect the real relation between 4" EMA mode and the 7" FEA mode, looking again to 7"
numerical mode shape, it is important to emphasize the fact that this mode is local and it is related
exclusively to the rubber. This kind of dispersion that may be called also spatial aliasing, may be
due to the low number of nodes taken during the experiment, so the isoline is again needed to verify
this. It is also important to note that the 4™ numerical mode does not have any correspondence, and
this is because this mode is torsional acting around the wheels axis as obtained numerically, while
the experiment was done by hammering only radially the structure this justifies the fact this mode is
not detected experimentally.
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MAC distw 2" identification
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Figure 4.1.1.6 — MAC _dist of the second identification.
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Furthermore, it is convenient to confirm this check by plotting the MACW?2 that distinguishes not
only the eigenvectors but also compares eigenvalues, and this is great advantage in case there are
similar eigenvectors while eigenvalues are not.

MACW2 2" identification
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Figure 4.1.1.7 — MACW?2 after re-identification.
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FEA

And this confirms that what was concluded before that 4" EMA mode corresponds exclusively to

the 5™ FEA mode.

Finally, to avoid any ambiguities the auto-MAC 1is replotted
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Auto MAC 2" identification
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Figure 4.1.1.8 — Auto MAC after re-identification.

Here again, the 2x2 sub matrix noticed up right the figure, is probably a spatial aliasing in these
high frequency modes since there were not enough experimental nodes, to measure and uniquely
identify the concerned mode, hence nodes number was lower than what was needed but this is not a
big issue since it was detected and highlighted here in figure indicating also that a good
identification was performed.

4.1.2 Experiment Setup and sensor positioning

The analysis is performed to exercise the experimental methodologies i.e. definition of experimental
setup, construction of the same, setting of the LMS.Testlab environment for impact testing. In the
second part, the identification of mode shapes is performed focussing on stabilisation diagram,
stable point recognition and extraction of data from LMS.Testlab environment for data
manipulation in common programming languages such as Matlab®.

In conclusion, post-processing was performed: CompleX Modal Assurance Criterion (MACX) for
checking goodness of experimental activity and comparison with a preliminary Finite Element (FE)
model was understudy as well.

Interestingly the experimental and numerical models show a good compatibility, confirming though
the model validation. This steering wheel is used for Iveco truck vehicles was modelled with
different elements in different software and there was a great convergence to the exact solution, and
this was assured by the EMA.

The experimental modal analysis is performed adopting free-free conditions, exciting the structure
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The steering wheel is fixed on a huge test rig machine supplied by soft springs that do not
affect the component natural frequencies the excitations were done on 19 nodes along all the
possible directions allowed by its geometry, obtaining as an overall 33 excitations to the system.
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a
set of 5 responses acquired to give more repeatability and stability to each measurement.

For each response:

e the spatial coordinates are continuous for each instant of time.
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the time/frequency data and the modal content are acquired and identified with Siemens
Test.Lab v.17.

it evinces those modal coordinates enable approximate solutions, according to the number of
modal coordinates used, thus in nonlinear problems this property can improve computational
efforts in the best way.

uSCITA DI
SICUREZZA

Figure 4.1.2.1 — Experimental setup scenario.

51/168



In order to have a clear idea about sensor positioning, the suitable place where to allocate sensors
can be performed also by Modal and Geometrical Selection Criterion, MoGeSeC [6], that is an
efficient tool based on both geometry and modal properties of the system, obtained by a numerical
modal analysis, for choosing the best representative nodes. The concept behind this technique is that
the modal behaviour of a model can be represented by a list of nodes, whose eigenvectors resume
the modal properties of the whole system. The progressive optimal location is based on both modal
independence information and geometrical location to distribute accelerometers on the whole
structure.

The Selection Criterion is based on the evaluation of the maximum value of the vector w:

w =diag(w,w,”) (4.1.2.1)

that represents the combination of the geometrical vector and the modal vector weights, calculated
for each node, as follows:

S ! _ (4.12.2)
P max(w,) 1 1
i=1 (xp_xi)2+(yp_yi)2+(zp_Zi)2
1 S Gy Gy (028 "
W o=— oY + Y + V) 4.1.2.3
"7 max(w,,) /Zf [ e J ( :

Coefficients k; and k2 allow to weigh the influence of each component; start value are respectively 2
and 1.

The result of this selection is a list of nodes positioned as far as possible on the structure, with a
homogeneous distribution, in order to have the best possible representation of the vibrational
behaviour.

O #1 Node 26190z O #1 Node 26190z

X #2 Node 28724x 0.2 X #2 Node 28724x
#3 Node 22347y #3 Node 22347y
X #4 Node 23697x 0.15 X #4 Node 23697x
#5 Node 27604y #5 Node 27604y
E 0.15 % #6 Node 26778y 0.1 % #6 Node 26778y
N 0%; #7 Node 24695z #7 Node 24695z
o o O #8 Node 23698z E 0.05 O #8 Node 236982
z O #9 Node 23478z N O #9 Node 23478z
g #10 Node 24091y o 0 g #10 Node 24091y
0.2 #11 Node 27549z 3 #11 Node 27549z
> #12 Node 25468x -0.05 > #12 Node 25468x
#13 Node 23240y o #13 Node 23240y
#14 Node 27149z -0.1 #14 Node 27149z
O #15Node 15773z O #15Node 15773z
> #16 Node 25469x -0.15 > #16 Node 25469x
#17 Node 16289z #17 Node 16289z
Axis y [m] #18 Node 24542y 0.2 #18 Node 24542y
-0.2 0.2 Axis x [m] #19 Node 269112 #19 Node 269112
#20 Node 26779y - - : : #20 Node 26779y
Axis x [m]

Figure 4.1.2.2 — Model with rubber, MoGeSec results in Lupos.

Both pictures of the entire system, with different points of view and details of the hardware
implemented and of their location are requested information.
Importance has the reference system (x, y,z) used, according also to suitable models. In case of

already developed models, consider the same reference system.
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Figure 4.1.2.4 — Details of the implemented hardware, from left to right in reading order:
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11.

The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is
performed using an impact hammer PCB 086C03 using hard steel tip (Figure 1.1.3 and
Figure 1.1.4) to reach a good frequency identification range of the structure. A series of 3 hammer
repetitions is linearly averaged. The characteristics are listed in Table 1.1.1.
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Figure 4.1.2.5 — Impact Hammer PCB Model 086C03.

Figure 4.1.2.6 — Hammer stiff steel tip.

Table 4.1.2.1 — Impact hammer characteristics.

Component Characteristics Value
Sensitivity [mV/N] 2.199
+
fmpact Hammer PCB Measurement range pk [N] 2224
Model 086C03 Hammer mass [kg] 0.16-0.235
Resonant frequency [Hz] >22000
Tips number [-] 1
Table 4.1.2.2 — Accelerometer technical characteristics.
. e s Acc.
Component Channel| Accelerometer |Node Weight Sensitivity Direction
ID ID ID [kg] [mV/g] [l
LW139287 1 Tri 1 x 1 14.2-10° 96.1 -X |
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(Peroni) 2 Tri 1y 97.3 -Y

3 Tri 1 z 99.3 +Z

4 Tri 3 x 102 -X

LW226918 5 Tri 3 y 11 14.2-10° 102.1 +Z
6 Tri 3 z 102.3 -Y

8 Tri 2 x 102.5 +X

LW226919 9 Tri 2 y 8 14.2-107 97.5 +Y
11 98.6 +Z

Figure 4.1.2.7 — Steering wheel weight.

4.1.3 Geometrical aspects and acquisition parameters

To run the experimental modal analysis on the component it is necessary to create a model by
identifying the most relevant nodes that allow to build a reference geometry as much close as the
real one and at the same time could allow to give important information with regards to the
response of the system.

The definition of the nodes map is carried out by obtaining the CAD geometry information of the
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the
coordinates of each node are measured according to the reference system set on the component, as
shown in Figure 4.1.3.1.

As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS
Test.Lab, as shown in Figure 4.1.3.3
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o

Figure 4.1.3.1 — Wheel reference frame. Figure 4.1.3.2 — Wheel CAD geometry.

According to reference system and to numerical model, definition of points and corresponding
model nodes are listed in Table 1.3.1. 19 nodes are identified for roving hammer EMA. 3 of them
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance.
Node nomenclature is based on the following considerations:

e Wheel external frame starting from node 1 (12 o’clock; +Y) in clockwise direction until
node 14.

Wheel upper central part from left to right (15 to 16).

Wheel lower central part from left to right (17 to 19).
20" node is the point of clamping.

Axis y [m] 0.1
Axis x [m]

Axi
Axis x [m] sy Im

Figure 4.1.3.3 — Experimental geometry: excited (left) and sensor nodes (right).
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Figure 4.1.3.4 — Node nomenclature.
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Axis x [m]

Details of the experimental geometry are supplied in Table 1.3.1 in which directions of actuation
and reference system for hammer direction are listed. As a reference approach, the hammered
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a
defined orientation with respect to the global reference frame hence Euler angles were also imposed
precisely in order to be available to hammer the Steering Wheel in sufficient directions that can help
in characterizing well the modes.

Table 4.1.3.1 — Geometry of I/O points.

Identifier Exp. point | Model node | x[m] y [m] z [m] Notes
Acc. 1,x,y,z 1 28181 0 0.224 | 0.144 LW139287
- 2 28112 0.096 0.2 0144 -22° XY
- 3 27995 0.16 0.152 | 0.144 -33° XY
- 4 27945 0.184 0.12 0.144 -45° XY
- 5 27782 0216 | 0.016 | 0.144 -85° XY
- 6 27613 0.208 | -0.088 | 0.144 -117° XY
- 7 27432 0.104 | -0.192 | 0.144 -160° XY
Acc.2,x,y,z 8 27383 0 -0.2 0.144 LW226918; -180° XY
- 9 27443 -0.12 | -0.184 | 0.144 -220° XY
- 10 27541 -0.176 | -0.136 | 0.144 -240° XY
Acc.3,x,y,z 11 27691 0.415 | 0.075 | 0.393 LW226919; -265° XY
- 12 27839 -0.216 | 0.064 | 0.144 -290° XY
- 13 27986 -0.176 | 0.152 | 0.144 -310° XY
- 14 28066 -0.128 | 0.192 | 0.144 -330° XY
- 15 18037 -0.072 0.04 0.04 -
- 16 18050 0.072 0.04 0.04 -
- 17 17667 -0.096 | -0.08 0.04 -
- 18 17679 0 -0.08 0.04 -
- 19 17691 0.096 -0.08 0.04 -
- 20 705 0 0 0 -

During impact testing measurements, the parameters in Table 4.1.3.2 are selected:

Table 4.1.3.2 — Independent and dependent parameters of acquisition.
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Quantity Symbol Relationship Value Units

Total acquisition time T - 4 s
Sample frequency /s - 8192 Hz

Total samples N N=fT 32768 -
Bandwidth (max frequency) f f = % 4096 Hz

. f. 1
FRF frequency resolution Af Af = N°T 0.25 Hz
. N
Number of spectral lines N, N, = 5 16384 -

The natural frequencies and damping ratios are extracted in the frequency range 0600 Hz and
reported in the Table 4.1.3.3.

4.1.4 Experimental data analysis

0.25
;o 02t
015
01t

0.05

Axis y [m]

-0.05 1

011

0151

-0.21

-0.25 &

-0.2 -0.1 0 0.1 0.2
Axis x [m]

Figure 4.1.4.1 — Experimental model mesh in Testlab and Lupos respectively.

It can be noticed that the mesh is approximately identical which implies a good reliability.
However, the experimental frequencies and the numerical frequencies are not exactly similar. The
data was reorganized in order to get a coherent visualization that permits a smooth comparison and
interpretation of results.

The natural frequencies and damping ratios are extracted in the frequency range 0+600 Hz from
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in Figure 2.1
and values were reported relatively in Table 4.1.4.1. selecting the poles was limited on 520 Hz
because after that frequency there were no identified poles.
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Figure 4.1.4.2 — Stabilization FRF Sum diagram.

Table 4.1.4.1 — Experimental natural frequencies and damping ratios of Steering wheel.

Mode Freq. [Hz] ¢, damping ratio [%] Description
1 43.44 0.39 local bending YZ
2 45.28 0.69 1% global bending
3 68.73 2.19 bending XZ
4 104.9 0.85 2" global bending
5 110.6 0.61 2" global bending
6 157.5 0.65 local bending XZ
7 291.7 1.11 local bending XZ
8 410 2.93 local bending XZ-YZ
9 425.1 3.97 bending YZ
10 434.4 2.55 3 global bending YZ-XZ
11 484.8 5.29 bending YZ
12 506.8 4.35 4 global bending YZ-XZ
Mode 1 - 43.44 Hz, 0.38748 % Mode 2 - 45.28 Hz, 0.69359 %

0.15
0.1
0.05

0.15
0.1
0.05

Axis z [m]
Axis z [m]

0.2 -0.2

0.1
0

0

. 0.2 0.1
Axi Axis y [m] 0.2 .
is x [m] Axis x [m]

. 0.2 0.1
Axis y [m] 0.2
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Mode 3 - 68.73 Hz, 2.1884 %
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Mode 8 - 410 Hz, 2.933 %
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Mode 9 - 425.1 Hz, 3.9653 % Mode 10 - 434.5 Hz, 2.5479 %
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0.2 0.2
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0.1 i 02 0.1
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Axis m Axis m
y [ml 0.2 Axis x [m] v [ml 0.2 Axis x [m]

Figure 4.1.4.3 — Steering wheel first 12 experimental mode shapes.

In order to carry out a comparison of the independency of the mode shapes. the MACX (compleX
Modal Assurance Criterion) is adopted allowing to measure the correlation level between two
complex mode shapes ¥, and ¥, respectively.

The MACX is defined as follow:

MACX ., = UT?T"MT’T' Y| ]2 (4.1.4.1)
.k .4,
’ [‘I’f‘l’j +“I’JT.‘I’jH [‘I’k”‘l’k +\\P,{Tk\]

where:
e the superscript H is the Hermitian, complex transposed;

e its value ranges from 0 to 1, always real, independently if the eigenvectors are real or
complex;

e it is independent on the norm and the phase of vectors ¥, and ¥, , so the normalisation of

eigenvectors is neglected;
e itis insensitive to conjugate operations on its arguments;
o MACX(Y,,¥,)=0isequivalentto ¥, ¥, =0andpu>1%¥, =0;

e if ¥, =z¥, or ¥, =z ¥, for some complex number z then MACX (¥, ,¥,)=1. But it
is worth noting that this is only a sufficient condition;
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o if one of the vectors ¥, and ¥, is monophase, then the MACX and MAC criterions are

identical;
e conversely, vectors ¥, and ¥, can be found such that MAC(Y¥,,¥,)=0 and

J

MACX (¥, ,¥, )= 1. But, in this case, both vectors are “full” complex since MPC (¥;) =0
and MPC (¥, )=0.
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Figure 4.1.4.4 — Experimental mode shapes Auto-MACX.

The definition of the Modal Phase Collinearity (MPC) index is defined as follows

2 2

ol e
e e ] e, T

2
MPC =MAC, . = =C0s" @ (4.14.2)

Which is a modal indicator that gives the idea whether a mode shape used in its computation is a
real or complex-valued vector. Its estimate inherits the statistical properties of the corresponding
mode shape estimate giving as a result an estimation of the phase of the dofs.

Table 4.1.4.2 — Modal Phase Collinearity values.

Mode MPC
0,8712
0,956
0,8929
0,9393
0,8907
0,8971
0,7988
0,619
0,1666
0,2384
0,6128
0,2179

DD S| le|w|on|un|sw| o] —
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Figure 4.1.4.5 — MCP values for each mode.

Based on the obtained results, a real re-identification was performed for modes having relatively
high MPC, in particular, it was performed for the first 7 modes.
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Mode 5 -110.6 Hz Mode 6 - 157.5 Hz

0.15 0.15
E o1 E o1
» 005 » 005
é 0 é 0

02 0.2
0.1 0 0.1 0
02 0.1 ) 02 0.1
Axis y [m] Axis y [m]
0.2 Axis x [m] 0.2 Axis x [m]

Mode 7 - 291.7 Hz

0.15
0.1
0.05

Axis z [m]

-0.2

0.1

0

) 0.2 0.1
Auds y [l 0.2 Axis x [m]

Figure 4.1.4.6 — Steering Wheel first 7 re-identified real mode shapes.
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Figure 4.1.4.7 — Experimental mode shapes Auto-MAC between real and complex modes.

4.1.5 Post-processing
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the

ratio between the acceleration and the external forces. To check the quality of the results and the
linearity of the component several ways can be performed to do so as auto-inertance
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Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach
Equation (4.1.5.3).

In the complex case of a m-dofs system the inertance formula can be defined as:

(o) x(e) -oy
A_,-k(w)—Fk(w)— ® F;(a))_;ar(iw+sr) 4.1.5.1)

where:
e S isthe complex pole of -mode shape;

e  is the excitation frequency;
e y,, and y,  are the mode shapes related to the j and k nodes respectively.

However, in the real case of a m-dofs system the inertance formula can be defined as:

i (o) x(0) o D, D,
" _N 2 — Jr  Kr 4.1.5.2
R0 R ) B g aeo e

where:
e o, isthe real pole of -mode shape;

e is the excitation frequency;
e @ and @,, are the mode shapes related to the j and k nodes respectively.

After performing the roving hammer test on the clamped wheel structure, the obtained modes and
shapes with their relative vectors and frequencies were analysed by organizing them where each
numerical node data is assigned to the relative experimental node by exploiting Matlab codes and
the powerful functions that exist in Lupos.

The auto-inertance can be defined as the FRF evaluated in the node & due to the excitation on the
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the
node were the FRF is evaluated.

In the following figures the auto-inertances experimental (solid blue line), synthetised with lower
and upper residuals (LR and UR) (dash-dot red line) and synthetised that is represented as well.
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Figure 4.1.5.1 — Auto-inertance: Ely-R1y.

, (] T T T T T
IR
[ I I —-—SynE8yR8y|,
[ I I [ o
[ I I |
10! I I I [ o
I I I [ [
= | I I [ [
z I I [ [
~, I I [ [
L 400 I [ [
£ 10 | [ [
| [ [
3 I Lo
c
5. | .
@ I [ [
£ 3 11 [
X [ [
i [ [
2 [ [
10 I [ [
I [ [
I [ [
I [ [
107 i [ I
0 150 300 450

Frequency [Hz]

Figure 4.1.5.3 — Auto-inertance: E8y-R8y.
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Figure 4.1.5.5 — Auto-inertance: E11y-R11y.

With real modal superposition of m modes or with complex modal superposition of 2m modes, a

Figure 4.1.5.2 — Auto-inertance: E1z-R1z.
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Figure 4.1.5.4 — Auto-inertance: E8z-R8z.
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Figure 4.1.5.6 — Auto-inertance: E11z-R11z.

generic cross-receptance «,, (similarly to mobility Y,, and inertance 4,,), the Maxwell

reciprocity imposes that input and output can be switched:

x/.(a)) x/.(a)) u D, D,
. = = . - = =2 : 4.1.5.3
Oy R R S e
xj(a)) m Y/jrylkr
()= = ok 4.1.5.4
%)= ) Zato-s) (154

An index of non-linearity regarding different dofs of the system is assumed as a consequence of the
complex MAC index (scalar values between 0 and 1) applied to the modulus and phase of
Equations. (4.1.5.5) or (4.1.5.6):
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as a consequence, values far from 1 detect nonlinear behaviour, due to incoherence of similar
receptances, according to Maxwell reciprocity. This index can be used for both numerical and
experimental receptance transfer functions. Since it is not guaranteed the 0+1 range, also a variation
of MAX is defined similar to MACX definition.

MAXXj)k _ |: ‘(l;{kak,j“f“(l;kak,j‘ :|2 (4.1.5.6)
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Figure 4.1.5.7 — MAX index in 30+520 Hz:
on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.1.5.8 - MAX index in 30-320 Hz:
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Figure 4.1.5.9 — MAX index in 30+120 Hz:

on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.1.5.11 — Reciprocity test: E11y-R1y: experimental inertance.

200 250 300 350 400 450 500
Frequency [Hz]

100

90

80

70

60

50

MAXX [%]

40
30

20

68 /168



— EXP
E11y.R8z
10"

|
|
|
& === EXPeg, rity

o
°

Inertance [m/s2 /' N]

. \
0 50 100 150 200 250 300 350 400 450 50
Frequency [Hz]

Figure 4.1.5.12 — Reciprocity test: E11y-R8z: experimental inertance.
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Figure 4.1.5.13 — Reciprocity test: E11y-R11z: experimental inertance.

The experimental modal analysis carried out on the chassis gives as a final result the identification
of 12 mode shapes in the frequency range 0+600 Hz, where the global mode shapes identified are
reported.

The identification of the mode shapes can be considered complete and satisfactory, as it can be
noted in the previous figures looking at the good correspondence among the auto-inertances and the
Maxwell reciprocity comparing the respective experimental and synthetized FRFs.

4.2 Free-free steering wheel

The Free-free EMA has a similar scenario as indication Figure 4.2.2.2 where screw were mounted
on the wheel in order to detect the torsional behaviour of the wheel and to be able to have more
excited direction due to its particular geometry.
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Figure 4.2.1 — Steering Wheel with added screws and accelerometers.

Since there are no ideal conditions for performing an ideal Free-Free experiment elastic bands were
used to guarantee a fairly low natural frequency of the supposed rigid body motions, since
theoretically they must be equal to 0 Hz. Also, in order to simulate the effect of these elastic bands
certain type of elements were exploited in Lupos to do so. In particular the named elastic elements
(els) were put in simulation with a stiffness value approximately equal to the real stiffness of the
elastic bands. The procedure followed in order to calculate the required stiffness was as will be
explained.

Firstly, the initial length of the elastic band was measured, then by trying different 3 masses the
final different lengths were registered.
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Figure 4.2.2 — Elastic band initial length measurement.
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Figure 4.2.4 — Three different used components.

Table 4.2.1 — Used components mass properties.

Component Weight [kg]
Mass 1 1.068
Mass 2 1.8999
Mass 3 3.0259
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clearvars
clear all
clc

Figure 4.2.5 — Elastic band initial length measurement.

Table 4.2.2 — Final elastic band length for each mass.

Component Elastic band
P length [m]

Mass 1 0.36

Mass 2 0.385

Mass 3 0.45
F  =F(x—-Ax),F,=F(x), F,,, = F(x+Ax) 4.2.1)
Kr(x) ~ (F; _F;'—l)—i_(F;Jrl _F;) — F;'+1 _F;'—l (4.2.2)

2Ax 2Ax
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m = [1.068 1.8899 3.0259]; %[kg]
x 1 = [0.36 0.385 0.45]; %[m]

x 0 = 0.335; %[m]

F = 9.81.*m; %[N]

[N
delta F 3 1 = (F(1,3)-F(1,1));
delta x = [x 1(2)-x 1(1) x 1(3)-x_1(2)];

K = 0.5*delta F 3 1/max(delta x); %[N/m]

So the final calculated values based on the adopted measurements were obtained but the minimum
stiffness was considered in order to have the minimum effect of the bands and to preserve the

physical properties of the model.

Table 4.2.3 — Elastic bands stiffhess.

Component Stiffness K
P [N/m]
FElastic Band 147.7
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Figure 4.2.6 — Added elastic bands.

The goal of adding the effect of the bands is to improve the numerical model and to have more

consistency with the experimental mode.
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Figure 4.2.7 — First experimental global bending mode in extreme deformed frames.
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Figure 4.2.8 — First numerical global bending mode.

By noticing the mode shape of this mode, it can be noticed that the numerical mode has a structural
node at coordinate (0,0.13) where in the experimental mode it is not. Despite of adding these bands
numerically the behaviour of the numerical model does not change importantly. Hence, the
Optistruct model was considered mainly for this analysis.

The elastic bands (light green) are added in such a way that the symmetry of the effect on the
Steering Wheel is guaranteed where they were added into two central symmetrical nodes as well.
Moreover, the added masses can be simply neglected because they have a slight inertial affect, so
the natural frequencies are approximately equal since the difference is between 0.5 and 0.7 Hz, thus
they were not heavily considered.

Table 4.2.4 — Free-free model with rubber, Optistruct natural frequencies.

Frequency [Hz]
Mode # CHEXAS
1 8.55x10™
2 8.89x10*
3 9.96x10™
4 1.57x1073
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5 1.60x1073
6 1.65x107
7 86.70
8 107.22
9 107.48
10 148.97
11 201.66
12 250.7

Y

L.

Figure 4.2.9 — First 3 rotational rigid modes, tetra and hexa models respectively.
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Figure 4.2.10 — First 3 translational rigid modes, tetra and hexa models respectively.

79 /168



Figure 4.2.12 — 9" mode (107.48 Hz) and 10" mode (148.9 Hz) respectively.
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Figure 4.2.13 — 11" mode (201.66 Hz) and 12" mode (250.7 Hz) respectively.

4.2.1 Experimental — numerical post processing

Table 4.2.1 — Experimental and numerical natural frequencies.

Testlab Optistruct
Mode # Experimental Mode # Numerical
frequency [Hz] frequency [Hz]

1 87.77 1 86.71
2 104.9 2 107.2
3 105.9 3 107.5
- - - 143.2
- 134.5 4 149

4 153.6 - 200.3
5 215 5 201.7
6 227.1 6 220.8
- - - 234.1
- 243.1 - 250.8
- 259.6 - 253.9
- 2733 - 267.7
- 275.5 - 2753
- 290.4 - 280.2
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Figure 4.2.1.1 — Free-free Steering Wheel AutoMAC.
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4.2.2 Setup and sensor positioning

The free-free experiment was performed by adding the necessary inertial contribution of some
additional components that were inserted in order to meet the real case condition.

Figure 4.2.2.1 — Additional screws mass.

Hence, the additional inertial contribution of the screws and masses was as follows:
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Figure 4.2.2.2 — A followed similar scenario of experiment:
Screws (red) excitation direction (green)

The screws are going to be inserted in all the nodes of the handlebar, as example in such an order:
- Clockwise direction in particular 3, 5, 6, 7, 9 and 12 o’clock as shown in Figure 4.2.2.2

It was noticed that the screw on the upper position (12 o’clock) is practically a node in the 4" mode,
however it is possible to clamp the screw there and excite it, since the energy will be transmitted
consequently from the concerned node to the whole system. Moreover, this point is a node in mode
4 but it is not in other modes.

An important aspect that must be taken into consideration is the inertial contribution of these
additional screws. Their inertia may decrease the natural frequency.

Table 4.2.2.2 — Added inertial contribution of nodes.

Additional inertial contribution Exp. point Model node
Acc. 1, x, y, z, & screw masses 1 28181
Screw mass 2 28112
Screw mass 3 27995
Screw mass 4 27945
Screw mass 5 27782
Screw mass 6 27613
Screw mass 7 27432
Acc. 2, x, y, z, & screw masses 8 27383
Screw mass 9 27443
Screw mass 10 27541
Acc. 3, x, y, z, & screw masses 11 27691
Screw mass 12 27839
Screw mass 13 27986
Screw mass 14 28066
- 15 18037
- 16 18050
- 17 17667
- 18 17679
- 19 17691

-0.2 -0.1 0 0.1 0.2
Axis x [m]
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Figure 4.2.2.3 — Additional screws and sensors position.

The same data sheets of sensors and hammer in chapter 4.1 were exploited, same setup with same
geometry same positions of sensors and same acquisition data. However, in this experiment since
the screws were inserted in the first 14 nodes the Euler angles were not assumed, or they were
considered null.

The experimental modal analysis is performed adopting free-free conditions, exciting the structure
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The steering wheel is fixed on a huge test rig machine supplied by soft springs that do not
affect the component natural frequencies the excitations were done on 19 nodes along all the
possible directions allowed by its geometry, obtaining as an overall 47 excitations to the system.
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a
set of 5 responses acquired to give more repeatability and stability to each measurement.
For each response:
e the spatial coordinates are continuous for each instant of time.
e the time/frequency data and the modal content are acquired and identified with Siemens
Test.Lab v.17.
e it evinces those modal coordinates enable approximate solutions, according to the number of
modal coordinates used, thus in nonlinear problems this property can improve computational
efforts in the best way.

—
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Figure 4.2.2.4 — Experimental setup scenario.

Both pictures of the entire system, with different points of view and details of the hardware
implemented and of their location are requested information.
Importance has the reference system (x,y,z ) used, according also to suitable models. In case of

already developed models, consider the same reference system.
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Figure 4.2.2.5 — Overview of the experimental setup.

Figure 4.2.2.6 — Details of the implemented hardware, from left to right in reading order:
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11.

The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is
performed using an impact hammer PCB 086C03 using hard steel tip (Figure4.1.2.4 and
Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1.

The definition of the nodes map is carried out by obtaining the CAD geometry information of the
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the
coordinates of each node are measured according to the reference system set on the component, as
shown in Figure 4.2.2.9.

As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS
Test.Lab, as shown in Figure 4.2.2.5
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Figure 4.2.2.7 — Wheel reference frame. Figure 4.2.2.8 — Wheel CAD geometry.

According to reference system and to numerical model, definition of points and corresponding
model nodes are listed in Table 1.3.1. 19 nodes are identified for roving hammer EMA. 3 of them
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance.
Node nomenclature is based on the following considerations:

e Wheel external frame starting from node 1 (12 o’clock; +Y) in clockwise direction until

node 14.
e Wheel upper central part from left to right (15 to 16).
e Wheel lower central part from left to right (17 to 19).

E o1
N

Axis z [m]
o
o
w

. . 01
Axis y [m] 0.2

Axi .
is y [m] 0.2 Axis x [m] - Axis x [m]

e Figure 4.2.2.9 — Experimental geometry: excited (left) and sensor nodes (right).

Details of the experimental geometry are supplied in Table 1.3.1 in which directions of actuation
and reference system for hammer direction are listed. As a reference approach, the hammered
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a
defined orientation with respect to the global reference frame hence Euler angles were also imposed
precisely.
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Table 4.2.2.3 — Geometry of I/O points.

Identifier Exp. point | Model node | x [m] y [m] z [m] Notes
Acc. 1,x,y,z 1 28181 0 0.224 | 0.144 LW139287
- 2 28112 0.096 0.2 0144 -
- 3 27995 0.16 0.152 0.144 -
- 4 27945 0.184 0.12 0.144 -
- 5 27782 0216 | 0.016 | 0.144 -
- 6 27613 0.208 | -0.088 | 0.144 -
- 7 27432 0.104 | -0.192 | 0.144 -
Acc. 2. x,y, 2 8 27383 0 -0.2 0.144 LW226918,. screw fixed
radially

- 9 27443 -0.12 | -0.184 | 0.144 -

- 10 27541 -0.176 | -0.136 | 0.144 -
Acc.3,x,y,z 11 27691 0.415 0.075 0.393 LW226919

- 12 27839 -0.216 | 0.064 | 0.144 -

- 13 27986 -0.176 | 0.152 | 0.144 -

- 14 28066 -0.128 | 0.192 0.144 -

- 15 18037 -0.072 0.04 0.04 -

- 16 18050 0.072 0.04 0.04 -

- 17 17667 -0.096 | -0.08 0.04 -

- 18 17679 0 -0.08 0.04 -

- 19 17691 0.096 -0.08 0.04 -

- 20 705 0 0 0 -

4.2.3 Experimental data analysis

During impact testing measurements, the parameters in Table 4.2.3.1 are selected:

Table 4.2.3.1 — Independent and dependent parameters of acquisition.

Quantity Symbol Relationship Value Units

Total acquisition time T - 4 S
Sample frequency /s - 8192 Hz

Total samples N N=fT 32768 -
Bandwidth (max frequency) Sy [y = % 4096 Hz

. f1
FRF frequency resolution Af Af = N°T 0.25 Hz
. N
Number of spectral lines N, N, = 5 16384 -
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Figure 4.2.3.1 — Experimental model mesh in Testlab and Lupos respectively.

The natural frequencies and damping ratios are extracted in the frequency range 0+300 Hz from
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in
Figure 4.2.3.2 the model size was 350 and values were reported relatively in Table 4.2.3.2.
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Frequency [Hz]

Figure 4.2.3.2 — Stabilization FRF diagram.

300

Table 4.2.3.2 — Experimental natural frequencies and damping ratios of the Steering Wheel.

Mode Freq. [Hz] ¢, damping ratio [%] Description
1 43.94 1.18 Bending XZ
2 87.77 0.35 1* local bending YZ
3 104.9 0.458 2" global bending YZ
4 105.9 0.392 3" bending XZ-YZ
5 134.5 0.951 local bending XZ
6 153.6 0.585 4™ global bending XZ-YZ
7 215.1 2.25 5" global bending XZ-YZ
8 227.1 2.97 6 global bending XZ-YZ
9 243.1 5.01 local bending XZ
10 259.6 0.0044 -
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Mode 7 - 215.1 Hz, 2.2509 %
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Mode 13 - 290.4 Hz, 0.21689 %

E o1
N

Ay {ml ' 0.2 Axis x [m]

Figure 4.2.3.3 — Steering wheel first 13 experimental mode shapes.

In order to carry out a comparison of the independency of the mode shapes. the MACX (compleX
Modal Assurance Criterion) is adopted allowing to measure the correlation level between two
complex mode shapes ¥, and ¥, respectively.

The MACX defined in Equation (4.1.4.1) was considered.
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Figure 4.2.3.4 — Experimental mode shapes Auto-MACX.
The definition of the Modal Phase Collinearity (MPC) index is defined as in Equation (4.1.4.2)

Table 4.2.3.2 — Modal Phase Collinearity values.

Mode MPC
1 0,9656
0,8747
0,9296
0,5945
0,5392
0,4647
0,4382
0,0745
0,6311
0,9918

O |0 [J [N ||k~ |[W|N

[—
e
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11 0,9128
12 0,0356
13 0,9694

MPC value
o o © o o
(3] [} ~ (o<} © -
le]
o
g
O
. . | | .

N
~
T
L

o

o

1 2 3 4 5 6 7 8 9 10 11 12 13
Mode number

Figure 4.2.3.5 — MCP values for each mode.

Based on the obtained results, a real re-identification was performed for the modes having relatively
high MPC, in particular, it was performed specially for modes 1, 2, 3, 10, 11, 13.
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Mode 5 - 134.5 Hz
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Mode 11 - 273.3 Hz Mode 12 - 275.5 Hz
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Figure 4.2.3.6 — Steering Wheel re-identified real mode shapes.
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Figure 4.2.3.7 — Experimental mode shapes Auto-MAC between complex and real modes.

4.2.4 Post-processing
The inertance is a frequency response function (FRF) that is defined in the frequency domain as the

ratio between the acceleration and the external forces. To check the quality of the results and the
linearity of the component several ways can be performed to do so as auto-inertance
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Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach
Equation (4.1.5.3).

In the complex case of a m-dofs system the inertance formula can be defined as in
Equation (4.1.5.1)

After performing the roving hammer test on the clamped wheel structure, the obtained modes and
shapes with their relative vectors and frequencies were analysed by organizing them where each
numerical node data is assigned to the relative experimental node by exploiting matlab codes and
the powerful functions that exist in Lupos.

The auto-inertance can be defined as the FRF evaluated in the node k£ due to the excitation on the
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the
node were the FRF is evaluated.

In the following figures the auto-inertances experimental (solid blue line), synthetised with lower
and upper residuals (LR and UR) (dash-dot red line) and synthetised with modal superposition that
are presented as well.
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With real modal superposition of m modes or with complex modal superposition of 2m modes, a

generic cross-receptance «,, (similarly to mobility Y,

and inertance 4,,), the Maxwell

reciprocity imposes that input and output can be switched as in Equation (4.1.5.3) or (4.1.5.4).

An index of non-linearity regarding different dofs of the system is assumed as a consequence of the
complex MAC index (scalar values between 0 and 1) applied to the modulus and phase of
Equations. (4.1.5.5) or (4.1.5.6).
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The experimental modal analysis carried out on the chassis gives as a final result the identification
of 13 mode shapes in the frequency range 0+300 Hz, where the global mode shapes identified are
reported.

The identification of the mode shapes can be considered complete and satisfactory, as it can be
noted in the previous figures looking at the good correspondence among the auto-inertances and the
Maxwell reciprocity comparing the respective experimental and synthetized FRFs.

4.3 Clamped Steering Wheel Second experiment

During the process of identification, it was noticed that the 4™ numerical mode is not existing
experimentally. After checking what was behind, a mismatch was discovered where the 40
numerical mode is a torsional mode while from the experiment no torsional mode was excited,
hence was not even discovered. So, it was decided to repeat that experiment to identify the torsional
mode or other torsional modes if they exist. Simultaneously, a numerical optimization procedure
was performed in order to reach the most optimal numerical solution that maybe very suitable to the
real exact solution. To bring it clear, the new experiment will be performed exciting the radial and
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tangential directions as well so torsional behaviour can be detected the problem was that the
structure has a circular geometry that makes difficult the excitation in the tangential direction. But
there is a way to bypass the problem, to do so, 2 screws will be mounted to the structure in such a
way that the tangential direction is excited through these screws, and this must provoke the torsional
mode leading to their detection.

A new constraint was suggested to the Steering Wheel, the change is desired in order to get a more
accurate modelling for the real object where the experimental test will be performed by mounting
the wheel on the test rig machine by a screw. Hence an optimization process was needed.

Figure 4.3.1 — Front section and Top view of new constraint (Hypermesh).

However, to have a broad and better optimization affect, more parameters were iterated as shown in
the tables below.

Mode 4 - 81.01 Hz
037

021

0171

Axis y [m]

-0.1 -

-0.2

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Axis x [m]

Figure 4.3.2 — 4™ numerical, experimentally unidentified mode
in Optistruct (73.3 Hz) and Lupos (81.01 Hz) respectively.

The objective function in the first optimization was to reach the maximum compatibility of both the
MAC and MACW?2 iterating on inertial parameters. The optimization attempt was performed
iterating 3 main parameters that aimed to improve the numerical mode to approach the 1%
experimental test, which will not be very different from the second experiment test results. The
values indicated in Table 4.2.6.1 were obtained after 81 iterations.
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Table 4.3.1 — First evaluated optimization results.

Iterated parameters Optimization final results
t [-], Clamping rod diameter multiplier 5.0016
z [m], Clamping rod height -0.0099783
E r [Pa], Rubber young Modulus 5261354.099
x10°
X g
<
z
100 0.01
X E 0.005
E 50 E 0 f
E E -0.005
o m 001 ———————
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Figure 4.3.3 — Iterated parameters values of 1* attempt, unidimensional and dimensional
respectively.
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Figure 4.3.4 — Objective functions of 1" attempt.

From the obtained results, it can be noticed that the model is improving slightly but insufficiently,
this indicates that the selected parameters were not influencing importantly, hence a very low
improvement would occur. This low margin of variability that was set to the algorithm did not
allow for obtaining better results. For this reason, higher margin of variability was given in the
second optimization, in particular the inertial and structural parameters are going to be iterated in
200 iterations.

Table 4.3.2 — Second evaluated optimization results.

Iterated parameters ’ Optimization final results \
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t [-], Clamping rod diameter multiplier 5.5023
E r [Pa], Rubber young Modulus 4235478.77
E stee1 [Pa], Steel young Modulus 168118215781.53
E a1 [Pa], Aluminuium young Modulus 67000145634.87
z [m], Clamping rod height -7.3509e-05
pr, Rubber density [kg/m?] 357.43
Pseet, Steel density [kg/m?] 7927.84
pa1, Aluminium density [kg/m?] 2742.36
vr, Rubber poisson ratio [-] 0.43513
Vsteel, Steel poisson ratio [-] 0.29514
vai, Aluminium poisson ratio [-] 0.26725

Eg. [%]
o B
o o o
it ot [-]
o S
Ep [Pa)
e
IX
>
o
= p
s
x
a:\

Ex [%]
o 8
ot 9] ' [
o 8
pr (%) ke (%
-« & B
.|
Eaq [Pa]
o 3
Ia
o o
2 5 2
] $wrho_{R}$ [kg/m"3] £f, [a]

pre [%]
o 3
O‘O (=]
L)
go—E
par [%]
o B
O‘O (=}
L)
j[
vg [%]
o 3
OA o (=]
$irho_{Fe}$ [kg/m*3]
=]
g g
o o
-
5—6[
$\rho_{Al}$ [kg/m*3] Zrod

v [%]

o B

o o
var [%]

o o

o 8 3
vee [
coo
[CREFS
var |-
coo
oW e

Figure 4.3.5 — Iterated parameters values of 2" attempt, unidimensional and dimensional

respectively.
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Figure 4.3.6 — Objective functions of 2™ attempt.
Similarly in the second attempt the objective function is not approaching an optimal value and it is

noticed that the function remained constant even after a high number of iterations hence another
approach must be adopted by varying the previously iterated parameters.
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4.3.1 Experimental — numerical post processing

Table 4.3.1 — Comparison between experimental and numerical Frequency results.

Testlab Lupos
Mode # Experimental Mode # Numerical
frequency [Hz] frequency [Hz]

1 43.642 1 48.46
2 46.0557 2 55.72
3 69.556 3 71.45
4 70.234 4 80.001
5 105.46 5 114.55
6 111.54 6 120.43
- - - 142.3
158.05 7 150.17
- - 219.6
- - - 229.3
- - - 233.0
- - - 256.5
- - - 259.7
- - - 277.0
- - - 2717.5
- - - 285.3
- - - 290.3
8 292.2 8 297.25
- - - 303.3
- - - 3223

- - - 323
- - - 354.5

- - - 357

In order to confirm the compatibility between the numerical and the real models the MAC as
indicated in Equation (4.1.1.1) was again performed.
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Figure 4.3.1.1 — AutoMAC of experimental modes.
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To assure that there are no double selected poles and that the spatial aliasing is negligible the
AutoMAC results, despite of a low spatial aliasing signs, are sufficiently convenient.
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Figure 4.3.1.2 — MAC of numerical and experimental modes.

The compatibility of the first 7 modes is pretty high, the 7" modes is around 160 Hz. This justifies
as seen before in the 1% experiment that the Steering Wheel is linear until this frequency, where it
tends to be strongly non-linear after. It is important to emphasize again the fact that the 7%
numerical mode is local, and it is related exclusively to the rubber. The correlation that is noticed in
between modes 11 and 12 with the 11" numerical mode, is probably due to spatial aliasing because
the 11" numerical frequency is equal to 209.2 Hz while the 11" and 12" experimental modes are
425.8 and 507.8 Hz respectively.
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Figure 4.3.1.3 - MAC _distW and MACW?2 of numerical and experimental modes.
To resolve all doubts the Figure4.3.1.3 is assuring the hypothesis of spatial aliasing by
demonstrating that there is no correlation between the concerned nodes.
4.3.2 Experiment Setup and sensor positioning

Following the same setup of the first experiment of Steering Wheel, the second experiment was
performed with slight changes pf accelerometers orientation as will be shown in the following
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chapters.The experimental test was performed in 2022-02-28 and postprocessed in 2022-03-01 on
which the main activity was concluded.

The experimental modal analysis is performed adopting free-free conditions, exciting the structure
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Steering Wheel is fixed on a huge test rig machine supplied by soft springs that do not
affect the component natural frequencies the excitations were done on 19 nodes along all the
possible directions allowed by its geometry, obtaining as an overall 47 excitations to the system.
The responses of 3 nodes are measured: 1, 8, and 11. The response for each node is averaged on a
set of 5 responses acquired to give more repeatability and stability to each measurement.
For each response:
e the spatial coordinates are continuous for each instant of time;
e the time/frequency data and the modal content are acquired and identified with Siemens
Test.Lab v.17;
e it evinces those modal coordinates enable approximate solutions, according to the number of
modal coordinates used, thus in nonlinear problems this property can improve computational
efforts in the best way.

Figure 4.3.2.1 — Experimental setup scenario.

Both pictures of the entire system, with different points of view and details of the hardware
implemented and of their location are requested information.
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Importance has the reference system (x, y,z) used, according also to suitable models. In case of
already developed models, consider the same reference system.

Figure 4.3.2.3 — Details of the implemented hardware, from left to right in reading order:
Tri-axial-node 1, Tri-axial-node 8, Tri-axial-node 11.

The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is
performed using an impact hammer PCB 086C03 using hard steel tip (Figure4.1.2.4 and
Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1.
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Table 4.3.2.1 — Accelerometer technical characteristics.

Component Channel | Accelerometer |Node Weight Sensitivity Di;:cczon
ID ID ID [kg] [mV/g] [l
1 Tri 1 x 102 -X
LW226918 2 Tri 1y 1 14.2-10° 102.1 +Z
3 Tri 1 z 102.3 +Y
4 Tri 3 x 96.1 +Y
Lg;ffnzi? 5 Tri 3 y 1| 142107 973 Z
6 Tri 3 z 99.3 -X
8 Tri 2 x 102.5 -X
LW226919 9 Tri 2 y 8 14.2-107 97.5 -Z
11 Tri 2 z 98.6 Y

Figure 4.3.2.4 — Steering Wheel weight with added screws and accelerometers.
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Figure 4.3.2.5 — Steering Wheel weight with added screws and accelerometers.

Table 4.3.2.2 — Steering Wheel and screws mass properties.

Component Weight [kg]|
Steering Wheel 3.9811
Screw 1.39 107

4.3.3 Geometrical aspects and acquisition parameters

To run the experimental modal analysis on the component it is necessary to create a model by
identifying the most relevant nodes that allow to build a reference geometry as much close as the
real one and at the same time could allow to give important information with regards to the
response of the system.

The definition of the nodes map is carried out by obtaining the CAD geometry information of the
chassis model developed in Solidworks then imported in Hypermesh and Lupos, where the
coordinates of each node are measured according to the reference system set on the component, as
shown in Figure 4.3.3.1.

As an overall, 19 nodes are identified and used to develop the model geometry in Siemens LMS
Test.Lab, as shown in Figure 4.3.3.2.
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Figure 4.3.3.1 — Wheel reference frame.

Figure 4.3.3.2 — Wheel CAD geometry.

According to reference system and to numerical model, definition of points and corresponding
model nodes are listed in Table 4.3.3.1. 19 nodes are identified for roving hammer EMA. 3 of them
are used for accelerometer positioning and hammered in the neighbourhood for auto-inertance.

Details of the experimental geometry are supplied in Table 4.3.3.1 in which directions of actuation
and reference system for hammer direction are listed. As a reference approach, the hammered
directions are always orthogonal to nearest surface to defined nodes, some nodes differently from
the 1% experiment had no defined orientation with respect to the global reference frame hence Euler
angles were not imposed or considered.

Table 4.3.3.1 — Geometry of I/O points.

Identifier Exp. point | Model node | x [m] y [m] z [m] Notes
Acc. 1,x,y,z 1 28181 0 0.224 | 0.144 LW139287
- 2 28112 0.096 0.2 0144 -

- 3 27995 0.16 0.152 | 0.144 -

- 4 27945 0.184 0.12 0.144 -

- 5 27782 0.216 | 0.016 | 0.144 -

- 6 27613 0.208 | -0.088 | 0.144 -

- 7 27432 0.104 | -0.192 | 0.144 -

Acc. 2, x,y, z 8 17383 0 -0.2 0.144 LW226918,' screw fixed

radially
- 9 27443 -0.12 | -0.184 | 0.144 -

- 10 27541 -0.176 | -0.136 | 0.144 -
Acc.3,x,y,z 11 27691 0.415 0.075 0.393 LW226919
- 12 27839 -0.216 | 0.064 | 0.144 -

- 13 27986 -0.176 | 0.152 | 0.144 -

- 14 28066 -0.128 | 0.192 | 0.144 -

- 15 18037 -0.072 0.04 0.04 -

- 16 18050 0.072 0.04 0.04 -

- 17 17667 -0.096 | -0.08 0.04 -
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- 18 17679 0 -0.08 0.04 -
- 19 17691 0.096 -0.08 0.04 -
- 20 705 0 0 0 -

During impact testing measurements, the parameters in Table 4.3.3.2 are selected:

Table 4.3.3.2 — Independent and dependent parameters of acquisition.

Quantity Symbol Relationship Value Units

Total acquisition time T - 4 S
Sample frequency /s . 8192 Hz

Total samples N N=fT 32768 -
Bandwidth (max frequency) f Iy = % 4096 Hz

: fi_ 1
FRF frequency resolution Af Af = N == 0.25 Hz
. N
Number of spectral lines N, N, = 5 16384 -

4.3.4 Experimental data analysis

The natural frequencies and damping ratios are extracted in the frequency range 0+550 Hz from
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in
Figure 4.3.4.1 for a model size of 500 and values were reported relatively in Table 4.3.4.1.

Lon i
T T T

103,

102 L

[(m/s2)N]

0 50 100

150 200 250 300 350 400 450 500 550

Frequency [HZ]

Figure 4.3.4.1 — Stabilization FRF-sum diagram.

Table 4.3.4.1 — Experimental natural frequencies and damping ratios of the Steering Wheel.

Mode Freq. [Hz] {, damping ratio [%] Description
1 43.64 0.674 local bending YZ
2 46.05 0.565 local bending XZ
3 69.55 0.799 -
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4 70.23 1.259 Ist torsional XY
5 105.46 0.329 1* global bending XZ-YZ
6 111.55 0.326 2" global bending XZ-YZ
7 158.05 0.425 local bending XZ-YZ
8 274.89 0.727 3" global bending XZ-YZ
9 287.81 1.27 local bending YZ
10 292.2 0.923 local bending XZ-YZ
11 425.77 1.77 local bending XZ
12 507.83 2.025 4™ global bending XZ-YZ
13 521.8 3.694 5" global bending XZ-YZ
Mode 1 - 43.64 Hz, 0.67427 % Mode 2 - 46.06 Hz, 0.56581 %
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Mode 7 - 158.1 Hz, 0.42539 %
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Mode 13 - 521.8 Hz, 3.694 %

Axis z [m]

Az y ml 03 02 ais x [m)

Figure 4.3.4.2 — Steering Wheel first 13 complex mode shapes.

According to equation (4.1.4.1) the following diagram is obtained for the second Steering Wheel
experiment.
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Figure 4.3.4.3 — Experimental mode shapes Auto-MACX.
The definition of the Modal Phase Collinearity (MPC) index as defined in equation (4.1.4.2)

Table 4.3.4.2 — Modal Phase Collinearity values.

Mode MPC
1 0.0742
0.697
0.21
0.61
0.79
0.54
0.48
0.76
0.58
0.65
0.61

O [0 [J [N |N | |W|N

—_ | —_
—_ |
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12 0.023
13 0.135

MPC value
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Figure 4.3.4.4 — MCP values for each mode.

Based on the obtained results, no real re-identification was performed since the modes are heavily
complex.

4.3.5 Post-processing

The inertance is a frequency response function (FRF) that is defined in the frequency domain as the
ratio between the acceleration and the external forces. To check the quality of the results and the
linearity of the component several ways can be performed to do so as auto-inertance
Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach
Equation (4.1.5.3).

In the complex case of a m-dofs system the inertance formula as defined in equation (4.1.5.1)

The auto-inertance can be defined as the FRF evaluated in the node & due to the excitation on the
node j. where j = k and along the same direction. Therefore, the node of excitation is the same as the
node were the FRF is evaluated.

In the following figures the auto-inertances experimental (solid blue line), synthetised with lower
and upper residuals (LR and UR) (dash-dot red line) and synthetised that is represented as well. At
low frequencies, the clamped structure is characterized by inertances that tends to 0 is noticed from
the blue curve.
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Figure 4.3.5.4 — Auto-inertance: E8x-R8x. Figure 4.3.5.5 — Auto-inertance: E8y-R8y.
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Figure 4.3.5.6 — Auto-inertance: E§z-R8z.
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Figure 4.3.5.9 — Auto-inertance: E11z-R11z.

Figure 4.3.5.8 — Auto-inertance: E11y-R11y.

With real modal superposition of m modes or with complex modal superposition of 2m modes, a
generic cross-receptance «,, (similarly to mobility Y,, and inertance 4,,), the Maxwell

reciprocity imposes that input and output can be switched as in Equation (4.1.5.3) and (4.1.5.4).
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Furthermore, an index of non-linearity regarding different dofs of the system is assumed as a
consequence of the complex MAC index (scalar values between 0 and 1) applied to the modulus
and phase of Equations. (4.1.5.5) or (4.1.5.6). Consequently, values far from 1 detect nonlinear
behaviour, due to incoherence of similar receptances, according to Maxwell reciprocity. This index
can be used for both numerical and experimental receptance transfer functions. Since it is not

guaranteed the 0+1 range, also a variation of MAX is defined similar to MACX definition.
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Figure 4.3.5.10 - MAX index in 30+550 Hz:

on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.3.5.13 - MAX index in 30+120 Hz:
on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.3.5.16 — Reciprocity test experimental inertance:
E11z-R8z (left) E11x-R11y (right).

The experimental modal analysis carried out on the Steering Wheel gives as a final result the
identification of 13 mode shapes in the frequency range 0550 Hz, where the global mode shapes
identified are reported.

The identification of the mode shapes can be considered complete and satisfactory, as it can be
noted in the previous figures looking at the good correspondence among the auto-inertances and the
Maxwell reciprocity comparing the respective experimental and synthetized FRFs.

4.4 Steering Wheel models comparison
To check how would the behaviour of the wheel change in different boundary conditions. The free-

free steering wheel has same similar structural mode shapes but at higher frequencies as can be
noticed mainly from the first frequencies.
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Figure 4.4.1 — Lupos clamped-free numerical models’ comparison.
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The difference between the two identification is that in the second EMA the torsional mode at
around 70 Hz (4™ mode) that was not found in the 1t EMA.
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Figure 4.4.2 — 15" and 2" experimental steering wheel models’ comparison.
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4.5 Steering Plate free-free condition

Figure 4.5.1 — Steering Plate.

The Steering Plate was then tested variously in both free-free and clamped condition, the plate is
made up of aluminium with a particular geometry. The numerical model that was constructed
before is related to the Minecraft project [6]. However, an incompatible mass of the numerical
model was detected, moreover the numerical natural frequencies were way higher than the
experimental ones. To resolve this, several modifications were applied to the model to make it more
consistent to real one. Firstly, the numerical frequencies were about the double of the real one,
despite the correct young modulus imposed to the model. So, to not decrease drastically the young
modulus the real mass was doubled, and the young modulus was reduced to half. These are not
totally physical number it is the choice of a compromise to reach a good approximated numerical

model.

Table 4.5.1 — Steering Plate, old and new numerical models’ parameters.

. Youg Modulus, E
3 9

Model density [kg/m”] [GPa]

Old Plate 1365.5 70

New Plate 2731 36
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Figure 4.5.2 — Steering Plate numerical model, various views.

4.5.1 Experimental — numerical post processing

Table 4.5.1.1 — Steering Plate free-free, experimental and numerical natural frequencies.

Testlab Optistruct
Mode # Experimental Mode # Numerical
frequency [Hz] frequency [Hz]

1 305.1 1 308.8

2 339.4 2 351

3 493 3 569.05

4 778.6 4 810

5 862.3 5 886.4

6 990.2 6 1026

7 1175 7 1180

- 1297 8 1322

8 1366 - 1343

9 1432 - 1431

- 1556 - 1521

- 1615 9 1582

- 1701 - 1588.4

- 1762 - 1688.3
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These modes were calculated in Optistruct then imported and visualized in Lupos.

Mode 7 - 308.9 Hz Mode 8 - 351 Hz
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Axis z [m] 02 05 Axis x [m] Axis z [m] 0:2 Axis x [m]
Figure 4.5.1.1 — Steering Plate free-free, 1% and 2" structural frequencies.
Mode 9 - 569 Hz Mode 10 - 810 Hz
0.1
-0.05
E ° E
= 0.05 =
2 o 2
0.15 " 4
=02 \\ 0.2 bt 0
0 0.3 '
0.5 04 0.2
Axis z [m] 02 : Axis x [m] Axis z [m] ' Axis x [m]
Figure 4.5.1.2 — Steering Plate free-free, 3™ and 4™ structural frequencies.
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Figure 4.5.1.3 — Steering Plate free-free, 5 and 6" structural frequencies.
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Figure 4.5.1.4 — Steering Plate free-free, 7" and 8" structural frequencies.
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Figure 4.5.1.5 — Steering Plate free-free, 9" and 10™ structural frequencies.
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Table 4.5.1.8 — Steering Plate free-free model MAC_distW.

4.5.2 Experiment Setup and sensor positioning

The experimental modal analysis is performed adopting free-free conditions, exciting the structure
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Plate is fixed on a huge test rig machine supplied by soft springs that do not affect the
component natural frequencies the excitations were done on 27 nodes along all the possible
directions allowed by its geometry, obtaining as an overall 61 excitations to the system. The
responses of 3 nodes are measured: 1, 13, and 20. The response for each node is averaged on a set
of 3 responses acquired to give more repeatability and stability to each measurement. The
experimental test was performed in 2021-09-21 and postprocessed at the same day on which the
main activity was concluded.
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Figure 4.5.2.1 — Experimental setup scenario.
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Both pictures of the entire system, with different points of view and details of the hardware
implemented and of their location are requested information.
Importance has the reference system (x,y,z ) used, according also to suitable models. In case of

already developed models, consider the same reference system.

Figure 4.5.2.2 — Overview of the experimental setup.

In order to have a good sensor positioning MoGeSec was again exploited to define the sensors
nodes as in Equation (4.1.2.1), (4.1.2.2), and (4.1.2.3).

O #1 Node 77137z O #1 Node 77137z
O #2 Node 591327z O #2 Node 591327z
X #3 Node 591328x X #3 Node 591328x
O #4 Node 659218z O #4 Node 659218z
g #5 Node 12310y g #5 Node 12310y
#6 Node 6338412 #6 Node 6338412
X #7 Node 152655x X #7 Node 152655x
#8 Node 146967y #8 Node 146967y
#9 Node 517762 #9 Node 517762
#10 Node 375069y #10 Node 375069y
% #11 Node 568989y % #11 Node 568989y
#12 Node 659183z #12 Node 659183z
g #13 Node 393459y
#14 Node 93980z
> #15 Node 193420x
#16 Node 435047y
#17 Node 712610y
#18 Node 20689y
¢ #19 Node 581476x
#20 Node 1660762

0.1

Axis z [m]
o

g #13 Node 393459y
#14 Node 93980z
> #15 Node 193420x
#16 Node 435047y

#17 Node 712610y
0'150.6 05 A 0.2 #18 Node 20689y

o e > #19 Node 581476x

Axis x [m] #20 Node 1660762
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Axis x [m]
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-0.05 0 0.05 0.1 0.15
Axis y [m]

Figure 4.5.2.3 — Steering Plate MoGeSec configuration.
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As can be noticed various nodes were identified by MoGeSec, where these accelerometer we fixed
by adhesive material in their exact positions, alternatively the positions and orientations will be
selected according to the engineers experiment and knowledge, hence the following nodes were
chosen accordingly with MoGeSec suggestions.

. ‘-‘R-..!l“ l
"i w
et TRl

Figure 4.5.2.4 — Details of the implemented hardware, from left to right in reading order:
Tri-axial-node 1, Tri-axial-node 13, Tri-axial-node 20.

The acquisition is performed with a LMS SCADAS Mobile system. A roving hammer EMA is
performed using an impact hammer PCB 086C03 using hard steel tip (Figure4.1.2.4 and
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Figure 4.1.2.5) to reach a good frequency identification range of the structure. A series of 3 hammer
repetitions is linearly averaged. The characteristics are listed in Table 4.1.2.1.

Table 4.5.2.1 — Accelerometer technical characteristics.

Component Channel | Accelerometer |Node Weight Sensitivity Diriiic(;n -
ID ID ID kg] [mV/g] |
8 Tri 3 x 102 -X
LW226918 9 Tri 3 y 1 14.2-107 102.1 -Z
11 Tri 3 z 102.3 -Y
1 Tri 1 x 102.5 -X
LW226919 2 Tri 1y 13 14.2-10 97.5 -Y
3 Tri 1 z 98.6 +Z
4 Tri 2 x 96.1 -X
LW139287 5 Tri 2 y 20 14.2-10° 97.3 -Y
6 Tri 2 z 99.3 +Z

Figure 4.5.2.5 — Plate weight.

Table 4.5.2.2 — Plate mass properties.

Component Weight [kg]
Plate 4.923

4.5.3 Geometrical aspects and acquisition parameters
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To run the experimental modal analysis on the component it is necessary to create a model by
identifying the most relevant nodes that allow to build a reference geometry as much close as the
real one and at the same time could allow to give important information with regards to the
response of the system.

The definition of the nodes map is carried out by obtaining the CAD geometry information of the
chassis model developed in Solidworks then imported in Solidworks and Lupos, where the
coordinates of each node are measured according to the reference system set on the component, as
shown in Figure 4.5.3.1.

As an overall, 27 nodes are identified and used to develop the model geometry in Siemens LMS
Test.Lab, as shown in Figure 4.5.3.2.

@ &
iﬂoElElooEm

LI

Figure 4.5.3.1 — Plate reference frame. Figure 4.5.3.2 — Plate CAD geometry.

According to reference system and to numerical model, definition of points and corresponding
model nodes are listed in Table 4.5.3.1. There were 27 nodes identified for roving hammer EMA. 3
of them are used for accelerometer positioning and hammered in the neighbourhood for auto-
inertance. Node nomenclature is based on the following pattern:

e Plate external frame starting from node 1 in anti-clockwise direction until node 10;

e Plate large external wings from left to right (11 to 16);

e Plate small internal wings from left to right (17 to 27).
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Details of the experimental geometry are supplied in Table 4.5.3.1 in which directions of actuation
and reference system for hammer direction are listed. As a reference approach, the hammered
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a
defined orientation with respect to the global reference frame however, Euler angles were not

imposed or consiedered.

Table 4.5.3.1 — Geometry of I/O points.

Identifier Exp. point | Model node | x[m] y [m] z [m] Notes
Acc.3,x,y,z 1 113118 0 0.224 | 0.144 LW226918
2 366196 0.096 0.2 0144 -
3 636483 0.16 0.152 | 0.144 -
4 661488 0.184 0.12 0.144 -
5 678408 0.216 | 0.016 | 0.144 -
6 619376 0.208 | -0.088 | 0.144 -
7 366296 0.104 | -0.192 | 0.144 -
8 96344 0 -0.2 0.144 -
9 28942 -0.12 | -0.184 | 0.144 -
10 28801 -0.176 | -0.136 | 0.144 -
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11 617081 0.415 | 0.075 | 0.393 -
- 12 659293 -0.216 | 0.064 | 0.144 LW226919

Acc. 1,x,p,z 13 659328 -0.176 | 0.152 | 0.144 -

- 14 68758 -0.128 | 0.192 | 0.144 -

- 15 68786 -0.072 0.04 0.04 -

- 16 68806 0.072 0.04 0.04 -

- 17 114018 -0.096 | -0.08 0.04 -

- 18 139793 0 -0.08 0.04 -

- 19 160109 0.096 -0.08 0.04 -
Acc.2,x,p,z 20 160091 -0.03 0.16 -0.10 LW139287

- 21 510291 -0.01 0.01 0.07 -

- 22 569583 -0.08 0.02 0.09 -

- 23 569282 -0.21 0.01 0.09 -

- 24 581911 -0.11 0.16 0.10 -

- 25 581891 -0.03 0.16 0.10 -

- 26 511638 -0.07 0.06 0.07 -

- 27 368225 -0.06 0.06 0 -

During impact testing measurements, the parameters in Table 4.5.3.2 are selected:

Table 4.5.3.2 — Independent and dependent parameters of acquisition.

Quantity Symbol Relationship Value Units

Total acquisition time T - 1 S
Sample frequency /s - 8192 Hz

Total samples N N=[fT 8192 -
Bandwidth (max frequency) Sy fy = % 4096 Hz

. f 1
FRF frequency resolution Af Af = N°T 1 Hz
. N
Number of spectral lines N, N, = 5 4096 -

4.5.4 Experimental data analysis

The natural frequencies and damping ratios are extracted in the frequency range 0+1800 Hz from
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in
Figure 4.5.4.1 the model size was equal to 500 and values were reported relatively in Table 4.5.4.1.
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Table 4.5.4.1 — Experimental natural frequencies and damping ratios of the Steering Plate.
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Figure 4.5.4.1 — Stabilization FRF diagram.

Mode Freq. [Hz] ¢, damping ratio [%)] Description
1 305.1 0.123 1* global bending YZ
2 339.4 0.415 2™ g]obal bending YZ
3 493 0.185 3" bending XZ-YZ
4 778.6 0.292 local bending YZ
5 862.3 0.418 4 global bending XY-YZ
6 990.2 0.285 5 global bending XY-YZ
7 1175 0.187 6" global bending XY-YZ
8 1297 0.388 7" global bending
9 1366 0.292 8t global bending XZ-YZ
10 1432 0.36 9'h global bending
11 1556 1.88 10" global bending
12 1615 0.599 local bending
13 1701 0.832 11" global bending XZ-YZ
14 1762 1.02 local bending XZ-YZ
Mode 1 - 305.1 Hz, 0.12303 % Mode 2 - 339.4 Hz, 0.41538 %
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Mode 9 - 1366 Hz, 0.292 %
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Figure 4.5.4.2 — Plate first 14 complex mode shapes.

Following the same MACX procedure as in Equation (4.1.4.1) the correlation between the complex

modes was evaluated.
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Similarly, as in Equation (4.1.4.2) the MPC is considered again to check the modes complexity.

Table 4.5.4.2 — Modal Phase Collinearity values.
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Figure 4.5.4.4 — MCP values for each mode.

Based on the obtained results, it is possible to indicate that the real identification may be sufficient
in this case.
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Figure 4.5.4.5 — Plate re-identified real mode shapes.
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4.5.5 Post-processing

To check the quality of the results and the linearity of the component several ways can be
performed to do so as auto-inertance Equation (4.1.5.1) or (4.1.5.2) and cross receptance following
Maxwell approach Equation (4.1.5.3). In the following figures the auto-inertances experimental
(solid blue line), synthetised with lower and upper residuals (LR and UR) (dash-dot red line) and
synthetised with modal superposition that are presented as well. At low frequencies, the clamped
structure is characterized by inertances that tends to 0 is noticed from the blue curve. At 0 Hz it was
not available the suitable way to identify have an MS tending to the correct value. Initially, the
auto-inertances were evaluated to check to the quality of done identification.
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Figure 4.5.5.7 — Auto-inertance: E20x-R20x.
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To control the linearity of the structure it is convenient to check the receptances of the structure as

in Equation (4.1.5.3) and the following results were obtained.
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The experimental modal analysis carried out on the Plate gives as a final result the identification of
14 mode shapes in the frequency range 0+1800 Hz, where the global mode shapes identified are
reported.

The identification of the mode shapes can be considered complete and satisfactory, as it can be
noted in the previous figures looking at the good correspondence among the auto-inertances and the
Maxwell reciprocity comparing the respective experimental and synthetized FRFs.

4.6 Clamped plate

This Plate is used for Iveco truck vehicles was modelled with different elements in different
software and there was a great convergence to the exact solution, and this was assured by the EMA.
The experimental test was performed in 2022-03-04 and postprocessed at the same day on which
the main activity was concluded.

0.8 A

-0.5

- 0.5

0.5 0
Axis z [m] 1 -0.5
Axis y [m] Axis z [m]

Axis y [m] o 05

Figure 4.6.1 — Numerical model of clamped plate.

4.6.1 Experimental — numerical post processing

The numerical and experimental post processing was not fulfilled for this numerical model since no
consistency was found between the 2 models, this maybe be because of the conditions in which the
experiment was performed. Since the numerical model has no errors or unusual aspects, where the
numerical modes are clear and well understandable. However, the experimental modes were
extremely mixed and complex. For example, some numerical modes are related only to the beams,
differently the experimental modes always involve a deformation shape of the plate, while the plate
in certain modes, as checked numerically, must not have any mode shape contribution.

This inconsistency may be caused by the experimental boundary conditions that was constructed,
since the nodes were hammered and the data was acquired correctly, but probably some screws
were not clamped sufficiently. This caused a chaos in the experimental mode shapes.

4.6.2 Experiment Setup and sensor positioning

The experimental modal analysis is performed adopting free-free conditions, exciting the structure
with roving hammer and evaluating the response through accelerometers, either mono-axial or tri-
axial. The Plate is fixed on a huge test rig machine supplied by soft springs that do not affect the

component natural frequencies the excitations were done on 55 nodes along all the possible
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directions allowed by its geometry, obtaining as an overall 104 excitations to the system. The
responses of 3 nodes are measured: 1, 13, and 20. The response for each node is averaged on a set
of 5 responses acquired to give more repeatability and stability to each measurement.
For each response:
e the spatial coordinates are continuous for each instant of time;
e the time/frequency data and the modal content are acquired and identified with Siemens
Test.Lab v.17;
e it evinces those modal coordinates enable approximate solutions, according to the number of
modal coordinates used, thus in nonlinear problems this property can improve computational
efforts in the best way.

Figure 4.6.2.1 — Experimental setup scenario.

Both pictures of the entire system, with different points of view and details of the hardware
implemented and of their location are requested information.
Importance has the reference system (x, y,z) used, according also to suitable models. In case of

already developed models, consider the same reference system.
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Figure 4.6.2.3 — Details of the implemented hardware, from left to right in reading order:
Tri-axial-node 1, Tri-axial-node 13, Tri-axial-node 20.

The same procedure of free-free plate for sensor positioning was followed hence same nodes and
similar accelerometers were used.

Table 4.6.2.1 — Accelerometer technical characteristics.

Component Channel | Accelerometer |Node Weight Sensitivity Di;:izon
ID ID ID [kg] [mV/g] %
9 Tri 3 x 102 -X
LW226918 10 Tri 3 y 1 14.2-10 102.1 -Z
11 Tri 3 z 102.3 -Y
1 Tri 1 x 102.5 -X
LW226919 2 Tri 1y 13 14.2-107 97.5 Y
3 Tri 1 z 98.6 +Z
4 Tri 2 x 96.1 -X
LW139287 5 Tri 2y 20 14.2-107 97.3 Y
6 Tri 2 z 99.3 +7

Details of the experimental geometry are supplied in Table 4.6.2.2 in which directions of actuation
and reference system for hammer direction are listed. As a reference approach, the hammered
directions are always orthogonal to nearest surface to defined nodes, some nodes however had a
defined orientation with respect to the global reference frame hence Euler angles were also imposed
precisely.

Table 4.6.2.2 — Geometry of I/O points.

Identifier Exp. point | Model node | x[m] y [m] z [m] Notes

Acc.3,x,y,z 1 113118 0 0.224 0.144 LW226918
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- 2 366196 0.096 0.2 0144 -
- 3 636483 0.16 0.152 0.144 -
- 4 661488 0.184 0.12 0.144 -
- 5 678408 0.216 0.016 0.144 -
- 6 619376 0.208 -0.088 0.144 -
- 7 366296 0.104 -0.192 0.144 -
- 8 96344 0 -0.2 0.144 -
- 9 28942 -0.12 -0.184 0.144 -
- 10 28801 -0.176 -0.136 0.144 -
11 617081 0.415 0.075 0.393 -

- 12 659293 -0.216 0.064 0.144 LW226919
Acc. 1,x,y,z 13 659328 -0.176 0.152 0.144 -
- 14 68758 -0.128 0.192 0.144 -
- 15 68786 -0.072 0.04 0.04 -
- 16 68806 0.072 0.04 0.04 -
- 17 114018 -0.096 -0.08 0.04 -
- 18 139793 0 -0.08 0.04 -
- 19 160109 0.096 -0.08 0.04 -

Acc.2,x,y,z 20 160091 -0.03 0.16 -0.10 LW139287
- 21 510291 -0.01 0.01 0.07 -
- 22 569583 -0.08 0.02 0.09 -
- 23 569282 -0.21 0.01 0.09 -
- 24 581911 -0.11 0.16 0.10 -
- 25 581891 -0.03 0.16 0.10 -
- 26 511638 -0.07 0.06 0.07 -
- 27 368225 -0.06 0.06 0 -
- 118 118 -0.418 0.0067 0.222 -
- 119 119 -0.4185 | 0.0067 -0.222 -
- 205 205 -0.1015 | 0.0067 0.222 -
- 214 214 -0.1015 | 0.0067 -0.222 -
- 408 408 0.1125 0.0067 0 -
- 416 416 0.1125 0.0067 -0.222 -
- 417 417 0.1125 0.0067 0.222 -
- 1020 1020 0.1815 0.0617 0.197 -
- 1022 1022 0.0815 0.7217 0.375 -
- 1023 1023 0.0815 0.7217 -0.375 -
- 1024 1024 -0.2985 | 0.7217 -0.375 -
- 1025 1025 -0.2985 | 0.7217 0.375 -
- 1026 1026 0.3315 0.7817 -0.237 -
- 1029 1029 0.3315 0.7817 0.237 -
- 1031 1031 0.1815 0.0617 -0.197 -
- 1033 1033 0.0015 0.8617 0.197 -
- 1038 1038 0.0015 0.8617 -0.197 -
- 2004 2004 -0.1258 | 0.7817 0.237 -
- 2015 2015 -0.2985 | 0.7217 0.0895 -
- 2020 2020 -0.2985 | 0.7217 -0.0895 -
- 2054 2054 0.0815 0.7217 0.0179 -
- 2074 2074 -0.1258 | 0.7817 -0.2370 -
- 2129 2129 0.0015 0.5423 -0.1970 -
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- 2133 2133 0.0015 0.3988 -0.1970 -
- 2137 2137 0.0015 0.2552 -0.1970 -
- 2145 2145 0.0015 0.5423 0.1970 -
- 2149 2149 0.0015 0.3988 0.1970 -
- 2153 2153 0.0015 0.2552 0.1970 -

During impact testing measurements, the parameters in Table 4.6.2.3 are selected:

Table 4.6.2.3 — Independent and dependent parameters of acquisition.

Quantity Symbol Relationship Value Units

Total acquisition time T - 1 S
Sample frequency /s 8192 Hz

Total samples N N=fT 8192 -
Bandwidth (max frequency) f |y = % 4096 Hz

. f 1
FRF frequency resolution Af Af = N°T 1 Hz
. N
Number of spectral lines N, N, = 5 4096 -

4.6.3 Experimental data analysis

The natural frequencies and damping ratios are extracted in the frequency range 100+4096 Hz from
Test.Lab v.17 Impact Testing environment where the values were extracted as shown in
Figure 4.6.3.1 the model size was equal to 1300 and values were reported relatively in

Table 4.6.3.1.
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Figure 4.6.3.1 — Stabilization FRF Sum diagram.
Table 4.6.3.1 — Independent and dependent parameters of acquisition.
Mode Freq. [Hz] ¢, damping ratio [%] Description
1 141.72 0.63 -
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Axis x [m]

Axis x [m]

2 154.25 0.501 -
3 183.38 0.571 -
4 205.29 1.67 -
5 257.163 0.647 -
6 266.28 0.751 -
7 286.43 0.745 -
8 345.46 0.645 -
9 369.85 0.652 -
10 425.47 0.399 -
11 437.09 0.576 -
12 473.638 1.17 -
13 552.359 1.12 -
14 561.85 0.62 -
15 673.56 0.866 -
16 687.97 0.748 -
17 976.39 0.732 -
18 1005.43 0.893 -
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Figure 4.6.3.2 — Plate first 14 complex mode shapes.

Following the same MACX procedure as in Equation (4.1.4.1) the correlation between the complex
modes was evaluated.
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Figure 4.6.3.3 — Experimental mode shapes Auto-MACX.
Similarly, as in Equation (4.1.4.2) the MPC is considered again to check the modes complexity.

Table 4.6.3.2 — Modal Phase Collinearity values.
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Mode MPC
1 0.436
2 0.655
3 0.171
4 0.086
5 0.648
6 0.599
7 0.139
8 0.083
9 0.715
10 0.058
11 0.219
12 0.054
13 0.159
14 0.673
15 0.772
16 0.658
17 0.068
18 0.005
19 0.739
20 0.374
08— ———— A
07 9 L i
06 i i o
L, 05F
§ 0.4? d
5 03
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01 o 1 ° py
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Mode number

Figure 4.6.3.4 — MCP values for each mode.

Based on the obtained results, it is possible to indicate that the real identification may not be
sufficient in this case.

4.6.4 Post-processing

The inertance is a frequency response function (FRF) that is defined in the frequency domain as the
ratio between the acceleration and the external forces. To check the quality of the results and the
linearity of the component several ways can be performed to do so as auto-inertance
Equation (4.1.5.1) or (4.1.5.2) and cross receptance following Maxwell approach
Equation (4.1.5.3).
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Figure 4.6.4.1 — Auto-inertance: E1x-R1x. Figure 4.6.4.2 — Auto-inertance: Ely-R1y.
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Figure 4.6.4.3 — Auto-inertance: E13x-R13x. Figure 4.6.4.4 — Auto-inertance: E13y-R13y.
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Figure 4.6.4.5 — Auto-inertance: E13z-R13z.
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Figure 4.6.4.6 — Auto-inertance: E20x-R20x. Figure 4.6.4.7 — Auto-inertance: E20y-R20y.
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Figure 4.6.4.8 — Auto-inertance: E20z-R20z.

To control the linearity of the structure it is convenient to check the receptances of the structure as
in Equation (4.1.5.3) and the following results were obtained.

100

= [ |l |/l il - Sl e | |
=[] JC]C]L A g = [

;o JOmEOEED f- ¢! ] MM
iannn mE § PR Enen mE § ¥
iann b el SEEE T innE 5 =Eg
S OOEDDEDD |- S OOEODEDD |-
« ORDOOD0M | - < ORDDOOD0M | -
« BO000000 | « BO000000 |

160/ 168



Figure 4.6.4.9 —- MAX index in 100+4096 Hz:

on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.6.4.10 — MAX index in 100+2500 Hz:

on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.6.4.11 — MAX index in 100+800 Hz:

on experimental receptances (left) and on synthetised receptances (right).
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Figure 4.6.4.12 — Reciprocity test experimental inertance:
E1x-R13x (left) E20y-R1y (right).
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Figure 4.6.4.13 — Reciprocity test experimental inertance:
E13y-R20y (left) E13z-R20z (right).

The experimental modal analysis carried out on the Plate gives as a final result the identification of
49 mode shapes in the frequency range 100+4096 Hz, of which 20 modes were shown.

The identification of the mode shapes cannot be considered complete and satisfactory, despite the
good correspondence among the auto-inertances and the Maxwell reciprocity comparing the
respective experimental and synthetized FRFs. This structure was particular and hard to identify or
to get good compatibility with numerical modes, experimental modes were complex and not related
only to plate but also to the beams of which the structure is made, consequently the experiment
must be performed again paying attention to the clamping between each beam and the plate in order
to get better results.

5. Whole steering assembly

In order to have a more complete understanding of the behaviour of the complex system in
particular, the system composed of the steering wheel and its base support connected to the whole
car system that was furnished by IVECO a new model configuration has to be designed where it is
going to be under study by a new EMA. To explain, the new model brings out a configuration
similar to the car base system that holds the steering system, so it shows how the wheel is mounted
to its base and how was it recognized to achieve the suitable and convenient stiffness through the
joints and beams.
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Figure 5.1 — General view of whole system numerical model.

5.1 Model configuration

This configuration was designed before in order to perform the last experimental modal analysis
tests. However, due to certain issues related to other activities in the laboratory certain parts that
were available are no more available hence a different configuration was adopted as noticed in

chapter 4.6.4.

Figure 5.1.1 — General view of whole system.

The system simulates a bench on which the whole system is mounted with Bosch beams found in
the Polito laboratory and they were be exploited for the desired purpose.

Table 5.1.1 — Assembly components details.

[, Length b, Width h, Height Material 0

Part name [mm| [mm| [mm|
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Bench 850 620 14 Steel 1
Beam 1 344 100 50 Aluminium 2
Beam 2 631 80 40 Aluminium 4
Beam 3 533 100 50 Aluminium 2

Side plate 353 100 10 Steel 2
100041035636 - - Steel 1
Top plate 444 89 10 Steel 1
Bottom plate 444 89 10 Steel 1
Beam 4 500 80 40 Aluminium 1
Connector - - - 2
Beam 5 493 80 40 Aluminium 2
Beam 6 340 40 40 Aluminium 1

In the previous table structure components with some details are reported. The undefined numbers
or material is due to the complex part geometry or because a component is made up of two or more
different materials.

Table 5.1.2 — Used material properties.

Material p, Density [kg/m?] E, Young module [GPa] v, Poisson coefficient [-]
Steel 7800 210 0.33
Aluminium 2790 75 0.3
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5.1.1 Bench

Figure 5.1.1.1 — Modelled and real bench respectively.

The bench adopted for the structure is symmetric with four small holes in the upper part with a
diameter of 14 mm and the rest are M20 threaded holes. These holes will be exploited for mounting
the whole structure basically to connect the beams with bench that will form the base of the system.
The beams, however, are connected to each other by T-screws M8x60 family

5.1.2 Connectors
The connectors provided by “Item” company are suggested to be adopted for stiffening the structure
and connecting the parts with each other since the given bench has a relative low number of holes of

which low number are used, hence a low number of joints that results in a decreased stiffness.
These connectors have holes of 8mm that sustains the desired connection.
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Figure 5.1.2.1 — Isometric and internal views of connectors.

These connectors are used for clamping between beams, and base bench plate.

5.1.3 Steering wheelbase

The Wheelbase is going to be connected to the vertical beams by connecting the side bottom and
top plates on it then clamping it on the beams through the passive holes present in the structure by
means of M8x60 hex cap screws. The rest of holes however are present to guarantee a good
connection between the base and plate. In chapter 4.3.5 details are reported

5.1.4 Beams

The beams used in the assembly are those present in the laboratory provided by Bosch. Different
beam sections are present hence different mechanical properties can be identified.

v

|y

Figure 5.1.4.1 — Beam different sections.

The left section beams, being the stiffest, have been used to withstand the column and its base with
the plates, while the right section beams have been used for the anterior part of structure. Hence the
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the stiffest beam was fixed in the front part of structure to achieve the suitable stiffness that
withstand the wheelbase structure.

Conclusions

To bring it too short, the numerical models that were available, were rechecked to confirm their
results then further deep analysis for similar models were also discussed and compared with the
previous models analysing the behaviour of each component with different configurations and the
effect of the non-structural mass as rubber and boundary condition was studied deeply. About 11
different Steering Wheel numerical models, and various numerical models for the Steering Plate
finally the clamped steering plate assembly and the whole assembly was modelled. So finite
element method FEM was exploited strongly in both Optistruct and Lupos solvers, furthermore the
validation of these models was studied deeply through a series of experimental modal analysis.
These tests were performed on the real components of each numerical model, certain models were
mounted on certain machines or other structures as the modelled structure using CAD/CAE
software, as Solidworks. Then these numerical models were adjusted accordingly in order to
increase their consistency, then Modal Assurance Criterion was used for consistency verification.
Adding to that, by post processing the extracted experimental data using Matlab, further analysis
was achieved to check the structure behaviour and its dynamic characteristics using efficient tools
such as inertance and receptance. Not less important the tools furnished by Lupos, such as
MoGeSec tool in order to have a high experiment quality by identifying the main nodes where
accelerometers must be mounted.

Last but not least the clamped steering plate experimental test must be rechecked and the final
experiment for the whole assembly that is composed of Steering Plate Steering bar, and Steering
Wheel is now ready to be tested.
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