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Abstract 
Internally toothed gears are used in planetary gearsets, a type of mechanical power 

transmission with high transmission ratios and a very compact design. 

The MATLAB scrip that acts as the basis for the results that have been obtained, was already 

capable of analysing the static transmission error, load sharing factor and contact pressures of 

a set of spur or helical gears. Starting from this software, the necessary modifications have 

been performed to achieve the same study for the meshing of an internal, or ring gear, with 

the planet of the epicyclic gearing. Particular attention has been aimed at correctly 

determining the contact pressures generated by the gear meshing. Contact pressures are of 

fundamental importance in determining the surface strength of gears, and even though the 

technical standards offer much literature to account for the different loading conditions and 

possible coupling between different gears, a more detailed result can lead to a better 

evaluation of the contact stresses, especially in the tip and root region of the tooth. To achieve 

these results the static loading condition of the coupling is considered, calculating the load 

sharing factor and static transmission error. As a final step the relative distances between the 

statically loaded profiles is computed, leading to the computation of the teeth profiles 

deformation and of the contact pressures. This approach allows to evaluate the difference 

between various possible tooth modifications that can enhance performance and durability of 

gears. 
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Introduction 
Motivations 
The push for greater performance, and lower noise, vibration, and harshness in the 

transmission of power drives the demand for designing tools for gears. The manufacturing 

techniques that have been adopted to satisfy this demand can include the addition of many 

possible profile modifications. To rapidly analyse the effects of each parameter on the 

performance of the gears, a fast and inexpensive approach is ideal. A software can be the 

perfect tool for achieving these results, by rapidly computing the static, dynamic, and contact 

effects of the loading of gears. The host company “Gedy Trass” had already developed a 

model for the analysis of the main factors that affect the performance of transmissions. Given 

the vast field of application for epicyclical gearsets, the addition of the modelling of this type 

of transmission, can satisfy a broader share of the transmission manufacturing industry. 

Methods 
The part of script that will be studied and adapted goes from the generation of the profile of 

the tooth, to the evaluation of the static effects of the loading between one gear coupling. This 

coupling is composed of two gears, the planet gear and the annulus, or ring gear. The input for 

the generation of the profiles will be discussed, as well as the possible issues in the assembly 

of the complete epicyclic gearset, ending with the composition of the tri dimensional 

planetary gearset. After the coupling that includes the ring gear, and one planet can enter the 

script that evaluates the static loading condition of the gear, including the load sharing factor, 

the static transmission error, and the contact pressures. To evaluate the stresses both analytical 

and finite element methods will be used. The script uses the Timoshenko beam model for the 

deflection and a model by Sainsot, Velex and Duverger for the foundation compliance of the 

tooth [7]. The evaluation of the displacement of the teeth from static loading allows for the 

computation of the new contact point, and the contact pressures on them. This is achieved 

with the model in [5], and consists in the iterative computation of the displacement, that 

multiplied by the stiffness matrix of the surfaces, gives the contact pressures. This operation 

can be performed for any relative angular position between the teeth. 



 

9 
 

Epicyclic gearing 
Features and advantages of the planetary gearset 
In the field of mechanical power transmissions epicyclic gearset have many possible 

applications. The planetary gearset is composed of four main elements. The sun is at the 

centre, linked to a shaft the enters the whole system. The planets that mesh both with the sun 

and the ring gear, and whose axis are connected 

to the carrier. The Ring gear, that is internally 

toothed and meshes only with the planets. The 

planet carrier that connects the centre of the 

planet gears, keeping them in the correct 

position, and connecting them to the output 

shaft. The sun, the ring, or the carrier can be the 

input, output, or fixed element of the 

transmission. This means that if the sun is the 

input and the ring is the output, the carrier is the fixed element of the transmission. This does 

not mean that the planets do not rotate, but the carrier that holds them does not. Therefore, the 

power enters the transmission via the sun gear, is then split into the planet gears, and is then 

transmitted from the planets to the ring gear. This allows the torques to be split into multiple 

meshing couples. If the transmission splits the torque equally between three planets, the load 

that each teeth coupling is subjected to is 1/3rd of the total, allowing for the transmission of 

greater torques, or the reduction of the dimensions of the gears. Moreover, it is possible to 

have three transmission ratios, by fixing the carrier, the sun, or the ring gear. 

Other features that make this type of transmission appreciated are the high reduction ratios, 

compact and enclosed housing, co-axiality of the input and output shaft, and better 

performance than simple gears with the same dimensions. 

 

Fields of application 
For the abovementioned reasons epicyclical gearing has fields of application that vary greatly 

in dimensions, from small electric tools to massive wind turbines. One case in which this type 

of transmission is in competition, is the bike transmissions. The most common type of 

transmission for this application is the derailleur gears, that offer a light and efficient 

Figure 1 "Planetary gearset: main elements" 
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transmission of power. The other type of transmission that is used in bikes, is the in-hub type, 

that consists of an epicyclic transmission inside of the hub of the rear gear of the bike. This 

solution is adopted for utilitarian bikes, that are focused more on the reliability than on 

performance. The enclosed design prevents the contamination of the gearing by external 

elements, that can be usually encountered by a bike used daily. This can greatly reduce the 

maintenance of the transmission, and prevent the formation of rust from salt, or water that is 

picked up from the road. Another important sector in which the planetary gearset has found 

possible applications is the automotive industry. Automatic transmissions that use a torque 

converter as the launching device, can then shift between three different gears thanks to the 

use of planetary gearsets. This is achieved by means of clutched and brakes, that can lock 

either the two or more series mounted planetary gearsets. In this field, another planetary 

gearset has found application, the Ravigneaux gearset, that is able to produce six different 

transmission ratios with only one set of gears. This is achieved by having two sets of planets, 

and two sun gears of different dimensions. In more recent years they found another possible 

application in the automotive 

industry in the field of hybrid 

powertrains to couple the 

internal combustion engine, 

the electric motor, and the 

output shaft, that is linked 

both to the differential and to 

the electric generator. This is 

a particular application for 

parallel hybrid vehicles, that allows to greatly simplify the design, moreover, it makes it 

possible for the electric motor to substitute the starter motor.  

Given all these possible applications; being able to simulate the manufacturing and behaviour 

of internally toothed gear is an important part for a software that aims at easing the design 

process for gears and transmissions. 

Geometrical limitations 
Moreover, it has been decided that the user would choose the number of teeth of the sun and 

the planet to define the transmission ratios of the epicyclic gearset, therefore also these 

Figure 2 "Ravigneaux gearset" 
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parameters enter in the function that computes the combination of sun, planet, and ring, of the 

epicyclic gearset. 

As a first step the function computes the number of teeth of the ring gear. 

𝑧𝑟𝑖𝑛𝑔 = 2 ∗ 𝑧𝑝𝑙𝑎𝑛𝑒𝑡 + 𝑧𝑠𝑢𝑛 

If the number of planets is larger than three, some interference might occur between them, 

therefore a formula to check for this eventuality is added. If the size of the planet gear is too 

large with respect to the sun gear, the maximum number of planets that can be fitted is 

reduced. Given that the modulus of all the gears is the same, this leads to the conclusion that 

the relative difference in number of teeth between the sun and the planet is limited. 

For the case with 4 planets: 

𝑧𝑝𝑙𝑎𝑛𝑒𝑡 < 𝑧𝑠𝑢𝑛 ∗ √2 − 2 

For the case with 5 planets: 

𝑧𝑝𝑙𝑎𝑛𝑒𝑡 <
𝑧𝑠𝑢𝑛

4
∗

√10 − 2 ∗ √5

1 −
√10 − 2 ∗ √5

4

− 2 

ISO check for bending fatigue 
As a first step, we have evaluated the strength of the gear coupling to the bending fatigue 

phenomenon. To perform this analysis, we have used the BS ISO 6336-3:2019 norm. The 

result will be the safety factor for the ring and for the planet. 

𝑆𝐹,𝑅𝑖𝑛𝑔 =
𝜎𝐹𝐺,𝑅𝑖𝑛𝑔

𝜎𝐹,𝑅𝑖𝑛𝑔
 

𝑆𝐹,𝑃𝑙𝑎𝑛𝑒𝑡 =
𝜎𝐹𝐺,𝑃𝑙𝑎𝑛𝑒𝑡

𝜎𝐹,𝑃𝑙𝑎𝑛𝑒𝑡
 

With 𝜎𝐹  tooth root stress, and 𝜎𝐹𝐺  tooth root stress limit. To allow the computation of this 

value it is necessary that all the required inputs are given to the script. We have considered 

each coupling of gears, as its own. Therefore, the parameters that will enter the system are 

given as independent values, even though for a planetary gearset these parameters are related 

to its working condition. 
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Since this check was already present as its standalone function, we have checked that it 

worked correctly for the case of internal gears, and the eventual modifications to this script 

where developed. The formulas for the values that compute the safety factor can be found in 

the technical norm handbooks. 

If the value of the safety factor is lower than one, the script returns to keyboard and asks the 

user if it wants to perform the calculation even though the gear coupling strength is too low 

for the given torque. If this condition is not respected, the following computation might give 

results that do not correspond to the actual behaviour of the gear coupling. 
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Surface strength of the tooth 
The surface strength of the tooth is an important property of gears, that every gear designer 

should carefully check. Localized stresses and sliding between the teeth profiles, can cause a 

wearing of the surface. To evaluate this phenomenon, it is necessary to have knowledge of the 

real loading effect on the tooth, the shape of the tooth profile, and the contact stresses that 

arise in the loading of the gears. This process is not harmful and can occur during the run-in 

phase of gears. The effect of this process is a smoothing of the surface that lowers the contact 

stresses 

Damage of the tooth surface 
Pitting, as the name suggest, is the formation of small pits where once was the material. This 

is caused by a repeated loading that produces 

contact stresses above the surface strength of the 

material. The pitting phenomena can be divided 

into two subsequent processes. Initial pitting 

consists in the formation of small pits, and the 

removal of the oversized peaks of the surface 

roughness. If, after this smoothing action, the 

loads are still too high, a progressive and 

destructive process that removes the surface of the 

tooth occurs. In this process much deeper pits are 

formed. Once the surface has been cracked, the 

lubricant that is used in the gearing enters them, 

and the high contact pressures cause the cracks to 

expand. If the process continues for long enough, bigger pieces of the material will start to be 

removed from the tooth surface, at that point, it is possible that the pitting extends to the 

whole flank of the tooth. The degree of tolerance to pitting of each gear coupling depends on 

the field of application in which the gears will work. To prevent this phenomenon, it is 

important to know the surface resistance of the tooth, the contact stresses, and the sliding 

velocity between the meshing teeth profiles.  

Figure 2 "Gear affected by surface pitting" 
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Another destructing process that affects gears is the scuffing, or scoring, of the tooth surface. 

Metal surfaces in contact, subjected to heavy loads, and with insufficient lubrication can 

undergo this severe type of adhesive wear. When there is metal to metal contact, especially in 

high load conditions micro-welding 

might occur, and some material of one 

surface can end up on the other surface. 

This metal particles that are transferred 

from one to the other tooth, can scratch 

the surface of the gears in the sliding 

direction. This phenomenon is 

primarily caused by the lack of 

lubrication. The lack of any type of a 

layer of non-adhesive material between 

metal is also well known to the aerospace industry. Since in space there is no air, it is possible 

that two metal surfaces that are in contact with a certain force, might cold weld, permanently 

gluing the parts together. Since the lack of lubrication is the main culprit, generally this 

occurs where the sliding velocities between the profiles are higher, further away from the 

pitch line. Another aspect that influences the lack is lubrication is the roughness of the 

material; gears that have not been run in, and smoothed in the process, are not lubricated as 

well. For this reason, scuffling especially occurs in gears that have not been run in, or has the 

profile grinded. Even though this process can be avoided by improving the lubrication, also 

the contact stresses and the sliding velocities play a role, and the computation of both will be 

performed by the script. 

Parameters that affect the computation of the pressure 
The ISO 6336-2 norm was developed to verify the surface durability of gears. The application 

of this norm consists in the calculation of two contact stresses. This standard can provide us 

with the possible parameters that affect the contact mechanics, and the phenomena that 

influence its magnitude. The application of this norm provides the designer with the contact 

strength of the relevant point 𝜎𝐻, that must be compared with the permissible contact strength 

𝜎𝐻𝑃. To compute the value of 𝜎𝐻, the nominal pressure at the pitch point 𝜎𝐻0 is computed as 

follows: 

Figure 3 "Gear affected by scuffing" 
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𝜎𝐻0 = 𝑍𝐻 ∗ 𝑍𝐸 ∗ 𝑍𝜀 ∗ 𝑍𝛽 ∗ √
𝐹𝑡

𝑑1𝑏

𝑢 + 1

𝑢
 

This formula derives from the Hertzian contact theory for cylinders and is then corrected by 

the Z factors to produce the corrected result. The different approach that will be used to 

compute the pressures that arise from the contact between the teeth will be able to bypass the 

correction values and give an accurate result by studying the actual meshing condition 

between the teeth. 

In the ISO norm, 𝑍𝐻 transforms the tangential load into normal load, the respective function 

will directly compute this value for the loading condition that is considered. 

𝑍𝐸 is the elasticity factor, that accounts for the specific properties of the material, such as the 

Young’s modulus and Poisson’s ratio, we will use this values directly in the computation of 

the pressure. 

𝑍𝜀 and 𝑍𝛽 will be accounted for by computing the load sharing factor and generating the tri 

dimensional profile of the tooth. 

For the computation of the pressure at the relevant point, the ISO standard provides this 

formula: 

𝜎𝐻1/2 = 𝑍𝐵/𝐷 ∗ 𝜎𝐻0 ∗ √𝐾𝐴 ∗ 𝐾𝛾 ∗ 𝐾𝑣 ∗ 𝐾𝐻𝛽 ∗ 𝐾𝐻𝛼 

Currently the functions of the script can account for 𝑍𝐵/𝐷, that converts the pressures from the 

pitch point to the relevant point; this is not necessary since the pressures will be calculated at 

the exact point of contact between the profiles. Moreover, it will account for the elastic 

deformation of the tooth from the contact forces, that is considered in the computation of the 

𝐾𝐻𝛽 parameter. This will be achieved by computing the load sharing factor and the static 

transmission error. The load sharing factor is the fraction of the total load transferred by each 

of the teeth couples that are in contact; the static transmission error, computes the difference 

between the theoretical profile position, and the actual one cause by the deformation of the 

teeth under loading. 

 Currently the function can account also for the other correction factors, but only for external 

gears. For planetary gearsets the dynamic effects, internal and external, are not accounted for, 

this is cause by the loading condition of the gears in the planetary gearset. The ring gear, just 
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like the sun, is loaded in multiple places along the circumference, depending on the total 

number of planets; the planets mesh at the same time with the ring gear, and the sun gear. 

Currently the script can consider the meshing with only another gear, therefore, the dynamic 

effects and the load variations on each coupling cannot be studied. 

For the computation of the permissible contact stress, 𝜎𝐻𝐵, different possible methods are 

given by the standard. To understand how it is computed, and what are the factors that 

influence this value, we are going to describe the general formula of the method B: 

𝜎𝐻𝑃 =
𝜎𝐻 𝑙𝑖𝑚 ∗ 𝑍𝑁𝑇

𝑆𝐻 𝑚𝑖𝑛
∗ 𝑍𝐿 ∗ 𝑍𝑉 ∗ 𝑍𝑅 ∗ 𝑍𝑊 ∗ 𝑍𝑋 =

𝜎𝐻𝐺

𝑆𝐻 𝑚𝑖𝑛
 

𝜎𝐻 𝑙𝑖𝑚 is the allowable stress in contact, and depends on the material strength, the heat 

treatment, and the surface roughness.  

𝑍𝑁𝑇 is the life factor, if the gear has to withstand a limited number of cycles. 

 𝑍𝐿 , 𝑍𝑉,  𝑍𝑅 cover the influence of the oil film, respectively, oil viscosity, surface roughness, 

and velocity factor. 

𝑍𝑊 is the work hardening factor. 

𝑍𝑋 is the size factor. 

𝑆𝐻 𝑚𝑖𝑛 is the minimum required safety factor for surface durability. 

These parameters depend on the choice of lubrication, material, and other parameters that will 

be decided by the designer. The phenomena that they describe concern the material and 

lubrication of the gears, and do not impact the computation of the contact pressures. 

Therefore, they are of no interest in the computation of the contact pressure. 

In the following chapters we will describe how the problems in the computation of the actual 

contact pressures will be handled. Moreover, the script will be able to handle profile 

modifications. This changes in the profile of the teeth of gears, have been developed to reduce 

NVH in the meshing, and increase the performance by reducing the pressure peaks that might 

occur on certain parts of the tooth, especially near the tip, or the fillet of the tooth. 
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Generation of the 2D profiles 
The software simulates the actual cutting process of the gear and was already fully developed 

for external gears. The manufacturing process that is used as a basis for the generation of the 

gear profiles is the rack cutting of a blank. A two-dimensional rack shape is created and 

simulating the movement of it, the positions are saved in the x-y plane. From this array of 

coordinates that are saved, the resulting shape of the gear tooth is numerically derived. This 

allows to directly change various parameters of the rack that affect the final shape of the gear, 

such as the root and tip radii, the pressure angle, shift coefficients, and any other possible rack 

modification. 

Rack profile 
The first step in the simulation of the gear cutting process consists in the generation of the 

cutting rack. The standard shape of the rack is very simple and is show in the adjacent figure. 

It is possible to modify the shape of the rack to achieve different possible tooth modifications. 

This is achieved in the script that defines the racks. The main modifications that can be added 

to the rack are the root and rip radii, the protuberance on the dedendum part, and the ramp 

angle on the addendum part. All these modifications are saved in the respective variables, this 

variable, as previously stated will enter the function that simulates the gear cutting and 

depending on the profile modification that is needed will alter the profile of the rack in the 

corresponding part. The parameters that have been used for the computation of the rack 

profile of the sun and planet gear, are reported in the table below. They are racks for the 

generation of spur gears, without any modification. It has to be noted that a small tip radius 

coefficient is added, in order to have a small circular fitting is added to the tip, in order to 

prevent a sharp edge. 

 

Rack number rack 1 rack 2 

Pressure angle 20° 20° 

Helix angle 0° 0° 

Module 5 mm 5 mm 

Dedendum coefficient 1 1 

Addendum coefficient 1.25 1.25 

Root form height coefficient 0 0 
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Ramp angle 0 0 

Protuberance angle 0 0 

Protuberance height coefficient 0 0 

Root radius coefficient 0 0 

Tip radius coefficient 0.001 0.001 

Table 1 “Parameters of the racks that generate the sun and planet gear” 

After all the parameters 

necessary for the definition of 

the rack, its shape is defined 

and saved in a structure that 

holds the segments of the rack 

profile in cartesian coordinates 

(x, y). The shape of the rack is 

presented in the figure 5. It can 

be noted that the addendum is 

smaller than the dedendum, 

since its geometry will be 

inverted. The dedendum 

becomes the addendum of the 

gear, and vice versa. 

External Gear generation 
The parameters for the definition of the gear that will be cut, occurs before the definition of 

the rack, they are, the number of teeth, the normal modulus, the teeth and body face width, the 

normal pressure angle, the helix angle, the rim depth, the radius of the shaft to which it is 

coupled, the shift coefficient, the addendum and dedendum. Moreover, it is possible to add 

some other profiles modification, like crowning, tip relief, root relief, and other. The 

parameters of the case that has been studied are reported in the following table, together with 

some other parameters used to generate the 3D shape of the gears. 

Gear Sun Planet 

Number of teeth 24 33 

Modulus 5 mm 5 mm 

Figure 4 "Profile of the rack" 
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Face width 40 mm 40 mm 

Gear body face width 40 mm 40 mm 

Pressure angle 20° 20° 

Helix angle 0° 0° 

Rim depth 5 mm 5 mm 

External radius of the shaft 40 mm 55 mm 

Shift coefficient 0 0 

Addendum 1 1 

Dedendum 1.25 1.25 

Backlash 0 𝜇𝑚 0 𝜇𝑚 

Crowning None None 

Tip relief None None 

Root relief None None 

Table 2 “Parameters of the sun and planet gears” 

Going back to the function that generates the profile of the tooth, after the rack shape has been 

determined, the script will simulate the actual cutting process of the tooth. This happens by 

computing the position of the rack with respect to the gear blank. Once the rack relative 

motion has been completed, the profile of the internal tooth is extrapolated and saved both as 

cartesian, and as polar coordinates. In the figure below the results of the movement of the rack 

are plotted with the black lines, and the final profile of the tooth is in blue. The generation 

was performed correctly, and as can be seen, the unshifted pitch line is at 60 mm, that is equal 

to the number of teeth multiplied by the module and divided by to. From the pitch line, the tip 

lays 5 mm above, since the addendum coefficient is one, and the dedendum circle is 7.5 mm 

below, given the dedendum coefficient of 1.25. 
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Figure 5 “Simulation of the cutting process of the sun gear” 

Internal gears generation 
The manufacturing process for internal gears is different from the one of the externals. The 

two main processes for the blank cutting of the annulus are performed either by a shaper gear 

or by a broach. The script has been developed as to simulate the cutting process by a shaper 

gear. Therefore, the first step in deriving the points of the profile of the ring gear is to 

correctly generate a shaper gear that will perform the cutting. This process is not much 

different from the generation of an external gear, the most important parts are the correct 

definition of the addendum and dedendum of the rack, that will be inverted, and correctly 

sizing the number of teeth of the shaper gear. If the ring gear has a standard addendum ℎ𝑎 = 1 

and dedendum ℎ𝑑 = 1.25, then the shaper gear that will form it, must have the values 

inverted, ℎ𝑑 = 1 and ℎ𝑎 = 1.25, since the profile of it will become the vane of the internal 

gear. For sizing the shaper gear a general value of 1/3rd the size of the annulus has been used. 

This usually grants a good cutting process, and prevents unwarranted interferences, that will 

be analysed in the next chapter. Once the shaper profile has been determined, and it has been 

saved, the script proceeds with the generation of the internal gear. In the first version the 
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shaper was modified, and a root fillet added, but since the addition of this root fillet would 

cause an addition of material on the tip of the internal gear, it has been discarded. This 

decision has been taken because the tip of the internal gear would have interfered with the 

root of the teeth of the planet gear, that’s because the removal of material from the shaper 

leads to an addition of material on the internal tooth profile. Another important parameter that 

has been modified for the ring gear, is the external radius of the shaft, that for internally 

toothed gear is used to plot the external rim of the gear, therefore, it is larger than the pitch 

radius of the gear. Moreover, the possibility of adding the backlash to the ring gear was 

added, and to check that the feature works correctly a 100 𝜇𝑚 backlash has been added. 

 Rack of the shaper Shaper Ring gear 

Number of teeth - 30 90 

Modulus 5 mm 5 mm 5 mm 

Face width - - 40mm 

Gear body face width - - 40mm 

Pressure angle 20° 20° 20° 

Helix angle 0° 0° 0° 

Rim depth - - 5 mm 

External radius of the shaft - - 270 mm 

Shift coefficient 0 0 0 

Addendum 1 1.25 1 

Dedendum 1.25 1 1.25 

Backlash - - 100 𝜇𝑚 

Table 3 “Parameters necessary for the generation of the ring gear” 

Interference between the planet and the annulus 
The issue of interference for the meshing of internal gears is quite complex and can be 

divided in five main types. Only the first one has been added to the script, since it is the one 

that can be easily calculated, with an analytical formula. In the other cases, the check can be 

performed by means of tables and graphs. Since the use of a software would not add insight or 

reduce the time to compute these types of interference it has not been added. For the case that 

will be studied we have checked that no interference occurred between the planet and the ring 

gear. 
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Figure 6 "Design parameters of the meshing between internally and externally toothed gears" 

Theoretical interference in the internal spur gear 
This type is the same as the one in external gears and happens if the path of contact goes 

beyond the points 𝑇1 or 𝑇2 defined as the points perpendicular to the base circle. 

It is possible to check for this type of interference simply by making sure that the following 

inequality is satisfied: 

𝑟𝑎2 ≥ 𝑂2𝑇1
̅̅ ̅̅ ̅̅ = √𝑂2𝑇2

̅̅ ̅̅ ̅̅ 2
+ 𝑇1𝑇2

̅̅ ̅̅ ̅̅ 2
= √𝑟𝑏2

2 + [(𝑟2 − 𝑟1) sin 𝛼]2  

The values with subscript 2 refer to the ring gear, and the one with subscript 1, to the planet 

gear, the radii and the points are also represented in figure 7. 

In the case that this type of interference occurs it is possible to use nonstandard addendum 

coefficients. This practice is quite common in the design of internally toothed gears, that 

might have the addendum that is lower than the module of the gear. The script that checks for 

this type of interference has been implemented, and if the combination of gears that has been 

selected features this type of interference an error message will be displayed, asking the user 

if he wants to continue with the following computations. 
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Secondary interference in internally toothed gears 
Secondary interference, also called fouling, only occurs if the pinion size is close to the size 

of the internal gear. This phenomenon occurs outside of the path of contact between the 

internally and externally toothed gears. In the region represented in the figure below, it is 

possible that the tooth of the planet gear might notch the tooth of the ring gear in the near its 

tip. 

 

Figure 7 "Secondary interference mechanism" 

To check for this type of interference it is easiest to use the tables that have been derived by 

Henriot shown below, that requires only to know the number of teeth of the gears, the 

addendum factor, and the pressure angle. 

𝑘2 = 𝑘1 = 𝑘 =
ℎ𝑎

𝑚
= 1 

With ℎ𝑎 addendum, and m, modulus. The case in study is the standard condition, therefore, 

the addendum factor is one, but it can be reduced to prevent this type of interference. This 

type of gearing is called stubbed because it appears that the tooth has been cut at a certain 

height. 
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Figure 8 “Minimum difference to avoid secondary interference” 

As it is possible to see from the figure above, secondary interference is not a problem in the 

case that has been studied, since the internal gear has ninety teeth, and the planet only thirty-

three teeth. Hence the difference is of fifty-seven teeth between the two gears, a value much 

larger than the required eight. 

Tertiary interference in the cutting process 
The tertiary interference or trimming is a type of interference that might occur when cutting 

the gear with a pinion-type cutter. Since this is the process that will be simulated in the 

generation of the ring gear, it is important to check that it does not occur. This phenomenon 

causes a removal of the flank material towards the addendum line, preventing the radial 

assembly of the gearset. The derivation of the possible condition of interference is quite 

complex, and it ends with the conclusion that the difference in number of teeth between the 

ring gear and the shaper or pinion-type cutter must be larger than the one evaluated in the 

secondary interference. To avoid a very complex study, that requires many steps, Heriot 

proposes a simple rule, the difference in number of teeth determined for the secondary 

interference must be increased by six. 

(𝑧𝑟𝑖𝑛𝑔 − 𝑧𝑠ℎ𝑎𝑝𝑒𝑟)𝑚𝑖𝑛 > (𝑧𝑟𝑖𝑛𝑔 − 𝑧𝑝𝑙𝑎𝑛𝑒𝑡)𝑚𝑖𝑛 + 6 
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From the previous computation it is therefore necessary that the difference is greater than 

fourteen. Since in our case the shaper has thirty teeth, and the ring gear ninety, the difference, 

of sixty teeth is more than sufficient to avoid this type of interference. 

Fillet interferences between the tips and the roots 
The last two types of interference that might occur between the planet and the ring gear are 

between the tip of the pinion and the root of the annulus, and between the tip of the annulus 

and the root of the planet gear. 

The formula to check for this type of interference has not been developed, but the meshing 

profiles have been manually checked, and it has been determined that this type of interference 

is not present in the case in study. 

From the shaper profile to the internal gear profile 
Before the actual simulation of the cutting process of the internal gear, the possibility of 

adding the backlash to the annulus has been implemented. The substantial difference lays in 

the fact that to add the backlash there must be an alteration of the movement of the shaper 

gear, and not of the rack. Therefore, the necessary lines that make it possible to alter the tool 

movement have been added before the function that simulates the cutting process. This 

consists in the shifting of the pitch line for the pinion-type cutter, making it cut deeper into the 

blank of the ring gear. 

As a first step the function must obtain the profile of the shaper gear and save it to use it in the 

cutting process of the ring gear. This process is very similar to the generation of a standard 

gear, but, as it is possible to see in table 3, the addendum and dedendum are inverted. As it 

will be possible the reversal of addendum and dedendum generates a profile that is quite 

peculiar. In the fillet region the tooth is thicker than an external gear with similar number of 

teeth, and pressure angle. In the tip region the profile extends more, and the tip is thinner. To 

obtain this geometry also the addendum and dedendum of the rack that generates it must be 

inverted from the standard case, as is reported in table 3. 
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Figure 9 “Profiles of the shaper cutter, without and with the fillet fitting” 

Another modification that was required, was made on the profile of the shaper gear. In the 

generation of the shaper gear, after the cutting process from the rack ended, a fillet radius at 

the base of the tooth of the shaper was added. This modification, as it can be seen in the figure 

10b, removed some material at the 

base of the tooth. The removal of 

this material caused the shaper 

gear to limit the cutting of the ring 

gear towards the tip, leading to the 

formation of a protuberance on 

the. Even though this process 

might be possible in the 

manufacturing of the shaper gear 

for the cutting of internally 

toothed gears, it leads to an 

interference problem when the 

ring gear meshes with the planet. 

As it can be seen in the figure, if the shaper, that is in red, had the shape that was previously 

generated, it would remove less material on the internal gear blank, generating the 

abovementioned protuberance. This protuberance would go into contact with the lower part of 

the flank of the planet gears, causing an uneven motion between the two gears, since this part 

would not be an involute profile. For this reason, we removed the circular fitting, and kept the 

rest of the work that was previously done on the generation of the profile of internally toothed 

gears. The profile of ring gear is then saved in the same way as other gears, in two structures 

that contain respectively the cartesian and polar coordinates of the points of the profile. 

 Figure 10“Generation of the ring gear” 
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Tooth profile definition 
The data that has been derived from the simulated cutting process of the gear must be 

manipulated to pass from the structures that contain the data of the profile, to a tri 

dimensional profile that is separated into root, fillet, flank, and tip. This process will be 

performed for each of the two flanks of the gear, making it possible to simulate a clockwise or 

counterclockwise rotation between the gears. The right flank of the gear is defined when 

looking at the side profile of top tooth of the gear. 

The flank of the tooth profile 
The two-dimensional shapes that have 

been previously generated will form the 

basis for the computation of the (x, y, z) 

coordinates of the surfaces of the tooths. 

Although, since not all the tooth profile 

goes into contact with the other gear, it is 

necessary to firstly identify the flank and 

fillet of the gear, from the previously 

generated arrays. The dedicated function 

had to be reworked for the case of 

internal gears, because the position of the 

respective parts of the tooth is different in the structure that contains the arrays of the 

generated profile of the tooth. The different parts of the structures are shown in figure 12. The 

structures 3 and 5, that should describe the flank of the tooth, are not extended long enough. 

In the case of externally toothed gears, unless some profile modification has been added, there 

is a sharp corner between the flank and the tip. In this case, instead, there is a smooth 

transition from between the two elements of the tooth. This causes the script to have issues in 

the correct definition of each element. It is then necessary to operate differently for the ring 

gear. As already shown in figure 12, the script receives the coordinates of the tooth profile as 

a structure divided in seven arrays. The array that defines the flank is saved as the flank, and 

then both a part of the array that usually saves the tip and the fillet have been added to the 

flank. To achieve this, the lowest node of the tip array, has been considered as a base point. Its 

radial coordinate is increased by 1/50th of the modulus of the gear, and all the points of its 

structure that were above this threshold value, were moved into the flank array. The same 

 Figure 11 "Segments of the tooth profile" 
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process has been adopted to move some points of the fillet, to the flank. For this case, the 

maximum value of the fillet array has been decreased by 1/6th the modulus of the gear. To 

keep track of this modification, the new upper and lower values of the flank are saved to flag 

all the points that originally were not part of the flank structure as a sort of profile 

modification. 

 

Figure 12 “Final profile of the left side of the ring and planet gear” 

As it can be seen in figure 13, the profile of the tooth has been divided into the root, in blue, 

the fillet in red, the flank in yellow, and the tip in purple. It can also be noted that the 

geometry of the internal gear is inverted. The tip of the internal gear is the lowest part of the 

profile, whereas the tip of the planet gear is on top. The two sides of the tooth profile are 

saved in two distinct structures, that we will refer to from now on as right and left. This 

distinction is performed to ease the computation of the distances between the two flanks, 

since each side of the internal gear will only go in contact with the respective side of the 

planet gear. For example, if the direction of rotation of the system is counterclockwise and the 

power is transmitted from the ring gear to the planets, then the left side of the internal gear 

will contact the right side of the planet gear. Therefore, when computing the distance between 

the profile, the relevant distance is the one between these two sides of the profile. Removing 

the side that does not go into contact can prevent possible mistakes in the computation of this 

distance. An important note that is fundamental for the user, is that the script that performs 

this operation is a new one, distinct from the one for external gears, and it is important that the 

ring gear enters this function as the gear2 input, and the planet enters as the gear1 input. If this 

requirement is not satisfied the function will not work correctly, since it assumes that the 

second gear to enter as the input is the annulus. 
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Flank nodes and tooth profile modifications 
This function takes the profile 

of the tooth that has been 

described in the previous 

chapter, checks its accuracy, 

and replicates it in thirty-one 

further points along the width 

of the tooth, thus generating 

the tri dimensional profile. In 

the case of spur gears this 

consist just in the copying of 

the x, y data of the profile on 

all the other z coordinates, 

but if helical gears are 

considered it must add the helix angle. As it can be seen in figure 14, the tooth width is added, 

by copying flank profile into thirty-one slices. 

Another task of this function consists in the flagging of the part of flank that was affected by a 

tooth profile modification. As previously mentioned, the flank profile of the internal gear has 

been extended, and since there the concavity of the profile along the flank is not homogenous, 

the convex parts will be described as a tooth profile modification. In this part of the script the 

matrix that identifies if the profile has been modified is generated, and therefore the case for 

internal gears has been added. Using the previously saved values of the flank, all points that 

are below the lowest point, and above of the highest point will be flagged as a tooth profile 

modification, in the moda matrix. Not all the points that have been considered for the 

generation of the moda matrix will be in contact during the meshing of the gears. Those 

points will be removed both from the strings that will be used to compute the contact points, 

and from the respective moda matrix that flagged them as being part or not of a profile 

modification. In the standard case, it simply assumes that these points are in the lower part of 

the tooth, but for internally toothed gears, since the geometry is reversed, also this process 

must be reversed. For this reason, the opportune modifications have been added. For this 

function it is also important that the ring gear is the gear2 in the input, since, to limit the 

modifications to the script, the check for the internally toothed gears is performed only for 

this gear. 

 Figure 13 "3D of the flank, divided in slices" 
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The teeth in contact 
Once the tri dimensional discrete 

model of the tooth has been realized, 

it is necessary to represent all the 

teeth that will be in contact. Instead of 

saving all the teeth of the gear, in its 

own structure, only the teeth that 

might get in contact have to be stored 

in memory. The function takes one 

flank profile of the tooth, makes a 

copy, and positions it rotated by the 

angular pitch distance, repeating this 

process for as many times as the estimated number meshing teeth. Once the process is 

completed, the profiles are saved in the respective structure, that will be used for the 

calculation of the first contact position, and of the relative distance between the profiles. As it 

is shown in figure 15, each colour corresponds to the tooth number of the profile plotted.  

Starting from the right, the 1st one is in light blue, and is the rightmost tooth both for the ring 

and the pinion, moving to the left, the number of the teeth coupling increases, up to 7 for the 

case that is presented in figure. In the next step, the profiles of the ring gear will be rotated to 

the left, and each profile will be positioned facing the correct tooth profile of the planet gear. 

To accommodate the function also for internal gears it was simply required to change the sign 

of the flank input. This parameter is a flag that describes which flank of the gear must be 

considered in the function and affects the way in which the selected teeth are numbered. As 

previously mentioned, the tooth number indicates to what meshing couple it belongs, 

therefore the tooth number one in the pinon should face the tooth with the same number in the 

gear. For external gears this means that the gear number is determined by considered it rotated 

by 180°, with the selected teeth on the bottom and facing the pinion one that are positioned on 

the top. For the internally toothed gear, no rotation is required for the meshing of the tooth, 

therefore the teeth should be numbered in the opposite order as the external case, leading to 

the flank flag being of opposite sing. By switching this flag when manipulating the ring gear, 

it is not necessary to modify the script developed for externally toothed gears. 

 

 Figure 14 "Teeth that might enter contact" 
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First contact position 
To correctly enter the coupling analysis, the teeth profiles must be positioned in contact with 

each other. The function that achieves this goal had to be modified to achieve this result. This 

function takes the profiles constructed 

in the previous function and calculates 

the angular distance between them. 

The profiles are then rotated by the 

angle of the closest couple of teeth. 

This saves the profiles of the teeth in 

the position of first contact. In the 

previous function the profiles were 

correctly numbered, although, the 

relative positions are different from 

the external tooth case. In fact, they 

are moved by half of the pitch distance in the opposite direction. In that part of the software 

the generation of the profiles puts the centreline of the tooth in correspondence of the y axis, 

and it is a good strategy for position the externally toothed gears. But since the selected teeth 

of ring gear are not rotated by 180° to get in the meshing condition with the other gear of the 

coupling, they are shifted in this way. To put the profiles of the annulus in the position that 

faces the corresponding profile of the planet gear, the initial rotation must be performed in the 

opposite direction to the standard case, the amount of the rotation is equal to 0.55 of the pitch 

distance. The same logic must be applied when the final rotation is performed, including the 

tolerance angle that is added to slightly separate the profiles. In figure 16, it is possible to see 

the profiles in contact; in black is the internal gear, and in red is the planet, the contact point is 

in the lower part of the flank for the planet, and in the upper part for the internal gear. 

Once the angle that separates them has been determined, it is important that script rotates the 

profile of the internal gear, and not that of the planet gear. Since we are rotating the gears that 

compose a planetary gearset, it is important to think about the final assembly of the whole 

gearset. The script had previously performed the same operation that we are describing for 

this couple of gears, for the sun and the planet gears. In that instance the sun was rotated with 

respect to the planet gear, therefore the planet is still in the position in which it was generated. 

Instead of rotating the planet to the position of first contact with the annulus, if we rotated the 

 Figure 15 "Teeth in contact" 
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latter, all three of the gears that compose the gearset, will be in the correct angular position. 

This means that, at least for the sun, the ring, and the first planet, no rotation will be required 

to assemble the gearset in the 3D model. 

After all the operation that have been performed in this chapter are completed the relevant 

data will be saved in the coupling1 structure, that will enter the coupling analysis function. 

Although before this step is performed a compete 3D assembly of the system is generated. 
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Complete assembly 
Three-dimensional finite element model 
Once the full definition of the tooth has been achieved the whole gear can be generated as a 

set of polygons. A function was already developed for this task, although given the different 

geometry of the internal gear, it was necessary to adopt some changes. To create the 

polygons, both the main function that generates the inputs, and the subfunction that handles 

the generation of the single pieces were modified to work also with internal gears. Moreover, 

an improvement to the sampling of the fillet points was added; instead of picking nodes that 

are equally spaced in the array of all the nodes, it was changed to equally spacing the nodes in 

the y coordinates. 

 

 Figure 16 "Discretization for 3D model" 

In figure 17 the frontal perspective of the points of discretization is shown, with 4 distinct 

types. On the bottom are represented with the black star the points of the tip, it is important 

that their number is equal to the longitudinal points of discretization of the flank, represented 

by the black circles. Above them lays the fillet and root points, the blue circles, that are linked 

to the points that join the centreline of the tooth with the centre of the root. Lastly, the light 

blue circles complete the mesh, by going up to the external dimensions of the ring gear. 
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As it is possible to see in 

figure 18, the script 

correctly discretizes the 

ring gear. The 

modifications required 

consisted mainly in 

switching the angles of 

rotation and inverting the 

order of some arrays of 

points. Moreover, the 

spacing of the points of the 

fillet were optimized and 

increased to prevent the 

generation of triangles. It is important to check for any triangles, that might occur if not 

enough nodes are used to discretize a certain part of the tooth. This is relevant because this 

parametrization can be exported for in software for the FEM analysis of the stresses, and that 

software might not accept it as a correct shape, filling the gear with voids. 

Once the discretization of the ring gear was successful, the whole planetary set can be plotted. 

Having previously accounted for the assembly of the whole set, has allowed to easily put in 

the correct position all the gears. The sun gear and the first planet are positioned first, without 

any necessary modification. Then, the latter is copied, and rotated around the sun; this is 

achieved with two rotations. The first is around the sun and depends on the number of planets 

(120° in our case with three planets). 

𝜗1 =
360°

𝑛° 𝑜𝑓 𝑝𝑙𝑎𝑛𝑒𝑡𝑠
 

 The second time it must be rotated around its centre by the number of teeth of the sun that 

correspond to the first rotation: 

𝜗2[𝑑𝑒𝑔] =
𝜗1

360°
∗ 𝑧1 ∗ 𝜑2 

With 𝑧1 number of teeth of the sun gear, and 𝜑2 angular pitch of the planet gear. 

 

 

 

Figure 17 “Detail of FE discretization of the ring gear” 
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At the end it is possible to 

simply add the 3D model of 

the ring gear to the assembly, 

and it will correctly fit with all 

the planet gears, assuming that 

there was not a previous error 

message that warns the user 

that the combination of gears 

cannot fit in a gearset with the 

requested parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 "3D model of the planetary gearset” 
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Quasi-static analysis 
Structure of the coupling analysis 
This chapter is dedicated to the determination of the static transmission error, the load sharing 

factor, and the contact pressures during the meshing of the planet gear with the ring gear. The 

transmission error is the angular difference between the theoretical position of the gear tooth, 

and the actual one. This phenomenon occurs during the meshing of gears, because of the teeth 

deformation under loading, and from manufacturing errors of the shape of the gears. The 

magnitude of the transmission error is usually computed experimentally, by loading the gears 

with different torques at different speeds and measuring the angular position of the two. It is 

an important parameter when designing gears because it causes noise, vibrations, and general 

harshness in the transmission of the power between gears. Tooth profile modifications, in the 

design stage of the transmission, can greatly reduce this problem, improving the performance, 

and reducing noise and vibration levels. In our case we will compute only the static 

transmission error since the dynamic effects are not included. The value of the static 

transmission error varies during the meshing of the teeth, depending on how many teeth are 

meshing, and at what height of the tooth the force is exchanged. 

 

Figure 19 "Experimentally derived values of the transmission error" 

To estimate the value of the static transmission error it is necessary to know the deformation 

and the loading of each teeth couple that is transmitting power. Since there is no closed 
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solution of this problem, an iterative approach has been adopter. The deformation under 

bending is computed by means of the Timoshenko beam model, and the tooth fillet 

compliance will be determined with an analytical formula in reference [7]. For the 

computation of the load sharing factor, a more simple but effective approach is used, that will 

be described in detail in the relative paragraph. These values will be computed for all the 

positions in the loop of the angular position. 

The script that handles all the further steps was developed for externally toothed gears, 

therefore, only one couple of gears can enter at a time. Since the focus of the study lays 

mainly on contact pressures, it has simply been adapted to study the mating condition 

between one planet gear with the ring gear, and with the sun gear. Further development of the 

script, that will be able to handle the mating condition between one ring gear and many planet 

gears has still not been developed. The two possible cases have been saved in two separate 

structures that contain all the necessary data computed in the previous steps. 

Since the planet gear is the pinion in this coupling, to avoid mistakes, the frame of reference 

of the profiles that will undergo the rotations and deformations is changed. Up until now the 

centre of the sun gear was the centre of the frame of reference, but in our coupling 1, that 

enters the coupling analysis, it has been moved to the centre of the planet gear. 

Below it is represented in schematic form the two main loops that compose the script for the 

Quasi static analysis. The j loop is for finding the equilibrium position, and the k loop for the 

angular positions. 
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Loop of the angular positions 
As it was previously mentioned, the loading point on the flank of the tooth affects all the 

outputs of interest. To fully understand the behaviour of the mating gears it is necessary to 

study more than just one loading case. Therefore, the computation of the static transmission 

error, load sharing factor, and contact pressures will be performed for twenty possible mating 

conditions, this is a compromise value that allows to study a spectrum of possible loading 

conditions without extending too much the computation time of the software. The angle of 

rotation of the tooth profiles for each step is computed by dividing the pitch angle of the 

pinion by the number of positions that will be studied. 

𝛼𝑟𝑜𝑡 =
360°

𝑧𝑔𝑒𝑎𝑟 ∗ 20
 

Rotation of the profiles 

First Attempt L.S.F. 

Displacements of the teeth 

Evaluation of teeth couples 

that are not in contact 

Computation of the new 

LSF 

j = 1:12 

Final STE and contact 

pressures 

k = 1:20 

Inputs 

Coupling analisys output 
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Once the profiles are correctly rotated to one of the twenty positions a first estimation of the 

number of teeth in contact will be performed, and the distance between each couple of 

meshing teeth will be computed. 

 

Figure 20“Profiles of the teeth for the first angular position” 

If the profiles are within a certain distance they will be assumed to be in contact, and the 

script will return the contact node and coordinates. 

Moving along the positions that will be studied, the teeth profiles rotate, and the principal 

couple in contact might change. When this occurs, it is necessary to switch the teeth in 

contact. The script will automatically perform this operation, adding one to the value of 𝑛𝑠𝑡. 

This will make the script enter the function that deletes the last couple of teeth, both in the 

pinion and in the gear, and adds a new couple on the other side. Theoretically this process 

could be repeated as many times as the user wishes, but since the script only considers one 

pitch distance, this process usually happens only once. If the script is studying the case of the 

internal gear, then it is necessary to change the value of 𝑛𝑠𝑡 to correctly compute the distance 

between the profiles, and the contact point determined. This is necessary because the script 

was developed for external gears. In the unmodified script, if the pinion is rotating clockwise, 

the tooth would be added on the left side, and on the right one for the gear. In the case of an 

internal gear, if the tooth profile is added on the right, then it must be added in the same 

direction for the pinion, because of the already mentioned geometry of the gears, that does not 

require the 180° rotation of the gear. 

Tooth stiffness matrix 
Using the Timoshenko cantilever beam approach, the script can compute the stiffness matrix 

of the tooth with the finite element method. The flank and fillet of the tooth enter the function 
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as the input. They are then rotated by a negative angle of 90°. This movement positions the 

tooth centreline coaxial with the x axis. The script then computes the section area of the tooth, 

and the moments of inertia around the three axes, giving the torsional moment of inertia with 

respect to the x axis, and the flexural moment of inertia around the y and z axes. In the case of 

the ring gear, the same rotation that is performed for the planet puts the tooth centreline on the 

x axis, but it would constrain the tip of the tooth, and not the root. To position the node that 

must be constrained on the left, it is therefore necessary to rotate and translate the tooth 

profile. To correctly position the profile of the annulus starting from the {x} and {y} 

coordinates of the profile, as they were computed in the first angular position, the following 

operations were performed: 

{
{𝑥}𝑠 = −{𝑦} + 2 ∗ min{𝑦}

{𝑦}𝑠 = {𝑥}
 

It was decided to change this part of the script instead of producing a different stiffness matrix 

of the tooth, because there is practically no difference in the computation time of the rotation 

and translation, compared with only the rotation. The generation of another script for the 

computation of the stiffness matrix would have been completely redundant since the 

difference lays only in the constraining of the node. 

After the profiles are positioned correctly it is possible to compute the entries of the stiffness 

matrix. The shear modulus and the shear factor for the Timoshenko beam for the material are 

computed as following: 

𝐺1 =
𝐸

2(1 + 𝜈)
 

𝑘𝑏 =
10(1 + 𝜈)

(12 + 11𝜈)
 

With 𝐸 Young’s modulus, and 𝜈 Poisson’s coefficient of the material. Then the area, A, the 

moments of inertia 𝐼𝑦 and 𝐼𝑧, are computed in the following way: 

𝐴𝑗 = 𝑦𝑠,𝑗 ∗ 𝑏 

𝐼𝑦,𝑗 =
𝑏3 ∗ 𝑦𝑠,𝑗

12
 

𝐼𝑧,𝑗 =
𝑏 ∗ 𝑦𝑠,𝑗

3

12
 



 

41 
 

Once all the necessary parameters have been derived, it is possible to generate the stiffness 

matrix of the tooth, including the distance between the nodes in the x-axis:  

𝛿𝑠,𝑗 = 𝑥𝑠,𝑗+1 − 𝑥𝑠,𝑗 

Since the stiffness matrix size is very large and would require too much memory to be saved 

as a full matrix, it is then saved as a sparse matrix, and inverted, giving the compliance 

matrix, that is the final output of the function. 

In the figures below the various values for the section area, and moment of inertia of the ring 

gear are represented. 

 

Figure 21“Geometric parameters of the tooth of the ring gear” 

The stiffness matrix that has been constructed in this step will make it possible to compute the 

deflection of the tooth, and it can be computed once, before the loop of the angular positions, 

since it does not depend on the angular position of the tooth. 
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Contact plane construction 
The previous part makes it possible to compute the bending resistance of the tooth, but it 

gives no information regarding the stiffness of the tooth surface. The model that we use to 

determine the compliance of the flank of the tooth, is based on the study of Marmo, Toraldo, 

A. Rosati and L. Rosati that gives a numerical solution to the computation of the contact 

pressure. The first step that must be performed consists in the generation of the compliance 

matrix of the tooth surface. This matrix does not depend on the angular position of the tooth, 

and therefore can be performed only once, at the start of the script. For this task a specific 

matrix was developed for the case of external gears; since there is no difference in the case of 

our surface, this function can perform the task without any modification. The function 

discretizes the surface of the tooth into triangles, that will be the discrete areas on which the 

pressures will be computed. As an output it will generate the compliance matrix [𝑢𝑧𝑧], the 

area, and the position of all the triangles and nodes the compose the tooth flank. 

Load sharing factor 
The load sharing factor describes what percentage of the total force transmitted between the 

gears is transmitted by each couple of teeth in contact. The output is an array with the fraction 

of the total force that is applied to each 

tooth. To compute the load sharing 

factor the first step is to understand 

what teeth are in contact. The distance 

between the selected teeth is calculated, 

as well as the coordinate and node at 

which the profiles are in contact. The 

teeth assumed in contact in this step are 

the theoretical ones, that would be in 

contact even if there was no tooth 

deformation and the static transmission 

error was zero. For the first attempt, on these theoretical couples of teeth in contact, a unit 

load is assumed. In the cycles after, the actual load that was computed in the previous step 

will be used. This load will generate a displacement of the tooth due to shear and bending 

stresses and to tooth base deflection, the couple of teeth that deforms less will have a higher 

share of the load on it. 

Figure 22"Load sharing factor" 
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𝑌𝑗 = ∑ 𝑌𝑘   ∀ 𝑘 ≠ 𝑗  

𝐿𝑆𝐹𝑗 = 𝑌𝑗/𝑌𝑇𝑂𝑇 

As is shown in the formulas, the load sharing factor on the jth couple of teeth is equal to the 

deformation on all the other couples in contact, divided by the sum of all the deformations on 

all the couples. The final output of the function is the array LSF, that contains all the 

percentages of load that are discharged on each teeth couple. These values can be represented 

for all the twenty angular positions of the profiles. As can be seen in the picture, the teeth 

coupling number four goes out of contact around the 16th position, whereas tooth number six, 

goes into contact at the 14th angular position. As the load on the 4th teeth coupling 

progressively decreases, the load on the 5th increases. It can also be seen that if there was a 

21st angular position of the teeth, it would have the same values as the 1st, only shifted by one 

tooth. This happens because the 21st angular position is exactly equal to the 1st. 

Teeth deformation due to loading 
Once the first attempt at determining the load on each tooth in contact has been made, it is 

possible to start the cycle that iteratively tries to determine the actual static equilibrium for the 

gear coupling. Once the position of the teeth profiles at the equilibrium has been determined it 

will be possible to compute the static transmission error.  

As a first step of the cycle, the 

deformation of the teeth given the 

loading determined in the previous step 

is computed. This is subdivided into 

two types of deformation, the first one 

is the deformation due to bending and 

shear forces. This is computed with the 

stiffness matrix that has been derived 

at the beginning of the script, and that 

the was correctly modified for the ring 

gear. The other element necessary to 

determine the deflection of the tooth is the force amplitude and direction. The amplitude was 

estimated in the first attempt load sharing factor calculation, the direction, called 𝜇𝑒𝑓𝑓 is 

computed in its respective function and in the case of internal gears, it must be rotated by 180 

Figure 23 "Direction of the forces on the tooth" 
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degrees, since it does not understand what side of the flank is in contact. In the figure on the 

side, it is possible to see that the force acting on the side of the internal tooth, the arrow in 

green, is correctly positioned and divided into the two main axial directions. 

Since the force direction and amplitude are computed, as well as the stiffness matrix is 

correctly constrained and calculated, it is possible to compute the displacement of the teeth in 

contact for the ring gear. 

As it is shown in the figure, the tooth is correctly constrained for the highest value on the x 

axis, that represents the root of the tooth on the annulus, this validated the correct definition of 

the constraints for the stiffness matrix that was previously computed. 

The second step to evaluate the deformation of 

the teeth due to the loading force, is the tooth 

foundation deformation. This formula, 

developed by Sainsot and Velex, that is 

currently used in the script, has been validated 

only for externally toothed gears. Since the 

elaboration of a new formula is beyond the 

scope of this thesis, it has been decided to 

compute the value of the foundation 

compliance for the internal gear, as if it was an 

equivalent external one. After this equivalent 

value has been computed it is corrected, stiffening it by 20%. 

The values for the deformation that have been obtained in these steps will be used to shift the 

profiles of the teeth that are in contact, generating a gap between the profiles. This gap is 

called the static transmission error (STE), although, since this is only the first guess value of 

this error the equilibrium position still has not been reached. 

Evaluation of non-contact couples 
Once the profiles have been deformed it is possible to evaluate another occurrence, the 

contact between teeth couple that should not theoretically in contact. Due to the deformation 

of the profiles, especially under heavy loads, it is possible that a couple of teeth that 

geometrically is not in contact reaches contact. To analyse if this is the case, an opportune 

function has been developed, it uses many of the functions that have already been described in 

the previous steps, therefore no further modification is necessary to make it work also for the 

Figure 24 "Displacements of the tooth based on 
the node" 
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planet/ring coupling. The basic principle that it uses to check for the return in contact of any 

other couple of teeth, is that the gap angle between the profiles that are not in contact is 

smaller than the maximum STE of the loaded couples. This check is going to be performed at 

every cycle of for the calculation of the equilibrium condition. 

Independently to the occurrence of this additional load couples, the script must recalculate the 

load sharing factor, now with the actual displacements of the teeth. It is achieved by 

comparing the torsional stiffnesses of each couple of teeth, calculated in [𝑁 ∗ 𝑚𝑚/𝑟𝑎𝑑]. The 

principle is that the higher the stiffness the more load will discharge on that coupling. It is 

possible that in the recalculation some coefficient might be negative. Since negative 

coefficients are impossible, because they would mean that a negative force is being 

transmitted between the gears, a recalculation is necessary. In the recalculation the couple of 

teeth with a negative load sharing factor will be excluded. Once this final load sharing factor 

is determined, they cycle to determine the static equilibrium can restart from the function the 

displaces the profiles. 

Final equilibrium position 
After a given number of cycles, the coupling should converge to the static equilibrium 

position, and the load sharing factor is set. For the given equilibrium condition, it is possible 

to find the node of the profile that is closest to the actual contact position between the teeth 

coupling. In the case of the results that have been obtained, it was iterated for twelve times. 
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Figure 25 "Contact points on the flank of the planet gear" 

As it is possible to see in the figure above, the gear coupling reaches the static equilibrium 

with three couples in contact. The tip contact point would not theoretically be in contact, but 

due to the deformation of the teeth, some of the load will be discharged also by his coupling. 

For this reason, only the green star is present, because the dot is the first contact point 

determined without any load 

being applied. In the other hand 

the star indicates the final 

equilibrium contact point. For the 

red and blue couplings, the 

circular point is present, because 

they were determined to be in 

contact even if there was no 

displacement of the teeth under 

loading. As it is possible to see 

for the red coupling, in the case 

of the pinion, the difference Figure 26 "Static Transmission error in function of the 
angular position" 
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between the theoretical contact point, and the actual contact under loading, is of two nodes, 

since the red circle is two nodes under the red star. 

As a last step the static transmission error is computed and saved in the structure that will end 

up in the final output of the script. The calculation of the STE uses the function that computes 

the angle between teeth profile, in this case in will be the angular distance of the profiles at 

the equilibrium condition. The value will be given in degrees for all the contact positions that 

have been studied, the same way as it was for the load sharing factor. If the tooth coupling is 

not in contact, then it will not be computed.  
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Contact pressures 
Once the teeth profiles that are loaded are in the equilibrium position it is possible to estimate 

the contact pressures that arise from the loading condition to which they undergo. To achieve 

it, the dedicated function, uses a method developed in [4]. This method allows for the fast 

evaluation of the contact pressures between different types of surfaces. It is an algorithmic 

approach that solves a linear system of equations and performs an iterative process until the 

integral of the pressures over the respective contact areas are equal to the force exchanged 

between the teeth. 

Contact plane 
The first function generates the surface that is tangential to the contact point. To achieve this 

result, it takes the contact node and profile of the planet gear that have been calculated at the 

static equilibrium. From this data, it is possible to mathematically calculate the plane that is 

tangent to the contact node. The contact surface is a part of this plane limited both in the x and 

y directions. The size of the boundaries of the surface depends on the y axis on the tooth 

width, and on the x axis, on the estimated size of the contact area between the surfaces. The 

size of the contact area is estimated by computing the contact pressure and width with the 

Hertzian theory. The function also determines the boundaries of the tooth, and saves them, in 

this way the distance between the tooth profile and the tooth is computed only inside of the 

boundary. If the boundaries are not defined correctly, then the script will not compute these 

values. 

To ease the next step in the process, instead of saving the contact surface position and angle 

with respect to the planet gear, it is positioned in the x-y-z plane and centred in the origin. To 

correctly position the profile, a rotation matrix that achieves this task is computed and saved 

as the output of the function. This function did not require any modification, since the 

computation of the tangential plane to a surface, and the rotation of the profile do not vary 

from externally to internally toothed gears. 

Distance from the contact plane 
The methods that will be used requires the distance from the contact plane to the profile  

ℎ𝑎(𝑥, 𝑦) to compute the pressures. In external gears the shape of the flank is fully convex 

with respect to the contact plane. In the case of internal gears, instead, it is mainly concave, 

and only the last part towards the tip is convex. This is due to the different conjugate action 
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that occurs between an internally toothed gear and an externally toothed one. The function 

that computes the distance between the two profiles, handles one profile at a time. Since the 

process is the same for both gears it will be described only once. 

The gear enters the script and its profile is rotated to have the contact point in the centre of the 

contact plane. From this position the distance between the contact plane and the profile of the 

tooth is computed and saved in the matrices [𝑧𝑔𝑔1] and [𝑧𝑔𝑔2]. 

 

Figure 27 "Profiles of the gears in contact with tangent plane" 

As can be seen in the figure above, the point of contact is centred in the origin of the plane. In 

the left figure in black, it is possible to distinguish the shape on the internal gear, with its 

peculiar tooth tip. This can be used as a reference to understand the relative position of the 

teeth. The main peculiarity of the internal gear is concavity of the tooth profile. For most of 

the flank the profile is concave, whereas in the externally toothed gears, like the red profile in 

figure, the profile is convex. If the tangential plane to the point of contact (0, 0) is considered, 

the distance from this plane of profile of the internal tooth brings it closer to the profile of the 

planet gear tooth. We will consider the effect of this phenomenon in the further steps, by 

ensuring that the negative sign for the values of this distance, do not give issues to the 

computation of the relative distances between the profiles. 

Before entering the pressure calculation function this distance values must be manipulated as 

to have the correct definition to perform the next operation, this means adding the null values 

in the points that were not computed due to being outside of the contact plane surface. Each 

array of the matrices 𝑧𝑔𝑔1 and 𝑧𝑔𝑔2 will be shifted as to having the closet point to the surface 

with a value of zero. Once these arrays are correctly modified, they are saved in the matrices 

ℎ𝑎 and ℎ𝑏. 
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Another variable that is initialized before entering the iteration for the pressures is Δ𝑧, that 

describes how much penetration occurs between the profiles. To compute this value, it is 

assumed that the profile of the pinion is rotated by a fist trial angle 𝑑𝜗, from this angle the 

displacement of the profile is computed, and the values are saved in an array that enters the 

pressure calculation function. 

Pressure iteration 
The calculation of the contact pressures is based on a model developed to specifically 

compute the contact pressures on surfaces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the given tooth couple 𝑡ℎ from 1 to the number of possible teeth couples, the 

corresponding array of ℎ𝑎 and ℎ𝑏 enters the function, along with the corresponding array of 

the delta z matrix. As the function enters the displacement of the profiles is computed and 

saved in the array ℎ2, the zero values are removed from this array and stored in the 

subsequent ℎ1 array. For the first computation of the pressure, the first guess value is used in 

the formula: 

Inputs: ha, hb, ∆𝑧, uzz 

Computation of the 

relative distances: h2 

Computation of the 

pressures: {p}=[k]*{h2} 

Computation of the force 

exchanged:𝐹𝑒𝑠𝑡 = ∑ 𝑝𝑗 ∗ 𝐴𝑗 

Estimation of the 

penetration ∆𝑧 

Pressure output 

If 𝐹𝑒𝑠𝑡 − 𝐹 > 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

If 𝐹𝑒𝑠𝑡 − 𝐹 < 𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 
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{ℎ2} = {Δ𝑧} − {ℎ𝑎} + {ℎ𝑏} 

And it is possible to see that even if the array of ℎ𝑏 has negative values, this causes no issues. 

Then the pressures are computed by solving the linear system of equations:  

{𝑝𝑚𝑎𝑟} = [𝑢𝑧𝑧]−1 ∗ {ℎ1} 

[𝑢𝑧𝑧] is the correctly sized, for the array {ℎ1}, compliance matrix of the tooth, that was 

previously computed. The inverse of the compliance matrix is the stiffness matrix, that 

multiplied by the displacement gives the forces, that, divided by the unit value of area give the 

pressure. Once the pressure has been computed it is summated on the area of contact with the 

formula:  

𝐹𝑗 =
1

3
∑ 𝐴𝑗 ∗ (𝑝𝑗(𝜌1

𝑎) +

𝑛

𝑎=1

𝑝𝑗(𝜌2
𝑎) + 𝑝𝑗(𝜌3

𝑎)) 

That gives the value of the force exchanged in the triangle j, 𝐹𝑗. 𝐴𝑗 is the area of the triangle, 

and it was computed with the compliance matrix. By adding 𝐹𝑗 on the whole contact area of 

the tooth, the total force exchanged is computed. This force is then compared with the actual 

forced exchanged in the coupling, that was determined with the load sharing factor previously 

derived. If the value is within a certain tolerance the iteration will stop and exit and save the 

array of the contact pressures for that coupling and start again for the next coupling that is 

under load. When all the couples of teeth that exchange a force have been considered all the 

pressure values for that angular 

position are saved in their own 

array, and the script will start the 

cycle for the next angular 

position. As it can be seen in the 

figure, the contact pressures can 

be plotted as a function of the 

node. This type of visualization of 

the pressures describes the 

behaviour of the pressure both on 

the x and y axis since the nodes 

are coherently distributed along 

the face width of the tooth.  The Figure 28 "Contact pressures in the first angular position" 
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local maximum and minimums are caused by the varying pressures along the face of the 

tooth, the higher values are at the centre, and they gradually decrease towards the side. 

To see this phenomenon, it is 

possible to represent the pressures 

also as a function of x and y. In this 

representation the triangles of the 

discretization on which the 

pressures have been computed are 

represented, and the pressure is no 

longer shown as the value on the 

node, but as the average of the 

nodes that compose the triangle. It 

can be noted that the pressure is 

higher at the centre of the face 

width, and decreases when moving 

from the centre both in longitudinal 

and transversal direction, as it would be expected. 

 

 

 

 

 
 

 

Figure 29 "Pressures on the face width of the tooth" 
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Results 
The case that we will study has the following characteristics. 

Parameter Value Unit of 

measurement 

𝑧𝑠𝑢𝑛 24 - 

𝑧𝑝𝑙𝑎𝑛𝑒𝑡 33 - 

𝑧𝑟𝑖𝑛𝑔 90 - 

𝑧𝑠ℎ𝑎𝑝𝑒𝑟 30 - 

Rotational speed (Planet) 1000 rpm 

Number of planets 3 - 

Tooth modulus 5 mm 

Pressure angle 20 ° 

Tooth face width 40 mm 

Gear body face width 40 mm 

Helix angle 0 ° 

Gear Material 15CrNi6 

Shift coefficient 0 - 

Addendum 1 - 

Dedendum 1.25 - 

Ring gear backlash 200 𝜇𝑚 

For this case the analysis will be performed with 200Nm, 800Nm, 1600Nm and 4000Nm. The 

respective safety factor against bending fatigue (ISO 6336-3) are shown in the table below 

Torque 200Nm 800Nm 1600Nm 4000Nm 

Ring gear S.F. 31.5 15.7 9.6 4.4 

Planet gear S.F. 28.7 14.3 8.7 4 

As it is possible to see, the loading condition never exceeds the safety factor to bending by a 

good margin, this ensures that the results that have been obtained are not under very heavy 

loading. This prevents computational mistakes that might occur in the case of heavy loading 

conditions. 
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Influence of torque on the load sharing factor 
The main effect that influences the load sharing factor with the increase of torque, is the 

number of teeth couple that are in contact. For higher loads the deformation of the teeth is 

higher, and this causes the load to be spread on a higher number of teeth couples. As it can be 

seen in the figure, we have considered the two most extreme cases of loading. In the case of a 

light load of 200 Nm, the contact of the 6th teeth couple starts only at the 14th angular position, 

whereas for the 4000 Nm case, is already starts at the 8th angular position. When the load is 

not spread out on more than two different couples of teeth, the load sharing factor is 

practically the same since the stiffness for the given angular position is the same. 

 

Figure 30 "Load sharing factor as function of torque and angular position" 

To show how the load progressively evolves with increasing loads only a couple of teeth has 

been chosen, since it would be too confusing to plot all the teeth couples for all four of the 

cases that have been considered. It is possible to see that with the growing load, the angular 

position of first contact for the 6th teeth couple come earlier, causing the load on the 5th couple 

to decrease. In the case of the 4000 Nm load, it can also be noted that in the first angular 

position, for the first 4 positions the share of the load is lower since the 3rd couple of teeth is 

still contact. This results appear to be accurate, and the effect of the growing load on it 

follows the behaviour that would be expected. 
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Figure 31 "Load sharing factor of the 5th teeth coupling" 

Static transmission error 
With growing torques, the teeth are subjected to growing forces, and thus to greater 

displacement with respect to the theoretical meshing. This leads to a greater value of the static 

transmission error. Moreover, the peak of highest transmission error is shifted to lower points 

in the loop of angular position. This is again caused by the earlier contact of the 6th contact 

couple, that increases the stiffness of the teeth couple. 

 

Figure 32 "Static transmission error, effects of load and angular position" 
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The checks that have been performed for the values of the load sharing factor, and static 

transmission error, are not indicative of the actual behaviour of the gear coupling, since, as we 

mentioned before, the computation of the tooth root deformation is not accurate. The check on 

the values of this parameters is based on a tooth root strength that was estimated, and they 

indicate that if the computation of this strength is accurate, then the script can produce results 

also for an internally toothed gear that meshes with an external one. 

Contact pressures 
Once the reliability of the script that determines the loading and the contact position of the 

teeth profile it is possible to check the values of the contact pressures. In the first angular 

position, for all the cases, except the 4000 Nm one, there are two points of contact, and it is 

possible to compare how the growth of the contact force influences the pressure. With 

growing forces, the pressures increase, as it is logical. Even though it looks like the contact 

area remains the same, this is not the case. On the x-axis there is the node, this means that it 

does not show the length of the contact area along the profile, but the number on nodes on 

which there is deformation. These nodes are the product of the discretization of the tooth face 

and are spaced based on the contact area computed with the Hertz formula for the contact 

surface. This means that with growing forces, the contact area increases, and therefore the 

nodes are more spread out. What can be deduced from this plot is that the model that 

computes the pressures is consistent with respect to the value of the contact area determined 

by Hertz. The main difference is in the shifting of the contact area, due to the growing 

deformation of the teeth. With higher loads the contact point at the equilibrium moves 

towards the internal gear, causing a shift in the peaks, and of the nodes on which there is 

deformation of the profiles. 
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Figure 33 "Contact pressures on the first angular position" 

In the following figures the pressure is plotted on the face of the tooth, in combination with 

the tooth meshing, this means that the pressure on each node has been averaged on the 

triangle on which it belongs, then they are painted on the graph. 

 

Figure 34 "Contact pressures on the face of the tooth, comparison between different torques" 

As it is possible to see in the figures, the contact area is smaller on the face of the tooth that is 

subjected to a lower force. If in the case of 1600 Nm the contact area goes from around 79.1 
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mm to 79.7 mm, in the case where it is loaded with 800 Nm, the contact surface goes from 

79.2 mm to 79.6 mm. 

The pressures were also computed with the Hertz method for deriving contact pressures in 

gears with the formula: 

𝑝𝐻𝑒𝑟𝑡𝑧 = √
𝐸𝑟𝑒𝑑

2𝜋
∗

𝐹𝑛

𝑏 ∗ sin(𝛼)
∗

𝑟1 + 𝑟2

𝑟1𝑟2
 

In the table below are reported the values of the pressures determined with the Hertz formula 

compared with the one computed with the iterative method. 

Torque 200 Nm 800 Nm 1600 Nm 

𝑝𝐻𝑒𝑟𝑡𝑧 394.3 MPa 788.6 MPa 1115.2 MPa 

𝑝𝑖𝑡𝑒𝑟 283.8 MPa 564.3 MPa 805.6 MPa 

 

The pressures determined with the Hertz method are lower than the one computed by the 

script, but they are consistently so, since instead of considering all the load on just one tooth, 

the load is spread out on two couples of teeth. It is possible to compute the pressure with the 

Hertz method on each couple of teeth by multiplying it by the square root of the load sharing 

factor. The pressure computed with the Hertz method on the i-th couple of teeth is: 

𝑝𝐻𝑒𝑟𝑡𝑧,𝑖 = √
𝐸𝑟𝑒𝑑

2𝜋
∗

𝐹𝑛,𝑖

𝑏 ∗ sin(𝛼)
∗

𝑟1 + 𝑟2

𝑟1𝑟2
 

With 𝐹𝑛,𝑖, the normal load on the i-th couple: 

𝐹𝑛,𝑖 = 𝐹𝑛 ∗ 𝐿𝑆𝐹𝑖 

Substituting in the previous equation: 

𝑝𝐻𝑒𝑟𝑡𝑧,𝑖 = √
𝐸𝑟𝑒𝑑

2𝜋
∗

𝐹𝑛 ∗ 𝐿𝑆𝐹𝑖

𝑏 ∗ sin(𝛼)
∗

𝑟1 + 𝑟2

𝑟1𝑟2
= 𝑝𝐻𝑒𝑟𝑡𝑧 ∗ √𝐿𝑆𝐹𝑖 

It is possible then to compute the pressure, even if not with total accuracy since the contact 

point is not on the pitch line of the teeth. 
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Torque 200Nm 4th 200Nm 5th 800Nm 4th 800Nm 5th 1600Nm 4th 1600Nm 5th 

LSF 29.24% 70.76% 29.26% 70.74% 29.13% 70.87% 

𝑝
𝐻𝑒𝑟𝑡𝑧,𝑖

 213.2 MPa 331.7 MPa 426.6 MPa 663.27 MPa 601.9 MPa 938.8 MPa 

𝑝𝑖𝑡𝑒𝑟 115.8 MPa 283.8 MPa 230 MPa 564.3 MPa 322.1 MPa 805.6 MPa 

 

A difference between the two values remains, and it should be noted that curvature of the 

tooth profiles is computed at the pitch radius of the gears, this means they we have corrected 

only for the normal load to the tooth. To accurately compare with the pressure values obtained 

with the Hertzian formula it is necessary to find an angular position that is close to the pitch 

circle, around the radial value of 82.5mm on the planet gear. 

As it is possible to see from the table below in this area the computed values are very close. 

Torque 200 Nm Radial position 

𝑝𝐻𝑒𝑟𝑡𝑧 323.8 MPa 82.5 mm 

𝑝𝑖𝑡𝑒𝑟 334.6 MPa 82.67 mm 

 

Pressures on the tip of the planet gear 
Having cleared the fact that the script is able 

to compute the contact pressures when the 

teeth profiles are in contact on one position 

of the flank that is continuously defined on 

the theoretical surface area. If the teeth are 

in contact next to the tip of the planet gear, 

this condition is no longer satisfied. When 

the torque on the planet gear is equal to 4000 

Nm, in the first angular position there is a 

return into contact of the 3rd teeth couple. 

This contact point is on the tip of the planet 

gear and is shown in red in the figure. The 

addition of this contact point modifies the load sharing factor, as it has already been seen. 

Therefore, a part of the load is discharged by the tip of the planet gear. This condition means 

that the distance between the profile of the planet gear flank and the theoretical contact plane 

can be computed only for half of it. In the normal computations, the discretization of the 

Figure 36 "Contact pressures under heavy 
loading" 
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contact plane by means of triangles uses 20 steps in the transversal axis, and 120 steps on the 

longitudinal axis. If the script computes the pressures for this condition, it does not have 

enough points that experience actual deformation, and results in the error “no node is 

surrounded by nodes to form a triangle”. To achieve the computation of the pressures in this 

case there are two possible paths. Either the estimated contact area is modified, or the 

discretization on the longitudinal axis of the tooth is made finer. 

By increasing the value of the discretization “ny” to 1000, the script returns the values of the 

contact pressure. This step increases the computational time both for the compliance matrix 

against the contact 

forces, and the 

computation of the 

pressures. Resulting in 

an excessive time 

elapsed. The pressure 

that is computed by 

adopting a finer meshing 

of the tooth face results 

in values of the pressure 

exceeding 6000 MPa, 

beyond the surface 

pressure strength of any 

type of material that is used in the manufacturing of gears. For these reasons, assuming that 

the equilibrium position is computed correctly, a heavy loading of this gears would lead to a 

condition of high pressures, that should be avoided. Therefore, it is not necessary to increase 

the discretization of the tooth flank. If there are not sufficient nodes, with the discretization of 

ny in twenty segments, it means that the contact pressures are way too high. We will not 

perform the same analysis by reducing the estimated surface area of contact, because this 

would impede the correct computation of the pressures for the other loading conditions. 

Figure 37 "Contact pressures on the tip of the planet gear" 
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Other loading conditions 

 

Figure 38 "Contact pressures 11th angular position" 

In some cases, there are three teeth couplings in contact, in some of those cases, a pressure 

peak on one of the couplings can be observed. This is the case for the 11th angular position 

when the pinion is loaded with 1600 Nm. This leads to a spike in pressures towards the fillet 

of the planet gear. This means that the tip of the internal gear, when penetrating this part of 

the planet, can cause significant overpressures. Another peculiarity lays in the concavity of 

the pressures. To understand what is happening it is useful to see the pressures plotted on the 

face of the tooth. 
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Figure 39 "Angular position 11, pressures on the face of the tooth" 

As it can be seen in the picture, the pressures are quite high, and their values are highest on 

the lower part. This might be due to the peculiar shape of the tip of the ring gear, that changes 

concavity in that region. Therefore, the points that are higher on the y-axis see the part of the 

tooth that is concave, whereas the points on the lower part are in contact with the convex part 

of the tooth profile. The contact pressures between two profiles with the same curvature will 

be lower than the one where they have opposite curvatures, and for this reason the pressures 

are higher on the lower part of the tooth. To understand better this phenomenon the profiles 

that generate this pressure distribution are plotted in figure 38, together with the contact area, 

in orange, on which the gap function is computed. 
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Figure 40 "Tooth profiles angual position 11" 

Further developments 
Given that the modifications performed show the possibility of applying this model for the 

computation of the static transmission error, and contact pressures in the meshing of an 

internal and external gear, it is possible to further improve the script. The first step is to 

validate another analytical formula for the computation of the tooth deflection cause by the 

gear body since the current formula has been validated only for externally toothed gears. 

The other step that must be achieved to completely understand the behaviour of the whole 

planetary gearset is to allow for the meshing of the gear in multiple points. These 

considerations are relevant because the ring gear does not mesh with only one planet, but with 

multiple, at different positions on its circumference. The planet meshes both with the ring and 

the sun gear, and the sun, just like the ring, meshes with all the planets. When all these 

developments will be achieved it will be possible to add also the dynamic effects that affect 

this type of transmission.  



 

64 
 

Conclusions 
To recapitulate, the script, starting from the correctly dimensioned and generated ring and 

planet gear, of an epicyclic transmission computes the static transmission error, and contract 

pressures for this mating couple in twenty different angular positions. The pinion, that in this 

case is the planet gear, receives different input torques ranging from 200 to 4000 Nm. The 

results that have been obtained are coherent with what can be theoretically determined, and 

the script can reliably perform this type of computation for any type of correctly sized 

coupling of this type. In case of heavy loading the script can compute the static transmission 

error. Although when computing the contact pressures, if the standard discretization of the 

tooth flank is used, it is unable to perform the task. This issue can be addressed by increasing 

the discretization, but, due to the high loading, the values that will be obtained cannot be 

assumed to be accurate. Therefore, with the standard discretization, if no pressure is 

computed, then it can be assumed that the contact pressures are too high, and either the load 

must be reduced, or the correct profile modification of the tooth applied.  
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