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Abstract 
This thesis has been carried out as a collaboration between Politecnico di Torino, the 
candidate and the Italian company Teoresi, a leader consultancy company in the fields of 
aerospace and defense, automotive, railway, artificial intelligence, among many others. 

Teoresi recently purchased an electric vehicle with the aim of developing a self-driving 
car using a commercial framework, that shall be discussed later. For this purpose, the 
company made some modification on the chassis to mount some of the required sensors 
(2 mechanical LiDARs, 1 solid-state LiDAR, 3 cameras) needed for a state-of-the-art 
autonomous vehicle. Hence, the first part of this paper is an introduction to the overall 
concept of autonomous driving and its history.  

Before putting the car onto the actual road, it has been decided to first test the self-driving 
framework and all the sensors on a driving simulator, as to prevent any real and 
potentially costly damage to the car and people, and to make sure the software works 
properly. The latter is the ultimate goal of this work, putting the focus on the object 
detection module. 

The first chapter is an introduction to AV and its history. In the second chapter, an 
overview of the most popular Deep Learning models for object detection is given, since 
the understanding of how they work is vital for the outcome of a quality simulation. 

The next chapter introduces the simulator (LG SVL) and the autonomous driving 
framework, Apollo. In the successive section we will show how to upload onto the 
simulator the digital version of the car, its sensors and the map, used as the standard 
scenario of drive. 

In the chapter 5 chapter we show the simulations and discuss one main challenge 
presented: during the first simulations, we noticed that the object detection from the solid-
state-LiDAR only wasn’t performing as expected. In particular, the framework is not able 
to correctly detect the obstacles and pedestrians when they are at short distance. Since the 
used framework is still experimental, and the solid-state-LiDAR is also a relatively new 
sensor, there is no-to-little literature of such specific problem. Therefore, there is no 
source or study that can be adopted to verify how the parameters and use of the algorithms 
may be changed to address the above-mentioned problem. For these reasons, the approach 
of this issue will be mainly experimental, using different configurations and interpreting 
the results. Finally, the last section covers the possible solutions to be implemented in the 
future to resolve this issue. 
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Chapter 1 
 

Introduction and theoretical 
background 

 
 
In this chapter, theory and background information about the subjects crucial for this 
thesis are presented. At first, a general definition of autonomous driving is given. 
Subsequently, we will give a first overview on object recognition and perception of 
autonomous vehicles (AVs). 

 

1.1 – Autonomous driving 

Nowadays, autonomous driving may be the hottest topic in the automotive field. We can 
define autonomous driving as the ability of a vehicle to ride safely in all type of situations, 
and react to road contingencies in a way to preserve safety of passengers and road users. 
One of the most crucial challenges of autonomous driving research is environment 
detection. For humans, this task is relatively simple and subconscious, as we can easily 
detect any object, possible obstacles, and vulnerable road users (VRU) through our vision. 
Conversely, for a machine, such task is rather non-trivial, as it has to take over all the 
tasks related to road observation. We must then first equip the machine with sensors that 
simulate human perception, and then teach them with dedicated software how to use the 
data these sensors return, in order to recognize what object are present in the environment, 
and which decisions to take based on their type, location, and state of movement. 

Clearly, autonomous driving comes in levels: before total autonomy there are many other 
tasks that help drivers drive safely, or in general have an easier driving experience. These 
tasks are included into what it is called Advanced Driver-Assistance Systems (ADAS). 
In this category we can list some features that have been perfectioned over the last decade, 
such as adaptive cruise control, lane keeping, blind spot detection, signal recognition. 
These are all steps that needed to be completed before aiming for full self-driving 
vehicles. 
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In this regard, to standardize the level of autonomy, a classification system with six levels 
– ranging from fully manual to fully automated systems – was published in 2014 by 
standardization body SAE International [1]:  'Taxonomy and Definitions for Terms 
Related to On-Road Motor Vehicle Automated Driving Systems’, which details are revised 
periodically. This classification is based on the amount of driver intervention and 
attentiveness required, rather than the vehicle's capabilities, although these are loosely 
related. In the United States in 2013, the National Highway Traffic Safety 
Administration (NHTSA) adopted the SAE standard, and SAE classification became 
widely accepted. Figure 1 explains in detail the requirements of each level. 

 

 

 

1.2 – Perception and object recognition 

The systems described in the previous section can be perceived as an intermediate step 
towards the full automation, but for now, they only offer assistance to the driver to 
enhance comfort and safety. For a car to be fully autonomous, it has to be able to take 
over all the tasks of the human driver. The most crucial one is object detection: a computer 
vision task which goal is recognizing and localizing objects such as pedestrians, traffic 
lights/signs, other vehicles, and barriers in the AV vicinity. 

Figure 1. SAE’s autonomous driving standard levels 

https://en.wikipedia.org/wiki/SAE_International
https://en.wikipedia.org/wiki/National_Highway_Traffic_Safety_Administration
https://en.wikipedia.org/wiki/National_Highway_Traffic_Safety_Administration
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Not only a good estimation and correct recognition is needed, but a crucial factor is also 
the velocity of such tasks. A pseudo-real-time detection module allows the vehicle to 
react quickly in order to plan its next decision, be it a change in direction or be it 
braking/accelerating. It is the foundation for high-level tasks during self-driving 
operation, such as object tracking, event detection, motion control, and path planning. 

The evolution of object detectors began in the 2000s with a real-time human face detector 
developed by P. Viola and M. Jones [2], which was one of the breakthrough algorithms 
in this field, using Haas features (line, edge and rectangular features) to extract 
information from a picture or frame. 

Only a few years later the Histograms of Oriented Gradients (HOG) gained popularity as 
detectors for pedestrian [3]. This approach divides the image in cells and then calculates 
the gradients among the different pixels and used it as features to characterize the shape 
of a human body, which will be then compared with the HOG of the unknown images to 
see if they contain pedestrians. The classification was then performed using a Support 
Vector Machine (SVM). Fig. 2 describes the process. 

 

 

HOG were successively improved as to become the Deformable Part-based Models 
(DPM), the first approach which allowed recognition of multiple objects at the same time 
[4]. The main difference is that DPM accounts for the idea that the same class of objects 
can present differences in terms relative positions of their key components, or different 
scales, so they split up every object into its parts (for example head, arms, legs, trunk), 
and by doing so it was possible to recognize objects of much different scales, seen by 
another point of view or even partially occluded, because the model learnt the relative 
locations that all the parts have among them. Fig. 3 explains this approach. 

Figure 2. HOG’s principle 
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Starting from 2013, due to the increasing interest in deep convolutional neural networks 
(CNN), another family of object detectors using CNN was proposed, called the Regions 
CNN, or R-CNN [5]. We shall discuss the main properties of such detectors in a 
successive section of this paper. These methods led to a breakthrough for multiple object 
detection, with a 95.84% improvement in mean Average Precision (mAP) over the state-
of-the-art. This development helped redefine the efficiency of object detectors and made 
them attractive for entirely new application domains, such as for AVs. Since 2014, the 
evolution in deep neural networks and advances in GPU technology have paved the way 
for faster and more efficient object detection on real-time images and videos. AVs today 
rely heavily on these improved object detectors for perception, pathfinding, and other 
decision making. 

 

 

1.3 – Evolution of autonomous driving in history 

It is worth having a quick look at the history of autonomous driving to understand its 
evolution. The first records of driverless vehicles date back to the 1920s, where, precisely 
in 1925, inventor Francis Houdina built a car, named American Wonder, that was able to 
drive through the streets of New York thanks to an antenna that received radio signals 
from an operator that could control the vehicle remotely from another car following the 
first one. The antenna would then transfer the signals to switched which controlled small 
actuators that directed every movement of the car. 
The ride was not a total success, as the vehicle bumped into another at some point, but 

Figure 3. DPM approach 
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despite this early mishap, the industry did not give up hope on remote-controlled cars. 
The car is shown in Fig. 4. 

 

 

A decade later, precisely in 1939, General Motors sponsored Norman Bel 
Geddes's Futurama at the World’s Fair: it was an electric vehicle guided by radio-
controlled electromagnetic fields and operated from magnetized circuits embedded in the 
roadway. The car contained sensors that could detect the current flowing through the 
wires embedded in the road, which could be manipulated to move the steering wheel left 
or right. 

The embedded electrical wires into the road were the leading technology that was 
implemented through the 1960s with projects from RCA Labs, General Motors, Ohio 
State University, the United Kingdom's Transport and Road Research Laboratory, 
Stanford University, University of Illinois. 

The first automated robot to include a camera was Stanford University’s Stanford Cart in 
1961, a simple cart constituted by 4 wheels, a fixed position camera and a battery. The 
project was meant to be a study on how to remotely control a rover to be sent on Mars by 
a NASA mission. The camera was not the only novelty introduced with this project: a 
computer program was written which guided the cart through narrow spaces, gaining 
knowledge of the world totally from the images broadcasted on the TV system (Fig. 5).  

The cart used several types of stereo vision to locate objects around it in three dimensions 
and to learn  its own motion. It was able to plan a path to a desired destination on the basis 

Figure 4. American Wonder 

https://en.wikipedia.org/wiki/Norman_Bel_Geddes
https://en.wikipedia.org/wiki/Norman_Bel_Geddes
https://en.wikipedia.org/wiki/Futurama_(New_York_World%27s_Fair)
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of a model built with this information. The plan changed as the cart detected new objects 
on its journey. The process was reliable for short runs, but extremely slow: after driving 
one meter it stopped, took new pictures, and processed them. Then it planned a new path, 
executed a little of it, and paused again. It successfully drove the cart through several 20-
m courses (each taking about 5 h). The Stanford Cart was really a breakthrough in the 
field and was an inspiration to many projects yet to come. 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

 

  
 
In the 1980s, Prof. Ernst Dickmanns and his research group at Bundeswehr University of 
Munich built the world's first actual robotic street vehicles, using computer vision and 
probabilistic algorithms to drive 20 km on an empty highway with velocities of up to 
96 km/h [6]. His research continued in the European publicly-funded EUREKA-project 
Prometheus, which ran from 1987 to 1995. It included many European participants and 
received a significant amount of public funding. 

During the same years, DARPA’s Autonomous Land Vehicle (ALV) project was created. 

It was an immense 12-foot tall, 8 wheeled vehicle that achieved the first road-following 
demonstration using LiDAR, computer vision and autonomous control to direct the 
vehicle at speeds of up to 31 km/h. It was able to drive autonomously in the hills outside 
of Denver in 1985. It is shown in Fig. 6. 

The 1990s marked a crucial point in autonomous driving. As Carnegie Mellon University 
pioneered the use of neural networks for steering, these quickly became the new and 

Figure 5. The Stanford Cart 

https://en.wikipedia.org/wiki/Ernst_Dickmanns
https://www.unibw.de/tas-en
https://www.unibw.de/tas-en
https://ieeexplore.ieee.org/document/639472
https://ieeexplore.ieee.org/document/639472
https://ieeexplore.ieee.org/document/639472
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Eureka_Prometheus_Project
https://en.wikipedia.org/wiki/Lidar
https://en.wikipedia.org/wiki/Computer_vision
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exciting technology applied to vehicles. Companies such as General Motors, Toyota, 
Honda, Mercedes-Benz all joined the conversation with their own projects 

 

 

One of the most noticeable projects among them was Ernst Dickmanns’ VaMP, which in 
1994 was able to drive about 1000 km on a 3-lne highway in Paris in standard traffic 
conditions at speeds up to 130km/h. The car was able to autonomously manage to drive 
in free lanes, convoy lines and passing of other vehicles. One year later Dickmann 
proposed a new project in which an S-Class Mercedes completed a 1600km trip achieving 
even higher speeds and with a peak of 158 km driven without human intervention. 

A similar result was obtained by Carnegie Mellon’s Navlab project in 1995 , which 
completed a 5000km trip across the USA, of which 98.2% was autonomously controlled. 
Note that all these vehicles equipped a bulk mainframe in the inside to perform all the 
calculations required. 

 

THE DARPA CHALLENGES 

By the early 2000s, the autonomous car industry was in full swing. The U.S. Department 
of Defense’s research arm, DARPA, sponsored a series of challenges, called Grand 
Challenges, to expedite autonomous cars. The prize for the winning team was 1 million 
dollars. 

Figure 6. DARPA’s ALV 
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In 2004 the first edition took place, and it consisted in a 240km race through the Mojave 
desert, but no team was able to complete the race. Although the outcome was not the 
desired one, this event attracted much interest and gained popularity among the scientific 
community. In 2005 the second challenge was held, and this time around five teams 
completed the course, Stanford University and Carnegie Mellon University got 
respectively 1st, 2nd and 3rd place. For the third edition, in 2007, DARPA moved the 
competition to an urban area course. Teams had to complete an urban course, negotiating 
four-way intersections, blocked roads or parking lots, in mixed traffic with robotic as well 
as human-driven vehicles. Over 90 teams applied to the Urban Challenge, 53 teams 
received site visits, 36 were invited to the final event, and just eleven made it into the 
final race. The event saw the first autonomous vehicle traffic jam as well as the first, 
though minor, collision of two self-driving vehicles. Carnegie Mellon’s Vehicle Boss 
won the 60-mile race, followed by Stanford’s Junior. Figure 7 shows 2005 edition’s 

winner. 
 

The influence of these events on the industry was enormous: the DARPA prize money 
attracted top-notch researchers, who attracted leading automotive manufacturers 
(Volkswagen, General Motors among others), large automotive suppliers (Continental, 
Mobileye, Bosch), chipmakers (Intel was powering the top-2 teams) and also Google as 
one of the main sponsors. 

The challenges also contributed to the evolution of the LiDAR sensors, which rapidly 
became the most important sensors for the vehicles’ perception. By the time the 2007 

Urban Challenge took place, these sensors produced by the company Velodyne were 
mounted on top of five of the six vehicles that finished the course. This unforeseen 
success sparked a whole new industry, where Velodyne is now still one of the top 
manufacturers. 

 Figure 7. Stanford University’s winner in the 2005 challenge 

https://youtu.be/aq-ICasZVbw
https://youtu.be/aq-ICasZVbw
https://www.ri.cmu.edu/pub_files/pub4/urmson_christopher_2008_1/urmson_christopher_2008_1.pdf
http://robots.stanford.edu/papers/junior08.pdf
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As previously mentioned, Google also joined the business, attracted from the very 
promising technologies implied in the DARPA Grand Challenges. For a couple of years, 
Google kept secrecy around its project, until in 2010 they officially announced their own 
self-driving vehicles program, hiring some of the brightest engineers that previously 
worked for Stanford’s team. The company from Mountain View started modifying and 
equipping cars (Fig. 8) for testing in real world scenarios, first in Arizona, and 
successively in Florida and California. They founded a secret lab called secret X lab, 
which was the center of research and development for the project. In some years Google 
was able to successfully develop self-driving golf carts and little carts used on their 
campus in California. 

 

 

 

Many other major automotive manufacturers, like BMW, General Motors, Ford, Toyota, 
Nissan, Mercedes-Benz, Volkswagen, Audi, and Volvo, are now in the process of testing 
driverless car systems, and are doing so successfully. Many systems have been introduced 
or improved, such as lane adaptive cruise control, lane keeping, parking assist, driver 
fatigue detection. 

In October 2014 Tesla announced its first version of Autopilot. The vehicles equipped 
with this system were capable of lane control with autonomous steering, braking, and 

Figure 8. Lexus RX450h modified from Google for testing 

https://en.wikipedia.org/wiki/General_Motors
https://en.wikipedia.org/wiki/Ford_Motor_Company
https://en.wikipedia.org/wiki/Toyota
https://en.wikipedia.org/wiki/Nissan
https://en.wikipedia.org/wiki/Mercedes_Benz
https://en.wikipedia.org/wiki/Volkswagen
https://en.wikipedia.org/wiki/Audi
https://en.wikipedia.org/wiki/Volvo
https://en.wikipedia.org/wiki/Tesla_Motors
https://en.wikipedia.org/wiki/Tesla_Autopilot
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speed limit adjustment based on signals image recognition. The system also includes 
autonomous parking. This software was able to give Tesla a level 2 autonomy according 
to SAE. Differently from other companies in the business, Tesla vehicles don’t rely on 
LiDAR sensor, but rather only on cameras and radars. Up to this point, Tesla’s features 

reached level of 2 and 3, according to SAE, but the aim of the company is that of achieving 
a Full Self Driving (FSD) level 5 autonomy. After years of research, Tesla released in 
2020 their beta software for level 5, initially given only to a small portion of employees 
and engineers to be tested. Tesla’s CEO, Elon Musk, stated "[the beta version] will be 
limited to a small number of people who are expert and careful drivers", and by doing so 
the company allowed 1000 customers to use their FSD software. As the months went on, 
Tesla slowly increased the number of customers allowed to use the FSD system. As of 
January 2022, the vehicles equipped with such update is about 60000. 

In 2018, the previously known Google’s secret X lab, now become one of its subsidiary 
companies, launched the first driverless autonomous taxi fleet in Phoenix, Arizona. 
After years of experience in the business, Waymo is today one of the top and most 
advanced autonomous driving companies in the world, and the first to ever launch a fleet 
of self-driving taxi service, operating in Phoenix, Arizona. One of the fleet’s vehicles is 

shown in Fig 9. Singapore also launched the same service with the company NuTonomy. 

As in 2022 the vast majority of commercialized autonomous vehicles (including public 
transportation) reach level 3 of SAE’s standards, but, as we’ve seen, the evolution is very 

rapid. 

 

Figure 9. Waymo’s driverless taxi 
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1.4 – Sensor and LiDARs 

Autonomous vehicles today are equipped with several different sensors: radars, LiDARs, 
cameras, sonars (or ultrasound), GPS, IMU (accelerometers, gyroscopes..). The reason 
for such a variety of devices is that each one presents its pros and cons, depending on 
weather conditions, range, task, lighting conditions, as illustrated in Fig. 10. The red, 
yellow and green dots respectively represent poor, acceptable and good performance of 
the specific task. 

 

 

 

 

Figure 10. Pros and cons of most used sensors in ADAS 

Figure 11. Typical sensor configuration and respective range 
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Depending on the task they serve, their position on the vehicle is affected. A typical 
configuration is the one depicted in Fig. 11, although some companies may prefer to not 
use some of the types included in this example. 

Among these sensors, perhaps the most important one for the vehicle’s perception is the 

LiDAR, so let us summarize its capabilities and why it has become the first and most 
important sensor for this task is autonomous vehicle.  

A LiDAR (‘light detection and ranging’) is an active sensor used to draw a high-definition 
map of the surrounding environment based on the reflection of laser beams. The first 
LiDARs were developed in the early 1960s by an aerospace company with the goal of 
satellites tracking. They rapidly became popular also in military applications, but the first 
time the public became aware of its usefulness and accuracy was when it was used in the 
Apollo 15 mission to scan the surface of the moon. Today different kinds of this 
technology are used in countless fields such as military, geology, physics, automotive, 
climatology, oceanography, archeology, astronomy, robotics and more.  

In recent years these sensors have become the predominant choice for autonomous 
driving, since a precise and real-time 3D map of all the surrounding environment is 
needed to feed to the perception algorithms to identify pedestrians, vehicles, motorbikes, 
cyclists, eventual obstacles on the road and other unexpected objects for the safety of the 
passengers.  

A LiDAR sensor emits laser beams at a certain frequency up to millions of times per 
second; these beams then strike the surrounding objects and reflect on them, travelling 
their way back to the sensor, which, based on the time that the pulse needs to travel back, 
can calculate the distance of the struck object from the emitter. 

For the purpose of this paper, we will focus on two of the main types of LiDARs: 

1. Mechanical LiDAR 
This is the most commonly used LiDAR family. It is constituted by a laser 
emitter and a motor that rotates the emitter at 360° at a given angular velocity. 
The emitter sends pulses of laser at a given frequency, and then the receiver 
catches the reflected beams. Fig. 12 illustrates, in simplicity, its architecture. 

 
 
 
 
 
 
 
 

Figure 12. Schematic representation of a mechanical LiDAR 
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Given its rotative mechanical parts, that must be very precise in order to keep a 
steady rotation velocity, and their fragility, this type of LiDAR results in being 
very expensive and more prone to failure. 
 

2. Solid-state LiDAR 
Given the high cost of the traditional mechanical LiDARs, in recent years a new 
version of the same sensor has been developed, which is called solid-state 
LiDAR. This type has no rotating parts, hence the field-of-view (FoV) is just a 
portion of the environment that lies ahead. The cost is much lower since the lack 
of a rotating motor, but drawback is that obviously this sensor does not provide a 
360° scan, while only a portion of the surrounding space. The technology used 
to calculate the distance of the points is the same of the classic LiDAR. Fig. 13 
shows a typical solid-state configuration. 
 

 

 

Given their accuracy, with the surge of the autonomous driving business LiDARs have 
become the most important sensor when dealing with the perception of the vehicle. The 
main technical characteristics that differ from sensor to sensor are: 

▪ Horizontal field-of-view (if solid-state then < 360°) 
▪ Vertical field-of-view (typically around 40°) 
▪ Number of planes (also called channels, which is the number of lasers emitted 

vertically) 
▪ Number of points scanned per second 
▪ Horizontal angular resolution (depends on rotation velocity and frequency of 

emission) 

All companies, except Tesla Motors, base their perception algorithms on the input that 
LiDARs provide describing the surrounding environment. 

 

 

Figure 13. Schematic representation of a solid-state LiDAR 
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1.5 – Data representation from LiDAR scans 

The image (or video) representation deriving from a camera is well known, capturing the 
environment as a number of tiny portions of space, called pixels, and assigning each one 
of them values of intensity (for black and white images) or  color domain (most typically 
RGB, but also CMYK, HSV and other models are sometimes used). The result is often 
defined as matrix-like visualization, where such matrix is more than 2-dimensional when 
the color system is based on 3+ entries, and where each dimension represents the 
intensities of a specific color. This makes the image easy to visualize and provide 
discriminative information, but nevertheless due to the lack of a depth information it is a 
challenging task to detect objects of varying shapes, sizes, and orientations by using only 
one camera. Fig. 14 provides a simple explanation of representation of a RGB image as 
a 3-dimensional matrix, where each dimension represents respectively the intensity of 
Red, Green and Blue. 

 

 

 

 

 

 

 

 

 

 

On the other hand, a lidar provides a 3-dimensional point cloud of the environment, which 
yields information about the distance in the scene, i.e. depth. This data is very well 
applicable for obstacle detection. However, point clouds obtained by lidar sensors lack 
color and texture information and only sparsely capture the environment. 

From a raw LiDAR scan, we can obtain the following properties of the points, XYZ 
coordinates, reflectivity (sometimes also called intensity), and distance, calculated using 
the ToF (time of flight, i.e. the time needed for the light beam to strike the object and 
return to the detector). We must take into consideration that the raw points obtained from 
a raw LiDAR scan are unstructured and often sparse, meaning that there are many areas 
where the signal doesn’t return to the detector, implying a null value of intensity because 

no object was in the range of the sensor hence it did not reflect back the beam. Apart from 

Figure 14. Representation of a RGB image 
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being sparse, a LiDAR point cloud suffers from highly variable density, especially when 
increasing the distance from the sensor. The main reasons behind this are non-uniform 
sampling of the space, effective range, occlusion, relative position and orientation of the 
sensor. Fig. 15 is a typical point cloud derived from a mechanical LiDAR. 

 

 
There are several approaches used in most recent models to process a raw point cloud for 
object detection. One of the most popular ones is the voxelization of the point cloud as 
used in [7], which consists in sub-dividing the space into 3D cubes called voxels (the 3D 
correspondent of pixels), so that a grid of such voxels can be created and is easier to 
manage and structure raw points. 

Another very used method is projecting the 3D space into a 2D map, like used in [8], [9]. 
Using this approach, one may think that one dimension is lost, but instead of representing 
it as a 3 dimensional cartesian space, this third dimension is often represented by a color 
map. Color maps often represent altitude, intensity distance. The most popular 2D 
projections are the Bird’s Eye View (BEV) and the frontal view, which uses cylindrical 

coordinates. Examples in Fig. 16. 

Figure 15. Raw LiDAR point cloud 
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Figure 16. BEV (first 3 from the left) and front view (right) 
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Chapter 2 
 

Most popular CNNs for perception 

 
2.1 – Convolutional Neural Networks for object detection 

At present, deep learning models have been widely adopted in the whole field of computer 
vision, including general object detection and domain-specific object detection. Most of 
the state-of-the-art object detectors utilize deep learning networks as their backbone and 
detection network to extract features from images or videos. 

Object detection consists of two sub-tasks: localization, which involves determining the 
location of an object in an image (or video), and classification, which involves assigning 
a class (e.g., ‘pedestrian’, ‘vehicle’, ‘traffic light’) to that object. Existing domain-specific 
image object detectors usually can be classified according to the type of data used as input 
or to the type of network used. Fig. 17 explains the taxonomy of object detectors. 

 

 

We will now focus on the taxonomy based on the type of network. The state-of-the-art 
networks used for object detection can be divided into two families: the two-stage 
detectors and the single-stage detectors. 

Two-stage deep learning-based object detectors are subdivided into 2 tasks: region 
proposals and object classification. In the first phase, as the name suggests, the algorithm 
proposes several Regions Of Interest (ROIs) of an input image that present the highest 

Figure 17. Taxonomy of object detectors 
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likelihood of containing an object, often using the Selective Search algorithm [10]. In the 
second stage, only the most ‘promising’ ROIs are passed on and only in these the 
classification will take place, discarding, for sake of computation time, the non-interesting 
regions. This step is done with deep CNNs to extract features from the image, topped off 
by a SVM or fully connected layer to give each category a score of likelihood. See Fig. 
18 (a) for a schematic representation of the pipeline. The two-stage networks have 
normally higher localization and object recognition accuracy than the single-stage 
methods. The most popular networks of this family are R-CNN and all its derivatives 
(Fast R-CNN, Faster R-CNN, Mask R-CNN). We will see more in detail the 
characteristics of some of them in the next section. 

On the other hand, single-stage object detectors use a single feed-forward neural 
network that creates bounding boxes and classifies objects in the same stage. These 
detectors are faster than two-stage detectors, hence their use for real-time applications is 
more advised, but they are also typically less accurate. Among the most popular single-
stage detector are YOLO (You Only Live Once) and SSD (Single-Shot Detector). Fig. 
18 (b) shows the typical architecture. 

 
Figure 18. Architectures of two-stage (a) and single-stage (b) object detection algorithms 
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2.2 – Evaluation metrics 

Before analyzing different CNN architectures, it is worth mentioning the main evaluation 
metrics which are used to measure the precision of statistical and machine learning model. 
Evaluating machine learning models or algorithms is essential for any project, and there 
are many different types of evaluation metrics available to test a model. We will name 
just the most important related to our project. It is nonetheless very important to use 
multiple evaluation metrics to evaluate one model, and the reason is because an algorithm 
may perform well using one measurement from one evaluation metric, but may perform 
poorly using another measurement from another evaluation metric. Using evaluation 
metrics is critical in ensuring that your model is operating correctly and optimally. 

2.2.1 – Intersection over Union 

A very important metric to quantify the performance of an object detector is the 
Intersection over Union (IoU). As already explained, object detector not only have to 
classify objects, but also correctly localize them by drawing a bounding box that 
encapsules the target object. This evaluation metric focuses solely on the latter task. In 
fact, IoU measures the ratio between the overlapping area, i.e. the intersection of the 
predicted bounding box and the ground-truth bounding box, and the intersection of the 
same two areas. It is definitely easier to understand this metric graphically, so let us use 
Fig. 19 to clarify it. 

 

 

 

 

 

 

 

 

 

 

 

Clearly, when dealing with 3D detectors, this approach can be taken into 3 dimensions 
simply substituting areas with volumes. This approach is used by KITTI1 object detection 
benchmark and many other datasets.  

Figure 19. IoU visualization 

1 http://www.cvlibs.net/datasets/kitti/eval_object.php 

 

1 http://www.cvlibs.net/datasets/kitti/eval_object.php 

http://www.cvlibs.net/datasets/kitti/eval_object.php
http://www.cvlibs.net/datasets/kitti/eval_object.php
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Usually, a prediction is considered a True Positive (TP) when the value of IoU>0.7, while 
it will be considered a False Positive when IoU < 0.7. This threshold can obviously be 
changed if needed. A False Negative (FN) will be considered when there’s an object that 

hasn’t been bounded by any box. 

 

 

 

 

 

 

 

 

 

 

 

2.2.2 – Mean Average Precision (mAP) 

The second important, yet a bit more complicated, metric of evaluation of performance 
of an object detector is the mean Average Precision (mAP). 

Before defining that, we need to clearly have in mind two keystones metrics of statistics: 
precision and recall. Precision is given as the ratio of true positives (TP) and the total 
number of predicted positives, which also include false positives (FP). It measures how 
many of the predictions that your model made were actually correct. In formula: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (1) 

 

Similarly, the recall of a given class in classification, is defined as the ratio of TP and 
total of ground truth positives, which also includes the false negatives (FN). In formula: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 (2) 

Figure 20. Real case of IoU visualization 
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Fig. 21 gives a visual representation to better understand these concepts. 

 

 

Given these definitions, we can create a table where, knowing how many true positives 
we have in our dataset, we can insert the value of precision and recall for each prediction 
of the model. An example of a dataset containing 3 TP and 4 FP is given in Table 1. 

 

 

 

Figure 21. Precision and recall chart 

Table 1. Precision/Recall table 
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Let’s take the row with rank #3 and demonstrate how precision and recall are calculated 
in this case. 

Precision is the proportion of TP, which turns out as  2/3 = 0.67 

Recall is the proportion of TP out of the possible positives: 2/5 = 0.25. 

We can now draw the well-known precision-recall curve in Fig.22, simply plotting the 
points highlighted in Table 1. 

 

 
We can now give the general definition of Average Precision (AP), that is the area under 
the graph. In formula: 

     𝐴𝑃 = ∫ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑟) ∙  𝑑𝑟
1

0
       (3) 

where 𝑟 indicates the recall. 

To make (3) anatically easy to solve, PASCAL VOC [11] 2008 challenge proposed to 
interpolate the data (green line in Fig. 23) and evenly split the recall in 11 points (0, 0.1, 
0,2, ..., 1.0). Then, take the maximum precision value for each of these points, which will 
be called 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑝. Mathematically, we replace the precision value for recall ȓ 

with the maximum precision for any recall ≥ ȓ. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max
�̃�≥𝑟

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(�̃�)        (4) 

 

The result is shown graphically in Fig. 23. 

 

Figure 22. Precision and recall curve 
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At this point, the Average Precision AP for a class of object is simply the average of the 
11 values of interpolated precisions: 

𝐴𝑃 =
1

11
 ∑ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈(0.0,   ...  ,1.0)

                                        (5) 

 
Finally, we define the Mean Average Precision as the average of all Average Precisions 
over all categories of objects:       

𝑚𝐴𝑃 =
1

𝑁
 ∑ 𝐴𝑃𝑁

𝑁

                                                                      (6) 

 

2.3 – Two-Stage detectors 

In this section we will give an overview of the most popular families of two-stage object 
detectors and their functioning. 

2.3.1 – R-CNN 

In 2014, Girshick et al. proposed a way to combine classification task with localization 
task with their paper “Rich feature hierarchies for accurate object detection and 
semantic segmentation”, also called R-CNN [5]. The implemented method changed the 
approach to object detection forever. The main problem they were trying to address was 
how to computationally reduce the cost of spatially localizing the objects of interest, 
since you cannot know in advance how many there might be in one single picture, and 
in which scale or unexpected shape. Previous methods implemented a sliding window 
approach, where basically different sized rectangles are just superposed over the whole 
image in order to analyze at those smaller portions in a brute-force-method. The 

Figure 23. Precision and recall curve, interpolated 
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problem is that this generates a giant number of smaller images to look at, hence the 
computational cost is way too high. Methods using the sliding-window approach 
include [12] [13]. The revolutionary idea that came with R-CNN was to pair the 
network for classification with an algorithm that could indicate Region of Interest (RoI), 
so at to look for objects only in those areas which the network selects as the most likely 
to contain objects of interest, instead of analyzing the whole image. Figure 24 outlines 
the architecture of the proposed pipeline. 

 

 

Among the different algorithms of region proposal, the authors decided to opt for the 
Selective Search algorithm [14], a method based on similarity among adjacent areas 
through different parameters. As a first step, the Selective Search starts with the over-
segmentation based on the segmentation of images proposed by Felzenszwalb et. al. [15], 
which adopts pixel intensity as its main feature. By over-segmenting, the objects in the 
image will present an exceedingly amount of segmented regions, like shown in Fig. 25. 

  

 

 

 

 

 

 

 

 

 Figure 25. Over-segmentation 

Figure 24. Architecture of R-CNN 
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As a second step, Selective Search algorithm takes these over-segments as initial input 
and performs the following steps: 

1. Add all bounding boxes corresponding to segmented parts to the list of regional 
proposals 

2. Group adjacent segments based on similarity 
3. Reiterates from point 1 until a certain threshold is reached 

At each iteration, larger segments are formed and added to the list of region proposals. 
Hence, we create region proposals from smaller segments to larger segments in a bottom-
up approach. The similarity used by the method is made of 4 factors: 

1. Color similarity: a color histogram of 25 bins is calculated for each channel of the 
image and histograms for all channels are concatenated to obtain a color 
descriptor. 

2. Texture similarity: texture features are calculated by extracting Gaussian 
derivatives at 8 orientations for each channel. 

3. Size similarity: size similarity encourages smaller regions to merge early. It 
ensures that region proposals at all scales are formed at all parts of the image. If 
this similarity measure is not taken into consideration a single region will keep 
gobbling up all the smaller adjacent regions one by one and hence region 
proposals at multiple scales will be generated at this location only. 

4. Shape compatibility measures how well two regions fit into each other. If one fits 
into another region we would like to merge them in order to fill gaps, and if they 
are not even touching each other they should not be merged. 

The total similarity is then calculated as a linear combination of the 4 similarity features, 
and the result is an indication of approximatively 2000 region proposals. Fig. 26 shows 
an example of the best 200 regions applied to a non-automotive scenario. 

 
Figure 26. Result of Selective Search 
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At this point, having the RoI, the model has to reshape the regions as to align them all to 
a unique size, since the input of the successive feature extractor must be fixed. The authors 
decided to use a 227x227 pixels size window. 

The next step is the feature extractor from the Regions of Interest. With this deep network, 
a multi-dimensional vector identifying the region’s features is created. There are 

countless possibilities of choice of such network today, where the most popular are VGG 
[16], Inception-Resnet-v2 [17], AlexNet [18], GoogLeNet [19]. The authors decided to 
opt for AlexNet, which at the time was arguably the most advanced state-of-the-art feature 
extractor. This feature extractor consists in 5 convolutions, and 3 fully connected layers 
at the end, the last of which is a softmax layer. The whole process generates a 4096-
dimensional vector that encapsules the region’s features. The overall architecture is 
shown in Fig. 27. 

 

 

For the final classification output, R-CNN replaces the softmax layer with a pre-trained 
Support Vector Machine (SVM) algorithm to calculate confidence scores for each region 
of interest that describe the likelihood that a certain category of object has been detected. 
A Support Vector Machine is a family of machine learning supervised algorithm based 
on the principle that, given labelled data, one can classify unknown data by selecting an 
hyperplane that best separates the data and therefore the different classes. 

The last module of R-CNN is dedicated to bounding-box regression. Basically it is fed as 
input the center coordinates of the region proposed, its width and height and also takes 
the same parameters but of the ground-truth bounding-box. Then these parameters are 
compared and the model is trained to try to learn a transformation that maps the proposed 
bounding-box exactly over the ground-truth bounding-box. The authors achieved with 
this method an increase in mAP of 3%, so it is worth mentioning it. 

 

Figure 27. AlexNet feature extractor 
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As much as this model was a revolution in the field of object detectors, it sure presented 
its drawbacks: 

1. It is a multi-stage model, where each stage is an independent component. Thus, it 
cannot be trained end-to-end, and it means the Region Proposal, SVM and 
bounding box regression networks cannot be trained all in parallel. 

2. R-CNN depends on the Selective Search algorithm for generating region 
proposals, which takes a lot of time. Moreover, this algorithm cannot be 
customized to the detection problem.  

3. Each region proposal is fed independently to the CNN for feature extraction. This 
makes it impossible to run R-CNN in real-time. In fact, each image takes about 
47 seconds to go through the whole pipeline. 

 

2.3.2 – Fast R-CNN 

Fast R-CNN [20] was published a year later solely by Ross Girshick, and aims at solving 
some of the problems that affected its predecessors, R-CNN. As the name suggests, the 
main improvement was making the new pipeline faster than the previous one. Girshick 
(2015) improved the training procedure by unifying three independent modules of R-
CNN into one single, jointly trained stage and increasing shared computation results. 

Instead of extracting CNN feature vectors independently for each region proposal 
(remember R-CNN generated about 2000 RoI), this model aggregates them into one CNN 
forward pass over the entire image and the region proposals share this feature matrix. 
Then the same feature matrix is branched out to be used for learning the object classifier 
and the bounding-box regressor. In conclusion, computation sharing speeds up R-CNN. 
The pipeline of this method is shown in Fig. 28. 

 

 
Figure 28. Fast R-CNN pipeline 
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To go more into detail, the real difference-maker was the new layer called RoI Pooling, 
which is able to extract equal-length feature vectors from all region proposals in the 
same image. In this way, Faster R-CNN shares computations (most importantly 
convolutional layer calculations) across all proposals rather than doing the calculations 
for each proposal independently. 

The RoI Pooling layer is basically a type of max pooling to convert features in the 
projected region of the image of any size, H x W, into a small, fixed window, h x w. 
The input region is divided into h x w grids, then apply max-pooling in each grid. 
 
The extracted feature vector using the ROI Pooling is then passed to some FC layers. 
The output of the last FC layer is split into 2 branches: 

1. Softmax layer to predict the class scores, that substitutes the SVM used in R-
CNN 

2. Fully connected layer to predict the bounding boxes of the detected objects 

 
The result in terms of training time and test time that Fast R-CNN brings were 
astonishing, comparing with its predecessor. These results are summarized in Fig 29. 

 

 

2.3.3 – Faster R-CNN 

In 2016, Girshick et. al. worked on a solution to make Fast R-CNN even faster. The 
problem was that the RoI proposal network was still much time consuming, so the 
authors’ idea was to integrate the region proposal model into the CNN. Faster R-CNN 
[21] is doing exactly this: construct a single, unified model composed of a Region 
Proposal Network (RPN) and fast R-CNN with shared convolutional feature layers. In 
this way, the feature extraction uses the same convolutions as the region proposal 
network. The architecture of this model is shown in Fig. 30. 

Figure 29. Fast R-CNN and R-CNN time comparison 
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The main new contributions of this paper are: 

1. Region proposal network (RPN), which is a fully convolutional network that 
generates proposals with various scales and aspect ratios. The RPN implements 
the terminology of neural network with attention to tell the object detector (Fast 
R-CNN) where to look. Because the proposals are generated using a network, 
this can be trained end-to-end to be customized on the detection task. Thus, it 
produces better region proposals compared to generic methods like Selective 
Search, that cannot be customized on a specific task. The RPN processes the 
image using the same convolutional layers used in the Fast R-CNN detection 
network. Thus, the RPN does not need extra time to produce the proposals. 
 

2. Rather than using pyramids of images (i.e. multiple instances of the image but 
at different scales) or pyramids of filters (i.e. multiple filters with different sizes), 
this paper introduced the concept of anchor boxes. An anchor box is a reference 
box of a specific scale and aspect ratio. With multiple reference anchor boxes, 
then multiple scales and aspect ratios exist for the single region. This can be 
thought of as a pyramid of reference anchor boxes. Each region is then mapped 
to each reference anchor box through a sliding window approach, and thus 

Figure 30. Architecture of Faster R-CNN 
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detecting objects at different scales and aspect ratios. Fig. 31 displays some of 
the aspect ratios of the boxes. 

 

 

 

 

 

 

 

 

 

 

Basically, the RPN works on the output feature map returned from the last convolutional 
layer shared with the Fast R-CNN. This is shown in the next figure. Based on a 
rectangular window of size nxn, a sliding window passes through the feature map. For 
each window, several candidate region proposals are generated. These proposals are not 
the final proposals as they will be filtered based on their "objectness score". Using these 
reference anchors, a single image at a single scale is used while being able to offer scale-
invariant object detectors, as the anchors exist at different scales. This avoids using 
multiple images or filters. 

Once the proposals are found, the rest of the model goes on like the previous Fast R-CNN 
algorithm. 

In Fig. 32 the testing time of this model is compared to the ones of its predecessors. 

 

Figure 31. Anchor boxes 

Figure 32. Faster R-CNN testing time compared 
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2.4 – Single-stage detectors 

2.4.1 – YOLO 

In 2016 J. Redmon et. al. proposed a new approach for object detection with their model 
You Only Look Once (YOLO) [22], which combines what was once a multi-step process, 
now using a single neural network to perform both classification and prediction of 
bounding boxes for detected objects. As such, it is heavily optimized for detection 
performance and can run much faster than running two separate networks. It does this by 
repurposing traditional image classifiers to be used for the regression task of identifying 
bounding boxes for objects. In this section we will only explain the first version of the 
paper, YOLOv1, the first of several updates of the paper, that include also Fast YOLO 
[23] YOLO9000 [24] and Yolov2 [25]. Although the subsequent iterations feature 
numerous improvements, the basic idea behind the architecture stays the same. YOLO 
can perform at 45 frames per second, making it a great choice for applications that require 
real-time detection. It looks at the entire image at once, and only once - hence the name 
You Only Look Once - which allows it to capture the context of detected objects. This 
halves the number of false-positive detections it makes over R-CNNs which look at 
different parts of the image separately. Additionally, YOLO can generalize the 
representations of various objects, making it more applicable to a variety of new 
environments. 

YOLO is based on the idea of segmenting an image into smaller images. The image is 
split into a square grid of dimensions S×S, like in Fig. 33. The cell in which the center of 
the object lies is then responsible for its detection. Each cell predicts B bounding boxes 
and also a confidence score associated to each box. The confidence score varies between 
0 and 1, and reflects the certainty with which we can state if there is an object that lies 
inside such box, or in other terms can be seen also as the value of Intersection over Union 
of the predicted and ground-truth boxes. To each bounding box other 4 parameters are 
associated: the y and y coordinates of its center, the height and the width; hence a total of 
5 variables are coupled with each bounding box. The output of the network will be a N-
dimensional vector, where N is the total number of classes, where each entry is the 
confidence that indicates what class the detected object belongs to. Fig. 33 also shows 
one bounding box, its center, height, width and its confidence. 
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The whole image undergoes the same procedure, with each cell predicting B bounding 
boxes, its 5 parameters, and the vector that predicts the scores for each class. In total, this 
will create a 𝑆 𝑥 𝑆 𝑥 (𝐵 ∗ 5 + 𝐶) tensor, where C represents the number of classes. By 
selecting the class with the highest confidence score, a class probability map will be 
created over the image, like shown in Fig. 34.  

 

Figure 33. Grid and example of bounding box 

Figure 34. Scheme of the proposed method 
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YOLO is made up of three components: the head, neck, and backbone. The backbone is 
the part of the network made up of convolutional layers to detect key features of an image 
and process them. The backbone is first trained on a classification dataset, such as 
ImageNet, and typically trained at a lower resolution than the final detection model, as 
detection requires finer details than classification. In their model, the authors use 24 
convolutional layers. The neck uses the features from the convolution layers in the 
backbone with 2 fully connected layers to make predictions on probabilities and bounding 
box coordinates. The first 2 parts are shown in Fig. 35. The head is the final output layer 
of the network which can be interchanged with other layers with the same input shape for 
transfer learning. As discussed earlier, the head is an 𝑆 𝑥 𝑆 𝑥 (𝐵 ∗ 5 + 𝐶) tensor and is 7 
× 7 × 30 in the original YOLO research paper with a split size S of 7, 20 classes C, and 2 
predicted bounding boxes B. These three portions of the model work together to first 
extract key visual features from the image then classify and bound them. 

 

 
Table 2 summarizes the performance of YOLO compared to other popular methods. 

 

 

 

 

 

 

 

 

 

 

Figure 35. Architecture of YOLO 

Table 2. Comparison of YOLO and other methods 
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Nonetheless, YOLO also presents some limitations with respect to other object detectors: 

1. As already mentioned, each cell will only predict 2 boxes, in the original paper. 
And though that number can be increased, only one class prediction can be made 
per cell, limiting the detections when multiple objects appear in a single grid 
cell. Thus, it struggles with bounding groups of small objects, such as flocks of 
birds, or multiple small objects of different classes. 

2. As the original paper [22] states: “we train the model on a loss function that 
approximates detection performance, our loss function treats errors the same in 
small bounding boxes versus large bounding boxes. A small error in a large box 
is generally benign but a small error in a small box has a much greater effect on 
IOU. Our main source of error is incorrect localizations.” 

 

2.4.2 – SSD 

Again in 2016, another very popular object detector was introduced by W. Liu et. al, 
named Single Shot Detector [26], normally referred to as SSD. Like YOLO, the aim of 
the model was to speed up the not sufficient inference time of the state-of-the-art methods 
of the time, i.e. Faster R-CNN. The authors eliminated the Region Proposal Network and 
to recover the drop in accuracy, SSD applies a few improvements including multi-scale 
features and default boxes. These improvements allow SSD to match the Faster R-CNN’s 

accuracy using lower resolution images, which further pushes the speed higher.The 
pipeline consists mainly in 2 blocks: extraction of feature maps at different scales and 
then application of convolutions for the detection of objects. 

SSD uses VGG16 [16] as base feature extractor backbone and extracts feature maps at 
different scales reducing the resolution at every step, this is called multi-scale feature 
maps. SSD uses lower resolution layers to detect larger scale objects. For example, the 
4× 4 feature maps are used for larger scale object. After VGG16, the authors add other 6 
convolutional layers of decreasing kernel size to detect object at different scales 
independently. The whole architecture is shown in Fig. 36. 

Figure 36. Architecture of SSD 
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Much like in Faster R-CNN, for each cell, at every different scale, SSD utilizes 4 
default boxes to try and fit the eventual objects present. The ratio and scales of these 
boxes are fine-tuned during the training process, and they learn scale-variant shapes that 
indeed vary and are optimized to fit objects that are more commonly present at one 
specific scale. It computes both the location and class scores using small convolution 
filters. After extracting the feature maps, SSD applies 3 × 3 convolution filters for each 
cell to make predictions. Each filter outputs 25 channels: 21 scores for each class plus 
one boundary box parameters. 

Fig. 37 is an example of how SSD combines multi-scale feature maps and default 
boundary boxes to detect objects at different scales and aspect ratios. The dog below 
matches one default box (in red) in the 4 × 4 feature map layer, but not any default boxes 
in the higher resolution 8 × 8 feature map. The cat which is smaller is detected only by 
the 8 × 8 feature map layer in 2 default boxes (in blue). 

 

 
Table 3 shows how SSD compares with other detection methods. 

 

 

In conclusion, SSD is faster and achieves even higher accuracy than Faster R-CNN 
because multi-scale feature maps improve the detection of objects at different scales, and 
also makes more predictions. The main disadvantage is that it lacks precision when 
dealing with small objects. 

Figure 37. Anchor boxes example 

Table 3. Comparison of SSD and other methods 
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2.4.3 – Normalized cuts graph segmentation 

We will now briefly discuss this method, since it is one of the possible methods used by 
the framework that we will use as our autonomous driving platform, even if it is a much 
older method and now less used. It is based on the work of  Jianbo Shi and Jitendra Malik 
‘Normalized Cuts and Image Segmentation’ [27]. The basic principle is to build a 
weighted graph, which is the set of our points connected with some edges. In this kind of 
graph, each edge is coupled with a weight that represents the degree of similarity between 
the 2 point it connects. The similarity is simply calculated in terms of intensity, texture, 
color (not in our case since LiDARs do not provide this information). Note that not all 
the points are connected with all the others. Fig. 38 provides an example of a weighted 
graph. 

 

 

To segment the graph in 2 regions A and B, the idea is to apply a graph cut by minimizing 
the sum of the weights that have to be cut to achieve such a partitioning. This method is 
called minimum cut. In formula: 

min 𝑐𝑢𝑡(𝐴, 𝐵)      (7) 

𝑤ℎ𝑒𝑟𝑒:          𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤(𝑝, 𝑞)

𝑝𝜖𝐴,   𝑞𝜖𝐵

 

Where 𝑤(𝑝, 𝑞) denotes the weight associated between nodes p and q. 

Unfortunately, this method often leads to cutting isolated nodes in the graph due to the 
small values achieved by partitioning such nodes, since they normally have less 
connected edges than center nodes. Fig. 39 explains this idea. 

Figure 38. Weighted graph 
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To prevent this, Jianbo Shi and Jitendra Malik proposed to, instead of looking at the value 
of total edge weight connecting the two partitions, compute the cut cost as a fraction of 
the total edge connections to all the nodes in the graph. They call this disassociation 
measure the normalized cut (Ncut): 

𝑁𝑐𝑢𝑡 =
𝑐𝑢𝑡(𝐴,𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐴,𝑉)
+

𝑐𝑢𝑡(𝐴,𝐵)

𝑎𝑠𝑠𝑜𝑐(𝐵,𝑉)
              (8) 

Where 𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) = ∑ 𝑤(𝑢, 𝑡)𝑝𝜖𝐴,   𝑇𝜖𝑉 , and V denotes the entire set of nodes. 
𝑎𝑠𝑠𝑜𝑐(𝐴, 𝑉) is defined in the same way. 

This problem can be written in matrix form and is then solvable with an eigenvalue 
problem. Clearly, in the case of partitioning of a road-scenario, there is the need to 
segment many different objects. For this purpose, this algorithm is simply re-iterated until 
a certain threshold is reached. 

The algorithm is then coupled with a detection head, that carry out the tasks of 
classification and bounding box regression. Unfortunately, the framework Apollo does 
not provide an explanation of the architecture used as the detection head as it is already a 
default implemented method, but we might suppose it could be a VGG16 network or 
similar. 

 

 

2.5 – 3D detection methods 

In this shorter section we will give an overview of 2 common methods for the detection 
starting from raw point clouds returned from LiDAR sensors. Let’s remember that a raw 

point cloud in an unordered set of points that contain the 3 cartesian coordinates and the 
intensity value. In general, these methods adopt the same techniques of the algorithms 

Figure 39. Bad partitioning of isolated nodes 
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explained in sections 2.2 and 2.3, where the main difference is that we now need to give 
the point cloud some kind of order, in order to relate relative special positions. Then, all 
convolution layers will now be carried out with 3D kernels instead of 2D. 

2.5.1 – PointNet 

The main problem with point cloud deep learning is that typical convolutional 
architecture requires highly regular input data format, like image or temporal features. As 
point clouds are not in regular format, the common approaches are to transform the data 
to regular 3D voxel grid or projections, as seen in section 1.5 

Pointnet [28] by C. Ruizhongtai et. al. was the initial approach for novel type of neural 
network that directly consumes unordered point clouds without the need of discretization, 
which also takes care of the permutation invariance of points in the point cloud. Pointnet 
can do object classification and also part segmentation. The main feature of Pointnet is 
the network is robust with respect to input transformations like translation and rotation, 
and input permutation. 

The overall architecture, shown in Fig. 40, is composed by a shared multi-layer 
perceptron (MLP) to map each of the n points from three dimensions to 64 dimensions. 
It’s important to note that a single multi-layer perceptron is shared for each of the n points 
(i.e., mapping is identical and independent on the n points). This procedure is repeated to 
map the n points from 64 dimensions to 1024 dimensions. With the points in a higher-
dimensional embedding space, max pooling is used to create a global feature vector in 
ℝ¹⁰²⁴. Finally, a three-layer fully-connected network is used to map the global feature 
vector to k output classification scores. 

 

 

 

To ensure transformation invariance, 2 sub-nets (called T-Net in Fig. 33) are developed 
to ensure a pose normalization, which means that the network must then be able to 
recognize an object regardless of eventual rotations/translations applied to it. Based on 
the input, a regression network obtains the transformation matrix applied to the specific 

Figure 40. Architecture of PointNet 
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case, then a grid is constructed over the desired object and a simple matrix multiplication 
is carried out to obtain pose normalization. The process is repeated a second time after 
the MLP to ensure also the features extracted from the point cloud follow the same 
requirements. 

To ensure permutability of the N input points, the solution is to apply a symmetric 
function to the point cloud. The authors opted for the max pooling function, as it gave the 
best results among others like average and sum. The result is a global feature vector that 
aims to capture an aggregate signature of the n input points, and is then directly used for 
classification. 

Table 4 compares the results of detection of PointNet with other 3D object detectors. It is 
worth mentioning that the network performs very well also on segmentation task. 

 

 

 

 

 

 

 

 

2.5.2 – PointPillars 

In 2018, Gregory P. Meyer et. al. developed a network called PointPillars [29] that is 
still one of the fastest detection algorithms with great accuracy on autonomous driving 
datasets. PointPillars runs at 62 fps, which is orders of magnitude faster than the 
previous works in this area. 

The architecture, presented in Fig. 41, is constituted in 3 parts: the Pillar Feature Net, 
the Backbone for feature extraction, and the Detection Head, which is basically the SSD 
algorithm seen in section 2.3.2. 

 

 

 

 

Table 4. Comparison of PointNet and other networks 
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The first part, the Pillar Feature Net, converts the point cloud into a sparse pseudo image. 
First, the point cloud is divided into grids in the x-y coordinates, creating a set of pillars 
along the z dimension, like shown if Fig. 42. Each point in the cloud, which is a 4-
dimensional vector (x,y,z, intensity), is converted to a 9-dimensional vector containing 
the additional information explained as follows: 

• Xc, Yc, Zc: distance from the arithmetic mean of the pillar c the point belongs 
to in each dimension. 

• Xp, Yp: distance of the point from the center of the pillar in the x-y coordinate 
system. 

 

Figure 41. Architecture of PointPillars 

Figure 42. Pillars representation 
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The set of pillars will be mostly empty due to sparsity of the point cloud, and the non-
empty pillars will in general have few points in them. This sparsity is exploited by 
imposing a limit both on the number of non-empty pillars per sample (P) and on the 
number of points per pillar (N) to create a dense tensor of ‘stacked pillars’ of size (D, P, 

N). Note that D = [x,y,z,r,Xc,Yc,Zc,Xp,Yp]. 

Now, from the above-mentioned tensor features have to be extracted. As it is made of a 
3D point cloud, the authors decide to use PointNet to extract such features, that will result 
in a 2D matrix. From this 2D matrix, a pseudo-image is re-created using the pillar index 
for each point. So originally, where the point was converted to a D dimensional vector, 
now it contains a C dimensional vector, which are the features obtained from a PointNet. 
Fig 36 is an enlargement of Fig. 43 and shows these passages. 

 

 

The next part is a network that is used to isolate possible object candidates much like a 
Region Proposal Network. It is composed of 3 fully convolutional 3D layers, each 
followed by a batch normalization and ReLu function. Then upsample the output of every 
block to a fixed size and concatenated to construct the high-resolution feature map. 

The last part is the detection head, which uses the network of SSD with the aim of 
detecting and drawing bounding boxes around the proposed detections. 

To understand how well PointPillars performs, we shall have a look at Table 5, which 
compares this method with other detectors in a 3D detection task from the KITTI dataset. 

 

Figure 43. Pillar Feature Net detail 

Table 5. Comparison of PointPillars and other networks 
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Chapter 3 
 

LG SVL Simulator and Apollo 
 

In this chapter we will briefly describe the 2 softwares which have been the basis for this 
work. The first one, LG SVL Simulator, is a driving simulator, while the second one, 
Apollo (developed by Baidu), is the framework that connects to the driving simulator to 
make the digital vehicle fully autonomous. 

 

3.1 – LG SVL Simulator 

SVL Simulator is a simulation platform used autonomous driving and robotics 
applications. It has been developed by LG Electronics America R&D Lab, a research 
center in Santa Clara, California. The first version was an open project uploaded in 2018 
on GitHub2 with the goal of enabling developers to build autonomous vehicles and robots 
through end-to-end, high performance 3D simulation. Since its first release, SVL 
Simulator has now turned into a commercial product helping automotive manufacturers, 
robotics companies, and universities around the world. 

An outstanding work describing the simulator is [30] by Guodong Rong et. al.. 

“SVL Simulator consists of the simulation software, software tools, the ecosystem of 

content and plugins that enable tailored use cases, and the cloud environment which 
enables simulation and scenario testing at scale. By simulating a virtual environment, 
one or more ego vehicles or autonomous systems and their sensors, and traffic and other 
dynamic objects, the simulation software provides a seamless and customizable interface 
with a user's System Under Test. This allows the developer to debug, perform modular 
testing, and perform integration testing.” 3 

 

 

 

(2) https://github.com/  

(3) https://www.svlsimulator.com/docs/getting-started/introduction/ 

https://www.svlsimulator.com/docs/getting-started/introduction/
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As already mentioned, SVL is used for several specific applications, among which: 

• L4/L5 autonomous vehicle systems 
• L2/L3 ADAS/AD systems 
• Warehouse robotics 
• Outdoor mobile robotics 
• Future Mobility services 
• Autonomous racing 
• Sensor/sensor systems development and marketing 
• Automotive and autonomous system security 
• Synthetic data generation 
• Real-time embedded systems for automotive 

Specific uses of the simulator include: 

• L4/L5 autonomous vehicle systems 
• L2/L3 ADAS/AD systems 
• Warehouse robotics 
• Outdoor mobile robotics 
• Future Mobility services 
• Autonomous racing 
• Sensor/sensor systems development and marketing 
• Automotive and autonomous system security 
• Synthetic data generation 
• Real-time embedded systems for automotive 

 
For the purpose of this paper, the environment of SVL Simulator offers real-time, high-
performance and realistic simulations, with variety of scenarios, vehicles and road users 
to be used. It also enables to import and modify HD maps as well as customize all sensors 
required for autonomous driving. 

The simulator is to be coupled with an autonomous driving framework, in our case 
Apollo, to which it communicates all the data and informations coming from the sensors 
and the surrounding environment, as to make it possible to carry out all the tasks of an 
autonomous vehicle. That is, running the localization, perception, prediction, planning 
and control modules. The connection between the two is made possible by a so-called 
bridge; in our case, CyberRT will be used. 

Fig. 44 shows the architecture and tasks of the simulator coupled with a generic 
autonomous driving platform. Figures 45 shows an example of simulation environment, 
while Fig. 46 displays some sensors views and features of the simulator. 
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Figure 44. Pipeline of SVL Simulator coupled with an AV framework 

Figure 45. Borregas Avenue, one of the standard maps of SVL 
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It is worth mentioning what an HD map is, given their importance in AD. HD maps are 
roadmaps with centimeter-perfect accuracy and high environmental fidelity – they 
contain information about the exact positions of pedestrian crossings, traffic lights and 
signs, barriers and more. This is necessary for autonomous vehicles because they cannot 
compensate for map inaccuracies the way humans do when following a GPS: if a map is 
a meter or two off, a human driver is not going to crash because of it – we simply 
understand what the map refers to in the scene we see through the windshield. They as 
well offer semantic data about the road network. Nowadays  High-Definition maps are 
widely used in the autonomous driving industry and are now considered essential in 
ensuring safety on the road. 

HD maps creation requires great effort and resources but due to their importance, all the 
companies involved in this field are investing their time to optimize the process of map 
generation seeking to lower the cost. 

In SVL, there exist a tool that allows to make annotation on HD maps as to label an object 
or modify pre-existent labels. Fig. 47 shows an example of HD on SVL. 

Figure 46. Different types of sensors. Left (top to bottom): Fish-eye camera, 
LiDAR, Radar; Right (top to bottom): Segmentation, Depth, 3D Bounding Box. 
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3.2 – Apollo 

Baidu's Apollo is an open source self-driving vehicle tech platform. It provides a complete 
hardware and software service solution that includes cloud data services, software, 
vehicle and hardware platform. Apollo offers open source code and capabilities in 
obstacle perception, trajectory planning, vehicle control, vehicle operating systems, as 
well as a complete set of testing tools and other functions. All Apollo’s codes, uploads 

and data are uploaded to its GitHub page [31]. 

Apollo has several modules and features for autonomous driving but needs to be 
configured and calibrated perfectly before trying them for a test. For what regards this 
specific paper, the calibration steps had already been executed before start of the 
collaboration, so we will consider them as given. 

The Apollo software is based on the following modules, that all together manage the 
framework: 

• Localization: localize the vehicle inside the HD map 
• Perception: identify and localize obstacles and road users 
• Prediction: predict the trajectory of road user for possible crashing trajectories 
• Planning: plan the best route for reaching the selected destination avoiding 

collisions 
• Control: act on steering, brakes and throttle to achieve planning route 

Figure 47. HD Map example and annotation tool in LGSVL Simulator. 
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Fig. 48 shows the pipeline and logics of interactions between modules. Additionally, it is 
worth mentioning the traffic light module, that can locate traffic lights and understand 
their color in real time. 

 

 

Through the years, Apollo has developed several versions of its software, with increasing 
capabilities for autonomous driving to remain up to date with the state-of-the-art new 
technologies that advanced every year. Fig. 49 shows the various versions just mentioned.  

 

  

 

The team has opted to use the latest version, 6.0, for these reasons: 

• With previous versions, the module off traffic light detection did not work, 
resulting obviously in severe mistakes 

• Same happened with the perception module, resulting in not recognizing 
obstacles and road users in the scenario 

Figure 49. Versions of Apollo 

Figure 48. Pipeline of modules interaction 
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• Some GPU cards were not supported, like Titan V, GTX 16xx, RTX 

Let’s now see a bit more details about the latest version, Apollo 6.0, because it is the one 

that we will use for our simulations. 

Apollo’s GitHub page cites: “Apollo 6.0 incorporates new deep learning models to 
enhance the capabilities for certain Apollo modules. This version works seamlessly with 
new additions of data pipeline services to better serve Apollo developers. Apollo 6.0 is 
also the first version to integrate certain features as a demonstration of our continuous 
exploration and experimentation efforts towards driverless technology.”. 

The new version also integrates emergency vehicle detection through audio devices like 
microphone. This feature is though not object of interest for this paper. 

Once installed, calibrated and built, the Apollo user interface, called Dreamview, is an 
interactive environment with different panels, windows and buttons to control the entire 
process. The next figures show examples of the most important features. 

Fig. 50 shows the task tab. Highlighted in red with number 1 is the header, that contains 
the selection of the vehicle, map, and mode in which we would like the simulation to be 
carried out. The red box denoted as 2 enables to switch between the different tasks for 
controlling the autonomous drive. The red box denoted as 3 is the panel of the task tab. 
In here we can perform some of the tasks supported by the selected mode. For example, 
in the ‘Quick Start’ menu we can turn on all modules with the ‘Setup’ button, or inversely 
turn them all off with ‘Reset’. In the ‘Others’ menu we can find some buttons to activate 

frequently used features. In ‘Module Delay’ we can find the delay, in seconds between 

two messages of the same module. Last, the ‘Console’ menu shows any message or error 
from the simulation. 

 Figure 50. Task tab 
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Fig. 51 shows the module controller tab. This tab is very important since it’s here that we 

can individually activate all modules. Note that, as best practice, it is recommended to 
activate modules in a precise sequence, which is: transform, localization, perception, 
prediction, (traffic light), planning, control. ‘Transform’ is a module that makes a 

transformation between the coordinate system used in the driving simulator (SVL) and 
the one adopted Apollo, and it’s hence indispensable to activate. 

 

 
Fig. 52 displays the route editing tab, in which we can see the map and position of the 
vehicle, and set the point(s) that we want the vehicle to reach. The buttons to add points 
of interest, cancel them and finally send the routing request are highlighted in the red box. 
The two red points seen in the figure are indeed points of interest set by the user, while 
the violet polygons are bounding boxes that encapsule other vehicles of the road. 

 

Figure 51. Module controller tab 

Figure 52. Route editing tab 
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3.3 - Perception module of Apollo 

We shall now focus on the module which is the main topic of this paper: the detection 
module. As already mentioned, this is the part of the software in charge of locating and 
categorizing in real time the different obstacles and road users that fall inside the vehicle’s 

field of view. This module needs to be effective in all weather and road conditions, as it 
is arguably the most important, yet more challenging, part of an autonomous driving 
software. 

The input of this module are: 

• LiDARs point clouds 
• Radar data 
• Cameras data 
• Extrinsic parameters of radars calibration 
• Intrinsic and extrinsic parameters of cameras calibration 
• Velocity and angular velocity of the vehicle, given by IMU sensor 

The outputs of the module are: 

• The 3D obstacle tracks with the heading, velocity and classification information 
• The output of traffic light detection and recognition (not part of this work) 

 
Fig. 53 shows the architecture of the module. 

 

 
Figure 53. Perception module architecture 
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For what concerns the goal of this paper, we will not analyze the branches of the 
architecture that concern radars and cameras, while we will focus solely on the LiDAR 
part of the detection module. 

The novelty of Apollo 6.0 release is the inclusion of PointPillars [31] in the possible 
default method of object recognitions that the user can choose from. Apollo also allows 
the use of 2 other previously developed detection algorithms: NCutSegmentation and 
MaskPillars. However, by default, Apollo has developed its own CNN architecture for 
object recognition. Let us briefly see its main key points. 

 
HDMap Filter 

The first step of Apollo’s method is constituted by the HDMap Region of Interest filter: 

the Region of Interest (ROI) specifies the drivable area that includes road surfaces and 
junctions that are retrieved from the HD map. The HDMap ROI filter processes LiDAR 
points that are outside the ROI, removing background objects, e.g., buildings and trees 
around the road. What remains is the point cloud in the ROI for subsequent processing. 

Given an HDMap, the affiliation of each LiDAR point indicates whether it is inside or 
outside the ROI. Each LiDAR point can be queried with a lookup table (LUT) of 2D 
quantization of the region around the car. The input and output of the HDMap ROI filter 
module are summarized in the Table 6. 

 

 

 

 

The Apollo HDMap ROI filter generally consists of three successive steps: 

• Coordinate transformation 
• ROI LUT construction 
• Point inquiry with ROI LUT 

Input Output 

The point cloud: A set of 3D points 
captured from LiDAR Sensor. 

The indices of input points that are 
inside the ROI defined by HDMap. 

HDMap: A set of polygons, each of 
which is an ordered set of points.   

Table 6. Input and output of HDMap ROI filter 
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In the coordinate transformation step, Apollo has to change the coordinates to a common 
and local one, centered in the LiDAR location. This is because the HD map and point 
cloud initially do not share the same coordinate systems. 

In the lookup table construction step, Apollo builds a grid-like LUT that maps the ROI 
into a birds-eye view, as shown in Fig. 54. As shown in the figure, this LUT covers a 
rectangle region, bounded by a predefined spatial range around the general view from 
above of the HDMap. Then it represents the affiliation with the ROI for each cell (i.e., 
1/0 represents it is inside/outside the ROI). The blue lines indicate the boundary of 
HDMap ROI, including road surfaces and junctions. The red solid dot represents the 
origin of the local coordinate system corresponding to the LiDAR sensor location.  

 

 
In the last step, Apollo performs 3 simple tasks to identify if the selected point belongs to 
the ROI or not: 

• Identifies whether the point is inside or outside the rectangle region of ROI LUT 

• Queries the corresponding cell of the point in the LUT for its affiliation with 
respect to the ROI 

• Collects all the points that belong to the ROI and outputs their indices with 
respect to the input point cloud 

 
CNN Segmentation 

At this point we have obtained a filtered point cloud containing only the points belonging 
to the Region of Interest. Most of the background obstacles, such as buildings and trees 
around the road region, have been removed, and the point cloud inside the ROI is fed into 

Figure 54. ROI and LUT 
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the detection module (that Apollo calls segmentation, even though it has all the 
requirements to be categorized as object detection). Apollo uses a deep CNN for accurate 
obstacle detection and segmentation. It consists of four successive steps: 

• Channel Feature Extraction 
• CNN-Based Obstacle Prediction 
• Obstacle Clustering 
• Post-processing 

Given a point cloud frame, Apollo builds a birds-eye view (i.e., projected to the X-Y 
plane) that is a 2D grid in the local coordinate system. Each point within a predefined 
range with respect to the origin (i.e., the LiDAR sensor) is quantized into one cell of the 
2D grid based on its X and Y coordinates. After quantization, Apollo computes 8 
statistical measurements of the points for each cell of the grid, which will be the input 
channel features fed into the CNN in the subsequent step. The statistical measurements 
computed are: 

• Maximum height of points in the cell. 

• Intensity of the highest point in the cell. 

• Mean height of points in the cell. 

• Mean intensity of points in the cell. 

• Number of points in the cell. 

• Angle of the cell’s center with respect to the origin. 

• Distance between the cell’s center and the origin. 

• Binary value indicating whether the cell is empty or occupied. 

 
Based on the channel features described above, Apollo uses a deep fully-convolutional 
neural network (FCNN) to predict the cell-wise obstacle attributes including the offset 
displacement with respect to the potential object center — called center offset, objectness, 
positiveness, and object height. The input of the network is a W×H×C channel image, 
where W represents the column number of the grid, H that of the row, C represents the 
number of channel features. The FCNN is composed by 3 parts (as shown in Fig. 55): 

• Downstream encoding layers (feature encoder) 
• Upstream decoding layers (feature decoder) 
• Obstacle attribute prediction layers (predictor) 
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Unfortunately, Apollo does not provide details on how many layers it adopts, or which 
kind of activation functions it uses: indeed, being a pre-trained network, it is not meant 
to be modified by the users. After the CNN step, Apollo uses the 5 outputs of the previous 
step to propose obstacle clustering. The CNN extracts informations about singular cells, 
while in this step the goal is to use the extracted data of all neighboring cells in search of 
the entire object. 

To generate obstacle objects, Apollo constructs a directed graph, based on the cell center 
offset prediction, and searches the connected components as candidate object clusters. As 
shown in Fig. 56, each cell is a node of the graph and the directed edge is built based on 
the center offset prediction of the cell, which points to its parent node corresponding to 
another cell. 

 

 

 

 

 

Figure 55. Scheme of Apollo’s FCNN for cell-wise obstacle prediction 

Figure 56. Obstacle clustering 
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In Fig. 56: 

• The red arrow represents the object center offset prediction for each cell 
• The blue mask corresponds to the object cells for which the objectness probability 

is no less than 0.5 
• The cells within the solid red polygon compose a candidate object cluster 
• The red filled five-pointed stars indicate the root nodes (cells) of sub-graphs that 

correspond to the connected components 

 

Given this graph, Apollo adopts a compressed Union Find algorithm to efficiently find 
the connected components, each of which is a candidate obstacle object cluster. The 
objectness is the probability of being a valid object for one individual cell. Consequently, 
Apollo defines the non-object cells as the ones with the objectness of less than 0.5. 

The class probabilities are summed up over the cells within the object cluster for each 
candidate obstacle class, including an ‘unknown’ class. The obstacle class corresponding 
to the maximum-averaged probability is the final classification result of the object cluster. 

After this process, Apollo introduces a post-processing step in which it filters out object 
clusters with low positiveness score and removes points that are too far from the 
calculated average height of a specific object cluster. 

 
MinBox Builder and Object Tracker 

After these steps, the algorithm proposes a method to draw the box that best encapsules 
the object minimizing its area. It is based on reconstructing a polygon (with 6 sides) given 
an initial edge. Then, an object tracking algorithm follows, and predicts, the next 
movements. In general, it forms and updates track lists by associating current detections 
with existing track lists, deletes the old track lists if they no longer persist, and spawns 
new track lists if new detections are identified. The motion state of the updated track lists 
are estimated after association. In the HM object tracker, the Hungarian algorithm is used 
for detection-to-track association, and a Robust Kalman Filter is adopted for motion 
estimation. 
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Chapter 4 
 

Set up of the virtual environment 
In this chapter we will finally describe how we set up the virtual environment for our own 
simulation. That is, uploading onto SVL Simulator a digitalized version of the vehicle, its 
sensors, and our own map. 

 
4.1 – Car model and sensors 

To set up the virtual environment, there is the need of a procedure to create a digital 
modelized version of all the components needed for the simulation: i.e. the vehicle, 
sensors, and the map we wish to make it drive on.  

We shall start with the vehicle. Teoresi bought a XEV YOYO, shown in Fig. 57 and 58, 
which is the car has been equipped with suitable sensors to support AV. 

 Figure 57. Teoresi’s YOYO, side view 
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The configuration of the car differs from the standard configuration advised from Apollo. 
For Apollo 6, the website indicates as required sensors the following: 

• 2 radars (front and back) 
• Top 128 channels mechanical LiDAR 
• Front and back 16 channels solid-state LiDAR 
• Side cameras 
• Front cameras 

Instead, for simplicity and economic reasons, the car we will be working on is equipped 
with two 16 channels mechanical LiDAR Velodyne16, one solid-state LiDARs Robosense 
M1, and three cameras that point forward. 

Fig. 59 shows the detail of such configuration. The red boxes denoted as 1 and 3 indicate 
the mechanical LiDARs, the one denoted as number 2 highlights the solid-state LiDAR, 
while boxes 4, 5 and 6 indicate the 3 forward-facing cameras.  

Figure 58. Teoresi’s YOYO, back view 
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To upload a digitalized version of the car we asked XEV, the manufacturer of the vehicle, 
to provide a .stl file (one of the standard files of 3D design) of their YOYO model. Once 
received, the file is to be open in a 3D modelling software, such as Unity. In Unity, the 
first steps to carry out are editing the orientation of the axis and creation of meshes for 
body, wheels and lights separately. Once done, the whole mesh file is exported as a .fbx 
file. 

Now, the SVL Simulator needs to be opened from the Unity Editor, and a new scene 
created. From this point of, the creation of the vehicle follows the exacts steps described 
in SVL’s guide that is reported in the bibliography as [32]. 

An example of the final result in the editor (not using our car, but an example vehicle) is 
shown in Fig. 60. 

Instead, the final result of digitalization of Teoresi’s XEV is shown in Fig. 61. Note the 
fidelity with which the representation has been realized, for example in the position of 
the 3 LiDARs on top. 

 

Figure 59. Detail of LiDARs and cameras 
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For what regards the creation of the sensors used in our car, the process is easier. The 
simulator presents already a number of default sensors, including both types of LiDARs, 
radars, cameras, IMUs among others, and it also allows to customize their technical 
characteristics (FoV, resolution, orientation, frequency, etc). Since the geometry and 
weight of our LiDARs do not present any strict constraint and do not interfere with the 

Figure 60. Example vehicle in Unity Editor 

Figure 61. XEV digital model 
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functioning of the whole systems, the team has decided to use any of the default sensors, 
customizing the technical specifications to the exact ones reported on the technical 
documents of Velodyne16 and Robosense M1. 

To do this, we simply go to the vehicle tab, click on our XEV, enter the section of our 
vehicle, then enter ‘Sensor configuration’ and then we can edit any of the default types 
of sensors. Inside this tab we can customize all their technical specifications, as shown in 
Fig. 62. What, instead, needs to be precise, is their relative location on the chassis. 
Measurements have been taken on the real car, and replicated with precision on the 
simulator, as to have the sensor position as similar as possible to the actual, real 
configuration. Fig. 63 shows an example of sensor configuration. Keep in mind we will 
use several different sensor configurations throughout the whole study, so Fig. 63 is only 
for sake of showing one case. 

 

 

 

 

 

 

 

 

 

Figure 62. Example of sensor customization 
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4.2 – Map 

To better simulate a well-known environment of simulation, the team has decided to use 
as a map of simulation the parking lot of Teoresi’s facility of Torino. The creation of such 
map is done with the use of Blender (or other 3D modelling softwares) and Unity Editor 
once again. The initial step is the creation of the scenario in Blender, utilizing simple 
geometric game objects such as planes, cubes to build the base geometry of the map. Then 
we followed guide [33], which describes the full process with instructions to transform 
the simple geometric shapes into buildings, roads, signals, sidewalks, trees, etc. 
Subsequently, guide [34] contains the steps on how to insert map annotations, and upload 
everything on Apollo in the correct format, so that it is then usable in the future 
simulations. The map annotations are all the extra semantic informations contained in HD 
maps that categorize elements. These annotations help the autonomous driving 
framework take the right decisions knowing high-level information from the map, not 
only the geometry. These features include: 

• dedicated areas where pedestrians must walk 
• crossroads 
• vertical/horizontal signals 
• parking spaces 
• double direction roads 
• junction 

Figure 63. Example of sensor configuration 
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Given that this is the first version of this project, there was no need to create a highly 
realistic map with details of buildings, roads and signals. The sole purpose of this first 
version was to test if and how the detection module would work on the task of object 
detection. 

Therefore, our map includes simple cubes as general obstacles that may be present onto 
the road, and for now it does not include traffic lights, lanes or road signals. It does, 
instead, include random pedestrians at specific locations, like on the left side next to the 
wall (simulating a sidewalk) or across the lane, simulating a crossroad. 

Fig. 64 shows a simple map just imported from the Blender, including only the geometry. 

Fig. 65, 66 show a different general map while being enriched with several map 
annotations. 

Our map is constituted by 2 straight sections joined by a 90° turn. The first section 
includes 2 cubes as general road obstacles, one crossroad and a sidewalk along the left 
margin. The second section is a plain straight lane. The two sections are shown in Fig. 67 
and 68. 

 

 

 

 

 

Figure 64. Example of initial map without annotations 
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Figure 65. Example of map with annotations 

Figure 66. Example of map with annotations 
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Figure 68. Our map, second section 

Figure 67. Our map, first section 
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The simulator also allows us to display on screen the beams emitted by the LiDARs. Fig. 
69 shows the example of Field of View of the solid-state LiDAR equipped in our car; it 
may look confusing but it is due to the density of emitted pulses. 

 

  
  
  

Figure 69. LiDAR FoV 
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Chapter 5 
 

Simulations 
 

In this chapter we will show the whole scenario we imported onto SVL Simulator and the 
graphic results of our simulations. Also, an unexpected challenge is presented. 

Once uploaded the vehicle, its sensors and the map onto LG SVL Simulator (which also 
need to be added inside the Apollo master directory), and once completed the built of the 
Apollo software, we started launching the first simulations to check if any unexpected 
relevant errors regarding the car, map or the connection between SVL and Apollo were 
to be found. Luckily, it was not the case. We did have several issues configuring the 
machine in line with what the hardware and software requirements needed to launch the 
2 softwares are, but that is not the objective of this work, hence these issues will not be 
analyzed. The requirements for SVL and Apollo can be found in [38] and [34], 
respectively. 

Once resolved these problems, the approach taken was experimental: launch many 
simulations with different settings, changing the map, sensor configuration, detection 
algorithm, to create diverse scenarios and analyze the eventual issues and differences in 
detection performance among these several conditions. 

 

5.1 – First simulation 

The goal of these simulations was analyzing how the solid-state LiDAR alone, without 
the 2 lateral mechanical LiDARs, would perform on object detection. 

These simulations were launched used all the default settings, to have a first impact on 
how the simulation would perform. As default setting, the detection algorithm is the CNN 
Segmentation developed by Apollo, explained in section 3.3, and all its controlling 
parameters are unchanged. 

As just mentioned, Apollo allows changing the values of some parameters that control 
certain aspects of its detection algorithm. This does not include editing the core 
components like layers, activation function or kernel sizes of the convolutions, but more 
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handy variables that can help improve the detection performance if some issues are to be 
detected. These parameters are all included in a file, and shown in Fig. 70. 

 

 

The values we will change will be the following, where: 

− objectness_thresh indicates the objectness value over which we consider an 
object to be detected positively 

− confidence_range: this refers to the confidence range associated to the prediction 
− height_tresh indicates the same concept, but taking into consideration the height 
− min_pts_num indicates the minimum number of points required to detect an 

object 
− point_cloud_range indicates the range until which the points of point cloud are 

considered from the algorithm 
− min_height/max_height indicate the min/max height to be considered for objects 

in our road scenario 

The results of the first simulation are shown in the following figures.  

Figure 70. CNN Segmentation parameters 
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Figure 71. First simulation. Apollo (left) and SVL Simulator (right) 

Figure 72. Module delay associated to figure 70 
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Figure 73b. Lateral view of scenario of Fig. 72 

Figure 73a. First simulation, different time instant. 
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COMMENTS 

As we can see in Fig. 71, the detection module seems to work relatively well: all the 
pedestrians are detected and encapsuled in yellow polygons with good accuracy, while 
the red cube obstacle is also detected correctly by a green box. 

The second good result is that the prediction is made with little delay, as shown in Fig. 
72. The delay of the detection module is 0.082 seconds in that specific instant of time. 
Clearly, this is an indispensable feature for an autonomous driving application. Note that 
this is not the average but a real-time value that oscillates continuously. 

On the other hand, during these first simulations we have noticed an issue: under a certain 
short distance, approximatively a couple meters, the program is not able to detect objects 
and/or pedestrians in front of the vehicle. This problem is shown in Fig. 73a and 73b, 
where we can clearly see, from two different perspectives, the above-mentioned detection 
fault: neither the red box nor the pedestrian in front of the vehicle are being detected in 
Apollo’s view. 

Figure 74 shows the result when approaching a crossroad with pedestrians. Here the 
detection of the pedestrians is pretty accurate, while the vehicle is still close to the 
crossroad. This result tells us that the algorithm generally struggles more in the detection 
of short objects, like the ones shown in Fig. 73, while it has less problems when several 
taller shapes are grouped together. 

As SVL Simulator allows to visualize the field of view of each sensor, we activated that 
of the solid-state LiDAR (the only in use in this simulation) to see whether the problem 

Figure 74. Detection of pedestrians at crosswalk 
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was related to the field of view (for example due to only a partial visibility of the object) 
or not. The result is shown is Fig. 75. 

 

 

As we can clearly see from the image, the object and pedestrian are fully struck by the 
beams emitted by the LiDAR while still not being detected. This proves that the detection 
fault is most likely not due to an incomplete visibility of the obstacle in the FoV of the 
LiDAR, but rather to a more low-level issue in the algorithm that we yet do not 
comprehend. 

 

5.2 – Second set of simulations 

Given that the problematic highlighted in the first simulations does not depend on the 
field of view of the sensor, the first idea was that the fault would by caused by an error 
within the detection algorithm. As explained in section 5.1, we now experimentally try to 
modify the parameters that control the default CNN Segmentation used by Apollo, and 
see if we manage to find a combination that limits the problem. 

In the following pages are reported images of simulations with several different 
configuration of parameters. The adopted configurations are reported in Table 7. 

Figure 75. LiDAR FoV of Fig. 73 
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Figure 76. Detection with reduced height_thresh 

Figure 77. Detection with reduced height_thresh 
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Figure 79. Detection with confidence_range lowered 

Figure 78. Detection with reduced point_cloud_range 
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Figure 81. Detection with confidence_range lowered 

Figure 80. Detection with confidence_range lowered 
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COMMENTS 

We shall now comment the result of these different configurations that we tried, with 
respect to the original standard sensor configuration presented in section 5.1. 

In Fig. 76 and 77, the parameter height_thresh has been reduced, as we noticed that 
obstacles are more prone to be wrongly not detected rather than pedestrians. Therefore 
we thought that the height threshold could be something affecting the detection fault. As 
we see from the figures, no substantial change has emerged, although comparing the two 
images we notice a strange behavior: maintaining the same distance from the obstacle, 
the algorithm is able to detect the red cube when a pedestrian enters the FoV and walks 
close to it, as it had some kind of influence on the way the software processes the point 
cloud. We are not sure what precisely causes this issue, but it is important to take notice 
of it. 

 Edited parameter 

Figure 75 height_treshold reduced to 0.3 

Figure 76 height_treshold reduced to 0.3 

Figure 77 point_cloud_range reduced to 20 

Figure 78 confidence_range reduced to 80 

Figure 79 confidence_range reduced to 80 

Figure 80 confidence_range reduced to 80 

Figure 81 objectness_tresh reduced to 0.3 

Table 7. Sensor configuration of the different simulations 

 

Table 7. Sensor configuration of the different simulations 

Figure 82. Detection with Objectness_tresh lowered 

 

  Edited parameter 

Figure 75 height_treshold reduced to 0.3 

Figure 76 height_treshold reduced to 0.3 

Figure 77 point_cloud_range reduced to 20 

Figure 78 confidence_range reduced to 80 

Figure 79 confidence_range reduced to 80 

Figure 80 confidence_range reduced to 80 

Figure 81 objectness_tresh reduced to 0.3 
 Figure 82. Detection with Objectness_tresh lowered 
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In the simulation displayed in Fig. 78 we tried lowering the parameter that controls the 
range of points considered for the detection, called point_cloud_range. As we expect 
from the name, the first difference that is easy to notice is that the software does not detect 
the obstacle farther away, nor the pedestrians crossing. In return, the vehicle is able to 
detect the closer obstacle up to a shorter distance, as shown in the image. 

Fig. 79, 80 and 81 represent instants of the simulation in which we lowered the 
confidence_range parameter, in hope of improving the situation. The results are 
somewhat in contrast. In Fig. 79 and 80 we see how both the obstacle and the pedestrian 
are not detected when in close range, like in the original issue. On the other hand, Fig. 81 
shows good improvement when detecting multiple pedestrians in front of the vehicle in 
short range, which did not happen with this efficiency with the original sensor 
configuration. 

In the last simulation we reduced twice the threshold of minimum score of objectness to 
see if this would lead to more detections, even if that might induce the detection of more 
false positives. The result is shown in Fig. 82. As we see, no improvement is made, and 
the scenario is similar to that of Fig. 77: the obstacle is detected when a pedestrian walks 
close to it. This las one is an important result because it proves that the problem is not 
that the detection is made but then discarded because it has a low objectness score 
associated, but rather on the detection step itself, that in some way is not able to process 
the information from the point cloud to correctly detect the shape as an object. 

We also tried a configuration lowering the value min_height, but no improvement was 
noticed. Hence, no image regarding this scenario has been reported in the paper. 

Table 8 summarizes the results described in a more eye-catching fashion. 

 

 

Configuration Outcome 

height_treshold reduced to 0.3 
Obstacle detected only when a pedestrian walk close to 
it. 

point_cloud_range reduced to 20 
Obstacle detected until shorter distance, but farther 
obstacles are not detected anymore. 

confidence_range reduced to 80 
No improvements in normal situation, only improved 
detection at a pedestrian crossroad. 

objectness_tresh reduced to 0.3 Same results of first case. 

min_height reduced to 2 No iprovements. 

 

 

 

 

Table 8. Sensor configuration changes in the different images 

 

Table 8. Sensor configuration changes in the different images 
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5.3 – Third set of simulations 

In the previous section we tried to change all the software parameters that most control 
the algorithm used for detection, CNN Segmentation. In this short third type of approach 
we instead try to change one critical physical parameter: the angular orientation of the 
solid-state LiDAR. 

Since the very first simulations we notice the presence of a shadow cone right in front of 
the vehicle, as shown for example in Fig. 75. This is due to: 

• the orientation of the sensor 
• the vertical FoV of the sensor 
• the presence of the hood of the vehicle that blocks the pulses of the sensor 

Clearly, we do not have control over the second and third constraints. Therefore, we shall 
now try to change the orientation of the sensor by tilting it down, trying to narrow down 
the shadow cone right in front of the vehicle. Obviously, given that the vertical FoV of 
our sensor is fixed and cannot be changed, we expect the farthest areas of the previous 
settings to now fall out of the field of view. The result is given in Fig. 83. 

The initial setting for LiDAR orientation, based on a parameter called CenterAngle, is of 
12.5°. 

 

 

COMMENTS 

As we can see from Fig. 83, the FoV is not more concentrated in the areas closer to the 
front of the vehicle, while the parts farther ahead are now not struck by the pulses of light. 
Therefore, the object can now be fully inside the FoV up until a shorter distance, but 

Figure 83. Detection with lower orientation angle 

 

Figure 83. Detection with lower orientation angle 
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despite this, the software still does not detect the obstacle. Since the loss of information 
in the farthest parts of the and no improvement in detection of the red cube, we can discard 
this option as a solution as it does not add any positive aspect. This configuration further 
proves the fact that this issue cannot be related simply to the limited vertical field of view 
of the sensor (25°), but rather on a lower-level problem related to the detection step. 

 

5.4 – Fourth set of simulations 

In the last 3 sections, we have tried to change every parameter – mechanical or digital – 
we could think of given our understanding of the whole detection pipeline adopted by 
Apollo. We noticed some differences between some of these configurations, but 
unfortunately we could not achieve one that solves the issue. Another change we thought 
of doing, for sake of experimentally see if any major difference would arise, is to change 
the map of the simulation. We will use a more complex map, with more annotations 
(lanes, crosswalks, traffic lights, horizontal/vertical signs). We are not looking for any 
specific and targeted goal here, just noting down if the software behaves differently, and 
if so reflect on possible reasons. Let us remember that, also in this case, we are trying the 
configuration using only the solid-state LiDAR. Fig. 84 to 85b show the results of these 
simulations. 

 

 Figure 84. Detection at intersection 

 

Figure 84. Detection at intersection 
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Figure 85a. Close range detection of pedestrian 

 

Figure 85a. Close range detection of pedestrian 

Figure 85b. LiDAR’s FoV of Fig. 85a 

 

Figure 85b. LiDAR’s FoV of Fig. 85a 
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COMMENTS 

As we see from the pictures, this default map of Apollo is much enriched with map 
annotations like all HD Maps should be. This makes the decision-making easier for the 
detection and planning modules. Please note that the traffic light module is not being 
used. 

In Fig. 84 the vehicle is about to approach a large crossroads, and it seems to accurately 
identify the yellow bus coming to his left, and the vehicle right in the middle of the 
junction. 

In Fig. 85a and 85b we put our vehicle in one of the situations in which it struggled in the 
previous sections: the short-range detection of one single pedestrian. As the images show, 
this time the detection is precise, although the car on its left is not perceived. But, as 
shown in Fig. 85b, this is due to the fact that the vehicle is only partially visible inside the 
LiDAR’s FoV. The algorithm was able to correctly detect it once the whole car was 
visible inside the highlighted area. 

Fig. 86 represents another case scenario of detection of pedestrians at different ranges. 
Also in this case, the software seems to work better as it recognizes both of them. In this 
situation we also notice that the network identifies the non-road objects on the right 
(pipes, vegetation) as unknown shapes.   

 

 

 

Figure 86. Detection of two pedestrians 

 

Figure 86. Detection of two pedestrians 
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5.5 – Fifth set of simulations 

Up to now, in all the simulations carried out, we decided to analyze how the detection 
would perform using solely the solid-state LiDAR equipped on the vehicle, which is the 
most economic and obviously also the least performant LiDAR, when compared to the 
mechanical (rotative) ones that are also mounted on the car. The reason behind it was to 
maximize the efficiency using only this sensor to see if object detection could be run 
using only a solid-state LiDAR, which would imply a drastic reduction of the cost of the 
project. 

Since we realized that we are not able to fully do so, at least within a high-level type of 
control, in these new simulations we will also use the 2 lateral mechanical LiDARs to see 
if and how much the presented issue is resolved. This technique is called sensor fusion, 
and the idea behind it is simple: join the informations provided by different sensors to 
augment the effectiveness of the detection module. This is because, as we have seen in 
Fig. 10, each sensor has its strengths and weaknesses, and performs better under specific 
conditions of weather/distance/purpose. By using the data provided by different sensors 
we are able to compensate for these weaknesses and often most of the detection issues 
vanish. 

There are different levels of sensor fusion, based on the level of abstraction in which it is 
applied. The most common are: 

• Data level: this type of fusion occurs in the early stages of the pipeline, indeed it 
merges raw data from the multiple sensors. This results in more accurate 
readings. In our case this consists in merging the point clouds of different 
LiDARs into a unique one with a global reference system centered in the center 
of the vehicle. To do so, a transformation matrix is calculated to map each point 
belonging to a point cloud into the new reference system. The only drawback is 
that this method creates quite big input spaces, hence it might influence the 
velocity of the whole pipeline. Data level fusion is the most common approach 
to sensor fusion, and it is at the most abstract level. 

• Feature level: with this approach, the sensor fusion is applied not directly on raw 
data, but once the net has extracted features from the input. The independent-
extracted features are then sent to a fusion node that merges and compares them. 
Normally not all the features are selected to be passed on but only the most 
significant ones, which require some training to be selected. This method is more 
efficient in terms of calculations with respect to the first one. 

• Decision level: at this level of abstraction the fusion is applied directly on 
predictions carried out from the individual sensors. Among these hypothesis, the 
most reliable is then selected, according to some decision-making algorithms. 
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Decision fusion is the most ‘lightweight’ and it allows for fusion of 

heterogeneous sensors, since it does not need to merge the input data. 

The most common type of sensor fusion for AD applications merge the informations from 
LiDARs, cameras and sometimes radars too, to gain the whole spectrum of information 
it possibly can. Notable works that propose sensor fusion are [36] [37] [38] [39]. 

As already mentioned, we will now run the detection module with the use of all 3 LiDARs 
equipped on our vehicle. We will not include the cameras as a first stage on this project, 
since they focus more on the detection of traffic lights and road signals, which is not the 
primary scope of this work. The results are shown in Fig. 87 to 91. 

 

 

 

 

Figure 87. FoV of the two rotative LiDARs 

 

Figure 87. FoV of the two rotative LiDARs 

Figure 88. FoV of all 3 LiDARs, superimposed 

 

Figure 88. FoV of all 3 LiDARs, superimposed 
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Figure 89. Perception with the 3 LiDARs working  

 

Figure 89. Perception with the 3 LiDARs working  

Figure 90. Perception with the 3 LiDARs working 

 

Figure 90. Perception with the 3 LiDARs working 
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COMMENTS 

Fig. 87 shows the field of view of the 2 lateral rotative LiDARs: these sensors form what 
essentially is an annular region around the car in which they are able to sense objects. In 
Fig. 88 we show both the rotative and solid-state LiDARs fields of view working together: 
it is nothing more than a simple superposition of their individual FoV. The two most 
important improvement this implies are: a denser forward-facing FoV, and a 360° FoV 
around the vehicle thanks to the rotative sensors introduced. 

In Fig. 89 and 90 we show how the detection network perform with this new 
configuration. We notice that now the obstacle is finally detected at short distance, and 
so are the pedestrians. While sensing the close objects the software is also able to 
recognize the shapes further ahead with good accuracy. With the use of the rotative 
LiDARs, Apollo is now able to detect pedestrians also on the sides and behind the vehicle. 

Fig. 91 proves that the delay time of the module is still at more-than-acceptable level at 
0.049 seconds. 

This result is exactly what we expected when introducing sensor fusion. The multiple 
sources of input allows the creation of a much denser point cloud from 3 slightly different 
perspectives, since the 3 sensors are not physically mounted in the same point but 
purposely at the maximum distance allowed by the dimensions of the car. Such decision 
provides a kind of stereo-vision, an approach that is well known for improving detection 
performance from images/point clouds since it merges data from different perspectives. 

The outcome has compensated the solid-state LiDAR weaknesses as expected, and it 
results is a much improved version of the detection, which shows good accuracy, 360° 
awareness and good inference time. 

For future research and further development of the project it would be interesting to see 
if Apollo fixes the problems it still has running the other detection algorithms it includes, 
so to see if running these network would eliminate the problems we encountered using 

Figure 91. Module delay 

 

Figure 91. Module delay 
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solely the solid-state LiDAR. Also, mounting radars on the vehicle and including them in 
the sensor fusion, as well as the cameras, should be a topic of study for future 
development. 
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Chapter 6 
 

Conclusions 
 
The evolution of autonomous driving systems in the last decades has been just incredible. 
In this work, we started by diving into the history of autonomous vehicles, from the first 
rudimental projects that relied on magnetic circuits embedded in the road, to the DARPA 
challenges, and finally to the total autonomy reached on specific road conditions achieved 
by Tesla cars and Waymo’s taxi fleet. 

Perhaps the most important part of an AV is its detection software, which is responsible 
for detecting, categorizing and tracking obstacles and other road users in the environment. 
The safety of driver, passengers and other people in the vicinity of the vehicle rely heavily 
of the performance of its detection module. Therefore, before putting an autonomous car 
onto the road, it is vital to virtually simulate its performance in a digital environment, as 
to prevent any possible danger to real people and buildings, but also to tune the parameters 
for the  This has been the scope of this project. 

To do so, we also needed the required theoretical background on the sensors used in AD 
and the most important networks for object detection, introduced in chapters 1 and 2. In 
Chapter 3 and 4 we presented the two softwares used for the simulations and their main 
features. We also described how we uploaded onto the simulator our own customized 
map and digitalized version of the vehicle with its sensors. 

In chapter 5 we started running the simulations with our car and map. The default settings 
produced fairly good results of the detection module in the middle and long-ranges: both 
obstacles and pedestrians were correctly identified and tracked in these situations. 
Nevertheless, a problem arises when dealing with short ranges, in which the software is 
not able to detect neither the obstacles nor the pedestrians. Therefore, we started to 
experimentally change some of the parameters the mostly influence the detection 
network. We did notice some slight differences, but always trading off on some other 
aspect. We so reached a plateau, and realized that the detection module couldn’t be run 

relying only on the single solid-state LiDAR. 

The solution adopted in this case is sensor fusion, which in our scenario means including 
also the other 2 rotative LiDARs the car is equipped with. By adopting this technique a 
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new point cloud is now generated merging the input from all 3 sensors, which results in 
a much denser and richer cloud that improves dramatically the performance of the 
detection system. In fact, the previously explained issue is now resolved. Moreover, with 
this configuration the software can now detect objects behind the vehicle and on its sides 
as well, since the new LiDARs introduced are rotative. 

Sensor fusion is the way to go when dealing with autonomous driving detection, and it is 
adopted by all car manufacturers that produce autonomous vehicles. It is still topic of 
study by the scientific community, that seek to reduce its computational load while 
improving even more the accuracy in all conditions. 

We were able to create a reliable simulation environment which reproduces the real car, 
sensors and map with fidelity. The power of this system is that with just a few clicks we 
can change physical and environmental parameters and rapidly see how they affect the 
behavior of the car and detection module. Without this structure, it would be very time 
consuming to physically change these parameters on the actual car, not to mention the 
eventual danger it would create when tested on an actual road.  

For future development on this project, it will be surely important to also include cameras 
and radars inside the sensor fusion, as to further improve the accuracy of detection in the 
short range (aspect in which the radars excel) and activate the traffic light and road 
signaling modules. A second improvement will be possible when Apollo will release a 
more stable version for the use of the other detection algorithms included in its 
framework. Unfortunately, we were not able to do so, but as a first approach to the 
problem the use of the default detection algorithm developed by Apollo is more than 
sufficient. 
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