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Introduction 

Optimal control theory is an approach that have replaced the classical analysis to determine the 

acceptable system’s performance. This approach implies to design a system to minimize a 

performance criterion. In Optimal Control theory it is necessary to define a set of variables called 

states and a set of inputs called controls to control a process. After that, an appropriate performance 

measure is chosen to translate the system’s physical requirements into mathematical terms  with the 

aim to find a time variation of the inputs that lead the system to perform under a minimized 

performance criterion. This time variation can be expressed by a relationship called optimal control 

law or optimal policy with the resulting history called optimal trajectory.  

The most prominent methods are: 

• Pontragyn’s maximum principle; 

• Bellman’s principle of optimality. 

The second one is the main topic of this thesis.  

 

1. Dynamic Programming 

Dynamic programming is one of the methods used to find a control function that minimize a 

performance criterion. This leads to an equation with a solution achievable using a digital computer. 

First of all, an optimal control is defined in the following form: 

𝑢∗(𝑡) = 𝑓(𝑥(𝑡),(𝑡)) 

(1. 1) 

where 𝑓 represents the optimal control law or optimal policy. Notice that being 𝑡 an argument of 𝑓, 

the optimal control is time-varying. In Dynamic Programming, a concept called the principle of 

optimality is used to find an optimal policy. 

 

1.1 Deterministic problems  

In DP problems, a sequence of states is generated under the influence of control. When the problem 

is on finite horizons, the system has a finite number N of stages. In deterministic systems, the 

evolution of the problem depends only on the state and the control at time k: 

     𝑥𝑘+1 = 𝑓𝑘(𝑥𝑘,𝑢𝑘 ,𝑤𝑘),                                 𝑘 = 0,1…………𝑁− 1 
(1. 2) 

• k is the time index; 

• 𝑥𝑘 is the state of the system or state space at time k; 
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• 𝑢𝑘 is the control variable or control space selected from a set 𝑈𝑘(𝑥𝑘); 

• 𝑤𝑘 is an external disturbance; 

• 𝑓𝑘 is a function that models the state updating from k to k+1; 

• N is the number of stages. 

Another part of the problem is given by an additive function called cost function. This one is expressed 

as 𝑔𝑘(𝑥𝑘 ,𝑢𝑘) and represents the cost incurred at time k accumulated over the time. Taking the initial 

state 𝑥0, the total cost of a sequence is: 

𝐽(𝑥0;𝑢0,…… 𝑢𝑁−1) = 𝑔𝑁(𝑥𝑁)+  ∑ 𝑔𝑘(𝑥𝑘, 𝑢𝑘 ,𝑤𝑘)

𝑁−1

𝑘=0

 

(1. 3) 

where 𝑔𝑁(𝑥𝑁) represents the terminal cost at the end of the process. To obtain the optimal value, a 

cost minimization is necessary with respect to the control constrains over all the sequence. 

Consequently, the optimal cost function is: 

𝐽∗(𝑥0) = min
𝑢𝑘∈𝑈𝑘(𝑥𝑘)

𝑘=0,………,𝑁−1

𝐽(𝑥0; 𝑢0,…… 𝑢𝑁−1) 

(1. 4) 

 
Figure 1.1: illustration of the main elements of a deterministic problem (Bersekas, 2019) 

 

1.2 Stochastic problems 

In many problems, the state 𝑥𝑘 can take the values from a discrete state (i.e. Integers). In these 

problems the transition between the states is specified in terms of probabilities, reason why to know 

which is the probability at time k that the next state will be 𝑥𝑘+1 is necessary. It can be expressed as 

(Bertsekas, 2005): 

 

𝑝𝑖,𝑗(𝑢, 𝑘) = 𝑃{𝑥𝑘+1 = 𝑗 | 𝑥𝑘 = 𝑖,   𝑢𝑘 = 𝑢}. 

(1. 5) 
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The description of the transition in terms of a discrete-time system equation is possible, and in 

particular 

 

𝑃{𝜔𝑘 = 𝑗 | 𝑥𝑘 = 𝑖,𝑢𝑘 = 𝑢} = 𝑝𝑖,𝑗(𝑢, 𝑘) 

(1. 6) 

is the probability distribution of the random parameter 𝜔𝑘 . On the other hand, a transition probabilities 

starting with a discrete-state system can be also written. This means that a discrete-state system can 

equivalently be written in terms of a difference equation or in terms of transition probabilities. 

However, a better way a priori doesn’t exist, but it depends on the complexity of the problem. 

Moreover, in this thesis a deterministic approach is adopted to resolve the problem. 

  

1.3 The principle of optimality 

The Figure 1.2:  is an example of one or two optimal paths for a multistage decision process: 

 
Figure 1.2: possible optimal paths from a to e (Kirk, 2004) 

 

In the left figure,  𝐽𝑎𝑏 and 𝐽𝑏𝑒 represent the costs to cover their respective segments. The minimum 

cost  𝐽𝑎𝑒∗   from a to e is expressed as: 

𝐽𝑎𝑒
∗ = 𝐽𝑎𝑏 + 𝐽𝑏𝑒 

(1. 7) 

 

In conclusion if a-b-e is the optimal path from a to e, b-e is the optimal path form b to e. 

To prove this, two possible optimal paths to go from a to e (right figure) are assumed. Consequently, 

it would be: 

𝐽𝑏𝑐𝑒 < 𝐽𝑏𝑒 
(1. 8) 

 

and 
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𝐽𝑎𝑏 + 𝐽𝑏𝑐𝑒 < 𝐽𝑎𝑏 + 𝐽𝑏𝑒 = 𝐽𝑎𝑒
∗ . 

(1. 9) 

The eq. (1. 9) is satisfied only if the condition that a-b-e is the optimal path from a to e is violated. 

Thus, the first conclusion is proved. 

Bellman (Dynamic Programming., 1957) has called this property the principle of optimality: 

“an optimal policy has the property that whatever the initial state and initial decision are, the 

remaining decisions must constitute an optimal policy with regard to the state resulting from the first 

decision.” 

The principle of optimality is at the base of DP algorithm. In terms of optimal state and control space, 

It can be stated (Bersekas, 2019): 

“Let {𝑢0
∗ ,………, 𝑢𝑁−1

∗ } be an optimal control sequence, which together with 𝑥0 determines the 

corresponding state sequence {𝑥0
∗,……… ,𝑥𝑁

∗ } . Consider the subproblem whereby we start at 𝑥𝑘
∗ at 

time k and wish to minimize the “cost-to-go” from time k to time N, 

𝑔𝑘(𝑥𝑘
∗, 𝑢𝑘)+ ∑ 𝑔𝑚(𝑥𝑚,𝑢𝑚) +

𝑁−1

𝑚=𝑘+1

𝑔𝑁(𝑥𝑁) 

Over {𝑢𝑘 ,………, 𝑢𝑁−1}  with 𝑢𝑚 ∈ 𝑈𝑚(𝑥𝑚) , m = k,…, N − 1. Then the truncated optimal control 

sequence {𝑢𝑘
∗ ,………, 𝑢𝑁−1

∗ } is optimal for this subproblem.” 

This statement suggests that to determine the optimal cost function apart going backwards from the 

last stage is possible, solving gradually the “tail subproblem”. Particularly, after solving the problem, 

the solution of shorter time length is chosen. 

 

1.4 Example: Scheduling Problem (Bersekas, 2019) 

In this paragraph, the principle of optimality is applied to solve the scheduling problem represented 

in the Figure 1.3. 

 
Figure 1.3: Deterministic Scheduling Problem 
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Notice that the cost of each decision is shown next to the corresponding arc. The constrains of this 

problem are:  

• the operation B can be done only after operation A; 

• the operation D can be done only after operation C.  

Following the principle of optimality, the tail subproblem must be resolved and consequently the 

portion of an optimal schedule must be optimal. The resolution’s procedure starts from the last stage 

to arrive at the original problem. The results are reported in the Table 1-1, Table 1-2 and Table 1-3. 

 

State Possible 

operation 

Cost Terminal Cost Optimal cost 

AB C 3 6 9 

AC B 

D 

4 

6 

1 

3 

5 

CA B 

D 

2 

4 

1 

3 

3 

CD A 3 2 5 
Table 1-1: tail subproblem of length 2 

 

State Possible 

operation 

Cost Optimal Cost of 

the previous 

subproblem 

Optimal cost 

A AB 

AC 

2 

3 

9 

5 

8 

C CA 

CD 

4 

6 

3 

5 

7 

Table 1-2: tail subproblem of length 3 

 

State Possible 

operation 

Cost Optimal cost of 

the previous 

subproblem 

Optimal cost 

Initial State A 

C 

5 

3 

8 

7 

10 

Table 1-3: original problem of length 4 
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The optimal schedule is represented by CABD with an optimal cost of 10. This is clearly shown in 

the Figure 1.3 following the thick line. 

 

2 Energy Management in Hybrid Electric Vehicle  

Hybrid electric vehicles (HEVs) are characterised by the presence of one or more electric machines 

and a reversible energy storage device. In comparison to conventional vehicles, HEVs have a 

reduction of fuel consumption and pollutant emissions. Moreover, thanks to the presence of the 

additional elements mentioned above, HEVs can exploit regenerative breaking, idle off capability, 

power assist ability and potential for engine downsizing. However, the introduction of an additional 

storage device involves new degrees of freedom due to the splitting of energy sources. Consequently, 

to find an efficient way to manage the power demand between the engine and the battery  is more 

complicated. To resolve this problem, a control layer called energy management strategy is necessary 

(Figure 2.1 (Serrao, Onori, & Rizzoni, 2011)). 

 
Figure 2.1: energy management system in a HEV 

The main target of the control is to guarantee a minimum fuel consumption possibly coupled with a 

reduction of emissions over a driving cycle without a penalty in the performance. Another target can 

be the maximization of battery life. With respect to the pattern shown in Figure 2.1, the first element 

is the vehicle speed controller represented by the human driver and modelled like simple feedback 

controller in simulation. Through the speed controller, the total power 𝑃𝑟𝑒𝑞  that the powertrain must 

provide to follow a velocity profile is demanded. After that, the energy management system decides 

how to split the power between the engine (𝑃𝑖𝑐𝑒) and the battery (𝑃𝑏𝑎𝑡𝑡). In this study, the vehicle is 

considered as a dynamic system with two decoupled parameters: the vehicle speed and the state of 

charge of the battery (SOC). Thanks to decoupling, only the state of charge  is considered as a state 

variable of the energy management problem, while the speed is controlled independently. Moreover, 

speed transients are neglected because they are much faster with than the state of charge variations. 

Following these hypotheses, the energy management problem can be seen as an optimal control 

problem where the aim is to minimize a performance index (fuel consumption) over a driving cycle 
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through a sequence of instantaneous control actions (power split values). There are a lot of strategies 

and techniques available in literature to resolve the problem. The main methods are listed below: 

• Numerical methods for global optimization, i.e. Dynamic Programming. 

• Numerical methods for local optimization , i.e. Model predictive control. 

• Analytical optimization methods, i.e. Pontryagin’s minimum principle. 

• Instantaneous minimization methods, i.e. ECMS. 

• Heuristic methods, i.e. Rule-based control. 

 

 

2.1 Energy Management Problem and DP 

In Hybrid electric vehicles, as said before, the optimal control problem is solved through a sequence 

of controls that lead to minimize a performance index. Consequently, the cost is defined as (Serrao, 

Onori, & Rizzoni, 2011): 

𝐽 (𝑥(𝑡0),𝑢(𝑡), 𝑥(𝑡𝑓)) = 𝜙 (𝑥(𝑡0), 𝑥(𝑡𝑓))+ ∫ 𝐿(𝑥(𝑡), 𝑢(𝑡), 𝑡)𝑑𝑡
𝑡𝑓

𝑡0

 

(2. 1) 

where 

• t is the time; 

• u(t) is the control variable; 

• x(t) is the state variable; 

• [𝑡0, 𝑡𝑓] is the optimization horizon; 

• L(·) is the instantaneous cost; 

• Φ(·) is the terminal cost. 

 

The state variable, as mentioned in chapter 2, can be represented by the state of charge of the battery 

(SOC), while the control variables can depend on powertrain architecture and number of energy paths 

between the energy sources and the wheels. Usually, control variables are defined as: 

𝑢(𝑡) = {𝑃𝑏𝑎𝑡𝑡(𝑡),𝜌1(𝑡), ………… ,𝜌𝑚−1(𝑡)} 
(2. 2) 

where 

𝑃𝑏𝑎𝑡𝑡(𝑡) is the output battery power and 𝜌𝑖(𝑡) represent the additional variables due to how the battery 

power is split.  
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If a quasi-static engine model is considered, fuel consumption can be seen as a function of the engine 

torque 𝑇𝑖𝑐𝑒 and speed 𝜔𝑖𝑐𝑒, while vehicle speed 𝜔𝑣𝑒ℎ and power demand 𝑃𝑟𝑒𝑞 depend on external 

inputs. The dynamics of the powertrain components are neglected (see par. 2). Finally, some 

constraints are applied to optimization including: 

• system dynamics; 

• initial state value; 

• terminal state value; 

• instantaneous state limitations; 

• instantaneous control limitations. 

DP is used to solve the optimal energy management problem. Control variables 𝑢𝑘 represent the 

power split between the engine and the battery (or other rechargeable energy storage system) at 

successive time steps. Moreover, DP is a numerical method that gives the global optimal solution 

proceeding backwards in time (i.e., from the end of the driving cycle).  

To apply DP to this problem, the system is written in a discrete time-form. After that, a control policy 

Π is defined as a control sequence in which the optimization horizon is divided into N time steps. 

Following the principle of optimality (par. 1.3), the total cost is: 

𝐽0(𝛱) =  𝜙(𝑥𝑁)+ ∑𝐿(𝑥𝑘,

𝑁−1

0

𝑢𝑘 ,𝑡𝑘) 

(2. 3) 

while the optimal policy can be written as: 

𝛱∗ = 𝑎𝑟𝑔min
𝛱
𝐽0(𝛱). 

(2. 4) 

 

The optimal cost-to-go is computed starting from backward iterations and, after that the law 𝛱𝑘
∗ is 

defined for each time value, results are stored into a matrix. After that the entire cycle is simulated, 

the path with the lowest cost represents the optimal solution (Onori, Rizzoni, & Serrao, 2015). The 

solution obtained with DP is optimal for a discretized problem, but it can be considered also optimal 

in a continuous one if the simulation grid is fine enough. However, the use of a backward procedure 

implies that the solution can be obtained only offline for a well-known driving cycle. Moreover, the 

online implementation is impractical also due to high computational load. 
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3 Case study: Parallel Hybrid Vehicle 

The vehicle chosen for the strategy’s application is comparable to a p2 parallel hybrid compact city 

car. The parallel hybrid drive train has the engine and the electrical machine that supply their 

mechanical power directly to the wheels. The main advantages compared to series hybrid are: 

• One electrical machine is enough; 

• Better efficiency; 

• A smaller electrical machine. 

On the contrary, the control of the parallel drive train could be more complex.  

In p2 architecture, EM is placed between engine and transmission unit with capability to decouple 

transmission from the engine through an appropriate clutch. 

The powertrain architecture (Figure 3.1) and the data (Table 3-1) used for the simulation are showed 

below: 

 

 
Figure 3.1: p2 parallel hybrid powertrain architecture 

 

 

Vehicle mass 1080 kg 

EM maximum power 60 kW 

Engine maximum power 68.5 kW 

Battery maximum power 12 kW 

Battery energy capacity 5.4 MJ 
Table 3-1: vehicle data plate 
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The vehicle is tested over a WLTC, an emission test cycle. It consists in four different phases (low, 

middle, high and extra-high) in which duration, distance, velocity and acceleration vary to predict 

more accurately the exhaust emissions and fuel consumption under real-world driving conditions. 

The total duration of the cycle is 1800 s with a total distance of about 23 km.  

 

3.1 Model description 

In order to apply Dynamic Programming, the first step is to define some parameters from the physical 

model of the vehicle. First of all, the vehicle speed and acceleration in time are defined as exogenous 

inputs that are inputs known a priori for each stage of the problem. In fact, velocity and acceleration 

in time depend on the above-mentioned driving cycle. After that, control and state variables are 

defined. The model is determined by a backward approach in which force follows velocity and the 

tractive force is calculated starting from the inertia force (Onori, Rizzoni, & Serrao, 2015): 

𝐹𝑡𝑟𝑎𝑐𝑡 = 𝐹𝑖𝑛𝑒𝑟𝑡𝑖𝑎+ 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑎𝑒𝑟𝑜 
(3. 1) 

where 

 𝐹𝑟𝑜𝑙𝑙 + 𝐹𝑎𝑒𝑟𝑜 represents the resistance vehicle force due to rolling resistance and aerodynamics 

resistance. 

The next step is to determine wheel speed and acceleration: 

𝜔𝑤ℎ =
𝑣

𝑟𝑤ℎ
 

(3. 2) 

and  

�̇�𝑤ℎ =
𝑎

𝑟𝑤ℎ
 

(3. 3) 

with 

v and a that are respectively vehicle velocity and acceleration given by driving cycle and 𝑟𝑤ℎ  that 

represents wheel radius. 

Consequently, wheel torque is determined as: 

𝑇𝑤ℎ = 𝐹𝑡𝑟𝑎𝑐𝑡  𝑟𝑤ℎ . 
(3. 4) 
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3.1.1 Transmission 

Transmission section is modelled starting from the final drive: 

𝜔𝑓𝑑 = 𝜏𝑓𝑑𝜔𝑤ℎ 

(3. 5) 

and 

�̇�𝑓𝑑 = 𝜏𝑓𝑑�̇�𝑤ℎ 

(3. 6) 

where 

𝜔𝑓𝑑 and �̇�𝑓𝑑 represent final drive speed and final drive acceleration and 𝜏𝑓𝑑 is the final drive speed 

ratio. 

Then, final drive torque is expressed as: 

𝑇𝑓𝑑 =

{
 
 

 
 
𝑇𝑤ℎ
𝜏𝑓𝑑

+ 𝑇𝑙𝑜𝑠𝑠,𝑓𝑑   𝑖𝑓 𝑇𝑤ℎ > 0

𝑇𝑤ℎ
𝜏𝑓𝑑

− 𝑇𝑙𝑜𝑠𝑠,𝑓𝑑   𝑖𝑓 𝑇𝑤ℎ ≤ 0

 

(3. 7) 

with 𝑇𝑙𝑜𝑠𝑠,𝑓𝑑 that represents the final drive loss. 

After that, shaft is modelled passing via gearbox: 

𝜔𝑠ℎ𝑎𝑓𝑡 = 𝜔𝑓𝑑𝜏𝑔𝑏(𝐺𝑁) 

(3. 8) 

and 

�̇�𝑠ℎ𝑎𝑓𝑡 = �̇�𝑓𝑑𝜏𝑔𝑏(𝐺𝑁) 

(3. 9) 

where 

𝜔𝑠ℎ𝑎𝑓𝑡 and �̇�𝑠ℎ𝑎𝑓𝑡 are shaft velocity and shaft acceleration and 𝜏𝑔𝑏  is the gearbox speed ratio 

expressed as function of gear number. 

Gearbox efficiency is calculated from an efficiency map and it depends only by gear number: 

𝜂𝑔𝑏 = 𝜂𝑔𝑏(𝐺𝑁). 

(3. 10) 

Before to determine shaft torque, gearbox loss must be calculated. These last are expressed as: 

𝑇𝑙𝑜𝑠𝑠,𝑔𝑏 =

{
 
 

 
 
1− 𝜂𝑔𝑏

𝜂𝑔𝑏
 
𝑇𝑓𝑑

𝜏𝑔𝑏
      𝑖𝑓 𝑇𝑓𝑑 > 0

(1− 𝜂𝑔𝑏)
𝑇𝑓𝑑

𝜏𝑔𝑏
    𝑖𝑓 𝑇𝑓𝑑 ≤ 0

. 

(3. 11) 
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Finally, shaft torque can be calculated as: 

𝑇𝑠ℎ𝑎𝑓𝑡=
𝑇𝑓𝑑

𝜏𝑔𝑏
+𝑇𝑙𝑜𝑠𝑠,𝑔𝑏 + 𝐽𝑔𝑏�̇�𝑓𝑑 

(3. 12) 

where 

𝐽𝑔𝑏�̇�𝑓𝑑 represents the gearbox inertia. 

 

3.1.2 Control Variables 

The control variables are represented by the gear number and by another one called torque split. The 

gear number depends on the type of vehicle, while torque split, or torque split ratio, is a parameter 

that allows to determine how the demanded torque 𝑇𝑟𝑒𝑞 is split between the torque provided from the 

engine 𝑇𝑒𝑛𝑔 and the torque provided from the EM 𝑇𝐸𝑀. In fact, following the next relation:  

𝑇𝑟𝑒𝑞 = 𝑇𝑒𝑛𝑔 + 𝑇𝐸𝑀 . 

(3. 13) 

Previously it is possible to define 𝑇𝑟𝑒𝑞 as a function of vehicle’s speed and gear number: 

𝑇𝑟𝑒𝑞 = 𝑇𝑠ℎ𝑎𝑓𝑡+ 𝐽𝑒𝑛𝑔�̇�𝑒𝑛𝑔+ 𝐽𝐸𝑀�̇�𝐸𝑀 

(3. 14) 

where 

• 𝑇𝑠ℎ𝑎𝑓𝑡 is the torque derived from the transmission; 

• 𝐽𝑒𝑛𝑔 and 𝐽𝐸𝑀 represent the moments of inertia of the engine and the EM; 

• �̇�𝑒𝑛𝑔 and �̇�𝐸𝑀 are the engine and EM acceleration. 

Consequently, the torque split can be defined based on engine and EM torques, for example like ratio 

between 𝑇𝑒𝑛𝑔 and 𝑇𝑟𝑒𝑞, or following other parameters like the battery current 𝑖𝑏. The torque split 

choice represents the main element of this problem and the main topic of this thesis.  

 

3.1.3 State Variable 

The state variable is represented by SOC of the battery. Its dynamics can be derived from a simple 

battery internal resistance model, shown in Figure 3.2. 
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Figure 3.2: battery model 

Following the model, the battery power can be written as: 

𝑉𝐿(𝑡)𝐼(𝑡) = 𝑃𝑏𝑎𝑡𝑡(𝑡) = 𝑉𝑜𝑐(𝑥)𝐼(𝑡) − 𝑅0(𝑥)𝐼
2(𝑡) 

(3. 15) 

where  

• 𝐼(𝑡) is the battery current; 

• 𝑉𝐿(𝑡) is the load voltage at the terminals; 

• 𝑉𝑜𝑐(𝑥) and 𝑅0(𝑥) are the open-circuit voltage and the equivalent internal resistance and they 

are function of the state of charge of the battery (SOC), indicated by (x).  

 

From the previous expression,  𝐼(𝑡) can be derived as: 

𝐼(𝑡) =
𝑉𝑜𝑐(𝑥) −√𝑉𝑜𝑐

2 (𝑥) − 4𝑅0(𝑥)𝑃𝑏𝑎𝑡𝑡(𝑡)

2𝑅0(𝑥)
 

(3. 16) 

and finally SOC dynamics is determined: 

𝑆𝑂𝐶̇ =
𝐼(𝑡)

𝐶𝑏𝑎𝑡𝑡
 

(3. 17) 

where 𝐶𝑏𝑎𝑡𝑡 is the battery energy capacity. 

 

Being 𝐼(𝑡) written in function of 𝑃𝑏𝑎𝑡𝑡(𝑡), this one is evaluated as  

𝑃𝑏𝑎𝑡𝑡(𝑡) = {

𝜂𝑖𝑛𝑣𝑃𝐸𝑀       𝑖𝑓 𝑃𝐸𝑀 ≥ 0
1

𝜂𝑖𝑛𝑣
𝑃𝐸𝑀      𝑖𝑓 𝑃𝐸𝑀 < 0

 

(3. 18) 

and the power adsorbed or generated by the electrical machine 𝑃𝐸𝑀 is previously calculated as 
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𝑃𝐸𝑀  {

𝜂𝐸𝑀𝜔𝐸𝑀𝑇𝐸𝑀       𝑖𝑓 𝑇𝐸𝑀𝜔𝐸𝑀 ≥ 0
1

𝜂𝐸𝑀
𝜔𝐸𝑀𝑇𝐸𝑀        𝑖𝑓 𝑇𝐸𝑀𝜔𝐸𝑀 < 0

 

(3. 19) 

where 𝜂𝑖𝑛𝑣 and 𝜂𝐸𝑀 are respectively inverter and electric machine efficiency.   

 

3.1.4 Constraints 

To ensure a proper optimization of the problem, a constraints’ set-up that represents the operational 

constraints of a powertrain must be defined. The first constrain is about engine torque: it cannot 

exceed its limit torque (that is function of the engine speed) 

𝑇𝑒𝑛𝑔 ≤ 𝑇𝑒𝑛𝑔,𝑚𝑎𝑥(𝜔𝑒𝑛𝑔). 

(3. 20) 

Turning to the electrical machine torque, it must be included in a range that marks the generation and 

the motor mode: 

𝑇𝐸𝑀,𝑚𝑖𝑛 ≤ 𝑇𝐸𝑀 ≤ 𝑇𝐸𝑀,𝑚𝑎𝑥. 
(3. 21) 

Moreover, when the vehicle is braking (i.e. 𝑇𝑟𝑒𝑞 < 0), the electrical machine cannot operate in motor 

mode (powertrain constraint). 

Regarding the battery, its current cannot exceed a pre-set range of charge and discharge: 

𝐼𝑑𝑖𝑠,𝑙𝑖𝑚 ≤ 𝐼 ≤ 𝐼𝑐ℎ,𝑙𝑖𝑚. 
(3. 22) 

Finally, the last constraints are about SOC:  

• The terminal SOC must be equal to the initial value 𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑓; 

• The SOC must stay into a range on value for the entire simulation. 

 

3.2 Simulation introduction 

The simulation environment used for the problems is DynaProg, an open-source MATLAB toolbox 

that solves multi-stage deterministic optimal decision problems through Dynamic Programming 

(Miretti, Misul, & Spessa, 2021). The main inputs to give are the state variable x (sec. 3.1.3) with 

related constraints, the control variables (sec. 3.1.2) 𝑢1 and 𝑢2, the number of stages N, a function 

that represents the physical model of the vehicle and velocity and acceleration in time as exogenous 

inputs w. In output, a cost profile is achieved, in this case represented by fuel consumption. The main 

target of the following simulations is to explore the vehicle’s behaviour by varying torque split and 

discretization levels. The main scripts used for the simulations are reported in the Appendix (chap.7). 
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4 Simulation Analysis 

To start the simulation, the first step is to define a problem’s set up. In particular, a grid for state and 

control variables should be defined. Moreover, some constraints should be imposed, as mentioned in 

sec. 3.1.4. As concerns the state variable x, the grid is represented by a range in which the SOC must 

stay and for all the simulations the chosen range is the following:  0.4 ≤ 𝑥 ≤ 0.7 with a discretization 

equal to 0.001. The discretization’s choice is very important because the more the grid is fine, the 

more the cost-to-go is accurate. The main constraint imposed to x is about the initial and the final 

state. In fact, initial and final state must be equal (𝑆𝑂𝐶𝑖 = 𝑆𝑂𝐶𝑓) and in this case the x initial state is 

0.6. Consequently, the x final state must be equal to 0.6, but in order not to make the problem 

overconstrained, the x final state can stay in the following range: 0.599 ≤ 𝑥𝑓𝑖𝑛𝑎𝑙 ≤ 0.601. An 

example of the plot results is shown below in Figure 4.1: 

 
Figure 4.1: plot of the simulation results on Dynaprog 

The three plots have the time of the driving cycle on the x-axis and the value of SOC, gear number, 

torque split and Engine and EM torque on the y-axis. Engine and EM torque plot can be replaced by 

Fuel Consumption plot as an alternative. In this respect, the expected cost in terms of Fuel Economy 

must stay between 4 and 5 l/100, that is comparable to a compact city car’s result. 

Regarding to the control variables, the 𝑢1 𝑔𝑟𝑖𝑑  is represented by the gear number and it is equal to 5. 

So, it has 𝑢1 𝑔𝑟𝑖𝑑 = [1 2 3 4 5]. On the other hand, the 𝑢2 𝑔𝑟𝑖𝑑 depends on torque split and the 

discretization levels. All the simulations are run over five discretization levels equal to 11, 21, 41, 81 
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and 121, while the tested torque split ratios are nine, by implicating nine different vehicle models to 

be simulated. The models, indicated by letters from A to H, are the following: 

• model A: the engine torque 𝑇𝑒𝑛𝑔; 

• model B: the e-machine torque 𝑇𝑒𝑚; 

• model C: the battery current 𝑖𝑏; 

• model D: the normalized engine torque 𝜏𝑒𝑛𝑔; 

• model E: the normalized e-machine torque 𝜏𝑒𝑚; 

• model F: the normalized battery current 𝜄𝑏; 

• model G: the engine torque-split factor 𝛼𝑒𝑛𝑔; 

• model H: the e-machine torque-split factor 𝛼𝑒𝑚; 

 

 

4.1 Model A: the engine torque 𝑇𝑒𝑛𝑔 

The first simulated model has the torque split depending on the engine torque 𝑇𝑒𝑛𝑔. The main target 

is to explore the entire operative range of the engine and consequently the torque split is equal to the 

operative range of the engine toque. According to the vehicle data provided for all the simulations, 

the maximum engine torque is equal to 130,5 Nm, while the minimum is fixed to 0 Nm. As a result, 

the range is: 

0 𝑁𝑚 ≤ 𝑢2 ≤ 130.5 𝑁𝑚 
(4. 1) 

and this represents exactly the entire operative range of the engine torque 𝑇𝑒𝑛𝑔 = 𝑢2. 

From the previous relation, the next one can be written as: 

𝑇𝑟𝑒𝑞 = 𝑇𝑒𝑛𝑔+ 𝑇𝐸𝑀 = 𝑢2 +𝑇𝐸𝑀  

(4. 2) 

and after obtaining 𝑇𝑟𝑒𝑞 from the eq. (3. 13), it has: 

𝑇𝐸𝑀 = 𝑇𝑟𝑒𝑞 −𝑢2. 

(4. 3) 

After that, all the necessary constrains (sec. 3.1.4) are inserted as unfeasibility and the simulation is 

running up to the five discretization levels (chap.4). Thanks to increasing of discretization, the torque 

split grid is finer and it can get more accurate results. 

  

The results about final SOC, fuel consumption and fuel economy are reported on the Table 4-1: 
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Discretization level Final SOC Fuel Consumption 

[kg] 

Fuel economy 

[l/100km] 

11 0.599246 0.69 3.78 

21 0.599006 0.66 3.64 

41 0.599019 0.65 3.57 

81 0.599003 0.65 3.54 

121 0.599006 0.64 3.52 
Table 4-1: simulation results model A 

From these results, notice that with increasing discretization, fuel consumption and fuel economy are 

lower. On the other hand, the final SOC moves away from the target, while staying inside the 

acceptable range.  

The vehicle’s behaviour in terms of power provided of each part is shown in Figure 4.2: 

 
Figure 4.2: power distribution plot model A 

 

In this model, power split’s management is good especially in the “high phase” of the driving cycle, 

as shown by Figure 4.3: 
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Figure 4.3: High phase detail model A 

The model provides good results in terms of fuel consumption and fuel economy, remaining in line 

with the initial expectations.  

Another interesting aspect to analyze concerns the gear number variation with to respect torque split. 

In Figure 4.4, this can be appreciated: 

Gear number is directly proportional to torque split. In fact, when torque split increases, the gear 

number increases too. This is expected because torque split depends directly on the engine torque that 

consequently influences the gear number’s choice.  

The main advantage of this model is the possibility to explore all the entire operative range of the 

engine, but a lot of operative points are not investigated because of the discretization. On the contrary, 

if we increased the discretization, the computational time would be very high. Moreover, this model   

does not give any information about the vehicle powerflow except for the pure electric mode when 

𝑢2 = 0. 

 

 

Figure 4.4: gear number variation model A 
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4.2 Model B: the e-machine torque 𝑇𝑒𝑚 

Unlike the model A (par. 4.1), this model has the torque split that depends on the electrical machine 

torque 𝑇𝑒𝑚. In particular, 𝑢2 grid is equal to the entire operative range of the electrical machine and, 

from the data provided, it is from -300 Nm to 300 Nm. Consequently, the electrical machine 𝑇𝑒𝑚 can 

be explored through its entire operative range making the grid increasingly finer thanks to the five 

discretization levels. In this case, the main constraints are imposed to the engine and to the battery in 

addition to the powertrain constraint (sec. 3.1.4). Finally, it has: 

−300 𝑁𝑚 ≤ 𝑢2 ≤ 300 𝑁𝑚 
(4. 4) 

with 𝑇𝑒𝑚 = 𝑢2. 

From the eq. (4. 4), the next one is determined: 

𝑇𝑟𝑒𝑞 = 𝑇𝑒𝑛𝑔 + 𝑇𝐸𝑀 = 𝑇𝑒𝑛𝑔+ 𝑢2 

(4. 5) 

and obtaining 𝑇𝑟𝑒𝑞 from eq. (3. 14), it has 

𝑇𝑒𝑛𝑔 = 𝑇𝑟𝑒𝑞 − 𝑢2. 

(4. 6) 

The results about final SOC, fuel consumption and fuel economy are reported on the Table 4-2: 

 Discretization level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.600047 0.85 4.65 

21 0.599389 0.82 4.49 

41 0.599273 0.81 4.43 

81 0.599108 0.80 4.37 

121 0.599102 0.78 4.29 
Table 4-2: simulation results model B 

 

Also in this model, increasing discretization corresponds to lower fuel consumption and fuel 

economy. The final SOC is very near to the target, especially in the first discretization level.  

The results about power’s performance are shown below in Figure 4.5: 
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Figure 4.5: power plot results model B 

In this case, power split is less evident and probably this can imply a small increase in fuel 

consumption. An example of this is detectable in the high phase detail (Figure 4.6) of the cycle, where 

the power provided by the engine is predominant: 

 
Figure 4.6: High phase detail model B 

Anyway, Fuel consumption and Fuel Economy remain in line with the expected results.  
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Regarding gear number variation, Figure 4.7 shows the obtained results: 

In this case, there is not direct proportionality between torque split and gear number but there are 

some considerations to do. First of all, when torque split reaches its maximum or minimum value, the 

gear number is low probably due to pure electric or battery charge mode. Then, when torque split is 

zero (EM torque = 0), there is not a specific correlation between the two parameters and the gear 

number variation probably depends only on the engine torque. 

One advantage of this model is to explore all the operative range of the electric machine torque but, 

same way as the model A, a lot of points are not investigated. At the same time, with increasing 

discretization too much, the computational time would be very high, more than the model A in this 

case. Finally, the pure thermal mode can be identified when 𝑢2 = 0, but there is not any information 

about powerflow. 

 

4.3 Model C: the battery current 𝑖𝑏 

The model C has the torque split depending on the battery current 𝑖𝑏. In particular, 𝑢2 𝑔𝑟𝑖𝑑 is exactly 

equal to the entire admissible operative range of the battery current and in this case, it has:  

−54 𝐴 ≤ 𝑢2 ≤ 54 𝐴. 
(4. 7) 

However, this choice implies a substantial change in the vehicle physical model. In fact, model A and 

model B have the battery current 𝑖𝑏 expressed as a function of battery power 𝑃𝑏𝑎𝑡𝑡 as shown in the 

eq. (3. 16), while in this case, the battery power 𝑃𝑏𝑎𝑡𝑡 must be written as a function of  the battery 

current 𝑖𝑏. Consequently, the equations become: 

𝑖𝑏 = 𝑢2 
(4. 8) 

and 

𝑃𝑏𝑎𝑡𝑡 = 𝑉𝑜𝑐 𝑖𝑏 + 𝑅0𝑖𝑏
2. 

(4. 9) 

Figure 4.7: gear number variation model B 
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From here, the electrical machine power 𝑃𝐸𝑀 is calculated through the “electrical torque 𝑇𝑒𝑙” defined 

as 𝑃𝐸𝑀
𝜔𝐸𝑀

 and used as input into an efficiency map. Finally, 𝑇𝐸𝑀 is obtained and  𝑇𝑒𝑛𝑔 can be found 

following the eq. (3. 13) and (3. 14). 

 

The results about final SOC, fuel consumption and fuel economy are reported on the  Table 4-3: 

Discretization Level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.599444 0.89 4.87 

21 0.599167 0.89 4.87 

41 0.599028 0.89 4.86 

81 0.599028 0.89 4.85 

121 0.599028  0.89 4.85 
Table 4-3: simulation results model C 

The results show how fuel consumption and fuel economy are almost completely unaffected by 

discretization. Instead, final SOC moves away from the target with increasing discretization. 

The power distribution is represented by Figure 4.8: 

 
Figure 4.8: power plot results model C 

 

In this model, power split’s management is quite good, but the engine power turns out to be sometimes 

predominant. The high phase detail is shown below in Figure 4.9: 
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Figure 4.9: High phase detail model C 

 

Fuel consumption and Fuel Economy are slightly higher, but they are in line with the expected one 

and the vehicle’s behaviour remains consistent. 

Results about gear number variation are shown by Figure 4.10: 

 

The correlation between torque split and gear number is very similar then model B. In fact, also in 

this case, there is not a direct proportionality and when torque split reaches its maximum or minimum 

values, the gear number is low. On the other hand, when torque split is zero, battery current is zero 

and this also implies EM torque equal to zero. Consequently, gear number variation depends only on 

the engine torque.   

The best element of this model is surely the simulation of the entire operative range of the battery 

current. Moreover, using current as torque split implies a simplification of the vehicle physical model 

since a backwards calculation is not necessary. However, as in other models, the computational time 

Figure 4.10: gear number variation model C 
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would be very high when the discretization increased. In addition, this model does not give any 

information about powerflow. 

 

4.4 Model D: the normalized engine torque 𝜏𝑒𝑛𝑔  

The torque split of this model depends on the engine torque once again, but in this case referred to 

the normalized engine torque, written below: 

𝑢2 = 𝜏𝑒𝑛𝑔 =
𝑇𝑒𝑛𝑔

𝑇𝑒𝑛𝑔,𝑚𝑎𝑥
. 

(4. 10) 

The idea is to explore the entire operative range of the engine torque (as seen in par. 4.1), but in a 

more compact way. In fact, thanks to this “normalized” formulation, the 𝑢2 bounds become: 

0 ≤ 𝑢2 ≤ 1 
(4. 11) 

with 𝑢2 = 0 that represents the minimum engine torque (0 Nm) and 𝑢2 = 1 that represents the 

maximum engine torque (130.5 Nm).  

Consequently, the vehicle physical model is modified and in particular 

𝑇𝑒𝑛𝑔 = 𝑢2𝑇𝑒𝑛𝑔,𝑚𝑎𝑥 

(4. 12) 

and  

𝑇𝐸𝑀 = 𝑇𝑟𝑒𝑞 − 𝑢2𝑇𝑒𝑛𝑔,𝑚𝑎𝑥 

(4. 13) 

with 𝑇𝑟𝑒𝑞 calculated from eq. (3. 14). 

The constraints are the same imposed in the model A and they mainly concern electrical machine, 

battery and powertrain.  

 

The results about final SOC, fuel consumption and fuel economy are reported on the  Table 4-4: 

Discretization level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.599013 0.69 3.78 

21 0.599043 0.66 3.64 

41 0.599005 0.65 3.58 

81 0.599002 0.65 3.54 

121 0.599002 0.64 3.53 
Table 4-4: simulation results model D 
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The simulation results show the discretization addiction to Fuel consumption and Fuel economy. 

Moreover, final SOC is a bit far from the final target (while remaining inside the permitted range), 

since the first level of discretization and this could influence simulation accuracy. 

 

The plot results about power’s performances are shown below in Figure 4.11: 

 
Figure 4.11: power plot results model D 

 

There is a very good power split management that implies a reduction in terms of fuel consumption 

and consequently Fuel Economy.  

 

“High phase detail” is shown in Figure 4.12: 
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Figure 4.12: High phase detail model D 

The Fuel economy’s results seem a bit lower than the expected, but still acceptable. In fact, the 

vehicle’s behaviour is coherent and probably this fuel consumption reduction is due to a lower 

accuracy combined with the torque split’s proper choice. 

 

As concerns gear number variation, results are represented by Figure 4.13: 

Essentially, gear number variation and torque split are directly proportional as in model A. In fact, 

the torque split of this model is directly referred to the engine torque (“normalized” in  this case) that 

influences the gear number variation. The higher the torque split is, the higher gear number is and 

vice versa.  

The main advantage of this model is the capability to investigate a lot of operative points in the engine 

torque range. Indeed, the normalized torque allows to expand the number of investigated points using 

the same discretization levels, without affecting the computational time. However, also in this model, 

Figure 4.13: gear number variation model D 
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if the discretization increased, the computational time could be higher. And then, when 𝑢2 = 0,  pure 

thermal mode is identified, but there is no other information about powerflow. 

  

4.5 Model E: the normalized e-machine torque 𝜏𝑒𝑚  

In this model, the torque split is represented by a “normalized e-machine torque” along the lines of 

the model D. In this case, obviously, reference is made to the electrical machine torque and its entire 

operative range. The normalized e-machine torque is equal to 

𝑢2 = 𝜏𝑒𝑚 =
𝑇𝐸𝑀
𝑇𝐸𝑀,𝑙𝑖𝑚

 

(4. 14) 

when 𝑇𝐸𝑀,𝑙𝑖𝑚 is referred to maximum (300 Nm) and minimum (-300 Nm) electrical machine torque. 

Consequently, the 𝑢2 grid is 

−1 ≤ 𝑢2 ≤ 1 
(4. 15) 

with 𝑢2 = −1 that represents the minimum e-machine torque and 𝑢2 = 1 that represents the 

maximum e-machine torque. 

This formulation implies some modifies in the vehicle physical model, in particular: 

𝑇𝐸𝑀 = 𝑢2𝑇𝐸𝑀,𝑙𝑖𝑚 
(4. 16) 

and 

𝑇𝑒𝑛𝑔 = 𝑇𝑟𝑒𝑞 − 𝑢2𝑇𝐸𝑀,𝑙𝑖𝑚 

(4. 17) 

with 𝑇𝑟𝑒𝑞 calculated from eq. (3. 14). 

The unfeasibility is the same of model B and it mainly concerns engine, battery and powertrain. 

 

The results about final SOC, fuel consumption and fuel economy are reported on the Table 4-5: 

Discretization level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.600572 0.79 4.35 

21 0.599092 0.77 4.20 

41 0.599095  0.75  4.10 

81 0.59906 0.74 4.04 

121 0.599022 0.73 4.01 
Table 4-5: simulation results model E 
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The results indicate a correlation between Fuel Consumption and Fuel economy and discretization. 

Regarding final SOC, the target is good achieved in the first discretization level, while in the others 

it moves a little bit away, remaining in the admitted range. 

 

The results about power’s performances are represented in Figure 4.14: 

 
Figure 4.14: power plot results model E 

 

In this case, power split management takes to have predominant engine power in some zones of the 

cycle. This is evident in the cycle High phase (Figure 4.15): 



31 
 

 
Figure 4.15: High phase detail model E 

Notwithstanding the above, the vehicle’s behaviour is very good and Fuel consumption and Fuel 

economy are perfectly in line with the expected one.  

 

Regarding gear number variation, results are plotted below in Figure 4.16: 

 

As seen in model B (sec. 4.2), also in this case there is not direct correlation between the parameters. 

Consequently, when torque split is around its maximum or minimum value, gear number is low due 

to pure electric or battery charging mode while a torque split’s value equal to zero (EM torque = 0) 

implies a low or a high gear number probably depending only on the engine torque.  

This model can investigate all the entire operative range of the electrical machine, increasing the 

number of points simulated. Keeping the same discretization levels, the computational time is not 

particularly affected, but with increasing discretization, the computational time could be higher. 

Moreover, this model can detect the pure thermal mode when 𝑢2 = 0 and it can differentiate the 

Figure 4.16: gear number variation model E 
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electrical machine behaviour: when 𝑢2 < 0 EM operates in generator mode, while when 𝑢2 > 0 the 

e-machine is in motor mode. However, the model E does not give any information about the rest of 

the powerflow. 

 

4.6 Model F: the normalized battery current 𝜄𝑏 

In this model, the torque split is referred to the normalized battery current. It is calculated from the 

ratio between the battery current 𝑖𝑏 and 𝑖𝑏,𝑙𝑖𝑚, that represents all the entire operative range of the 

current. Therefore, the next formulation is written: 

𝑢2 = 𝜄𝑏 =
𝑖𝑏
𝑖𝑏,𝑙𝑖𝑚

. 

(4. 18) 

However, current’s limits are not fixed values, but they depend on the SOC, the state variable x. In 

fact, it has: 

𝑖𝑏,𝑖𝑛𝑓(𝑥) ≤ 𝑖𝑏 ≤ 𝑖𝑏,sup(𝑥) 

(4. 19) 

and consequently, the normalized battery current 𝜄𝑏 is written as a function of both state and control 

variables. Meanwhile, thanks to the “normalization”, the 𝑢2 grid is: 

−1 ≤ 𝑢2 ≤ 1 
(4. 20) 

when 𝑢2 = −1 represents 𝑖𝑏,𝑖𝑛𝑓 and 𝑢2 = 1 represents 𝑖𝑏,sup. 

Finally, after defining the battery current as  

𝑖𝑏 = 𝑢2𝑖𝑏,𝑙𝑖𝑚, 
(4. 21) 

all the other parameters are determined through the eq.(4. 9) and following the rest of the procedure 

seen in par. 4.3. In this case, constraints mainly concern engine, electrical machine and powertrain. 

The results about final SOC, fuel consumption and fuel economy are reported on the  Table 4-6: 

Discretization level Final SOC  Fuel consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.599444 0.89 4.87 

21 0.599167 0.89 4.87 

41 0.599028 0.89 4.86 

81 0.599028 0.89 4.85 

121 0.599028  0.89 4.85 
Table 4-6: simulation results model F 
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In this model, the discretization addiction to Fuel consumption and Fuel economy is void. On the 

other hand, final SOC is very near to the target in the first discretization level, while it moves away 

in the others, remaining inside the range anyway.  

 

As regards power’s performances results, they can be seen on Figure 4.17: 

 
Figure 4.17: power plot results model F 

 

As shown by figure, engine power is predominant in some zones, by implying a less effective power 

split management. This can be detected in the “High phase detail” represented by  Figure 4.18: 
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Figure 4.18: High phase detail model F 

The power split management implies a small increase in Fuel consumption and Fuel economy that 

are still in line with the initial expectations anyway. Moreover, the good vehicle’s behaviour suggests 

how this Fuel consumption increase could depend on torque split’s proper choice. 

 

Gear number variation expressed as a function of torque split can be seen in Figure 4.19: 

The correlation between torque split and gear number is not clear. As described in model C (sec. 4.3), 

when torque split takes maximum or minimum values, gear number is low, while torque split equal 

to zero (battery current = 0) implies different gear number’s choices probably determined by the 

engine torque. 

The best feature of this model concerns the torque split dependence on both control and state variable. 

As described above, the 𝑖𝑏,𝑙𝑖𝑚 depends on the SOC allowing to have as sort of closed loop control in 

the model. Moreover, there is a model simplification, as seen in par. 4.3. On the contrary, as a 

Figure 4.19: gear number variation model F 
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drawback, increased discretization means increased computational time. In addition, this model does 

not give any information about powerflow. 

 

 

4.7 Model G: the engine torque-split factor 𝛼𝑒𝑛𝑔 

After analysing some models with “normalized parameters”, in this one torque split is expressed in 

another different way. In fact, torque-split factor 𝛼𝑒𝑛𝑔 is defined such as the ratio between the engine 

torque 𝑇𝑒𝑛𝑔 and the demanded torque 𝑇𝑟𝑒𝑞: 

𝑢2 = 𝛼𝑒𝑛𝑔 =
𝑇𝑒𝑛𝑔

𝑇𝑟𝑒𝑞
. 

(4. 22) 

Using this expression, the percentage of 𝑇𝑒𝑛𝑔 with respect to 𝑇𝑟𝑒𝑞 is determined. Consequently, the 

vehicle’s physical model changes: 

𝑇𝑒𝑛𝑔 = 𝛼𝑒𝑛𝑔𝑇𝑟𝑒𝑞 

(4. 23) 

and via eq. (3. 13) and eq. (3. 14), it has 

𝑇𝐸𝑀 = 𝑇𝑟𝑒𝑞(1− 𝛼𝑒𝑛𝑔). 
(4. 24) 

The 𝑢2 grid is referred to the 𝑇𝑒𝑛𝑔 operative range and it is 

0 ≤ 𝑢2 ≤ 1 
(4. 25) 

with 𝑢2 = 0 that represents the minimum engine torque (0 Nm) and 𝑢2 = 1 that implies 𝑇𝑒𝑛𝑔 = 𝑇𝑟𝑒𝑞. 

The constraints are imposed on engine, electrical machine, battery and powertrain.  

 

The results about final SOC, fuel consumption and fuel economy are reported on the Table 4-7: 

Discretization level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.600999 0.76 4.16 

21 0.601 0.75 4.13 

41 0.600999  0.75  4.11 

81 0.600997 0.75 4.10 

121 0.600999 0.75 4.10 
Table 4-7: simulation results model G 
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The results show that the discretization addiction is practically negligible in Fuel Consumption while 

is slightly apparent in Fuel economy. Instead, final SOC is away from the target of 0.6 in each 

discretization level, but it remains inside the range reaching the upper bound (0.601) in the second 

discretization level.  

 

Power’s performances results are represented by Figure 4.20: 

 
Figure 4.20: power plot results model G 

 

Power split is managed very well and this surely influences Fuel Consumption and Fuel economy.  

 

The “High phase detail” is shown below by  Figure 4.21: 



37 
 

 
Figure 4.21: High phase detail model G 

 

In this picture, there are some points in which regenerative breaking is detectable. This last is very 

important because it allows to store the necessary energy that the electrical machine provides during 

power split. Fuel Consumption and Fuel economy are perfectly in line with the initial expectations.  

Results about gear number variation are shown in Figure 4.22: 

Gear number variation profile is consistent with the initial expectations. In fact, being torque split 

expressed as function of engine torque, the expected results should have been like model A and model 

D. As a confirmation of this, gear number is directly proportional to torque split as described in 

previous cases (sec. 4.1 and sec. 4.4). 

The main strength of this model is to give all the information about powerflow. In fact, it is possible 

to distinguish pure electric mode when 𝑢2 = 0, pure thermal mode when 𝑢2 = 1 and power split 

mode when 0 < 𝑢2 < 1. In addition, this torque split makes the model more complete thanks to the 

Figure 4.22: gear number variation model G 
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presence of 𝑇𝑟𝑒𝑞, in integration with constraints. On the other hand, this model presents some limits. 

First of all, there are some unexplored operative points of the engine torque and then the electrical 

machine could be underexploited, never reaching its maximum value.  

 

4.8 Model H: the e-machine torque-split factor 𝛼𝐸𝑀  

As seen in the previous section, also in this model it is defined a torque split factor. However, this 

time it is expressed like the ratio between the electrical machine torque 𝑇𝐸𝑀 and the demanded torque 

𝑇𝑟𝑒𝑞: 

𝑢2 = 𝛼𝐸𝑀 =
𝑇𝐸𝑀
𝑇𝑟𝑒𝑞

. 

(4. 26) 

In this way, the percentage of 𝑇𝐸𝑀 with respect to 𝑇𝑟𝑒𝑞 is determined. Continuing to describe the 

vehicle’s physical model, it has: 

𝑇𝐸𝑀 = 𝛼𝐸𝑀𝑇𝑟𝑒𝑞 

(4. 27) 

and via eq. (3. 13) and eq. (3. 14) 

𝑇𝑒𝑛𝑔 = (1 −𝛼𝐸𝑀)𝑇𝑟𝑒𝑞. 

(4. 28) 

The 𝑢2 𝑔𝑟𝑖𝑑 is expressed as follow: 

−1 ≤ 𝑢2 ≤ 1 
(4. 29) 

with 𝑢2 = −1 that represents the electrical machine operating as generator and 𝑢2 = 1 that represents 

the electrical machine operating as motor. 

The imposed constraints are about engine, electrical machine, battery and powertrain.  

The results about final SOC, fuel consumption and fuel economy are reported on the Table 4-8: 

Discretization level Final SOC  Fuel Consumption  

[kg] 

Fuel economy   

[l/100km] 

11 0.599034 0.77 4.19 

21 0.599111 0.76 4.16 

41 0.599029  0.75  4.13 

81 0.599012 0.75 4.11 

121 0.599001 0.75 4.11 
Table 4-8: simulation results model H 
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In these results, the discretization addiction is very little both in terms of Fuel consumption and Fuel 

Economy. As regards final SOC, the results shown how it moves away from the target getting closer 

to the lower bound (0.599).  

Power plot results are shown in Figure 4.23: 

 
Figure 4.23: power plot results model H 

Power split’s good management has a positive influence on the Fuel consumption and Fuel Economy. 

An example of this is detectable in the Figure 4.24: 

 
Figure 4.24: High phase detail model H 
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In this plot, the electrical machine’s support is clear, with some zones in which DP choses pure 

electric mode. Consequently, the impact on Fuel Consumption and Fuel economy is very positive 

making the obtained values strongly in line with the expected. 

 

Gear number variation is visible in Figure 4.25: 

 

The results indicate non-correspondence between torque split and gear number. This is expected after 

watching model B and model E’s behaviour. In fact, as seen in previous cases, torque split is newly 

expressed as function of EM torque and, as a result, gear number is low when torque split’s values 

are maximum or minimum while gear number takes different values when torque split is zero (pure 

thermal mode).  

The main advantage of this model is the possibility to identify all the powerflow mode. In fact, this 

torque gives information about pure electric, pure thermal and power split. Moreover, it can 

distinguish when electrical machine operating as generator or motor and this implies also to identify 

the battery charging mode. However, model H carries on some drawbacks: there are some unexplored 

operative points of the electrical machine torque and then the engine could be underexploited, never 

reaching its maximum value.   

 

5 Model comparison 

After analysing each single model, the next step is to compare and identify differences and similarities 

between them. Moreover, the following comparison could give some information about what model 

is more accurate. Each model is compared on the same resulting parameters of every single analysis: 

final SOC, Fuel consumption and Fuel economy. Obviously, each parameter is considered with the 

same discretization level. 

 

Figure 4.25: gear number variation model H 
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5.1 Final SOC comparison 

The first compared parameter is final SOC. This last is very important because the nearer is to the 

target the more accurate is the simulation. The comparison results are reported in Table 5-1: 

 

 
Final SOC 

Discretization 
Level Model A Model B Model C Model D Model E Model F Model G Model H 

11 0.599246 0.600047 0.599444 0.599013 0.600572 0.599444 0.600999 0.599034 

21 0.599006 0.599389 0.599167 0.599043 0.599092 0.599167 0.601 0.599111 

41 0.599019 0.599273 0.599028 0.599005 0.599095 0.599028 0.600999 0.599029 

81 0.599003 0.599108 0.599028 0.599002 0.59906 0.599028 0.600997 0.599012 

121 0.599006 0.599102 0.599028 0.599002 0.599022 0.599028 0.600999 0.599001 

Table 5-1: final SOC comparison 

From the analysis, the models that came closest to the target of 0.6 are model B, model C, model E 

and model F. Each one of these reaches the nearest value in the first discretization level while 

increasing discretization they move away. Model B and model E are indirectly linked to SOC because 

torque split is expressed as a function of EM torque, from which 𝑖𝑏 and consequently SOC is 

calculated (sec. 3.1.3). On the other hand, model C and model F have torque split expressed as a 

function of 𝑖𝑏 and this directly link it to SOC. Moreover, model C and model F show practically the 

same results. 

Anyway, the other models show good results, always remaining in the pre-set range  

0.599 ≤ 𝑆𝑂𝐶 ≤ 0.601. 

 

5.2 Fuel Consumption and Fuel Economy comparison 

As mentioned in sec. 3.2, Fuel Consumption and Fuel Economy represent the cost function of the 

problem and the aim is to minimize them as much as possible. On the other hand, a good 

“compromise” between cost’s minimization and simulation accuracy is required and this reason is 

fundamental in the models’ comparison.  

 

The comparison in terms of Fuel Consumption (Table 5-2) and Fuel Economy (Table 5-3) is reported 

below: 
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Fuel Consumption kg 

Discretization  

Level Model A Model B Model C Model D Model E Model F Model G Model H 

11 0.69 0.85 0.89 0.69 0.79 0.89 0.76 4.19 

21 0.66 0.82 0.89 0.66 0.77 0.89 0.75 4.16 

41 0.65 0.81 0.89 0.65 0.75  0.89 0.75  4.13 

81 0.65 0.80 0.89 0.65 0.74 0.89 0.75 4.11 

121 0.64 0.78 0.89 0.64 0.73 0.89 0.75 4.11 

Table 5-2: Fuel Consumption comparison 

 

 

 
Fuel Economy [l/100 km] 

Discretization  

Level Model A Model B Model C Model D Model E Model F Model G Model H 

11 3.78 4.65 4.87 3.78 4.35 4.87 4.16 4.19 

21 3.64 4.49 4.87 3.64 4.20 4.87 4.13 4.16 

41 3.57 4.43 4.86 3.58 4.10 4.86 4.11 4.13 

81 3.54 4.37 4.85 3.54 4.04 4.85 4.10 4.11 

121 3.52 4.29 4.85 3.53 4.01 4.85 4.10 4.11 

Table 5-3: Fuel Economy comparison 

 

At first sight, model A and model D seem to guarantee lower fuel consumption than the others. This 

is due to a very good power split management that allows to make engine torque less predominant 

(sec. 4.1 and 4.4). On the other hand, torque split expressed as a function of the engine torque 𝑇𝑒𝑛𝑔 

makes some operative points not investigable, implying a lower fuel consumption. As concerns final 

SOC, it is not perfectly on target affecting the simulation accuracy for sure. Model C and model F 

show the highest fuel consumption caused by a lower use of power split as seen in sec. 4.3 and 4.6. 

In this case, the main limits stem from the fact that torque split can’t investigate all the operative 

points of the battery current range and this leads to increase fuel consumption. However, as mentioned 

above (sec. 5.1), in this case final SOC is very near to the target and this make the models very 

promising.  
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The best compromise between accuracy and fuel consumption is surely represented by model B and 

model E. In fact, these last have final SOC near to the target like models C and F but their fuel 

consumption is lower. Probably this is due to torque split expressed as a function of EM torque (sec. 

4.2 and 4.5) that allows to provide a good investigation of the engine torque operative range and at 

the same time a good power split management is done. 

Model G and model H represent a very good compromise between results and computational time 

and they give the possibility to identify all the powerflow configuration. This last represents the real 

strength of these models. 

Finally, all the models give acceptable results, in line with the initial expectations. In fact, Fuel 

Economy is included in the range  4 𝑙

100𝑘𝑚
≤ 𝐹𝑢𝑒𝑙 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 ≤ 5

𝑙

100𝑘𝑚
, except models A and D that 

give good results anyway.  

 

6 Conclusions 

The analysis shows that probably model B and model E seem to be a bit more promising than the 

others. In particular, model E is better as regard computational time because of its torque split’s grid. 

Consequently, discretization could be increased providing better results. However, improvement of 

vehicle’s physical model could give more accurate results. An example of this could be the suggest 

provided by (Sundström, Guzzella, & Soltic, 2010) in which EM torque is get through a linear 

interpolation taking three torque split points and three torque’s values , chosen after imposing some 

conditions.  

Another way to improve the model is to also include pollutants emissions evaluation as output. To do 

this, the model is split and an external system for emissions is created. Moreover, a new state variable 

must be added and this is the TWC temperature. 

In this thesis, a p2 parallel hybrid architecture is modelled, but the analysis of other architectures, for 

example a series configuration, is possible. Obviously, expected results, parameters’ choice  and 

vehicle’s physical model would be different. 

Finally, remember that Dynamic Programming is not implementable online and Dyna-Prog’s use is 

only referred to a pre-design concept. Despite this, DP can provide a very interesting preliminary 

view over the problem and this allows to save time and resources before the online implementation 

is done. Moreover, because of model’s simplicity, DP could be used to determine different cost 

function only varying just a few parameters and this maybe represent the main strength of all entire 

subject.  
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7 Appendix 

In this appendix, a little view over the used MATLAB script is shown. There is some information 

about vehicle model, torque split of each model and DP main script.  

 

7.1 Vehicle model 

The first script represents how vehicle’s physical model is implemented on MATLAB, starting from 

wheels: 
 

%% Vehicle Model 

% Wheels 

% Wheel speed (rad/s) 

wheelSpd = w{1} ./ wh.radius; 

% Wheel acceleration (rad/s^2) 

wheelAcc = w{2} ./ wh.radius; 

% Tractive Force (N) 

vehResForce =  veh.f0 + veh.f1 .* w{1} + 0.4020 .* w{1}.^2; 

vehForce = (w{1}~=0) .* (vehResForce + veh.mass.*w{2}); 

% Wheel torque (Nm) 

wheelTrq = vehForce .* wh.radius; 

% Final Drive 

% Final drive input speed (rad/s) 

fdSpd = fd.spdRatio .* wheelSpd; 

% Final drive input acceleration (rad/s^2) 

fdAcc = fd.spdRatio .* wheelAcc; 

% Final drive input torque (Nm) 

fdTrq  = wheelTrq ./ fd.spdRatio ... 

    + fd.loss.*(wheelTrq>0) - fd.loss.*(wheelTrq<=0); 

 

 

After that, gearbox and transmission are implemented below: 
 

% Gearbox 

gbSpRatio = gb.spdRatio(u{1}); 

  

% Crankshaft speed (rad/s) 

shaftSpd  = gbSpRatio .* fdSpd; 

% Crankshaft acceleration (rad/s^2) 

shaftAcc = gbSpRatio .* fdAcc; 

% Gearbox efficiency (-) 

gbEff = gb.effMap(u{1}); 

gbEff = min(max(gbEff, eps), 1); 

% Gearbox inertia 
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gbInertia = gb.inertia .* shaftAcc; 

% Crankshaft torque (Nm) 

gbLoss = (fdTrq>0 & gbEff>eps)  .* (1-gbEff) .* fdTrq ./ (gbEff .* gbSpRatio) ... 

     + (fdTrq>0 & gbEff==eps)  .* fdTrq .* gbSpRatio ... 

    + (fdTrq<=0) .* (1-gbEff) .* fdTrq ./ gbSpRatio; 

  

shaftTrq  = fdTrq ./ gbSpRatio + gbLoss + gbInertia; 

 

 

 

The torque split section with the eq. (3. 14) is described below: 

 
 

% Torque Split 

% Engine inertia torque (Nm) 

engResTrq  = shaftAcc * eng.inertia; 

% Electric motor drag torque (Nm) 

emResTrq  = shaftAcc * em.inertia; 

% Total required torque (Nm) 

reqTrq = engResTrq.*(u{2}~=0) + emResTrq + shaftTrq; 

 

 

The remaining part is expressed as a function of model. In fact, following the eq. (3. 13), there are 

different scripts for each chosen torque split (sec. 7.3).  

Constrains and unfeasibility are the same mentioned in sec. 3.1.4 and they are always imposed 

following the simulated model. 

 

7.2 DP main 

In this section, main DP launch script is shown. This script gives the possibility to select the model, 

to define state and control variables and related grids, to load the driving cycle and vehicle data and 

to provide all the other elements necessary for the problem (exogenus inputs, 𝑁𝑖𝑛𝑡, etc..). 

Following the section mentioned above is reported: 

 
% Main 

clear 

  

% Select model 

model = "H"; 

  

%% Set up the problem 
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% State variable grid 

SVnames = 'SOC'; 

x_grid = {0.4:0.001:0.7}; 

% Initial state  

x_init = {0.6}; 

% Final state constraints 

x_final = {[0.599 0.601]}; 

  

% Control variable grid 

CVnames = {'Gear Number', 'Torque split'}; 

u1_grid = [1 2 3 4 5]; 

u2_grid = linspace(-1,1,11); 

u_grid = {u1_grid, u2_grid}; 

  

% Load a drive cycle 

load WLTP3 % contains velocity and time vectors 

dt = time_s(2) - time_s(1); 

% Create exogenous input 

w{1} = speed_kmh./3.6;  

w{2} = [diff(w{1})/dt; 0];  

  

% Number of stages (time intervals) 

Nint = length(time_s); 

  

% Generate and store vehicle data 

load vehData 

  

% Select HEV model file 

funString = "@(x, u, w) hev" + model + "(x, u, w, veh, wh, fd, gb, eng, em, batt)"; 

funString = "fun = " + funString; 

eval(funString) 

  

% Create DynaProg object 

prob = DynaProg(x_grid, x_init, x_final, u_grid, Nint, ... 

 fun, 'ExogenousInput', w); 

 

 

The second part of this script is about the problem solving and it gives cost function and related 

profile, additional inputs saved as profiles and plot of the results as seen in chapter 4. 

 
%% Solve 

% Solve the problem 

  

prob = run(prob); 
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prob.Time = [time_s; time_s(end)+dt]; 

prob.StateName = SVnames; 

prob.ControlName = CVnames; 

prob.CostName = 'Fuel Consumption, g'; 

  

  

profiles.ExogenousInput = prob.ExogenousInput; 

profiles.StateProfile = prob.StateProfile; 

profiles.ControlProfile = prob.ControlProfile; 

profiles.CostProfile = prob.CostProfile; 

profiles.AddOutputsProfile = prob.AddOutputsProfile; 

profiles.Time = prob.Time; 

save("profiles" + model + ".mat", '-struct', 'profiles');  

% Plots 

figure 

t = plot(prob); 

 

 

7.3 Torque splits  

In this section, the scripts regarding all the torque splits seen in this thesis are reported.  

 

7.3.1 Model A 

 
% Torque Split 

 

engSpd = shaftSpd.*ones(size(reqTrq)); 

 

% Torque provided by engine 

engTrq  =(shaftSpd>0).*u{2}; 

brakeTrq  = (shaftSpd>0) .* u{2}; 

engTrq = engTrq.*ones(size(reqTrq)); 

 

% Torque provided by electric motor 

emTrq  = (shaftSpd>0).*(reqTrq>0).* reqTrq - engTrq; 

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emTrq = emTrq ./ 1.58; 

  

% Engine 

% Fuel and pollutants mass flow rates 



48 
 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% EM 

% Electric motor efficiency 

emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emEff; 

% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

emTrq(emTrq<emMinTrq)=emMinTrq(emTrq<emMinTrq); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 

  

% BATTERY 

battPwr = emElPwr; 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0).* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 

 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr) + x_new{1}>0.7; 
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7.3.2 Model B 

 
% Torque Split 

 

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emSpd = emSpd.*ones(size(reqTrq)); 

  

  

  

% Torque provided by electric motor 

emTrq =u{2}.*ones(size(reqTrq)); 

% Torque provided by engine 

engTrq  = reqTrq - u{2}; 

engTrq(engTrq<0)=0; 

brakeTrq  = (reqTrq<=0) .* reqTrq - u{2};  

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

emTrq = emTrq ./ 1.58; 

  

% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 

engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

 

% EM 

% Electric motor efficiency 

% emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emEff; 

  

 

% BATTERY 

battPwr = emElPwr; 
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% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0) .* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 

 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr); 

 

7.3.3 Model C 

 
% Torque Split 

 

% BATTERY 

if vehForce == 0 

    battCurr =0; 

else 

    battCurr= u{2}; 

end 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery Power 

battPwr = battVoltage.*battCurr + battR.*(battCurr.^2); 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr<0)  .* battPwr ./ 0.95... 

  + (battPwr>=0) .* battPwr .* 0.95; 
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emElPwr = battPwr; 

  

  

% EM 

% Electric motor efficiency 

emSpd = shaftSpd .* 1.58; 

elTrq = emElPwr./emSpd; 

emSpd = emSpd.*ones(size(elTrq)); 

emEff = (shaftSpd~=0) .* em.genEffMap(emSpd, elTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

elMaxTrq = em.maxElTrq(emSpd); 

elMinTrq = em.minElTrq(emSpd); 

elUnfeas = (isnan(emEff)) + (elTrq<0)  .* (elTrq < elMinTrq) +... 

                   (elTrq>=0) .* (elTrq > elMaxTrq); 

% Calculate electric power consumption 

emTrq = (emElPwr>=0) .* (emElPwr./emSpd).*emEff + (emElPwr<0) .* emElPwr./(emEff.*emSpd); 

emTrq(isnan(emTrq))=0; 

% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 

  

 

 

  

% Torque provided by engine 

engTrq  = (shaftSpd>0) .* (reqTrq>0)  .* reqTrq - emTrq; 

brakeTrq  = (shaftSpd>0) .* (reqTrq<=0) .* reqTrq - emTrq; 

engTrq(engTrq<0)=0; 

  

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 
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engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

  

battUnfeas = x_new{1}>0.7; 

 

 

7.3.4 Model D 

 
% Torque Split 

% Engine inertia torque (Nm) 

 

engSpd = shaftSpd.*ones(size(reqTrq)); 

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

  

% Torque provided by engine 

engTrq  = (shaftSpd>0) .* u{2}.*engMaxTrq; 

brakeTrq  = (shaftSpd>0) .* u{2}.*engMaxTrq; 

engTrq(engTrq<0)=0; 

% Torque provided by electric motor 

emTrq  = (shaftSpd>0) .*(reqTrq>0).* reqTrq - u{2}.* engMaxTrq; 

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emTrq = emTrq ./ 1.58; 

  

% Engine 

% Fuel and pollutants mass flow rates 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% EM 

% Electric motor efficiency 

emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emEff; 

% Limit Torque 
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emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

emTrq(emTrq<emMinTrq)=emMinTrq(emTrq<emMinTrq); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 

  

% BATTERY 

battPwr = emElPwr; 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0).* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 

  

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr) + x_new{1}>0.7 ; 

 

 

7.3.5 Model E 

 
% Torque Split 

 

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emSpd = emSpd.*ones(size(reqTrq)); 
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% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

emlimTrq = emMaxTrq; 

  

% Torque provided by electric motor 

emTrq  =u{2}.* emlimTrq; 

% Torque provided by engine 

engTrq  = reqTrq - u{2}.*emlimTrq; 

brakeTrq  = (reqTrq<=0) .* reqTrq - u{2}.*emlimTrq ; 

engTrq(engTrq<0)=0; 

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

emTrq = emTrq ./ 1.58; 

  

% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 

engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

% EM 

% Electric motor efficiency 

% emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emE ff; 

  

 

% BATTERY 

battPwr = emElPwr; 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 
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% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0) .* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr); 

 

 

7.3.6 Model F 

 
% Torque Split 

 

% BATTERY 

ibattlim = (u{2}<0).* -batt.minCurr(x{1}) + (u{2}>=0).* batt.maxCurr(x{1}); 

  

if vehForce ==0 

    battCurr=0; 

else 

    battCurr= u{2}.* ibattlim; 

end 

  

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery Power 

battPwr = battVoltage.*battCurr + battR.*(battCurr.^2); 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr<0)  .* battPwr ./ 0.95... 

  + (battPwr>=0) .* battPwr .* 0.95; 

  

emElPwr = battPwr; 

  

  

% % Constraints 
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% battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr); 

  

% EM 

% Electric motor efficiency 

emSpd = shaftSpd .* 1.58; 

elTrq = emElPwr./emSpd; 

emSpd = emSpd.*ones(size(elTrq)); 

emEff = (shaftSpd~=0) .* em.genEffMap(emSpd, elTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

elMaxTrq = em.maxElTrq(emSpd); 

elMinTrq = em.minElTrq(emSpd); 

% Calculate electric power consumption 

emTrq = (emElPwr>=0) .* (emElPwr./emSpd).*emEff + (emElPwr<0) .* emElPwr./(emEff.*emSpd); 

emTrq(isnan(emTrq))=0; 

% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 

  

  

% Torque provided by engine 

engTrq  = (shaftSpd>0) .* (reqTrq>0)  .* reqTrq - emTrq; 

brakeTrq  = (shaftSpd>0) .* (reqTrq<=0) .* reqTrq - emTrq; 

engTrq(engTrq<0)=0; 

  

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 

engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 
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battUnfeas = x_new{1}>0.7; 

 

 

7.3.7 Model G 

 
% Torque Split 

 

% Torque provided by engine 

engTrq  = (shaftSpd>0) .* (reqTrq>0)  .* u{2}.*reqTrq; 

brakeTrq  = (shaftSpd>0) .* (reqTrq<=0) .* (1-u{2}).*reqTrq; 

% Torque provided by electric motor 

emTrq  = (shaftSpd>0) .* (1-u{2}) .* reqTrq; 

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emTrq = emTrq ./1.58; 

  

% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 

engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

% EM 

% Electric motor efficiency 

emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emEff; 

% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 
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% BATTERY 

battPwr = emElPwr; 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0).* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 

  

% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr); 

 

 

7.3.8 Model H 

 
% Torque Split 

 

% Torque provided by engine 

engTrq  = (shaftSpd>0) .* (reqTrq>0)  .* (1-u{2}).*reqTrq; 

brakeTrq  = (shaftSpd>0) .* (reqTrq<=0) .* (1-u{2}).*reqTrq; 

% Torque provided by electric motor 

emTrq  = (shaftSpd>0) .* u{2} .* reqTrq; 

  

pwtUnfeas = (reqTrq<0 & emTrq>0); 

  

% Torque-coupling device (ideal) 

emSpd = shaftSpd .* 1.58; 

emTrq = emTrq ./1.58; 
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% Engine 

% Fuel and pollutants mass flow rates 

engSpd = shaftSpd.*ones(size(engTrq)); 

fuelFlwRate = eng.fuelMap(engSpd, engTrq); % fuel flow rate, g/s 

fuelFlwRate(engTrq==0) = 0; 

  

% Maximum engine torque 

engMaxTrq = eng.maxTrq(engSpd); 

% Costraints 

engUnfeas = (engTrq > engMaxTrq) | (engTrq > 0 & engSpd < eng.idleSpd & u{1}~=1) | (engTrq 

> 0 & engSpd > eng.maxSpd); 

  

% EM 

% Electric motor efficiency 

emSpd = emSpd.*ones(size(emTrq)); 

emEff = (shaftSpd~=0) .* em.effMap(emSpd, emTrq) + (shaftSpd==0); 

emEff(isnan(emEff)) = 1; 

% Calculate electric power consumption 

emElPwr =  (emTrq<0) .* emSpd.*emTrq.*emEff + (emTrq>=0) .* emSpd.*emTrq./emEff; 

% Limit Torque 

emMaxTrq = em.maxTrq(emSpd); 

emMinTrq = em.minTrq(emSpd); 

% Constraints  

emUnfeas = (isnan(emEff)) + (emTrq<0)  .* (emTrq < emMinTrq) +... 

                   (emTrq>=0) .* (emTrq > emMaxTrq); 

  

% BATTERY 

battPwr = emElPwr; 

% Assume inverter efficiency of 0.95 

battPwr = (battPwr>0)  .* battPwr ./ 0.95... 

  + (battPwr<=0) .* battPwr .* 0.95; 

  

% columbic efficiency 

battColumbicEff = (battPwr>0) + (battPwr<=0) .* batt.coulombic_eff; 

% Battery internal resistance 

battR = batt.eqRes(x{1}); 

% Battery voltage 

battVoltage = batt.ocv(x{1}); 

  

% Battery current 

battCurr = battColumbicEff .* (battVoltage-sqrt(battVoltage.^2 - 

4.*battR.*battPwr))./(2.*battR); 

battCurr = real(battCurr); 

% Maximum charge current 

maxChrgBattCurr = (battPwr<=0).* batt.minCurr(x{1}); 

maxDisBattCurr = (battPwr>0).* batt.maxCurr(x{1}); 
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% New battery state of charge 

x_new{1}  = - battCurr ./ (batt.maxCap * 3600) .* dt + x{1}; 

% Constraints 

battUnfeas = (battPwr<=0).*(battCurr < maxChrgBattCurr) + (battPwr>0).*(battCurr > 

maxDisBattCurr); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 
 

8 References 

Bellman, R. (1957). Dynamic Programming.  

Bersekas, D. P. (2019). Reinforcement Learning and Optimal Control.  

Bertsekas, D. P. (2005). Dynamic Programming and Optimal Control (third edition ed., Vol. 1). 

Kirk, D. E. (2004). Optimal control theory, an introduction.  

Miretti, F., Misul, D., & Spessa, E. (2021). DynaProg: Deterministic Dynamic Programming solver 

for finite horizon multi-stage decision problems. 

Onori, S., Rizzoni, G., & Serrao, L. (2015). Hybrid Electric Vehicles: Energy Management Strategies.  

Serrao, L., Onori, S., & Rizzoni, G. (2011). A Comparative Analysis of Energy Management 

Strategies for Hybrid Electric Vehicles. 

Sundström, O., Guzzella, L., & Soltic, P. (2010). Torque-Assist Hybrid Electric Powertrain Sizing: 

From Optimal Control Towards a Sizing Law. 

 

  

 


